((NS BN ‘*‘% I
t) w 3 e L» /\Do
< _ BIRZEIT UNIVERSITY

Java

COMPUTER SCIENCE DEPARTMENT FACULTY OF 8
ENGINEERING AND TECHNOLOGY

ADVANCED PROGRAMMING ComP231

Instructor :Murad Njoum
Office : Masri322

Chapter 11 Inheritance and (()
Polymorphism —

Java

liang introduction to java programming 11th edition ,2019 Edit By : Mr.Murad Njoum

Motivations

Suppose you will define classes to model circles, rectangles,
and triangles. These classes have many common features.
What is the best way to design these classes so to avoid
redundancy?

The answer is to use inheritance.

Java

liang introduction to java programming 11th edition ,2019 Edit By : Mr.Murad Njoum

Superclasses and Subclasses

GeometricObject

~color: String
filled: boolean
~dateCreated: java.util. Date

+GeometricObject()

+GeometricObject(color: String,
filled: boolean)

+getColor(): String
+setColor(color: String): void
+isFilled(): boolean
+setFilled(filled: boolean): void
+getDateCreated(): java.util. Date
“+toString(): String

%

The color of the object (default: white).

Indicates whether the object is filled with a color (default: false).

The date when the object was created.

Creates a GeometricObject.

Creates a GeometricObject with the specified color and filled
values.

Returns the color.

Sets a new color.

Returns the filled property.

Sets a new filled property.

Returns the dateCreated.

Returns a string representation of this object.

1

Circle

-radius: double

+Circle()

+Circle(radius: double)

+Circle(radius: double, color: String,
filled: boolean)

+getRadius(): double

+setRadius(radius: double): void

+getArea(): double

+getPerimeter(): double

+getDiameter(): double

“+printCircle(): void

liang introduction to java programming 11th edition ,2019 Edit By : Mr.Murad Njoum

Rectangle

-width: double
~height: double

+Rectangle()
“+Rectangle(width: double, height: double)
+Rectangle(width: double, height: double

GeometricObject

color: String, filled: boolean) C/)
+getWidth(): double . Compmee
“+setWidth(width: double): void Circle e
+getHeight(): double ;—_/
+setHeight(height: double): void Rectangle

“+getArea(): double
+getPerimeter(): double

TestCircleRectangle

Person

Student

Employee

Undergraduate

Graduate Faculty Staff

Masters

Doctoral Nondegree

—

Java

liang introduction to java programming 11th edition ,2019 Edit By : Mr.Murad Njoum 4

superclass and subclass

Person

An Employeeisa

Person and so forth:

/ \ hence the arrows point up.

Student

Employee

/ N\ /N

Undergraduate

Graduate

Faculty Staff

liang introduction to java programming 11th edition ,2019 Edit By : Mr.Murad Njoum

Person

- name: String

+ setName(String newName): void

+ getName(): String

+ writeOutput():
+ hasSameName(Person otherPerson)): boolean

void

t

Student

- studentNumber:

int

reset(String newName,int newStudentNumber): void

getStudentNumber(): int

setStudentNumber(int newStudentNumber): void

writeOQutput(): void
equals(Student otherStudent): boolean

1

Undergraduate

- Tlevel: int

T

int newlevel): void

getlevel(): int

+ + + +

setlevel(int newLevel): void
writeOutput(): void
equals(Undergraduate otherUndergraduate): hoolean

reset(String newName, int newStudentNumber,

X/
L X4

Are superclass’s Constructor Inherited?

No. They are not inherited.

¢ They are invoked explicitly or implicitly.

¢ Explicitly using the super keyword.

¢ A constructor is used to construct an instance of a class. Unlike properties
and methods, a superclass's constructors are not inherited in the subclass.

% They can only be invoked from the subclasses' constructors, using the

keyword super.

€

% If the keyword super is not explicitly used, the superclass's no-arg %;’)
constructor 1s automatically invoked.

liang introduction to java programming 11th edition ,2019 Edit By : Mr.Murad Njoum

—

Java

7

liang introduction to java programming 11th edition ,2019 Edit By : Mr.Murad Njoum

Superclass’s Constructor Is Always Invoked

A constructor may invoke an overloaded constructor or its
superclass’s constructor. If none of them is invoked explicitly,
the compiler puts super() as the first statement in the constructor.

For example,

public A() {

is equivalent to

public A(double d) {
// some statements

}

is equivalent to

»
>

public A() {
super () ;

public A(double d) {
super () ;
// some statements

}

Using the Keyword super

The keyword super refers to the superclass of the class in which
super appears. This keyword can be used in two ways:

UTo call a superclass constructor

UTo call a superclass method

Java

liang introduction to java programming 11th edition ,2019 Edit By : Mr.Murad Njoum

CAUTION

¢ You must use the keyword super to call the superclass
constructor.

% Invoking a superclass constructor’s name in a subclass
causes a syntax error.

