
Sharan

www.apress.com

BOOKS FOR PROFESSIONALS BY PROFESSIONALS®

Learn JavaFX 8
Learn JavaFX 8 shows you how to start developing rich-client desktop applications
using your Java skills and provides comprehensive coverage of JavaFX 8’s features.
Each chapter starts with an introduction to the topic at hand, followed by a step-by-step
discussion of the topic with small snippets of code. The book contains numerous figures
aiding readers in visualizing the GUI that is built at every step in the discussion.

The book starts with an introduction to JavaFX and its history. It lists the system
requirements and the steps to start developing JavaFX applications. It shows you how to
create a Hello World application in JavaFX, explaining every line of code in the process.
Later in the book, author Kishori Sharan discusses advanced topics such as 2D and 3D
graphics, charts, FXML, advanced controls, and printing. Some of the advanced controls
such as TableView, TreeTableView and WebView are covered at length in separate
chapters.

This book provides complete and comprehensive coverage of JavaFX 8 features;
uses an incremental approach to teach JavaFX, assuming no prior GUI knowledge;
includes code snippets, complete programs, and pictures; covers MVC patterns using
JavaFX; and covers advanced topics such as FXML, effects, transformations, charts,
images, canvas, audio and video, DnD, and more. So, after reading and using this book,
you’ll come away with a comprehensive introduction to the JavaFX APIs as found in the
new Java 8 platform.

• How to develop rich-client desktop applications using JavaFX 8
• How to use properties, collections, colors, and styles
• How to use controls and handle events to build modern GUI applications
• How to use advanced controls such as TreeView, TableView, and TreeTableView
• How to access webpages in JavaFX applications
• How to draw 2D and 3D shapes, and apply effects and transformations
• How to create animations and charts using the JavaFX 8 APIs
• How to add audio and video to your applications
• How to create GUIs in JavaFX using FXML
• How to provide printing capabilities using the JavaFX Print API

RELATED

Shelve in
Programming Languages/Java

User level:
Beginning–Intermediate

SOURCE CODE ONLINE 9 781484 211434

55999
ISBN 978-1-4842-1143-4

For your convenience Apress has placed some of the front
matter material after the index. Please use the Bookmarks

and Contents at a Glance links to access them.

v

Contents at a Glance

About the Author ��xxi

About the Technical Reviewers ��xxiii

Acknowledgments ���xxv

Introduction ���xxvii

Chapter 1: Getting Started ■ ��� 1

Chapter 2: Properties and Bindings ■ ��� 25

Chapter 3: Observable Collections ■ ��� 83

Chapter 4: Managing Stages ■ ��� 127

Chapter 5: Making Scenes ■ ��� 149

Chapter 6: Understanding Nodes ■ ��� 163

Chapter 7: Playing with Colors ■ �� 201

Chapter 8: Styling Nodes ■ ��� 223

Chapter 9: Event Handling ■ ��� 259

Chapter 10: Understanding Layout Panes ■ �� 303

Chapter 11: Model-View-Controller Pattern ■ �� 419

Chapter 12: Understanding Controls ■ ��� 435

Chapter 13: Understanding TableView ■ ��� 617

Chapter 14: Understanding TreeView ■ �� 663

Chapter 15: Understanding TreeTableView ■ �� 689

Chapter 16: Browsing Web Pages ■ �� 711

■ Contents at a GlanCe

vi

Chapter 17: Understanding 2D Shapes ■ �� 741

Chapter 18: Understanding Text Nodes ■ ��� 789

Chapter 19: Understanding 3D Shapes ■ �� 805

Chapter 20: Applying Effects ■ ��� 841

Chapter 21: Understanding Transformations ■ ��� 899

Chapter 22: Understanding Animation ■ �� 917

Chapter 23: Understanding Charts ■ �� 953

Chapter 24: Understanding the Image API ■ �� 997

Chapter 25: Drawing on a Canvas ■ ��� 1033

Chapter 26: Understanding Drag and Drop ■ �� 1043

Chapter 27: Understanding Concurrency in JavaFX ■ �� 1071

Chapter 28: Playing Audios and Videos ■ ��� 1101

Chapter 29: Understanding FXML ■ �� 1120

Chapter 30: Understanding the Print API ■ �� 1157

Index ��� 1173

xxvii

Introduction

Java had the support for developing GUI applications since its version 1.0 using the AWT (Abstract Windows
Toolkit). Later AWT was replaced by Swing, which gave a little better user experience, but still lacked the
modern-looking widgets and the support for developer’s productivity. Both AWT and Swing lacked the
first-class support for data binding, efficient GUI rendering engines, easy-to-use 2D and 3D libraries for
developers, and style sheet support. JavaFX was first released in 2008 as the tool to use for developing rich
Internet applications (RIAs); it used a statically typed declarative language called JavaFX Script, which did
not attract a lot of attention from Java developers. JavaFX 2.0, released in 2011, caught the Java community’s
attention when it dropped the support for JavaFX Script and supported writing JavaFX programs using the
Java programming language. In its current version, JavaFX 8 is supported in the Java platform by including
the JavaFX runtime along with the Java runtime in the JRE. Now JavaFX 8 is considered a real successor for
Swing for building the GUI application using the Java platform.

Learn JavaFX 8 shows you how to start developing rich-client desktop applications in JavaFX 8 using
your Java skills. It provides comprehensive coverage of the JavaFX 8 features. Each chapter starts with an
introduction to the topic at hand. A step-by-step discussion of the topic with small snippets of code follows.
At the end of the topic’s discussion, a complete program is presented. Special care has been taken to present
the topics in such a way that chapters can be read serially. The book contains numerous pictures to aid you
in visualizing the GUI that is built at every step in the discussion.

The book starts with an introduction to JavaFX and its history. It lists the system requirements and
the steps to start developing JavaFX applications. It shows you how to create a Hello World application in
JavaFX, explaining every line of code in the process. Later in the book, advanced topics such as 2D and 3D
graphics, charts, FXML, advanced controls, and printing are discussed. Some of the advanced controls such
as TableView, TreeTableView, and WebView are covered in chapters of their own.

I faced few hurdles while writing this book. As JavaFX 8 was being developed, JavaFX 2, the version before
JavaFX 8, was the first release of JavaFX that used the Java programming language to write JavaFX code. There
were few bugs in JavaFX 2. Sometimes it took me a couple of days of hard work to create an example to work
with, only to realize that there was a bug in it. Later, if something did not work, I would look at the JIRA bug
reports for JavaFX before spending too much time researching it myself. I had to fix bugs as I found them. It
took me 18 months to finish this book and, in the end, it was satisfying to see that what I had produced was a
lot of useful material covering almost every topic in JavaFX so fully that readers could use to learn and build a
rich client application quickly using JavaFX. I hope you will enjoy the book and benefit greatly from it.

I believe that programming is simple if you learn it that way. Keeping this in mind, I kept the examples
in the book as simple as possible, presenting them in as few lines as I could. The examples focus on the topic
being discussed. I do not present complex GUI in my examples, keeping in mind that this could obscure the
learning process of the topic at hand. I have seen books that contain examples that run four or five pages
long, sometimes even longer; readers of such books (myself included) often get lost in trying to understand
the logic of the program, thus forgetting what they were trying to learn in that section. Therefore, simple
programs in this book are intended to help you learn JavaFX faster. The book includes 330 ready-to-run
programs and 430 pictures. Having more pictures than programs is evident from my approach in keeping the
readers’ interest the first priority. Almost every time I discuss a snippet of code producing a UI, I include the
picture of the results of the UI, so readers are not left to their imaginations as to what the code snippet will
produce. Having to run every snippet of code to see the output can hinder the learning rhythm.

■ intRoduCtion

xxviii

Structure of the Book
The book contains 30 chapters covering all topics—from basic to advanced—in JavaFX. Chapters are
arranged in an order that aids you to quickly learn JavaFX. I have used an incremental approach to teach
JavaFX, assuming no prior GUI development knowledge. Each chapter starts with a section introducing
the topic to be discussed in the chapter. Each section contains a bit of background of the features being
discussed, followed with code snippets and a complete program.

What You Will Learn
This book will help you to learn:

What JavaFX 8 is and its history•	

How to develop rich-client desktop applications using JavaFX 8•	

How to use properties, collections, colors, and styles•	

How to use controls and handle events to build modern GUI applications•	

How to use advanced controls such as TreeView, TableView, and TreeTableViev.•	

How to access web pages in JavaFX applications•	

How to draw 2D and 3D shapes and apply effects and transformations•	

How to create animations and charts using the JavaFX 8 APIs•	

How to add audios and videos to your applications•	

How to create GUIs in JavaFX using FXML•	

How to provide the printing capabilities using the JavaFX Print API•	

Who Is This Book for?
Learn JavaFX 8 was written for Java developers, with beginning to intermediate level Java skills, who want to
learn how to develop modern desktop GUI applications using JavaFX 8.

Source code for this book may be downloaded from www.apress.com/9781484211434; errata can be
submitted and viewed via the same link.

Please direct all your questions and comments for the author to ksharan@jdojo.com.

http://www.apress.com/9781484211434
http://ksharan@jdojo.com

1

Chapter 1

Getting Started

In this chapter, you will learn:

What JavaFX is•	

The history of JavaFX•	

How to write your first JavaFX application•	

How to use the NetBeans Integrated Development Environment to work with a •	
JavaFX application

How to pass parameters to a JavaFX application•	

How to launch a JavaFX application•	

The life cycle of a JavaFX application•	

How to terminate a JavaFX Application•	

What Is JavaFX?
JavaFX is an open source Java-based framework for developing rich client applications. It is comparable
to other frameworks on the market such as Adobe Flex and Microsoft Silverlight. JavaFX is also seen as the
successor of Swing in the arena of graphical user interface (GUI) development technology in Java platform.
The JavaFX library is available as a public Java application programming interface (API). JavaFX contains
several features that make it a preferred choice for developing rich client applications:

JavaFX is written in Java, which enables you to take advantage of all Java features •	
such as multithreading, generics, and lambda expressions. You can use any Java
editor of your choice, such as NetBeans, to author, compile, run, debug, and package
your JavaFX application.

JavaFX supports data binding through its libraries.•	

JavaFX code can be written using any Java virtual machine (JVM)-supported •	
scripting languages such as Visage, Groovy, and Scala.

JavaFX offers two ways to build a user interface (UI): using Java code and using •	
FXML. FXML is an XML-based scriptable markup language to define a UI
declaratively. Oracle provides a tool called Scene Builder, which is a visual editor for
FXML.

Chapter 1 ■ GettinG Started

2

JavaFX provides a rich set of multimedia support such as playing back audios and •	
videos. It takes advantage of available codecs on the platform.

JavaFX lets you embed web content in the application.•	

JavaFX provides out-of-the-box support for applying effects and animations, which •	
are important for developing gaming applications. You can achieve sophisticated
animations by writing a few lines of code.

Behind the JavaFX API lies a number of components to take advantage of the Java native libraries and
the available hardware and software. JavaFX components are shown in Figure 1-1.

The GUI in JavaFX is constructed as a scene graph. A scene graph is a collection of visual elements,
called nodes, arranged in a hierarchical fashion. A scene graph is built using the public JavaFX API. Nodes in
a scene graph can handle user inputs and user gestures. They can have effects, transformations, and states.
Types of nodes in a scene graph include simple UI controls such as buttons, text fields, two-dimensional
(2D) and three-dimensional (3D) shapes, images, media (audio and video), web content, and charts.

Prism is a hardware-accelerated graphics pipeline used for rendering the scene graph. If hardware-
accelerated rendering is not available on the platform, Java 2D is used as the fallback rendering mechanism.
For example, before using Java 2D for rending, it will try using DirectX on Windows and OpenGL on Mac
Linux and embedded platforms.

The Glass Windowing Toolkit provides graphics and windowing services such as windows and the timer
using the native operating system. The toolkit is also responsible for managing event queues. In JavaFX,
event queues are managed by a single, operating system–level thread called JavaFX Application Thread. All
user input events are dispatched on the JavaFX Application Thread. JavaFX requires that a live scene graph
must be modified only on the JavaFX Application Thread.

Prism uses a separate thread, other than the JavaFX Application Thread, for the rendering process.
It accelerates the process by rendering a frame while the next frame is being processed. When a scene graph
is modified, for example, by entering some text in the text field, Prism needs to re-render the scene graph.
Synchronizing the scene graph with Prism is accomplished using an event called a pulse event. A pulse
event is queued on the JavaFX Application Thread when the scene graph is modified and it needs to be re-
rendered. A pulse event is an indication that the scene graph is not in sync with the rendering layer in Prism,
and the latest frame at the Prism level should be rendered. Pulse events are throttled at 60 frames per second
maximum.

The media engine is responsible for providing media support in JavaFX, for example, playing back
audios and videos. It takes advantage of the available codecs on the platform. The media engine uses a
separate thread to process media frames and uses the JavaFX Application Thread to synchronize the frames
with the scene graph. The media engine is based on GStreamer, which is an open source multimedia
framework.

The web engine is responsible for processing web content (HTML) embedded in a scene graph. Prism
is responsible for rendering the web contents. The web engine is based on WebKit, which is an open source
web browser engine. HTML5, Cascading Style Sheets (CSS), JavaScript, and Document Object Model (DOM)
are supported.

JavaFX Public API

Prism Glass Windowing Toolkit Media Engine Web Engine

Quantum Toolkit

Figure 1-1. Components of the JavaFX platform

Chapter 1 ■ GettinG Started

3

Quantum toolkit is an abstraction over the low-level components of Prism, Glass, Media Engine, and
Web Engine. It also facilitates coordination between low-level components.

Note ■ throughout this book, it is assumed that you have intermediate-level knowledge of the Java
 programming language. Familiarity with the new features in Java 8 such as lambda expressions and
time api is also assumed.

History of JavaFX
JavaFX was originally developed by Chris Oliver at SeeBeyond and it was called F3 (Form Follows Function).
F3 was a Java scripting language for easily developing GUI applications. It offered declarative syntax, static
typing, type inference, data binding, animation, 2D graphics, and Swing components. SeeBeyond was
bought by Sun Microsystems and F3 was renamed JavaFX in 2007. Oracle acquired Sun Microsystems in
2010. Oracle then open sourced JavaFX in 2013.

The first version of JavaFX was released in the fourth quarter of 2008. The current release for JavaFX is
version 8.0. The version number jumped from 2.2 to 8.0. From Java 8, the version numbers of Java SE and
JavaFX will be the same. The major versions for Java SE and JavaFX will be released at the same time as well.
Table 1-1 contains a list of releases of JavaFX. Starting with the release of Java SE 8, JavaFX is part of the Java
SE runtime library. From Java 8, you do not need any extra set up to compile and run your JavaFX programs.

Table 1-1. JavaFX Releases

Release Date Version Comments

Q4, 2008 JavaFX 1.0 It was the initial release of JavaFX. It used a declaration
language called JavaFX Script to write the JavaFX code.

Q1, 2009 JavaFX 1.1 Support for JavaFX Mobile was introduced.

Q2, 2009 JavaFX 1.2

Q2, 2010 JavaFX 1.3

Q3, 2010 JavaFX 1.3.1

Q4, 2011 JavaFX 2.0 Support for JavaFX script was dropped. It used the Java
language to write the JavaFX code. Support for JavaFX
Mobile was dropped.

Q2, 2012 JavaFX 2.1 Support for Mac OS for desktop only was introduced.

Q3, 2012 JavaFX 2.2

Q1, 2014 JavaFX 8.0 JavaFX version jumped from 2.2 to 8.0. JavaFX and Java
SE versions will match from Java 8.

Chapter 1 ■ GettinG Started

4

System Requirements
You need to have the following software installed on your computer:

Java Development Kit 8•	

NetBeans IDE 8.0 or later•	

It is not necessary to have the NetBeans IDE to compile and run the programs in this book. However,
the NetBeans IDE has special features for creating, running, and packaging JavaFX applications to make
developers’ lives easier. You can use any other IDE, for example, Eclipse, JDeveloper, or IntelliJ IDEA.

JavaFX Runtime Library
All JavaFX classes are packaged in a Java Archive (JAR) file named jfxrt.jar. The JAR file is located in the
jre\lib\ext directory under the Java home directory.

If you compile and run JavaFX programs on the command line, you do not need to worry about setting
the JavaFX runtime JAR file in the CLASSPATH. Java 8 compiler (the javac command) and launcher (the
java command) automatically include the JavaFX runtime JAR file in the CLASSPATH.

The NetBeans IDE automatically includes the JavaFX runtime JAR file in the CLASSPATH when you
create a Java or JavaFX project. If you are using an IDE other than NetBeans, you may need to include jfxrt.
jar in the IDE CLASSPATH to compile and run a JavaFX application from inside the IDE.

JavaFX Source Code
Experienced developers sometimes prefer to look at the source code of the JavaFX library to learn how
things are implemented behind the scenes. Oracle provides the JavaFX source code. The Java 8 installation
copies the source in the Java home directory. The file name is javafx-src.zip. Unzip the file to a directory
and use your favorite Java editor to open the source code.

Your First JavaFX Application
Let’s write your first JavaFX application. It should display the text “Hello JavaFX” in a window. I will take an
incremental, step-by-step approach to explain how to develop this first application. I will add as few lines of
code as possible, and then, explain what the code does and why it is needed.

Creating the HelloJavaFX Class
A JavaFX application is a class that must inherit from the Application class that is in the javafx.
application package. You will name your class HelloFXApp and it will be stored in the com.jdojo.intro
package. Listing 1-1 shows the initial code for the HelloFXApp class. Note that the HelloFXApp class will not
compile at this point. You will fix it in the next section.

Chapter 1 ■ GettinG Started

5

Listing 1-1. Inheriting Your JavaFX Application Class from the javafx.application.Application Class

// HelloFXApp.java
package com.jdojo.intro;

import javafx.application.Application;

public class HelloFXApp extends Application {
 // Application logic goes here
}

The program includes a package declaration, an import statement, and a class declaration. There is
nothing like JavaFX in the code. It looks like any other Java program. However, you have fulfilled one of the
requirements of the JavaFX application by inheriting the HelloFXApp class from the Application class.

Overriding the start() Method
If you try compiling the HelloFXApp class, it will result in the following compile-time error: HelloFXApp is
not abstract and does not override abstract method start(Stage) in Application. The error is stating that the
Application class contains an abstract start(Stage stage) method, which has not been overridden in the
HelloFXApp class. As a Java developer, you know what to do next: you either declare the HelloFXApp class as
abstract or provide an implementation for the start() method. Here let’s provide an implementation for the
start() method. The start() method in the Application class is declared as follows:

public abstract void start(Stage stage) throws java.lang.Exception

Listing 1-2 shows the revised code for the HelloFXApp class that overrides the start() method.

Listing 1-2. Overriding the start() Method in Your JavaFX Application Class

// HelloFXApp.java
package com.jdojo.intro;

import javafx.application.Application;
import javafx.stage.Stage;

public class HelloFXApp extends Application {
 @Override
 public void start(Stage stage) {
 // The logic for starting the application goes here
 }
}

In the revised code, you have incorporated two things:

You have added one more •	 import statement to import the Stage class from the
javafx.stage package.

You have implemented the •	 start() method. The throws clause for the method is
dropped, which is fine by the rules for overriding methods in Java.

Chapter 1 ■ GettinG Started

6

The start() method is the entry point for a JavaFX application. It is called by the JavaFX application
launcher. Notice that the start() method is passed an instance of the Stage class, which is known as the
primary stage of the application. You can create more stages as necessary in your application. However, the
primary stage is always created by the JavaFX runtime for you.

Tip ■ every JavaFX application class must inherit from the Application class and provide the
 implementation for the start(Stage stage) method.

Showing the Stage
Similar to a stage in the real world, a JavaFX stage is used to display a scene. A scene has visuals—such as
text, shapes, images, controls, animations, and effects—with which the user may interact, as is the case with
all GUI-based applications.

In JavaFX, the primary stage is a container for a scene. The stage look-and-feel is different depending
on the environment your application is run in. You do not need to take any action based on the environment
because the JavaFX runtime takes care of all the details for you. For example, if the application runs as a
desktop application, the primary stage will be a window with a title bar and an area to display the scene; if
the application runs an applet in a web browser, the primary stage will be an embedded area in the browser
window.

The primary stage created by the application launcher does not have a scene. You will create a scene for
your stage in the next section.

You must show the stage to see the visuals contained in its scene. Use the show() method to show the
stage. Optionally, you can set a title for the stage using the setTitle() method. The revised code for the
HelloFXApp class is shown in Listing 1-3.

Listing 1-3. Showing the Primary Stage in Your JavaFX Application Class

// HelloFXApp.java
package com.jdojo.intro;

import javafx.application.Application;
import javafx.stage.Stage;

public class HelloFXApp extends Application {
 @Override
 public void start(Stage stage) {
 // Set a title for the stage
 stage.setTitle("Hello JavaFX Application");

 // Show the stage
 stage.show();
 }
}

Chapter 1 ■ GettinG Started

7

Launching the Application
You are now ready to run your first JavaFX application. You can use one of the following two options to run it:

It is not necessary to have a •	 main() method in the class to start a JavaFX application.
When you run a Java class that inherits from the Application class, the java
command launches the JavaFX application if the class being run does not contain
the main() method.

If you include a •	 main() method in the JavaFX application class inside the main()
method, call the launch() static method of the Application class to launch the
application. The launch() method takes a String array as an argument, which are
the parameters passed to the JavaFX application.

If you are using the first option, you do not need to write any additional code for the HelloFXApp class.
If you are using the second option, the revised code for the HelloFXApp class with the main() method will be
as shown in Listing 1-4.

Listing 1-4. The HelloFXApp JavaFX Application Without a Scene

// HelloFXApp.java
package com.jdojo.intro;

import javafx.application.Application;
import javafx.stage.Stage;

public class HelloFXApp extends Application {
 public static void main(String[] args) {
 // Launch the JavaFX application
 Application.launch(args);
 }

 @Override
 public void start(Stage stage) {
 stage.setTitle("Hello JavaFX Application");
 stage.show();
 }
}

The main() method calls the launch() method, which will do some setup work and call the start()
method of the HelloFXApp class. Your start() method sets the title for the primary stage and shows the
stage. Compile the HelloFXApp class using the following command:

javac com/jdojo/intro/HelloFXApp.java

Chapter 1 ■ GettinG Started

8

Run the HelloFXApp class using the following command, which will display a window with a title bar as
shown in Figure 1-2:

java com.jdojo.intro.HelloFXApp

The main area of the window is empty. This is the content area in which the stage will show its scene.
Because you do not have a scene for your stage yet, you will see an empty area. The title bar shows the title
that you have set in the start() method.

You can close the application using the Close menu option in the window title bar. Use Alt + F4 to close
the window in Windows. You can use any other option to close the window as provided by your platform.

Tip ■ the launch() method of the Application class does not return until all windows are closed or the
application exits using the Platform.exit() method. the Platform class is in the javafx.application package.

You haven’t seen anything exciting in JavaFX yet! You need to wait for that until you create a scene in the
next section.

Adding the main() Method
As described in the previous section, the Java 8 launcher (the java command) does not require a main()
method to launch a JavaFX application. If the class that you want to run inherits from the Application class,
the java command launches the JavaFX application by automatically calling the Application.launch()
method for you.

If you are using the NetBeans IDE to create the JavaFX project, you do not need to have a main()
method to launch your JavaFX application if you run the application by running the JavaFX project.
However, the NetBeans IDE requires you to have a main() method when you run the JavaFX application
class as a file, for example, by selecting the HelloFXApp file, right-clicking it, and selecting the Run File option
from the menu.

Some IDEs still require the main() method to launch a JavaFX application. All examples in this chapter
will include the main() method that will launch the JavaFX applications.

Figure 1-2. The HelloFXApp JavaFX Application Without a Scene

Chapter 1 ■ GettinG Started

9

Adding a Scene to the Stage
An instance of the Scene class, which is in the javafx.scene package, represents a scene. A stage contains
one scene, and a scene contains visual contents.

The contents of the scene are arranged in a tree-like hierarchy. At the top of the hierarchy is the root
node. The root node may contain child nodes, which in turn may contain their child nodes, and so on. You
must have a root node to create a scene. You will use a VBox as the root node. VBox stands for vertical box,
which arranges its children vertically in a column. The following statement creates a VBox:

VBox root = new VBox();

Tip ■ any node that inherits from the javafx.scene.Parent class can be used as the root node for a
scene. Several nodes, known as layout panes or containers such as VBox, HBox, Pane, FlowPane, GridPane, or
TilePane can be used as a root node. Group is a special container that groups its children together.

A node that can have children provides a getChildren() method that returns an ObservableList of
its children. To add a child node to a node, simply add the child node to the ObservableList. The following
snippet of code adds a Text node to a VBox:

// Create a VBox node
VBox root = new VBox();

// Create a Text node
Text msg = new Text("Hello JavaFX");

// Add the Text node to the VBox as a child node
root.getChildren().add(msg);

The Scene class contains several constructors. You will use the one that lets you specify the root node
and the size of the scene. The following statement creates a scene with the VBox as the root node, with 300px
width and 50px height:

// Create a scene
Scene scene = new Scene(root, 300, 50);

You need to set the scene to the stage by calling the setScene() method of the Stage class:

// Set the scene to the stage
stage.setScene(scene);

Chapter 1 ■ GettinG Started

10

That’s it. You have completed your first JavaFX program with a scene. Listing 1-5 contains the complete
program. The program displays a window as shown in Figure 1-3.

Listing 1-5. A JavaFX Application with a Scene Having a Text Node

// HelloFXAppWithAScene.java
package com.jdojo.intro;

import javafx.application.Application;
import javafx.scene.Scene;
import javafx.scene.layout.VBox;
import javafx.scene.text.Text;
import javafx.stage.Stage;

public class HelloFXAppWithAScene extends Application {
 public static void main(String[] args) {
 Application.launch(args);
 }

 @Override
 public void start(Stage stage) {
 Text msg = new Text("Hello JavaFX");
 VBox root = new VBox();
 root.getChildren().add(msg);

 Scene scene = new Scene(root, 300, 50);
 stage.setScene(scene);
 stage.setTitle("Hello JavaFX Application with a Scene");
 stage.show();
 }
}

Improving the HelloFX Application
JavaFX is capable of doing much more than you have seen so far. Let’s enhance the first program and add
some more user interface elements such as buttons and text fields. This time, the user will be able to interact
with the application. Use an instance of the Button class to create a button as shown:

// Create a button with "Exit" text
Button exitBtn = new Button("Exit");

Figure 1-3. A JavaFX application with a scene having a Text node

Chapter 1 ■ GettinG Started

11

When a button is clicked, an ActionEvent is fired. You can add an ActionEvent handler to handle
the event. Use the setOnAction() method to set an ActionEvent handler for the button. The following
statement sets an ActionEvent handler for the button. The handler terminates the application. You can use
a lambda expression or an anonymous class to set the ActionEvent handler. The following snippet of code
shows both approaches:

// Using a lambda expression
exitBtn.setOnAction(e -> Platform.exit());

// Using an anonymous class
import javafx.event.ActionEvent;
import javafx.event.EventHandler;
...
exitBtn.setOnAction(new EventHandler<ActionEvent>() {
 @Override
 public void handle(ActionEvent e) {
 Platform.exit();
 }
});

The program in Listing 1-6 shows how to add more nodes to the scene. The program uses the
setStyle() method of the Label class to set the fill color of the Label to blue. I will discuss using CSS in
JavaFX later.

Listing 1-6. Interacting with Users in a JavaFX Application

// ImprovedHelloFXApp.java
package com.jdojo.intro;

import javafx.application.Application;
import javafx.application.Platform;
import javafx.scene.Scene;
import javafx.scene.control.Button;
import javafx.scene.control.Label;
import javafx.scene.control.TextField;
import javafx.scene.layout.VBox;
import javafx.stage.Stage;

public class ImprovedHelloFXApp extends Application {
 public static void main(String[] args) {
 Application.launch(args);
 }

 @Override
 public void start(Stage stage) {
 Label nameLbl = new Label("Enter your name:");
 TextField nameFld = new TextField();

 Label msg = new Label();
 msg.setStyle("-fx-text-fill: blue;");

Chapter 1 ■ GettinG Started

12

 // Create buttons
 Button sayHelloBtn = new Button("Say Hello");
 Button exitBtn = new Button("Exit");

 // Add the event handler for the Say Hello button
 sayHelloBtn.setOnAction(e -> {
 String name = nameFld.getText();
 if (name.trim().length() > 0) {
 msg.setText("Hello " + name);
 } else {
 msg.setText("Hello there");
 }
 });

 // Add the event handler for the Exit button
 exitBtn.setOnAction(e -> Platform.exit());

 // Create the root node
 VBox root = new VBox();

 // Set the vertical spacing between children to 5px
 root.setSpacing(5);

 // Add children to the root node
 root.getChildren().addAll(nameLbl, nameFld, msg, sayHelloBtn, exitBtn);

 Scene scene = new Scene(root, 350, 150);
 stage.setScene(scene);
 stage.setTitle("Improved Hello JavaFX Application");
 stage.show();
 }
}

The improved HelloFX program displays a window as shown in Figure 1-4. The window contains two
labels, a text field, and two buttons. A VBox is used as the root node for the scene. Enter a name in the text
field and click the Say Hello button to see a hello message. Clicking the Say Hello button without entering a
name displays the message Hello there. The application displays a message in a Label control. Click the
Exit button to exit the application.

Figure 1-4. A JavaFX Application with few controls in its scene

Chapter 1 ■ GettinG Started

13

Using the NetBeans IDE
You can use the NetBeans IDE to create, compile, package, and run new JavaFX applications. The source
code used in this book is available with a NetBeans project.

Creating a New JavaFX Project
Use the following steps to create a new JavaFX project:

 1. Select the New Project... menu option from the File menu. Alternatively, use the
keyboard shortcut Ctrl + Shift + N.

 2. A New Project dialog appears as shown in Figure 1-5. From the Categories list, select
JavaFX. From the Projects list, select JavaFX Application. Click the Next button.

 3. The New JavaFX Application dialog appears as shown in Figure 1-6. Enter the
details of the project such as project name and location. The Create Application
Class check box is checked by default. You can enter the full-qualified name of
the JavaFX application in the box next to the check box. NetBeans will create the
class and add the initial code for you. When you run the project from inside the
IDE, this class is run. You can change this class later.

 4. Click the Finish button when you are done.

Figure 1-5. The New Project dialog

Chapter 1 ■ GettinG Started

14

Opening an Existing JavaFX Project
The source code for this book is provided with a NetBeans project. You can use the following steps to open
the project. If you have not downloaded the source code for this book, please do so before proceeding.

 1. From inside the NetBeans IDE, select the Open Project... menu option from the
File menu. Alternatively, use the keyboard shortcut Ctrl + Shift + O.

 2. An Open Project dialog appears. Navigate to the directory containing the
downloaded source code for this book. You should see the project LearnJavaFX8,
as shown in Figure 1-7. Select the project name and click the Open Project
button. The project should appear in the IDE.

