

What IS Object Oriented Programming ?

 Object-oriented programming (OOP) is a programming paradigm based on the concept of "objects"

 A programming paradigm : is a style of programming, a way of thinking about software construction.

 A programming paradigm does not refer to a specific language but rather to a way to build a program

or a methodology to apply.

 Some languages make it easy to write in some paradigms but not others.

 Some Programming Languages allow the programmer to apply more than one Paradigm.

https://en.wikipedia.org/wiki/Programming_paradigm
https://en.wikipedia.org/wiki/Object_(computer_science)

Example of Programming Paradigms

Example of Previous Programming Paradigm

Procedural Programming

Procedural programming (PP), also known as inline programming takes a top-down approach. It is about writing a
list of instructions to tell the computer what to do step by step. It relies on procedures or routines.

Procedural Programming Example : Program to Calculate Average of Array Items

Code To declare and initialize Array

Call To function To Accept Array Data

Call To function To Calculate Average

Get Input ()

Calc Average () Calc Sum ()

Calc Sum ()

Object : is a thing (Tangible – Intangible)

 Object-oriented programming (OOP) is a programming paradigm based on the concept of "objects"

https://en.wikipedia.org/wiki/Programming_paradigm
https://en.wikipedia.org/wiki/Object_(computer_science)

Objects in Student housing management Program

Student Room Building

Furniture

Student Housing Environment

Objects in College Management Program

Student Course Teacher

Class Room Grading
Report

College Environment

Objects in Super market Program

Product Customer Cashier

Cart Loyalty
Card Bager

Super Market Environment

Objects in Bicycle Store Program

Bike Customer Spare Part

Accessories ……… …….

Bicycle Store Environment

Object
Data

Operations ()

Object Is comprised Of ?

Product

Data
1- Product _name ,
2- Product _code
3- Price
4- Producer
5-Discount

Operations ()
1- Modify Price ()
2- Set Discount ()
3- Get Product Name ()
4- Get Product Price ()

Object Is comprised Of ?

Student

Data
1- Student_name ,
2- University_Id
3- Birth_Date
4- Address
5-GPA
6- Study_Level

Operations ()
1- Modify GPA()
2- Change Study level ()
3- Get Student Name ()
4- Get Student Address ()

Object Is comprised Of ?

Car

Data
1- Factory,
2- Model
3- Fuel_Capacity
4- No_of_doors
5-Color
6- Shape

Operations ()
1- Set Factory Name()
2- Change Color ()
3- Get Car Info ()
4- ………..

Object Is comprised Of ?

What is Class ? Why we need It ?
Student 1

Data:
1- Student_name ,
2- University_Id
3- Birth_Date
4- Address
5-GPA
6- Study_Level

Operations ()
1- Modify GPA()
2- Change Study level ()
3- Get Student Name ()
4- Get Student Address ()

Student 2

Data:
1- Student_name ,
2- University_Id
3- Birth_Date
4- Address
6- Study_Level

Operations ()
1- Modify GPA()
2- Change Study level ()
4- Get Student Address ()

Student 3

Data:
1- Student_name ,
2- University_Id
5-GPA
6- Study_Level

Operations ()
1- Modify GPA()
2- Change Study level ()
3- Get Student Name ()
4- Get Student Address ()

What is Class ? Why we need It ?

Student 2
Data:
1- Student_name
2- University_Id
3- Birth_Date
4- Address
5-GPA
6- Study_Level

Operations ()
1- Modify GPA()
2- Change Study level ()
3- Get Student Name ()
4- Get Student Address ()

Class Student

Data:
1- Student_name ,
2- University_Id
3- Birth_Date
4- Address
5-GPA
6- Study_Level

Operations ()
1- Modify GPA()
2- Change Study level ()
3- Get Student Name ()
4- Get Student Address ()

Student 1
Data:
1- Student_name
2- University_Id
3- Birth_Date
4- Address
5-GPA
6- Study_Level

Operations ()
1- Modify GPA()
2- Change Study level ()
3- Get Student Name ()
4- Get Student Address ()

Student 3
Data:
1- Student_name
2- University_Id
3- Birth_Date
4- Address
5-GPA
6- Study_Level

Operations ()
1- Modify GPA()
2- Change Study level ()
3- Get Student Name ()
4- Get Student Address ()

What is Class ? Why we need It ?

Student 2
Data:
1- Student_name
2- University_Id
3- Birth_Date
4- Address
5-GPA
6- Study_Level

Operations ()
1- Modify GPA()
2- Change Study level ()
3- Get Student Name ()
4- Get Student Address ()

Class Student

Data:
1- Student_name ,
2- University_Id
3- Birth_Date
4- Address
5-GPA
6- Study_Level

Operations ()
1- Modify GPA()
2- Change Study level ()
3- Get Student Name ()
4- Get Student Address ()

Student 1
Data:
1- Student_name
2- University_Id
3- Birth_Date
4- Address
5-GPA
6- Study_Level

Operations ()
1- Modify GPA()
2- Change Study level ()
3- Get Student Name ()
4- Get Student Address ()

Student 3
Data:
1- Student_name
2- University_Id
3- Birth_Date
4- Address
5-GPA
6- Study_Level

Operations ()
1- Modify GPA()
2- Change Study level ()
3- Get Student Name ()
4- Get Student Address ()

7- Email

7- Email

7- Email

7- Email

5- Print Student Info ()

5- Print Student Info ()

5- Print Student Info ()

5- Print Student Info ()

What is Class ? Why we need It ?