¢ Java requires that the statement that uses the keyword
super appear first in the constructor.

—

Java

liang introduction to java programming 11th edition ,2019 Edit By : Mr.Murad Njoum 10

Example (using super with constructor,

methods, variables)
class B extends A{

class A{
int a,b; int ¢;
A(int x, int y) B(int x, inty, int z)
{a=x; b=y} {super(x,y);//first
c=z;}
int multi(int multi((
return a*b: return a*b*c; (_f 5
) } =
} } Java
liang introduction to java programming 11th edition ,2019 Edit By : Mr.Murad Njoum 1
class A{
Cont.. \oid hello()
System.out.printin(“Hello 17);
}
}
class B extend A{
void hello(){
System.out.printin(“Hello 27);}
void display() (
{hello(); super.hello(); <~
J —
} Java

liang introduction to java programming 11th edition ,2019 Edit By : Mr.Murad Njoum 12

Cont.. class A{
int a=8;

}

class B extend A{
inta =7,
void display()
{ System.out.printin(a);
System.out.printin(super.a);

}
}

liang introduction to java programming 11th edition ,2019 Edit By : Mr.Murad Njoum

class A {
inta, b;
Alintx, inty) { public class testmethodoverload {
E - " public static void main(String[] args) {
yo Aa =new A5, 5);
int multi() { System.out.printin(a.multi());
returna*b;
B B b = new B(5, 10, 15);
class B extends A { System.out.printin(b.multi());
intc; System.out.printin(b.methodX());
B(int x, int y, int z) { }
super(x, y);/l first
c=z} 1
public int methodX() {
int d = super.multi();
return d;}
@Override 25
int multi) { 750
returna* b * c;} 50
}

liang introduction to java programming 11th edition ,2019 Edit By : Mr.Murad Njoum

Constructor Chaining
Constructing an instance of a class invokes all the superclasses’ constructors

along the inheritance chain. This is known as constructor chaining.
public class Faculty extends Employee {
public static void main(String[] args) {
new Faculty();

public Faculty() {
System.out.printin(‘(4) Faculty’s no-arg constructor is invoked-);
}
}

class Employee extends Person {
public Employee() {
this(‘(2) Invoke Employee’s overloaded constructor);
System.out.printin(‘(3) Employee’s no-arg constructor is invoked‘);

}
public Employee(String s) {
System.out.printin(s);
} <)
} e
class Person { —
public Person() { ;
System.out.printin(‘(1) Person’s no-arg constructor is invoked); Jav a
}
liang introduction to java programming 11th edition ,2019 Edit By : Mr.Murad Njoum 15

I Trace Execution

public class Faculty extends Employee {
|public static void main(String[] args) | { r

| e Faculty D) \L 1. Start from the main method]

public Faculty() {
System.out.println(" (4) Faculty's no-arg constructor is invoked");
}
}

class Employee extends Person {
public Employee() {
this (" (2) Invoke Employee’s overloaded constructor");
System.out.println(" (3) Employee's no-arg constructor is invoked") ;

}

public Employee (String s) {

System.out.println(s) ; (
}
} C/)
po—
class Person { (b >
i,

public Person() {

}
}

liang introduction to java programming 11th edition ,2019 Edit By : Mr.Murad Njoum 16

System.out.println(" (1) Person's no-arg constructor is invoked") ; Java

I Trace Execution

public class Faculty extends Employee {
public static void main(String[] args) {

[(new Faculty 0 —] (2. Invoke Faculty constructor]
I

}

public Faculty() { |
System.out.println(" (4) Faculty's no-arg constructor is invoked");
}
}

class Employee extends Person {
public Employee() {
this (" (2) Invoke Employee’s overloaded constructor");
System.out.println(" (3) Employee's no-arg constructor is invoked");

}

public Employee (String s) {

System.out.println(s) ;
}
}

=
“pebiic person() | —
System.out.println(" (1) Person's no-arg constructor is invoked") ; »
| | P (" () g) J av a

liang introduction to java programming 11th edition ,2019 Edit By : Mr.Murad Njoum 17

I Trace Execution

public class Faculty extends Employee {
public static void main(String[] args) {
[new Faculty():
}

public Faculty() { |
System.out.println(" (4) Faculty's no-arg constructor is invoked");

}
} 3. Invoke Employee’s no-]

class Employee extends Person { A_,——””\ arg constructor
[public Employee() { — |
this (" (2) Invoke Employee’s overloaded constructor");
System.out.println(" (3) Employee's no-arg constructor is invoked") ;
}

public Employee (String s) {

System.out.println(s) ;
}
}

=t
po—
class Person { Q/
public Person() { —
System.out.println(" (1) Person's no-arg constructor is invoked") ;]
) dvd
}

liang introduction to java programming 11th edition ,2019 Edit By : Mr.Murad Njoum 18

I Trace Execution

public class Faculty extends Employee {
public static void main(String[] args) {
[new Faculty();
}

public Faculty() { |
System.out.println(" (4) Faculty's no-arg constructor is invoked");