Figure 1-6. The New JavaFX Application dialog

Chapter 1 ■ GettinG Started

15

Running a JavaFX Project from the NetBeans IDE
You can compile and run a JavaFX application from inside the NetBeans IDE. You have the options to run a
Java application in one of three ways:

Run as a standalone desktop application•	

Run as a WebStart•	

Run in a browser•	

By default, NetBeans runs a JavaFX application as a standalone desktop application. You can change
the way your application is run on the project properties page under the Run category. To access the project
properties page, select your project in the IDE, right-click, and select the Properties menu option. The
Project Properties dialog box appears. Select the Run item from the Categories tree. Enter the desired Run
properties for your project on the right side of the screen.

Passing Parameters to a JavaFX Application
Like a Java application, you can pass parameters to a JavaFX application. There are two ways to pass
parameters to a JavaFX application:

On the command line for a standalone application•	

In a Java Network Launching Protocol (JNLP) file for an applet and WebStart •	
application

Figure 1-7. The Open Project dialog

Chapter 1 ■ GettinG Started

16

The Parameters class, which is a static inner class of the Application class, encapsulates the
parameters passed to a JavaFX application. It divides parameters into three categories:

Named parameters•	

Unnamed parameters•	

Raw parameters (a combination of named and unnamed parameters)•	

You need to use the following three methods of the Parameters class to access the three types of
parameters:

•	 Map<String, String> getNamed()

•	 List<String> getUnnamed()

•	 List<String> getRaw()

A parameter can be named or unnamed. A named parameter consists of a (name, value) pair. An
unnamed parameter consists of a single value. The getNamed() method returns a Map<String, String> that
contains the key-value pairs of the name parameters. The getUnnamed() method returns a List<String>
where each element is an unnamed parameter value.

You pass only named and unnamed parameters to a JavaFX application. You do not pass raw type
parameters. The JavaFX runtime makes all parameters, named and unnamed, passed to an application
available as a List<String> through the getRaw() method of the Parameters class. The following discussion
will make the distinction between the returned values from the three methods clear.

The getParameters() method of the Application class returns the reference of the Application.
Parameters class. The reference to the Parameters class is available in the init() method of the
Application class and the code that executes afterward. The parameters are not available in the constructor
of the application as it is called before the init() method. Calling the getParameters() method in the
constructor returns null.

The program in Listing 1-7 reads all types of parameters passed to the application and displays them in
a TextArea. A TextArea is a UI node that displays multiple lines of text.

Listing 1-7. Accessing Parameters Passed to a JavaFX Application

// FXParamApp.java
package com.jdojo.intro;

import java.util.List;
import java.util.Map;
import javafx.application.Application;
import javafx.scene.Group;
import javafx.scene.Scene;
import javafx.scene.control.TextArea;
import javafx.stage.Stage;

public class FXParamApp extends Application {
 public static void main(String[] args) {
 Application.launch(args);
 }

Chapter 1 ■ GettinG Started

17

 @Override
 public void start(Stage stage) {
 // Get application parameters
 Parameters p = this.getParameters();
 Map<String, String> namedParams = p.getNamed();
 List<String> unnamedParams = p.getUnnamed();
 List<String> rawParams = p.getRaw();

 String paramStr = "Named Parameters: " + namedParams + "\n" +
 "Unnamed Parameters: " + unnamedParams + "\n" +
 "Raw Parameters: " + rawParams;

 TextArea ta = new TextArea(paramStr);
 Group root = new Group(ta);
 stage.setScene(new Scene(root));
 stage.setTitle("Application Parameters");
 stage.show();
 }
}

Let’s look at a few cases of passing the parameters to the FXParamApp class. The output mentioned in the
following cases is displayed in the TextArea control in the window when you run the FXParamApp class.

Case 1
The class is run as a standalone application using the following command:

java com.jdojo.stage.FXParamApp Anna Lola

The above command passes no named parameters and two unnamed parameters: Anna and Lola. The
list of the raw parameters will contain the two unnamed parameters. The output will be as shown:

Named Parameters: {}
Unnamed Parameters: [Anna, Lola]
Raw Parameters: [Anna, Lola]

Case 2
The class is run as a standalone application using the command:

java com.jdojo.stage.FXParamApp Anna Lola width=200 height=100

The above command passes no named parameters even though it seems that the last two parameters
would be passed as named parameters. Using an equals (=) sign in a parameter value on the command line
does not make the parameter a named parameter. The next case explains how to pass named parameters
from the command line.

Chapter 1 ■ GettinG Started

18

It passes four unnamed parameters: Anna, Lola, width=200, and height=100. The list of the raw
parameters will contain the four unnamed parameters. The output will be as shown:

Named Parameters: {}
Unnamed Parameters: [Anna, Lola, width=200, height=100]
Raw Parameters: [Anna, Lola, width=200, height=100]

Case 3
To pass a named parameter from the command line, you need to precede the parameter with exactly two
hyphens (--). That is, a named parameter should be entered in the form:

--key=value

The class is run as a standalone application using the command:

java com.jdojo.stage.FXParamApp Anna Lola --width=200 --height=100

The above command passes two named parameters: width=200 and height=100. It passes two
unnamed parameters: Anna and Lola. The list of the raw parameters will contain four elements: two named
parameters and two unnamed parameters. Named parameter values in the raw parameter list are preceded
by two hyphens. The output will be as shown:

Named Parameters: {height=100, width=200}
Unnamed Parameters: [Anna, Lola]
Raw Parameters: [Anna, Lola, --width=200, --height=100]

Case 4
The class FXParamApp is run as an applet or a WebStart application. In these cases, you have different ways
to specify the named and unnamed parameters. However, they are accessed inside the application in the
same way. Note that when a named parameter is accessed using the getRaw() method, it is preceded by two
hyphens. However, you do not add two hyphens before a named parameter when you specify it in web and
WebStart deployment files.

The partial content of a JNLP file to start the FXParamApp application using WebStart is shown below.
It specifies two named and two unnamed parameters:

<?xml version="1.0" encoding="utf-8"?>
<jnlp spec="1.0" xmlns:jfx="http://javafx.com" href="FX_NetBeans_Only.jnlp">
...
 <jfx:javafx-desc ... >
 <fx:param name="width" value="200"/>
 <fx:param name="height" value="100"/>
 <fx:argument>Anna</fx:argument>
 <fx:argument>Lola</fx:argument>
 </jfx:javafx-desc>
</jnlp>

Chapter 1 ■ GettinG Started

19

Launching a JavaFX Application
Earlier I touched on the topic of launching the JavaFX application while developing the JavaFX first
application. This section gives more details on launching a JavaFX application.

Every JavaFX application class inherits from the Application class. The Application class is in the
javafx.application package. It contains a static launch() method. Its sole purpose is to launch a JavaFX
application. It is an overloaded method with the following two variants:

•	 static void launch(Class<? extends Application> appClass, String... args)

•	 static void launch(String... args)

Notice that you do not create an object of your JavaFX application class to launch it. The JavaFX runtime
creates an object of your application class when the launch() method is called.

Tip ■ Your JavaFX application class must have a no-args constructor, otherwise a runtime exception will be
thrown when an attempt is made to launch it.

The first variant of the launch() method is clear. You pass the class reference of your application class
as the first argument, and the launch() method will create an object of that class. The second argument is
comprised of the command-line arguments passed to the application. The following snippet of code shows
how to use the first variant of the launch() method:

public class MyJavaFXApp extends Application {
 public static void main(String[] args) {
 Application.launch(MyJavaFXApp.class, args);
 }

 // More code goes here
}

The class reference passed to the launch() method does not have to be of the same class from which
the method is called. For example, the following snippet of code launches the MyJavaFXApp application class
from the MyAppLauncher class, which does not extend the Application class:

public class MyAppLauncher {
 public static void main(String[] args) {
 Application.launch(MyJavaFXApp.class, args);
 }

 // More code goes here
}

The second variant of the launch() method takes only one argument, which is the command-line
argument passed to the application. Which JavaFX application class does it use to launch the application?
It attempts to find the application class name based on the caller. It checks the class name of the code that
calls it. If the method is called as part of the code for a class that inherits from the Application class, directly
or indirectly, that class is used to launch the JavaFX application. Otherwise, a runtime exception is thrown.
Let’s look at some examples to make this rule clear.

Chapter 1 ■ GettinG Started

20

In the following snippet of code, the launch() method detects that it is called from the main() method
of the MyJavaFXApp class. The MyJavaFXApp class inherits from the Application class. Therefore, the
MyJavaFXApp class is used as the application class:

public class MyJavaFXApp extends Application {
 public static void main(String[] args) {
 Application.launch(args);
 }

 // More code goes here
}

In the following snippet of code, the launch() method is called from the main() method of the Test
class. The Test does not inherit from the Application class. Therefore, a runtime exception is thrown, as
shown in the output below the code:

public class Test {
 public static void main(String[] args) {
 Application.launch(args);
 }

 // More code goes here
}

Exception in thread "main" java.lang.RuntimeException: Error: class Test is not a subclass
of javafx.application.Application
 at javafx.application.Application.launch(Application.java:211)
 at Test.main(Test.java)

In the following snippet of code, the launch() method detects that it is called from the run() method
of the MyJavaFXApp$1 class. Note that MyJavaFXApp$1 class is an anonymous inner class generated by the
compiler, which is a subclass of the Object class, not the Application class, and it implements the Runnable
interface. Because the call to the launch() method is contained within the MyJavaFXApp$1 class, which is not
a subclass of the Application class, a runtime exception is thrown, as shown in the output that follows the
code:

public class MyJavaFXApp extends Application {
 public static void main(String[] args) {
 Thread t = new Thread(new Runnable() {
 public void run() {
 Application.launch(args);
 }
 });

 t.start();
 }

 // More code goes here
}

Chapter 1 ■ GettinG Started

21

Exception in thread "Thread-0" java.lang.RuntimeException: Error: class MyJavaFXApp$1 is
not a subclass of javafx.application.Application
 at javafx.application.Application.launch(Application.java:211)
 at MyJavaFXApp$1.run(MyJavaFXApp.java)
 at java.lang.Thread.run(Thread.java:722)

Now that you know how to launch a JavaFX application, it’s time to learn the best practice in launching
a JavaFX application: limit the code in the main() method to only one statement that launches the
application, as shown in the following code:

public class MyJavaFXApp extends Application {
 public static void main(String[] args) {
 Application.launch(args);

 // Do not add any more code in this method
 }

 // More code goes here
}

Tip ■ the launch() method of the Application class must be called only once, otherwise, a runtime
exception is thrown. the call to the launch() method blocks until the application is terminated. it is not always
necessary to have a main() method to launch a JavaFX application. a JavaFX packager synthesizes one for
you. For example, when you use the netBeans ide, you do not need to have a main() method, and if you have
one, netBeans ignores it.

The Life Cycle of a JavaFX Application
JavaFX runtime creates several threads. At different stages in the application, threads are used to perform
different tasks. In this section, I will only explain those threads that are used to call methods of the
Application class during its life cycle. The JavaFX runtime creates, among other threads, two threads:

JavaFX-Launcher•	

JavaFX Application Thread•	

The launch() method of the Application class create these threads. During the lifetime of a JavaFX
application, the JavaFX runtime calls the following methods of the specified JavaFX Application class in
order:

The •	 no-args constructor

The •	 init() method

The •	 start() method

The •	 stop() method

Chapter 1 ■ GettinG Started

22

The JavaFX runtime creates an object of the specified Application class on the JavaFX Application
Thread. The JavaFX Launcher Thread calls the init() method of the specified Application class. The
init() method implementation in the Application class is empty. You can override this method in your
application class. It is not allowed to create a Stage or a Scene on the JavaFX Launcher Thread. They must be
created on the JavaFX Application Thread. Therefore, you cannot create a Stage or a Scene inside the init()
method. Attempting to do so throws a runtime exception. It is fine to create UI controls, for example, buttons
or shapes.

The JavaFX Application Thread calls the start(Stage stage) method of the specified Application
class. Note that the start() method in the Application class is declared abstract, and you must override
this method in your application class.

At this point, the launch() method waits for the JavaFX application to finish. When the application
finishes, the JavaFX Application Thread calls the stop() method of the specified Application class. The
default implementation of the stop() method is empty in the Application class. You will have to override
this method in your application class to perform your logic when your application stops.

The code in Listing 1-8 illustrates the life cycle of a JavaFX application. It displays an empty stage. You
will see the first three lines of the output when the stage is shown. You will need to close the stage to see the
last line of the output.

Listing 1-8. The Life Cycle of a JavaFX Application

// FXLifeCycleApp.java
package com.jdojo.intro;

import javafx.application.Application;
import javafx.scene.Group;
import javafx.scene.Scene;
import javafx.stage.Stage;

public class FXLifeCycleApp extends Application {
 public FXLifeCycleApp() {
 String name = Thread.currentThread().getName();
 System.out.println("FXLifeCycleApp() constructor: " + name);
 }

 public static void main(String[] args) {
 Application.launch(args);
 }

 @Override
 public void init() {
 String name = Thread.currentThread().getName();
 System.out.println("init() method: " + name);
 }

 @Override
 public void start(Stage stage) {
 String name = Thread.currentThread().getName();
 System.out.println("start() method: " + name);

Chapter 1 ■ GettinG Started

23

 Scene scene = new Scene(new Group(), 200, 200);
 stage.setScene(scene);
 stage.setTitle("JavaFX Application Life Cycle");
 stage.show();
 }

 @Override
 public void stop() {
 String name = Thread.currentThread().getName();
 System.out.println("stop() method: " + name);
 }
}

FXLifeCycleApp() constructor: JavaFX Application Thread
init() method: JavaFX-Launcher
start() method: JavaFX Application Thread
stop() method: JavaFX Application Thread

Terminating a JavaFX Application
A JavaFX application may be terminated explicitly or implicitly. You can terminate a JavaFX application
explicitly by calling the Platform.exit() method. When this method is called, after or from within the
start() method, the stop() method of the Application class is called, and then the JavaFX Application
Thread is terminated. At this point, if there are only daemon threads running, the JVM will exit. If this
method is called from the constructor or the init() method of the Application class, the stop() method
may not be called.

Tip ■ a JavaFX application may be run in web browsers. Calling the Platform.exit() method in web
environments may not have any effect.

A JavaFX application may be terminated implicitly, when the last window is closed. This behavior can
be turned on and turned off using the static setImplicitExit(boolean implicitExit) method of the
Platform class. Passing true to this method turns this behavior on. Passing false to this method turns this
behavior off. By default, this behavior is turned on. This is the reason that in most of the examples so far,
applications were terminated when you closed the windows. When this behavior is turned on, the stop()
method of the Application class is called before terminating the JavaFX Application Thread. Terminating
the JavaFX Application Thread does not always terminate the JVM. The JVM terminates if all running
nondaemon threads terminate. If the implicit terminating behavior of the JavaFX application is turned off,
you must call the exit() method of the Platform class to terminate the application.

Chapter 1 ■ GettinG Started

24

Summary
JavaFX is an open source Java-based GUI framework that is used to develop rich client applications. It is the
successor of Swing in the arena of GUI development technology on the Java platform.

The GUI in JavaFX is shown in a stage. A stage is an instance of the Stage class. A stage is a window in
a desktop application and an area in the browser in a web application. A stage contains a scene. A scene
contains a group of nodes (graphics) arranged in a tree-like structure.

A JavaFX application inherits from the Application class. The JavaFX runtime creates the first stage
called the primary stage and calls the start() method of the application class passing the reference of the
primary stage. The developer needs to add a scene to the stage and make the stage visible inside the start()
method.

You can launch a JavaFX application using the launch() method of the Application class. If you run
a Java class that inherits from the application class, which would be a JavaFX application class, the java
command automatically launches the JavaFX application for you.

During the lifetime of a JavaFX application, the JavaFX runtime calls predefined methods of the JavaFX
Application class in a specific order. First, the no-args constructor of the class is called, followed by calls to
the init() and start() methods. When the application terminates, the stop() method is called.

You can terminate a JavaFX application by calling the Platform.exit() method. Calling the Platform.
exit() method when the application is running in a web browser as an applet may not have any effects.

The next chapter will introduce you to properties and binding in JavaFX.

25

Chapter 2

Properties and Bindings

In this chapter, you will learn:

What a property is in JavaFX•	

How to create a property object and use it•	

The class hierarchy of properties in JavaFX•	

How to handle the invalidation and change events in a property object•	

What a binding is in JavaFX and how to use unidirectional and bidirectional bindings•	

About the high-level and low-level binding API in JavaFX•	

This chapter discusses the properties and binding support in Java and JavaFX. If you have experience
using the JavaBeans API for properties and binding, you can skip the first few sections, which discuss
the properties and binding support in Java, and start with the section “Understanding Properties
in JavaFX.”

What Is a Property?
A Java class can contain two types of members: fields and methods. Fields represent the state of objects and
they are declared private. Public methods, known as accessors, or getters and setters, are used to read and
modify private fields. In simple terms, a Java class that has public accessors, for all or part of its private fields,
is known as a Java bean, and the accessors define the properties of the bean. Properties of a Java bean allow
users to customize its state, behavior, or both.

Java beans are observable. They support property change notification. When a public property of a Java
bean changes, a notification is sent to all interested listeners.

In essence, Java beans define reusable components that can be assembled by a builder tool to create
a Java application. This opens the door for third parties to develop Java beans and make them available to
others for reuse.

A property can be read-only, write-only, or read/write. A ready-only property has a getter but no setter.
A write-only property has a setter but no getter. A read/write property has a getter and a setter.

Java IDEs and other builder tools (e.g., a GUI layout builder), use introspection to get the list of
properties of a bean and let you manipulate those properties at design time. A Java bean can be visual or
nonvisual. Properties of a bean can be used in a builder tool or programmatically.

Chapter 2 ■ properties and Bindings

26

The JavaBeans API provides a class library, through the java.beans package, and naming conventions
to create and use Java beans. The following is an example of a Person bean with a read/write name property.
The getName() method (the getter) returns the value of the name field. The setName() method (the setter)
sets the value of the name field:

// Person.java
package com.jdojo.binding;

public class Person {
 private String name;

 public String getName() {
 return name;
 }

 public void setName(String name) {
 this.name = name;
 }
}

By convention, the names of the getter and setter methods are constructed by appending the name
of the property, with the first letter in uppercase, to the words get and set, respectively. The getter method
should not take any parameters, and its return type should be the same as the type of the field. The setter
method should take a parameter whose type should be the same as the type of the field, and its returns type
should be void.

The following snippet of code manipulates the name property of a Person bean programmatically:

Person p = new Person();
p.setName("John Jacobs");
String name = p.getName();

Some object-oriented programming languages, for example, C#, provide a third type of class member
known as a property. A property is used to read, write, and compute the value of a private field from outside
the class. C# lets you declare a Person class with a Name property as follows:

// C# version of the Person class
public class Person {
 private string name;

 public string Name {
 get { return name; }
 set { name = value; }
 }
}

In C#, the following snippet of code manipulates the name private field using the Name property; it is
equivalent to the previously shown Java version of the code:

Person p = new Person();
p.Name = "John Jacobs";
string name = p.Name;

Chapter 2 ■ properties and Bindings

27

If the accessors of a property perform the routine work of returning and setting the value of a field,
C# offers a compact format to define such a property. You do not even need to declare a private field in this
case. You can rewrite the Person class in C# as shown here:

// C# version of the Person class using the compact format
public class Person {
 public string Name { get; set; }
}

So, what is a property? A property is a publicly accessible attribute of a class that affects its state,
behavior, or both. Even though a property is publicly accessible, its use (read/write) invokes methods that
hide the actual implementation to access the data. Properties are observable, so interested parties are
notified when its value changes.

Tip ■ in essence, properties define the public state of an object that can be read, written, and observed
for changes. Unlike other programming languages, such as C#, properties in Java are not supported at the
language level. Java support for properties comes through the JavaBeans api and design patterns. For more
details on properties in Java, please refer to the JavaBeans specification, which can be downloaded from
http://www.oracle.com/technetwork/java/javase/overview/spec-136004.html.

Apart from simple properties, such as the name property of the Person bean, Java also supports indexed,
bound, and constrained properties. An indexed property is an array of values that are accessed using indexes.
An indexed property is implemented using an array data type. A bound property sends a notification to all
listeners when it is changed. A constrained property is a bound property in which a listener can veto a change.

What Is a Binding?
In programming, the term binding is used in many different contexts. Here I want to define it in the context
of data binding. Data binding defines a relation between data elements (usually variables) in a program to
keep them synchronized. In a GUI application, data binding is frequently used to synchronize the elements
in the data model with the corresponding UI elements.

Consider the following statement, assuming that x, y, and z are numeric variables:

x = y + z;

The above statement defines a binding between x, y, and z. When it is executed, the value of x is
synchronized with the sum of y and z. A binding also has a time factor. In the above statement, the value of
x is bound to the sum of y and z and is valid at the time the statement is executed. The value of x may not be
the sum of y and z before and after the above statement is executed.

Sometimes it is desired for a binding to hold over a period. Consider the following statement that
defines a binding using listPrice, discounts, and taxes:

soldPrice = listPrice - discounts + taxes;

For this case, you would like to keep the binding valid forever, so the sold price is computed correctly,
whenever listPrice, discounts, or taxes change.

http://www.oracle.com/technetwork/java/javase/overview/spec-136004.html

Chapter 2 ■ properties and Bindings

28

In the above binding, listPrice, discounts, and taxes are known as dependencies, and it is said that
soldPrice is bound to listPrice, discounts, and taxes.

For a binding to work correctly, it is necessary that the binding is notified whenever its dependencies
change. Programming languages that support binding provide a mechanism to register listeners with the
dependencies. When dependencies become invalid or they change, all listeners are notified. A binding may
synchronize itself with its dependencies when it receives such notifications.

A binding can be an eager binding or a lazy binding. In an eager binding, the bound variable is
recomputed immediately after its dependencies change. In a lazy binding, the bound variable is not
recomputed when its dependencies change. Rather, it is recomputed when it is read the next time. A lazy
binding performs better compared to an eager binding.

A binding may be unidirectional or bidirectional. A unidirectional binding works only in one direction;
changes in the dependencies are propagated to the bound variable. A bidirectional binding works in
both directions. In a bidirectional binding, the bound variable and the dependency keep their values
synchronized with each other. Typically, a bidirectional binding is defined only between two variables.
For example, a bidirectional binding, x = y and y = x, declares that the values of x and y are always the same.

Mathematically, it is not possible to define a bidirectional binding between multiple variables
uniquely. In the above example, the sold price binding is a unidirectional binding. If you want to make it a
bidirectional binding, it is not uniquely possible to compute the values of the list price, discounts, and taxes
when the sold price is changed. There are an infinite number of possibilities in the other direction.

Applications with GUIs provide users with UI widgets, for example, text fields, check boxes, and buttons,
to manipulate data. The data displayed in UI widgets have to be synchronized with the underlying data
model and vice versa. In this case, a bidirectional binding is needed to keep the UI and the data model
synchronized.

Understanding Bindings Support in JavaBeans
Before I discuss Java FX properties and binding, let’s take a short tour of binding support in the JavaBeans
API. You may skip this section if you have used the JavaBeans API before.

Java has supported binding of bean properties since its early releases. Listing 2-1 shows an Employee
bean with two properties, name and salary.

Listing 2-1. An Employee Java Bean with Two Properties Named name and salary

// Employee.java
package com.jdojo.binding;

import java.beans.PropertyChangeListener;
import java.beans.PropertyChangeSupport;

public class Employee {
 private String name;
 private double salary;
 private PropertyChangeSupport pcs = new PropertyChangeSupport(this);

 public Employee() {
 this.name = "John Doe";
 this.salary = 1000.0;
 }

Chapter 2 ■ properties and Bindings

29

 public Employee(String name, double salary) {
 this.name = name;
 this.salary = salary;
 }

 public String getName() {
 return name;
 }

 public void setName(String name) {
 this.name = name;
 }

 public double getSalary() {
 return salary;
 }

 public void setSalary(double newSalary) {
 double oldSalary = this.salary;
 this.salary = newSalary;

 // Notify the registered listeners about the change
 pcs.firePropertyChange("salary", oldSalary, newSalary);
 }

 public void addPropertyChangeListener(PropertyChangeListener listener) {
 pcs.addPropertyChangeListener(listener);
 }

 public void removePropertyChangeListener(PropertyChangeListener listener) {
 pcs.removePropertyChangeListener(listener);
 }

 @Override
 public String toString() {
 return "name = " + name + ", salary = " + salary;
 }
}

Both properties of the Employee bean are read/write. The salary property is also a bound property. Its
setter generates property change notifications when the salary changes.

Interested listeners can register or deregister for the change notifications using the
addPropertyChangeListener() and removePropertyChangeListener() methods. The PropertyChangeSupport
class is part of the JavaBeans API that facilitates the registration and removal of property change listeners
and firing of the property change notifications.

Any party interested in synchronizing values based on the salary change will need to register with the
Employee bean and take necessary actions when it is notified of the change.

Listing 2-2 shows how to register for salary change notifications for an Employee bean. The output
below it shows that salary change notification is fired only twice, whereas the setSalary() method is called
three times. This is true because the second call to the setSalary() method uses the same salary amount as
the first call and the PropertyChangeSupport class is smart enough to detect that. The example also shows
how you would bind variables using the JavaBeans API. The tax for an employee is computed based on a tax
percentage. In the JavaBeans API, property change notifications are used to bind the variables.

Chapter 2 ■ properties and Bindings

30

Listing 2-2. An EmployeeTest Class that Tests the Employee Bean for Salary Changes

// EmployeeTest.java
package com.jdojo.binding;

import java.beans.PropertyChangeEvent;

public class EmployeeTest {
 public static void main(String[] args) {
 final Employee e1 = new Employee("John Jacobs", 2000.0);

 // Compute the tax
 computeTax(e1.getSalary());

 // Add a property change listener to e1
 e1.addPropertyChangeListener(EmployeeTest::handlePropertyChange);

 // Change the salary
 e1.setSalary(3000.00);
 e1.setSalary(3000.00); // No change notification is sent.
 e1.setSalary(6000.00);
 }

 public static void handlePropertyChange(PropertyChangeEvent e) {
 String propertyName = e.getPropertyName();

 if ("salary".equals(propertyName)) {
 System.out.print("Salary has changed. ");
 System.out.print("Old:" + e.getOldValue());
 System.out.println(", New:" + e.getNewValue());
 computeTax((Double)e.getNewValue());
 }
 }

 public static void computeTax(double salary) {
 final double TAX_PERCENT = 20.0;
 double tax = salary * TAX_PERCENT/100.0;
 System.out.println("Salary:" + salary + ", Tax:" + tax);
 }
}

Salary:2000.0, Tax:400.0
Salary has changed. Old:2000.0, New:3000.0
Salary:3000.0, Tax:600.0
Salary has changed. Old:3000.0, New:6000.0
Salary:6000.0, Tax:1200.0

Chapter 2 ■ properties and Bindings

31

Understanding Properties in JavaFX
JavaFX supports properties, events, and binding through properties and binding APIs. Properties support in
JavaFX is a huge leap forward from the JavaBeans properties.

All properties in JavaFX are observable. They can be observed for invalidation and value changes. There
can be read/write or read-only properties. All read/write properties support binding.

In JavaFX, a property can represent a value or a collection of values. This chapter covers properties that
represent a single value. I will cover properties representing a collection of values in Chapter 3.

In JavaFX, properties are objects. There is a property class hierarchy for each type of property. For
example, the IntegerProperty, DoubleProperty, and StringProperty classes represent properties of int,
double, and String types, respectively. These classes are abstract. There are two types of implementation
classes for them: one to represent a read/write property and one to represent a wrapper for a read-only
property. For example, the SimpleDoubleProperty and ReadOnlyDoubleWrapper classes are concrete classes
whose objects are used as read/write and read-only double properties, respectively.

Below is an example of how to create an IntegerProperty with an initial value of 100:

IntegerProperty counter = new SimpleIntegerProperty(100);

Property classes provide two pairs of getter and setter methods: get()/set() and getValue()/ setValue().
The get() and set() methods get and set the value of the property, respectively. For primitive type
properties, they work with primitive type values. For example, for IntegerProperty, the return type of
the get() method and the parameter type of the set() method are int. The getValue() and setValue()
methods work with an object type; for example, their return type and parameter type are Integer for
IntegerProperty.

Tip ■ For reference type properties, such as StringProperty and ObjectProperty<T>, both pairs of getter
and setter work with an object type. that is, both get() and getValue() methods of StringProperty return a
String, and set() and setValue() methods take a String parameter. With autoboxing for primitive types,
it does not matter which version of getter and setter is used. the getValue() and setValue() methods exist to
help you write generic code in terms of object types.

The following snippet of code uses an IntegerProperty and its get() and set() methods. The counter
property is a read/write property as it is an object of the SimpleIntegerProperty class:

IntegerProperty counter = new SimpleIntegerProperty(1);
int counterValue = counter.get();
System.out.println("Counter:" + counterValue);

counter.set(2);
counterValue = counter.get();
System.out.println("Counter:" + counterValue);

Counter:1
Counter:2

Chapter 2 ■ properties and Bindings

32

Working with read-only properties is a bit tricky. A ReadOnlyXXXWrapper class wraps two properties of
XXX type: one read-only and one read/write. Both properties are synchronized. Its getReadOnlyProperty()
method returns a ReadOnlyXXXProperty object.

The following snippet of code shows how to create a read-only Integer property. The idWrapper
property is read/write, whereas the id property is read-only. When the value in idWrapper is changed, the
value in id is changed automatically:

ReadOnlyIntegerWrapper idWrapper = new ReadOnlyIntegerWrapper(100);
ReadOnlyIntegerProperty id = idWrapper.getReadOnlyProperty();

System.out.println("idWrapper:" + idWrapper.get());
System.out.println("id:" + id.get());

// Change the value
idWrapper.set(101);

System.out.println("idWrapper:" + idWrapper.get());
System.out.println("id:" + id.get());

idWrapper:100
id:100
idWrapper:101
id:101

Tip ■ typically, a wrapper property is used as a private instance variable of a class. the class can change the
property internally. one of its methods returns the read-only property object of the wrapper class, so the same
property is read-only for the outside world.

You can use seven types of properties that represent a single value. The base classes for those properties
are named as XXXProperty, read-only base classes are named as ReadOnlyXXXProperty, and wrapper classes
are named as ReadOnlyXXXWrapper. The values for XXX for each type are listed in Table 2-1.

Table 2-1. List of Property Classes that Wrap a Single Value

Type XXX Value

int Integer

long Long

float Float

double Double

boolean Boolean

String String

Object Object

Chapter 2 ■ properties and Bindings

33

A property object wraps three pieces of information:

The reference of the bean that contains it•	

A name•	

A value•	

When you create a property object, you can supply all or none of the above three pieces of information.
Concrete property classes, named like SimpleXXXProperty and ReadOnlyXXXWrapper, provide four
constructors that let you supply combinations of the three pieces of information. The following are the
constructors for the SimpleIntegerProperty class:

SimpleIntegerProperty()
SimpleIntegerProperty(int initialValue)
SimpleIntegerProperty(Object bean, String name)
SimpleIntegerProperty(Object bean, String name, int initialValue)

The default value for the initial value depends on the type of the property. It is zero for numeric types,
false for boolean types, and null for reference types.

