
1

COMPUTER SCIENCE DEPARTMENT FACULTY OF
ENGINEERING AND TECHNOLOGY

ADVANCED PROGRAMMING COMP231
Instructor :Murad Njoum
Office : Masri322

Chapter 9 Objects and Classes

OO Programming Concepts

2

Object-oriented programming (OOP) involves programming
using objects. An object represents an entity in the real
world that can be distinctly identified. For example, a student,
a desk, a circle, a button, and even a loan can all be viewed as
objects. , state, and behaviors.
The state of an object consists of a set of data fields (also
known as properties) with their current values. The behavior of
an object is defined by a set of methods.

Objects

7

An object has both a state and behavior. The state
defines the object, and the behavior defines what
the object does.

Class Name: Circle

Data Fields:

radius is _______

Methods:

getArea

Circle Object 1

Data Fields:

radius is 10

Circle Object 2

Data Fields:

radius is 25

Circle Object 3

Data Fields:

radius is 125

A class template

Three objects of
the Circle class

Classes

8

Classes are constructs that define objects of the same type. A
Java class uses variables to define data fields and methods
to define behaviors. Additionally, a class provides a special
type of methods, known as constructors, which are invoked
to construct objects from the class.

UML Class Diagram: Unified Modeling Language

9

Circle

radius: double

Circle()
Circle(newRadius: double)
getArea(): double
getPerimeter(): double
setRadius(newRadius:
double): void

circle1: Circle

radius = 1.0

Class name

 Data fields

 Constructors and
methods

circle2: Circle

radius = 25

circle3: Circle

radius = 125

UML Class Diagram

UML notation
for objects

10

class SimpleCircle {
 double radius;

 /** Construct a circle with radius 1 */
 SimpleCircle() {
 radius = 1;
 }

 /** Construct a circle with a specified radius
*/
 SimpleCircle(double newRadius) {
 radius = newRadius;
 }

 /** Return the area of this circle */
 double getArea() {
 return radius * radius * Math.PI;
 }

 /** Return the perimeter of this
circle */
 double getPerimeter() {
 return 2 * radius * Math.PI;
 }

 /** Set a new radius for this
circle */
 void setRadius(double
newRadius) {
 radius = newRadius;
 }
}

11

public class TestSimpleCircle {
 /** Main method */
 public static void main(String[] args) {
 // Create a circle with radius 1
 SimpleCircle circle1 = new SimpleCircle();
 System.out.println("The area of the circle
of radius "
 + circle1.radius + " is " +
circle1.getArea());

 // Create a circle with radius 25
 SimpleCircle circle2 = new
SimpleCircle(25);
 System.out.println("The area of the circle
of radius "
 + circle2.radius + " is " +
circle2.getArea());

 // Create a circle with radius 125
 SimpleCircle circle3 = new SimpleCircle(125);
 System.out.println("The area of the circle of
radius "
 + circle3.radius + " is " + circle3.getArea());

 // Modify circle radius
 circle2.radius = 100; // or
circle2.setRadius(100)
 System.out.println("The area of the circle of
radius "
 + circle2.radius + " is " + circle2.getArea());
 }
}

Example: Defining Classes and Creating
Objects

12

 TV

channel: int
volumeLevel: int
on: boolean

+TV()
+turnOn(): void
+turnOff(): void
+setChannel(newChannel: int): void
+setVolume(newVolumeLevel: int): void
+channelUp(): void
+channelDown(): void
+volumeUp(): void
+volumeDown(): void

The current channel (1 to 120) of this TV.
The current volume level (1 to 7) of this TV.
Indicates whether this TV is on/off.

Constructs a default TV object .
Turns on this TV.
Turns off this TV.
Sets a new channel for this TV.
Sets a new volume level for this TV.
Increases the channel number by 1.
Decreases the channel number by 1.
Increases the volume level by 1.
Decreases the volume level by 1.

The + sign indicates
a public modifier.