Class Student
Data:
1- Student_name ,
2- University_Id
5-GPA
6- Study_Level

Operations ()
1- Modify GPA()
2- Change Study level ()
3- Get Student Name ()
4- Get Student GPA ()

Student 1
Data:
1- Student_name ,
2- University_Id
5-GPA
6- Study_Level

Operations ()
1- Modify GPA()
2- Change Study level ()
3- Get Student Name ()
4- Get Student GPA ()

 = Ahmed

 = 1050

=3.75

 = 5

Objects and Classes

• Classes: Where Objects Come From
– A class is code that describes a particular type of object. It specifies the

data that an object can hold (the object's fields), and the actions that an
object can perform (the object's methods).

– You can think of a class as a code "blueprint" that can be used to create
a particular type of object.

Objects and Classes

• When a program is running, it can use the class to create, in
memory, as many objects of a specific type as needed.

• Each object that is created from a class is called an instance of
the class.

Objects and Classes

Scanner keyboard = new Scanner(System.in);

keyboard
variable

Scanner
object

This expression creates a
Scanner object in memory.

The object's memory address
is assigned to the keyboard

variable.

Example:

Objects and Classes

Random rand = new Random();

rand
variable

Random
object

This expression creates a
Random object in memory.

The object's memory address is
assigned to the rand variable.

Example:

Writing a Class, Step by Step
• A Rectangle object will have the following fields:

Rectangle

length
width

setLength()
setWidth()
getLength()
getWidth()
getArea()

Writing the Code
public class Rectangle
{
 private double length;
 private double width;
}

Rectangle

length
width

setLength()
setWidth()
getLength()
getWidth()
getArea()

6-27

Access Modifiers
• An access modifier is a Java keyword that indicates how a field or method can

be accessed.
• public

– When the public access modifier is applied to a class member, the member can be
accessed by code inside the class or outside.

• private
– When the private access modifier is applied to a class member, the member cannot be

accessed by code outside the class. The member can be accessed only by methods that
are members of the same class.

Data Hiding

Data Hiding
• An object hides its internal, private fields from code that is outside the class

that the object is an instance of.
• Only the class's methods may directly access and change the object’s internal

data.
• Code outside the class must use the class's public methods to operate on an

object's private fields.
• Data hiding is important because classes are typically used as components in

large software systems, involving a team of programmers.
• Data hiding helps enforce the integrity of an object's internal data.

Rectangle

- width : double
- length : double

+ setWidth(w : double) : void
+ setLength(len : double): void
+ getWidth() : double
+ getLength() : double
+ getArea() : double

public void setLength(double len)

Access
specifier

Return
Type

Parameter variable declaration

Method
Name

6-30

public class Rectangle
{
 private double length;
 private double width;
public void setLength(double len)
 {
 length = len;
 }

}

6-31

Creating a Rectangle object

Rectangle box = new Rectangle ();

address
0.0

0.0

length:

width:

The box
variable holds
the address of
the Rectangle

object.

A Rectangle object

6-32

Calling the setLength Method

box.setLength(10.0);

address
10.0

0.0

length:

width:

The box
variable holds
the address of

the
Rectangle

object.

A Rectangle object

This is the state of the box object after
the setLength method executes.

6-33

Writing the getLength Method
public class Rectangle
{
 private double length;
 private double width;
public void setLength(double len)
 {
 length = len;
 }
public double getLength()
 {
 return length;
 }
}

public class Rectangle
{
 private double width;
 private double length;

 public void setWidth(double w)
 { width = w;
 }
 public void setLength(double len)
 { length = len;
 }
 public double getWidth()
 { return width;
 }
 public double getLength()
 { return length;
 }
 public double getArea()
 { return length * width;
 }
}

Instance Fields and Methods
• Fields and methods that are declared as previously shown are called

instance fields and instance methods.
• Objects created from a class each have their own copy of instance

fields.
• Instance methods are methods that are not declared with a special

keyword, static.

Instance Fields and Methods

• Instance fields and instance methods require an object to be
created in order to be used.

• For example, every room can have different dimensions.

Rectangle kitchen = new Rectangle();

Rectangle bedroom = new Rectangle();

Rectangle den = new Rectangle();

States of Three Different Rectangle Objects

address
15.0

12.0

length:

width:

address
10.0

14.0

length:

width:

address
20.0

30.0

length:

width:

The kitchen variable
holds the address of a
Rectangle Object.

