

public class HelloWorld
{

 public static void main (String[] args)
 {
 System.out.println ("Hello World");
 }
}

● Capital letters and small letters are different in Java (Case Sensitive).

● Naming: Capital each letter of each word and don’t use spaces.

 File → New → Package (In Src folder)

● It is used to define different workspaces in your class.

● A program for two cases → use them.

● To change the font of the editor:

Window → Preferences → General → Appearance → Colors and fonts → Java editor text font

● To make a comment:

/* then enter Or //

Declare new class

This line defines main

method

 it is important to run

the class

Name of the file

● Definition of variables: Names we declare to store a value

● Use All capital letters for name and underscore between words.

● Declaring a variable:

int __ = __;

To print the value on the screen:

System.out.println (name);

Byte (number, 1-byte) “smallest”

Short (number, 2-byte)

Int (number, 4-byte)

Long (number, 8-byte)

float (float_number, 4-byte)

double (number, 8-byte) “It can store decimal numbers”

Char (number, 2-byte)

Boolean (true or false, 1-byte)

Note:

float __ = (float) 4.5

● When using double no need for the ()

● To define char:

char __ = ‘ ‘;

Scanner NameOfVar = new Scanner (System.in);

This line allows us to take an input from the user.

● To avoid error in Scanner: input Scanner (right click on Scanner).

● To ask the user to enter a value

int __ = NameofVar.nextInt();

Name of variable Value

Input Name
You can put

any type but

with Capital.

letter at first

Note:

 .print is different from .println: it prints without breaking the line.

● If you are entering a string use:

NameOfVar.nextline();

● To make your answer like this:

Answer = ____ ;

 You can use:

int answer = ___ ;

System.out.println("Answer = " + answer);

 Division:

● Make sure that the answer type matches the answer wanted.

● Note: the remainder is from (%)

Incrementation:

●

x = x + 1, OR x = ++x, OR x = x++

●

x+ = 5 → x = x + 5

● While:

While ()

 {

 ___________;

 }

● Do – While:

do

 {

 ___________;

 }

while ();

statement

Difference between while and do-while:

While: evaluation → execution

 Do-while: execution → evaluation

From program

Pre-incrementation

Post-incrementation

Short Format

● For:

for (______ ; ______ ; ______)

 {

 ______;

 }

 Example:

for (int i = 0 ; i < 2 ; i++)

Increment

element

condition

increment

int [] _____ = { __, __, __, ...};

 How to point to an element:

System.out.println(____ []);

 To print elements:

for (int i = 0; i < arr.length; i++) {
 System.out.print(arr[i] + " ");}

● To calculate the length of a string:

String _____ = " ";

int ____ = ____.length();

● To print in Capital or small letters use:

String ____ = _____.toUppercase()

String ____ = _____.toLowerCase()

● You can replace characters by:

System.out.println(_____ , replace('__','__'));

Name Elements

Name

Put number of the

place of the element

Name

Name of string Name of number

Name Name of string

Name

Old character

New character

● Taking this simple calculator code:

 public class Calculater
 {

 public int add(int i , int j)
 {
 return i+j;
 }

 }

● Now let’s say I want to make a calculator that adds and subtracts too, I will need to use the

Inheritance

 First: I will create another class and make it do the subtractions

 Second: I will use inheritance syntax

 Syntax:

public class CalcAdv extends Calculater

 This sentence allows the class CalcAdv to do two functions. Its own and the class Calculater

function too

 The code of the class CalcAdv will be:

public class CalcAdv extends Calculater
 {
 public int sub(int i, int j)
 {
 return i-j;
 }
 }

 Third: I will print results using code:

public class inheritance
{ public static void main(String[] args)
 {
 CalcAdv c1 = new CalcAdv();
 int result1 = c1.add(3,4);
 int result2 = c1.sub(5,3);

 System.out.println(result1);
 System.out.println(result2);
 }
}

We can either use Boolean variable or put the comparison directly in the print method.

