
1

COMPUTER SCIENCE DEPARTMENT FACULTY OF
ENGINEERING AND TECHNOLOGY

ADVANCED PROGRAMMING COMP231
Instructor :Murad Njoum
Office : Masri322

Chapter 2 Elementary Programming

Trace a Program Execution
public class ComputeArea {

 /** Main method */ (for documentational
use : Javadoc Welcome.java -- Welcome.ht,l)

 public static void main(String[] args) {

 double radius;

 double area;

 // Assign a radius

 radius = 20;

 // Compute area

 area = radius * radius * 3.14159;

 // Display results

 System.out.println("The area for the circle
of radius " +

 radius + " is " + area);

 }

}

2

no valueradius

allocate memory
for radius

animation

Trace a Program Execution
public class ComputeArea {
 /** Main method */
 public static void main(String[] args) {
 double radius;
 double area;

 // Assign a radius
 radius = 20;

 // Compute area
 area = radius * radius * 3.14159;

 // Display results
 System.out.println("The area for the circle of radius " +
 radius + " is " + area);
 }
}

3

20radius

memory

1256.636area

print a message to the
console

animation

Reading Input from the Console

4

1. Create a Scanner object
Scanner input = new Scanner(System.in);

2. Use the method nextDouble() to obtain to a double
value. For example,

System.out.print("Enter a double value: ");
Scanner input = new Scanner(System.in);
double d = input.nextDouble();

Run

Run

ComputeAreaWithConsoleInput

ComputeAverage

Implicit Import and Explicit Import

java.util.* ; // Implicit import

java.util.Scanner; // Explicit Import

No performance difference

5

Identifiers

• An identifier is a sequence of characters that consist of
letters, digits, underscores (_), and dollar signs ($).

• An identifier must start with a letter, an underscore (_),
or a dollar sign ($). It cannot start with a digit.

• An identifier cannot be a reserved word. (See Appendix A,
“Java Keywords,” for a list of reserved words).

• An identifier cannot be true, false, or
null.

• An identifier can be of any length.

6

Variables

// Compute the first area
radius = 1.0;
area = radius * radius * 3.14159;
System.out.println("The area is “ +
area + " for radius "+radius);

// Compute the second area
radius = 2.0;
area = radius * radius * 3.14159;
System.out.println("The area is “ +
area + " for radius "+radius);

7

Declaring Variables
int x; // Declare x to be an
 // integer variable;

double radius; // Declare radius to
 // be a double variable;

char a; // Declare a to be a
 // character variable;

8

Assignment Statements
x = 1; // Assign 1 to x;

radius = 1.0; // Assign 1.0 to radius;

a = 'A'; // Assign 'A' to a;

9

Declaring and Initializing
in One Step

• int x = 1;
• double d = 1.4;

10

Named Constants

final datatype CONSTANTNAME = VALUE;

final double PI = 3.14159;
final int SIZE = 3;

11

Naming Conventions

• Choose meaningful and descriptive names.
• Variables and method names:

• Use lowercase. If the name consists of several words,
concatenate all in one, use lowercase for the first word,
and capitalize the first letter of each subsequent word
in the name. For example, the variables radius and
area, and the method computeArea.

12

Naming Conventions, cont.

• Class names:
• Capitalize the first letter of each word in

the name. For example, the class name
ComputeArea.

• Constants:
• Capitalize all letters in constants, and use

underscores to connect words. For
example, the constant PI and
MAX_VALUE

13

Numerical Data Types

14

 Name Range Storage Size

byte –27 to 27 – 1 (-128 to 127) 8-bit signed

short –215 to 215 – 1 (-32768 to 32767) 16-bit signed

int –231 to 231 – 1 (-2147483648 to 2147483647) 32-bit signed

long –263 to 263 – 1 64-bit signed
 (i.e., -9223372036854775808 to 9223372036854775807)

 float Negative range: 32-bit IEEE 754
 -3.4028235E+38 to -1.4E-45
 Positive range:
 1.4E-45 to 3.4028235E+38
 double Negative range: 64-bit IEEE 754
 -1.7976931348623157E+308 to -4.9E-324

 Positive range:
 4.9E-324 to 1.7976931348623157E+308

Reading Numbers from the Keyboard
Scanner input = new Scanner(System.in);
int value = input.nextInt();

15

Numeric Operators

16

Name Meaning Example Result

+ Addition 34 + 1 35

- Subtraction 34.0 – 0.1 33.9

* Multiplication 300 * 30 9000

/ Division 1.0 / 2.0 0.5

% Remainder 20 % 3 2

Problem: Displaying Time
Write a program that obtains minutes and
remaining seconds from seconds.