The bedroom variable
holds the address of a
Rectangle Object.

The den variable
holds the address of a
Rectangle Object.

public class Rectangle
{
 private double width;
 private double length;

 public void setWidth(double w)
 { width = w;
 }
 public void setLength(double len)
 { length = len;
 }
 public double getWidth()
 { return width;
 }
 public double getLength()
 { return length;
 }
 public double getArea()
 { return length * width;
 }
}

Accessors and Mutators

Setter , Mutator

Getter, Accessor

Objects and Classes

Scanner Input= new Scanner(System.in);

Input
variable

Scanner
object

This expression creates a
Scanner object in memory.

The object's memory address
is assigned to the Input

variable.

Example:

Uninitialized Local Reference Variables
• Reference variables can be declared without being initialized.
 Rectangle box;

• This statement does not create a Rectangle object, so it is an uninitialized local
reference variable.

• A local reference variable must reference an object before it can be used, otherwise a
compiler error will occur.

 box = new Rectangle();

Box
variable

Rectangle
object

More Examples

Constructors

• Classes can have special methods called constructors.

• A constructor is a method that is automatically called when an object is

created.

• Constructors are used to perform operations at the time an object is created.

• Constructors typically initialize instance fields and perform other object

initialization tasks.

6-45

Constructors
• Constructors have a few special properties that set them apart from

normal methods.
– Constructors have the same name as the class.
– Constructors have no return type (not even void).
– Constructors may not return any values.
– Constructors are typically public.

6-46

Constructor for Rectangle Class
 /**

 Constructor

 @param len The length of the rectangle.

 @param w The width of the rectangle.

 */

 public Rectangle(double len, double w)

 {

 length = len;

 width = w;

 }

Overloading Methods and Constructors
• Two or more methods in a class may have the same name as long as

their parameter lists are different.
• When this occurs, it is called method overloading. This also applies

to constructors.
• Method overloading is important because sometimes you need

several different ways to perform the same operation.

Overloaded Method add
public int add(int num1, int num2)
{
 int sum = num1 + num2;
 return sum;
}

public String add (String str1, String str2)
{
 String combined = str1 + str2;
 return combined;
}

©2016 Pearson Education, Inc. Upper Saddle River, NJ. All Rights Reserved. 6-49

Rectangle Class Constructor Overload

Rectangle box1 = new Rectangle();

Rectangle box2 = new Rectangle(5.0, 10.0);

The BankAccount Example
BankAccount

-balance:double

-accountName: String

+BankAccount()

+BankAccount(double , string)

+BankAccount(double):

+deposit(amount:double):void

+deposit(str:String):void

+withdraw(amount:double):void

+withdraw(str:String):void

+setBalance(b:double):void

+setBalance(str:String):void

+getBalance():double

Overloaded Constructors

Overloaded deposit methods

Overloaded withdraw methods

Overloaded setBalance methods

©2016 Pearson Education, Inc. Upper Saddle River, NJ. All Rights Reserved. 6-51

The Default Constructor
• When an object is created, its constructor is always called.
• If you do not write a constructor, Java provides one when the class is

compiled. The constructor that Java provides is known as the default
constructor.
– It sets all of the object’s numeric fields to 0.
– It sets all of the object’s boolean fields to false.
– It sets all of the object’s reference variables to the special value null.

The Default Constructor
• The default constructor is a constructor with no parameters, used to

initialize an object in a default configuration.
• The only time that Java provides a default constructor is when you do not

write any constructor for a class.
• A default constructor is not provided by Java if a constructor is already

written.

Writing Your Own No-Arg Constructor
• A constructor that does not accept arguments is known as a no-arg

constructor.
• The default constructor (provided by Java) is a no-arg constructor.
• We can write our own no-arg constructor

 public Rectangle()
 {
 length = 1.0;
 width = 1.0;
 }

Static Class Members
• Static fields and static methods do not belong to a single instance of a

class.
• To invoke a static method or use a static field, the class name, rather than

the instance name, is used.
• Example:

double val = Math.sqrt(25.0);

Class name Static method

Static Fields
• Class fields are declared using the static keyword between the access

specifier and the field type.
private static int instanceCount = 0;

• The field is initialized to 0 only once, regardless of the number of times
the class is instantiated.
– Primitive static fields are initialized to 0 if no initialization is performed.

Static Fields

instanceCount field
(static)

3

Object1 Object3 Object2

Static Methods
• Methods can also be declared static by placing the static keyword between the access

modifier and the return type of the method.

public static double milesToKilometers(double miles)
{…}

• When a class contains a static method, it is not necessary to create an instance of the class in
order to use the method.

double kilosPerMile = Metric.milesToKilometers(1.0);

Static Methods

• Static methods are convenient because they may be called at the class level.
• They are typically used to create utility classes, such as the Math class in the

Java Standard Library.
• Static methods may not communicate with instance fields, only static fields.