A property object can be part of a bean or it can be a standalone object. The specified bean is the
reference to the bean object that contains the property. For a standalone property object, it can be null.
Its default value is null.

The name of the property is its name. If not supplied, it defaults to an empty string.
The following snippet of code creates a property object as part of a bean and sets all three values.

The first argument to the constructor of the SimpleStringProperty class is this, which is the reference of
the Person bean, the second argument—"name"—is the name of the property, and the third argument—
"Li"—is the value of the property:

public class Person {
 private StringProperty name = new SimpleStringProperty(this, "name", "Li");

// More code goes here...
}

Every property class has getBean() and getName() methods that return the bean reference and the
property name, respectively.

Using Properties in JavaFX Beans
In the previous section, you saw the use of JavaFX properties as standalone objects. In this section, you will
use them in classes to define properties. Let’s create a Book class with three properties: ISBN, title, and
price, which will be modeled using JavaFX properties classes.

In JavaFX, you do not declare the property of a class as one of the primitive types. Rather, you use one
of the JavaFX property classes. The title property of the Book class will be declared as follows. It is declared
private as usual:

public class Book {
 private StringProperty title = new SimpleStringProperty(this, "title", "Unknown");
}

Chapter 2 ■ properties and Bindings

34

You declare a public getter for the property, which is named, by convention, as XXXProperty, where XXX
is the name of the property. This getter returns the reference of the property. For our title property, the
getter will be named titleProperty as shown below:

public class Book {
 private StringProperty title = new SimpleStringProperty(this, "title", "Unknown");

 public final StringProperty titleProperty() {
 return title;
 }
}

The above declaration of the Book class is fine to work with the title property, as shown in the
following snippet of code that sets and gets the title of a book:

Book b = new Book();
b.titleProperty().set("Harnessing JavaFX 8.0");
String title = b.titleProperty().get();

According to the JavaFX design patterns, and not for any technical requirements, a JavaFX property
has a getter and a setter that are similar to the getters and setters in JavaBeans. The return type of the
getter and the parameter type of the setter are the same as the type of the property value. For example, for
StringProperty and IntegerProperty, they will be String and int, respectively. The getTitle() and
setTitle() methods for the title property are declared as follows:

public class Book {
 private StringProperty title = new SimpleStringProperty(this, "title", "Unknown");

 public final StringProperty titleProperty() {
 return title;
 }

 public final String getTitle() {
 return title.get();
 }

 public final void setTitle(String title) {
 this.title.set(title);
 }
}

Note that the getTitle() and setTitle() methods use the title property object internally to get and
set the title value.

Tip ■ By convention, getters and setters for a property of a class are declared final. additional getters and
setters, using JavaBeans naming convention, are added to make the class interoperable with the older tools
and frameworks that use the old JavaBeans naming conventions to identify the properties of a class.

Chapter 2 ■ properties and Bindings

35

The following snippet of code shows the declaration of a read-only ISBN property for the Book class:

public class Book {
 private ReadOnlyStringWrapper ISBN = new ReadOnlyStringWrapper

(this, "ISBN", "Unknown");

 public final String getISBN() {
 return ISBN.get();
 }

 public final ReadOnlyStringProperty ISBNProperty() {
 return ISBN.getReadOnlyProperty();
 }

 // More code goes here...
}

Notice the following points about the declaration of the read-only ISBN property:

It uses the •	 ReadOnlyStringWrapper class instead of the SimpleStringProperty class.

There is no setter for the property value. You may declare one; however, it must be •	
private.

The getter for the property value works the same as for a read/write property.•	

The •	 ISBNProperty() method uses ReadOnlyStringProperty as the return type, not
ReadOnlyStringWrapper. It obtains a read-only version of the property object from
the wrapper object and returns the same.

For the users of the Book class, its ISBN property is read-only. However, it can be changed internally,
and the change will be reflected in the read-only version of the property object automatically.

Listing 2-3 shows the complete code for the Book class.

Listing 2-3. A Book Class with Two Read/Write and a Read-Only Properties

// Book.java
package com.jdojo.binding;

import javafx.beans.property.DoubleProperty;
import javafx.beans.property.ReadOnlyStringProperty;
import javafx.beans.property.ReadOnlyStringWrapper;
import javafx.beans.property.SimpleDoubleProperty;
import javafx.beans.property.SimpleStringProperty;
import javafx.beans.property.StringProperty;

public class Book {
 private StringProperty title = new SimpleStringProperty(this, "title", "Unknown");
 private DoubleProperty price = new SimpleDoubleProperty(this, "price", 0.0);
 private ReadOnlyStringWrapper ISBN = new ReadOnlyStringWrapper(this, "ISBN", "Unknown");

 public Book() {
 }

Chapter 2 ■ properties and Bindings

36

 public Book(String title, double price, String ISBN) {
 this.title.set(title);
 this.price.set(price);
 this.ISBN.set(ISBN);
 }

 public final String getTitle() {
 return title.get();
 }

 public final void setTitle(String title) {
 this.title.set(title);
 }

 public final StringProperty titleProperty() {
 return title;
 }

 public final double getprice() {
 return price.get();
 }

 public final void setPrice(double price) {
 this.price.set(price);
 }

 public final DoubleProperty priceProperty() {
 return price;
 }

 public final String getISBN() {
 return ISBN.get();
 }

 public final ReadOnlyStringProperty ISBNProperty() {
 return ISBN.getReadOnlyProperty();
 }
}

Listing 2-4 tests the properties of the Book class. It creates a Book object, prints the details, changes
some properties, and prints the details again. Note the use of the ReadOnlyProperty parameter
type for the printDetails() method. All property classes implement, directly or indirectly, the
ReadOnlyProperty interface.

The toString() methods of the property implementation classes return a well-formatted string that
contains all relevant pieces of information for a property. I did not use the toString() method of the
property objects because I wanted to show you the use of the different methods of the JavaFX properties.

Chapter 2 ■ properties and Bindings

37

Listing 2-4. A Test Class to Test Properties of the Book Class

// BookPropertyTest.java
package com.jdojo.binding;

import javafx.beans.property.ReadOnlyProperty;

public class BookPropertyTest {
 public static void main(String[] args) {
 Book book = new Book("Harnessing JavaFX", 9.99, "0123456789");

 System.out.println("After creating the Book object...");

 // Print Property details
 printDetails(book.titleProperty());
 printDetails(book.priceProperty());
 printDetails(book.ISBNProperty());

 // Change the book's properties
 book.setTitle("Harnessing JavaFX 8.0");
 book.setPrice(9.49);

 System.out.println("\nAfter changing the Book properties...");

 // Print Property details
 printDetails(book.titleProperty());
 printDetails(book.priceProperty());
 printDetails(book.ISBNProperty());
 }

 public static void printDetails(ReadOnlyProperty<?> p) {
 String name = p.getName();
 Object value = p.getValue();
 Object bean = p.getBean();
 String beanClassName = (bean == null)? "null":bean.getClass().getSimpleName();
 String propClassName = p.getClass().getSimpleName();

 System.out.print(propClassName);
 System.out.print("[Name:" + name);
 System.out.print(", Bean Class:" + beanClassName);
 System.out.println(", Value:" + value + "]");
 }
}

After creating the Book object...
SimpleStringProperty[Name:title, Bean Class:Book, Value:Harnessing JavaFX]
SimpleDoubleProperty[Name:price, Bean Class:Book, Value:9.99]
ReadOnlyPropertyImpl[Name:ISBN, Bean Class:Book, Value:0123456789]

After changing the Book properties...
SimpleStringProperty[Name:title, Bean Class:Book, Value:Harnessing JavaFX 8.0]
SimpleDoubleProperty[Name:price, Bean Class:Book, Value:9.49]
ReadOnlyPropertyImpl[Name:ISBN, Bean Class:Book, Value:0123456789]

Chapter 2 ■ properties and Bindings

38

Lazily Instantiating Property Objects
Compared to simple JavaBeans properties, JavaFX properties are more powerful. Their power comes from
their observable and binding features at a price that every JavaFX property is an object. If you consider
ten instances of a JavaFX class with 50 properties, you will have 500 objects in memory. However, not all
properties use their advanced features. Most of them will be used as JavaBeans properties, using only getters
and setters, or they will just use their default values. When it is likely that a JavaFX property will rarely
use its advanced features, the property object may be instantiated lazily to optimize memory usage. The
optimization comes at a price of adding a few extra lines of code.

The following are the two use cases where you can lazily instantiate a property:

When the property will use its default value in most of the cases•	

When the property will not use its observable and binding features in most cases•	

Consider a Monitor class with a screenType property whose default value is "flat". This falls into
the first category, because most of the monitors are flat and will use the default value for the screenType
property. Listing 2-5 shows the declaration of the Monitor class.

Listing 2-5. A Monitor Class that Uses the Default Value for Its screenType Property Most of the Time

// Monitor.java
package com.jdojo.binding;

import javafx.beans.property.StringProperty;
import javafx.beans.property.SimpleStringProperty;

public class Monitor {
 public static final String DEFAULT_SCREEN_TYPE = "flat";
 private StringProperty screenType;

 public String getScreenType() {
 return (screenType == null) ? DEFAULT_SCREEN_TYPE : screenType.get();
 }

 public void setScreenType(String newScreenType) {
 if (screenType != null || !DEFAULT_SCREEN_TYPE.equals(newScreenType)) {
 screenTypeProperty().set(newScreenType);
 }
 }

 public StringProperty screenTypeProperty() {
 if (screenType == null) {
 screenType = new SimpleStringProperty(this, "screenType",
 DEFAULT_SCREEN_TYPE);
 }

 return screenType;
 }
}

The Monitor class declares a static variable DEFAULT_SCREEN_TYPE, which is initialized to the default
value of the screen type. It declares a StringProperty, which is not instantiated at the time of declaration.
It is instantiated later, when needed.

Chapter 2 ■ properties and Bindings

39

The getScreenType() method checks if the screenType property has been instantiated. If not, it returns
the default value. Otherwise, it returns the value stored in the property object.

The setScreenType() method checks if the property object has already been instantiated or the property being
set is other than the default value. If either one is true, it gets the property object using the screenTypeProperty()
method, which will instantiate the property object, if needed, and sets the new property value.

The screenTypeProperty() method instantiates the property object the first time it is called.
This design for the Monitor class will work as intended only if its users do not call the screenTypeProperty()

method until they really need the advanced features of the property. Consider the following snippet of code:

Monitor m = new Monitor();
String st = m.screenTypeProperty().get(); // Instantiates the property object

The above snippet of code instantiates a screenType property object, even though the user only wants
to get the value of the property. The code should be rewritten as follows to delay the instantiation of the
property object:

Monitor m = new Monitor();
String st = m.getScreenType(); // Does not instantiate the property object

Properties in the second category are used without advanced features in most of the cases. Listing 2-6
shows the declaration of an Item class that instantiates the property object when it is needed.

Listing 2-6. An Item Class that Rarely Uses Advanced Features of Its weight Property

// Item.java
package com.jdojo.binding;

import javafx.beans.property.DoubleProperty;
import javafx.beans.property.SimpleDoubleProperty;

public class Item {
 private DoubleProperty weight;
 private double _weight = 150;

 public double getWeight() {
 return (weight == null)?_weight:weight.get();
 }

 public void setWeight(double newWeight) {
 if (weight == null) {
 _weight = newWeight;
 }
 else {
 weight.set(newWeight);
 }
 }

 public DoubleProperty weightProperty() {
 if (weight == null) {
 weight = new SimpleDoubleProperty(this, "weight", _weight);
 }
 return weight;
 }
}

Chapter 2 ■ properties and Bindings

40

The Item class declares an extra variable, _weight, which is used to hold the value of the weight
property until the property object is instantiated. Unlike the Monitor class, changing the weight property
does not instantiate the property object. It is instantiated when the weightProperty() method is called.

Tip ■ the approach used for instantiating a property object, eager or lazy, depends on the situation at hand.
the fewer the number of properties in a class, the more likely all of them will be used, and you should be fine
with eager instantiation. the more the number of properties in a class, the more likely fewer of them will be
used, and you should go for lazy instantiation if the performance of your application matters.

Understanding the Property Class Hierarchy
It is important to understand a few core classes and interfaces of the JavaFX properties and binding APIs
before you start using them. Figure 2-1 shows the class diagram for core interfaces of the properties API.
You will not need to use these interfaces directly in your programs. Specialized versions of these interfaces
and the classes that implement them exist and are used directly.

Figure 2-1. A class diagram for core interfaces in the JavaFX property API

Chapter 2 ■ properties and Bindings

41

Classes and interfaces in the JavaFX properties API are spread across different packages. Those packages
are javafx.beans, javafx.beans.binding, javafx.beans.property, and javafx.beans.value.

The Observable interface is at the top of the properties API. An Observable wraps content, and it
can be observed for invalidations of its content. The Observable interface has two methods to support this.
Its addListener() method lets you add an InvalidationListener. The invalidated() method
of the InvalidationListener is called when the content of the Observable becomes invalid. An
InvalidationListener can be removed using its removeListener() method.

Tip ■ all JavaFX properties are observable.

An Observable should generate an invalidation event only when the status of its content changes
from valid to invalid. That is, multiple invalidations in a row should generate only one invalidation event.
Property classes in the JavaFX follow this guideline.

Tip ■ the generation of an invalidation event by an Observable does not necessarily mean that its
content has changed. all it means is that its content is invalid for some reason. For example, sorting an
ObservableList may generate an invalidation event. sorting does not change the contents of the list;
it only reorders the contents.

The ObservableValue interface inherits from the Observable interface. An ObservableValue wraps a
value, which can be observed for changes. It has a getValue() method that returns the value it wraps.
It generates invalidation events and change events. Invalidation events are generated when the value in the
ObservableValue is no longer valid. Change events are generated when the value changes. You can register
a ChangeListener to an ObservableValue. The changed() method of the ChangeListener is called every
time the value of its value changes. The changed() method receives three arguments: the reference of the
ObservableValue, the old value, and the new value.

An ObservableValue can recompute its value lazily or eagerly. In a lazy strategy, when its value
becomes invalid, it does not know if the value has changed until the value is recomputed; the value is
recomputed the next time it is read. For example, using the getValue() method of an ObservableValue
would make it recompute its value if the value was invalid and if it uses a lazy strategy. In an eager strategy,
the value is recomputed as soon as it becomes invalid.

To generate invalidation events, an ObservableValue can use lazy or eager evaluation. A lazy
evaluation is more efficient. However, generating change events forces an ObservableValue to
recompute its value immediately (an eager evaluation) as it has to pass the new value to the registered
change listeners.

The ReadOnlyProperty interface adds getBean() and getName() methods. Their use was illustrated
in Listing 2-4. The getBean() method returns the reference of the bean that contains the property
object. The getName() method returns the name of the property. A read-only property implements
this interface.

A WritableValue wraps a value that can be read and set using its getValue() and setValue() methods,
respectively. A read/write property implements this interface.

Chapter 2 ■ properties and Bindings

42

The Property interface inherits from ReadOnlyProperty and WritableValue interfaces. It adds the
following five methods to support binding:

•	 void bind(ObservableValue<? extends T> observable)

•	 void unbind()

•	 void bindBidirectional(Property<T> other)

•	 void unbindBidirectional(Property<T> other)

•	 boolean isBound()

The bind() method adds a unidirectional binding between this Property and the specified
ObservableValue. The unbind() method removes the unidirectional binding for this Property, if one exists.

The bindBidirectional() method creates a bidirectional binding between this Property and the
specified Property. The unbindBidirectional() method removes a bidirectional binding.

Note the difference in the parameter types for the bind() and bindBidirectional() methods.
A unidirectional binding can be created between a Property and an ObservableValue of the same type as
long as they are related through inheritance. However, a bidirectional binding can only be created between
two properties of the same type.

The isBound() method returns true if the Property is bound. Otherwise, it returns false.

Tip ■ all read/write JavaFX properties support binding.

Figure 2-2 shows a partial class diagram for the integer property in JavaFX. The diagram gives you an
idea about the complexity of the JavaFX properties API. You do not need to learn all of the classes in the
properties API. You will use only a few of them in your applications.

Chapter 2 ■ properties and Bindings

43

Figure 2-2. A class diagram for the integer property

Handling Property Invalidation Events
A property generates an invalidation event when the status of its value changes from valid to invalid for the
first time. Properties in JavaFX use lazy evaluation. When an invalid property becomes invalid again, an
invalidation event is not generated. An invalid property becomes valid when it is recomputed, for example,
by calling its get() or getValue() method.

Chapter 2 ■ properties and Bindings

44

Listing 2-7 provides the program to demonstrate when invalidation events are generated for properties.
The program includes enough comments to help you understand its logic. In the beginning, it creates an
IntegerProperty named counter:

IntegerProperty counter = new SimpleIntegerProperty(100);

An InvalidationListener is added to the counter property:

counter.addListener(InvalidationTest::invalidated);

Note that the above statement uses a lambda expression and a method reference, which are features
of Java 8. If you are not familiar with lambda expressions, you can compare the above statement to the
following snippet of code, which uses an anonymous inner class:

import javafx.beans.InvalidationListener;
...
counter.addListener(new InvalidationListener() {
 @Override
 public void invalidated(Observable prop) {
 InvalidationTest.invalidated(prop);
 }});

When you create a property object, it is valid. When you change the counter property to 101, it fires an
invalidation event. At this point, the counter property becomes invalid. When you change its value to 102, it
does not fire an invalidation event, because it is already invalid. When you use the get() method to read the
counter value, it becomes valid again. Now you set the same value, 102, to the counter, which does not fire
an invalidation event, as the value did not really change. The counter property is still valid. At the end, you
change its value to a different value, and sure enough, an invalidation event is fired.

Tip ■ You are not limited to adding only one invalidation listener to a property. You can add as many
invalidation listeners as you need. once you are done with an invalidation listener, make sure to remove it
by calling the removeListener() method of the Observable interface; otherwise, it may lead to memory
leaks. please refer to the section “avoiding Memory Leaks in Listeners” for more details on how to avoid
memory leaks.

Listing 2-7. Testing Invalidation Events for Properties

// InvalidationTest.java
package com.jdojo.binding;

import javafx.beans.Observable;
import javafx.beans.property.IntegerProperty;
import javafx.beans.property.SimpleIntegerProperty;

public class InvalidationTest {
 public static void main(String[] args) {
 IntegerProperty counter = new SimpleIntegerProperty(100);

 // Add an invalidation listener to the counter property
 counter.addListener(InvalidationTest::invalidated);

Chapter 2 ■ properties and Bindings

45

 System.out.println("Before changing the counter value-1");
 counter.set(101);
 System.out.println("After changing the counter value-1");

 /* At this point counter property is invalid and further changes
 to its value will not generate invalidation events.
 */
 System.out.println("\nBefore changing the counter value-2");
 counter.set(102);
 System.out.println("After changing the counter value-2");

 // Make the counter property valid by calling its get() method
 int value = counter.get();
 System.out.println("Counter value = " + value);

 /* At this point counter property is valid and further changes
 to its value will generate invalidation events.
 */
 // Try to set the same value
 System.out.println("\nBefore changing the counter value-3");
 counter.set(102);
 System.out.println("After changing the counter value-3");

 // Try to set a different value
 System.out.println("\nBefore changing the counter value-4");
 counter.set(103);
 System.out.println("After changing the counter value-4");
 }

 public static void invalidated(Observable prop) {
 System.out.println("Counter is invalid.");
 }
}

Before changing the counter value-1
Counter is invalid.
After changing the counter value-1

Before changing the counter value-2
After changing the counter value-2
Counter value = 102

Before changing the counter value-3
After changing the counter value-3

Before changing the counter value-4
Counter is invalid.
After changing the counter value-4

Chapter 2 ■ properties and Bindings

46

Handling Property Change Events
You can register a ChangeListener to receive notifications about property change events. A property change
event is fired every time the value of a property changes. The changed() method of a ChangeListener
receives three values: the reference of the property object, the old value, and the new value.

Let’s run a similar test case for testing property change events as was done for invalidation events
in the previous section. Listing 2-8 has the program to demonstrate change events that are generated
for properties.

Listing 2-8. Testing Change Events for Properties

// ChangeTest.java
package com.jdojo.binding;

import javafx.beans.property.IntegerProperty;
import javafx.beans.property.SimpleIntegerProperty;
import javafx.beans.value.ObservableValue;

public class ChangeTest {
 public static void main(String[] args) {
 IntegerProperty counter = new SimpleIntegerProperty(100);

 // Add a change listener to the counter property
 counter.addListener(ChangeTest::changed);

 System.out.println("\nBefore changing the counter value-1");
 counter.set(101);
 System.out.println("After changing the counter value-1");

 System.out.println("\nBefore changing the counter value-2");
 counter.set(102);
 System.out.println("After changing the counter value-2");

 // Try to set the same value
 System.out.println("\nBefore changing the counter value-3");
 counter.set(102); // No change event is fired.
 System.out.println("After changing the counter value-3");

 // Try to set a different value
 System.out.println("\nBefore changing the counter value-4");
 counter.set(103);
 System.out.println("After changing the counter value-4");
 }

 public static void changed(ObservableValue<? extends Number> prop,
 Number oldValue,
 Number newValue) {
 System.out.print("Counter changed: ");
 System.out.println("Old = " + oldValue + ", new = " + newValue);
 }
}

Chapter 2 ■ properties and Bindings

47

Befor changing the counter value-1
Counter changed: Old = 100, new = 101
After changing the counter value-1

Before changing the counter value-2
Counter changed: Old = 101, new = 102
After changing the counter value-2

Before changing the counter value-3
After changing the counter value-3

Before changing the counter value-4
Counter changed: Old = 102, new = 103
After changing the counter value-4

In the beginning, the program creates an IntegerProperty named counter:

IntegerProperty counter = new SimpleIntegerProperty(100);

There is a little trick in adding a ChangeListener. The addListener() method in the
IntegerPropertyBase class is declared as follows:

void addListener(ChangeListener<? super Number> listener)

This means that if you are using generics, the ChangeListener for an IntegerProperty must be written
in terms of the Number class or a superclass of the Number class. Three ways to add a ChangeListener to the
counter property are shown below:

// Method-1: Using generics and the Number class
counter.addListener(new ChangeListener<Number>() {
 @Override
 public void changed(ObservableValue<? extends Number> prop,
 Number oldValue,
 Number newValue) {
 System.out.print("Counter changed: ");
 System.out.println("Old = " + oldValue + ", new = " + newValue);
 }});

// Method-2: Using generics and the Object class
counter.addListener(new ChangeListener<Object>() {
 @Override
 public void changed(ObservableValue<? extends Object> prop,
 Object oldValue,
 Object newValue) {
 System.out.print("Counter changed: ");
 System.out.println("Old = " + oldValue + ", new = " + newValue);
 }});

Chapter 2 ■ properties and Bindings

48

// Method-3: Not using generics. It may generate compile-time warnings.
counter.addListener(new ChangeListener() {
 @Override
 public void changed(ObservableValue prop,
 Object oldValue,
 Object newValue) {
 System.out.print("Counter changed: ");
 System.out.println("Old = " + oldValue + ", new = " + newValue);
 }});

Listing 2-8 uses the first method, which makes use of generics; as you can see, the signature of the
changed() method in the ChangeTest class matches with the changed() method signature in method-1.
I have used a lambda expression with a method reference to add a ChangeListener as shown:

counter.addListener(ChangeTest::changed);

The output above shows that a property change event is fired when the property value is changed.
Calling the set() method with the same value does not fire a property change event.

Unlike generating invalidation events, a property uses an eager evaluation for its value to generate
change events, because it has to pass the new value to the property change listeners. The next section
discusses how a property object evaluates its value, if it has both invalidation and change listeners.

Avoiding Memory Leaks in Listeners
When you add an invalidation listener to an Observable, the Observable stores a strong reference to the
listener. Like an Observable, an ObservableValue also keeps a strong reference to the registered change
listeners. In a short-lived small application, you may not notice any difference. However, in a long-running
big application, you may encounter memory leaks. The cause of the memory leaks is the strong reference to
the listeners being stored in the observed objects, even though you do not need those listeners anymore.

Tip ■ Memory leaks happens when the property object holding the strong reference to the listeners outlives
the need to use the listeners. if you do not need listeners, and at the same time the property object holding their
strong references becomes eligible for garbage collection, memory leaks may not occur.

The solution is to remove the listeners using removeListener() method when you do not need them.
Implementing this solution may not always be easy. The main problem in implementing this is in deciding
when to remove the listener. Sometimes multiple paths may exist, adding complexity to the solution, when
listeners may need to be removed.

Chapter 2 ■ properties and Bindings

49

Listing 2-9 shows a simple use case, where a change listener is added, used, and removed. It creates
an IntegerProperty named counter as a static variable. In the main() method, it calls the addListener()
method that adds a change listener to the counter property, changes the value of counter to fire a change
event, as shown in the output, and finally, it removes the change listener. The main() method changes the
value of counter again, which does not fire any change events, because the change listener has already been
removed. This is a use case where everything worked as expected.

Listing 2-9. Removing Listeners When They Are Not Needed

// CleanupListener.java
package com.jdojo.binding;

import javafx.beans.property.IntegerProperty;
import javafx.beans.property.SimpleIntegerProperty;
import javafx.beans.value.ChangeListener;
import javafx.beans.value.ObservableValue;

public class CleanupListener {
 public static IntegerProperty counter = new SimpleIntegerProperty(100);

 public static void main(String[] args) {
 // Add a change listener to the property
 ChangeListener<Number> listener = CleanupListener::changed;
 counter.addListener(listener);

 // Change the counter value
 counter.set(200);

 // Remove the listener
 counter.removeListener(listener);

 // Will not fire change event as change listener has
 // already been removed.
 counter.set(300);
 }

 public static void changed(ObservableValue<? extends Number> prop,
 Number oldValue,
 Number newValue) {
 System.out.print("Counter changed: ");
 System.out.println("old = " + oldValue + ", new = " + newValue);
 }
}

Counter changed: old = 100, new = 200

Chapter 2 ■ properties and Bindings

50

The program in Listing 2-10 shows a variation of the program in Listing 2-9. In the
addStrongListener() method, you have added a change listener to the counter property but did not
remove it. The second line in the output proves that even after the addStrongListener() method finishes
executing, the counter property is still holding the reference to the change listener you had added. After
the addStrongListener() method is finished, you do not have a reference to the change listener variable,
because it was declared as a local variable. Therefore, you do not even have a way to remove the listener.
This use case shows, though trivially, the intrinsic nature of memory leaks while using invalidation and
change listeners with properties.

Listing 2-10. Simulating Memory Leaks Because Listeners Were Not Removed

// StrongListener.java

package com.jdojo.binding;

import javafx.beans.property.IntegerProperty;
import javafx.beans.property.SimpleIntegerProperty;
import javafx.beans.value.ChangeListener;
import javafx.beans.value.ObservableValue;

public class StrongListener {
 public static IntegerProperty counter = new SimpleIntegerProperty(100);

 public static void main(String[] args) {
 // Add a change listener to the property
 addStrongListener();

 // Change counter value. It will fire a change event.
 counter.set(300);
 }

 public static void addStrongListener() {
 ChangeListener<Number> listener = StrongListener::changed;
 counter.addListener(listener);

 // Change the counter value
 counter.set(200);
 }

 public static void changed(ObservableValue<? extends Number> prop,
 Number oldValue,
 Number newValue) {
 System.out.print("Counter changed: ");
 System.out.println("old = " + oldValue + ", new = " + newValue);
 }
}

Counter changed: old = 100, new = 200
Counter changed: old = 200, new = 300

Chapter 2 ■ properties and Bindings

51

Figure 2-3. A class diagram for WeakChangeListener and WeakInvalidationListener

The solution is to use weak listeners, which are garbage collected automatically. A weak listener is an
instance of the WeakListener interface. JavaFX provides two implementation classes of the WeakListener
interface that can be used as invalidation and change listeners: WeakInvalidationListener and
WeakChangeListener classes. Figure 2-3 shows a class diagram for these classes. Note that a WeakListener
interface has one method that tells whether the listener has been garbage collected. I will discuss change
listeners in the rest of this section. However, this discussion applies to the invalidation listener as well.

A WeakChangeListener is a wrapper for a ChangeListener. It has only one constructor that
accepts an instance of a ChangeListener. The following snippet of code shows how to create and use a
WeakChangeListener:

ChangeListener<Number> cListener = create a change listener...
WeakChangeListener<Number> wListener = new WeakChangeListener(cListener);

// Add a weak change listener, assuming that counter is a property
counter.addListener(wListener);

You might be happy to see the above snippet of code in the hope that you have found an easy solution to
the big issue of memory leaks. However, this solution is not as elegant as it seems. You need to keep a strong
reference of the change listener around as long as you do not want it to be garbage collected. In the above
snippet of code, you will need to keep the reference cListener around until you know that you no longer
need to listen to the change event. Isn’t this similar to saying that you need to remove the listener when you
do not need it? The answer is yes and no. The answer is yes, because you do need to take an action to clean
up the listener. But the answer is also no, because you may design your logic to store the reference of the
change listener in an object that is scoped in such a way that the change listener goes out of scope the same
time you do not need it.

The program in Listing 2-11 shows, using a trivial use case, how to use a weak change listener. It is
a slight variation of the previous two programs. It declares three static variables: a counter property, a
WeakChangeListener, and a ChangeListener. The addWeakListener() method creates a change listener,
stores its reference to the static variable, wraps it in a weak change listener, and adds it to the counter
property. The counter property is changed at the end.

The main() method changes the counter property several times. It also tries to invoke garbage
collection, using System.gc(), and prints a message to check if the change listener has been garbage
collected. As long as you keep a strong reference to the change listener in the changeListener static variable,
the change listener is not garbage collected. After you set it to null and then invoke the garbage collection
again, the change listener will be garbage collected. The last change in the counter property, inside the
main() method, did not fire a change event as the change listener had already been removed automatically,
as it was wrapped in a weak change listener.