17

RunDisplayTime

import java.util.Scanner;
 public class DisplayTime {
 public static void main(String[] args) {
 Scanner input = new Scanner(System.in); // Prompt the user for input
 System.out.print("Enter an integer for seconds: ");
 int seconds = input.nextInt(); int minutes = seconds / 60; // Find minutes in seconds
 int remainingSeconds = seconds % 60; // Seconds remaining
 System.out.println(seconds + " seconds is " + minutes + " minutes and " + remainingSeconds + " seconds");
}
 }

NOTE
Calculations involving floating-point numbers are
approximated because these numbers are not stored
with complete accuracy. For example,

System.out.println(1.0 - 0.1 - 0.1 - 0.1 - 0.1 - 0.1);

displays 0.5000000000000001, not 0.5, and

System.out.println(1.0 - 0.9);

displays 0.09999999999999998, not 0.1. Integers are
stored precisely. Therefore, calculations with integers
yield a precise integer result.

18

Exponent Operations

System.out.println(Math.pow(2, 3));
// Displays 8.0
System.out.println(Math.pow(4, 0.5));
// Displays 2.0
System.out.println(Math.pow(2.5, 2));
// Displays 6.25
System.out.println(Math.pow(2.5, -2));
// Displays 0.16

19

Integer Literals
An integer literal can be assigned to an integer variable as
long as it can fit into the variable. A compilation error
would occur if the literal were too large for the variable to
hold. For example, the statement byte b = 1000 would
cause a compilation error, because 1000 cannot be stored
in a variable of the byte type.

An integer literal is assumed to be of the int type, whose
va l u e i s b e t w e e n - 2 3 1 (- 2 1 4 7 4 8 3 6 4 8) t o 2 3 1 – 1
(2147483647). To denote an integer literal of the long
type, append it with the letter L or l. L is preferred
because l (lowercase L) can easily be confused with 1 (the
digit one).

20

Floating-Point Literals
Floating-point literals are written with a decimal point. By default, a
floating-point literal is treated as a double type value. For example,
5.0 is considered a double value, not a float value. You can make a
number a float by appending the letter f or F, and make a number a
double by appending the letter d or D. For example, you can use for
a float number, and 100.2d or 100.2D for a double number.

Example:

float x=100.2f; or float x=100.2F; // without f or F its considered as
error by compiler

Double y=100.2d , z=100.2D;

21

double vs. float
The double type values are more accurate than the float
type values. For example,

22

System.out.println("1.0 / 3.0 is " + 1.0 / 3.0);

displays 1.0 / 3.0 is 0.3333333333333333

 16 digits

displays 1.0F / 3.0F is 0.33333334

 7 digits

System.out.println("1.0F / 3.0F is " + 1.0F / 3.0F);

Scientific Notation

Floating-point literals can also be specified in
scientific notation, for example, 1.23456e+2, same
as 1.23456e2, is equivalent to 123.456, and
1.23456e-2 is equivalent to 0.0123456. E (or e)
represents an exponent and it can be either in
lowercase or uppercase.

23

Arithmetic Expressions

24

)94(9))(5(10
5
43

y
x

xx
cbayx 







is translated to

(3+4*x)/5 – 10*(y-5)*(a+b+c)/x + 9*(4/x + (9+x)/y)

Problem: Converting Temperatures
Write a program that converts a Fahrenheit degree to
Celsius using the formula:

25

)32)((9
5  fahrenheitcelsius

Note: you have to write
celsius = (5.0 / 9) * (fahrenheit – 32)

import java.util.Scanner;
 public class FahrenheitToCelsius {
 public static void main(String[] args)
 { Scanner input = new Scanner(System.in);
 System.out.print("Enter a degree in Fahrenheit: ");
 double fahrenheit = input.nextDouble(); // Convert Fahrenheit to Celsius
 double celsius = (5.0 / 9) * (fahrenheit - 32);
 System.out.println("Fahrenheit " + fahrenheit + " is " + celsius + " in Celsius");
 }
 }

Augmented Assignment Operators

26

Increment and
Decrement Operators

27

Increment and
Decrement Operators, cont.

