
1

COMPUTER SCIENCE DEPARTMENT FACULTY OF
ENGINEERING AND TECHNOLOGY

ADVANCED PROGRAMMING COMP231
Instructor :Murad Njoum
Office : Masri322

Chapter 10 Thinking in Objects
and Strings

1

Simple Methods for String Objects

2

Strings are objects in Java. The methods in the preceding
table can only be invoked from a specific string instance.
For this reason, these methods are called instance methods.
A non-instance method is called a static method. A static
method can be invoked without using an object. All the
methods defined in the Math class are static methods. They
are not tied to a specific object instance. The syntax to
invoke an instance method is

referenceVariable.methodName(arguments).

Getting String Length

3

String message = "Welcome to Java";
System.out.println("The length of " + message + " is "
 + message.length());

Getting Characters from a String

4

String message = "Welcome to Java";
System.out.println("The first character in message is "
 + message.charAt(0));

"Welcome".toLowerCase() returns a new string, welcome.
"Welcome".toUpperCase() returns a new string, WELCOME.
" Welcome ".trim() returns a new string, Welcome.

String Concatenation
String s3 = s1.concat(s2); or String s3 = s1 + s2;

// Three strings are concatenated
String message = "Welcome " + "to " + "Java";

// String Chapter is concatenated with number 2
String s = "Chapter" + 2; // s becomes Chapter2

// String Supplement is concatenated with character B
String s1 = "Supplement" + 'B'; // s1 becomes SupplementB

5

Reading a String from the Console
Scanner input = new Scanner(System.in);

System.out.print("Enter three words separated by spaces: ");

String s1 = input.next();

String s2 = input.next();

String s3 = input.next();

System.out.println("s1 is " + s1);

System.out.println("s2 is " + s2);

System.out.println("s3 is " + s3);

6

Reading a Character from the
Console

Scanner input = new Scanner(System.in);
System.out.print("Enter a character: ");
String s = input.nextLine();
char ch = s.charAt(0);
System.out.println("The character entered is " + ch);

7

Comparing Strings

8

Method Description
 Returns true if this string is equal to string s1.

Returns true if this string is equal to string s1; it is case insensitive.
Returns an integer greater than 0, equal to 0, or less than 0 to indicate whether

this string is greater than, equal to, or less than s1.
Same as compareTo except that the comparison is case insensitive.
Returns true if this string starts with the specified prefix.
Returns true if this string ends with the specified suffix.

equals(s1)
equalsIgnoreCase(s1)
compareTo(s1)

compareToIgnoreCase(s1)
startsWith(prefix)
endsWith(suffix)

import java.util.Scanner;
public class OrderTwoCities {
public static void main(String[] args) {
Scanner input = new Scanner(System.in);
 // Prompt the user to enter two cities
System.out.print("Enter the first city: ");
String city1 = input.nextLine(); System.out.print("Enter the second city: ");
String city2 = input.nextLine();
if (city1.compareTo(city2) < 0)
 System.out.println("The cities in alphabetical order are " + city1 + " " + city2);
 else System.out.println("The cities in alphabetical order are " + city2 + " " + city1);
 }
}

Obtaining Substrings

9

Method Description
 Returns this string’s substring that begins with the character at the specified

beginIndex and extends to the end of the string, as shown in Figure 4.2.

Returns this string’s substring that begins at the specified beginIndex and
extends to the character at index endIndex – 1, as shown in Figure 9.6.
Note that the character at endIndex is not part of the substring.

substring(beginIndex)

substring(beginIndex,
endIndex)

Finding a Character or a Substring in a
String

10

Method Description
 Returns the index of the first occurrence of ch in the string. Returns -1 if not

matched.
Returns the index of the first occurrence of ch after fromIndex in the string.

Returns -1 if not matched.
Returns the index of the first occurrence of string s in this string. Returns -1 if

not matched.
Returns the index of the first occurrence of string s in this string after
fromIndex. Returns -1 if not matched.

Returns the index of the last occurrence of ch in the string. Returns -1 if not
matched.

Returns the index of the last occurrence of ch before fromIndex in this
string. Returns -1 if not matched.

Returns the index of the last occurrence of string s. Returns -1 if not matched.
Returns the index of the last occurrence of string s before fromIndex.