}
! 4. Invoke Employee(String)]

class Employee extends Person { constructor

public Employee() {
|this(" (2) Invoke Employee’s overloaded constructor")j

System.out.println(" (3) Employee's no-arg constructor is invoked");

}

|public Employee (String s) { |

System.out.println(s) ;
}
}

=t
po—
class Person { (’ >
public Person() { ——
System.out.println(" (1) Person's no-arg constructor is invoked") ; J -
) davd
}
liang introduction to java programming 11th edition ,2019 Edit By : Mr.Murad Njoum 19
Trace Execution
public class Faculty extends Employee {
public static void main(String[] args) {
[new Faculty():
}
public Faculty() { |
System.out.println(" (4) Faculty's no-arg constructor is invoked");
}
}
class Employee extends Person {
public Employee() {
|this(" (2) Invoke Employee’s overloaded constructor")j
System.out.println(" (3) Employee's no-arg constructor is invoked") ;
}
|public Employee (String s) { |
System.out.println(s) ; (
}
} 5. Invoke Person() constructor =)
po—
class Person { (’ >
[public Person() { —_— —
System.out.println(" (1) Person's no-arg constructor is invoked") ; J -
) davd
}

liang introduction to java programming 11th edition ,2019 Edit By : Mr.Murad Njoum 20

I Trace Execution

public class Faculty extends Employee {
public static void main(String[] args) {
[new Faculty();
}

public Faculty() { |
System.out.println(" (4) Faculty's no-arg constructor is invoked");
}
}

class Employee extends Person {
public Employee() {
|this(" (2) Invoke Employee’s overloaded constructor")j
System.out.println(" (3) Employee's no-arg constructor is invoked");

}

|public Employee (String s) { |

System.out.println(s) ;
}
}

. <
6. Execute println —)
class Person { (’ >
public Person() { ——
[System.out.printin(" (1) Person"s no-arg constructor is invoked") j J .
) davd
}
liang introduction to java programming 11th edition ,2019 Edit By : Mr.Murad Njoum 21
Trace Execution
public class Faculty extends Employee {
public static void main(String[] args) {
[new Faculty():
}
public Faculty() { |
System.out.println(" (4) Faculty's no-arg constructor is invoked");
}
}
class Employee extends Person {
public Employee() {
|this(" (2) Invoke Employee’s overloaded constructor")j
System.out.println(" (3) Employee's no-arg constructor is invoked");
}
public Employee (String s) {
[System.out.println(s); — | (
}
} . <
7. Execute println —)
class Person { (’ >
public Person() { ——
System.out.println(" (1) Person's no-arg constructor is invoked") ; J -
) davd
}

liang introduction to java programming 11th edition ,2019 Edit By : Mr.Murad Njoum 22

I Trace Execution

public class Faculty extends Employee {
public static void main(String[] args) {
[new Faculty();
}

public Faculty() { |
System.out.println(" (4) Faculty's no-arg constructor is invoked");

}

}

class Employee extends Person {
public Employee() {
this (" (2) Invoke Employee’s overloaded constructor");
|System.out.println("(3) Employee's go-arg constructor is invokedj);

public Employee (String s) {

System.out.println(s) ;
}
}

[8. Execute println J —)

class Person {
public Person() {

System.out.println(" (1) Person's no-arg constructor is invoked") ; »
) dvd
}

liang introduction to java programming 11th edition ,2019 Edit By : Mr.Murad Njoum 23

| animation |

Trace Execution

public class Faculty extends Employee {
public static void main(String[] args) {
[new Faculty():
}

public Faculty() {
System.out.println(" (4) Faculty's no-arg constructor is invoked"ﬂ;

! T
}
[9. Execute println]

class Employee extends Person {
public Employee() {
this (" (2) Invoke Employee’s overloaded constructor");
System.out.println(" (3) Employee's no-arg constructor is invoked") ;

}

public Employee (String s) {

System.out.println(s) ;
}
}

class Person { <' >
public Person() { ——

System.out.println(" (1) Person's no-arg constructor is invoked") ; »
) dvd
}

liang introduction to java programming 11th edition ,2019 Edit By : Mr.Murad Njoum 24

classA{ classA{

A Al
System.out.printin("Print A constructor"); System.out.printin("Print A constructor");
} }
class B extends A { class B extends A {
B(X B({
System.out.printin("Print B constructor"); super();
System.out.printin("Print B constructor");
}
}
class C extends B {
C({ class C extends B {
System.out.printin("Print C constructor"); COf
super();
} System.out.printin("Print C constructor"”);

public class superClass {
public class superClass {

public static void main(String[] args) { public static void main(String[] args) {
new C(); new C();
} }
} }
)u vaa
liang introduction to java programming 11th edition ,2019 Edit By : Mr.Murad Njoum 2

**Example on the Impact of a Superclass without no-arg Constructor They can
only be invoked from the subclasses' constructors, using the keyword super.