Chapter 2 ■ properties and Bindings

52

Listing 2-11. Using a Weak Change Listener

// WeakListener.java
package com.jdojo.binding;

import javafx.beans.property.IntegerProperty;
import javafx.beans.property.SimpleIntegerProperty;
import javafx.beans.value.ChangeListener;
import javafx.beans.value.ObservableValue;
import javafx.beans.value.WeakChangeListener;

public class WeakListener {
 public static IntegerProperty counter = new SimpleIntegerProperty(100);
 public static WeakChangeListener<Number> weakListener ;
 public static ChangeListener<Number> changeListener;

 public static void main(String[] args) {
 // Add a weak change listener to the property
 addWeakListener();

 // It will fire a change event
 counter.set(300);

 // Try garbage collection
 System.gc();

 // Check if change listener got garbage collected
 System.out.println("Garbage collected: " +
 weakListener.wasGarbageCollected());

 // It will fire a change event
 counter.set(400);

 // You do not need a strong reference of the change listener
 changeListener = null;

 // Try garbage collection
 System.gc();

 // Check if the change listener got garbage collected
 System.out.println("Garbage collected: " +
 weakListener.wasGarbageCollected());

 // It will not fire a change event, if it was garbage collected
 counter.set(500);
 }

 public static void addWeakListener() {
 // Keep a strong reference to the change listener
 changeListener = WeakListener::changed;

Chapter 2 ■ properties and Bindings

53

 // Wrap the change listener inside a weak change listener
 weakListener = new WeakChangeListener<>(changeListener);

 // Add weak change listener
 counter.addListener(weakListener);

 // Change the value
 counter.set(200);
 }

 public static void changed(ObservableValue<? extends Number> prop,
 Number oldValue,
 Number newValue) {
 System.out.print("Counter changed: ");
 System.out.println("old = " + oldValue + ", new = " + newValue);
 }
}

Counter changed: old = 100, new = 200
Counter changed: old = 200, new = 300
Garbage collected: false
Counter changed: old = 300, new = 400
Garbage collected: false
Counter changed: old = 400, new = 500

Handling Invalidation and Change Events
You need to consider performance when you have to decide between using invalidation listeners and
change listeners. Generally, invalidation listeners perform better than change listeners. The reason is
twofold:

Invalidation listeners make it possible to compute the value lazily.•	

Multiple invalidations in a row fire only one invalidation event.•	

However, which listener you use depends on the situation at hand. A rule of thumb is that if you read
the value of the property inside the invalidation event handler, you should use a change listener instead.
When you read the value of a property inside an invalidation listener, it triggers the recomputation of the
value, which is automatically done before firing a change event. If you do not need to read the value of a
property, use invalidation listeners.

Listing 2-12 has a program that adds an invalidation listener and a change listener to an
IntegerProperty. This program is a combination of Listing 2-7 and Listing 2-8. The output below it shows
that when the property value changes, both events, invalidation and change, are always fired. This is because
a change event makes a property valid immediately after the change, and the next change in the value fires
an invalidation event, and of course, a change event too.

Chapter 2 ■ properties and Bindings

54

Listing 2-12. Testing Invalidation and Change Events for Properties Together

// ChangeAndInvalidationTest.java
package com.jdojo.binding;

import javafx.beans.Observable;
import javafx.beans.property.IntegerProperty;
import javafx.beans.property.SimpleIntegerProperty;
import javafx.beans.value.ObservableValue;

public class ChangeAndInvalidationTest {
 public static void main(String[] args) {
 IntegerProperty counter = new SimpleIntegerProperty(100);

 // Add an invalidation listener to the counter property
 counter.addListener(ChangeAndInvalidationTest::invalidated);

 // Add a change listener to the counter property
 counter.addListener(ChangeAndInvalidationTest::changed);

 System.out.println("Before changing the counter value-1");
 counter.set(101);
 System.out.println("After changing the counter value-1");

 System.out.println("\nBefore changing the counter value-2");
 counter.set(102);
 System.out.println("After changing the counter value-2");

 // Try to set the same value
 System.out.println("\nBefore changing the counter value-3");
 counter.set(102);
 System.out.println("After changing the counter value-3");

 // Try to set a different value
 System.out.println("\nBefore changing the counter value-4");
 counter.set(103);
 System.out.println("After changing the counter value-4");
 }

 public static void invalidated(Observable prop) {
 System.out.println("Counter is invalid.");
 }

 public static void changed(ObservableValue<? extends Number> prop,
 Number oldValue,
 Number newValue) {
 System.out.print("Counter changed: ");
 System.out.println("old = " + oldValue + ", new = " + newValue);
 }
}

Chapter 2 ■ properties and Bindings

55

Before changing the counter value-1
Counter is invalid.
Counter changed: old = 100, new = 101
After changing the counter value-1

Before changing the counter value-2
Counter is invalid.
Counter changed: old = 101, new = 102
After changing the counter value-2

Before changing the counter value-3
After changing the counter value-3

Before changing the counter value-4
Counter is invalid.
Counter changed: old = 102, new = 103
After changing the counter value-4

Using Bindings in JavaFX
In JavaFX, a binding is an expression that evaluates to a value. It consists of one or more observable values
known as its dependencies. A binding observes its dependencies for changes and recomputes its value
automatically. JavaFX uses lazy evaluation for all bindings. When a binding is initially defined or when its
dependencies change, its value is marked as invalid. The value of an invalid binding is computed when it is
requested next time, usually using its get() or getValue() method. All property classes in JavaFX have
built-in support for binding.

Let’s look at a quick example of binding in JavaFX. Consider the following expression that represents the
sum of two integers x and y:

x + y

The expression, x + y, represents a binding, which has two dependencies: x and y. You can give it a
name sum as:

sum = x + y

To implement the above logic in JavaFX, you create two IntegerProperty variables: x and y:

IntegerProperty x = new SimpleIntegerProperty(100);
IntegerProperty y = new SimpleIntegerProperty(200);

The following statement creates a binding named sum that represents the sum of x and y:

NumberBinding sum = x.add(y);

A binding has an isValid() method that returns true if it is valid; otherwise, it returns false. You can get the
value of a NumberBinding using the methods intValue(), longValue(), floatValue(), and doubleValue()
as int, long, float, and double, respectively.

Chapter 2 ■ properties and Bindings

56

The program in Listing 2-13 shows how to create and use a binding based on the above discussion.
When the sum binding is created, it is invalid and it does not know its value. This is evident from the output.
Once you request its value, using the sum.initValue() method, it computes its value and marks itself as
valid. When you change one of its dependencies, it becomes invalid until you request its value again.

Listing 2-13. Using a Simple Binding

// BindingTest.java
package com.jdojo.binding;

import javafx.beans.binding.NumberBinding;
import javafx.beans.property.IntegerProperty;
import javafx.beans.property.SimpleIntegerProperty;

public class BindingTest {
 public static void main(String[] args) {
 IntegerProperty x = new SimpleIntegerProperty(100);
 IntegerProperty y = new SimpleIntegerProperty(200);

 // Create a binding: sum = x + y
 NumberBinding sum = x.add(y);

 System.out.println("After creating sum");
 System.out.println("sum.isValid(): " + sum.isValid());

 // Let us get the value of sum, so it computes its value and
 // becomes valid
 int value = sum.intValue();

 System.out.println("\nAfter requesting value");
 System.out.println("sum.isValid(): " + sum.isValid());
 System.out.println("sum = " + value);

 // Change the value of x
 x.set(250);

 System.out.println("\nAfter changing x");
 System.out.println("sum.isValid(): " + sum.isValid());

 // Get the value of sum again
 value = sum.intValue();

 System.out.println("\nAfter requesting value");
 System.out.println("sum.isValid(): " + sum.isValid());
 System.out.println("sum = " + value);
 }
}

Chapter 2 ■ properties and Bindings

57

After creating sum
sum.isValid(): false

After requesting value
sum.isValid(): true
sum = 300

After changing x
sum.isValid(): false

After requesting value
sum.isValid(): true
sum = 450

A binding, internally, adds invalidation listeners to all of its dependencies (Listing 2-14). When any of its

dependencies become invalid, it marks itself as invalid. An invalid binding does not mean that its value has
changed. All it means is that it needs to recompute its value when the value is requested next time.

In JavaFX, you can also bind a property to a binding. Recall that a binding is an expression that is
synchronized with its dependencies automatically. Using this definition, a bound property is a property
whose value is computed based on an expression, which is automatically synchronized when the
dependencies change. Suppose you have three properties, x, y, and z, as follows:

IntegerProperty x = new SimpleIntegerProperty(10);
IntegerProperty y = new SimpleIntegerProperty(20);
IntegerProperty z = new SimpleIntegerProperty(60);

You can bind the property z to an expression, x + y, using the bind() method of the Property interface
as follows:

z.bind(x.add(y));

Note that you cannot write z.bind(x + y) as the + operator does not know how to add the values of two
IntegerProperty objects. You need to use the binding API, as you did in the above statement, to create a
binding expression. I will cover the details of the binding API shortly.

Now, when x, y, or both change, the z property becomes invalid. The next time you request the value of
z, it recomputes the expression x.add(y) to get its value.

You can use the unbind() method of the Property interface to unbind a bound property. Calling the
unbind() method on an unbound or never bound property has no effect. You can unbind the z property
as follows:

z.unbind();

After unbinding, a property behaves as a normal property, maintaining its value independently.
Unbinding a property breaks the link between the property and its dependencies.

Chapter 2 ■ properties and Bindings

58

Listing 2-14. Binding a Property

// BoundProperty.java
package com.jdojo.binding;

import javafx.beans.property.IntegerProperty;
import javafx.beans.property.SimpleIntegerProperty;

public class BoundProperty {
 public static void main(String[] args) {
 IntegerProperty x = new SimpleIntegerProperty(10);
 IntegerProperty y = new SimpleIntegerProperty(20);
 IntegerProperty z = new SimpleIntegerProperty(60);
 z.bind(x.add(y));
 System.out.println("After binding z: Bound = " + z.isBound() +
 ", z = " + z.get());

 // Change x and y
 x.set(15);
 y.set(19);
 System.out.println("After changing x and y: Bound = " + z.isBound() +
 ", z = " + z.get());
 // Unbind z
 z.unbind();

 // Will not affect the value of z as it is not bound to x and y anymore
 x.set(100);
 y.set(200);
 System.out.println("After unbinding z: Bound = " + z.isBound() +
 ", z = " + z.get());
 }
}

After binding z: Bound = true, z = 30
After changing x and y: Bound = true, z = 34
After unbinding z: Bound = false, z = 34

Unidirectional and Bidirectional Bindings
A binding has a direction, which is the direction in which changes are propagated. JavaFX supports two
types of binding for properties: unidirectional binding and bidirectional binding. A unidirectional binding
works only in one direction; changes in dependencies are propagated to the bound property and not
vice versa. A bidirectional binding works in both directions; changes in dependencies are reflected in the
property and vice versa.

The bind() method of the Property interface creates a unidirectional binding between a property and
an ObservableValue, which could be a complex expression. The bindBidirectional() method creates a
bidirectional binding between a property and another property of the same type.

Chapter 2 ■ properties and Bindings

59

Suppose that x, y, and z are three instances of IntegerProperty. Consider the following bindings:

z = x + y

In JavaFX, the above binding can only be expressed as a unidirectional binding as follows:

z.bind(x.add(y));

Suppose you were able to use bidirectional binding in the above case. If you were able to change the
value of z to 100, how would you compute the values of x and y in the reverse direction? For z being 100,
there are an infinite number of possible combinations for x and y, for example, (99, 1), (98, 2), (101, -1),
(200, -100), and so on. Propagating changes from a bound property to its dependencies is not possible
with predictable results. This is the reason that binding a property to an expression is allowed only as a
unidirectional binding.

Unidirectional binding has a restriction. Once a property has a unidirectional binding, you cannot
change the value of the property directly; its value must be computed automatically based on the binding.
You must unbind it before changing its value directly. The following snippet of code shows this case:

IntegerProperty x = new SimpleIntegerProperty(10);
IntegerProperty y = new SimpleIntegerProperty(20);
IntegerProperty z = new SimpleIntegerProperty(60);
z.bind(x.add(y));

z.set(7878); // Will throw a RuntimeException

To change the value of z directly, you can type the following:

z.unbind(); // Unbind z first
z.set(7878); // OK

Unidirectional binding has another restriction. A property can have only one unidirectional binding at
a time. Consider the following two unidirectional bindings for a property z. Assume that x, y, z, a, and b are
five instances of IntegerProperty:

z = x + y
z = a + b

If x, y, a, and b are four different properties, the bindings shown above for z are not possible. Think
about x = 1, y = 2, a = 3, and b = 4. Can you define the value of z? Will it be 3 or 7? This is the reason that
a property can have only one unidirectional binding at a time.

Rebinding a property that already has a unidirectional binding unbinds the previous binding.
For example, the following snippet of code works fine:

IntegerProperty x = new SimpleIntegerProperty(1);
IntegerProperty y = new SimpleIntegerProperty(2);
IntegerProperty a = new SimpleIntegerProperty(3);
IntegerProperty b = new SimpleIntegerProperty(4);
IntegerProperty z = new SimpleIntegerProperty(0);

Chapter 2 ■ properties and Bindings

60

z.bind(x.add(y));
System.out.println("z = " + z.get());

z.bind(a.add(b)); // Will unbind the previous binding
System.out.println("z = " + z.get());

z = 3
z = 7

A bidirectional binding works in both directions. It has some restrictions. It can only be created

between properties of the same type. That is, a bidirectional binding can only be of the type x = y and
y = x, where x and y are of the same type.

Bidirectional binding removes some restrictions that are present for unidirectional binding. A property
can have multiple bidirectional bindings at the same time. A bidirectional bound property can also be
changed independently; the change is reflected in all properties that are bound to this property. That is, the
following bindings are possible, using the bidirectional bindings:

x = y
x = z

In the above case, the values of x, y, and z will always be synchronized. That is, all three properties
will have the same value, after the bindings are established. You can also establish bidirectional bindings
between x, y, and z as follows:

x = z
z = y

Now a question arises. Will both of the above bidirectional bindings end up having the same values in
x, y, and z? The answer is no. The value of the right-hand operand (see the above expressions for example)
in the last bidirectional binding is the value that is contained by all participating properties. Let me elaborate
this point. Suppose x is 1, y is 2, and z is 3, and you have the following bidirectional bindings:

x = y
x = z

The first binding, x = y, will set the value of x equal to the value of y. At this point, x and y will be 2.
The second binding, x = z, will set the value of x to be equal to the value of z. That is, x and z will be 3.
However, x already has a bidirectional binding to y, which will propagate the new value 3 of x to y as well.
Therefore, all three properties will have the same value as that of z. The program in Listing 2-15 shows how
to use bidirectional bindings.

Listing 2-15. Using Bidirectional Bindings

// BidirectionalBinding.java
package com.jdojo.binding;

import javafx.beans.property.IntegerProperty;
import javafx.beans.property.SimpleIntegerProperty;

Chapter 2 ■ properties and Bindings

61

public class BidirectionalBinding {
 public static void main(String[] args) {
 IntegerProperty x = new SimpleIntegerProperty(1);
 IntegerProperty y = new SimpleIntegerProperty(2);
 IntegerProperty z = new SimpleIntegerProperty(3);

 System.out.println("Before binding:");
 System.out.println("x=" + x.get() + ", y=" + y.get() + ", z=" + z.get());

 x.bindBidirectional(y);
 System.out.println("After binding-1:");
 System.out.println("x=" + x.get() + ", y=" + y.get() + ", z=" + z.get());

 x.bindBidirectional(z);
 System.out.println("After binding-2:");
 System.out.println("x=" + x.get() + ", y=" + y.get() + ", z=" + z.get());

 System.out.println("After changing z:");
 z.set(19);
 System.out.println("x=" + x.get() + ", y=" + y.get() + ", z=" + z.get());

 // Remove bindings
 x.unbindBidirectional(y);
 x.unbindBidirectional(z);
 System.out.println("After unbinding and changing them separately:");
 x.set(100);
 y.set(200);
 z.set(300);
 System.out.println("x=" + x.get() + ", y=" + y.get() + ", z=" + z.get());
 }
}

Before binding:
x=1, y=2, z=3
After binding-1:
x=2, y=2, z=3
After binding-2:
x=3, y=3, z=3
After changing z:
x=19, y=19, z=19
After unbinding and changing them separately:
x=100, y=200, z=300

Chapter 2 ■ properties and Bindings

62

Unlike a unidirectional binding, when you create a bidirectional binding, the previous bindings are not
removed because a property can have multiple bidirectional bindings. You must remove all bidirectional
bindings using the unbindBidirectional() method, calling it once for each bidirectional binding for a
property, as shown here:

// Create bidirectional bindings
x.bindBidirectional(y);
x.bindBidirectional(z);

// Remove bidirectional bindings
x.unbindBidirectional(y);
x.unbindBidirectional(z);

Understanding the Binding API
Previous sections gave you a quick and simple introduction to bindings in JavaFX. Now it’s time to dig
deeper and understand the binding API in detail. The binding API is divided into two categories:

High-level binding API•	

Low-level binding API•	

The high-level binding API lets you define binding using the JavaFX class library. For most use cases,
you can use the high-level binding API.

Sometimes the existing API is not sufficient to define a binding. In those cases, the low-level binding
API is used. In low-level binding API, you derive a binding class from an existing binding class and write
your own logic to define a binding.

The High-Level Binding API
The high-level binding API consists of two parts: the Fluent API and the Bindings class. You can define
bindings using only the Fluent API, only the Bindings class, or by combining the two. Let’s look at both
parts, first separately and then together.

Using the Fluent API
The Fluent API consists of several methods in different interfaces and classes. The API is called Fluent
because the method names, their parameters, and return types have been designed in such a way that they
allow writing the code fluently. The code written using the Fluent API is more readable as compared to code
written using nonfluent APIs. Designing a fluent API takes more time. A fluent API is more developer friendly
and less designer friendly. One of the features of a fluent API is method chaining; you can combine separate
method calls into one statement. Consider the following snippet of code to add three properties x, y, and z.
The code using a nonfluent API might look as follows:

x.add(y);
x.add(z);

Using a Fluent API, the above code may look as shown below, which gives readers a better
understanding of the intention of the writer:

x.add(y).add(z);

Chapter 2 ■ properties and Bindings

63

Figure 2-4 shows a class diagram for the IntegerBinding and IntegerProperty classes. The diagram
has omitted some of the interfaces and classes that fall into the IntegerProperty class hierarchy. Class
diagrams for long, float, and double types are similar.

Figure 2-4. A partial class diagram for IntegerBinding and IntegerProperty

Chapter 2 ■ properties and Bindings

64

Classes and interfaces from the ObservableNumberValue and Binding interfaces down to the
IntegerBinding class are part of the fluent binding API for the int data type. At first it may seem as if
there were many classes to learn. Most of the classes and interfaces exist in properties and binding APIs
to avoid boxing and unboxing of primitive values. To learn the fluent binding API, you need to focus on
XXXExpression and XXXBinding classes and interfaces. The XXXExpression classes have the methods that
are used to create binding expressions.

The Binding Interface

An instance of the Binding interface represents a value that is derived from one or more sources known as
dependencies. It has the following four methods:

•	 public void dispose()

•	 public ObservableList<?> getDependencies()

•	 public void invalidate()

•	 public boolean isValid()

The dispose() method, whose implementation is optional, indicates to a Binding that it will no longer
be used, so it can remove references to other objects. The binding API uses weak invalidation listeners
internally, making the call to this method unnecessary.

The getDependencies() method, whose implementation is optional, returns an unmodifiable
ObservableList of dependencies. It exists only for debugging purposes. This method should not be used in
production code.

A call to the invalidate() method invalidates a Binding. The isValid() method returns true if a
Binding is valid. Otherwise, it returns false.

The NumberBinding Interface

The NumberBinding interface is a marker interface whose instance wraps a numeric value of int, long,
float, or double type. It is implemented by DoubleBinding, FloatBinding, IntegerBinding, and
LongBinding classes.

The ObservableNumberValue Interface

An instance of the ObservableNumberValue interface wraps a numeric value of int, long, float, or double
type. It provides the following four methods to get the value:

•	 double doubleValue()

•	 float floatValue()

•	 int intValue()

•	 long longValue()

Chapter 2 ■ properties and Bindings

65

You used the intValue() method provided in Listing 2-13 to get the int value from a NumberBinding
instance. The code you use would be:

IntegerProperty x = new SimpleIntegerProperty(100);
IntegerProperty y = new SimpleIntegerProperty(200);

// Create a binding: sum = x + y
NumberBinding sum = x.add(y);
int value = sum.intValue(); // Get the int value

The ObservableIntegerValue Interface

The ObservableIntegerValue interface defines a get() method that returns the type specific int value.

The NumberExpression Interface

The NumberExpression interface contains several convenience methods to create bindings using a fluent
style. It has over 50 methods, and most of them are overloaded. These methods return a Binding type
such as NumberBinding, BooleanBinding, and so on. Table 2-2 lists the methods in the NumberExpression
interface. Most of the methods are overloaded. The table does not show the method arguments.

Table 2-2. Summary of the Methods in the NumberExpression Interface

Method Name Return Type Description

add()

subtract()

multiply()

divide()

NumberBinding These methods create a new NumberBinding that
is the sum, difference, product, and division of
the NumberExpression, and a numeric value or an
ObservableNumberValue.

greaterThan()

greaterThanOrEqualTo()

isEqualTo()

isNotEqualTo()

lessThan()

lessThanOrEqualTo()

BooleanBinding These methods create a new BooleanBinding that stores
the result of the comparison of the NumberExpression
and a numeric value or an ObservableNumberValue.
Method names are clear enough to tell what kind of
comparisons they perform.

negate() NumberBinding It creates a new NumberBinding that is the negation of
the NumberExpression.

asString() StringBinding It creates a StringBinding that holds the value of the
NumberExpression as a String object. This method also
supports locale-based string formatting.

Chapter 2 ■ properties and Bindings

66

The methods in the NumberExpression interface allow for mixing types (int, long, float, and
double) while defining a binding, using an arithmetic expression. When the return type of a method in
this interface is NumberBinding, the actual returned type would be of IntegerBinding, LongBinding,
FloatBinding, or DoubleBinding. The binding type of an arithmetic expression is determined by the
same rules as the Java programming language. The results of an expression depend on the types of the
operands. The rules are as follows:

If one of the operands is a •	 double, the result is a double.

If none of the operands is a •	 double and one of them is a float, the result is a float.

If none of the operands is a •	 double or a float and one of them is a long, the
result is a long.

Otherwise, the result is an •	 int.

Consider the following snippet of code:

IntegerProperty x = new SimpleIntegerProperty(1);
IntegerProperty y = new SimpleIntegerProperty(2);
NumberBinding sum = x.add(y);
int value = sum.intValue();

The number expression x.add(y) involves only int operands (x and y are of int type). Therefore,
according to the above rules, its result is an int value and it returns an IntegerBinding object. Because the
add() method in the NumberExpression specifies the return type as NumberBinding, a NumberBinding type is
used to store the result. You have to use the intValue() method from the ObservableNumberValue interface.
You can rewrite the above snippet of code as follows:

IntegerProperty x = new SimpleIntegerProperty(1);
IntegerProperty y = new SimpleIntegerProperty(2);

// Casting to IntegerBinding is safe
IntegerBinding sum = (IntegerBinding)x.add(y);
int value = sum.get();

The NumberExpressionBase class is an implementation of the NumberExpression interface. The
IntegerExpression class extends the NumberExpressionBase class. It overrides methods in its superclass to
provide a type-specific return type.

The program in Listing 2-16 creates a DoubleBinding that computes the area of a circle. It also creates a
DoubleProperty and binds it to the same expression to compute the area. It is your choice whether you want
to work with Binding objects or bound property objects. The program shows you both approaches.

Listing 2-16. Computing the Area of a Circle from Its Radius Using Fluent Binding API

// CircleArea.java
package com.jdojo.binding;

import javafx.beans.binding.DoubleBinding;
import javafx.beans.property.DoubleProperty;
import javafx.beans.property.SimpleDoubleProperty;

Chapter 2 ■ properties and Bindings

67

public class CircleArea {
 public static void main(String[] args) {
 DoubleProperty radius = new SimpleDoubleProperty(7.0);

 // Create a binding for computing arae of the circle
 DoubleBinding area = radius.multiply(radius).multiply(Math.PI);

 System.out.println("Radius = " + radius.get() +
 ", Area = " + area.get());

 // Change the radius
 radius.set(14.0);
 System.out.println("Radius = " + radius.get() +

", Area = " + area.get());

 // Create a DoubleProperty and bind it to an expression
 // that computes the area of the circle
 DoubleProperty area2 = new SimpleDoubleProperty();
 area2.bind(radius.multiply(radius).multiply(Math.PI));
 System.out.println("Radius = " + radius.get() +
 ", Area2 = " + area2.get());
 }
}

Radius = 7.0, Area = 153.93804002589985
Radius = 14.0, Area = 615.7521601035994
Radius = 14.0, Area2 = 615.7521601035994

The StringBinding Class

The class diagram containing classes in the binding API that supports binding of String type is depicted
in Figure 2-5.

Chapter 2 ■ properties and Bindings

68

The ObservableStringValue interface declares a get() method whose return type is String. The
methods in the StringExpression class let you create binding using a fluent style. Methods are provided
to concatenate an object to the StringExpression, compare two strings, check for null, among others.
It has two methods to get its value: getValue() and getValueSafe(). Both return the current value.
However, the latter returns an empty String when the current value is null.

The program in Listing 2-17 shows how to use StringBinding and StringExpression classes.
The concat() method in the StringExpression class takes an Object type as an argument. If the argument
is an ObservableValue, the StringExpression is updated automatically when the argument changes.
Note the use of the asString() method on the radius and area properties. The asString() method on a
NumberExpression returns a StringBinding.

Figure 2-5. A partial class diagram for StringBinding

Chapter 2 ■ properties and Bindings

69

Listing 2-17. Using StringBinding and StringExpression

// StringExpressionTest.java
package com.jdojo.binding;

import java.util.Locale;
import javafx.beans.binding.StringExpression;
import javafx.beans.property.DoubleProperty;
import javafx.beans.property.SimpleDoubleProperty;
import javafx.beans.property.SimpleStringProperty;
import javafx.beans.property.StringProperty;

public class StringExpressionTest {
 public static void main(String[] args) {
 DoubleProperty radius = new SimpleDoubleProperty(7.0);
 DoubleProperty area = new SimpleDoubleProperty(0);
 StringProperty initStr = new SimpleStringProperty("Radius = ");

 // Bind area to an expression that computes the area of the circle
 area.bind(radius.multiply(radius).multiply(Math.PI));

 // Create a string expression to describe the circle
 StringExpression desc = initStr.concat(radius.asString())
 .concat(", Area = ")
 .concat(area.asString(Locale.US, "%.2f"));

 System.out.println(desc.getValue());

 // Change the radius
 radius.set(14.0);
 System.out.println(desc.getValue());
 }
}

Radius = 7.0, Area = 153.94
Radius = 14.0, Area = 615.75

The ObjectExpression and ObjectBinding Classes

Now it’s time for ObjectExpression and ObjectBinding classes to create bindings of any type of objects.
Their class diagram is very similar to that of the StringExpression and StringBinding classes. The
ObjectExpression class has methods to compare objects for equality and to check for null values. The
program in Listing 2-18 shows how to use the ObjectBinding class.

Listing 2-18. Using the ObjectBinding Class

// ObjectBindingTest.java
package com.jdojo.binding;

import javafx.beans.binding.BooleanBinding;
import javafx.beans.property.ObjectProperty;
import javafx.beans.property.SimpleObjectProperty;

Chapter 2 ■ properties and Bindings

70

public class ObjectBindingTest {
 public static void main(String[] args) {
 Book b1 = new Book("J1", 90, "1234567890");
 Book b2 = new Book("J2", 80, "0123456789");
 ObjectProperty<Book> book1 = new SimpleObjectProperty<>(b1);
 ObjectProperty<Book> book2 = new SimpleObjectProperty<>(b2);

 // Create a binding that computes if book1 and book2 are equal
 BooleanBinding isEqual = book1.isEqualTo(book2);
 System.out.println(isEqual.get());

 book2.set(b1);
 System.out.println(isEqual.get());
 }
}

false
true

The BooleanExpression and BooleanBinding Classes

The BooleanExpression class contains methods such as and(), or(), and not() that let you use boolean
logical operators in an expression. Its isEqualTo() and isNotEqualTo() methods let you compare a
BooleanExpression with another ObservableBooleanValue. The result of a BooleanExpression is
true or false.

The program in Listing 2-19 shows how to use the BooleanExpression class. It creates a boolean
expression, x > y && y <> z, using a fluent style. Note that the greaterThan() and isNotEqualTo()
methods are defined in the NumberExpression interface. The program only uses the and() method from the
BooleanExpression class.

Listing 2-19. Using BooleanExpression and BooleanBinding

// BooelanExpressionTest.java
package com.jdojo.binding;

import javafx.beans.binding.BooleanExpression;
import javafx.beans.property.IntegerProperty;
import javafx.beans.property.SimpleIntegerProperty;

public class BooelanExpressionTest {
 public static void main(String[] args) {
 IntegerProperty x = new SimpleIntegerProperty(1);
 IntegerProperty y = new SimpleIntegerProperty(2);
 IntegerProperty z = new SimpleIntegerProperty(3);

 // Create a boolean expression for x > y && y <> z
 BooleanExpression condition = x.greaterThan(y).and(y.isNotEqualTo(z));

 System.out.println(condition.get());

Chapter 2 ■ properties and Bindings

71

 // Make the condition true by setting x to 3
 x.set(3);
 System.out.println(condition.get());
 }
}

false
true

Using Ternary Operation in Expressions
The Java programming language offers a ternary operator, (condition?value1:value2), to perform a
ternary operation of the form when-then-otherwise. The JavaFX binding API has a When class for this purpose.
The general syntax of using the When class is shown here:

new When(condition).then(value1).otherwise(value2)

The condition must be an ObservableBooleanValue. When the condition evaluates to true, it returns
value1. Otherwise, it returns value2. The types of value1 and value2 must be the same. Values may be
constants or instances of ObservableValue.

Let’s use a ternary operation that returns a String even or odd depending on whether the value of an
IntegerProperty is even or odd, respectively. The Fluent API does not have a method to compute modulus.
You will have to do this yourself. Perform an integer division by 2 on an integer and multiply the result by 2.
If you get the same number back, the number is even. Otherwise, the number is odd. For example, using an
integer division, (7/2)*2, results in 6, and not 7. Listing 2-20 provides the complete program.

Listing 2-20. Using the When Class to Perform a Ternary Operation

// TernaryTest.java
package com.jdojo.binding;

import javafx.beans.binding.When;
import javafx.beans.property.IntegerProperty;
import javafx.beans.property.SimpleIntegerProperty;
import javafx.beans.binding.StringBinding;

public class TernaryTest {
 public static void main(String[] args) {
 IntegerProperty num = new SimpleIntegerProperty(10);
 StringBinding desc = new When(num.divide(2).multiply(2).isEqualTo(num))
 .then("even")
 .otherwise("odd");

 System.out.println(num.get() + " is " + desc.get());

 num.set(19);
 System.out.println(num.get() + " is " + desc.get());
 }
}

10 is even
19 is odd

Chapter 2 ■ properties and Bindings

72

Using the Bindings Utility Class
The Bindings class is a helper class to create simple bindings. It consists of more than 150 static methods.
Most of them are overloaded with several variants. I will not list or discuss all of them. Please refer to the
online JavaFX API documentation to get the complete list of methods. Table 2-3 lists the methods of the
Bindings class and their descriptions. It has excluded methods belonging to collections binding.