Returns -1 if not matched.

indexOf(ch)

indexOf(ch, fromIndex)

indexOf(s)

indexOf(s, fromIndex)

lastIndexOf(ch)

lastIndexOf(ch,
fromIndex)

lastIndexOf(s)
lastIndexOf(s,
fromIndex)

Finding a Character or a Substring in a
String

11

int k = s.indexOf(' ');
String firstName = s.substring(0, k);
String lastName = s.substring(k + 1);

12

int intValue = Integer.parseInt(intString);
double doubleValue = Double.parseDouble(doubleString);

String s = number + "";

int intValue = Integer.parseInt("10");

Convert Character and Numbers to Strings

The String class provides several static valueOf methods for converting a
character, an array of characters, and numeric values to strings. These
methods have the same name valueOf with different argument types

. For example, to convert a
double value to a string, use
 String.valueOf(5.44). The return value is string consists of characters ‘5’,
‘.’, ‘4’, and ‘4’.

 String.valueOf(tokens[0]).

13

Formatting Output

14

Use the printf statement.

System.out.printf(format, items);

Where format is a string that may consist of substrings and
format specifiers. A format specifier specifies how an item
should be displayed. An item may be a numeric value,
character, boolean value, or a string. Each specifier begins
with a percent sign.

Frequently-Used Specifiers

15

Specifier Output Example

%b a boolean value true or false

%c a character 'a'

%d a decimal integer 200
%f a floating-point number 45.460000

%e a number in standard scientific notation 4.556000e+01
%s a string "Java is cool"

int count = 5;
double amount = 45.56;
System.out.printf("count is %d and amount is %f", count, amount);

display count is 5 and amount is 45.560000

items

FormatDemo
The example gives a program that uses printf to display a

table.

16

public class FormatDemo {
 public static void main(String[] args)
 { // Display the header of the table
 System.out.printf("%-10s%-10s%-10s%-10s%-10s\n", "Degrees", "Radians", "Sine",
 "Cosine", "Tangent");
 // Display values for 30 degrees

int degrees = 30;
double radians = Math.toRadians(degrees);

System.out.printf("%-10d%-10.4f%-10.4f%-10.4f%-10.4f\n", degrees, radians,
 Math.sin(radians), Math.cos(radians), Math.tan(radians));
 // Display values for 60 degrees degrees = 60; radians = Math.toRadians(degrees);
System.out.printf("%-10d%-10.4f%-10.4f%-10.4f%-10.4f\n", degrees, radians,
 Math.sin(radians), Math.cos(radians), Math.tan(radians));
 }
 }

The String Class
Constructing a String:

String message = "Welcome to Java“;
String message = new String("Welcome to Java“);
String s = new String();

Obtaining String length and Retrieving Individual Characters in a string

String Concatenation (concat)

Substrings (substring(index), substring(start, end))

Comparisons (equals, compareTo)

String Conversions

Finding a Character or a Substring in a String

Conversions between Strings and Arrays

Converting Characters and Numeric Values to Strings
17

Constructing Strings

String newString = new String(stringLiteral);

String message = new String("Welcome to Java");

Since strings are used frequently, Java provides a shorthand
initializer for creating a string:

String message = "Welcome to Java";

18

Trace Code
 String s = "Java";

: String

String object for "Java"

s

After executing String s = "Java";

After executing s = "HTML";

: String

String object for "Java"

: String

String object for "HTML"

Contents cannot be changed

This string object is
now unreferenced

 s

19

Strings Are Immutable
A String object is immutable; its contents cannot be changed.
Does the following code change the contents of the string?
 String s = "Java"; //contents cannot change
 s = "HTML";

 s = "HTML";

19

Interned Strings
Since strings are immutable and are frequently used, to improve efficiency
and save memory, the JVM uses a unique instance for string literals with
the same character sequence. Such an instance is called interned (�þ長ꁿ䴘).
For example, the following statements:

Examples
 String s1 = "Welcome to Java";

String s2 = new String("Welcome to Java");

String s3 = "Welcome to Java";

System.out.println("s1 == s2 is " + (s1 == s2));
System.out.println("s1 == s3 is " + (s1 == s3));

: String
Interned string object for
"Welcome to Java"

: String
A string object for
"Welcome to Java"

s1

s2

s3

20

Trace Code
 String s1 = "Welcome to Java";

String s2 = new String("Welcome to Java");

String s3 = "Welcome to Java";

: String
Interned string object for
"Welcome to Java"

s1

display
 s1 == s2 is false
 s1 == s3 is true

A new object is created if you use the new operator.
If you use the string initializer, no new object is
created if the interned object is already created.