Find out the errors in the program:

public class Apple extends Fruit ({
Apple(}
super("Hi:");}
} Fruit class doesn’t contains default constructor
i.e, Fruit(){} doesn't exists
class Fruit {

public Fruit (String name) { (
System.out.print (name) ; =)
System.out.println("Fruit's constructor is invoked"); S

} —

} Hi:Fruit's constructor is invoked] a V a

liang introduction to java programming 11th edition ,2019 Edit By : Mr.Murad Njoum 26

«»If the keyword super is not explicitly used, the superclass's no-arg constructor is
automatically invoked

Find out the errors in the program:
public class Apple extends Fruit ({
Apple(){}

} Fruit class is defined , default constructor
Super is implicitly created
class Fruit {
public Fruit () {
System.out.println(“Cl: Fruit's constructor is invoked");
}
public Fruit(String name) {

System.out.println(“C2 :Fruit's constructor is invoked");

}
} C1 :Fruit's constructor is invoked

liang introduction to java programming 11th edition ,2019 Edit By : Mr.Murad Njoum

Defining a Subclass

A subclass inherits from a superclass. You
can also:

O Add new properties
O Add new methods

O Override the methods of the superclass

liang introduction to java programming 11th edition ,2019 Edit By : Mr.Murad Njoum

Calling Superclass Methods

You could rewrite the printCircle() method in the Circle class as
follows:

public void printCircle() {
System.out.printin(‘The circle is created * +
super.getDateCreated() + * and the radius is ‘ + radius);

} (
e)
—
liang introduction to java programming 11th edition ,2019 Edit By : Mr.Murad Njoum 29

Overriding Methods in the Superclass

A subclass inherits methods from a superclass. Sometimes it is
necessary for the subclass to modify the implementation of a method
defined in the superclass. This is referred to as method overriding.

public class Circle extends GeometricObject {

// Other methods are omitted

/** Override the toString method defined in GeometricObject */
public String toString() { "
. 3 + " a 3 " + 3 ,.
return super.toString() \nradius is radius ‘)
} e

Java

liang introduction to java programming 11th edition ,2019 Edit By : Mr.Murad Njoum 30

Superclasses and Subclasses

GeometricObject

~color: String

n
+getColor(): String

+setColor(color: String): void
+isFilled(): boolean
+setFilled(filled: boolean): void
+getDateCreated(): java.util. Date
“+toString(): String

4;

The color of the object (default: white).

Indicates whether the object is filled with a color (default: false).

The date when the object was created.

Creates a GeometricObject.

Creates a GeometricObject with the specified color and filled
values.

Returns the color.

Sets a new color.

Returns the filled property.

Sets a new filled property.

Returns the dateCreated.

Returns a string representation of this object.

1

Circle

-radius: double

“+Circle()

us: double): void

+getArea(): double
+getPerimeter(): double
+getDiameter(): double
“+printCircle(): void

Rectangle
-width: double
-height: double

+Rectangle()

+Rectangle(width: double, height: double)

+Rectangle(width: double, height: double
color: String, filled: boolean)

+getWidth(): double

“+setWidth(width: double): void

getHeight(): double

+setHeight(height: double): void

“getArea(): double

getPerimeter(): double

GeometricObject
Circle

Rectangle

TestCircleRectangle

liang introduction to java programming 11th edition ,2019 Edit By : Mr.Murad Njoum

NOTE

An instance method can be overridden only if it is accessible.
Thus a private method cannot be overridden, because it is

not accessible outside its own class. If a method defined in a
subclass is private in its superclass, the two methods are

completely unrelated.

Both methods are private, not related to each other.

—

(hidden from out side of superclass and subclass) java‘

liang introduction to java programming 11th edition ,2019 Edit By : Mr.Murad Njoum

32

Example

public class superClass {
public static void main(String[] args) {
C c=new C();
c.printMesg("Hi");
}
}

Syntax error ? Why ?

Because private method print
Message in super class is only
for Class A

liang introduction to java programming 11th edition ,2019 Edit By : Mr.Murad Njoum

package project;

classA{

AOf

System.out.printin("Print A constructor");

}
private void printMesg(String str) {
System.out.print(str);

}

class B extends A {

B{
super();
System.out.printin("Print B constructor”);

}
}

class C extends B {

COf

super();

System.out.printIn("Print C constructor");

void printMesg(String str){
super.printMesg(str);
}

}

NOTE

Like an instance method, a static method can be

inherited. However, a static method cannot be

overridden. If a static method defined in the
superclass 1s redefined in a subclass, the method

defined in the superclass is hidden.

—> Both methods in superclass and subclass deﬁneé)

as static, then you cannot view in related object.

liang introduction to java programming 11th edition ,2019 Edit By : Mr.Murad Njoum

—

Java

34

Example

« public class staticExample {
public static void main(String[] args)

ﬂ'hree three = new Three();
three.printMesg(‘Hi);

Syntax error ? Why ?