28

int i = 10;
int newNum = 10 * i++;

int newNum = 10 * i;
i = i + 1;

Same effect as

int i = 10;
int newNum = 10 * (++i);

i = i + 1;
int newNum = 10 * i;

Same effect as

Increment and
Decrement Operators, cont.

29

Using increment and decrement operators makes
expressions short, but it also makes them complex and
difficult to read. Avoid using these operators in expressions
that modify multiple variables, or the same variable for
multiple times such as this: int k = ++i + i.

Assignment Expressions and
Assignment Statements

Prior to Java 2, all the expressions can be used as
statements. Since Java 2, only the following types of
expressions can be statements:
variable op= expression; // Where op is +, -, *, /, or %
++variable;
variable++;
--variable;
variable--;

30

Numeric Type Conversion

Consider the following statements:

byte i = 100;

long k = i * 3 + 4;

double d = i * 3.1 + k / 2;

31

Conversion Rules
When performing a binary operation involving two
operands of different types, Java automatically
converts the operand based on the following rules:

1. If one of the operands is double, the other is

converted into double.
2. Otherwise, if one of the operands is float, the other is

converted into float.
3. Otherwise, if one of the operands is long, the other is

converted into long.
4. Otherwise, both operands are converted into int.

32

Type Casting
Implicit casting
 double d = 3; (type widening)

Explicit casting
 int i = (int)3.0; (type narrowing)
 int i = (int)3.9; (Fraction part is truncated)

What is wrong? int x = 5 / 2.0;

33

byte, short, int, long, float, double

range increases

Problem: Keeping Two Digits After
Decimal Points

Write a program that displays the sales tax with two digits
after the decimal point.

34

import java.util.Scanner;
public class SalesTax {
 public static void main(String[] args)
 { Scanner input = new Scanner(System.in);
 System.out.print("Enter purchase amount: ");
 double purchaseAmount = input.nextDouble();
 double tax = purchaseAmount * 0.06;
 System.out.println("Sales tax is " + (int)(tax * 100) / 100.0);
 }
 }

Casting in an Augmented Expression

In Java, an augmented expression of the form x1 op= x2 is
implemented as x1 = (T)(x1 op x2), where T is the type for
x1. Therefore, the following code is correct.
int sum = 0;
sum += 4.5; // sum becomes 4 after this statement

sum += 4.5 is equivalent to sum = (int)(sum + 4.5).

35

Software Development Process

36

Problem:
 Computing Loan Payments

37

Run

This program lets the user enter the interest
rate, number of years, and loan amount, and
computes monthly payment and total
payment.

12)1(
11 






arsnumberOfYeerestRatemonthlyInt

erestRatemonthlyIntloanAmountmentmonthlyPay

ComputeLoan

Problem: Monetary Units

38

This program lets the user enter the amount in
decimal representing dollars and cents and output
a report listing the monetary equivalent in single
dollars, quarters, dimes, nickels, and pennies.
Your program should report maximum number of
dollars, then the maximum number of quarters,
and so on, in this order.

RunComputeChange

Enter an amount in double, for example 11.56: 11.56
Your amount 11.56 consists of 11 dollars 2 quarters 0 dimes 1 nickels 1 pennies

Common Errors and Pitfalls

39

FCommon Error 1: Undeclared/Uninitialized
Variables and Unused Variables

FCommon Error 2: Integer Overflow
FCommon Error 3: Round-off Errors
FCommon Error 4: Unintended Integer Division
FCommon Error 5: Redundant Input Objects

FCommon Pitfall 1: Redundant Input Objects

Common Error 1:
Undeclared/Uninitialized Variables and
Unused Variables

40

double interestRate = 0.05;
double interest = interestrate * 45;

Common Error 2: Integer Overflow

41

int value = 2147483647 + 1;
// value will actually be -2147483648

Common Error 3: Round-off Errors

42

System.out.println(1.0 - 0.1 - 0.1 - 0.1 - 0.1 - 0.1);

System.out.println(1.0 - 0.9);

Common Error 4: Unintended Integer
Division

43

 int number1 = 1;
int number2 = 2;
double average = (number1 + number2) / 2;
System.out.println(average);

(a)

int number1 = 1;
int number2 = 2;
double average = (number1 + number2) / 2.0;
System.out.println(average);

(b)

Common Pitfall 1: Redundant Input
Objects

44

Scanner input = new Scanner(System.in);
System.out.print("Enter an integer: ");
int v1 = input.nextInt();

Scanner input1 = new Scanner(System.in);
System.out.print("Enter a double value: ");
double v2 = input1.nextDouble();