Passing Objects as Arguments
• Objects can be passed to methods as arguments.

• Java passes all arguments by value.

• When an object is passed as an argument, the value of the reference variable is passed.

• The value of the reference variable is an address or reference to the object in memory.

• A copy of the object is not passed, just a pointer to the object.

• When a method receives a reference variable as an argument, it is possible for the method

to modify the contents of the object referenced by the variable.

Passing Objects as Arguments

displayRectangle(box);

public static void displayRectangle(Rectangle r)
{
 // Display the length and width.
 System.out.println("Length: " + r.getLength() +
 " Width: " + r.getWidth());
}

A Rectangle object

 length:
 width:

12.0
5.0

Address

Returning Objects From Methods
• Methods are not limited to returning the primitive data types.
• Methods can return references to objects as well.
• Just as with passing arguments, a copy of the object is not returned, only its address.
• Method return type:

 public static BankAccount getAccount()
 {
 …
 return new BankAccount(balance);
 }

Returning Objects from Methods
account = getAccount();

public static BankAccount getAccount()
{
 …
 return new BankAccount(balance);
}

balance: 3200.0

address

A BankAccount Object

Using The == operators with objects
• If we try the following:

Rectangle room1 = new Rectangle(10,50);
Rectangle room2 = new Rectangle(10,50);

if (room1 == room2) // This is a mistake.
 System.out.println("The objects are the same.");
else
 System.out.println("The objects are not the same.");

only the addresses of the objects are compared.

8-67

Methods That Copy Objects

• There are two ways to copy an object.
– You cannot use the assignment operator to copy reference types

– Reference only copy

• This is simply copying the address of an object into another reference variable.

– Deep copy (correct)
• This involves creating a new instance of the class and copying the values from one object into

the new object.

8-68

Copy Constructors
• A copy constructor accepts an existing object of the same class and clones it

 public Stock(Stock object 2)
 {
 symbol = object2.symbol;
 sharePrice = object2.sharePrice;
 }

 // Create a Stock object
 Stock company1 = new Stock("XYZ", 9.62);

 //Create company2, a copy of company1
 Stock company2 = new Stock(company1);

10-70

What is Inheritance?
Generalization vs. Specialization

• Real-life objects are typically specialized versions of other more general
objects.

• The term “Student” describes a very general type of Students with known
characteristics.

• Post-Graduated Students and under-graduated students are Students
– They share the general characteristics of an Student.
– However, they have special characteristics of their own.

• Post Graduated have an interesting research area.
• Under Graduated have a Group no and class no .

• Post Graduated Students and under graduated students are specialized
versions of a student.

Without Inheritance

10-73

The “is a” Relationship

• The relationship between a superclass and an inherited class is called an
“is a” relationship.
– A post graduate student “is a” Student.
– An Employee “is a” Person.
– Salaried Employee “is a” Employee.
– A car “is a” vehicle.

• A specialized object has:
– all of the characteristics of the general object, plus
– additional characteristics that make it special.

• In object-oriented programming, inheritance is used to create an “is a”
relationship among classes.

10-74

The “is a” Relationship
• We can extend the capabilities of a class.
• Inheritance involves a superclass and a subclass.

– The superclass is the general class and
– the subclass is the specialized class.

• The subclass is based on, or extended from, the superclass.
– Superclasses are also called base classes, and
– subclasses are also called derived classes.

• The relationship of classes can be thought of as parent classes and child classes.

10-76

Inheritance
• The subclass inherits fields and methods from the superclass without any of

them being rewritten.
• New fields and methods may be added to the subclass.
• The Java keyword, extends, is used on the class header to define the subclass.

public class Employee extends Person

10-78

Inheritance, Fields and Methods
• Members of the superclass that are marked private:

– are not inherited by the subclass,
– exist in memory when the object of the subclass is created
– may only be accessed from the subclass by public methods of the superclass.

• Members of the superclass that are marked public:
– are inherited by the subclass, and
– may be directly accessed from the subclass.

10-79

Inheritance, Fields and Methods
• When an instance of the subclass is created, the non-private methods of the superclass

are available through the subclass object.

Employee emp1 = new Employee();
Emp1.set_Age(30);
System.out.println(“Age = " + emp1.get_Age());

• Non-private methods and fields of the superclass are available in the subclass.

Set_Age(30);

10-80

Inheritance and Constructors
• Constructors are not inherited.
• When a subclass is instantiated, the superclass default constructor is

executed first.
• The super keyword refers to an object’s superclass.
• The superclass constructor can be explicitly called from the subclass by

using the super keyword.

10-81

Calling The Superclass Constructor
• If a parameterized constructor is defined in the superclass,

– the superclass must provide a no-arg constructor, or
• subclasses must provide a constructor, and
• subclasses must call a superclass constructor.

• Calls to a superclass constructor must be the first java statement in
the subclass constructors.