21

String str1= new String("Java");
 String str2 = "Java";
 System.out.println(str1.compareTo(str2)==0);

true

Trace Code
 String s1 = "Welcome to Java";

String s2 = new String("Welcome to Java");

String s3 = "Welcome to Java";

: String
Interned string object for
"Welcome to Java"

: String
A string object for
"Welcome to Java"

s1

s2

s3

22

Trace Code
 String s1 = "Welcome to Java";

String s2 = new String("Welcome to Java");

String s3 = "Welcome to Java";

: String
Interned string object for
"Welcome to Java"

: String
A string object for
"Welcome to Java"

s1

s2

22

Replacing and Splitting Strings

 java.lang.String

+replace(oldChar: char,
newChar: char): String

+replaceFirst(oldString: String,
newString: String): String

+replaceAll(oldString: String,
newString: String): String

+split(delimiter: String):
String[]

Returns a new string that replaces all matching character in this
string with the new character.

Returns a new string that replaces the first matching substring in
this string with the new substring.

Returns a new string that replace all matching substrings in this
string with the new substring.

Returns an array of strings consisting of the substrings split by the
delimiter.

23

Examples

"Welcome".replace('e', 'A') returns a new string, WAlcomA.
"Welcome".replaceFirst("e", "AB") returns a new string,
WABlcome.
"Welcome".replaceAll("e", "AB") returns a new string,
WABlcomAB.
"Welcome".replace("el", "AB") returns a new string,
WABcome.
"Welcomel".replaceAll("el", "AB") returns a new string,
WABcomAB.

24

Splitting a String
String str="Java#HTML#Perl";

String[] tokens = str.split("#");
for (int i = 0; i < tokens.length; i++)
 System.out.print(tokens[i] + " ");

Java HTML Perl
displays

25

StringBuilder and StringBuffer
The StringBuilder/StringBuffer class is an alternative to
the String class.

In general, a StringBuilder/StringBuffer can be used wherever a string
is used.
StringBuilder/StringBuffer is more flexible than String.
 You can add, insert, or append new contents into a string buffer,
whereas the value of a String object is fixed once the string is created.

26

StringBuilderis same as the StringBuffer , that is it stores the object in heap and it can also be modified .
The main difference between the StringBuffer and StringBuilder is thatStringBuilder is also not thread safe.

each method in StringBuffer is synchronizedthat is StringBuffer is thread safe. Due to this it does not
allow two threads to simultaneously access the same method .

StringBuilder Constructors

java.lang.StringBuilder

+StringBuilder()
+StringBuilder(capacity: int)
+StringBuilder(s: String)

Constructs an empty string builder with capacity 16.
Constructs a string builder with the specified capacity.
Constructs a string builder with the specified string.

27

Modifying Strings in the Builder

java.lang.StringBuilder

+append(data: char[]): StringBuilder
+append(data: char[], offset: int, len: int):

StringBuilder
+append(v: aPrimitiveType): StringBuilder

+append(s: String): StringBuilder
+delete(startIndex: int, endIndex: int):

StringBuilder
+deleteCharAt(index: int): StringBuilder
+insert(index: int, data: char[], offset: int,

len: int): StringBuilder
+insert(offset: int, data: char[]):

StringBuilder
+insert(offset: int, b: aPrimitiveType):

StringBuilder
+insert(offset: int, s: String): StringBuilder
+replace(startIndex: int, endIndex: int, s:

String): StringBuilder
+reverse(): StringBuilder
+setCharAt(index: int, ch: char): void

Appends a char array into this string builder.
Appends a subarray in data into this string builder.

Appends a primitive type value as a string to this

builder.
Appends a string to this string builder.
Deletes characters from startIndex to endIndex.

Deletes a character at the specified index.
Inserts a subarray of the data in the array to the builder

at the specified index.
Inserts data into this builder at the position offset.

Inserts a value converted to a string into this builder.