Because static method print
Message in super class cannot

override and super.printMesg(str),

super can’t use with static

package chapterl1;

class One {
One() {

System.out.printin(‘Print A constructor);

}

public static void printMesg(String str) {
System.out.print(str+ ¢ from A‘);

}

}
class Two extends One {
Two() {
super();
System.out.printin(‘Print B constructor);
}
}
class Three extends Two {
Three() {
super();

}

public void printMesg(String str) {
super.printMesg(str);
System.out.printin(str + ¢ from B¢

liang introduction to java programming 11th edition ,2013 Edit By : Mr.Murad Njoum

System.out.printin(‘Print C constructort)((
G)
S

—

) -Java

35

Overriding Jsa3vs. Overloading Jeaadll i 3

public class Test {
public static void main(String[] args) {
A a=newA();
a.p(10);
a.p(10.0);
}
}

class B {
[public void p (double 1) |{
System.out.printIn(i * 2);
}

}

class A extends B {
// This method overrides the method in B
[public void p (double i) |{
System.out.printIn(i);
}

}

public class Test {
public static void main(String[] args) {
A a=newA();
a.p(10);
a.p(10.0);
}
}

class B {
| public void p(double i) | {
System.out.printIn(i * 2);

}
}

class A extends B {
This method overloads the method in B
| public void p(int 1) {|
System.out.println(i);

}

) s

Note: methods are Overriding for superclass in subclass (in inheritance) While method
Overloading at same class for different passed parameters to methods inclass.

liang introduction to java programming 11th edition ,2019 Edit By : Mr.Murad Njoum

The Object Class and Its Methods

Every class in Java is descended from the java.lang.Object
class. If no inheritance is specified when a class is defined,
the superclass of the class is Object.

public class Circle { R public class Circle extends Object { (
. Equivalent o
S
—
liang introduction to java programming 11th edition ,2019 Edit By : Mr.Murad Njoum 37

The toString() method in Object

The toString() method returns a string representation of the object. The default

imnlementation returns a string consisting of a class name of which the object
is an instance, the at sign (@), and a number representing this object.

Loan loan = new Loan();
System.out.println(loan.toString());

The code displays something like Loan@l 50377e5 . This message is not ((

very helpful or informative. Usually you should override the toString e
method so that it returns a digestible string representation of the object. e

liang introduction to java programming 11th edition ,2019 Edit By : Mr.Murad Njoum 38

Polymorphism (many behavior)

Polymorphism means that a variable of a supertype can refer to a subtype

object.
A class defines a type. A type defined by a subclass is called a
subtype, and a type defined by its superclass is called a
supertype. Therefore, you can say that Circle is a subtype of
GeometricObject and GeometricObject is a supertype for
Circle.

Static polymorphism in Java is achieved by method overloading (

—

Dynamic polymorphism in Java is achieved by method overridied—_
PolymorphismDemo - Java

liang introduction to java programming 11th edition ,2019 Edit By : Mr.Murad Njoum 39

Polymorphism, Dynamic Binding and Generic Programming

public class PolymorphismDemo {

public static void main(String[] args) { .
Binew GraduateStudent()); Method m takes a parameter of the Object type.

m(new Student()); You can invoke it with any object.
m(new Person());
m(new Object());

! An object of a subtype can be used wherever its supertype

public static void m(Object x) { value is required. This feature is known as polymorphism.
System.out.println(x.toString()) ;
}

} When the method m(Object x) is executed, the
class GraduateStudent extends Student { grgument x’s toString method is invoked. x may be an
1 instance of GraduateStudent, Student, Person, or
Object. Classes GraduateStudent, Student, Person, and

Clalsnsal'Stu::"cnex:e:::i:e’(’)s°‘{‘ { Object have their own implementation of the toString

B e ..;tgdezt..; g methot:!. Which imRIementation is uset.:l will be) (

} determined dynamically by the Java Virtual Machine -
} at runtime. This capability is known as dynamic bindin g)
class Person extends Object { g:ugen: e

public String toString() { uaen .

return "Person"; }} Person - Java
java.lang.Object@15db9742 DynamicBindingDemo

liang introduction to java programming 11th edition ,2019 Edit By : Mr.Murad Njoum 40

Dynamic Binding

Dynamic binding works as follows: Suppose an object o is

an instance of classes C,, C,, ..., C.;, and C,, where C, is a

subclass of C,, C, is a subclass of C,, ..., and C_; is a subclass

of C.. That is, C is the most general class, and C, is the most

specific class. In Java, C is the Object class. If o invokes a

method p, the JVM searches the implementation for the

method pinC,, C,, ..., C.;and C, in this order, until it is

found. Once an implementation is found, the search stops

and the first-found implementation is invoked. (

I Cn |q—| Ch Iq— q—l C, lq_l C, | t)

S
< ___—

e
Since o is an instance of Cy, o is also an Va

Object instance of C, C3, ..., Cy.1, and C,

liang introduction to java programming 11th edition ,2019 Edit By : Mr.Murad Njoum 41

Method Matching vs. Binding (link, connect)

Matching a method signature and binding a method
implementation are two issues. The compiler finds a matching
method according to parameter type, number of parameters,
and order of the parameters at compilation time. A method may
be implemented in several subclasses. The Java Virtual Machine
dynamically binds the implementation of the method at runtime.

