
12/9/2020

1

Exception Handling
and

Text IO

By: Mamoun Nawahdah (Ph.D.)
2020

Liang, Introduction to Java programming, 11th Edition, © 2017 Pearson Education, Inc.
All rights reserved

2

Runtime Error?

12/9/2020

2

3

Fix it Using an if Statement

4

Exception Handling
 Exception handling technique enables a
method to throw an exception to its caller.

Without this capability, a method must
handle the exception or terminate the
program.

12/9/2020

3

5

Exception Types

6

System Errors

System errors are thrown by JVM and represented in the
Error class. The Error class describes internal system errors.

12/9/2020

4

7

Exceptions

 Exception describes errors caused by your program and
external circumstances.

 These errors can be caught and handled by your program.

8

Runtime Exceptions

 RuntimeException is caused by programming errors,
such as bad casting, accessing an out-of-bounds array, and
numeric errors.

12/9/2020

5

9

Checked Exceptions vs.
Unchecked Exceptions
 RuntimeException, Error and their
subclasses are known as unchecked
exceptions.

 All other exceptions are known as checked
exceptions, meaning that the compiler forces
the programmer to check and deal with the
exceptions.

10

Unchecked Exceptions
 In most cases, unchecked exceptions reflect programming
logic errors that are not recoverable.

 For example:

 a NullPointerException is thrown if you access an
object through a reference variable before an object is
assigned to it.

 an IndexOutOfBoundsException is thrown if you access
an element in an array outside the bounds of the array.

 These are the logic errors that should be corrected in the
program.

12/9/2020

6

11

Declaring, Throwing, and
Catching Exceptions

12

Declaring Exceptions

 Every method must state the types of
checked exceptions it might throw.

 This is known as declaring exceptions.

public void x() throws IOException

public void y() throws IOException, OtherException

12/9/2020

7

13

Throwing Exceptions
When the program detects an error, the
program can create an instance of an appropriate
exception type and throw it.
 This is known as throwing an exception.

throw new TheException();

TheException ex = new TheException();
throw ex;

14

Throwing Exceptions Example

public void setRadius(double newRadius)
throws IllegalArgumentException {

if (newRadius >= 0)
radius = newRadius;

else
throw new IllegalArgumentException(

"Radius cannot be negative");
}

12/9/2020

8

15

Catching Exceptions
try {

statements; // Statements that may throw exceptions
}
catch (Exception1 exVar1) {

handler for exception1;
}
catch (Exception2 exVar2) {

handler for exception2;
}
...
catch (ExceptionN exVar3) {

handler for exceptionN;
}

Catch or Declare Checked Exceptions

Suppose p2 is defined as follow:

void p2() throws IOException {
 if (a file does not exist) {
 throw new IOException("File does not exist");
 }

 ...
}

12/9/2020

9

17

Catch or Declare Checked Exceptions
 Java forces you to deal with checked exceptions.

 You must invoke it in a try-catch block or
 declare to throw the exception in the calling method.

 For example, suppose that method p1 invokes method
p2, you have to write the code as follow:

12/9/2020

10

12/9/2020

11

21

Rethrowing Exceptions

try {
statements;

}
catch(TheException ex) {

perform operations before exits;
throw ex;

}

22

The finally Clause
try {

statements;
}
catch(TheException ex) {

handling ex;
}
finally {

finalStatements;
}

12/9/2020

12

23

Trace a Program Execution
try {

statements;
}
catch(TheException ex) {

handling ex;
}
finally {

finalStatements;
}

Next statement;

Suppose no
exceptions in

the statements

try {
statements;

}
catch(TheException ex) {

handling ex;
}
finally {

finalStatements;
}

Next statement;

24

Trace a Program Execution

The final block
is always
executed

12/9/2020

13

try {
statements;

}
catch(TheException ex) {

handling ex;
}
finally {

finalStatements;
}

Next statement;

25

Trace a Program Execution

Next statement
in the method

is executed

26

Trace a Program Execution
try {
statement1;
statement2;
statement3;

}
catch(Exception1 ex) {
handling ex;

}
finally {
finalStatements;

}

Next statement;

Suppose an
exception of

type Exception1
is thrown in
statement2

12/9/2020

14

try {
statement1;
statement2;
statement3;

}
catch(Exception1 ex) {
handling ex;

}
finally {
finalStatements;

}

Next statement;

27

Trace a Program Execution

The exception is
handled.

try {
statement1;
statement2;
statement3;

}
catch(Exception1 ex) {
handling ex;

}
finally {
finalStatements;

}

Next statement;

28

Trace a Program Execution

The final block
is always
executed.