Inserts a string into this builder at the position offset.

Replaces the characters in this builder from startIndex
to endIndex with the specified string.

Reverses the characters in the builder.
Sets a new character at the specified index in this

builder.

28

Examples

29

public class Driver {

public static void main(String[] args) {
StringBuilder stringBuilder = new StringBuilder("Welcome Java");

stringBuilder.append(" Comp231");
System.out.println(stringBuilder);

stringBuilder.insert(12, " and HTML");
System.out.println(stringBuilder);

stringBuilder.delete(8, 22);
System.out.println(stringBuilder);

stringBuilder.replace(8, 15, "HTML");

System.out.println(stringBuilder);

stringBuilder.deleteCharAt(8) ;
System.out.println(stringBuilder);

stringBuilder.setCharAt(0, 'w') ;
System.out.println(stringBuilder);

stringBuilder.reverse() ;
System.out.println(stringBuilder);

}

} Welcome Java Comp231
Welcome Java and HTML
Comp231
Welcome Comp231
Welcome HTML
Welcome TML
welcome TML
LMT emoclew

The toString, capacity, length, setLength, and charAt Methods

java.lang.StringBuilder

+toString(): String
+capacity(): int
+charAt(index: int): char
+length(): int
+setLength(newLength: int): void
+substring(startIndex: int): String
+substring(startIndex: int, endIndex: int):

String
+trimToSize(): void

Returns a string object from the string builder.
Returns the capacity of this string builder.
Returns the character at the specified index.
Returns the number of characters in this builder.
Sets a new length in this builder.
Returns a substring starting at startIndex.
Returns a substring from startIndex to endIndex-1.

Reduces the storage size used for the string builder.

30

default capacity = 16

Problem: Checking Palindromes Ignoring Non-
alphanumeric Characters

This example gives a program that counts the
number of occurrence of each letter in a string.
Assume the letters are not case-sensitive.

31

 import java.util.Scanner;
public class PalindromeIgnoreNonAlphanumeric {
 /** Main method */
 public static void main(String[] args) {
 // Create a Scanner
 Scanner input = new Scanner(System.in);

 // Prompt the user to enter a string
 System.out.print("Enter a string: ");
 String s = input.nextLine();

 // Display result
 System.out.println("Ignoring non-alphanumeric characters, \nis "
 + s + " a palindrome? " + isPalindrome(s));
 }

 /** Return true if a string is a palindrome */
 public static boolean isPalindrome(String s) {
 // Create a new string by eliminating non-alphanumeric chars
 String s1 = filter(s);

 // Create a new string that is the reversal of s1
 String s2 = reverse(s1);

 // Compare if the reversal is the same as the original string
 return s2.equals(s1); }

/** Create a new string by eliminating non-alphanumeric chars */
 public static String filter(String s) {
 // Create a string builder
 StringBuilder stringBuilder = new StringBuilder();

 // Examine each char in the string to skip alphanumeric char
 for (int i = 0; i < s.length(); i++) {
 if (Character.isLetterOrDigit(s.charAt(i))) {
 stringBuilder.append(s.charAt(i));
 }
 }

 // Return a new filtered string
 return stringBuilder.toString();
 }

 /** Create a new string by reversing a specified string */
 public static String reverse(String s) {
 StringBuilder stringBuilder = new StringBuilder(s);
 stringBuilder.reverse(); // Invoke reverse in StringBuilder
 return stringBuilder.toString(); }
}

32

Regular Expressions

A regular expression (abbreviated regex) is a string that describes a pattern
for matching a set of strings. Regular expression is a powerful tool for string
manipulations. You can use regular expressions for matching, replacing, and
splitting strings.

