))L..—Jm
BIRZEIT UNIVERSITY

o

Event-Driven <& <&

Programming m‘%

Liang, Introduction to Java programming, 11t Edition, © 2017 Pearson Education, Inc.
All rights reserved

By: Mamoun Nawahdah (Ph.D.)
2020

Procedural vs. Event-
Driven Programming

= Procedural programming is executed
in procedural order.

" |n event-driven programming, code is
executed upon activation of events.

P :

12/9/2020

Handling GUI Events

+* Source object (e.g., button)

+¢ Listener object contains a method for
processing the event.

button I| > event l| > handler |
Clicking a button An event is The event handler
fires an action event an object processes the event
(Event source object) (Event object) (Event handler object

e 3

Events

s An event can be defined as a type of
signal to the program that something
has happened.

** The event is generated by external user
actions such as mouse movements,
mouse clicks, or keystrokes.

P 4

12/9/2020

12/9/2020

Event Classes

KeyEvent |

: JavaFX event classes are in
— WindowEvent :
_I the javafx.event package |

|
i |
| |
| |
| |
l :
! !
EventObject Ki—— Event Ki—— InputEvent |
|
| |
| |
| |
| |
: |
| |

Event Information

+* An event object contains whatever properties are
pertinent to the event.

+** You can identify the source object of the event
using the getSource() instance method in the
EventObject class.

+* The subclasses of EventObject deal with special
types of events, such as button actions, window
events, component events, mouse movements,
and keystrokes.

P :

Selected User Actions and Handlers

User Action Source Object Event Type Fired Event Registration Method
Click a button Button ActionEvent setOnAction(EventHandler<ActionEvent>)
Press Enter in a text field TextField ActionEvent setOnAction(EventHandler<ActionEvent>)
Check or uncheck RadioButton | ActionEvent setOnAction(EventHandler<ActionEvents)
Check or uncheck CheckBox ActionEvent setOnAction(EventHandler<ActionEvent>)
Select a new item ComboBox ActionEvent setOnAction(EventHandler<ActionEvent>)
Mouse pressed Node, Scene| MouseEvent setOnMousePressed(EventHandler<MouseEvents)
Mouse released setOnMouseReleased(EventHandl er<MouseEvent>)
Mouse clicked setOnMouseClicked(EventHandler<MouseEvent>)
Mouse entered setOnMouseEntered(EventHandler<MouseEvent>)
Mouse exited setOnMouseExited(EventHandler<MouseEvent>)
Mouse moved setOnMouseMoved (EventHandler<MouseEvents)
Mouse dragged setOnMouseDragged (EventHandler<MouseEvents>)
Key pressed Node, Scene| KeyEvent setOnKeyPressed(EventHandler<KeyEvent>)
Key released setOnKeyReleased(EventHandler<KeyEvent>)
Key typed setOnKeyTyped(EventHandler<KeyEvent>)
7
Th i
e Delegation Model
User \Trseeran cven source: SourceClas EvenHandircl etend Bveurs
J +setOnXEventType(listener) +handle(event: T)
(2) Register by invoking N
source.setOnXEventType(listener): i
(1) A listener object is an - !
instance of a listener interface listener: ListenerClass |
(a) A generic source object with a generic event T
«interface»
source: javafx.scene.control. Button EventHandler<ActionEvent>
+setOnAction(1istener) +handle(event: ActionEvent)
(2) Register by invoking Z!}‘
source.setOnAction(1istener); ;

(1) An action event listener is an instance of jistener: CustomListenerClass
EventHandler<ActionEvent>

(b) A Button source object with an ActionEvent

12/9/2020

The Delegation Model: Example

class OKHandlerClass implements EventHandler<ActionEvent> {
public void handle(ActionEvent e) {

System.out.printin("OK button clicked");

Button btOK = new Button("OK");

OKHandlerClass handler = new OKHandlerClass();
btOK.setOnAction(handler);

e 9

public class HandleEvent extends Application {
public void start(Stage primaryStage) { 1. Start from the
method to create a

window and display it

OKHandlerClass handlerl = new OKHandlerClass();
btOK.setOnAction(handlerl);

