
10/31/2020

1

Inheritance and
Polymorphism

By: Mamoun Nawahdah (Ph.D.)
2020

Liang, Introduction to Java programming, 11th Edition, © 2017 Pearson Education, Inc.
All rights reserved

2

Motivations
 Suppose you will define classes to
model circles, rectangles, and triangles.
 These classes have many common
features.
What is the best way to design these
classes so to avoid redundancy?

The answer is to use inheritance

10/31/2020

2

3

Superclasses and Subclasses

Superclass

Subclass

class Convertible {
// Key (private)
// Speed: 250 K/H
// Weight: 1600Kg
// Engine: 3.2L S54 inLine-6

}

class Roadster extends Convertible {
// Speed: 265 K/H
// Weight: 1400Kg

}

10/31/2020

3

5

Are Superclass’s Constructor Inherited?
 No. Unlike properties and methods, a superclass's
constructors are not inherited in the subclass.
 They are invoked explicitly or implicitly.

 Explicitly using the super keyword.

 They can only be invoked from the subclasses'
constructors, using the keyword super.

If the keyword super is not explicitly used,
the superclass's no-arg constructor is

automatically invoked.

Superclass’s Constructor is Always Invoked

 A constructor may invoke an overloaded constructor or
its superclass’s constructor.

 If none of them is invoked explicitly, the compiler puts
super() as the first statement in the constructor.

 For example:

10/31/2020

4

7

Using the Keyword super
 The keyword super refers to the
superclass of the class in which super
appears.

 super keyword can be used in two ways:

 To call a superclass constructor.

 To call a superclass method.

8

Caution
 You must use the keyword super to
call the superclass constructor.

 Invoking a superclass constructor’s name
in a subclass causes a syntax error.

 Java requires that the statement that
uses the keyword super appear first in
the constructor.

10/31/2020

5

9

Constructor Chaining

public class Faculty extends Employee {
public static void main(String[] args) {

Faculty f = new Faculty();
}
public Faculty() {

System.out.println("(4) Faculty's no-arg constructor is invoked");
}

}

class Employee extends Person {
public Employee() {

this("(2) Invoke Employee’s overloaded constructor");
System.out.println("(3) Employee's no-arg constructor is invoked");

}
public Employee(String s) {

System.out.println(s);
}

}

class Person {
public Person() {

System.out.println("(1) Person's no-arg constructor is invoked");
}

}

Constructing an instance of a class invokes all the superclasses’ constructors
along the inheritance chain. This is called constructor chaining.

Super(); 

Super(); 

Super(); 

10

Example on the Impact of a Superclass
without no-arg Constructor

public class Apple extends Fruit {

}

public class Fruit {
public Fruit(String name) {

System.out.println("Name: " + name);
}

}

 Find out the errors in the following program:

10/31/2020

6

11

Defining a Subclass
 A subclass inherits from a superclass.
You can also:

 Add new properties.

 Add new methods.

 Override the methods of the
superclass.

12

Calling Superclass Methods

 You could rewrite the printCircle() method
in the Circle class as follows:

public void printCircle() {
System.out.println("The circle is created " +

super.getDateCreated() +
" and the radius is " + radius);

}

10/31/2020

7

13

Superclasses and Subclasses

GeometricObject
-color: String

-filled: boolean

-dateCreated: java.util.Date

+GeometricObject()

+GeometricObject(color: String,
filled: boolean)

+getColor(): String

+setColor(color: String): void

+isFilled(): boolean

+setFilled(filled: boolean): void

+getDateCreated(): java.util.Date

+toString(): String

The color of the object (default: white).

Indicates whether the object is filled with a color (default: false).

The date when the object was created.

Creates a GeometricObject.

Creates a GeometricObject with the specified color and filled
values.

Returns the color.

Sets a new color.

Returns the filled property.

Sets a new filled property.

Returns the dateCreated.

Returns a string representation of this object.

Circle
-radius: double

+Circle()

+Circle(radius: double)

+Circle(radius: double, color: String,
filled: boolean)

+getRadius(): double

+setRadius(radius: double): void

+getArea(): double

+getPerimeter(): double

+getDiameter(): double

+printCircle(): void

Rectangle
-width: double

-height: double

+Rectangle()

+Rectangle(width: double, height: double)

+Rectangle(width: double, height: double
color: String, filled: boolean)

+getWidth(): double

+setWidth(width: double): void

+getHeight(): double

+setHeight(height: double): void

+getArea(): double

+getPerimeter(): double

Overriding Methods in the Superclass
 Sometimes it is necessary for the subclass to
modify the implementation of a method defined in
the superclass.

 This is referred to as method overriding.
public class Circle extends GeometricObject {

// Other methods are omitted

/** Override the toString method defined in GeometricObject */

public String toString() {

return super.toString() + "¥n radius is " + radius;
}

}

10/31/2020

8

15

Note
 An instance method can be
overridden only if it is accessible.