33

Matching Strings

"Java".matches("Java");
"Java".equals("Java");

"Java is fun".matches("Java.*")
"Java is cool".matches("Java.*")
"Java is powerful".matches("Java.*")

34

Regular Expression Syntax

35

"Java".matches("J..a");

"Java".matches("J(av|ba)a");

abc exactly this sequence of three letter

[abc] any one of the letters a, b, or c

[^abc] any character except one of the letters a, b, or c
(immediately within an open bracket, ̂ mean
“not,” but anywhere else it just means the

character ^)

[a-z] any one character from a through z, inclusive

[a-zA-Z0-9] any one letter or digit

Regular Expression

If one pattern is followed by another, the two patterns must match
consecutively

- For example, [A-Za-z]+[0-9] will match one or more letters
immediately followed by one digit

- The vertical bar, |, is used to separate alternatives
- For example, the pattern abc|xyz will match either abc or xyz
X? optional, X occurs once or not at all
X* X occurs zero or more times
X+ X occurs one or more times
X{n} X occurs exactly n times
X{n,} X occurs n or more times
X{n, m} X occurs at least n but not more than m times

Regular Expression

. any one character except a line terminator

\d a digit: [0-9]

\D a non-digit: [^0-9]

\s a whitespace character: [\t\n\x0B\f\r]

\S a non-whitespace character: [^\s]

\w a word character: [a-zA-Z0-9]

\W a non-word character: [^\w]

^ the beginning of a line

$ the end of a line

Regular Expression

System.out.println("Java2".matches("Java[\\d]"));
System.out.println("% Java2".matches("[\\D]Java[\\d]"));
System.out.println("Javavva".matches("^J.*a% "));
System.out.println("% Java1".matches("[\\W]Java[\\w]"));

Regular Expression
String str = new String("Welcome student comp231 to Java course");
String s1 = new String("Welcome");
String s2 = new String("Welcome");
String s3 = new String("WE1come");

System.out.println(str.matches("Welcome") + " " + str.matches("Welcome.*"));//1
System.out.println(s1.matches("W[wce]lcome") + " " + s1.matches("W[xza]lcome"));//2
System.out.println(s1.matches("W[^wce]lcome") + " " + s1.matches("W[^xza]lcome"));//3
System.out.println(s2.matches("W[a-c]lcome") + " " + s2.matches("W[a-gA-G0-9]lcome"));//4
System.out.println(s3.matches("W[A-Za-z]+[0-9]come") + " " + s3.matches("W[a-gA-G0-9]lcome"));
System.out.println(s2.matches("W(el|al)come"));//6

String s4 = new String("Wel");
System.out.println(s4.matches("Wel?") + " " + s4.matches("We?"));// 7
System.out.println(s4.matches("Welc*") + " " + s4.matches("We*"));// 8
System.out.println(s4.matches("Wel+") + " " + s4.matches("We+"));// 9

String s5 = new String("Wel");
System.out.println(s5.matches("Wel{1}") + " " + s5.matches("Wel{1,}") + " " + s5.matches("Wel{1,2}"));//10

1.false true
2.true false
3.false true
4.false true
5.true false
6.true
7.true false
8.true false
9. true false
10.true true true

Replacing and Splitting Strings

java.lang.String

+matches(regex: String): boolean
+replaceAll(regex: String,

replacement: String): String
+replaceFirst(regex: String,

replacement: String): String
+split(regex: String): String[]

Returns true if this string matches the pattern.
Returns a new string that replaces all

matching substrings with the replacement.
Returns a new string that replaces the first

matching substring with the replacement.
Returns an array of strings consisting of the

substrings split by the matches.

40

Examples
String s = "Java Java Java".replaceAll("v\\w", "wi") ;

String s = "Java Java Java".replaceFirst("v\\w", "wi") ;

String[] s = "Java1HTML2Perl".split("\\d");

41

Jawi Jawi Jawi

Jawi Java Java

Matching, Replacing and Splitting by Patterns

You can match, replace, or split a string by specifying . This is an
extremely useful and powerful feature, commonly known as regular expression.
Regular expression is complex to beginning students. For this reason, two simple
patterns are used in this section. Please refer to Supplement III.F, “Regular
Expressions,” for further studies.

"Java".matches("Java");//true
"Java".equals("Java"); //true

"Java is fun".matches("Java.*"); //true
"Java is cool".matches("Java.*");//true

42

Matching, Replacing and Splitting by Patterns
The replaceAll, replaceFirst, and split methods can be used
with a regular expression. For example, the following
statement returns a new string that replaces $, +, or # in
"a+b$#c" by the string NNN.

String s = "a+b$#c".replaceAll("[$+#]", "NNN");

System.out.println(s);

Here the regular expression [$+#] specifies a pattern that
matches $, +, or #. So, the output is aNNNbNNNNNNc.