Table 2-3. Summary of Methods in the Bindings Class

Method Name Description

add()

subtract()

multiple()

divide()

They create a binding by applying an arithmetic operation, indicated by their
names, on two of its arguments. At least one of the arguments must be an
ObservableNumberValue. If one of the arguments is a double, its return type
is DoubleBinding; otherwise, its return type is NumberBinding.

and() It creates a BooleanBinding by applying the boolean and to two of its
arguments.

bindBidirectional()

unbindBidirectional()

They create and delete a bidirectional binding between two properties.

concat() It returns a StringExpression that holds the value of the concatenation of its
arguments. It takes a varargs argument.

convert() It returns a StringExpression that wraps its argument.

createXXXBinding() It lets you create a custom binding of XXX type, where XXX could be Boolean,
Double, Float, Integer, String, and Object.

equal()

notEqual()

equalIgnoreCase()

notEqualIgnoreCase()

They create a BooleanBinding that wraps the result of comparing two of its
arguments being equal or not equal. Some variants of the methods allow
passing a tolerance value. If two arguments are within the tolerance, they are
considered equal. Generally, a tolerance value is used to compare floating-point
numbers. The ignore case variants of the methods work only on String type.

format() It creates a StringExpression that holds the value of multiple objects
formatted according to a specified format String.

greaterThan()

greaterThanOrEqual()

lessThan()

lessThanOrEqual()

They create a BooleanBinding that wraps the result of comparing arguments.

isNotNull

isNull

They create a BooleanBinding that wraps the result of comparing the
argument with null.

max()

min()

They create a binding that holds the maximum and minimum of
two arguments of the method. One of the arguments must be an
ObservableNumberValue.

negate() It creates a NumberBinding that holds the negation of an
ObservableNumberValue.

(continued)

Chapter 2 ■ properties and Bindings

73

Most of our examples using the Fluent API can also be written using the Bindings class. The program in
Listing 2-21 is similar to the one in Listing 2-17. It uses the Bindings class instead of the Fluent API. It uses
the multiply() method to compute the area and the format() method to format the results. There may be
several ways of doing the same thing. For formatting the result, you can also use the Bindings.concat()
method, as shown here:

StringExpression desc = Bindings.concat("Radius = ", radius.asString(Locale.US, "%.2f"),
 ", Area = ", area.asString(Locale.US, "%.2f"));

Listing 2-21. Using the Bindings Class

// BindingsClassTest.java
package com.jdojo.binding;

import java.util.Locale;
import javafx.beans.binding.Bindings;
import javafx.beans.binding.StringExpression;
import javafx.beans.property.DoubleProperty;
import javafx.beans.property.SimpleDoubleProperty;

public class BindingsClassTest {
 public static void main(String[] args) {
 DoubleProperty radius = new SimpleDoubleProperty(7.0);
 DoubleProperty area = new SimpleDoubleProperty(0.0);

 // Bind area to an expression that computes the area of the circle
 area.bind(Bindings.multiply(Bindings.multiply(radius, radius), Math.PI));

Table 2-3. (continued)

Method Name Description

not() It creates a BooleanBinding that holds the inverse of an
ObservableBooleanValue.

or() It creates a BooleanBinding that holds the result of applying the conditional
or operation on its two ObservableBooleanValue arguments.

selectXXX() It creates a binding to select a nested property. The nested property may
be of the type a.b.c. The value of the binding will be c. The classes and
properties involved in the expression like a.b.c must be public. If any part of
the expression is not accessible, because they are not public or they do not
exist, the default value for the type, for example, null for Object type, an
empty String for String type, 0 for numeric type, and false for boolean
type, is the value of the binding. (Later I will discuss an example of using the
select() method.)

when() It creates an instance of the When class taking a condition as an argument.

Chapter 2 ■ properties and Bindings

74

 // Create a string expression to describe the circle
 StringExpression desc = Bindings.format(Locale.US,
 "Radius = %.2f, Area = %.2f", radius, area);

 System.out.println(desc.get());

 // Change the radius
 radius.set(14.0);
 System.out.println(desc.getValue());
 }
}

Radius = 7.00, Area = 153.94
Radius = 14.00, Area = 615.75

Let’s look at an example of using the selectXXX() method of the Bindings class. It is used to create a

binding for a nested property. In the nested hierarchy, all classes and properties must be public. Suppose
you have an Address class that has a zip property and a Person class that has an addr property. The classes
are shown in Listing 2-22 and Listing 2-23, respectively.

Listing 2-22. An Address Class

// Address.java
package com.jdojo.binding;

import javafx.beans.property.SimpleStringProperty;
import javafx.beans.property.StringProperty;

public class Address {
 private StringProperty zip = new SimpleStringProperty("36106");

 public StringProperty zipProperty() {
 return zip;
 }
}

Listing 2-23. An Person Class

// Person.java
package com.jdojo.binding;

import javafx.beans.property.ObjectProperty;
import javafx.beans.property.SimpleObjectProperty;

public class Person {
 private ObjectProperty<Address> addr = new SimpleObjectProperty(new Address());

 public ObjectProperty<Address> addrProperty() {
 return addr;
 }
}

Chapter 2 ■ properties and Bindings

75

Suppose you create an ObjectProperty of the Person class as follows:

ObjectProperty<Person> p = new SimpleObjectProperty(new Person());

Using the Bindings.selectString() method, you can create a StringBinding for the zip property of
the addr property of the Person object as shown here:

// Bind p.addr.zip
StringBinding zipBinding = Bindings.selectString(p, "addr", "zip");

The above statement gets a binding for the StringProperty zip, which is a nested property of the addr
property of the object p. A property in the selectXXX() method may have multiple levels of nesting. You can
have a selectXXX() call like:

StringBinding xyzBinding = Bindings.selectString(x, "a", "b", "c", "d");

Note ■ JavaFX 2.2 api documentation states that Bindings.selectString() returns an empty String if
any of its property arguments is inaccessible. however, the runtime returns null.

Listing 2-24 shows the use of the selectString() method. The program prints the values of the zip property
twice: once for its default value and once for its changed value. At the end, it tries to bind a nonexistent
property p.addr.state. Binding to a nonexistent property is not a runtime error. When I ran the program
in the latest Java Development Kit 8 release, accessing the property p.addr.state resulted in a runtime
NoSuchMethodException that seems to be a bug; earlier it returned null without throwing the exception.

Listing 2-24. Using the selectXXX() Method of the Bindings Class

// BindNestedProperty.java
package com.jdojo.binding;

import javafx.beans.binding.Bindings;
import javafx.beans.binding.StringBinding;
import javafx.beans.property.ObjectProperty;
import javafx.beans.property.SimpleObjectProperty;
import javafx.beans.property.SimpleStringProperty;
import javafx.beans.property.StringProperty;

public class BindNestedProperty {
 public static class Address {
 private StringProperty zip = new SimpleStringProperty("36106");

 public StringProperty zipProperty() {
 return zip;
 }

Chapter 2 ■ properties and Bindings

76

 public String getZip() {
 return zip.get();
 }

 public void setZip(String newZip) {
 zip.set(newZip);
 }
 }

 public static class Person {
 private ObjectProperty<Address> addr =
 new SimpleObjectProperty(new Address());

 public ObjectProperty<Address> addrProperty() {
 return addr;
 }

 public Address getAddr() {
 return addr.get();
 }

 public void setZip(Address newAddr) {
 addr.set(newAddr);
 }
 }

 public static void main(String[] args) {
 ObjectProperty<Person> p = new SimpleObjectProperty(new Person());

 // Bind p.addr.zip
 StringBinding zipBinding = Bindings.selectString(p, "addr", "zip");
 System.out.println(zipBinding.get());

 // Change the zip
 p.get().addrProperty().get().setZip("35217");
 System.out.println(zipBinding.get());

 // Bind p.addr.state, which does not exist
 StringBinding stateBinding = Bindings.selectString(p, "addr", "state");
 System.out.println(stateBinding.get());
 }
}

36106
35217
null

Chapter 2 ■ properties and Bindings

77

Combining the Fluent API and the Bindings Class
While using the high-level binding API, you can use the fluent and Bindings class APIs in the same binding
expression. The following snippet of code shows this approach:

DoubleProperty radius = new SimpleDoubleProperty(7.0);
DoubleProperty area = new SimpleDoubleProperty(0);

// Combine the Fluent API and Bindings class API
area.bind(Bindings.multiply(Math.PI, radius.multiply(radius)));

Using the Low-Level Binding API
The high-level binding API is not sufficient in all cases. For example, it does not provide a method to
compute the square root of an Observable number. If the high-level binding API becomes too cumbersome
to use or it does not provide what you need, you can use the low-level binding API. It gives you power and
flexibility at the cost of a few extra lines of code. The low-level API allows you to use the full potential of the
Java programming language to define bindings.

Using the low-level binding API involves the following three steps:

 1. Create a class that extends one of the binding classes. For example, if you want to
create a DoubleBinding, you need to extend the DoubleBinding class.

 2. Call the bind() method of the superclass to bind all dependencies. Note that
all binding classes have a bind() method implementation. You need to call this
method passing all dependencies as arguments. Its argument type is a varargs of
Observable type.

 3. Override the computeValue() method of the superclass to write the logic for your
binding. It calculates the current value of the binding. Its return type is the same
as the type of the binding, for example, it is double for a DoubleBinding, String
for a StringBinding, and so forth.

Additionally, you can override some methods of the binding classes to provide more functionality to
your binding. You can override the dispose() method to perform additional actions when a binding is
disposed. The getDependencies() method may be overridden to return the list of dependencies for the
binding. Overriding the onInvalidating() method is needed if you want to perform additional actions
when the binding becomes invalid.

Consider the problem of computing the area of a circle. The following snippet of code uses the low-level
API to do this:

final DoubleProperty radius = new SimpleDoubleProperty(7.0);
DoubleProperty area = new SimpleDoubleProperty(0);

DoubleBinding areaBinding = new DoubleBinding() {
 {
 this.bind(radius);
 }

Chapter 2 ■ properties and Bindings

78

 @Override
 protected double computeValue() {
 double r = radius.get();
 double area = Math.PI * r * r;
 return area;
 }
};

area.bind(areaBinding); // Bind the area property to the areaBinding

The above snippet of code creates an anonymous class, which extends the DoubleBinding class.
It calls the bind() method, passing the reference of the radius property. An anonymous class does not have
a constructor, so you have to use an instance initializer to call the bind() method. The computeValue()
method computes and returns the area of the circle. The radius property has been declared final, because
it is being used inside the anonymous class.

The program in Listing 2-25 shows how to use the low-level binding API. It overrides the
computeValue() method for the area binding. For the description binding, it overrides the dispose(),
getDependencies(), and onInvalidating() methods as well.

Listing 2-25. Using the Low-Level Binding API to Compute the Area of a Circle

// LowLevelBinding.java
package com.jdojo.binding;

import java.util.Formatter;
import java.util.Locale;
import javafx.beans.binding.DoubleBinding;
import javafx.beans.binding.StringBinding;
import javafx.beans.property.DoubleProperty;
import javafx.beans.property.SimpleDoubleProperty;
import javafx.collections.FXCollections;
import javafx.collections.ObservableList;

public class LowLevelBinding {
 public static void main(String[] args) {
 final DoubleProperty radius = new SimpleDoubleProperty(7.0);
 final DoubleProperty area = new SimpleDoubleProperty(0);

 DoubleBinding areaBinding = new DoubleBinding() {
 {
 this.bind(radius);
 }

 @Override
 protected double computeValue() {
 double r = radius.get();
 double area = Math.PI * r *r;
 return area;
 }
 };

Chapter 2 ■ properties and Bindings

79

 // Bind area to areaBinding
 area.bind(areaBinding);

 // Create a StringBinding
 StringBinding desc = new StringBinding() {
 {
 this.bind(radius, area);
 }

 @Override
 protected String computeValue() {
 Formatter f = new Formatter();
 f.format(Locale.US, "Radius = %.2f, Area = %.2f",
 radius.get(), area.get());
 String desc = f.toString();
 return desc;
 }

 @Override
 public ObservableList<?> getDependencies() {
 return FXCollections.unmodifiableObservableList(
 FXCollections.observableArrayList(radius, area));
 }

 @Override
 public void dispose() {
 System.out.println("Description binding is disposed.");
 }

 @Override
 protected void onInvalidating() {
 System.out.println("Description is invalid.");
 }
 };

 System.out.println(desc.getValue());

 // Change the radius
 radius.set(14.0);
 System.out.println(desc.getValue());
 }
}

Radius = 7.00, Area = 153.94
Description is invalid.
Radius = 14.00, Area = 615.75

Chapter 2 ■ properties and Bindings

80

Using Bindings to Center a Circle
Let’s look at an example of a JavaFX GUI application that uses bindings. You will create a screen with a circle,
which will be centered on the screen, even after the screen is resized. The circumference of the circle will
touch the closer sides of the screen. If the width and height of the screen is the same, the circumference of
the circle will touch all four sides of the screen.

Attempting to develop the screen, with a centered circle, without bindings is a tedious task. The Circle
class in the javafx.scene.shape package represents a circle. It has three properties—centerX, centerY, and
radius—of the DoubleProperty type. The centerX and centerY properties define the (x, y) coordinates of
the center of the circle. The radius property defines the radius of the circle. By default, a circle is filled with
black color.

You create a circle with centerX, centerY, and radius set to the default value of 0.0 as follows:

Circle c = new Circle();

Next, add the circle to a group and create a scene with the group as its root node as shown here:

Group root = new Group(c);
Scene scene = new Scene(root, 150, 150);

The following bindings will position and size the circle according to the size of the scene:

c.centerXProperty().bind(scene.widthProperty().divide(2));
c.centerYProperty().bind(scene.heightProperty().divide(2));
c.radiusProperty().bind(Bindings.min(scene.widthProperty(), scene.heightProperty())
 .divide(2));

The first two bindings bind the centerX and centerY of the circle to the middle of the width and height
of the scene, respectively. The third binding binds the radius of the circle to the half (see divide(2)) of the
minimum of the width and the height of the scene. That’s it! The binding API does the magic of keeping the
circle centered when the application is run.

Listing 2-26 has the complete program. Figure 2-6 shows the screen when the program is initially run.
Figure 2-7 shows the screen when the screen is stretched horizontally. Try stretching the screen vertically
and you will notice that the circumference of the circle touches only the left and right sides of the screen.

Listing 2-26. Using the Binding API to Keep a Circle Centered in a Scene

// CenteredCircle.java
package com.jdojo.binding;

import javafx.application.Application;
import javafx.beans.binding.Bindings;
import javafx.scene.Group;
import javafx.scene.Scene;
import javafx.scene.shape.Circle;
import javafx.stage.Stage;

public class CenteredCircle extends Application {
 public static void main(String[] args) {
 Application.launch(args);
 }

Chapter 2 ■ properties and Bindings

81

 @Override
 public void start(Stage stage) {
 Circle c = new Circle();
 Group root = new Group(c);
 Scene scene = new Scene(root, 100, 100);

 // Bind the centerX, centerY, and radius to the scene width and height
 c.centerXProperty().bind(scene.widthProperty().divide(2));
 c.centerYProperty().bind(scene.heightProperty().divide(2));
 c.radiusProperty().bind(Bindings.min(scene.widthProperty(),
 scene.heightProperty())
 .divide(2));

 // Set the stage properties and make it visible
 stage.setTitle("Binding in JavaFX");
 stage.setScene(scene);
 stage.sizeToScene();
 stage.show();
 }
}

Figure 2-7. The screen when the screen for the CenteredCircle program is stretched horizontally

Figure 2-6. The screen when the CenteredCircle program is initially run

Chapter 2 ■ properties and Bindings

82

Summary
A Java class may contain two types of members: fields and methods. Fields represent the state of its objects
and they are declared private. Public methods, known as accessors, or getters and setters, are used to read and
modify private fields. A Java class having public accessors for all or part of its private fields is known as a Java
bean, and the accessors define the properties of the bean. Properties of a Java bean allow users to customize
its state, behavior, or both.

JavaFX supports properties, events, and binding through properties and binding APIs. Properties
support in JavaFX is a huge leap forward from the JavaBeans properties. All properties in JavaFX are
observable. They can be observed for invalidation and value changes. You can have read/write or
read-only properties. All read/write properties support binding. In JavaFX, a property can represent a value
or a collection of values.

A property generates an invalidation event when the status of its value changes from valid to invalid for
the first time. Properties in JavaFX use lazy evaluation. When an invalid property becomes invalid again, an
invalidation event is not generated. An invalid property becomes valid when it is recomputed.

In JavaFX, a binding is an expression that evaluates to a value. It consists of one or more observable
values known as its dependencies. A binding observes its dependencies for changes and recomputes its
value automatically. JavaFX uses lazy evaluation for all bindings. When a binding is initially defined or when
its dependencies change, its value is marked as invalid. The value of an invalid binding is computed when it
is requested next time. All property classes in JavaFX have built-in support for binding.

A binding has a direction, which is the direction in which changes are propagated. JavaFX supports two
types of binding for properties: unidirectional binding and bidirectional binding. A unidirectional binding
works only in one direction; changes in dependencies are propagated to the bound property, not vice versa.
A bidirectional binding works in both directions; changes in dependencies are reflected in the property and
vice versa.

The binding API in JavaFX is divided into two categories: high-level binding API and low-level binding
API. The high-level binding API lets you define binding using the JavaFX class library. For most use cases,
you can use the high-level binding API. Sometimes, the existing API is not sufficient to define a binding.
In those cases, the low-level binding API is used. In low-level binding API, you derive a binding class from
an existing binding class and write your own logic to define the binding.

The next chapter will introduce you to observable collections in JavaFX.

83

Chapter 3

Observable Collections

In this chapter, you will learn:

What observable collections in JavaFX are•	

How to observe observable collections for invalidations and changes•	

How to use observable collections as properties•	

What Are Observable Collections?
Observable collections in JavaFX are extensions to collections in Java. The collections framework in Java has
the List, Set, and Map interfaces. JavaFX adds the following three types of observable collections that may be
observed for changes in their contents:

An observable list•	

An observable set•	

An observable map•	

JavaFX supports these types of collections through three new interfaces:

•	 ObservableList

•	 ObservableSet

•	 ObservableMap

These interfaces inherit from List, Set, and Map from the java.util package. In addition to inheriting
from the Java collection interfaces, JavaFX collection interfaces also inherit the Observable interface. All
JavaFX observable collection interfaces and classes are in the javafx.collections package. Figure 3-1
shows a partial class diagram for the ObservableList, ObservableSet, and ObservableMap interfaces.

Chapter 3 ■ Observable COlleCtiOns

84

The observable collections in JavaFX have two additional features:

They support invalidation notifications as they are inherited from the •	 Observable
interface.

They support change notifications. You can register change listeners to them, which •	
are notified when their contents change.

The javafx.collections.FXCollections class is a utility class to work with JavaFX collections. It
consists of all static methods.

JavaFX does not expose the implementation classes of observable lists, sets, and maps. You need
to use one of the factory methods in the FXCollections class to create objects of the ObservableList,
ObservableSet, and ObservableMap interfaces.

Tip ■ in simple terms, an observable collection in JavaFX is a list, set, or map that may be observed for
invalidation and content changes.

Understanding ObservableList
An ObservableList is a java.util.List and an Observable with change notification features. Figure 3-2
shows the class diagram for the ObservableList interface.

Figure 3-1. A partial class diagram for observable collection interfaces in JavaFX

Chapter 3 ■ Observable COlleCtiOns

85

The addListener() and removeListener() methods in the ObservableList interface allow you to add
and remove ListChangeListeners, respectively. Other methods perform operations on the list, which affect
multiple elements.

If you want to receive notifications when changes occur in an ObservableList, you need to add a
ListChangeListener interface whose onChanged() method is called when a change occurs in the list. The
Change class is a static inner class of the ListChangeListener interface. A Change object contains a report of
the changes in an ObservableList. It is passed to the onChanged() method of the ListChangeListener.
I will discuss list change listeners in detail later in this section.

You can add or remove invalidation listeners to or from an ObservableList using the following two
methods that it inherits from the Observable interface:

•	 void addListener(InvalidationListener listener)

•	 void removeListener(InvalidationListener listener)

Note that an ObservableList contains all of the methods of the List interface as it inherits them from
the List interface.

Tip ■ JavaFX library provides two classes named FilteredList and SortedList that are in the
javafx.collections.transformation package. a FilteredList is an ObservableList that filters its
contents using a specified Predicate. a SortedList sorts its contents. i will not discuss these classes in this
chapter. all discussions of observable lists apply to the objects of these classes as well.

Figure 3-2. A class diagram for the ObservableList interface

Chapter 3 ■ Observable COlleCtiOns

86

Creating an ObservableList
You need to use one of the following factory methods of the FXCollections class to create an
ObservableList:

•	 <E> ObservableList<E> emptyObservableList()

•	 <E> ObservableList<E> observableArrayList()

•	 <E> ObservableList<E> observableArrayList(Collection<? extends E> col)

•	 <E> ObservableList<E> observableArrayList(E... items)

•	 <E> ObservableList<E> observableList(List<E> list)

•	 <E> ObservableList<E> observableArrayList(Callback<E, Observable[]>
extractor)

•	 <E> ObservableList<E> observableList(List<E> list, Callback<E,
Observable[]> extractor)

The emptyObservableList() method creates an empty, unmodifiable ObservableList. Often, this
method is used when you need an ObservableList to pass to a method as an argument and you do not have
any elements to pass to that list. You can create an empty ObservableList of String as follows:

ObservableList<String> emptyList = FXCollections.emptyObservableList();

The observableArrayList() method creates an ObservableList backed by an ArrayList. Other
variants of this method create an ObservableList whose initial elements can be specified in a Collection as
a list of items or as a List.

The last two methods in the above list create an ObservableList whose elements can be observed
for updates. They take an extractor, which is an instance of the Callback<E, Observable[]> interface. An
extractor is used to get the list of Observable values to observe for updates. I will cover the use of these two
methods in the “Observing an ObservableList for Updates” section.

Listing 3-1 shows how to create observable lists and how to use some of the methods of the
ObservableList interface to manipulate the lists. At the end, it shows how to use the concat() method of
the FXCollections class to concatenate elements of two observable lists.

Listing 3-1. Creating and Manipulating Observable Lists

// ObservableListTest.java
package com.jdojo.collections;

import javafx.collections.FXCollections;
import javafx.collections.ObservableList;

public class ObservableListTest {
 public static void main(String[] args) {
 // Create a list with some elements
 ObservableList<String> list = FXCollections.observableArrayList("one", "two");
 System.out.println("After creating list: " + list);

 // Add some more elements to the list
 list.addAll("three", "four");
 System.out.println("After adding elements: " + list);

Chapter 3 ■ Observable COlleCtiOns

87

 // You have four elements. Remove the middle two
 // from index 1 (inclusive) to index 3 (exclusive)
 list.remove(1, 3);
 System.out.println("After removing elements: " + list);

 // Retain only the element "one"
 list.retainAll("one");
 System.out.println("After retaining \"one\": " + list);

 // Create another ObservableList
 ObservableList<String> list2 =
 FXCollections.<String>observableArrayList("1", "2", "3");

 // Set list2 to list
 list.setAll(list2);
 System.out.println("After setting list2 to list: " + list);

 // Create another list
 ObservableList<String> list3 =
 FXCollections.<String>observableArrayList("ten", "twenty", "thirty");

 // Concatenate elements of list2 and list3
 ObservableList<String> list4 = FXCollections.concat(list2, list3);
 System.out.println("list2 is " + list2);
 System.out.println("list3 is " + list3);
 System.out.println("After concatenating list2 and list3:" + list4);
 }
}

After creating list: [one, two]
After adding elements: [one, two, three, four]
After removing elements: [one, four]
After retaining "one": [one]
After setting list2 to list: [1, 2, 3]
list2 is [1, 2, 3]
list3 is [ten, twenty, thirty]
After concatenating list2 and list3:[1, 2, 3, ten, twenty, thirty]

Observing an ObservableList for Invalidations
You can add invalidation listeners to an ObservableList as you do to any Observable. Listing 3-2 shows how
to use an invalidation listener with an ObservableList.

Tip ■ in the case of the ObservableList, the invalidation listeners are notified for every change in the list,
irrespective of the type of a change.

Chapter 3 ■ Observable COlleCtiOns

88

Listing 3-2. Testing Invalidation Notifications for an ObservableList

// ListInvalidationTest.java
package com.jdojo.collections;

import javafx.beans.Observable;
import javafx.collections.FXCollections;
import javafx.collections.ObservableList;

public class ListInvalidationTest {
 public static void main(String[] args) {
 // Create a list with some elements
 ObservableList<String> list =
 FXCollections.observableArrayList("one", "two");

 // Add an InvalidationListener to the list
 list.addListener(ListInvalidationTest::invalidated);

 System.out.println("Before adding three.");
 list.add("three");
 System.out.println("After adding three.");

 System.out.println("Before adding four and five.");
 list.addAll("four", "five");
 System.out.println("Before adding four and five.");

 System.out.println("Before replacing one with one.");
 list.set(0, "one");
 System.out.println("After replacing one with one.");
 }

 public static void invalidated(Observable list) {
 System.out.println("List is invalid.");
 }
}

Before adding three.
List is invalid.
After adding three.
Before adding four and five.
List is invalid.
Before adding four and five.
Before replacing one with one.
List is invalid.
After replacing one with one.

Chapter 3 ■ Observable COlleCtiOns

89

Observing an ObservableList for Changes
Observing an ObservableList for changes is a bit tricky. There could be several kinds of changes to a list.
Some of the changes could be exclusive, whereas some can occur along with other changes. Elements of a
list can be permutated, updated, replaced, added, and removed. You need to be patient in learning this topic
because I will cover it in bits and pieces.

You can add a change listener to an ObservableList using its addListener() method, which takes
an instance of the ListChangeListener interface. The changed() method of the listeners is called every
time a change occurs in the list. The following snippet of code shows how to add a change listener to an
ObservableList of String. The onChanged() method is simple; it prints a message on the standard output
when it is notified of a change:

// Create an observable list
ObservableList<String> list = FXCollections.observableArrayList();

// Add a change listener to the list
list.addListener(new ListChangeListener<String>() {
 @Override
 public void onChanged(ListChangeListener.Change<? extends String> change) {
 System.out.println("List has changed.");
 }
});

Listing 3-3 contains the complete program showing how to detect changes in an ObservableList. It
uses a lambda expression with a method reference, which are features of Java 8, to add a change listener.
After adding a change listener, it manipulates the list four times, and the listener is notified each time, as is
evident from the output that follows.

Listing 3-3. Detecting Changes in an ObservableList

// SimpleListChangeTest.java
package com.jdojo.collections;

import javafx.collections.FXCollections;
import javafx.collections.ListChangeListener;
import javafx.collections.ObservableList;

public class SimpleListChangeTest {
 public static void main(String[] args) {
 // Create an observable list
 ObservableList<String> list = FXCollections.observableArrayList();

 // Add a change listener to the list
 list.addListener(SimpleListChangeTest::onChanged);

Chapter 3 ■ Observable COlleCtiOns

90

 // Manipulate the elements of the list
 list.add("one");
 list.add("two");
 FXCollections.sort(list);
 list.clear();
 }

 public static void onChanged(ListChangeListener.Change<? extends String> change) {
 System.out.println("List has changed");
 }
}

List has changed.
List has changed.
List has changed.
List has changed.

Understanding the ListChangeListener.Change Class
Sometimes you may want to analyze changes to a list in more detail rather than just knowing that the list
has changed. The ListChangeListener.Change object that is passed to the onChanged() method contains a
report to a change performed on the list. You need to use a combination of its methods to know the details of
a change. Table 3-1 lists the methods in the ListChangeListener.Change class with their categories.

Table 3-1. Methods in the ListChangeListener.Change Class

Method Category

ObservableList<E> getList() General

boolean next()

void reset()

Cursor movement

boolean wasAdded()

boolean wasRemoved()

boolean wasReplaced()

boolean wasPermutated()

boolean wasUpdated()

Change type

int getFrom()

int getTo()

Affected range

int getAddedSize()

List<E> getAddedSubList()

Addition

List<E> getRemoved()

int getRemovedSize()

Removal

int getPermutation(int oldIndex) Permutation

Chapter 3 ■ Observable COlleCtiOns

91

The getList() method returns the source list after changes have been made. A ListChangeListener.
Change object may report a change in multiple chunks. This may not be obvious at first. Consider the
following snippet of code:

ObservableList<String> list = FXCollections.observableArrayList();

// Add a change listener here...

list.addAll("one", "two", "three");
list.removeAll("one", "three");

In this code, the change listener will be notified twice: once for the addAll() method call and once for
the removeAll() method call. The ListChangeListener.Change object reports the affected range of indexes.
In the second change, you remove two elements that fall into two different ranges of indexes. Note that there
is an element "two" between the two removed elements. In the second case, the Change object will contain
a report of two changes. The first change will contain the information that, at index 0, the element "one" has
been removed. Now, the list contains only two elements with the index 0 for the element "two" and index
1 for the element "three". The second change will contain the information that, at index 1, the element
"three" has been removed.

A Change object contains a cursor that points to a specific change in the report. The next() and reset()
methods are used to control the cursor. When the onChanged() method is called, the cursor points before the
first change in the report. Calling the next() method the first time moves the cursor to the first change in the
report. Before attempting to read the details for a change, you must point the cursor to the change by calling
the next() method. The next() method returns true if it moves the cursor to a valid change. Otherwise, it
returns false. The reset() method moves the cursor before the first change. Typically, the next() method
is called in a while-loop, as shown in the following snippet of code:

ObservableList<String> list = FXCollections.observableArrayList();
...
// Add a change listener to the list
list.addListener(new ListChangeListener<String>() {
 @Override
 public void onChanged(ListChangeListener.Change<? extends String> change) {
 while(change.next()) {
 // Process the current change here...
 }
 }
});

In the change type category, methods report whether a specific type of change has occurred. The
wasAdded() method returns true if elements were added. The wasRemoved() method returns true if
elements were removed. The wasReplaced() method returns true if elements were replaced. You can think
of a replacement as a removal followed by an addition at the same index. If wasReplaced() returns true,
both wasRemoved() and wasAdded() return true as well. The wasPermutated() method returns true if
elements of a list were permutated (i.e., reordered) but not removed, added, or updated. The wasUpdated()
method returns true if elements of a list were updated.