Overriding Superclass Methods
• A subclass may have a method with the same signature as a superclass method.

• The subclass method overrides the superclass method.

• This is known as method overriding.

• A subclass method that overrides a superclass method must have the same signature as the

superclass method.

• An object of the subclass invokes the subclass’s version of the method, not the superclass’s.

• The @Override annotation should be used just before the subclass method declaration.

public double get_salary()
 {
 return salary;
 }

Employee

public double get_salary()
 {
 return salary + bonus - deductions ;
 }

Salaried Employee

public double get_salary()
 {
 return working_hours * hours_rate ;
 }

Hourly Employee

10-85

Overriding Superclass Methods
• An subclass method can call the overridden superclass method via the super keyword.

super.setScore(rawScore * percentage);

• There is a distinction between overloading a method and overriding a method.

• Overloading is when a method has the same name as one or more other methods, but with a
different signature.

• Both overloading and overriding can take place in an inheritance relationship.

• Overriding can only take place in an inheritance relationship.

10-87

Preventing a Method from Being Overridden
• The final modifier will prevent the overriding of a superclass method in

a subclass.

public final void message()

• If a subclass attempts to override a final method, the compiler generates an
error.

• This ensures that a particular superclass method is used by subclasses rather
than a modified version of it.

Protected Members

• Using protected instead of private makes some tasks easier.

• Any class that is derived from the class, or is in the same package, has unrestricted access

to the protected member.

• It is always better to make all fields private and then provide public methods for

accessing those fields.

• If no access specifier for a class member is provided, the class member is given package

access by default.

• Any method in the same package may access the member.

Protected Members
• Protected members of class:

– may be accessed by methods in a subclass, and
– by methods in the same package as the class.

• Java provides a third access specification, protected.
• A protected member’s access is somewhere between private and public.

Package no1;

public class Shape
{
 private double height; // To hold height.
 private double width; //To hold width or base

 /**
 * The setValue method sets the data
 * in the height and width field.
 */
 public void setValues(double height, double width)
 {
 this.height = height;
 this.width = width;
 }
}

Package no2;

public class Rectangle extends Shape
{

 /**
 * The method returns the area
 * of rectangle.
 */
 public double getArea()
 {
 return height * width; //accessing protected members
 }
}

Protected

Protected

Abstract Classes
• An abstract class cannot be instantiated, but other classes are derived from it.

• An Abstract class serves as a superclass for other classes.

• The abstract class represents the generic or abstract form of all the classes that are

derived from it.

• A class becomes abstract when you place the abstract key word in the class definition.

public abstract class ClassName

Abstract Methods
• An abstract method is a method that appears in a superclass, but expects to be overridden in

a subclass.
• An abstract method has no body and must be overridden in a subclass.

 AccessSpecifier abstract ReturnType MethodName(ParameterList);

Ex: public abstract void GetSalary ();

• Any class that contains an abstract method is automatically abstract.
• Abstract methods are used to ensure that a subclass implements the method.
• If a subclass fails to override an abstract method, a compiler error will result.

©2016 Pearson Education, Inc. Upper Saddle River, NJ. All Rights Reserved.

Abstract Method

Abstract Class

Interfaces
• An interface is similar to an abstract class that has all abstract methods.

– It cannot be instantiated, and

– all of the methods listed in an interface must be written elsewhere.

• The purpose of an interface is to specify behavior for other classes.

• It is often said that an interface is like a “contract,” and when a class implements an

interface it must adhere to the contract.

• The general format of an interface definition:

public interface InterfaceName
{
 (Method headers...)
}

Class ABC

1- Method1()
2- Method2()

.

.

.

.
7- Method7()
8- Method8()

Implements

Public Void Method1 ()
{

}

Public Void Method8 ()
{

}

Contract

Interface

Interfaces
• A class can implement one or more interfaces
• If a class implements an interface, it uses the implements keyword in the

class header.

public interface RetailItem
{
 (Method headers...)
}

public class CD implements RetailItem

public class Book implements RetailItem

Fields in Interfaces
• An interface can contain field declarations:

– all fields in an interface are treated as final and static.

• Because they automatically become final, you must provide an initialization value.

public interface Doable
{
 int FIELD1 = 1, FIELD2 = 2;
 (Method headers...)
}

• In this interface, FIELD1 and FIELD2 are final static int variables.

• Any class that implements this interface has access to these variables.

Implementing Multiple Interfaces
• A class can be derived from only one superclass.
• Java allows a class to implement multiple interfaces.
• When a class implements multiple interfaces, it must provide the methods specified by all

of them.
• To specify multiple interfaces in a class definition, simply list the names of the interfaces,

separated by commas, after the implements key word.

public class MyClass implements Interface1,
 Interface2,
 Interface3

©2016 Pearson Education, Inc. Upper Saddle River, NJ. All Rights Reserved. 10-102

Polymorphism with Interfaces
• Java allows you to create reference variables of an interface type.
• An interface reference variable can reference any object that implements that interface,

regardless of its class type.

