
10/24/2020

1

Thinking
in Objects

By: Mamoun Nawahdah (PhD)
2020

Liang, Introduction to Java programming, 11th Edition, © 2017 Pearson Education, Inc.
All rights reserved

Class Abstraction and Encapsulation
 Class abstraction means to separate class
implementation from the use of the class.

 The creator of the class provides a description of the
class and let the user know how the class can be used.

 The user of the class does not need to know how the
class is implemented.

 The detail of implementation is encapsulated and
hidden from the user.
Class implementation is
like a black box hidden

from the clients Class
Class Contract

(Signatures of public
methods and public

constants)

Clients use the
class through

the contract of
the class

10/24/2020

2

3

Case Study 1: BMI Class

Case Study 2: Loan Class

Loan

-annualInterestRate: double

-numberOfYears: int

-loanAmount: double

-loanDate: Date

+Loan()

+Loan(annualInterestRate: double,
numberOfYears: int,
loanAmount: double)

+getAnnualInterestRate(): double

+getNumberOfYears(): int

+getLoanAmount(): double

+getLoanDate(): Date

+setAnnualInterestRate(
 annualInterestRate: double): void

+setNumberOfYears(
 numberOfYears: int): void

+setLoanAmount(
 loanAmount: double): void

+getMonthlyPayment(): double

+getTotalPayment(): double

The annual interest rate of the loan (default: 2.5).

The number of years for the loan (default: 1)

The loan amount (default: 1000).

The date this loan was created.

Constructs a default Loan object.

Constructs a loan with specified interest rate, years, and
loan amount.

Returns the annual interest rate of this loan.

Returns the number of the years of this loan.

Returns the amount of this loan.

Returns the date of the creation of this loan.

Sets a new annual interest rate to this loan.

Sets a new number of years to this loan.

Sets a new amount to this loan.

Returns the monthly payment of this loan.

Returns the total payment of this loan.

10/24/2020

3

Class Relationships
 Association
 Aggregation
 Composition


Association: is a general binary relationship
that describes an activity between two classes.

Aggregation
 Aggregation models has-a relationships and
represents an ownership relationship between two objects.
 The owner object is called an aggregating object and its
class an aggregating class.
 The subject object is called an aggregated object and its
class an aggregated class.

 Composition is actually a special case of the
aggregation relationship.

Inheritance (Chapter 11)

10/24/2020

4

7

Class Representation
 An aggregation relationship is usually
represented as a data field in the aggregating class.

 For example, the relationship in the previous
figure can be represented as follows:

8

Aggregation Between Same Class
 Aggregation may exist between objects of the
same class.

 For example, a person may have a supervisor:

public class Person {
// The type for the data is the class itself

private Person supervisor;
...

}

10/24/2020

5

9

Aggregation Between Same Class
 What happens if a person has several
supervisors?

public class Person {

private Person[] supervisors;
...

}

1
0

Example: The Course Class

10/24/2020

6

11

Designing a Class
 (Coherence) A class should describe a

single entity, and all the class operations
should logically fit together to support a
coherent purpose.

 You can use a class for students, for
example, but you should not combine
students and staff in the same class, because
students and staff have different entities.

12

Designing a Class cont.
 (Separating responsibilities) A single entity

with too many responsibilities can be broken into
several classes to separate responsibilities.

 Example: the classes String, StringBuilder, and
StringBuffer all deal with strings, for example, but have
different responsibilities:

 String class deals with immutable strings.

 StringBuilder class is for creating mutable strings.

 StringBuffer class is similar to StringBuilder except that
StringBuffer contains synchronized methods for updating strings.

10/24/2020

7

13

Designing a Class cont.

 Classes are designed for reuse.
 Users can incorporate classes in many different
combinations, orders, and environments. Therefore,
you should design a class that imposes no
restrictions on what or when the user can do with it:

 Design the properties to ensure that the user
can set properties in any order, with any
combination of values.