Chapter 3 ■ Observable COlleCtiOns

92

Not all five types of changes to a list are exclusive. Some changes may occur simultaneously in the same
change notification. The two types of changes, permutations and updates, are exclusive. If you are interested
in working with all types of changes, your code in the onChanged() method should look as follows:

public void onChanged(ListChangeListener.Change change) {
 while (change.next()) {
 if (change.wasPermutated()) {
 // Handle permutations
 }
 else if (change.wasUpdated()) {
 // Handle updates
 }
 else if (change.wasReplaced()) {
 // Handle replacements
 }
 else {
 if (change.wasRemoved()) {
 // Handle removals
 }
 else if (change.wasAdded()) {
 // Handle additions
 }
 }
 }
}

In the affected range type category, the getFrom() and getTo() methods report the range of indexes
affected by a change. The getFrom() method returns the beginning index and the getTo() method returns
the ending index plus one. If the wasPermutated() method returns true, the range includes the elements
that were permutated. If the wasUpdated() method returns true, the range includes the elements that were
updated. If the wasAdded() method returns true, the range includes the elements that were added. If the
wasRemoved() method returns true and the wasAdded() method returns false, the getFrom() and getTo()
methods return the same number—the index where the removed elements were placed in the list.

The getAddedSize() method returns the number of elements added. The getAddedSubList() method
returns a list that contains the elements added. The getRemovedSize() method returns the number of
elements removed. The getRemoved() method returns an immutable list of removed or replaced elements. The
getPermutation(int oldIndex) method returns the new index of an element after permutation. For example,
if an element at index 2 moves to index 5 during a permutation, the getPermutation(2) will return 5.

This completes the discussion about the methods of the ListChangeListener.Change class. However,
you are not done with this class yet! I still need to discuss how to use these methods in actual situations, for
example, when elements of a list are updated. I will cover handling updates to elements of a list in the next
section. I will finish this topic with an example that covers everything that was discussed.

Chapter 3 ■ Observable COlleCtiOns

93

Observing an ObservableList for Updates
In the “Creating an ObservableList” section, I had listed the following two methods of the FXCollections
class that create an ObservableList:

•	 <E> ObservableList<E> observableArrayList(Callback<E, Observable[]>
extractor)

•	 <E> ObservableList<E> observableList(List<E> list, Callback<E,
Observable[]> extractor)

If you want to be notified when elements of a list are updated, you need to create the list using one of
these methods. Both methods have one thing in common: They take a Callback<E,Observable[]> object as
an argument. The Callback<P,R> interface is in the javafx.util package. It is defined as follows:

public interface Callback<P,R> {
 R call(P param)
}

The Callback<P,R> interface is used in situations where further action is required by APIs at a later
suitable time. The first generic type parameter specifies the type of the parameter passed to the call()
method and the second one specifies the returns type of the call() method.

If you notice the declaration of the type parameters in Callback<E,Observable[]>, the first type
parameter is E, which is the type of the elements of the list. The second parameter is an array of Observable.
When you add an element to the list, the call() method of the Callback object is called. The added element
is passed to the call() method as an argument. You are supposed to return an array of Observable from the
call() method. If any of the elements in the returned Observable array changes, listeners will be notified of an
“update” change for the element of the list for which the call() method had returned the Observable array.

Let’s examine why you need a Callback object and an Observable array to detect updates to elements
of a list. A list stores references of its elements. Its elements can be updated using their references from
anywhere in the program. A list does not know that its elements are being updated from somewhere else. It
needs to know the list of Observable objects, where a change to any of them may be considered an update
to its elements. The call() method of the Callback object fulfills this requirement. The list passes every
element to the call() method. The call() method returns an array of Observable. The list watches for any
changes to the elements of the Observable array. When it detects a change, it notifies its change listeners
that its element associated with the Observable array has been updated. The reason this parameter is
named extractor is that it extracts an array of Observable for an element of a list.

Listing 3-4 shows how to create an ObservableList that can notify its change listeners when its
elements are updated.

Listing 3-4. Observing a List for Updates of Its Elements

// ListUpdateTest.java
package com.jdojo.collections;

import java.util.List;
import javafx.beans.Observable;
import javafx.beans.property.IntegerProperty;
import javafx.beans.property.SimpleIntegerProperty;
import javafx.collections.FXCollections;
import javafx.collections.ListChangeListener;
import javafx.collections.ObservableList;
import javafx.util.Callback;

Chapter 3 ■ Observable COlleCtiOns

94

public class ListUpdateTest {
 public static void main(String[] args) {
 // Create an extractor for IntegerProperty.
 Callback<IntegerProperty, Observable[]> extractor = (IntegerProperty p) -> {
 // Print a message to know when it is called
 System.out.println("The extractor is called for " + p);

 // Wrap the parameter in an Observable[] and return it
 return new Observable[]{p};
 };

 // Create an empty observable list with a callback to extract the
 // observable values for each element of the list
 ObservableList<IntegerProperty> list =
 FXCollections.observableArrayList(extractor);

 // Add two elements to the list
 System.out.println("Before adding two elements...");
 IntegerProperty p1 = new SimpleIntegerProperty(10);
 IntegerProperty p2 = new SimpleIntegerProperty(20);
 list.addAll(p1, p2); // Will call the call() method of the
 // extractor - once for p1 and once for p2.
 System.out.println("After adding two elements...");

 // Add a change listener to the list
 list.addListener(ListUpdateTest::onChanged);

 // Update p1 from 10 to 100, which will trigger
 // an update change for the list
 p1.set(100);
 }

 public static void onChanged(
 ListChangeListener.Change<? extends IntegerProperty> change) {
 System.out.println("List is " + change.getList());

 // Work on only updates to the list
 while (change.next()) {
 if (change.wasUpdated()) {
 // Print the details of the update
 System.out.println("An update is detected.");

 int start = change.getFrom();
 int end = change.getTo();
 System.out.println("Updated range:

[" + start + ", " + end + "]");

Chapter 3 ■ Observable COlleCtiOns

95

 List<? extends IntegerProperty> updatedElementsList;
 updatedElementsList = change.getList().subList(start, end);

 System.out.println("Updated elements: " + updatedElementsList);
 }
 }
 }
}

Before adding two elements...
The extractor is called for IntegerProperty [value: 10]
The extractor is called for IntegerProperty [value: 20]
After adding two elements...
List is [IntegerProperty [value: 100], IntegerProperty [value: 20]]
An update is detected.
Updated range: [0, 1]
Updated elements: [IntegerProperty [value: 100]]

The main() method of the ListUpdateTest class creates an extractor that is an object of the

Callback<IntegerProperty, Observable[]> interface. The call() method takes an IntegerProperty
argument and returns the same by wrapping it in an Observable array. It also prints the object that is
passed to it.

The extractor is used to create an ObservableList. Two IntegerProperty objects are added to the list.
When the objects are being added, the call() method of the extractor is called with the object being added
as its argument. This is evident from the output. The call() method returns the object being added. This
means that the list will watch for any changes to the object (the IntegerProperty) and notify its change
listeners of the same.

A change listener is added to the list. It handles only updates to the list. At the end, you change the value
for the first element of the list from 10 to 100 to trigger an update change notification.

A Complete Example of Observing an ObservableList for Changes
This section provides a complete example that shows how to handle the different kinds of changes to an
ObservableList.

Our starting point is a Person class as shown in Listing 3-5. Here you will work with an ObservableList
of Person objects. The Person class has two properties: firstName and lastName. Both properties are of the
StringProperty type. Its compareTo() method is implemented to sort Person objects in ascending order
by the first name then by the last name. Its toString() method prints the first name, a space, and the
last name.

Chapter 3 ■ Observable COlleCtiOns

96

Listing 3-5. A Person Class with Two Properties Named firstName and lastName

// Person.java
package com.jdojo.collections;

import javafx.beans.property.SimpleStringProperty;
import javafx.beans.property.StringProperty;

public class Person implements Comparable<Person> {
 private StringProperty firstName = new SimpleStringProperty();
 private StringProperty lastName = new SimpleStringProperty();

 public Person() {
 this.setFirstName("Unknown");
 this.setLastName("Unknown");
 }

 public Person(String firstName, String lastName) {
 this.setFirstName(firstName);
 this.setLastName(lastName);
 }

 public final String getFirstName() {
 return firstName.get();
 }

 public final void setFirstName(String newFirstName) {
 firstName.set(newFirstName);
 }

 public StringProperty firstNameProperty() {
 return firstName;
 }

 public final String getLastName() {
 return lastName.get();
 }

 public final void setLastName(String newLastName) {
 lastName.set(newLastName);
 }

 public StringProperty lastNameProperty() {
 return lastName;
 }

Chapter 3 ■ Observable COlleCtiOns

97

 @Override
 public int compareTo(Person p) {
 // Assume that the first and last names are always not null
 int diff = this.getFirstName().compareTo(p.getFirstName());
 if (diff == 0) {
 diff = this.getLastName().compareTo(p.getLastName());
 }

 return diff;
 }

 @Override
 public String toString() {
 return getFirstName() + " " + getLastName();
 }
}

The PersonListChangeListener class, as shown in Listing 3-6, is a change listener class. It implements
the onChanged() method of the ListChangeListener interface to handle all types of change notifications for
an ObservableList of Person objects.

Listing 3-6. A Change Listener for an ObservableList of Person Objects

// PersonListChangeListener.java
package com.jdojo.collections;

import java.util.List;
import javafx.collections.ListChangeListener;

public class PersonListChangeListener implements ListChangeListener<Person> {
 @Override
 public void onChanged(ListChangeListener.Change<? extends Person> change) {
 while (change.next()) {
 if (change.wasPermutated()) {
 handlePermutated(change);
 }
 else if (change.wasUpdated()) {
 handleUpdated(change);
 }
 else if (change.wasReplaced()) {
 handleReplaced(change);
 }
 else {
 if (change.wasRemoved()) {
 handleRemoved(change);
 }
 else if (change.wasAdded()) {
 handleAdded(change);
 }
 }
 }
 }

Chapter 3 ■ Observable COlleCtiOns

98

 public void handlePermutated(ListChangeListener.Change<? extends Person> change) {
 System.out.println("Change Type: Permutated");
 System.out.println("Permutated Range: " + getRangeText(change));
 int start = change.getFrom();
 int end = change.getTo();
 for(int oldIndex = start; oldIndex < end; oldIndex++) {
 int newIndex = change.getPermutation(oldIndex);
 System.out.println("index[" + oldIndex + "] moved to " +
 "index[" + newIndex + "]");
 }
 }

 public void handleUpdated(ListChangeListener.Change<? extends Person> change) {
 System.out.println("Change Type: Updated");
 System.out.println("Updated Range : " + getRangeText(change));
 System.out.println("Updated elements are: " +
 change.getList().subList(change.getFrom(), change.getTo()));
 }

 public void handleReplaced(ListChangeListener.Change<? extends Person> change) {
 System.out.println("Change Type: Replaced");

 // A "replace" is the same as a “remove” followed with an "add"
 handleRemoved(change);
 handleAdded(change);
 }

 public void handleRemoved(ListChangeListener.Change<? extends Person> change) {
 System.out.println("Change Type: Removed");

 int removedSize = change.getRemovedSize();
 List<? extends Person> subList = change.getRemoved();

 System.out.println("Removed Size: " + removedSize);
 System.out.println("Removed Range: " + getRangeText(change));
 System.out.println("Removed List: " + subList);
 }

 public void handleAdded(ListChangeListener.Change<? extends Person> change) {
 System.out.println("Change Type: Added");

 int addedSize = change.getAddedSize();
 List<? extends Person> subList = change.getAddedSubList();

 System.out.println("Added Size: " + addedSize);
 System.out.println("Added Range: " + getRangeText(change));
 System.out.println("Added List: " + subList);
 }

 public String getRangeText(ListChangeListener.Change<? extends Person> change) {
 return "[" + change.getFrom() + ", " + change.getTo() + "]";
 }
}

Chapter 3 ■ Observable COlleCtiOns

99

The ListChangeTest class, as shown in Listing 3-7, is a test class. It creates an ObservableList with
an extractor. The extractor returns an array of firstName and lastName properties of a Person object. That
means when one of these properties is changed, a Person object as an element of the list is considered
updated and an update notification will be sent to all change listeners. It adds a change listener to the list.
Finally, it makes several kinds of changes to the list to trigger change notifications. The details of a change
notification are printed on the standard output.

This completes one of the most complex discussions about writing a change listener for an
ObservableList. Aren’t you glad that JavaFX designers didn’t make it more complex?

Listing 3-7. Testing an ObservableList of Person Objects for All Types of Changes

// ListChangeTest.java
package com.jdojo.collections;

import javafx.beans.Observable;
import javafx.collections.FXCollections;
import javafx.collections.ObservableList;
import javafx.util.Callback;

public class ListChangeTest {
 public static void main(String[] args) {
 Callback<Person, Observable[]> cb =
 (Person p) -> new Observable[] {
 p.firstNameProperty(),
 p.lastNameProperty()
 };

 // Create a list
 ObservableList<Person> list = FXCollections.observableArrayList(cb);

 // Add a change listener to the list
 list.addListener(new PersonListChangeListener());

 Person p1 = new Person("Li", "Na");
 System.out.println("Before adding " + p1 + ": " + list);
 list.add(p1);
 System.out.println("After adding " + p1 + ": " + list) ;

 Person p2 = new Person("Vivi", "Gin");
 Person p3 = new Person("Li", "He");
 System.out.println("\nBefore adding " + p2 + " and " + p3 + ": " + list);
 list.addAll(p2, p3);
 System.out.println("After adding " + p2 + " and " + p3 + ": " + list);

 System.out.println("\nBefore sorting the list:" + list);
 FXCollections.sort(list);
 System.out.println("After sorting the list:" + list);

 System.out.println("\nBefore updating " + p1 + ": " + list);
 p1.setLastName("Smith");
 System.out.println("After updating " + p1 + ": " + list);

Chapter 3 ■ Observable COlleCtiOns

100

 Person p = list.get(0);
 Person p4 = new Person("Simon", "Ng");
 System.out.println("\nBefore replacing " + p +
 " with " + p4 + ": " + list);
 list.set(0, p4);
 System.out.println("After replacing " + p + " with " + p4 + ": " + list);

 System.out.println("\nBefore setAll(): " + list);
 Person p5 = new Person("Lia", "Li");
 Person p6 = new Person("Liz", "Na");
 Person p7 = new Person("Li", "Ho");
 list.setAll(p5, p6, p7);
 System.out.println("After setAll(): " + list);

 System.out.println("\nBefore removeAll(): " + list);
 list.removeAll(p5, p7); // Leave p6 in the list
 System.out.println("After removeAll(): " + list);
 }
}

Before adding Li Na: []
Change Type: Added
Added Size: 1
Added Range: [0, 1]
Added List: [Li Na]
After adding Li Na: [Li Na]

Before adding Vivi Gin and Li He: [Li Na]
Change Type: Added
Added Size: 2
Added Range: [1, 3]
Added List: [Vivi Gin, Li He]
After adding Vivi Gin and Li He: [Li Na, Vivi Gin, Li He]

Before sorting the list:[Li Na, Vivi Gin, Li He]
Change Type: Permutated
Permutated Range: [0, 3]
index[0] moved to index[1]
index[1] moved to index[2]
index[2] moved to index[0]
After sorting the list:[Li He, Li Na, Vivi Gin]

Before updating Li Na: [Li He, Li Na, Vivi Gin]
Change Type: Updated
Updated Range : [1, 2]
Updated elements are: [Li Smith]
After updating Li Smith: [Li He, Li Smith, Vivi Gin]

Chapter 3 ■ Observable COlleCtiOns

101

Before replacing Li He with Simon Ng: [Li He, Li Smith, Vivi Gin]
Change Type: Replaced
Change Type: Removed
Removed Size: 1
Removed Range: [0, 1]
Removed List: [Li He]
Change Type: Added
Added Size: 1
Added Range: [0, 1]
Added List: [Simon Ng]
After replacing Li He with Simon Ng: [Simon Ng, Li Smith, Vivi Gin]

Before setAll(): [Simon Ng, Li Smith, Vivi Gin]
Change Type: Replaced
Change Type: Removed
Removed Size: 3
Removed Range: [0, 3]
Removed List: [Simon Ng, Li Smith, Vivi Gin]
Change Type: Added
Added Size: 3
Added Range: [0, 3]
Added List: [Lia Li, Liz Na, Li Ho]
After setAll(): [Lia Li, Liz Na, Li Ho]

Before removeAll(): [Lia Li, Liz Na, Li Ho]
Change Type: Removed
Removed Size: 1
Removed Range: [0, 0]
Removed List: [Lia Li]
Change Type: Removed
Removed Size: 1
Removed Range: [1, 1]
Removed List: [Li Ho]
After removeAll(): [Liz Na]

Understanding ObservableSet
If you survived learning the ObservableList and list change listeners, learning about the ObservableSet will
be easy! Figure 3-3 shows the class diagram for the ObservableSet interface.

Chapter 3 ■ Observable COlleCtiOns

102

It inherits from the Set and Observable interfaces. It supports invalidation and change notifications
and it inherits the methods for the invalidation notification support from the Observable interface. It adds
the following two methods to support change notifications:

•	 void addListener(SetChangeListener<? super E> listener)

•	 void removeListener(SetChangeListener<? super E> listener)

An instance of the SetChangeListener interface listens for changes in an ObservableSet. It declares a
static inner class named Change, which represents a report of changes in an ObservableSet.

Note ■ a set is an unordered collection. this section shows the elements of several sets in outputs. You may
get a different output showing the elements of sets in a different order than shown in those examples.

Creating an ObservableSet
You need to use one of the following factory methods of the FXCollections class to create an
ObservableSet:

•	 <E> ObservableSet<E> observableSet(E... elements)

•	 <E> ObservableSet<E> observableSet(Set<E> set)

•	 <E> ObservableSet<E> emptyObservableSet()

The first method lets you specify initial elements for the set. The second method lets you create an
ObservableSet that is backed by the specified set. Mutations performed on the ObservableSet are reported
to the listeners. Mutations performed directly on the backing set are not reported to the listeners. The third
method creates an empty unmodifiable observable set. Listing 3-8 shows how to create ObservableSets.

Figure 3-3. A class diagram for the ObservableSet interface

Chapter 3 ■ Observable COlleCtiOns

103

Listing 3-8. Creating ObservableSets

// ObservableSetTest.java
package com.jdojo.collections;

import java.util.HashSet;
import java.util.Set;
import javafx.collections.FXCollections;
import javafx.collections.ObservableSet;

public class ObservableSetTest {
 public static void main(String[] args) {
 // Create an ObservableSet with three initial elements
 ObservableSet<String> s1 = FXCollections.observableSet("one", "two", "three");
 System.out.println("s1: " + s1);

 // Create a Set, and not an ObservableSet
 Set<String> s2 = new HashSet<String>();
 s2.add("one");
 s2.add("two");
 System.out.println("s2: " + s2);

 // Create an ObservableSet backed by the Set s2
 ObservableSet<String> s3 = FXCollections.observableSet(s2);
 s3.add("three");
 System.out.println("s3: " + s3);
 }
}

s1: [one, two, three]
s2: [one, two]
s3: [one, two, three]

Observing an ObservableSet for Invalidations
You can add invalidation listeners to an ObservableSet. It fires an invalidation event when elements are
added or removed. Adding an already existing element does not fire an invalidation event. Listing 3-9 shows
how to use an invalidation listener with an ObservableSet.

Listing 3-9. Testing Invalidation Notifications for an ObservableSet

// SetInvalidationTest.java
package com.jdojo.collections;

import javafx.beans.Observable;
import javafx.collections.FXCollections;
import javafx.collections.ObservableSet;

Chapter 3 ■ Observable COlleCtiOns

104

public class SetInvalidationTest {
 public static void main(String[] args) {
 // Create a set with some elements
 ObservableSet<String> set = FXCollections.observableSet("one", "two");

 // Add an InvalidationListener to the set
 set.addListener(SetInvalidationTest::invalidated);

 System.out.println("Before adding three.");
 set.add("three");
 System.out.println("After adding three.");

 System.out.println("\nBefore adding four.");
 set.add("four");
 System.out.println("After adding four.");

 System.out.println("\nBefore adding one.");
 set.add("one");
 System.out.println("After adding one.");

 System.out.println("\nBefore removing one.");
 set.remove("one");
 System.out.println("After removing one.");

 System.out.println("\nBefore removing 123.");
 set.remove("123");
 System.out.println("After removing 123.");
 }

 public static void invalidated(Observable set) {
 System.out.println("Set is invalid.");
 }
}

Before adding three.
Set is invalid.
After adding three.

Before adding four.
Set is invalid.
After adding four.

Before adding one.
After adding one.

Before removing one.
Set is invalid.
After removing one.

Before removing 123.
After removing 123.

Chapter 3 ■ Observable COlleCtiOns

105

Observing an ObservableSet for Changes
An ObservableSet can be observed for changes. You need to add a SetChangeListener whose onChanged()
method is called for every addition or removal of elements. It means if you use methods like addAll() or
removeAll() on an ObservableSet, which affects multiple elements, multiple change notifications will be
fired—one for each element added or removed.

An object of the SetChangeListener.Change class is passed to the onChanged() method of the
SetChangeListener interface. The SetChangeListener.Change class is a static inner class of the
SetChangeListener interface with the following methods:

•	 boolean wasAdded()

•	 boolean wasRemoved()

•	 E getElementAdded()

•	 E getElementRemoved()

•	 ObservableSet<E> getSet()

The wasAdded() and wasRemoved() methods return true if an element was added and removed,
respectively. Otherwise, they return false. The getElementAdded() and getElementRemoved() methods
return the element that was added and removed, respectively. The getElementAdded() method returns
null if removal of an element triggers a change notification. The getElementRemoved() method returns
null if addition of an element triggers a change notification. The getSet() method returns the source
ObservableSet on which the changes are performed.

The program in Listing 3-10 shows how to observe an ObservableSet for changes.

Listing 3-10. Observing an ObservableSet for Changes

// SetChangeTest.java
package com.jdojo.collections;

import java.util.HashSet;
import java.util.Set;
import javafx.collections.FXCollections;
import javafx.collections.ObservableSet;
import javafx.collections.SetChangeListener;

public class SetChangeTest {
 public static void main(String[] args) {
 // Create an observable set with some elements
 ObservableSet<String> set = FXCollections.observableSet("one", "two");

 // Add a change lisetener to the set
 set.addListener(SetChangeTest::onChanged);

 set.add("three"); // Fires an add change event

 // Will not fire a change event as "one" already exists in the set
 set.add("one");

Chapter 3 ■ Observable COlleCtiOns

106

 // Create a Set
 Set<String> s = new HashSet<>();
 s.add("four");
 s.add("five");

 // Add all elements of s to set in one go
 set.addAll(s); // Fires two add change events

 set.remove("one"); // Fires a removal change event
 set.clear(); // Fires four removal change events
 }

 public static void onChanged(SetChangeListener.Change<? extends String> change) {
 if (change.wasAdded()) {
 System.out.print("Added: " + change.getElementAdded());
 } else if (change.wasRemoved()) {
 System.out.print("Removed: " + change.getElementRemoved());
 }

 System.out.println(", Set after the change: " + change.getSet());
 }
}

Added: three, Set after the change: [three, two, one]
Added: four, Set after the change: [four, one, two, three]
Added: five, Set after the change: [four, one, five, two, three]
Removed: one, Set after the change: [four, five, two, three]
Removed: four, Set after the change: [five, two, three]
Removed: five, Set after the change: [two, three]
Removed: two, Set after the change: [three]
Removed: three, Set after the change: []

Understanding ObservableMap
Figure 3-4 shows the class diagram for the ObservableMap interface. It inherits from the Map and Observable
interfaces. It supports invalidation and change notifications. It inherits the methods for the invalidation
notification support from the Observable interface and it adds the following two methods to support change
notifications:

•	 void addListener(MapChangeListener<? super K, ? super V> listener)

•	 void removeListener(MapChangeListener<? super K, ? super V> listener)

Chapter 3 ■ Observable COlleCtiOns

107

An instance of the MapChangeListener interface listens for changes in an ObservableMap. It declares a
static inner class named Change, which represents a report of changes in an ObservableMap.

Creating an ObservableMap
You need to use one of the following factory methods of the FXCollections class to create an
ObservableMap:

•	 <K,V> ObservableMap<K, V> observableHashMap()

•	 <K,V> ObservableMap<K, V> observableMap(Map<K, V> map)

•	 <K,V> ObservableMap<K,V> emptyObservableMap()

The first method creates an empty observable map that is backed by a HashMap. The second method
creates an ObservableMap that is backed by the specified map. Mutations performed on the ObservableMap
are reported to the listeners. Mutations performed directly on the backing map are not reported to the
listeners. The third method creates an empty unmodifiable observable map. Listing 3-11 shows how to
create ObservableMaps.

Listing 3-11. Creating ObservableMaps

// ObservableMapTest.java
package com.jdojo.collections;

import java.util.HashMap;
import java.util.Map;
import javafx.collections.FXCollections;
import javafx.collections.ObservableMap;

Figure 3-4. A class diagram for the ObservableMap interface

Chapter 3 ■ Observable COlleCtiOns

108

public class ObservableMapTest {
 public static void main(String[] args) {
 ObservableMap<String, Integer> map1 = FXCollections.observableHashMap();

 map1.put("one", 1);
 map1.put("two", 2);
 System.out.println("Map 1: " + map1);

 Map<String, Integer> backingMap = new HashMap<>();
 backingMap.put("ten", 10);
 backingMap.put("twenty", 20);

 ObservableMap<String, Integer> map2 = FXCollections.

observableMap(backingMap);
 System.out.println("Map 2: " + map2);
 }
}

Map 1: {two=2, one=1}
Map 2: {ten=10, twenty=20}

Observing an ObservableMap for Invalidations
You can add invalidation listeners to an ObservableMap. It fires an invalidation event when a new (key,
value) pair is added, the value for an existing key is changed, or a (key, value) pair is removed. Invalidation
events are fired once for every affected (key, value) pair. For example, if you call the clear() method on an
observable map that has two entries, two invalidation events are fired. Listing 3-12 shows how to use an
invalidation listener with an ObservableMap.

Listing 3-12. Testing Invalidation Notifications for an ObservableMap

// MapInvalidationTest.java
package com.jdojo.collections;

import javafx.beans.Observable;
import javafx.collections.FXCollections;
import javafx.collections.ObservableMap;

public class MapInvalidationTest {
 public static void main(String[] args) {
 ObservableMap<String, Integer> map = FXCollections.observableHashMap();

 // Add an InvalidationListener to the map
 map.addListener(MapInvalidationTest::invalidated);

 System.out.println("Before adding (\"one\", 1)");
 map.put("one", 1);
 System.out.println("After adding (\"one\", 1)");

Chapter 3 ■ Observable COlleCtiOns

109

 System.out.println("\nBefore adding (\"two\", 2)");
 map.put("two", 2);
 System.out.println("After adding (\"two\", 2)");

 System.out.println("\nBefore adding (\"one\", 1)");

 // Adding the same (key, value) does not trigger an invalidation event
 map.put("one", 1);
 System.out.println("After adding (\"one\", 1)");

 System.out.println("\nBefore adding (\"one\", 100)");

 // Adding the same key with different value triggers invalidation event
 map.put("one", 100);
 System.out.println("After adding (\"one\", 100)");

 System.out.println("\nBefore calling clear()");
 map.clear();
 System.out.println("After calling clear()");
 }

 public static void invalidated(Observable map) {
 System.out.println("Map is invalid.");
 }
}

Before adding ("one", 1)
Map is invalid.
After adding ("one", 1)

Before adding ("two", 2)
Map is invalid.
After adding ("two", 2)

Before adding ("one", 1)
After adding ("one", 1)

Before adding ("one", 100)
Map is invalid.
After adding ("one", 100)

Before calling clear()
Map is invalid.
Map is invalid.
After calling clear()

Chapter 3 ■ Observable COlleCtiOns

110

Observing an ObservableMap for Changes
An ObservableMap can be observed for changes by adding a MapChangeListener. The onChanged() method
of map change listeners is called for every addition and removal of a (key, value) pair and for a change in the
value of an existing key.

An object of the MapChangeListener.Change class is passed to the onChanged() method of the
MapChangeListener interface. MapChangeListener.Change is a static inner class of the MapChangeListener
interface with the following methods:

•	 boolean wasAdded()

•	 boolean wasRemoved()

•	 K getKey()

•	 V getValueAdded()

•	 V getValueRemoved()

•	 ObservableMap<K,V> getMap()

The wasAdded() method returns true if a (key, value) pair is added. The wasRemoved() method returns
true if a (key, value) pair is removed. If the value for an existing key is replaced, both methods return true
for the same change event. Replacing the value of a key is treated as a removal of the (key, oldValue) pair
followed by an addition of a new (key, newValue) pair.

The getKey method returns the key associated with the change. If it is a removal, the key returned by
this method does not exist in the map when the change is reported. The getValueAdded() method returns
the new key value for an addition. For a removal, it returns null. The getValueRemoved() method returns
the old value of the removed key. This is null if and only if the value was added to the key that was not
previously in the map. The getMap() method returns the source ObservableMap on which the changes are
performed.

Listing 3-13 shows how to observe an ObservableMap for changes.

Listing 3-13. Observing an ObservableMap for Changes

// MapChangeTest.java
package com.jdojo.collections;

import javafx.collections.FXCollections;
import javafx.collections.MapChangeListener;
import javafx.collections.ObservableMap;

public class MapChangeTest {
 public static void main(String[] args) {
 ObservableMap<String, Integer> map = FXCollections.observableHashMap();

 // Add an MapChangeListener to the map
 map.addListener(MapChangeTest::onChanged);

 System.out.println("Before adding (\"one\", 1)");
 map.put("one", 1);
 System.out.println("After adding (\"one\", 1)");

Chapter 3 ■ Observable COlleCtiOns

111

 System.out.println("\nBefore adding (\"two\", 2)");
 map.put("two", 2);
 System.out.println("After adding (\"two\", 2)");

 System.out.println("\nBefore adding (\"one\", 3)");

 // Will remove ("one", 1) and add("one", 3)
 map.put("one", 3);
 System.out.println("After adding (\"one\", 3)");

 System.out.println("\nBefore calling clear()");
 map.clear();
 System.out.println("After calling clear()");
 }

 public static void onChanged(
 MapChangeListener.Change<? extends String, ? extends Integer> change) {
 if (change.wasRemoved()) {
 System.out.println("Removed (" + change.getKey() + ", " +
 change.getValueRemoved() + ")");
 }

 if (change.wasAdded()) {
 System.out.println("Added (" + change.getKey() + ", " +
 change.getValueAdded() + ")");
 }
 }
}

Before adding ("one", 1)
Added (one, 1)
After adding ("one", 1)

Before adding ("two", 2)
Added (two, 2)
After adding ("two", 2)

Before adding ("one", 3)
Removed (one, 1)
Added (one, 3)
After adding ("one", 3)

Before calling clear()
Removed (one, 3)
Removed (two, 2)
After calling clear()

Chapter 3 ■ Observable COlleCtiOns

112

Figure 3-5. A partial class diagram for the ListProperty class

Properties and Bindings for JavaFX Collections
The ObservableList, ObservableSet, and ObservableMap collections can be exposed as Property objects.
They also support bindings using high-level and low-level binding APIs. Property objects representing single
values were discussed in Chapter 2. Make sure you have read that chapter before proceeding in this section.