TV

RunTestTV

13

public class TV {
 int channel = 1; // Default channel is 1
 int volumeLevel = 1; // Default volume level is 1
 boolean on = false; // By default TV is off

 public TV() {
 }

 public void turnOn() {
 on = true;
 }

 public void turnOff() {
 on = false;
 }

 public void setChannel(int newChannel) {
 if (on && newChannel >= 1 && newChannel <= 120)
 channel = newChannel;
 }

public void setVolume(int newVolumeLevel) {
 if (on && newVolumeLevel >= 1 && newVolumeLevel <= 7)
 volumeLevel = newVolumeLevel;
 }
 public void channelUp() {
 if (on && channel < 120)
 channel++;
 }

 public void channelDown() {
 if (on && channel > 1)
 channel--;
 }
 public void volumeUp() {
 if (on && volumeLevel < 7)
 volumeLevel++;
 }

 public void volumeDown() {
 if (on && volumeLevel > 1)
 volumeLevel--;
 }
}

14

public class TestTV {
 public static void main(String[] args) {
 TV tv1 = new TV(); // Create a TV
 tv1.turnOn(); // Turn on tv1
 tv1.setChannel(30);
 tv1.setVolume(3);

 TV tv2 = new TV();
 tv2.turnOn();
 tv2.channelUp();
 tv2.channelUp();
 tv2.volumeUp(); // Increase tv2 volume up 1 level

 System.out.println("tv1's channel is " + tv1.channel + " and volume level is " + tv1.volumeLevel);
 System.out.println("tv2's channel is " + tv2.channel + " and volume level is " + tv2.volumeLevel);
 }
}

Constructors

Circle() {
}

Circle(double newRadius) {
 radius = newRadius;
}

15

Constructors are a special
kind of methods that are
invoked to construct objects.

Constructors, cont.

16

A constructor with no parameters is referred to as a no-arg
constructor.

· Constructors must have the same name as the class itself.

· Constructors do not have a return type—not even void.

· Constructors are invoked using the new operator when an
object is created. Constructors play the role of initializing objects.

Creating Objects Using
Constructors
new ClassName();

Example:
new Circle();

new Circle(5.0);

17

Default Constructor

18

A class may be defined without constructors. In this case, a no-arg
constructor with an empty body is implicitly defined in the class.
This constructor, called a default constructor, is provided
automatically only if no constructors are explicitly defined in
the class.

Declaring Object Reference Variables

To reference an object, assign the object to a
reference variable.

To declare a reference variable, use the syntax:

ClassName objectRefVar;

Example:
Circle myCircle;

19

Declaring/Creating Objects
in a Single Step

ClassName objectRefVar = new ClassName();

Example:
Circle myCircle = new Circle();

20

Create an objectAssign object reference

Accessing Object’s Members

Referencing the object’s data:
 objectRefVar.data
 e.g., myCircle.radius

Invoking the object’s method:
 objectRefVar.methodName(arguments)
 e.g., myCircle.getArea()

21

Trace Code, cont.

 : Circle

radius: 5.0

22

Circle myCircle = new Circle(5.0);

Circle yourCircle = new Circle();

yourCircle.radius = 100;

reference valuemyCircle

reference valueyourCircle

 : Circle

radius: 1.0

Assign object reference
to yourCircle

Trace Code, cont.

 : Circle

radius: 5.0

23

Circle myCircle = new Circle(5.0);

Circle yourCircle = new Circle();

yourCircle.radius = 100;

reference valuemyCircle

reference valueyourCircle

 : Circle

radius: 100.0

Change radius in
yourCircle

Caution
Recall that you use

Math.methodName(arguments) (e.g., Math.pow(3, 2.5))

to invoke a method in the Math class

 Can you invoke getArea() using SimpleCircle.getArea()? The answer is no. All the
methods used before this chapter are static methods, which are defined using the
static keyword. However, getArea() is non-static. It must be invoked from an object
using

objectRefVar.methodName(arguments) (e.g., myCircle.getArea()).

More explanations will be given in the section on “Static Variables, Constants, and
Methods.”

24

Reference Data Fields
The data fields can be of reference types. For example, the following
Student class contains a data field name of the String type.

25

public class Student {
 String name; // name has default value null
 int age; // age has default value 0
 boolean isScienceMajor; // isScienceMajor has default value false
 char gender; // c has default value '\u0000'
}

The null Value
If a data field of a reference type does not reference any
object, the data field holds a special literal value, null.

Default Value for a Data Field
The default value of a data field is null for a reference
type, 0 for a numeric type, false for a boolean type, and
'\u0000' for a char type. However, Java assigns no default
value to a local variable inside a method.

26

public class Test {
 public static void main(String[] args) {
 Student student = new Student();
 System.out.println("name? " + student.name);
 System.out.println("age? " + student.age);
 System.out.println("isScienceMajor? " + student.isScienceMajor);
 System.out.println("gender? " + student.gender);
 }
}

Example

public class Test {
 public static void main(String[] args) {
 int x; // x has no default value
 String y; // y has no default value
 System.out.println("x is " + x);
 System.out.println("y is " + y);
 }
}

27

Compile error: variable not
initialized

Java assigns no default value to a local variable
inside a method.