CancelHandlerClass handler2 = new CancelHandlerClass();
btCancel.setOnAction(handler2);

primaryStage.show(); // Display the stage
e ———

}
}

class OKHandlerClass implements EventHandler<ActionEvent> {
@Override

public void handle(ActionEvent e) {
System.out.printIn("OK button clicked");

. Command Prompt - java Hasm =] 3|

C:\book>java Handietuent -

. OK button clicked
3. The JVM invokes the =
listener’s handle method 1 ¥l 4

10

12/9/2020

Example: ControlCircle

** Now let us consider to write a program
that uses two buttons to control the size of
a circle.

Inner Class Listeners

+* A listener class is designed specifically to
create a listener object for a GUI
component (e.g., a button).

+» It will not be shared by other applications.

+** So, it is appropriate to define the listener
class inside the frame class as an inner
class.

e :

12/9/2020

Inner Classes

class.

o

% Inner class: A class is a member of another

+» Advantages: In some applications, you can use
an inner class to make programs simple:

= An inner class can reference the data and
methods defined in the outer class in which it
nests, so you do not need to pass the
reference of the outer class to the constructor
of the inner class.

Inner Classes cont.

(a)

public class Test {

/ Innetr class

public c1as§ A{

g
}

(b)

o

OuterClass.java: inner class demo
public class OuterClass {
private int data;

* A method in the outer class */
public void m() {
// Do something

}

An 1inner class
class InnerClass {
* A method in the i
public void mi(Q {
Directly ref
// defined in it
data++;
mQ;
;
}
}

(c)

12/9/2020

Inner Classes cont.

+* An inner class supports the work of its
containing outer class and is compiled into
a class named:

OuterClassNameSInnerClassName.class

= For example, the inner class InnerClass in
OuterClass is compiled into:

OuterClassSinnerClass.class

e 15

Inner Classes cont.

+* An inner class can be declared public,
protected, or private subject to the same
visibility rules applied to a member of the class.

¢ An inner class can be declared static:

= A static inner class can be accessed using the
outer class name.

= A static inner class cannot access non-static
members of the outer class.

e 16

12/9/2020

Anonymous Inner Classes

“* An anonymous inner class is an inner class without a name. \\‘A 74

¢+ An anonymous inner class must always extend a

superclass or implement an interface, but it cannot have an explicit
extends or implements clause.

¢ An anonymous inner class must implement all the abstract
methods in the superclass or in the interface.

+** An anonymous inner class always uses the no-arg constructor
from its superclass to create an instance. If an anonymous inner
class implements an interface, the constructor is Object().

¢ An anonymous inner class is compiled into a class named
OuterClassName$n.class . For example, if the outer class Test
has two anonymous inner classes, these two classes are

ai compiled into Test$1.class and Test$2.class

Anonymous Inner Classes cont.

¢ Inner class listeners can be shortened using anonymous
inner classes.

¢ It combines declaring an inner class and creating an
instance of the class in one step.

¢ An anonymous inner class is declared as follows:

new SuperClassName/InterfaceName() {
// Implement or override methods in superclass or interface
// Other methods if necessary

}

o

12/9/2020

Anonymous Inner Classes cont.

public void start(Stage primaryStage) { public void start(Stage primaryStage) {
Umtted / |"
btEnlarge.setOnAction(btEnTarge.setOnAction(
new EnlargeHandler()); new class—EnlargeHandiner
} 'B implements EventHandler<ActionEvent>() {
public void handle(ActionEvent e) {
class EnlargeHandler circlePane.enlarge();
implements EventHandler<ActionEvents { }
public void handle(ActionEvent e) { b;
circlePane.enlarge(); }
}
}
(a) Inner class EnlargelListener (b) Anonymous inner class

e w

Simplifying Event Handling Using
Lambda Expressions

«* Lambda expression is a new feature in Java 8.