Polymorphism with Interfaces
• In the example code, two RetailItem reference variables, item1 and item2, are

declared.
• The item1 variable references a CompactDisc object and the item2 variable

references a DvdMovie object.
• When a class implements an interface, an inheritance relationship known as interface

inheritance is established.
– a CompactDisc object is a RetailItem, and
– a DvdMovie object is a RetailItem.

RetailItem item1 = new CompactDisc("Songs From the Heart","Billy Nelson",18.95);

RetailItem item2 = new DvdMovie("Planet X",102,22.95);

10-104

Polymorphism with Interfaces

• A reference to an interface can point to any class that implements that interface.
• You cannot create an instance of an interface.

RetailItem item = new RetailItem(); // ERROR!

• When an interface variable references an object:
– only the methods declared in the interface are available,
– explicit type casting is required to access the other methods of an object referenced by an interface

reference.

Default Methods
• Beginning in Java 8, interfaces may have default methods.
• A default method is an interface method that has a body.

Enumerated Types
• Known as an enum, requires declaration and definition like a class
• Syntax:

 enum typeName { one or more enum constants }

• Definition:

enum Day { SUNDAY, MONDAY, TUESDAY, WEDNESDAY, THURSDAY, FRIDAY, SATURDAY }

enum CarColor { RED, BLACK, BLUE, SILVER }

enum CarType { PORSCHE, FERRARI, JAGUAR }

- Declaration:
 Day WorkDay; // creates a Day enum

- Assignment:

 Day WorkDay = Day.WEDNESDAY;

Enumerated Types
• An enum is a specialized class

Day.MONDAY

Day.TUESDAY

Day.WEDNESDAY

Day.SUNDAY

Day.THURSDAY

Day.FRIDAY

Day.SATURDAY

address

Each are objects of type Day, a specialized class

Day workDay = Day.WEDNESDAY;

The workDay variable holds the address of the
Day.WEDNESDAY object

Enumerated Types - Methods
• toString – returns name of calling constant

• ordinal – returns the zero-based position of the constant in the enum. For example the ordinal for

Day.THURSDAY is 4

• equals – accepts an object as an argument and returns true if the argument is equal to the calling enum

constant

• compareTo - accepts an object as an argument and returns a negative integer if the calling constant’s

ordinal < than the argument’s ordinal, a positive integer if the calling constant’s ordinal > than the

argument’s ordinal and zero if the calling constant’s ordinal == the argument’s ordinal.

RegisterForm

- StdName: String
- StdGender : Gender
- CourseName: Course
- CrsSemester: Semester

Handling Exceptions
• An exception is an object that is generated as the result of an error or an

unexpected event.
• Exception are said to have been “thrown.”
• It is the programmers responsibility to write code that detects and handles

exceptions.
• Unhandled exceptions will crash a program.
• Java allows you to create exception handlers.

 int x = 10 , y = 0 ;

System.out.println (x/y);

Divide by Zero

11-113

Exception Classes
• An exception handler is a section of code that gracefully responds to

exceptions.
• An exception is an object.
• Exception objects are created from classes in the Java API hierarchy of

exception classes.
• All of the exception classes in the hierarchy are derived from the Throwable

class.
• Error and Exception are derived from the Throwable class.

11-114

Handling Exceptions
• To handle an exception, you use a try statement.

try
{
 (try block statements...)
}
catch (ExceptionType ParameterName)
{
 (catch block statements...)
}

• First the keyword try indicates a block of code will be attempted.

11-115

Handling Exceptions
• After the try block, a catch clause appears.
• A catch clause begins with the key word catch:

• catch (ExceptionType ParameterName)

– ExceptionType is the name of an exception class and
– ParameterName is a variable name which will reference the exception object if the code in the try

block throws an exception.

• The code that immediately follows the catch clause is known as a catch block .
• The code in the catch block is executed if the try block throws an exception.

11-116

Handling Exceptions
• This code is designed to handle a FileNotFoundException if it is thrown.

try
{
 File file = new File ("MyFile.txt");
 Scanner inputFile = new Scanner(file);
}
catch (FileNotFoundException e)
{
 System.out.println("File not found.");
}

• The Java Virtual Machine searches for a catch clause that can deal with the exception.

Polymorphic References To Exceptions
try
{
 number = Integer.parseInt(str);
}
catch (Exception e)
{
 System.out.println("The following error occurred: "

 + e.getMessage());
}

• The Integer class’s parseInt method throws a NumberFormatException
object.

• The NumberFormatException class is derived from the Exception class.

Exception Classes

Object

Throwable

Exception Error

RuntimeException IOException

FileNotFoundException EOFException

…

…

…

…

FileNotFoundException is Exception

InputMisMatchException is Exception

AnyException is Exception

Handling Multiple Exceptions
• The code in the try block may be capable of throwing more than one type of exception.
• A catch clause needs to be written for each type of exception that could potentially be

thrown.
• The JVM will run the first compatible catch clause found.
• The catch clauses must be listed from most specific to most general.