Java

liang introduction to java programming 11th edition ,2019 Edit By : Mr.Murad Njoum 42

Generic Programming

public class PolymorphismDemo {

public static void main(String[] args) { Polymorphism allows methods to be used generically
m(new GraduateStudent()); f id n f obiect areuments. This is kn n
(o BeenE (N £ or a wide range of object arguments. This is known as
m(new Person()); generic programming. If a method’s parameter type is a
m(new Object()); superclass (e.g., Object), you may pass an object to this
! method of any of the parameter’s subclasses (e.g.,
public static void m(Object x) { Student or Strmg)-

System.out.println(x.toString());
}

I When an object (e.g., a Student object or a String

class GraduateStudent extends Student { ObjeCt) is used in the methOd' the partiCU|a|’
} implementation of the method of the object that is
invoked (e.g., toString) is determined dynamically.

class Student extends Person {

public String toString() {
return "Student"; (
’ =
} e
S
. ‘ L —
class Person extends Object ({ "

public String toString() {

return "Person"; a a
) Jav

Iiahg introduction to java programming 11th edition ,2019 Edit By : Mr.Murad Njoum 43

Casting Objects

You have already used the casting operator to convert variables of
one primitive type to another. Casting can also be used to convert
an object of one class type to another within an inheritance
hierarchy. In the preceding section, the statement

m(new Student());

assigns the object new Student() to a parameter of the Object type.
This statement is equivalent to:

Object o = new Student();

(0); (
The statement Object o = new Student(), known as —
) (< >

implicit casting, is legal because an instance of
Student is automatically an instance of Object. J a V a

liang introduction to java programming 11th edition ,2019 Edit By : Mr.Murad Njoum 44

Why Casting Is Necessary?

Suppose you want to assign the object reference o to a variable of the Student type
using the following statement:

Student b = o;

A compile error would occur. Why does the statement Object o = new Student() work

and the statement Student b = o0 doesn’t? This is because a Student object is always

an instance of Object, but an Object is not necessarily an instance of Student. Even

though you can see that o is really a Student object, the compiler is not so clever to

know it. To tell the compiler that o is a Student object, use an explicit casting. The

syntax is similar to the one used for casting among primitive data types. Enclose the (

target object type in parentheses and place it before the object to be cast, as foIIowsr:'/)
S

i
Student b = (Student)o; // Explicit casting J ‘/‘
liang introduction to java programming 11th edition ,2019 Edit By : Mr.Murad Njoum 45
Casting from
Superclass to Subclass
Explicit casting must be used when casting an object
from a superclass to a subclass. This type of casting may
not always succeed.
Apple x = (Apple) fruit; Fruit f = new Apple();
Orange x = (Orange) fruit; Fruit o = new Orange(); ((
=
S

Java

liang introduction to java programming 11th edition ,2019 Edit By : Mr.Murad Njoum 46

The instanceof Operator

Use the instanceof operator to test whether an object is an
instance of a class:

Object myObject = new Circle();
. // Some lines of code

/** Perform casting if myObject is an instance of
Circle */

if (myObject instanceof Circle) {

System.out.println("The circle diameter is " +
((Circle)myObject) .getDiameter()) ; (i?
} =
S
—
liang introduction to java programming 11th edition ,2019 Edit By : Mr.Murad Njoum 47

TIP

+** To help understand casting, you may also consider the
analogy of fruit, apple, and orange with the Fruit class as
the superclass for Apple and Orange.

** An apple is a fruit, so you can always safely assign an
instance of Apple to a variable for Fruit.

** However, a fruit is not necessarily an apple, so you hqgg)
to use explicit casting to assign an instance of Fruit toe=——

variable of Apple.]ava

liang introduction to java programming 11th edition ,2019 Edit By : Mr.Murad Njoum 48

Example: Demonstrating Polymorphism
and Casting

This example creates two geometric objects: a circle, and a
rectangle, invokes the displayGeometricObject method to
display the objects. The displayGeometricObject displays
the area and diameter if the object is a circle, and displays
area if the object is a rectangle.