+* Lambda expressions can be viewed as an anonymous
method with a concise syntax.

+» For example, the following code in (a) can be greatly
simplified using a lambda expression in (b) in three lines:

btEnlarge.setOnAction(btEnlarge.setOnAction (e -> |
new EventHandler<ActionEvent>() {
@Override }):

public void handle (ActionEvent &) {

}
I
}) i

(a) Anonymous inner class event handler (b) Lambda expression event handler

20

12/9/2020

10

12/9/2020

Basic Syntax for a Lambda Expression

** The basic syntax for a lambda expression is either:
(typel paraml, type2 param2, ...) -> expression
or
(typel paraml, type2 paramz, ...) -> { statements; }
/

\
+* The data type for a parameter may be explicitly

declared or implicitly inferred by the compiler.

** The parentheses can be omitted if there is only
one parameter without an explicit data type.

e m

Single Abstract Method Interface (SAM)

+** For the compiler to understand lambda
expressions, the interface must contain exactly
one abstract method.

** The statements in the lambda expression is all
for that method.

¢+ If it contains multiple methods, the compiler will
not be able to compile the lambda expression.

+* Such an interface is known as a functional
interface, or a Single Abstract Method (SAM)

interface.
e :

11

MouseEvent

javafx.scene.input.MouseEvent

+getButton(): MouseButton
+getClickCount(): int
+getX(): double

+getY(): double
+getSceneX(): double
+getSceneY(): double
+getScreenX(): double
+getScreenY(): double
+isATtDown(): boolean
+isControlDown(): boolean
+isMetaDown(): bhoolean
+isShiftDown(): boolean

Indicates which mouse button has been clicked.
Returns the number of mouse clicks associated with this event.

Returns the x-coordinate of the mouse point in the event source node.
Returns the y-coordinate of the mouse point in the event source node.

Returns the x-coordinate of the mouse point in the scene.
Returns the y-coordinate of the mouse point in the scene.
Returns the x-coordinate of the mouse point in the screen.
Returns the y-coordinate of the mouse point in the screen.
Returns true if the ATt key is pressed on this event.

Returns true if the ControT key is pressed on this event.
Returns true if the mouse Meta button is pressed on this event.

Returns true if the Shift key is pressed on this event.

o

23

The KeyEvent Class

javafx.scene.input.KeyEvent

+getCharacter(): String
+getCode(): KeyCode
+getText(): String
+1sATtDown(): bhoolean

+isControlDown(): boolean

+isMetaDown(): boolean
+isShiftDown(): boolean

Returns the character associated with the key in this event.
Returns the key code associated with the key in this event.
Returns a string describing the key code.

Returns true if the ATt key is pressed on this event.
Returns true if the Control key is pressed on this event.

Returns true if the mouse Meta button is pressed on this event.

Returns true if the Shift key is pressed on this event.

o

24

12/9/2020

12

The KeyCode Constants

Constant Description Constant Description

HOME The Home key CONTROL The Control key

END The End key SHIFT The Shift key

PAGE_UP The Page Up key BACK SPACE The Backspace key
PAGE_DOWN The Page Down key CAPS The Caps Lock key

uP The up-arrow key NUM_LOCK The Num Lock key

DOWN The down-arrow key ENTER The Enter key

LEFT The left-arrow key UNDEFINED The keyCode unknown
RIGHT The right-arrow key FltoF12 The function keys from FI to F12
ESCAPE The Esc key 0to9 The number keys from 0 to 9
TAB The Tab key AtoZ The letter keys from A to Z

o

25

Case Study: TicTacToe

= =t
il | il = ||
e D s e
=== Pl <ol [

X won! The game is over Draw! The game is over

javafx.scene.layout.Pane |

ﬁ‘_\

Cell

—token: char

+setToken (token:

+getToken () : char

-handleMouseClick () : void

char) : woid

Token used in the cell (default:' ").
Returns the token i the cell.

Sets a new token in the cell.

Handles a mouse click event.

26

12/9/2020

13