Differences between Variables of
Primitive Data Types and Object Types

28

1 Primitive type int i = 1 i

Object type Circle c c reference

Created using new Circle()

c: Circle

radius = 1

Copying Variables of Primitive
Data Types and Object Types

29

i

Primitive type assignment i = j

 Before:

 1

 j

2

i

After:

 2

 j

2

c1

Object type assignment c1 = c2

 Before:

 c2

c1

After:

c2

c1: Circle
radius = 5

c2: Circle
radius = 9

c1: Circle
radius = 5

c2: Circle
radius = 9

Garbage Collection
As shown in the previous figure, after the
assignment statement c1 = c2, c1 points to
the same object referenced by c2. The
object previously referenced by c1 is no
longer referenced. This object is known as
garbage. Garbage is automatically collected
by JVM.

30

Garbage Collection,

 TIP: If you know that an object is no longer needed,
you can explicitly assign null to a reference variable for
the object. The JVM will automatically collect the
space if the object is not referenced by any variable.

31

The Date Class
Java provides a system-independent encapsulation of date and time in the
java.util.Date class. You can use the Date class to create an instance for the
current date and time and use its toString method to return the date and
time as a string.

32

 java.util.Date

+Date()
+Date(elapseTime: long)

+toString(): String
+getTime(): long

+setTime(elapseTime: long): void

Constructs a Date object for the current time.
Constructs a Date object for a given time in

milliseconds elapsed since January 1, 1970, GMT.
Returns a string representing the date and time.
Returns the number of milliseconds since January 1,

1970, GMT.
Sets a new elapse time in the object.

The + sign indicates
public modifer

new Date(120,9, 12,23,56,25);

2020 Oct Day Time
24 hours
format

The Date Class Example
For example, the following code

java.util.Date date = new java.util.Date();
//current date

System.out.println(date.toString());

displays a string like Mon Oct 12 19:10:18 IDT 2020.

33

The Random Class
You have used Math.random() to obtain a random double
value between 0.0 and 1.0 (excluding 1.0). A more useful
random number generator is provided in the
java.util.Random class.

34

 java.util.Random

+Random()
+Random(seed: long)
+nextInt(): int
+nextInt(n: int): int
+nextLong(): long
+nextDouble(): double
+nextFloat(): float
+nextBoolean(): boolean

Constructs a Random object with the current time as its seed.
Constructs a Random object with a specified seed.
Returns a random int value.
Returns a random int value between 0 and n (exclusive).
Returns a random long value.
Returns a random double value between 0.0 and 1.0 (exclusive).
Returns a random float value between 0.0F and 1.0F (exclusive).
Returns a random boolean value.

The Random Class Example
If two Random objects have the same seed, they will generate
identical sequences of numbers. For example, the following code
creates two Random objects with the same seed 3.

35

Random random1 = new Random(3);
System.out.print("From random1: ");
for (int i = 0; i < 10; i++)
 System.out.print(random1.nextInt(1000) + " ");
Random random2 = new Random(3);
System.out.print("\nFrom random2: ");
for (int i = 0; i < 10; i++)
 System.out.print(random2.nextInt(1000) + " ");

From random1: 734 660 210 581 128 202 549 564 459 961
From random2: 734 660 210 581 128 202 549 564 459 961

Instance Variables, and Methods

36

• Instance variables belong to a specific instance.

•
Instance methods are invoked by an instance of the class.

37

Static variables are shared by all the instances of the class.

Static methods are not tied to a specific instance (object).

Static constants are final variables shared by all the instances of the
class.

To declare static variables, constants, and methods, use
the static modifier.

Static Variables, Constants,
and Methods, cont.

38

Example of
Using Instance and Class Variables and Method

 Objective: Demonstrate the roles of
instance and class variables and their
uses. This example adds a class variable
numberOfObjects to track the number of
Circle objects created.