 Thus a private method cannot be
overridden, because it is not accessible
outside its own class.

 If a method defined in a subclass is
private in its superclass, the two methods
are completely unrelated.

16

Note cont.

 Like an instance method, a static method
can be inherited.

 However, a static method cannot be
overridden.

 If a static method defined in the
superclass is redefined in a subclass, the
method defined in the superclass is
hidden.

10/31/2020

9

17

Overriding vs. Overloading
public class Test {

public static void main(String[] args) {
A a = new A();
a.p(10);
a.p(10.0);

}
}

class B {
public void p(double i) {
System.out.println(i * 2);

}
}

class A extends B {
// This method overrides the method in B
public void p(double i) {
System.out.println(i);

}
}

18

Overriding vs. Overloading
public class Test {

public static void main(String[] args) {
A a = new A();
a.p(10);
a.p(10.0);

}
}

class B {
public void p(double i) {
System.out.println(i * 2);

}
}

class A extends B {
// This method overloads the method in B
public void p(int i) {
System.out.println(i);

}
}

10/31/2020

10

19

The Object Class
 Every class in Java is descended from the
java.lang.Object class.

 If no inheritance is specified when a class
is defined, the superclass of the class is
Object.

20

The toString() method in Object

 The toString() method returns a
string representation of the object.
 The default implementation returns a
string consisting of:
 A class name of which the object is an
instance.
 The at sign (@).
 A number representing this object.

10/31/2020

11

21

The toString() method in Object

Circle c = new Circle();

System.out.println(c.toString());

 The code displays something like:
Circle@15037e5

 This message is not very helpful or informative.
 Usually you should override the toString method
so that it returns an informative string representing
the object.

class GraduateStudent extends Student {
}

class Student extends Person {
public String toString() {

return "Student";
}

}

class Person extends Object {
public String toString() {

return "Person";
}

}

10/31/2020

12

Polymorphism
public class Demo {

public static void main(String[] a) {
m(new Object());
m(new Person());
m(new Student());
m(new GraduateStudent());

}

public static void m(Object x){
System.out.println(x.toString());

}
}

Method m takes a
parameter of the
Object type.

You can invoke it with
any object.

 An object of a subtype can be used wherever its
supertype value is required.

 This feature is known as polymorphism.

24

Dynamic Binding
public class Demo {

public static void main(String[] a) {
m(new GraduateStudent());
m(new Student());
m(new Person());
m(new Object());

}

public static void m(Object x) {
System.out.println(

 x.toString()
);

}
}

When the method m(Object x) is
executed, the argument x’s toString
method is invoked. x may be an
instance of GraduateStudent,
Student, Person, or Object.
 Classes GraduateStudent,
Student, Person, and Object have
their own implementation of the
toString method. Which
implementation is used will be
determined dynamically by the

JVM at runtime.

This capability is known as dynamic binding.

10/31/2020

13

25

Dynamic Binding

Cn Cn-1 C2 C1

Object
Since o is an instance of C1, o is also an

instance of C2, C3, …, Cn-1, and Cn

 Dynamic binding works as follows:
 Suppose an object o is an instance of
classes C1, C2, ..., Cn-1, and Cn, where C1 is a
subclass of C2, C2 is a subclass of C3, ..., and
Cn-1 is a subclass of Cn.
 That is, Cn is the most general class, and
C1 is the most specific class.

26

Dynamic Binding cont.

Cn Cn-1 C2 C1

Object
Since o is an instance of C1, o is also an

instance of C2, C3, …, Cn-1, and Cn

 Dynamic binding works as follows:

 If o invokes a method p, the JVM searches the
implementation for the method p in C1, C2, ...,
Cn-1 and Cn, in this order, until it is found.

 Once an implementation is found, the search
stops and the first-found implementation is
invoked.

10/31/2020

14

27

Generic Programming
public class Demo {
public static void main(String[] a) {
m(new GraduateStudent());
m(new Student());
m(new Person());
m(new Object());

}
public static void m(Object x){

System.out.println(x.toString());
}

}

Polymorphism allows methods
to be used generically for a wide
range of object arguments.

This is known as:

generic programming

 If a method’s parameter type is a superclass (e.g., Object), you
may pass an object to this method of any of the parameter’s
subclasses (e.g., Student).
When an object (e.g., a Student object) is used in the method,
the particular implementation of the method of the object that is
invoked (e.g., toString) is determined dynamically.

28

Casting Objects
 Casting can also be used to convert an object of one
class type to another within an inheritance hierarchy.

m(new Student());

assigns the object new Student() to a parameter of the
Object type. This statement is equivalent to:

Object o = new Student(); // Implicit casting

m(o);

The statement Object o = new Student(), known as
implicit casting, is legal because an instance of
Student is automatically an instance of Object.