43

Matching, Replacing and Splitting by Patterns
The following statement splits the string into an array of strings
delimited by some punctuation marks.

String[] tokens = "Java,C?C#,C++".split("[.,:;?]");

for (int i = 0; i < tokens.length; i++)

 System.out.println(tokens[i]);

44

Java
C
C#
C++

46

You see the advantages of object-oriented programming from the
preceding chapter. This chapter will demonstrate how to solve problems
using the object-oriented paradigm.

47

Thinking in Objects

Class Abstraction and Encapsulation

Class abstraction means to separate class implementation
from the use of the class. The creator of the class provides a
description of the class and let the user know how the class
can be used. The user of the class does not need to know
how the class is implemented. The detail of implementation
is and hidden from the user.

Class Contract
(Signatures of

public methods and
public constants)

Class

Class implementation
is like a black box
hidden from the clients

Clients use the

class through the
contract of the class

48

Object-Oriented Thinking

Chapters 1-8 introduced fundamental programming techniques for
problem solving using loops, methods, and arrays. The studies of these
techniques lay a solid foundation for object-oriented programming.
Classes provide more flexibility and modularity for building reusable
software. This section improves the solution for a problem introduced in
Chapter 3 . From the improvements,
you will gain the insight on the differences between the procedural
programming and object-oriented programming and see the benefits of
developing reusable code using objects and classes.

49

Class Relationships

Association
Aggregation
Composition

51

Association in Java is a connection between two separate classes that is
set up through their objects. Although, Java association can balance, one-
to-one, one-to-many, and many-to-many relationships. It defines the
multiplicity between objects.

There are two types of Association

 Aggregation
 Composition

Types of Association

IS-A HAS-A

Aggregation Composition

Inheritance (Chapter 13)

Is-A Relationship in Java

In Java, an Is-A relationship depends on inheritance. Further inheritance
is of two types, class inheritance and interface inheritance. It is used for
code reusability in Java.
For example, a Potato is a vegetable,
a Bus is a vehicle,
a Bulb is an electronic device and so on.
One of the properties of inheritance is that inheritance is unidirectional
in nature. Like we can say that a house is a building. But not all buildings
are houses. We can easily determine an Is-A relationship in Java. When
there is an extends or implement keyword in the class declaration in Java,
then the specific class is said to be following the Is-A relationship.

So, in the above example, the teacher has many students and vice versa, connectes to various objects. Thus,
we can say the association in Java follows a many-to-many relationship.

For example, if we talk about the association between a teacher and a student, multiple students can associate �61�
with a single teacher and a single student is also associated with multiple teachers but both can be created or deleted
independently. So, when a teacher leaves the school, we don’t need to remove any students, and when a student
leaves the school, we don’t need to remove any teachers.

class Teacher
{
 private String name;
 Teacher(String name)
 {
 this.name = name;
 }
 public String getTeacherName()
 {
 return this.name;
 }
}

class Student
{
 private String name;
 Student(String name)
 {
 this.name = name;
 }
 public String getStudentName()
 {
 return this.name;
 }
}

class AssociationDriver
{
 public static void main (String[] args)
 {
 Teacher teacherObj = new Teacher("Dr. Ahmad");
 Student studentObj = new Student("Renad");
 System.out.println(studentObj.getStudentName() +
 " is Student of " + teacherObj.getTeacherName());
 }
}

Aggregation (Aggregation follows a one-to-one relationship.)
• It represents the Has-A relationship.
• Aggregation in Java follows a one-way or one-to-one relationship.
• Ending one entity won’t affect another, both can be present

independently.

Let’s take the example of a mobile phone and a battery. A single battery can belong to a mobile phone, but if
the mobile phone stops working, and we delete it from our database. The phone battery will not be deleted
because it may still be functional. So in aggregation, while there is ownership, objects have their own
lifecycle.

Has-A

Composition :(The Composition follows a one-to-many relationship.)

• Suppose if we take an example of the relationship between questions
and answers. Single questions can have multiple answers, but
multiple answers can not have multiple questions. If we delete
questions, answers will automatically be deleted. In this the entities
are dependent.

Object Composition
Composition (consist of) is actually a special case of the

.
• Aggregation models has-a relationships and represents an ownership

relationship between two objects.
• The owner object is called an aggregating object and its class an aggregating

class.
• The subject object is called an aggregated object and its class an aggregated

class.