CastingDemo - J a V a

liang introduction to java programming 11th edition ,2019 Edit By : Mr.Murad Njoum 49

public class CastingDemo {
/** Main method */
public static void main(String[] args) {
// Create and initialize two objects
Object objectl = new Circle(l);
Object object2 = new Rectangle(l, 1);

// Display circle and rectangle
displayObject (objectl) ;
displayObject (object2) ;

}

/** A method for displaying an object */
public static void displayObject (Object myobject) {
if (myobject instanceof Circle) {

System.out.println("The circle area is " + ((Circle)myobject) . EEREeal ;
System.out.println("The circle diameter is " + ((Circle)myobject) .getDiameter ()
}
else if (myobject instanceof Rectangle) ({ (
: " P : .
System.out.println("The rectangle area is " +((Rectangle)myobject) . EEAueall) ; S)
} e
[——
} e ———

| Java

liang introduction to java programming 11th edition ,2019 Edit By : Mr.Murad Njoum 50

The equals Method

The equals () method compares the
contents of two objects. The default implementation of
the equals method in the Object class is as follows:

public boolean equals (Object obj) {
return this == obj;

}

public boolean equals (Object o) {
For example, the if (o instanceof Circle) {

equals method is return radius == ((Circle)o) .radius;
overridden in)1
. else <
the Circle class. return false: s)
} —
liang introduction to java programming 11th edition ,2019 Edit By : Mr.Murad Njoum 51

NOTE

+¢ The == comparison operator is used for comparing two
primitive data type values or for determining whether two
objects have the same references.

+»» The equals method is intended to test whether two objects
have the same contents, provided that the method 1s modified
in the defining class of the objects.

+¢ The == operator is stronger than the equals method, in that
the == operator checks whether the two reference variables <——>)

refer to the same object. ——

Java

liang introduction to java programming 11th edition ,2019 Edit By : Mr.Murad Njoum 52

The ArraylList Class

You can create an array to store objects. But the array’s size is fixed
once the array is created. Java provides the ArrayList class that can
be used to store an unlimited number of objects.

java.utiL ArrayList<E>

+ArrayList () Creates an empty list

+add(o: E) : void Appends a new ekement o at the end of this list.

+add (index: int, o: E) : void Addsa newelemento at the specified index in this list.

+clear(): void Removes alltheekments from this list.

+contains(o: Object): boolean Retums true if this list contains the element o.

+get (index: int) : E Retums theekment from this list at the specified index.

+indexOf (o: Object) : int Retums the index of the first matching element in this list. (

+isEmpty () : boolean Retums true if this list contains no elements.

+lastIndexOf (0: Object) : int Retums the index of the hst matc hing element in this list. t)

+remove (0: Object): boolean Removes the element o from this list. < —)

+size (): int Retums the number of elements in this list. T

tremove (index: int) : boolean Removes the element at the specified index. i

+set (index: int, o: E) : E Sets the ek ment at the specified index. J a Va
liang introduction to java programming 11th edition ,2019 Edit By : Mr.Murad Njoum 53

Generic Type

ArrayList is known as a generic class with a generic type E. You can specify
a concrete type to replace E when creating an ArrayList. For example, the
following statement creates an ArrayList and assigns its reference to
variable cities. This ArrayList object can be used to store strings.

ArrayList<String> cities = new ArrayList<String>();

ArrayList<String> cities = new ArrayList<>(); (

TestArrayList | Run | Java

liang introduction to java programming 11th edition ,2019 Edit By : Mr.Murad Njoum 54

import java.util.ArrayList;

public class TestArrayList {
public static void main(String[] args) {
Il Create a list to store cities
ArrayList<String> cityList = new ArrayList<>();

/I Add some cities in the list

cityList.add(“‘Ramallah");

I/ cityList now contains [Ramallah]

cityList.add(“Jericho");

I/ cityList now contains [Ramllah, Jericho]

cityList.add(“Jerusalem");

I/ cityList now contains [Ramallah,Jericho.Jerusalem]

cityList.add(“Nablus");

/I contains [Ramallah.Jericho.Jerusalem,Nablus]

cityList.add(*Jinen");

I contains [Ramallah.Jericho.Jerusalem,Nablus,Jinen]

cityList.add(*Hebron");

/lcontains[Ramallah.Jericho,Jerusalem,Nablus,Jinen,
Hebron]

System.out.printin("List size? " + cityList.size());

System.out.printin("ls Ramllah in the list? " +
cityList.contains(*Ramllah"));

System.out.printin("The location of Hebron in the list? "
+ cityList.indexOf(“Hebron"));

System.out.printin("Is the list empty? " +
cityListisEmpty()); // Print false

Il Insert a new city at index 2

cityList.add(1, “Salfet");

/I contains [Ramallah,Salfet,Jerusalem,Nablus,Jinen,Hebron]

I Remove a city from the list
cityList.remove(" Nablus ");
/I contains[Ramallah, Salfet,Jerusalem,Jinen,Hebron]

/I Remove a city at index 1
cityList.remove(4);
/I contains [Ramallah, Salfet,Jerusalem,Jinen]

Il Display the contents in the list
System.out.printin(cityList.toString());

I Display the contents in the list in reverse order
for (int i = cityList.size() - 1; i >= 0; i--)

System.out.print(cityList.get(i) + " ");
System.out.printin();