Understanding ObservableList Property and Binding
Figure 3-5 shows a partial class diagram for the ListProperty class. The ListProperty class implements
the ObservableValue and ObservableList interfaces. It is an observable value in the sense that it wraps
the reference of an ObservableList. Implementing the ObservableList interface makes all of its methods
available to a ListProperty object. Calling methods of the ObservableList on a ListProperty has the same
effect as if they were called on the wrapped ObservableList.

Chapter 3 ■ Observable COlleCtiOns

113

You can use one of the following constructors of the SimpleListProperty class to create an instance of
the ListProperty:

•	 SimpleListProperty()

•	 SimpleListProperty(ObservableList<E> initialValue)

•	 SimpleListProperty(Object bean, String name)

•	 SimpleListProperty(Object bean, String name, ObservableList<E>
initialValue)

One of the common mistakes in using the ListProperty class is not passing an ObservableList to its
constructor before using it. A ListProperty must have a reference to an ObservableList before you can
perform a meaningful operation on it. If you do not use an ObservableList to create a ListProperty object,
you can use its set() method to set the reference of an ObservableList. The following snippet of code
generates an exception:

ListProperty<String> lp = new SimpleListProperty<String>();

// No ObservableList to work with. Generates an exception.
lp.add("Hello");

Exception in thread "main" java.lang.UnsupportedOperationException
 at java.util.AbstractList.add(AbstractList.java:148)
 at java.util.AbstractList.add(AbstractList.java:108)
 at javafx.beans.binding.ListExpression.add(ListExpression.java:262)

Tip ■ Operations performed on a ListProperty that wraps a null reference are treated as if the operations
were performed on an immutable empty ObservableList.

The following snippet of code shows how to create and initialize a ListProperty before using it:

ObservableList<String> list1 = FXCollections.observableArrayList();
ListProperty<String> lp1 = new SimpleListProperty<String>(list1);
lp1.add("Hello");

ListProperty<String> lp2 = new SimpleListProperty<String>();
lp2.set(FXCollections.observableArrayList());
lp2.add("Hello");

Observing a ListProperty for Changes
You can attach three types of listeners to a ListProperty:

An •	 InvalidationListener

A •	 ChangeListener

A •	 ListChangeListener

Chapter 3 ■ Observable COlleCtiOns

114

All three listeners are notified when the reference of the ObservableList, which is wrapped in the
ListProperty, changes or the content of the ObservableList changes. When the content of the list changes,
the changed() method of ChangeListeners receives the reference to the same list as the old and new
value. If the wrapped reference of the ObservableList is replaced with a new one, this method receives
references of the old list and the new list. To handle the list change events, please refer to the “Observing an
ObservableList for Changes” section in this chapter.

The program in Listing 3-14 shows how to handle all three types of changes to a ListProperty. The
list change listener handles the changes to the content of the list in a brief and generic way. Please refer to
the “Observing an ObservableList for Changes” section in this chapter on how to handle the content change
events for an ObservableList in detail.

Listing 3-14. Adding Invalidation, Change, and List Change Listeners to a ListProperty

// ListPropertyTest.java
package com.jdojo.collections;

import javafx.beans.Observable;
import javafx.beans.property.ListProperty;
import javafx.beans.property.SimpleListProperty;
import javafx.beans.value.ObservableValue;
import javafx.collections.FXCollections;
import javafx.collections.ListChangeListener;
import javafx.collections.ObservableList;

public class ListPropertyTest {
 public static void main(String[] args) {
 // Create an observable list property
 ListProperty<String> lp =
 new SimpleListProperty<>(FXCollections.observableArrayList());

 // Add invalidation, change, and list change listeners
 lp.addListener(ListPropertyTest::invalidated);
 lp.addListener(ListPropertyTest::changed);
 lp.addListener(ListPropertyTest::onChanged);

 System.out.println("Before addAll()");
 lp.addAll("one", "two", "three");
 System.out.println("After addAll()");

 System.out.println("\nBefore set()");

 // Replace the wrapped list with a new one
 lp.set(FXCollections.observableArrayList("two", "three"));
 System.out.println("After set()");

 System.out.println("\nBefore remove()");
 lp.remove("two");
 System.out.println("After remove()");
 }

Chapter 3 ■ Observable COlleCtiOns

115

 // An invalidation listener
 public static void invalidated(Observable list) {
 System.out.println("List property is invalid.");
 }

 // A change listener
 public static void changed(ObservableValue<? extends ObservableList<String>> observable,
 ObservableList<String> oldList,
 ObservableList<String> newList) {
 System.out.print("List Property has changed.");
 System.out.print(" Old List: " + oldList);
 System.out.println(", New List: " + newList);
 }

 // A list change listener
 public static void onChanged(ListChangeListener.Change<? extends String> change) {
 while (change.next()) {
 String action = change.wasPermutated() ? "Permutated"
 : change.wasUpdated() ? "Updated"
 : change.wasRemoved() && change.wasAdded() ? "Replaced"
 : change.wasRemoved() ? "Removed" : "Added";

 System.out.print("Action taken on the list: " + action);
 System.out.print(". Removed: " + change.getRemoved());
 System.out.println(", Added: " + change.getAddedSubList());
 }
 }
}

Before addAll()
List property is invalid.
List Property has changed. Old List: [one, two, three], New List: [one, two, three]
Action taken on the list: Added. Removed: [], Added: [one, two, three]
After addAll()

Before set()
List property is invalid.
List Property has changed. Old List: [one, two, three], New List: [two, three]
Action taken on the list: Replaced. Removed: [one, two, three], Added: [two, three]
After set()

Before remove()
List property is invalid.
List Property has changed. Old List: [three], New List: [three]
Action taken on the list: Removed. Removed: [two], Added: []
After remove()

Chapter 3 ■ Observable COlleCtiOns

116

Binding the size and empty Properties of a ListProperty
A ListProperty exposes two properties, size and empty, which are of type ReadOnlyIntegerProperty
and ReadOnlyBooleanProperty, respectively. You can access them using the sizeProperty() and
emptyProperty() methods. The size and empty properties are useful for binding in GUI applications.
For example, the model in a GUI application may be backed by a ListProperty, and you can bind these
properties to the text property of a label on the screen. When the data changes in the model, the label
will be updated automatically through binding. The size and empty properties are declared in the
ListExpression class.

The program in Listing 3-15 shows how to use the size and empty properties. It uses the asString()
method of the ListExpression class to convert the content of the wrapped ObservableList to a String.

Listing 3-15. Using the size and empty Properties of a ListProperty Object

// ListBindingTest.java
package com.jdojo.collections;

import javafx.beans.property.ListProperty;
import javafx.beans.property.SimpleListProperty;
import javafx.beans.property.SimpleStringProperty;
import javafx.beans.property.StringProperty;
import javafx.collections.FXCollections;

public class ListBindingTest {
 public static void main(String[] args) {
 ListProperty<String> lp =
 new SimpleListProperty<>(FXCollections.observableArrayList());

 // Bind the size and empty properties of the ListProperty
 // to create a description of the list
 StringProperty initStr = new SimpleStringProperty("Size: ");
 StringProperty desc = new SimpleStringProperty();
 desc.bind(initStr.concat(lp.sizeProperty())
 .concat(", Empty: ")
 .concat(lp.emptyProperty())
 .concat(", List: ")
 .concat(lp.asString()));

 System.out.println("Before addAll(): " + desc.get());
 lp.addAll("John", "Jacobs");
 System.out.println("After addAll(): " + desc.get());
 }
}

Before addAll(): Size: 0, Empty: true, List: []
After addAll(): Size: 2, Empty: false, List: [John, Jacobs]

Chapter 3 ■ Observable COlleCtiOns

117

Methods to support high-level binding for a list property are in the ListExpression and Bindings
classes. Low-level binding can be created by subclassing the ListBinding class. A ListProperty supports
two types of bindings:

Binding the reference of the •	 ObservableList that it wraps

Binding the content of the •	 ObservableList that it wraps

The bind() and bindBidirectional() methods are used to create the first kind of binding. The
program in Listing 3-16 shows how to use these methods. As shown in the output below, notice that both list
properties have the reference of the same ObservableList after binding.

Listing 3-16. Binding the References of List Properties

// BindingListReference.java
package com.jdojo.collections;

import javafx.beans.property.ListProperty;
import javafx.beans.property.SimpleListProperty;
import javafx.collections.FXCollections;

public class BindingListReference {

 public static void main(String[] args) {
 ListProperty<String> lp1 =
 new SimpleListProperty<>(FXCollections.observableArrayList());
 ListProperty<String> lp2 =
 new SimpleListProperty<>(FXCollections.observableArrayList());

 lp1.bind(lp2);

 print("Before addAll():", lp1, lp2);
 lp1.addAll("One", "Two");
 print("After addAll():", lp1, lp2);

 // Change the reference of the ObservableList in lp2
 lp2.set(FXCollections.observableArrayList("1", "2"));
 print("After lp2.set():", lp1, lp2);

 // Cannot do the following as lp1 is a bound property
 // lp1.set(FXCollections.observableArrayList("1", "2"));
 // Unbind lp1
 lp1.unbind();
 print("After unbind():", lp1, lp2);

 // Bind lp1 and lp2 bidirectionally
 lp1.bindBidirectional(lp2);
 print("After bindBidirectional():", lp1, lp2);

 lp1.set(FXCollections.observableArrayList("X", "Y"));
 print("After lp1.set():", lp1, lp2);
 }

Chapter 3 ■ Observable COlleCtiOns

118

 public static void print(String msg, ListProperty<String> lp1, ListProperty<String> lp2) {
 System.out.println(msg);
 System.out.println("lp1: " + lp1.get() + ", lp2: " + lp2.get() +
 ", lp1.get() == lp2.get(): " + (lp1.get() == lp2.get()));
 System.out.println("---------------------------");
 }
}

Before addAll():
lp1: [], lp2: [], lp1.get() == lp2.get(): true

After addAll():
lp1: [One, Two], lp2: [One, Two], lp1.get() == lp2.get(): true

After lp2.set():
lp1: [1, 2], lp2: [1, 2], lp1.get() == lp2.get(): true

After unbind():
lp1: [1, 2], lp2: [1, 2], lp1.get() == lp2.get(): true

After bindBidirectional():
lp1: [1, 2], lp2: [1, 2], lp1.get() == lp2.get(): true

After lp1.set():
lp1: [X, Y], lp2: [X, Y], lp1.get() == lp2.get(): true

The bindContent() and bindContentBidirectional() methods let you bind the content of the

ObservableList that is wrapped in a ListProperty to the content of another ObservableList in one
direction and both directions, respectively. Make sure to use the corresponding methods, unbindContent()
and unbindContentBidirectional(), to unbind contents of two observable lists.

Tip ■ You can also use methods of the Bindings class to create bindings for references and contents of
observable lists.

It is allowed, but not advisable, to change the content of a ListProperty whose content has been bound
to another ObservableList. In such cases, the bound ListProperty will not be synchronized with its target
list. Listing 3-17 shows examples of both types of content binding.

Chapter 3 ■ Observable COlleCtiOns

119

Listing 3-17. Binding Contents of List Properties

// BindingListContent.java
package com.jdojo.collections;

import javafx.beans.property.ListProperty;
import javafx.beans.property.SimpleListProperty;
import javafx.collections.FXCollections;

public class BindingListContent {

 public static void main(String[] args) {
 ListProperty<String> lp1 =
 new SimpleListProperty<>(FXCollections.observableArrayList());
 ListProperty<String> lp2 =
 new SimpleListProperty<>(FXCollections.observableArrayList());

 // Bind the content of lp1 to the content of lp2
 lp1.bindContent(lp2);

 /* At this point, you can change the content of lp1. However,
 * that will defeat the purpose of content binding, because the
 * content of lp1 is no longer in sync with the content of lp2.
 * Do not do this:
 * lp1.addAll("X", "Y");
 */
 print("Before lp2.addAll():", lp1, lp2);
 lp2.addAll("1", "2");
 print("After lp2.addAll():", lp1, lp2);

 lp1.unbindContent(lp2);
 print("After lp1.unbindContent(lp2):", lp1, lp2);

 // Bind lp1 and lp2 contents bidirectionally
 lp1.bindContentBidirectional(lp2);

 print("Before lp1.addAll():", lp1, lp2);
 lp1.addAll("3", "4");
 print("After lp1.addAll():", lp1, lp2);

 print("Before lp2.addAll():", lp1, lp2);
 lp2.addAll("5", "6");
 print("After lp2.addAll():", lp1, lp2);
 }

 public static void print(String msg, ListProperty<String> lp1, ListProperty<String> lp2) {
 System.out.println(msg + " lp1: " + lp1.get() + ", lp2: " + lp2.get());
 }
}

Chapter 3 ■ Observable COlleCtiOns

120

Before lp2.addAll(): lp1: [], lp2: []
After lp2.addAll(): lp1: [1, 2], lp2: [1, 2]
After lp1.unbindContent(lp2): lp1: [1, 2], lp2: [1, 2]
Before lp1.addAll(): lp1: [1, 2], lp2: [1, 2]
After lp1.addAll(): lp1: [1, 2, 3, 4], lp2: [1, 2, 3, 4]
Before lp2.addAll(): lp1: [1, 2, 3, 4], lp2: [1, 2, 3, 4]
After lp2.addAll(): lp1: [1, 2, 3, 4, 5, 6], lp2: [1, 2, 3, 4, 5, 6]

Binding to Elements of a List
ListProperty provides so many useful features that I can keep discussing this topic for at least 50 more
pages! I will wrap this topic up with one more example.

It is possible to bind to a specific element of the ObservableList wrapped in a ListProperty using one
of the following methods of the ListExpression class:

•	 ObjectBinding<E> valueAt(int index)

•	 ObjectBinding<E> valueAt(ObservableIntegerValue index)

The first version of the method creates an ObjectBinding to an element in the list at a specific index.
The second version of the method takes an index as an argument, which is an ObservableIntegerValue
that can change over time. When the bound index in the valueAt() method is outside the list range, the
ObjectBinding contains null.

Let’s use the second version of the method to create a binding that will bind to the last element of a
list. Here you can make use of the size property of the ListProperty in creating the binding expression.
The program in Listing 3-18 shows how to use the valueAt() method. Note that this program throws an
ArrayIndexOutOfBoundsException when run using Java Development Kit 8 Build 25. It did not throw an
exception before and it does not throw an exception in Java Development Kit 9’s early access build.

Listing 3-18. Binding to the Elements of a List

// BindingToListElements.java
package com.jdojo.collections;

import javafx.beans.binding.ObjectBinding;
import javafx.beans.property.ListProperty;
import javafx.beans.property.SimpleListProperty;
import javafx.collections.FXCollections;

public class BindingToListElements {
 public static void main(String[] args) {
 ListProperty<String> lp =
 new SimpleListProperty<>(FXCollections.observableArrayList());

 // Create a binding to the last element of the list
 ObjectBinding<String> last = lp.valueAt(lp.sizeProperty().subtract(1));
 System.out.println("List:" + lp.get() + ", Last Value: " + last.get());

Chapter 3 ■ Observable COlleCtiOns

121

 lp.add("John");
 System.out.println("List:" + lp.get() + ", Last Value: " + last.get());

 lp.addAll("Donna", "Geshan");
 System.out.println("List:" + lp.get() + ", Last Value: " + last.get());

 lp.remove("Geshan");
 System.out.println("List:" + lp.get() + ", Last Value: " + last.get());

 lp.clear();
 System.out.println("List:" + lp.get() + ", Last Value: " + last.get());
 }
}

List:[], Last Value: null
List:[John], Last Value: John
List:[John, Donna, Geshan], Last Value: Geshan
List:[John, Donna], Last Value: Donna
List:[], Last Value: null

Understanding ObservableSet Property and Binding
A SetProperty object wraps an ObservableSet. Working with a SetProperty is very similar to working
with a ListProperty. I are not going to repeat what has been discussed in the previous sections about
properties and bindings of an ObservableList. The same discussions apply to properties and bindings of
ObservableSet. The following are the salient points to remember while working with a SetProperty:

The class diagram for the •	 SetProperty class is similar to the one shown in Figure 3-5
for the ListProperty class. You need to replace the word “List” with the word “Set”
in all names.

The •	 SetExpression and Bindings classes contain methods to support high-level
bindings for set properties. You need to subclass the SetBinding class to create low-
level bindings.

Like the •	 ListProperty, the SetProperty exposes the size and empty properties.

Like the •	 ListProperty, the SetProperty supports bindings of the reference and the
content of the ObservableSet that it wraps.

Like the •	 ListProperty, the SetProperty supports three types of notifications:
invalidation notifications, change notifications, and set change notifications.

Unlike a list, a set is an unordered collection of items. Its elements do not •	
have indexes. It does not support binding to its specific elements. Therefore,
the SetExpression class does not contain a method like valueAt() as the
ListExpression class does.

Chapter 3 ■ Observable COlleCtiOns

122

You can use one of the following constructors of the SimpleSetProperty class to create an instance of
the SetProperty:

•	 SimpleSetProperty()

•	 SimpleSetProperty(ObservableSet<E> initialValue)

•	 SimpleSetProperty(Object bean, String name)

•	 SimpleSetProperty(Object bean, String name, ObservableSet<E>
initialValue)

The following snippet of code creates an instance of the SetProperty and adds two elements to the
ObservableSet that the property wraps. In the end, it gets the reference of the ObservableSet from the
property object using the get() method:

// Create a SetProperty object
SetProperty<String> sp = new SimpleSetProperty<String>(FXCollections.observableSet());

// Add two elements to the wrapped ObservableSet
sp.add("one");
sp.add("two");

// Get the wrapped set from the sp property
ObservableSet<String> set = sp.get();

The program in Listing 3-19 demonstrates how to use binding with SetProperty objects.

Listing 3-19. Using Properties and Bindings for Observable Sets

// SetBindingTest.java
package com.jdojo.collections;

import javafx.beans.property.SetProperty;
import javafx.beans.property.SimpleSetProperty;
import javafx.beans.property.SimpleStringProperty;
import javafx.beans.property.StringProperty;
import javafx.collections.FXCollections;

public class SetBindingTest {
 public static void main(String[] args) {
 SetProperty<String> sp1 =
 new SimpleSetProperty<>(FXCollections.observableSet());

 // Bind the size and empty properties of the SetProperty
 // to create a description of the set
 StringProperty initStr = new SimpleStringProperty("Size: ");
 StringProperty desc = new SimpleStringProperty();
 desc.bind(initStr.concat(sp1.sizeProperty())
 .concat(", Empty: ")
 .concat(sp1.emptyProperty())
 .concat(", Set: ")
 .concat(sp1.asString())
);

Chapter 3 ■ Observable COlleCtiOns

123

 System.out.println("Before sp1.add(): " + desc.get());
 sp1.add("John");
 sp1.add("Jacobs");
 System.out.println("After sp1.add(): " + desc.get());

 SetProperty<String> sp2 =
 new SimpleSetProperty<>(FXCollections.observableSet());

 // Bind the content of sp1 to the content of sp2
 sp1.bindContent(sp2);
 System.out.println("Called sp1.bindContent(sp2)...");

 /* At this point, you can change the content of sp1. However,
 * that will defeat the purpose of content binding, because the
 * content of sp1 is no longer in sync with the content of sp2.
 * Do not do this:
 * sp1.add("X");
 */
 print("Before sp2.add():", sp1, sp2);
 sp2.add("1");
 print("After sp2.add():", sp1, sp2);

 sp1.unbindContent(sp2);
 print("After sp1.unbindContent(sp2):", sp1, sp2);

 // Bind sp1 and sp2 contents bidirectionally
 sp1.bindContentBidirectional(sp2);

 print("Before sp2.add():", sp1, sp2);
 sp2.add("2");
 print("After sp2.add():", sp1, sp2);
 }

 public static void print(String msg, SetProperty<String> sp1, SetProperty<String> sp2) {
 System.out.println(msg + " sp1: " + sp1.get() + ", sp2: " + sp2.get());
 }
}

Before sp1.add(): Size: 0, Empty: true, Set: []
After sp1.add(): Size: 2, Empty: false, Set: [Jacobs, John]
Called sp1.bindContent(sp2)...
Before sp2.add(): sp1: [], sp2: []
After sp2.add(): sp1: [1], sp2: [1]
After sp1.unbindContent(sp2): sp1: [1], sp2: [1]
Before sp2.add(): sp1: [1], sp2: [1]
After sp2.add(): sp1: [1, 2], sp2: [2, 1]

Chapter 3 ■ Observable COlleCtiOns

124

Understanding ObservableMap Property and Binding
A MapProperty object wraps an ObservableMap. Working with a MapProperty is very similar to working
with a ListProperty. I are not going to repeat what has been discussed in the previous sections about
properties and bindings of an ObservableList. The same discussions apply to properties and bindings of
ObservableMap. The following are the salient points to remember while working with a MapProperty:

The class diagram for the •	 MapProperty class is similar to the one shown in Figure 3-5
for the ListProperty class. You need to replace the word “List” with the word “Map”
in all names and the generic type parameter <E> with <K, V>, where K and V stand
for the key type and value type, respectively, of entries in the map.

The •	 MapExpression and Bindings classes contain methods to support high-level
bindings for map properties. You need to subclass the MapBinding class to create
low-level bindings.

Like the •	 ListProperty, the MapProperty exposes size and empty properties.

Like the •	 ListProperty, the MapProperty supports bindings of the reference and the
content of the ObservableMap that it wraps.

Like the •	 ListProperty, the MapProperty supports three types of notifications:
invalidation notifications, change notifications, and map change notifications.

The •	 MapProperty supports binding to the value of a specific key using its valueAt()
method.

Use one of the following constructors of the SimpleMapProperty class to create an instance of the
MapProperty:

•	 SimpleMapProperty()

•	 SimpleMapProperty(Object bean, String name)

•	 SimpleMapProperty(Object bean, String name, ObservableMap<K,V>
initialValue)

•	 SimpleMapProperty(ObservableMap<K,V> initialValue)

The following snippet of code creates an instance of the MapProperty and adds two entries. In the end,
it gets the reference of the wrapped ObservableMap using the get() method:

// Create a MapProperty object
MapProperty<String, Double> mp =
 new SimpleMapProperty<String, Double>(FXCollections.observableHashMap());

// Add two entries to the wrapped ObservableMap
mp.put("Ken", 8190.20);
mp.put("Jim", 8990.90);

// Get the wrapped map from the mp property
ObservableMap<String, Double> map = mp.get();

The program in Listing 3-20 shows how to use binding with MapProperty objects. It shows the content
binding between two maps. You can also use unidirectional and bidirectional simple binding between two
map properties to bind the references of the maps they wrap.

Chapter 3 ■ Observable COlleCtiOns

125

Listing 3-20. Using Properties and Bindings for Observable Maps

// MapBindingTest.java
package com.jdojo.collections;

import javafx.beans.binding.ObjectBinding;
import javafx.beans.property.MapProperty;
import javafx.beans.property.SimpleMapProperty;
import javafx.beans.property.SimpleStringProperty;
import javafx.beans.property.StringProperty;
import javafx.collections.FXCollections;

public class MapBindingTest {
 public static void main(String[] args) {
 MapProperty<String, Double> mp1 =
 new SimpleMapProperty<>(FXCollections.observableHashMap());

 // Create an object binding to bind mp1 to the value of the key "Ken"
 ObjectBinding<Double> kenSalary = mp1.valueAt("Ken");
 System.out.println("Ken Salary: " + kenSalary.get());

 // Bind the size and empty properties of the MapProperty
 // to create a description of the map
 StringProperty initStr = new SimpleStringProperty("Size: ");
 StringProperty desc = new SimpleStringProperty();
 desc.bind(initStr.concat(mp1.sizeProperty())
 .concat(", Empty: ")
 .concat(mp1.emptyProperty())
 .concat(", Map: ")
 .concat(mp1.asString())
 .concat(", Ken Salary: ")
 .concat(kenSalary));

 System.out.println("Before mp1.put(): " + desc.get());

 // Add some entries to mp1
 mp1.put("Ken", 7890.90);
 mp1.put("Jim", 9800.80);
 mp1.put("Lee", 6000.20);
 System.out.println("After mp1.put(): " + desc.get());

 // Create a new MapProperty
 MapProperty<String, Double> mp2 =
 new SimpleMapProperty<>(FXCollections.observableHashMap());

 // Bind the content of mp1 to the content of mp2
 mp1.bindContent(mp2);
 System.out.println("Called mp1.bindContent(mp2)...");

Chapter 3 ■ Observable COlleCtiOns

126

 /* At this point, you can change the content of mp1. However,
 * that will defeat the purpose of content binding, because the
 * content of mp1 is no longer in sync with the content of mp2.
 * Do not do this:
 * mp1.put("k1", 8989.90);
 */
 System.out.println("Before mp2.put(): " + desc.get());
 mp2.put("Ken", 7500.90);
 mp2.put("Cindy", 7800.20);
 System.out.println("After mp2.put(): " + desc.get());
 }
}

Ken Salary: null
Before mp1.put(): Size: 0, Empty: true, Map: {}, Ken Salary: null
After mp1.put(): Size: 3, Empty: false, Map: {Jim=9800.8, Lee=6000.2, Ken=7890.9}, Ken
Salary: 7890.9
Called mp1.bindContent(mp2)...
Before mp2.put(): Size: 0, Empty: true, Map: {}, Ken Salary: null
After mp2.put(): Size: 2, Empty: false, Map: {Cindy=7800.2, Ken=7500.9}, Ken Salary: 7500.9

Summary
JavaFX extends the collections framework in Java by adding support for observable lists, sets, and maps that
are called observable collections. An observable collection is a list, set, or map that may be observed for
invalidation and content changes. Instances of the ObservableList, ObservableSet, and ObservableMap
interfaces in the javafx.collections package represent observable interfaces in JavaFX. You can add
invalidation and change listeners to instances of these observable collections.

The FXCollections class is a utility class to work with JavaFX collections. It consists of all static
methods. JavaFX does not expose the implementation classes of observable lists, sets, and maps. You need
to use one of the factory methods in the FXCollections class to create objects of the ObservableList,
ObservableSet, and ObservableMap interfaces.

JavaFX library provides two classes named FilteredList and SortedList that are in the javafx.
collections.transformation package. A FilteredList is an ObservableList that filters its contents using
a specified Predicate. A SortedList sorts its contents.

The next chapter will discuss how to create and customize stages in JavaFX applications.

127

Chapter 4

Managing Stages

In this chapter, you will learn:

How to get details of screens such as their number, resolutions, and dimensions•	

What a stage is in JavaFX and how to set bounds and styles of a stage•	

How to move an undecorated stage•	

How to set the modality and opacity of a stage•	

How to resize a stage and how to show a stage in full-screen mode•	

Knowing the Details of Your Screens
The Screen class in the javafx.stage package is used to get the details, for example, dots-per-inch (DPI)
setting and dimensions of user screens (or monitors). If multiple screens are hooked up to a computer, one
of the screens is known as the primary screen and others as nonprimary screens. You can get the reference of
the Screen object for the primary monitor using the static getPrimary() method of the Screen class with the
following code:

// Get the reference to the primary screen
Screen primaryScreen = Screen.getPrimary();

The static getScreens() method returns an ObservableList of Screen objects:

ObservableList<Screen> screenList = Screen.getScreens();

You can get the resolution of a screen in DPI using the getDpi() method of the Screen class as follows:

Screen primaryScreen = Screen.getPrimary();
double dpi = primaryScreen.getDpi();

You can use the getBounds() and getVisualBounds() methods to get the bounds and visual bounds,
respectively. Both methods return a Rectangle2D object, which encapsulates the (x, y) coordinates of
the upper-left and the lower-right corners, the width, and the height of a rectangle. The getMinX() and
getMinY() methods return the x and y coordinates of the upper-left corner of the rectangle, respectively.
The getMaxX() and getMaxY() methods return the x and y coordinates of the lower-right corner of the
rectangle, respectively. The getWidth() and getHeight() methods return the width and height of the
rectangle, respectively.

Chapter 4 ■ Managing StageS

128

The bounds of a screen cover the area that is available on the screen. The visual bounds represent the
area on the screen that is available for use, after taking into account the area used by the native windowing
system such as task bars and menus. Typically, but not necessarily, the visual bounds of a screen represents
a smaller area than its bounds.

If a desktop spans multiple screens, the bounds of the nonprimary screens are relative to the primary
screen. For example, if a desktop spans two screens with the (x, y) coordinates of the upper-left corner of
the primary screen at (0, 0) and its width 1600, the coordinates of the upper-left corner of the second screen
would be (1600, 0).

The program in Listing 4-1 prints the screens details when it was run on a Windows desktop with two
screens. You may get a different output. Notice the difference in height for bounds and visual bounds for one
screen and not for the other. The primary screen displays a task bar at the bottom that takes away some part
of the height from the visual bounds. The nonprimary screen does not display a task bar, and therefore, its
bounds and visual bounds are the same.

Tip ■ although it is not mentioned in the api documentation for the Screen class, you cannot use this class
until the JavaFX launcher has started. that is, you cannot get screen descriptions in a non-JavaFX application.
this is the reason that you would write the code in the start() method of a JavaFX application class. there is
no requirement that the Screen class needs to be used on the JavaFX application thread. You could also write
the same code in the init() method of your class.

Listing 4-1. Accessing Screens Details

// ScreenDetailsApp.java
package com.jdojo.stage;

import javafx.application.Application;
import javafx.application.Platform;
import javafx.collections.ObservableList;
import javafx.geometry.Rectangle2D;
import javafx.stage.Screen;
import javafx.stage.Stage;

public class ScreenDetailsApp extends Application {
 public static void main(String[] args) {
 Application.launch(args);
 }

 public void start(Stage stage) {
 ObservableList<Screen> screenList = Screen.getScreens();
 System.out.println("Screens Count: " + screenList.size());

 // Print the details of all screens
 for(Screen screen: screenList) {
 print(screen);
 }

 Platform.exit();
 }

Chapter 4 ■ Managing StageS

129

 public void print(Screen s) {
 System.out.println("DPI: " + s.getDpi());

 System.out.print("Screen Bounds: ");
 Rectangle2D bounds = s.getBounds();
 print(bounds);

 System.out.print("Screen Visual Bounds: ");
 Rectangle2D visualBounds = s.getVisualBounds();
 print(visualBounds);
 System.out.println("-----------------------");
 }

 public void print(Rectangle2D r) {
 System.out.format("minX=%.2f, minY=%.2f, width=%.2f, height=%.2f%n",
 r.getMinX(), r.getMinY(), r.getWidth(), r.getHeight());
 }
}

Screens Count: 2
DPI: 96.0
Screen Bounds: minX=0.00, minY=0.00, width=1680.00, height=1050.00
Screen Visual Bounds: minX=0.00, minY=0.00, width=1680.00, height=1022.00

DPI: 96.0
Screen Bounds: minX = 1680.00, minY=0.00, width= 1680.00, height=1050.00
Screen Visual Bounds: minX = 1680.00, minY=0.00, width= 1680.00, height=1050.0

What Is a Stage?
A stage in JavaFX is a top-level container that hosts a scene, which consists of visual elements. The Stage
class in the javafx.stage package represents a stage in a JavaFX application. The primary stage is created by
the platform and passed to the start(Stage s) method of the Application class. You can create additional
stages as needed.