● Using Direct method:

 public class GreaterLessThan {
 public static void main(String[] args) {
 double creditsEarned = 176.5;
 double creditsOfSeminar = 8;
 double creditsToGraduate = 180;

 double creditsAfterSeminar= creditsEarned+ creditsOfSeminar;

 System.out.println(creditsToGraduate < creditsAfterSeminar);
 }
 }

● Using a Boolean variable:

double creditsAfterSeminar = creditsEarned + creditsOfSeminar;
boolean comparison = creditsToGraduate < creditsAfterSeminar;
System.out.println(comparison);

● For equality use symbol ==

● For Non-equality use symbol !=

Example:

public class EqualNotEqual
{
 public static void main(String[] args) {
 int songsA = 9;
 int songsB = 9;
 int albumLengthA = 41;
 int albumLengthB = 53;
 boolean sameNumberOfSongs = songsA==songsB;
 boolean differentLength = albumLengthA != albumLengthB;
 }

}

Types of errors in java:

● Syntax error: (compile error)

It results from errors in code construction such as mistyping a keyword, forgetting some

necessary punctuation such as semicolon, or using an opening brace without a corresponding

closing brace.

● Run time error:

For example, happens when the user enters a value that does not suit the value you assigned or

when there is a division by zero.

● Logic error:

Occurs when a program does not perform the way it was intended to (Answer is wrong).

Definition: The ability of an object to have different forms

● Base class

● Derive class

You can point the reference to a base class to any object of the derived class

Casting: reference of parent class points to the object of the subclass

Syntax:

 ParentClassName NewObjectName = new SubClassName();

Note (extra):

● To Checki if two strings are the same or not we use a built-in method called : .equals()

Syntax:

System.out.println(stringName1.equals(stringName2));

Classes
Syntax:

Definition: set of instructions that describe how an instance can behave and what information it

contains.

Classes can be:

In built classes

 Example:

System.out.println ("Hello_World");

Or

Costumed by user

Example:

public class Store{}

● The word public means that other classes can interact with this class (it will be

explained later in Inheritance)

Note: that the class needs to have a main method to run.

Method

In built class

Objects:
● They are also called: java instances.

● Classes define the state and behavior of the object.

 State: comes from object fields declared inside the class.

 Behavior: comes from methods defined in the class.

To understand this lets see an example of a simple code.

public class Car Class declaration

{

 String color;
 boolean isRun;
 int velocity;

 public Car(String carColor, boolean carRun, int carVel)

 {

 color= carColor;

 isRun= carRun; Assigning parameters to fields
 velocity=carVel;
 }

 public static void main(String[] args) Main method

 {

 Car ferrari= new Car("red",true,27);
 Car renault = new Car("blue",false,70);

System.out.println(ferrari.color);

 }
}

When you run the code, the computer will enter the class, to the main method to run it

then it will move to Car, and run it lastly it will return to main.

The output of this code will be: red

Definition of variables that we will use in the object (these are called

fields)

Declaration of an object

and parameters that

will be used in it

New values passed into the main

method

Note that Ferrari and Renault are

objects

We use the dot (.) to access the

variables and methods of an object or

a class

This is called a constructor method and its

named after the class

Methods
● They are used to make your code clearer and shorter

● A method signature gives the program some information about the method

Syntax:

public void NameOfMethod() {}

Syntax for calling a method in the main

NameOfInstance.NameOfMethod();

There are three ways to use methods:

1. Void, NO Parameter: in this case the method does not pass or return any value but

it prints or assign values.

2. Void, with Parameters: in this case the method does pass parameters but it does

not return any value.

3. Passes Parameters and return values: in this case the method will return and pass

values.

To understand methods and how can we use them let’s see an example simple code.

 public class SavingsAccount
{

 int balance;

 public SavingsAccount(int initialBalance)

 {
 balance = initialBalance;
 }

This means there is no output. But if

our method returns a value we will

use String, int, double…

This means that other classes can

access this method

This is called a constructor (its name must

match the class name)

If the method passes

parameters we put them

between brackets

 public void checkBalance()
 {
 System.out.println("Hello!");
 System.out.println("Your balance is "+ balance);
 }

 public void deposit(int amountToDeposit)
 {
 balance= balance+amountToDeposit;
 System.out.println("you have deposited "+ amountToDeposit);
 }

 public int withdraw(int amountToWithdraw)
 {
 balance= balance-amountToWithdraw;
 return amountToWithdraw;
 }

 public static void main(String[] args)
 {
 SavingsAccount savings = new SavingsAccount(2000);

 savings.checkBalance();
 int result = savings.withdraw(600);
 System.out.println("you have just withdrawed "+ result);
 savings.checkBalance();
 savings.deposit(400);
 savings.checkBalance();
 }
}