39

Run

CircleWithStaticMembers

TestCircleWithStaticMember
s

40

public class CircleWithStaticMembers {
 /** The radius of the circle */
 double radius;

 /** The number of the objects created */
 static int numberOfObjects = 0;

 /** Construct a circle with radius 1 */
 CircleWithStaticMembers() {
 radius = 1.0;
 numberOfObjects++;
 }

 /** Construct a circle with a specified radius */
 CircleWithStaticMembers(double newRadius)
{
 radius = newRadius;
 numberOfObjects++;
 }

 /** Return numberOfObjects */
 static int getNumberOfObjects() {
 return numberOfObjects;
 }

 /** Return the area of this circle */
 double getArea() {
 return radius * radius * Math.PI;
 }
}

41

Static Variable
1. It is a variable which belongs to the class and not to the instance
(object).
2. Static variables are initialized only once, at the start of the
execution.
Static variables will be initialized first, before the initialization of any
instance variables.
3. A single copy to be shared by all instances of the class.
4. A static variable can be accessed directly by the class name and
doesn’t need any instance of class (object).

Syntax : < class - name>.<static - variable - name>

42

Static Method
 1. It is a method which belongs to the class and not to the instance (object).
2. A static method can access only static data. It can not access non-static
data (instance variables).
3. A static method can call only other static methods and can not call a non-
static method from method inside. (main and other methods inside class)
4. A static method can be accessed directly by the class name and doesn’t
need any create an instance (object) to access it.
Syntax : < class - name>.<static - method - name>(..)
 5. A static method cannot refer to “this” or “super” keywords in anyway.

Note: main method is static, since it must be accessible for an
 application to run, before any instantiation takes place.

43

public class Checkstatic {
public static void main(String[] args) {

Check c1 = new Check();
System.out.println(c1.getX());
System.out.println(c1.x); // warining: static field should be accessed in static way

Check c2 = new Check();
System.out.println(c2.getX());
System.out.println(c2.x); // warining: static field should be accessed in static way
}

}

class Check {

int y;

Check() {
x++; }

Check(int xvalue) {
y = xvalue;
x++;

}

public int getX() {
return x;

}
}

static int x = 0;

The static field Check.x should
be accessed in a static way

1
1
2
2

44

public class Checkstatic {

public static void main(String[] args) {

 System.out.println(Check.x);

 Check.setX(5);

 System.out.println(Check.getX());

 }
}

class Check{
static int x=0;
 int y;
Check(){

 }

public void setX(int xvalue){
 x=xvalue;
 }
public int getX(){
 return x;
 }
}

public class Checkstatic {

public static void main(String[] args) {

 System.out.println(Check.x);

 Check.setX(5);

 System.out.println(Check.getX());
 }
}

class Check{
static int x=0;
 int y;
Check(){

 }

public static void setX(int xvalue){
 x=xvalue;
 }
public static int getX(){
 return x;
 }
}

We accessed in a static way
Since no instance object createded

0
5

Visibility Modifiers and Accessor/Mutator Methods
“A Mutator method is commonly known as a set method or simply a setter”

By default, the class, variable, or method can be accessed by any
class in the same package.

45

 public
The class, data, or method is visible to any class in any package.

 private
The data or methods can be accessed only by the declaring class.

The get and set methods are used to read and modify private
properties.(variables)

“It shows us the principle of encapsulation”

46

The private modifier restricts access to within a class, the default
modifier restricts access to within a package, and the public
modifier enables unrestricted access.

47

48

The default modifier on a class restricts access to within a package, and
the public modifier enables unrestricted access.

NOTE

49

An object cannot access its private members, as shown in (b).
It is OK, however, if the object is declared in its own class, as

shown in (a).

Why Data Fields Should Be private?

To protect data.

To make code easy to maintain.

50

Example of
Data Field Encapsulation

51

Run

CircleWithPrivateDataFields

TestCircleWithPrivateDataFields

 Circle

-radius: double
-numberOfObjects: int

+Circle()
+Circle(radius: double)
+getRadius(): double
+setRadius(radius: double): void
+getNumberOfObjects(): int
+getArea(): double

The radius of this circle (default: 1.0).
The number of circle objects created.

Constructs a default circle object.
Constructs a circle object with the specified radius.
Returns the radius of this circle.
Sets a new radius for this circle.
Returns the number of circle objects created.
Returns the area of this circle.