 Design methods to function independently of
their order of occurrence.

14

Designing a Class cont.

 Follow standard Java programming style
and naming conventions:

 Choose informative names for classes, data
fields, and methods.

 Always place the data declaration before the
constructor, and place constructors before
methods.

 Always provide a constructor and initialize
variables to avoid programming errors.

10/24/2020

8

Designing Stack of Integers

16

Implementing StackOfIntegers

10/24/2020

9

StackOfIntegers Class
StackOfIntegers

-elements: int[]

-size: int

+StackOfIntegers()

+StackOfIntegers(capacity: int)

+empty(): boolean

+peek(): int

+push(value: int): int

+pop(): int

+getSize(): int

An array to store integers in the stack.

The number of integers in the stack.

Constructs an empty stack with a default capacity of 16.

Constructs an empty stack with a specified capacity.

Returns true if the stack is empty.

Returns the integer at the top of the stack without
removing it from the stack.

Stores an integer into the top of the stack.

Removes the integer at the top of the stack and returns it.

Returns the number of elements in the stack.

18

Wrapper Classes
 Boolean
 Character
 Short
 Byte
 Integer
 Long
 Float
Double

NOTE:

(1) The wrapper classes do not
have no-arg constructors.

(2) The instances of all wrapper
classes are immutable, i.e.,
their internal values cannot be
changed once the objects are
created.

10/24/2020

10

19

The Integer and Double Classes

20

Numeric Wrapper Class Constructors
 You can construct a wrapper object either from
a primitive data type value or from a string
representing the numeric value.

 The constructors for Integer and Double are:

public Integer(int value)

public Integer(String s)

public Double(double value)

public Double(String s)

10/24/2020

11

21

Numeric Wrapper Class Constants
 Each numerical wrapper class has the constants
MAX_VALUE and MIN_VALUE.

 MAX_VALUE represents the maximum value of
the corresponding primitive data type.

 For Byte, Short, Integer, and Long, MIN_VALUE
represents the minimum byte, short, int, and long
values.

 For Float and Double, MIN_VALUE represents
the minimum positive float and double values.

22

Conversion Methods
 Each numeric wrapper class implements
the abstract methods doubleValue,
floatValue, intValue, longValue, and
shortValue, which are defined in the Number
class.

 These methods “convert” objects into
primitive type values.

10/24/2020

12

23

The Static valueOf Methods
 The numeric wrapper classes have a
useful class method, valueOf(String s).

 This method creates a new object
initialized to the value represented by the
specified string.

 For example:
Double doubleObject = Double.valueOf("12.4");

Integer integerObject = Integer.valueOf("12");

24

The Methods for Parsing Strings into Numbers

 You have used the parseInt method in the
Integer class to parse a numeric string into
an int value and the parseDouble method in
the Double class to parse a numeric string
into a double value.

 Each numeric wrapper class has two
overloaded parsing methods to parse a
numeric string into an appropriate numeric
value.

10/24/2020

13

Automatic Conversion Between Primitive
Types and Wrapper Class Types
 JDK 1.5 allows primitive type and wrapper classes
to be converted automatically. For example, the
following statement in (a) can be simplified as in (b):

Integer[] arr = {1, 2, 3};

System.out.println(arr[0] + arr[1] + arr[2]);

Unboxing

26

BigInteger and BigDecimal

 If you need to compute with very
large integers or high precision floating-
point values, you can use the BigInteger
and BigDecimal classes in the java.math
package.
 Both are immutable.

10/24/2020

14

27

BigInteger and BigDecimal
BigInteger a = new BigInteger("9223372036854775807");
BigInteger b = new BigInteger("2");
BigInteger c = a.multiply(b); // 9223372036854775807 * 2

System.out.println(c);

BigDecimal a = new BigDecimal(1.0);
BigDecimal b = new BigDecimal(3);
BigDecimal c = a.divide(b, 20, BigDecimal.ROUND_UP);
System.out.println(c);