Exception Handlers
• There can be many polymorphic catch clauses.
• A try statement may have only one catch clause for each specific type of exception.

try
{
 number = Integer.parseInt(str);
}
catch (NumberFormatException e)
{
 System.out.println("Bad number format.");
}
catch (NumberFormatException e) // ERROR!!!
{
 System.out.println(str + " is not a number.");
}

Exception Handlers
• The NumberFormatException class is derived from the
IllegalArgumentException class.
try
{
 number = Integer.parseInt(str);
}
catch (IllegalArgumentException e)
{
 System.out.println("Bad number format.");
}
catch (NumberFormatException e) // ERROR!!!
{
 System.out.println(str + " is not a number.");
}

Exception Handlers
• The previous code could be rewritten to work, as follows, with no errors:

try
{
 number = Integer.parseInt(str);
}
catch (NumberFormatException e)
{
 System.out.println(str + " is not a number.");
}
catch (IllegalArgumentException e) //OK
{
 System.out.println("Bad number format.");
}

The finally Clause
• The try statement may have an optional finally clause.
• If present, the finally clause must appear after all of the catch clauses.

try
{
 (try block statements...)
}
catch (ExceptionType ParameterName)
{
 (catch block statements...)
}
finally
{
 (finally block statements...)
}

The finally Clause

• The finally block is one or more statements,
– that are always executed after the try block has executed and
– after any catch blocks have executed if an exception was thrown.

• The statements in the finally block execute whether an exception occurs or
not.

Throwing Exceptions
• You can write code that:

– throws one of the standard Java exceptions, or
– an instance of a custom exception class that you have designed.

• The throw statement is used to manually throw an exception.

throw new ExceptionType(MessageString);

• The throw statement causes an exception object to be created and thrown.

Throwing Exceptions
• The MessageString argument contains a custom error message that can be retrieved from

the exception object’s getMessage method.
• If you do not pass a message to the constructor, the exception will have a null message.

throw new Exception("Out of fuel");

Example:
if (Length ==Width)
 {
 throw new IllegalArgumentException(“In Rectangle ,The Length must be different from width.");
 }

try
 {
 int x , y=10;
 Scanner s= new Scanner(System.in);
 x= s.nextInt ();
 if (x==0)
 throw new IllegalArgumentException("Must be more than 0");
 System.out.println(y/x);
 }

 catch(ArithmeticException e)
 {
 System.out.println("Error");
 }
 catch(IllegalArgumentException e2){
 System.out.println("wrong value");
 }
 catch (InputMismatchException e3)
 {
 System.out.println("Enter only numeric value");
 }
 System.out.println("Final");

 }

The ArrayList Class
• Similar to an array, an ArrayList allows object storage
• Unlike an array, an ArrayList object:

– Automatically expands when a new item is added
– Automatically shrinks when items are removed

• Requires:

import java.util.ArrayList;

Creating an ArrayList

7-130

ArrayList<String> nameList = new ArrayList<String>();

Notice the word String written inside angled brackets <>

This specifies that the ArrayList can hold String objects.

If we try to store any other type of object in this ArrayList,
an error will occur.

7-131

Using an ArrayList

• To populate the ArrayList, use the add method:
– nameList.add("James");
– nameList.add("Catherine");

• To get the current size, call the size method
– nameList.size(); // returns 2

• To access items in an ArrayList, use the get method
nameList.get(1);

7-132

Using an ArrayList

• The ArrayList class's toString method returns a string representing all items in the
ArrayList
System.out.println(nameList);

This statement yields :
[James, Catherine]

• The ArrayList class's remove method removes designated item from the
ArrayList
nameList.remove(1);

This statement removes the second item.

7-133

Using an ArrayList

• The ArrayList class's add method with one argument adds new items to the
end of the ArrayList

• To insert items at a location of choice, use the add method with two arguments:

nameList.add(1, "Mary");
This statement inserts the String "Mary" at index 1

• To replace an existing item, use the set method:
nameList.set(1, "Becky");
This statement replaces “Mary” with “Becky”

7-134

Using an ArrayList

• An ArrayList has a capacity, which is the number of items it can hold without
increasing its size.

• The default capacity of an ArrayList is 10 items.
• To designate a different capacity, use a parameterized constructor:

ArrayList<String> list = new ArrayList<String>(100);

Using an ArrayList

• You can store any type of object in an ArrayList

ArrayList<BankAccount> accountList =
 new ArrayList<BankAccount>();

This creates an ArrayList that can hold
BankAccount objects.