The output is:

Hello!
Your balance is 2000
you have just withdrawed 600
Hello!
Your balance is 1400
you have deposited 400
Hello!
Your balance is 1800

Here we added an instance

called savings with an initial

balance of 2000

This is called a method (its name does not

match the class name)

This method will print to the user the

balance

Its void because it does not need to return

any value and has no parameter because it

does not receive any input since balance is

defined for all the class

This method will receive the

value that has been added to

the account, add it to the

balance and print to the user

the new value of the balance

Here, it’s also void because it

does not need to return any

value but it has a parameter

because it receives an integer

which is the value deposited

This method will receive the value that

has been taken from the account,

substract it from the balance and return

the new value of the balance to the

main when called

Here we call the methods by

using the syntax I mentioned

before.

If you created another

instance (savings2 for

example) you will only need

to repeat the calling lines

with changing the instance

name.

You are probably asking yourself why using method?

Let me answer your question with this code that we used no method in it

public class SavingsAccount {

 int balance;

 public SavingsAccount(int initialBalance){
 balance = initialBalance;
 }
 public void checkBalance(){

 public static void main(String[] args){
 SavingsAccount savings = new SavingsAccount(2000);

 //Check balance:
 System.out.println("Hello!");
 System.out.println("Your balance is "+savings.balance);

 //Withdrawing:
 int afterWithdraw = savings.balance - 300;
 savings.balance = afterWithdraw;
 System.out.println("You just withdrew "+300);

 //Check balance:
 System.out.println("Hello!");
 System.out.println("Your balance is "+savings.balance);

 //Deposit:
 int afterDeposit = savings.balance + 600;
 savings.balance = afterDeposit;
 System.out.println("You just deposited "+600);

 //Check balance:
 System.out.println("Hello!");
 System.out.println("Your balance is "+savings.balance);

 //Deposit:
 int afterDeposit2 = savings.balance + 600;
 savings.balance = afterDeposit2;
 System.out.println("You just deposited "+600);

 //Check balance:
 System.out.println("Hello!");
 System.out.println("Your balance is "+savings.balance);

 }
}

In this code, if you

needed to create another

instances for other

accounts you will need

to repeat all these lines

But with methods you

will only need to repeat

the calling line and

change the instance

name

So methods makes your

code shorter and more

efficient to use

Conditional statement
● If statement

if ()
 {
 excute if true (put any statement you want)
 }
else
 {
 excute its false
 }

● The comparison tools

● You can use and && and ||

if ((state 1) && (state 2))

{

 _ _ _ _ _ _ _ _ ;

}

● Switch:

switch ()

 {

 case ___ : _ _ _ _ _ _ _ _ _ ; break;

 case ___ : _ _ _ _ _ _ _ _ _ ; break;
 default : _ _ _ _ _ _ _ _ _ ; break;

 }

If you don’t add the break it keeps doing the rest of the code until end.

Comparison tool Meaning

== Equal to

!= Not equal to

>,< Greater, smaller

>=,<= Greater or equal, smaller or equal

Statement

If you want to print a statement when

no statement of the above is true.

Name of variable (int, byte, short, char)

value

Means that it

breaks out of

switch

In this code you can see how we used the switch statement and the equivalent if statement for it.

public class Order
{
 boolean isFilled;
 double billAmount;
 String shipping;

 public Order(boolean filled, double cost, String shippingMethod) {
 if (cost > 24.00) {
 System.out.println("High value item!");
 } else {
 System.out.println("Low value item!");
 }
 isFilled = filled;
 billAmount = cost;
 shipping = shippingMethod;
 }

 public void ship() {
 if (isFilled) {
 System.out.println("Shipping");
 } else {
 System.out.println("Order not ready");
 }

 double shippingCost = calculateShipping();

 System.out.println("Shipping cost: ");
 System.out.println(shippingCost);
 }

 public double calculateShipping() {
 double shippingCost;
 switch (shipping) {
 case "Regular":
 shippingCost = 0;
 break;
 case "Express":
 shippingCost = 1.75;
 break;
 default:
 shippingCost = .50;
 }
 return shippingCost;
 }

 public static void main(String[] args) {

Order First = new Order(false , 15 , "Express");
First.ship();
First.calculateShipping();

 }
}

x

public double calculateShipping()
 {
 if (shipping =="Regular")
 return 0 ;
 else if (shipping ="Express")
 return 1.75;
 else
 return 0.5;

The output of this code is:

Conditional operators
● These operators only use Boolean values.