The - sign indicates
private modifier

52

public class TestPassObject {
 /** Main method */
 public static void main(String[] args) {
 // Create a Circle object with radius 1
 CircleWithPrivateDataFields myCircle = new CircleWithPrivateDataFields(1);
 // Print areas for radius 1, 2, 3, 4, and 5.
 int n = 5;
 printAreas(myCircle, n);

 // See myCircle.radius and times
 System.out.println("\n" + "Radius is " + myCircle.getRadius());
 System.out.println("n is " + n);
 }

/** Print a table of areas for radius */
 public static void printAreas(CircleWithPrivateDataFields c, int times) {
 System.out.println("Radius \t\tArea");
 while (times >= 1) {
 System.out.println(c.getRadius() + "\t\t" + c.getArea());
 c.setRadius(c.getRadius() + 1);
 times--;
 }
 }
}

Passing by value for primitive type value (the value
is passed to the parameter)

Passing by value for reference type value (the
value is the reference to the object)

53

Radius Area
1.0 3.141592653589793
2.0 12.566370614359172
3.0 28.274333882308138
4.0 50.26548245743669
5.0 78.53981633974483
Radius is 6.0n is 5

Passing Objects to Methods

Array of Objects
 Circle[] circleArray = new Circle[10];

 An array of objects is actually an array of
reference variables. So invoking
circleArray[1].getArea() involves two
levels of referencing as shown in the next
figure. circleArray references to the entire
array. circleArray[1] references to a Circle
object.

54

Array of Objects, cont.
 Circle[] circleArray = new Circle[10];

55

Immutable(Cannot change) Objects and Classes

56

If the contents of an object cannot be changed once the object is created,
the object is called an immutable object and its class is called an
immutable class. If you delete the set method in the Circle class in Listing
8.10, the class would be immutable because radius is private and cannot
be changed without a .

A class with all private data fields and without mutators (no setter)
is not necessarily immutable. For example, the following class
Student has all private data fields and no mutators, but it is mutable.

Example

57

public class Student {

 public Student(int ssn,
 int year, int month, int day) {
 id = ssn;

 }
 public int getId() {
 return id;
 }
 public BirthDate getBirthDate() {
 return birthDate;
 }
}

public class BirthDate {
 private int year;
 private int month;
 private int day;

 public BirthDate(int newYear,
 int newMonth, int newDay) {
 year = newYear;
 month = newMonth;
 day = newDay;
 }

 public void setYear(int newYear) {
 year = newYear;
 }
}

public class Test {
 public static void main(String[] args) {
 Student student = new Student(111223333, 1970, 5, 3);
 BirthDate date = student.getBirthDate();
 date.setYear(2010); // Now the student birth year is changed!
 }
}

Scope of Variables

The scope of instance and static variables is the entire class.
They can be declared anywhere inside a class.

The scope of a local variable starts from its declaration and
continues to the end of the block that contains the variable.
A local variable must be initialized explicitly before it can be
used.

5858

Immutable Class

• Immutable class means that once an object is created, we cannot change its
content.

• The class must be declared as final (So that child classes can’t be created)
• Data members in the class must be declared as final (So that we can’t

change the value of it after object creation)
• A parameterized constructor
• Getter method for all the variables in it
• No setters(To not have the option to change the value of the instance

variable)

�1� �62� �12��쀀

Example
// An immutable class

public final class Student

{ final String name;

 final int regNo;

public Student(String name, int regNo)

{ this.name = name;

 this.regNo = regNo;

}

public String getName()

{ return name; }

public int getRegNo()

{ return regNo; }

}

// Driver class
class Test
{

public static void main(String args[])
{

Student s = new Student("ABC", 101);
System.out.println(s.getName());
System.out.println(s.getRegNo());

// Uncommenting below line causes error
// s.regNo = 102;

}
}

Remember : . A static method cannot refer to “this” or
“super” keywords in anyway.

The this keyword is the name of a reference that refers to an object
itself. One common use of the this keyword is reference a class’s hidden
data fields.

Another common use of the this keyword to enable a constructor to
invoke another constructor of the same class.

61

Reference the Hidden Data Fields

62

 public class F {
 private int i = 5;
 private static double k = 0;

 void setI(int i) {
 this.i = i;
 }

 static void setK(double k) {
 F.k = k;
 }
}

Suppose that f1 and f2 are two objects of F.
F f1 = new F(); F f2 = new F();

Invoking f1.setI(10) is to execute
 this.i = 10, where this refers f1

Invoking f2.setI(45) is to execute
 this.i = 45, where this refers f2

Calling Overloaded Constructor

63

 public class Circle {
 private double radius;

 public Circle(double radius) {
 this.radius = radius;
 }

 public Circle() {
 this(1.0);
 }

 public double getArea() {
 return this.radius * this.radius * Math.PI;
 }
}

Every instance variable belongs to an instance represented by this,
which is normally omitted

this must be explicitly used to reference the data
field radius of the object being constructed

this is used to invoke another constructor