12/9/2020

15

try {
statement1;
statement2;
statement3;

}
catch(Exception1 ex) {
handling ex;

}
finally {
finalStatements;

}

Next statement;

29

Trace a Program Execution

The next
statement in the
method is now

executed.

try {
statement1;
statement2;
statement3;

}
catch(Exception1 ex) {

handling ex;
}
catch(Exception2 ex) {

handling ex;
throw ex;

}
finally {

finalStatements;
}

Next statement;

30

Trace a Program Execution
statement2
throws an

exception of
type Exception2.

12/9/2020

16

try {
statement1;
statement2;
statement3;

}
catch(Exception1 ex) {

handling ex;
}
catch(Exception2 ex) {

handling ex;
throw ex;

}
finally {

finalStatements;
}

Next statement;

31

Trace a Program Execution

Handling
exception

try {
statement1;
statement2;
statement3;

}
catch(Exception1 ex) {

handling ex;
}
catch(Exception2 ex) {

handling ex;
throw ex;

}
finally {

finalStatements;
}

Next statement;

32

Trace a Program Execution

Execute the
final block

12/9/2020

17

try {
statement1;
statement2;
statement3;

}
catch(Exception1 ex) {

handling ex;
}
catch(Exception2 ex) {

handling ex;
throw ex;

}
finally {

finalStatements;
}

Next statement;

33

Trace a Program Execution

Rethrow the
exception and

control is
transferred to the

caller

34

Cautions When Using Exceptions

 Exception handling separates error-handling
code from normal programming tasks, thus
making programs easier to read and to modify.

 Be aware, however, that exception handling
usually requires more time and resources
because it requires instantiating a new
exception object, rolling back the call stack, and
broadcasting the errors to the calling methods.

12/9/2020

18

35

When to Throw Exceptions
 An exception occurs in a method.
 If you want the exception to be processed by

its caller, you should create an exception object
and throw it.

 If you can handle the exception in the method
where it occurs, there is no need to throw it.

When to Use Exceptions
 You should use it to deal with unexpected
error conditions.

36

Caution!
 Do not use exception to deal with simple,
expected situations.
 For example, the following code:

try {
System.out.println(refVar.toString());

}
catch (NullPointerException ex) {

System.out.println("refVar is null");
}

 is better to be replaced by:
if (refVar != null)

System.out.println(refVar.toString());
else

System.out.println("refVar is null");

12/9/2020

19

37

Custom Exception
Use the exception classes in the API

whenever possible.

Define custom exception classes if the
predefined classes are not sufficient.

Define custom exception classes by
extending Exception or a subclass of
Exception class.

38

Custom Exception Class Example

12/9/2020

20

39

The File Class
 The File class is intended to provide

an abstraction that deals with most of
the machine-dependent complexities
of files and path names in a machine-
independent fashion.
 The filename is a string.
 The File class is a wrapper class for

the file name and its directory path.

40

File class

12/9/2020

21

41

File class

42

Text I/O
 A File object encapsulates the properties of a file or a

path, but does not contain the methods for
reading/writing data from/to a file.

 In order to perform I/O, you need to create objects
using appropriate Java I/O classes.

 The objects contain the methods for reading/writing
data from/to a file.

 This section introduces how to read/write strings and
numeric values from/to a text file using the Scanner
and PrintWriter classes.

12/9/2020

22

43

PrintWriter class

44

Scanner class

12/9/2020

23

45

Problem: Replacing Text
Write a class named ReplaceText that

replaces a string in a text file with a
new string. The filename and strings
are passed as command-line
arguments as follows:
 java ReplaceText sourceFile

targetFile oldString newString

46

Reading Data from the Web
Just like you can read data from a file on your
computer, you can read data from a file on
the Web.

12/9/2020

24

47

Reading Data from the Web
URL url = new

URL("www.google.com/index.html");
 After a URL object is created, you can use

the openStream() method defined in the
URL class to open an input stream and use
this stream to create a Scanner object as
follows:

Scanner input = new
Scanner(url.openStream());

48

Case Study: Web Crawler
This case study develops a program that travels the
Web by following hyperlinks.

12/9/2020

25

49

Case Study: Web Crawler
 The program follows the URLs to traverse the

Web.
 To avoid that each URL is traversed only once,

the program maintains two lists of URLs.
 One list stores the URLs pending for traversing and

the other stores the URLs that have already been
traversed.

 The algorithm for this program can be
described as follows:

50

Case Study: Web Crawler
Add the starting URL to a list named listOfPendingURLs;
while listOfPendingURLs is not empty {

Remove a URL from listOfPendingURLs;
if this URL is not in listOfTraversedURLs {
Add it to listOfTraversedURLs;
Display this URL;
Exit the while loop when the size of S is equal to 100.
Read the page from this URL and for each URL contained in the page {

Add it to listOfPendingURLs if it is not is listOfTraversedURLs;
}

}
}