● There are three operators: and, or, !

In this code you can see how we used the conditional operators.

public class Reservation
{
 int guestCount;
 int restaurantCapacity;
 boolean isRestaurantOpen;
 boolean isConfirmed;

 public Reservation(int count, int capacity, boolean open)
 {
 if (count < 1 || count > 8)
 {
 System.out.println("Invalid reservation!");
 }
 guestCount = count;
 restaurantCapacity = capacity;
 isRestaurantOpen = open;
 }

Operator Meaning

&& (And) All conditions need to be true

|| (Or) Only one condition needs to be true

! (Not)
If the single condition is opposite to which it’s

applied (!false= true , !true=false)

Low value item!
Order not ready
Shipping cost:
1.75

Here in the if statement, the

operator used is OR which

means that if the count is less

than 1 or larger than 8 then

the statement is true and

Invalid reservation is printed.

public void confirmReservation()
 {
 if (restaurantCapacity >= guestCount && isRestaurantOpen)
 {
 System.out.println("Reservation confirmed");
 isConfirmed = true;
 }
 else
 {
 System.out.println("Reservation denied");
 isConfirmed = false;
 }
 }

 public void informUser()
 {
 if (!isConfirmed)
 {

System.out.println("Unable to confirm reservation, please contact
restaurant.");

 }
 Else
 {
 System.out.println("Please enjoy your meal!");
 }
 }

 public static void main(String[] args)
 {
 Reservation P1 = new Reservation(5,10,true);
 P1.confirmReservation();
 P1.informUser();
 }
}

The output of this code is:

Here in the if statement, the

operator used is AND which

means that the two conditions

are required in order to print

Reservation confirmed and

the boolean variable

isConfirmed will be set to

true

Reservation confirmed
Please enjoy your meal!

Arrays
● They are data lists
● it holds fixed number of values of one type such as: double, int, boolean and string.
● Each place in the array has an index:

● The length of the array shown is 5.

● The highest index is 4.

● To declare an array:

Type of Array[] NameofArray = {element1, element2, …. };

● For example:

double[] prices = {13.15, 15.87, 14.22, 16.66};

In order to have a more descriptive printout of the array we need a toString() method that is provided

by the Arrays package in Java.

To do this we need to put the following line before defining a class:

import java.util.Arrays;

This line imports the Arrays package which has many useful methods to use such as:

Arrays.toString()

This method let us see the contents of the array printed out

The following code is an example of the use of this method:

import java.util.Arrays;

public class Numbers(){

 public static void main(String[] args){
 int[] DiffNumbers = {5, 8, 20, 25, 62};
 String NumPrintout = Arrays.toString(DiffNumbers);
 System.out.println(NumPrintout);
 }

}

To get values out of an array we use brackets []. For example:

System.out.println(DiffNumbers[1]);

We can also define an empty array and fill it. For example:

int[] Numbers = new int[4];
Numbers[0] = 1;
Numbers[1] = 45;
Numbers[2] = 22;
Numbers[3] = 3;

To obtain the length of the previous array:

System.out.println(Numbers.length);

Arraylists
Sometimes we need to create an array with no fixed size (dynamic list) these are called Arraylists.

These lists allow us:

● Store elements of the same type (just like arrays)

● Access elements by index (just like arrays)

● Add elements

● Remove elements

To use an ArrayList at all, we need to import them from Java’s util package as well:

import java.util.ArrayList;

To declare an arraylist, we define the type of objects in it:

ArrayList<TypeOfList> NameOfList;

< > these are called generics

When we put the type of the list we need to use difference syntax than usual. For example: String,

Integer, Double and Char.

NameOfList = new ArrayList<TypeOfList>();

To Add an item to the arraylist. See the following example:

ArrayList<String> toDoLiconsst = new ArrayList<String>();

String toDo1 = "Water plants";
String toDo2 = "Do homework";
String toDo3 = "play sport";

toDoList.add(toDo1);
toDoList.add(toDo2);
toDoList.add(toDo3);

To access an index we use method get(). For Example:

System.out.println(toDoList.get(2));