Name Address Student

Composition Aggregation

1..3 1 1 1

57

Class Representation
An aggregation relationship is usually represented as a data field in the
aggregating class. For example, the relationship in Figure 10.6 can be
represented as follows:

 public class Name {
 ...
}

public class Student {
 private Name name;
 private Address address;

 ...
}

public class Address {
 ...
}

Aggregated class Aggregating class Aggregated class

58

1. Composition is a specialized form of aggregation in which if the parent object is destroyed, the child
objects would cease to exist.

 2. Aggregation is a specialized form of association between two or more objects in which the objects
have their own life-cycle but there exists an ownership as well

Car

Specific Engine

Address

Student

Part
of

Has-a

class Car {
private final Engine engine;
 Car(){
 engine=new Engine();
 }//final initialized once
}

class Engine {
private String type;
}

class Student {
private Address address;
 Student(Address addr){
 address=addr;
 }
}

class Address {
String city;
String state;
 Address(String city, String state){
 this.city=city; this.state=state;
 }
}

…
Car car=new Car();
…
• Create instance:
(engine automatically created once), student has passed parameters from other methods
• Delete instance: delete car instance ,automatically engine instance deleted and can’t passed to other car

instance, but if class student deleted then address can be passed to other students

aggregationcomposition

…
Student student=new Student();
…

59

Aggregation Between Same Class
Aggregation may exist between objects of the same class.
For example, a person may have a supervisor.

Person
Supervisor

1

1

public class Person {
 // The type for the data is the class itself
 private Person supervisor;
 ...
}

61

Aggregation Between Same Class
What happens if a person has several supervisors?

Person
Supervisor

1

m

 public class Person {
 ...
 private Person[] supervisors;
}

62

Overloading Constructors

• If you create a class from which you instantiate objects, Java
automatically provides a constructor

• But, if you create your own constructor, the automatically created
constructor no longer exists

• As with other methods, you can overload constructors
• Overloading constructors provides a way to create objects with or without

initial arguments, as needed

63

Example: The Course Class

 Course

-courseName: String
-students: String[]
-numberOfStudents: int
+Course(courseName: String)
+getCourseName(): String
+addStudent(student: String): void
+dropStudent(student: String): void
+getStudents(): String[]
+getNumberOfStudents(): int

The name of the course.
An array to store the students for the course.
The number of s tudents (default : 0).

Creates a course with the specified name.
Returns the course name.
Adds a new student to the course.
Drops a student from the course.
Returns the students in the course.
Returns the number of students in the course.

RunCourse TestCourse

64

65

public class Course {
 private String courseName;
 private String[] students = new String[4];
 private int numberOfStudents;

 public Course(String courseName) {
 this.courseName = courseName;
 }

 public void addStudent(String student) {
 students[numberOfStudents] = student;
 numberOfStudents++;
 }

66

public String[] getStudents() {
 return students; }

 public int getNumberOfStudents() {
 return numberOfStudents;
 }

 public String getCourseName() {
 return courseName;
 }

public void dropStudent(String student) {
for (int i = 0; i < numberOfStudents; i++) {
 if (students[i].equals(student)) {
 // Move students[i + 1] to students[i], etc.
 for (int k = i + 1; k < numberOfStudents; k++) {
 students[k - 1] = students[k];
 }
 numberOfStudents--;
 break;}
}}
}

Wrapper Classes
Boolean

Character

Short

Byte

67

 Integer
 Long

 Float

 Double

NOTE:

(1) The wrapper classes do not have no-arg constructors.

(2) The instances of all wrapper classes are immutable, i.e., their internal
values cannot be changed once the objects are created.