10/31/2020

15

29

Why Casting is Necessary?
 Suppose you want to assign the object reference o to a
variable of the Student type using the following statement:

Student b = o ; // A compile error would occur.

Why does the statement Object o = new Student() work
and the statement Student b = o doesn’t?
 This is because a Student object is always an
instance of Object, but an Object is not
necessarily an instance of Student.
 Even though you can see that o is really a
Student object, the compiler is not so clever to
know it.

30

Why Casting is Necessary?
 To tell the compiler that o is a Student
object, use an explicit casting.
 The syntax is similar to the one used for
casting among primitive data types.
 Enclose the target object type in
parentheses and place it before the object to
be cast, as follows:

Student b = (Student) o ; // Explicit casting

10/31/2020

16

31

Casting from Superclass to Subclass
 Explicit casting must be used when casting an
object from a superclass to a subclass.
 This type of casting may not always succeed.

Fruit fruit = new Apple();
Apple a = (Apple) fruit;
Orange o = (Orange) fruit;

32

The instanceof Operator
 Use the instanceof operator to test
whether an object is an instance of a class:

Object myObject = new Circle();
:

// Perform casting if myObject is an instance of Circle

if (myObject instanceof Circle) {
System.out.println("The circle diameter is " +

((Circle)myObject).getDiameter());
}

10/31/2020

17

33

The equals Method
 The equals() method meant to compare the contents
of two objects.
 The default implementation of the equals method in
the Object class is not doing the job:

public boolean equals (Object obj) {
return (this == obj);

}

 For example, the equals
method is overridden in the
Circle class.

public boolean equals(Object o) {
if (o instanceof Circle)

return radius == ((Circle)o).radius;
else

return false;
}

34

Note
 The == comparison operator is used for
comparing two primitive data type values
or for determining whether two objects
have the same references.

 The equals method is intended to test
whether two objects have the same
contents, provided that the method is
modified in the defining class of the objects.

10/31/2020

18

35

The ArrayList Class
 You can create an array to store
objects.

 But the array’s size is fixed once the
array is created.

 Java provides the ArrayList class
that can be used to store an unlimited
number of objects.

The ArrayList Class

10/31/2020

19

37

Generic Type <E>
 ArrayList is known as a generic class with a
generic type E.

 You can specify a concrete type to replace E
when creating an ArrayList.

 For example, the following statement creates an
ArrayList and assigns its reference to variable cities.
This ArrayList object can be used to store strings:

ArrayList<String> cities = new ArrayList<String>();

ArrayList<String> cities = new ArrayList<>();

38

Differences and Similarities
between Arrays and ArrayList

10/31/2020

20

39

ArrayLists from/to Arrays
 Creating an ArrayList from an array of objects:

String[] array = {"red", "green", "blue"};
ArrayList<String> list = new

ArrayList<>(Arrays.asList(array));

 Creating an array of objects from an ArrayList:

String[] array1 = new String[list.size()];

list.toArray(array1);

40

max and min in an ArrayList
java.util.Collections.max(list)
java.util.Collections.min(list)

Shuffling an ArrayList
Integer[] array = {3, 5, 95, 4, 15, 34, 3, 6, 5};
ArrayList<Integer> list = new

ArrayList<>(Arrays.asList(array));
java.util.Collections.shuffle(list);
System.out.println(list);

10/31/2020

21

The MyStack Classes
A stack to hold objects.

 MyStack
-list: ArrayList

+isEmpty(): boolean

+getSize(): int

+peek(): Object

+pop(): Object

+push(o: Object): void

+search(o: Object): int

Returns true if this stack is empty.

Returns the number of elements in this stack.

Returns the top element in this stack.

Returns and removes the top element in this stack.

Adds a new element to the top of this stack.

Returns the position of the first element in the stack from
the top that matches the specified element.

A list to store elements.

42

The protected Modifier
 The protected modifier can be applied on

data and methods in a class.
 A protected data/method in a public class can be

accessed by any class in the same package or its

subclasses, even if the subclasses are in a
different package.

private, none (if no modifier is used), protected, public

Visibility increases

10/31/2020

22

43

Accessibility Summary

44

Visibility Modifiers

10/31/2020

23

45

A Subclass Cannot Weaken the Accessibility

 A subclass may override a protected
method in its superclass and change its
visibility to public.

 However, a subclass cannot weaken the
accessibility of a method defined in the
superclass.

 For example, if a method is defined as
public in the superclass, it must be defined as
public in the subclass.

46

The final Modifier
 The final class cannot be extended:

final class Math {
...

}
 The final variable is a constant:

final static double PI = 3.14159;
 The final method cannot be

overridden by its subclasses.

10/31/2020

24

47

Note
 The modifiers are used on classes
and class members (data and
methods), except that the final modifier
can also be used on local variables in a
method.

 A final local variable is a constant
inside a method.