Using an ArrayList
// Create an ArrayList to hold BankAccount objects.
ArrayList<BankAccount> list = new ArrayList<BankAccount>();

// Add three BankAccount objects to the ArrayList.
list.add(new BankAccount(100.0));
list.add(new BankAccount(500.0));
list.add(new BankAccount(1500.0));

// Display each item.
for (int index = 0; index < list.size(); index++)
{
 BankAccount account = list.get(index);
 System.out.println("Account at index " + index +
 "\nBalance: " + account.getBalance());
}

	Slide Number 1
	Object Oriented Programming��Lecture 01� �What IS OOP ?
	What IS Object Oriented Programming ?
	Example of Programming Paradigms
	Example of Previous Programming Paradigm
	Slide Number 6
	Object : is a thing (Tangible – Intangible)
	Objects in Student housing management Program
	Objects in College Management Program
	Objects in Super market Program
	Objects in Bicycle Store Program
	Slide Number 12
	Slide Number 13
	Slide Number 14
	Object Oriented Programming��Lecture 01 – Part 3� �What IS OOP ?
	Slide Number 16
	Slide Number 17
	Slide Number 18
	Slide Number 19
	Slide Number 20
	Objects and Classes
	Objects and Classes
	Objects and Classes
	Objects and Classes
	Writing a Class, Step by Step
	Writing the Code
	Access Modifiers
	Data Hiding
	Slide Number 29
	Slide Number 30
	Creating a Rectangle object
	Calling the setLength Method
	Writing the getLength Method
	Slide Number 34
	Instance Fields and Methods
	Instance Fields and Methods
	States of Three Different Rectangle Objects
	Object Oriented Programming��Lecture 02 – Part 4� �Create Your First Class
	Slide Number 39
	Objects and Classes
	Uninitialized Local Reference Variables
	Slide Number 42
	Object Oriented Programming��Lecture 03� � Constructors
	Constructors
	Constructors
	Constructor for Rectangle Class
	Overloading Methods and Constructors
	Overloaded Method add
	Rectangle Class Constructor Overload
	The BankAccount Example
	The Default Constructor
	The Default Constructor
	Writing Your Own No-Arg Constructor
	Object Oriented Programming��Lecture 04� � Static Class members
	Static Class Members
	Static Fields
	Static Fields
	Static Methods
	Static Methods
	Object Oriented Programming��Lecture 05� � More about working With Objects ��Passing , Returning, comparing and copying
	Passing Objects as Arguments
	Passing Objects as Arguments
	Returning Objects From Methods
	Returning Objects from Methods
	Object Oriented Programming��Lecture 05 – Part 2� � More about working With Objects ��comparing and copying objects
	Using The == operators with objects
	Methods That Copy Objects
	Copy Constructors
	Object Oriented Programming��Lecture 06 – Part 1� � Inheritance and polymorphism
	What is Inheritance?�Generalization vs. Specialization
	Slide Number 71
	Slide Number 72
	The “is a” Relationship
	The “is a” Relationship
	Object Oriented Programming��Lecture 06 – Part 2� � Inheritance and polymorphism
	Inheritance
	Slide Number 77
	Inheritance, Fields and Methods
	Inheritance, Fields and Methods
	Inheritance and Constructors
	Calling The Superclass Constructor
	Object Oriented Programming��Lecture 06 – Part 3� � Inheritance and polymorphism
	Overriding Superclass Methods
	Slide Number 84
	Overriding Superclass Methods
	Object Oriented Programming��Lecture 06 – Part 4� � Inheritance and Polymorphism��Final and Protected data members
	Preventing a Method from Being Overridden
	Protected Members
	Protected Members
	Slide Number 90
	Object Oriented Programming��Lecture 07 – Part 1� �Abstract Class and Interfaces�
	Abstract Classes
	Abstract Methods
	Slide Number 94
	Object Oriented Programming��Lecture 07 – Part 2� �Abstract Class and Interfaces�
	Interfaces
	Slide Number 97
	Interfaces
	Slide Number 99
	Fields in Interfaces
	Implementing Multiple Interfaces
	Polymorphism with Interfaces
	Polymorphism with Interfaces
	Polymorphism with Interfaces
	Default Methods
	Object Oriented Programming��Lecture 08� �Enumerated Types
	Enumerated Types
	Enumerated Types
	Enumerated Types - Methods
	Slide Number 110
	Object Oriented Programming��Lecture 09� �Exception Handling
	Handling Exceptions
	Exception Classes
	Handling Exceptions
	Handling Exceptions
	Handling Exceptions
	Polymorphic References To Exceptions
	Exception Classes
	Handling Multiple Exceptions
	Exception Handlers
	Exception Handlers
	Exception Handlers
	The finally Clause
	The finally Clause
	Throwing Exceptions
	Throwing Exceptions
	Slide Number 127
	Object Oriented Programming��Lecture 10� �The ArrayList Class
	The ArrayList Class
	Creating an ArrayList
	Using an ArrayList
	Using an ArrayList
	Using an ArrayList
	Using an ArrayList
	Using an ArrayList
	Using an ArrayList
	Object Oriented Programming with Java�� �Revision On All OOP Concepts
	Slide Number 138
	Slide Number 139