67

The Integer and Double Classes

68

java.lang.Integer

-value: int
+MAX_VALUE: int
+MIN_VALUE: int

+Integer(value: int)
+Integer(s: String)
+byteValue(): byte
+shortValue(): short
+intValue(): int
+longVlaue(): long
+floatValue(): float
+doubleValue():double
+compareTo(o: Integer): int
+toString(): String
+valueOf(s: String): Integer
+valueOf(s: String, radix: int): Integer
+parseInt(s: String): int
+parseInt(s: String, radix: int): int

java.lang.Double
-value: double
+MAX_VALUE: double
+MIN_VALUE: double

+Double(value: double)
+Double(s: String)
+byteValue(): byte
+shortValue(): short
+intValue(): int
+longVlaue(): long
+floatValue(): float
+doubleValue():double
+compareTo(o: Double): int
+toString(): String
+valueOf(s: String): Double
+valueOf(s: String, radix: int): Double
+parseDouble(s: String): double
+parseDouble(s: String, radix: int): double

68

The Integer Class and the Double Class

Constructors

Class Constants MAX_VALUE, MIN_VALUE

Conversion Methods

69 69

Numeric Wrapper Class Constructors

You can construct a wrapper object either from a primitive data type value
or from a string representing the numeric value. The constructors for
Integer and Double are:

public Integer(int value)

public Integer(String s)

public Double(double value)

public Double(String s)

70 70

Integer ints=new Integer(10);

System.out.print(ints.floatValue()); // 10.0

Numeric Wrapper Class Constants
Each numerical wrapper class has the constants MAX_VALUE and

MIN_VALUE.

 MAX_VALUE represents the maximum value of the corresponding primitive
data type. For Byte, Short, Integer, and Long,

MIN_VALUE represents the minimum byte, short, int, and long values.

 For Float and Double, MIN_VALUE represents the minimum positive float
and double values.

 The following statements display the maximum integer (2,147,483,647), the
minimum positive float (1.4E-45),

and the maximum double floating-point number
(1.79769313486231570e+308d).

71 71

Conversion Methods

Each numeric wrapper class implements the abstract
methods doubleValue, floatValue, intValue, longValue,
and shortValue, which are defined in the Number class.
These methods “convert” objects into primitive type
values.

72 72

The Static valueOf Methods
The numeric wrapper classes have a useful class
method, valueOf(String s). This method creates a new
object initialized to the value represented by the
specified string. For example:

Double doubleObject = Double.valueOf("12.4");

Integer integerObject = Integer.valueOf("12");

73 73

The Methods for Parsing Strings into Numbers

You have used the parseInt method in the Integer class to
parse a numeric string into an int value

 and the parseDouble method in the Double class to parse
a numeric string into a double value.

Each numeric wrapper class has two overloaded parsing
methods to parse a numeric string into an appropriate
numeric value.

74 74

Automatic Conversion Between Primitive
Types and Wrapper Class Types

JDK 1.5 allows primitive type and wrapper classes to be converted automatically.
For example, the following statement in (a) can be simplified as in (b):

75

 Integer[] intArray = {new Integer(2),
 new Integer(4), new Integer(3)};

(a)

Equivalent

(b)

Integer[] intArray = {2, 4, 3};

New JDK 1.5 boxing

Integer[] intArray = {1, 2, 3};
System.out.println(intArray[0] + intArray[1] + intArray[2]);

Unboxing

75

Vis versa is also true.

BigInteger and BigDecimal

If you need to compute with very large integers or high precision
floating-point values, you can use the BigInteger and BigDecimal
classes in the java.math package.
Both are immutable. Both extend the Number class and implement
the Comparable interface.

76 76

BigInteger and BigDecimal
BigInteger a = new BigInteger("9223372036854775807");
BigInteger b = new BigInteger("2");
BigInteger c = a.multiply(b); // 9223372036854775807 * 2
System.out.println(c);

77

BigDecimal a = new BigDecimal(1.0);
BigDecimal b = new BigDecimal(3);
BigDecimal c = a.divide(b, 20, BigDecimal.ROUND_UP);
System.out.println(c);

RunLargeFactorial

77

0.33333333333333333334

78

package test;

import java.util.Scanner;
import java.math.*;

public class LargeFactorial {
 public static void main(String[] args) {
 Scanner input = new Scanner(System.in);
 System.out.print("Enter an integer: ");
 int n = input.nextInt();
 System.out.println(n + "! is \n" + factorial(n));
 input.close();
}

 public static BigInteger factorial(long n) {
 BigInteger result = BigInteger.ONE; // Assign 1 to result
 for (int i = 1; i <= n; i++) // Multiply each i
 result = result.multiply(BigInteger.valueOf(i));

 return result;
 }
}