Il Create a list to store two circles
ArrayList<Circle> list = new ArrayList<>();

/I Add two circles
list.add(new Circle(2));
list.add(new Circle(3));

/I Display the area of the first circle in the list
System.out.printin("The area of the circle? " +

list.get(0).getArea());
}

Differences and Similarities between Arrays

and ArrayList

Operation Array

ArrayList

Creating anarray/ArrayList ~ String[] a = new String[10]

Accessing an element a[index]

Updating an element a[index] = "London";
Retuming size a.length

Addinga new element

Insertinga new element

Removing an element
Removing an element

Removing all elements

DistinctNumbers -

ArrayList<String> list = new ArrayList<>();

list.get (index);

list.set(index, "London") ;

list.size () ;

list.add("London") ;

list.add (index, "London");
list.remove(index) ;

list.remove(Cbject);

list.clear(); (
e

liang introduction to java programming 11th edition ,2019 Edit By : Mr.Murad Njoum 56

Array Lists from/to Arrays
Creating an ArrayList from an array of objects:

String[] array = {"red", "green", "blue"};
ArrayList<String> list = new ArrayList<String>(Arrays.asList(array));

Creating an array of objects from an ArrayList:

String[] array1 = new String[list.size()]; ((
list.toArray(arrayl);)
S
Java
liang introduction to java programming 11th edition ,2019 Edit By : Mr.Murad Njoum 57

max and min in an Array List

« String(] array = {"red", "green”, "blue"},

« System.out.println(java.util.Collections.max(new
ArrayList<String>(Arrays.asList(array))));

String[] array = {"red", "green", "blue"};
System.out.printin(java.util.Collections.min(new
ArrayList<String>(Arrays.asList(array)))); (

liang introduction to java programming 11th edition ,2019 Edit By : Mr.Murad Njoum 58

Shuffling an Array List

Integer([] array = {3, 5, 95, 4, 15, 34, 3, 6, 5};

Arraylist<integer> list = new Arraylist<integer>(Arrays.asList(array));
java.util.Collections.shuffle(list); //randomize the list
System.out.printin(list);

Java

liang introduction to java programming 11th edition ,2019 Edit By : Mr.Murad Njoum 59

The protected Modifier

UThe protected modifier can be applied on data and methods in a
class. A protected data or a protected method in a public class can

be accessed by any class in the same package or its subclasses, even
if the subclasses are in a different package.

Uprivate, default, protected, public

Visibility increases ((

> C/)
G
private, none (if no modifier is used), protected, public

liang introduction to java programming 11th edition ,2019 Edit By : Mr.Murad Njoum 60

Accessibility Summary

Modifier Accessed Accessed Accessed Accessed

on members from the from the from a from a different
in a class same class same package subclass package

public Vv V4 / NV
protected Vv V4 / -
default Vv V4 - -
private \/ - - -

liang introduction to java programming 11th edition ,2019 Edit By : Mr.Murad Njoum

Visibility Modifiers

package pl;

public class Cl {
public int x;
protected int y;
int z;//default
private int u;

protected void m() {
}
}

public class C2 {
Cl o = new Cl1();
can access 0.X;
can access 0.Yy;
can access 0.z;
cannot access o.u;

can invoke o.m();

AN

package p2;

| import p1.C1;

public class C3
extends C1 {
can access X;
can access y;
can access z;
cannot access u;

can invoke m{() ;

}

public class C4
extends C1 {
can access X;
can access y;
cannot access z;
cannot access u;

public class C5 {
Cl o = new C1();
can access 0.X;
cannot access o0.y;
cannot access 0.z;
cannot access o.u;

can invoke m(); cannot invoke o.m();

liang introduction to java programming 11th edition ,2019 Edit By : Mr.Murad Njoum

A Subclass Cannot Weaken the Accessibility

*A subclass may override a protected method in its
superclass and change its visibility ({4 Jsasd) (s i)

to public.

*However, a subclass cannot weaken the accessibility of
a method defined in the superclass.

*For example, if a method 1s defined as public in the (:’(g)
superclass, it must be defined as public in the subclass.<<——

Java

liang introduction to java programming 11th edition ,2019 Edit By : Mr.Murad Njoum 63

NOTE

The modifiers (defualt,public, abstarct,final) are used on class

The modifiers (defualt,public,protected,private, abstarct,final)
classes and class members (data and methods), except that the
final modifier can also be used on local variables in a method. A
final local variable is a constant inside a method.

Java

liang introduction to java programming 11th edition ,2019 Edit By : Mr.Murad Njoum 64

The £inal Modifier

UThe final class cannot be extended:
final class Math {

UThe final variableis a constant:
final static double PI = 3.14159;

UThe £inal method cannot be overridden by its subclasses.

liang introduction to java programming 11th edition ,2019 Edit By : Mr.Murad Njoum

THE
END

liang introduction to java programming 11th edition ,2019 Edit By : Mr.Murad Njoum