Tip ■ a stage in a JavaFX application is a top-level container. this does not mean that it is always displayed
as a separate window. For example, in a web environment, the primary stage of a JavaFX application is
 embedded inside the browser window.

Figure 4-1 shows the class diagram for the Stage class, which inherits from the Window class. The Window
class is the superclass for several window-line container classes. It contains the basic functionalities that
are common to all types of windows (e.g., methods to show and hide the window, set x, y, width, and height
properties, set the opacity of the window, etc.). The Window class defines x, y, width, height, and opacity
properties. It has show() and hide() methods to show and hide a window, respectively. The setScene()
method of the Window class sets the scene for a window. The Stage class defines a close() method, which
has the same effect as calling the hide() method of the Window class.

Chapter 4 ■ Managing StageS

130

A Stage object must be created and modified on the JavaFX Application Thread. Recall that the start()
method of the Application class is called on the JavaFX Application Thread, and a primary Stage is created
and passed to this method. Note that the primary stage that is passed the start() method is not shown.
You need to call the show() method to show it.

Several aspects of working with stages need to be discussed. I will handle them one by one from the
basic to the advanced level in the sections that follow.

Showing the Primary Stage
Let’s start with the simplest JavaFX application, as shown in Listing 4-2. The start() method has no
code. When you run the application, you do not see a window, nor do you see output on the console. The
application runs forever. You will need to use the system-specific keys to cancel the application. If you are
using Windows, use your favorite key combination Ctrl + Alt + Del to activate the task manager! If you are
using the command prompt, use Ctrl + C.

Listing 4-2. An Ever-Running JavaFX Application

// EverRunningApp.java
package com.jdojo.stage;

import javafx.application.Application;
import javafx.stage.Stage;

public class EverRunningApp extends Application {
 public static void main(String[] args) {
 Application.launch(args);
 }

 @Override
 public void start(Stage stage) {
 // Do not write any code here
 }
}

Window

Stage

PopupControl

TooltipContextMenu

Popup

PopupWindow

Figure 4-1. The class diagram for the Stage class

Chapter 4 ■ Managing StageS

131

To determine what is wrong with the program in Listing 4-2, you need to understand what the JavaFX
application launcher does. Recall that JavaFX Application Thread is terminated when the Platform.exit()
method is called or the last shown stage is closed. The JVM terminates when all nondaemon threads die.
JavaFX Application Thread is a nondaemon thread. The Application.launch() method returns when
the JavaFX Application Thread terminates. In the above example, there is no way to terminate the JavaFX
Application Thread. This is the reason the application runs forever.

Using the Platform.exit() method in the start() method will fix the problem. The modified code
for the start() method is shown in Listing 4-3. When you run the program, it exits without doing anything
meaningful.

Listing 4-3. A Short-Lived JavaFX Application

// ShortLivedApp.java
package com.jdojo.stage;

import javafx.application.Application;
import javafx.application.Platform;
import javafx.stage.Stage;

public class ShortLivedApp extends Application {
 public static void main(String[] args) {
 Application.launch(args);
 }

 @Override
 public void start(Stage stage) {
 Platform.exit(); // Exit the application
 }
}

Let’s try to fix the ever-running program by closing the primary stage. You have only one stage when the
start() method is called and closing it should terminate the JavaFX Application Thread. Let’s modify the
start() method of the EverRunningApp with the following code:

@Override
public void start(Stage stage) {
 stage.close(); // Close the only stage you have
}

Even with this code for the start() method, the EverRunningApp runs forever. The close() method
does not close the stage if the stage is not showing. The primary stage was never shown. Therefore, adding a
stage.close() call to the start() method did not do any good. The following code for the start() method
would work. However, this will cause the screen to flicker as the stage is shown and closed:

@Override
public void start(Stage stage) {
 stage.show(); // First show the stage
 stage.close(); // Now close it
}

Chapter 4 ■ Managing StageS

132

Tip ■ the close() method of the Stage class has the same effect as calling the hide() method of the
Window class. the JavaFX api documentation does not mention that attempting to close a not showing window
has no effect.

Setting the Bounds of a Stage
The bounds of a stage consist of four properties: x, y, width, and height. The x and y properties determine
the location (or position) of the upper-left corner of the stage. The width and height properties determine
its size. In this section, you will learn how to position and size a stage on the screen. You can use the getters
and setters for these properties to get and set their values.

Let’s start with a simple example as shown in Listing 4-4. The program sets the title for the primary stage
before showing it. When you run this code, you would see a window with the title bar, borders, and an empty
area. If other applications are open, you can see their content through the transparent area of the stage. The
position and size of the window are decided by the platform.

Tip ■ When a stage does not have a scene and its position and size are not set explicitly, its position and size
are determined and set by the platform.

Listing 4-4. Displaying a Stage with No Scene and with the Platform Default Position and Size

// BlankStage.java
package com.jdojo.stage;

import javafx.application.Application;
import javafx.stage.Stage;

public class BlankStage extends Application {
 public static void main(String[] args) {
 Application.launch(args);
 }

 @Override
 public void start(Stage stage) {
 stage.setTitle("Blank Stage");
 stage.show();
 }
}

Chapter 4 ■ Managing StageS

133

Let’s modify the logic a bit. Here you will set an empty scene to the stage without setting the size of
the scene. The modified start() method would look as follows:

import javafx.scene.Group;
import javafx.scene.Scene;
...
@Override
public void start(Stage stage) {
 stage.setTitle("Stage with an Empty Scene");
 Scene scene = new Scene(new Group());
 stage.setScene(scene);
 stage.show();
}

Notice that you have set a Group with no children nodes as the root node for the scene, because you
cannot create a scene without a root node. When you run the program in Listing 4-4 with the above code as
its start() method, the position and size of the stage are determined by the platform. This time, the content
area will have a white background, because the default background color for a scene is white.

Let’s modify the logic again. Here let’s add a button to the scene. The modified start() method would
be as follows:

import javafx.scene.control.Button;
...
@Override
public void start(Stage stage) {
 stage.setTitle("Stage with a Button in the Scene");
 Group root = new Group(new Button("Hello"));
 Scene scene = new Scene(root);
 stage.setScene(scene);
 stage.show();
}

When you run the program in Listing 4-4 with the above code as its start() method, the position and
size of the stage are determined by the computed size of the scene. The content area of the stage is wide
enough to show the title bar menus or the content of the scene, whichever is bigger. The content area of the
stage is tall enough to show the content of the scene, which in this case has only one button. The stage is
centered on the screen, as shown in Figure 4-2.

Figure 4-2. A stage with a scene that contains a button where the size of the scene is not specified

Chapter 4 ■ Managing StageS

134

Let’s add another twist to the logic by adding a button to the scene and set the scene width and height to
300 and 100, respectively, as follows:

@Override
public void start(Stage stage) {
 stage.setTitle("Stage with a Sized Scene");
 Group root = new Group(new Button("Hello"));
 Scene scene = new Scene(root, 300, 100);
 stage.setScene(scene);
 stage.show();
}

When you run the program in Listing 4-4 with the above code as its start() method, the position and
size of the stage are determined by the specified size of the scene. The content area of the stage is the same
as the specified size of the scene. The width of the stage includes the borders on the two sides, and the height
of the stage includes the height of the title bar and the bottom border. The stage is centered on the screen,
as shown in Figure 4-3.

Figure 4-3. A stage with a scene with a specified size

Let’s add one more twist to the logic. You will set the size of the scene and the stage using the
following code:

@Override
public void start(Stage stage) {
 stage.setTitle("A Sized Stage with a Sized Scene");
 Group root = new Group(new Button("Hello"));
 Scene scene = new Scene(root, 300, 100);
 stage.setScene(scene);
 stage.setWidth(400);
 stage.setHeight(100);
 stage.show();
}

When you run the program in Listing 4-4 with the above code as its start() method, the position and
size of the stage are determined by the specified size of the stage. The stage is centered on the screen and
it will then look like the one shown in Figure 4-4.

Chapter 4 ■ Managing StageS

135

Tip ■ the default centering of a stage centers it horizontally on the screen. the y coordinate of the upper-left
corner of the stage is one-third of the height of the screen minus the height of the stage. this is the logic used
in the centerOnScreen() method in the Window class.

Let me recap the rules for positioning and resizing a stage. If you do not specify the bounds of a stage and:

It has no scene, its bounds are determined by the platform.•	

It has a scene with no visual nodes, its bounds are determined by the platform. •	
In this case, the size of the scene is not specified.

It has a scene with some visual nodes, its bounds are determined by the visual •	
nodes in the scene. In this case, the size of the scene is not specified and the stage is
centered in the screen.

It has a scene and the size of the scene is specified, its bounds are determined by the •	
specified size of the scene. The stage is centered on the screen.

If you specify the size of the stage but not its position, the stage is sized according the set size and
centered on the screen, irrespective of the presence of a scene and the size of the scene. If you specify the
position of the stage (x, y coordinates), it is positioned accordingly.

Tip ■ if you want to set the width and height of a stage to fit the content of its scene, use the sizeToScene()
method of the Window class. the method is useful if you want to synchronize the size of a stage with the size
of its scene after modifying the scene at runtime. Use the centerOnScreen() method of the Window class to
center the stage on the screen.

If you want to center a stage on the screen horizontally as well as vertically, use the following logic:

Rectangle2D bounds = Screen.getPrimary().getVisualBounds();
double x = bounds.getMinX() + (bounds.getWidth() - stage.getWidth())/2.0;
double y = bounds.getMinY() + (bounds.getHeight() - stage.getHeight())/2.0;
stage.setX(x);
stage.setY(y);

Figure 4-4. A sized stage with a sized scene

Chapter 4 ■ Managing StageS

136

Be careful in using the above snippet of code. It makes use of the size of the stage. The size of a stage is
not known until the stage is shown for the first time. Using the above logic before a stage is shown will not
really center the stage on the screen. The following start() method of a JavaFX application will not work as
intended:

@Override
public void start(Stage stage) {
 stage.setTitle("A Truly Centered Stage");
 Group root = new Group(new Button("Hello"));
 Scene scene = new Scene(root);
 stage.setScene(scene);

 // Wrong!!!! Use the logic shown below after the stage.show() call
 // At this point, stage width and height are not known. They are NaN.
 Rectangle2D bounds = Screen.getPrimary().getVisualBounds();
 double x = bounds.getMinX() + (bounds.getWidth() - stage.getWidth())/2.0;
 double y = bounds.getMinY() + (bounds.getHeight() - stage.getHeight())/2.0;
 stage.setX(x);
 stage.setY(y);

 stage.show();
}

Initializing the Style of a Stage
The area of a stage can be divided into two parts: content area and decorations. The content area displays
the visual content of its scene. Typically, decorations consist of a title bar and borders. The presence of a title
bar and its content varies depending on the type of decorations provided by the platform. Some decorations
provide additional features rather than just an aesthetic look. For example, a title bar may be used to drag a
stage to a different location; buttons in a title bar may be used to minimize, maximize, restore, and close a
stage; or borders may be used to resize a stage.

In JavaFX, the style attribute of a stage determines its background color and decorations. Based on styles,
you can have the following five types of stages in JavaFX:

Decorated•	

Undecorated•	

Transparent•	

Unified•	

Utility•	

A decorated stage has a solid white background and platform decorations. An undecorated stage
has a solid white background and no decorations. A transparent stage has a transparent background
and no decorations. A unified stage has platform decorations and no border between the client area and
decorations; the client area background is unified with the decorations. To see the effect of the unified stage
style, the scene should be filled with Color.TRANSPARENT. Unified style is a conditional feature. A utility stage
has a solid white background and minimal platform decorations.

Chapter 4 ■ Managing StageS

137

Tip ■ the style of a stage specifies only its decorations. the background color is controlled by its scene
background, which is solid white by default. if you set the style of a stage to TRANSPARENT, you will get a stage
with a solid white background, which is the background of the scene. to get a truly transparent stage, you will
need to set the background color of the scene to null using its setFill() method.

You can set the style of a stage using the initStyle(StageStyle style) method of the Stage class. The
style of a stage must be set before it is shown for the first time. Setting it the second time, after the stage has
been shown, throws a runtime exception. By default, a stage is decorated.

The five types of styles for a stage are defined as five constants in the StageStyle enum:

•	 StageStyle.DECORATED

•	 StageStyle.UNDECORATED

•	 StageStyle.TRANSPARENT

•	 StageStyle.UNIFIED

•	 StageStyle.UTILITY

Listing 4-5 shows how to use these five styles for a stage. In the start() method, you need to
uncomment only one statement at a time, which initializes the style of the stage. You will use a VBox to
display two controls: a Label and a Button. The Label displays the style of the stage. The Button is provided
to close the stage, because not all styles provide a title bar with a close button. Figure 4-5 shows the stage using
four styles. The contents of windows in the background can be seen through a transparent stage. This is the
reason that when you use the transparent style, you will see more content that has been added to the stage.

Listing 4-5. Using Different Styles for a Stage

// StageStyleApp.java
package com.jdojo.stage;

import javafx.application.Application;
import javafx.scene.Scene;
import javafx.scene.control.Button;
import javafx.scene.control.Label;
import javafx.scene.layout.VBox;
import javafx.scene.paint.Color;
import javafx.stage.Stage;
import javafx.stage.StageStyle;
import static javafx.stage.StageStyle.DECORATED;
import static javafx.stage.StageStyle.UNDECORATED;
import static javafx.stage.StageStyle.TRANSPARENT;
import static javafx.stage.StageStyle.UNIFIED;
import static javafx.stage.StageStyle.UTILITY;

public class StageStyleApp extends Application {
 public static void main(String[] args) {
 Application.launch(args);
 }

Chapter 4 ■ Managing StageS

138

 @Override
 public void start(Stage stage) {
 // A label to display the style type
 Label styleLabel = new Label("Stage Style");

 // A button to close the stage
 Button closeButton = new Button("Close");
 closeButton.setOnAction(e -> stage.close());

 VBox root = new VBox();
 root.getChildren().addAll(styleLabel, closeButton);
 Scene scene = new Scene(root, 100, 70);
 stage.setScene(scene);

 // The title of the stage is not visible for all styles.
 stage.setTitle("The Style of a Stage");

 /* Uncomment one of the following statements at a time */
 this.show(stage, styleLabel, DECORATED);
 //this.show(stage, styleLabel, UNDECORATED);
 //this.show(stage, styleLabel, TRANSPARENT);
 //this.show(stage, styleLabel, UNIFIED);
 //this.show(stage, styleLabel, UTILITY);
 }

 private void show(Stage stage, Label styleLabel, StageStyle style) {
 // Set the text for the label to match the style
 styleLabel.setText(style.toString());

 // Set the style
 stage.initStyle(style);

 // For a transparent style, set the scene fill to null. Otherwise, the
 // content area will have the default white background of the scene.
 if (style == TRANSPARENT) {
 stage.getScene().setFill(null);
 stage.getScene().getRoot().setStyle(
 "-fx-background-color: transparent");
 } else if(style == UNIFIED) {
 stage.getScene().setFill(Color.TRANSPARENT);
 }

 // Show the stage
 stage.show();
 }
}

Chapter 4 ■ Managing StageS

139

Moving an Undecorated Stage
You can move a stage to a different location by dragging its title bar. In an undecorated or transparent stage,
a title bar is not available. You need to write a few lines of code to let the user move this kind of stage by
dragging the mouse over the scene area. Listing 4-6 shows how to write the code to support dragging of a
stage. If you change the stage to be transparent, you will need to drag the stage by dragging the mouse over
only the message label, as the transparent area will not respond to the mouse events.

This example uses mouse event handling. I will cover event handling in detail in Chapter 9. It is briefly
presented here to complete the discussion on using different styles of a stage.

Listing 4-6. Dragging a Stage

// DraggingStage.java
package com.jdojo.stage;

import javafx.application.Application;

import javafx.scene.Scene;
import javafx.scene.control.Button;
import javafx.scene.control.Label;
import javafx.scene.input.MouseEvent;
import javafx.scene.layout.VBox;

import javafx.stage.Stage;
import javafx.stage.StageStyle;

public class DraggingStage extends Application {
 private Stage stage;
 private double dragOffsetX;
 private double dragOffsetY;

 public static void main(String[] args) {
 Application.launch(args);
 }

 @Override
 public void start(Stage stage) {
 // Store the stage reference in the instance variable to
 // use it in the mouse pressed event handler later.
 this.stage = stage;

Figure 4-5. A stage using different styles

Chapter 4 ■ Managing StageS

140

 Label msgLabel = new Label("Press the mouse button and drag.");
 Button closeButton = new Button("Close");
 closeButton.setOnAction(e -> stage.close());

 VBox root = new VBox();
 root.getChildren().addAll(msgLabel, closeButton);

 Scene scene = new Scene(root, 300, 200);

 // Set mouse pressed and dragged even handlers for the scene
 scene.setOnMousePressed(e -> handleMousePressed(e));
 scene.setOnMouseDragged(e -> handleMouseDragged(e));

 stage.setScene(scene);
 stage.setTitle("Moving a Stage");
 stage.initStyle(StageStyle.UNDECORATED);
 stage.show();
 }

 protected void handleMousePressed(MouseEvent e) {
 // Store the mouse x and y coordinates with respect to the
 // stage in the reference variables to use them in the drag event
 this.dragOffsetX = e.getScreenX() - stage.getX();
 this.dragOffsetY = e.getScreenY() - stage.getY();
 }

 protected void handleMouseDragged(MouseEvent e) {
 // Move the stage by the drag amount
 stage.setX(e.getScreenX() - this.dragOffsetX);
 stage.setY(e.getScreenY() - this.dragOffsetY);
 }
}

The following snippet of code adds the mouse pressed and mouse dragged event handlers to the scene:

scene.setOnMousePressed(e -> handleMousePressed(e));
scene.setOnMouseDragged(e -> handleMouseDragged(e));

When you press the mouse in the scene (except the button area), the handleMousePressed()
method is called. The getScreenX() and getScreenY() methods of the MouseEvent object return the x
and y coordinates of the mouse with respect to the upper-left corner of the screen. Figure 4-6 shows a
diagrammatic view of the coordinate systems. It shows a thin border around the stage. However, when you
run the example code, you will not see any border. This is shown here to distinguish the screen area from
the stage area. You store the x and y coordinates of the mouse with respect to the stage upper-left corner in
instance variables.

Chapter 4 ■ Managing StageS

141

When you drag the mouse, the handleMouseDragged() method is called. The method computes and sets
the position of the stage using the position of the mouse when it was pressed and its position during the drag.

Initializing Modality of a Stage
In a GUI application, you can have two types of windows: modal and modeless. When a modal window is
displayed, the user cannot work with other windows in the application until the modal window is dismissed.
If an application has multiple modeless windows showing, the user can switch between them at any time.

JavaFX has three types of modality for a stage:

None•	

Window modal•	

Application modal•	

Modality of a stage is defined by one of the following three constants in the Modality enum in the
javafx.stage package:

•	 NONE

•	 WINDOW_MODAL

•	 APPLICATION_MODEL

You can set the modality of a stage using the initModality(Modality m) method of the Stage
class as follows:

// Create a Stage object and set its modality
Stage stage = new Stage();
stage.initModality(Modality.WINDOW_MODAL);

/* More code goes here.*/

// Show the stage
stage.show();

e.getScreenX()

stage.getX()
stage.getY()

e.getScreenY()

Screen

Stage

Figure 4-6. Computing the mouse coordinates with respect to the stage

Chapter 4 ■ Managing StageS

142

Tip ■ the modality of a stage must be set before it is shown. Setting the modality of a stage after it has been
shown throws a runtime exception. Setting the modality for the primary stage also throws a runtime exception.

A Stage can have an owner. An owner of a Stage is another Window. You can set an owner of a Stage
using the initOwner(Window owner) method of the Stage class. The owner of a Stage must be set before the
stage is shown. The owner of a Stage may be null, and in this case, it is said that the Stage does not have an
owner. Setting an owner of a Stage creates an owner-owned relationship. For example, a Stage is minimized
or hidden if its owner is minimized or hidden, respectively.

The default modality of a Stage is NONE. When a Stage with the modality NONE is displayed, it does not
block any other windows in the application. It behaves as a modeless window.

A Stage with the WINDOW_MODAL modality blocks all windows in its owner hierarchy. Suppose there are
four stages: s1, s2, s3, and s4. Stages s1 and s4 have modalities set to NONE and do not have an owner; s1 is
the owner of s2; s2 is the owner of s3. All four stages are displayed. If s3 has its modality set to WINDOW_MODAL,
you can work with s3 or s4, but not with s2 and s1. The owner-owned relationship is defined as s1 to s2 to
s3. When s3 is displayed, it blocks s2 and s1, which are in its owner hierarchy. Because s4 is not in the owner
hierarchy of s3, you can still work with s4.

Tip ■ the modality of WINDOW_MODAL for a stage that has no owner has the same effect as if the modality is
set to NONE.

If a Stage with its modality set to APPLICATION_MODAL is displayed, you must work with the Stage and
dismiss it before you can work with any other windows in the application. Continuing with the same example
from the previous paragraph of displaying four stages, if you set the modality of s4 to APPLICATION_MODAL,
the focus will be set to s4 and you must dismiss it before you can work with other stages. Notice that an
APPLICATION_MODAL stage blocks all other windows in the same application, irrespective of the owner-owned
relationships.

Listing 4-7 shows how to use different modalities for a stage. It displays the primary stage with six
buttons. Each button opens a secondary stage with a specified modality and owner. The text of the buttons
tells you what kind of secondary stage they will open. When the secondary stage is shown, try clicking on the
primary stage. When the modality of the secondary stage blocks the primary stage, you will not be able to
work with the primary stage; clicking the primary stage will set the focus back to the secondary stage.

Listing 4-7. Using Different Modalities for a Stage

// StageModalityApp.java
package com.jdojo.stage;

import javafx.application.Application;
import javafx.scene.Scene;
import javafx.scene.control.Button;
import javafx.scene.control.Label;
import javafx.scene.layout.VBox;
import javafx.stage.Stage;
import javafx.stage.Modality;
import static javafx.stage.Modality.NONE;
import static javafx.stage.Modality.WINDOW_MODAL;

Chapter 4 ■ Managing StageS

143

import static javafx.stage.Modality.APPLICATION_MODAL;
import javafx.stage.Window;

public class StageModalityApp extends Application {
 public static void main(String[] args) {
 Application.launch(args);
 }

 @Override
 public void start(Stage stage) {
 /* Buttons to display each kind of modal stage */
 Button ownedNoneButton = new Button("Owned None");
 ownedNoneButton.setOnAction(e -> showDialog(stage, NONE));

 Button nonOwnedNoneButton = new Button("Non-owned None");
 nonOwnedNoneButton.setOnAction(e -> showDialog(null, NONE));

 Button ownedWinButton = new Button("Owned Window Modal");
 ownedWinButton.setOnAction(e -> showDialog(stage, WINDOW_MODAL));

 Button nonOwnedWinButton = new Button("Non-owned Window Modal");
 nonOwnedWinButton.setOnAction(e -> showDialog(null, WINDOW_MODAL));

 Button ownedAppButton = new Button("Owned Application Modal");
 ownedAppButton.setOnAction(e -> showDialog(stage, APPLICATION_MODAL));

 Button nonOwnedAppButton = new Button("Non-owned Application Modal");
 nonOwnedAppButton.setOnAction(e -> showDialog(null, APPLICATION_MODAL));

 VBox root = new VBox();
 root.getChildren().addAll(ownedNoneButton, nonOwnedNoneButton,
 ownedWinButton, nonOwnedWinButton,
 ownedAppButton, nonOwnedAppButton);
 Scene scene = new Scene(root, 300, 200);
 stage.setScene(scene);
 stage.setTitle("The Primary Stage");
 stage.show();
 }

 private void showDialog(Window owner, Modality modality) {
 // Create a Stage with specified owner and modality
 Stage stage = new Stage();
 stage.initOwner(owner);
 stage.initModality(modality);

 Label modalityLabel = new Label(modality.toString());
 Button closeButton = new Button("Close");
 closeButton.setOnAction(e -> stage.close());

Chapter 4 ■ Managing StageS

144

 VBox root = new VBox();
 root.getChildren().addAll(modalityLabel, closeButton);
 Scene scene = new Scene(root, 200, 100);
 stage.setScene(scene);
 stage.setTitle("A Dialog Box");
 stage.show();
 }
}

Setting the Opacity of a Stage
The opacity of a stage determines how much you can see through the stage. You can set the opacity of a stage
using the setOpacity(double opacity) method of the Window class. Use the getOpacity() method to get
the current opacity of a stage.

The opacity value ranges from 0.0 to 1.0. Opacity of 0.0 means the stage is fully translucent; opacity of 1.0
means the stage is fully opaque. Opacity affects the entire area of a stage, including its decorations. Not all
JavaFX runtime platforms are required to support opacity. Setting opacity on the JavaFX platforms that do
not support opacity has no effect. The following snippet of code sets the opacity of a state to half-translucent:

Stage stage = new Stage();
stage.setOpacity(0.5); // A half-translucent stage

Resizing a Stage
You can set whether a user can or cannot resize a stage by using its setResizable(boolean resizable)
method. Note that a call to the setResizable() method is a hint to the implementation to make the stage
resizable. By default, a stage is resizable. Sometimes, you may want to restrict the use to resize a stage within
a range of width and height. The setMinWidth(), setMinHeight(), setMaxWidth(), and setMaxHeight()
methods of the Stage class let you set the range within which the user can resize a stage.

Tip ■ Calling the setResizable(false) method on a Stage object prevents the user from resizing the stage.
You can still resize the stage programmatically.

It is often required to open a window that takes up the entire screen space. To achieve this, you need to
set the position and size of the window to the available visual bounds of the screen. Listing 4-8 provides the
program to illustrate this. It opens an empty stage, which takes up the entire visual area of the screen.

Listing 4-8. Opening a Stage to Take Up the Entire Available Visual Screen Space

// MaximizedStage.java
package com.jdojo.stage;

import javafx.application.Application;
import javafx.geometry.Rectangle2D;
import javafx.scene.Group;
import javafx.scene.Scene;

Chapter 4 ■ Managing StageS

145

import javafx.stage.Screen;
import javafx.stage.Stage;

public class MaximizedStage extends Application {
 public static void main(String[] args) {
 Application.launch(args);
 }

 @Override
 public void start(Stage stage) {
 stage.setScene(new Scene(new Group()));
 stage.setTitle("A Maximized Stage");

 // Set the position and size of the stage equal to the position and
 // size of the screen
 Rectangle2D visualBounds = Screen.getPrimary().getVisualBounds();
 stage.setX(visualBounds.getMinX());
 stage.setY(visualBounds.getMinY());
 stage.setWidth(visualBounds.getWidth());
 stage.setHeight(visualBounds.getHeight());

 // Show the stage
 stage.show();
 }
}

Showing a Stage in Full-Screen Mode
The Stage class has a fullScreen property that specified whether a stage should be displayed in full-screen
mode. The implementation of full-screen mode depends on the platform and profile. If the platform does
not support full-screen mode, the JavaFX runtime will simulate it by displaying the stage maximized and
undecorated. A stage may enter full-screen mode by calling the setFullScreen(true) method. When a
stage enters full-screen mode, a brief message is displayed about how to exit the full-screen mode: You will
need to press the ESC key to exit full-screen mode. You can exit full-screen mode programmatically
by calling the setFullScreen(false) method. Use the isFullScreen() method to check if a stage is in
full-screen mode.

Showing a Stage and Waiting for It to Close
You often want to display a dialog box and suspend further processing until it is closed. For example, you
may want to display a message box to the user with options to click yes and no buttons, and you want
different actions performed based on which button is clicked by the user. In this case, when the message box
is displayed to the user, the program must wait for it to close before it executes the next sequence of logic.
Consider the following pseudo-code:

Option userSelection = messageBox("Close", "Do you want to exit?", YESNO);
if (userSelection == YES) {
 stage.close();
}

Chapter 4 ■ Managing StageS

146

In this pseudo-code, when the messageBox() method is called, the program needs to wait to execute the
subsequent if statement until the message box is dismissed.

The show() method of the Window class returns immediately, making it useless to open a dialog box
in the above example. You need to use the showAndWait() method, which shows the stage and waits for
it to close before returning to the caller. The showAndWait() method stops processing the current event
temporarily and starts a nested event loop to process other events.

Tip ■ the showAndWait() method must be called on the JavaFX application thread. it should not be called
on the primary stage or a runtime exception will be thrown.

You can have multiple stages open using the showAndWait() method. Each call to the method starts a
new nested event loop. A specific call to the method returns to the caller when all nested event loops created
after this method call have terminated.

This rule may be confusing in the beginning. Let’s look at an example to explain this in detail. Suppose
you have three stages: s1, s2, and s3. Stage s1 is opened using the call s1.showAndWait(). From the code in
s1, stage s2 is opened using the call s2.showAndWait(). At this point, there are two nested event loops: one
created by s1.showAndWait() and another by s2.showAndWait(). The call to s1.showAndWait() will return
only after both s1 and s2 have been closed, irrespective of the order they were closed. The s2.showAndWait()
call will return after s2 has been closed.

Listing 4-9 contains a program that will allow you to play with the showAndWait() method call using
multiple stages. The primary stage is opened with an Open button. Clicking the Open button opens a
secondary stage using the showAndWait() method. The secondary stage has two buttons—Say Hello and
Open—which will, respectively, will print a message on the console and open another secondary stage.
A message is printed on the console before and after the call to the showAndWait() method. You need to
open multiple secondary stages, print messages by clicking the Say Hello button, close them in any order
you want, and then look at the output on the console.

Listing 4-9. Playing with showAndWait() Call

// ShowAndWaitApp.java
package com.jdojo.stage;

import javafx.application.Application;
import javafx.scene.Scene;
import javafx.scene.control.Button;
import javafx.scene.layout.VBox;
import javafx.stage.Stage;

public class ShowAndWaitApp extends Application {
 protected static int counter = 0;
 protected Stage lastOpenStage;

 public static void main(String[] args) {
 Application.launch(args);
 }

Chapter 4 ■ Managing StageS

147

 @Override
 public void start(Stage stage) {
 VBox root = new VBox();
 Button openButton = new Button("Open");
 openButton.setOnAction(e -> open(++counter));
 root.getChildren().add(openButton);
 Scene scene = new Scene(root, 400, 400);
 stage.setScene(scene);
 stage.setTitle("The Primary Stage");
 stage.show();

 this.lastOpenStage = stage;
 }

 private void open(int stageNumber) {
 Stage stage = new Stage();
 stage.setTitle("#" + stageNumber);

 Button sayHelloButton = new Button("Say Hello");
 sayHelloButton.setOnAction(
 e -> System.out.println("Hello from #" + stageNumber));

 Button openButton = new Button("Open");
 openButton.setOnAction(e -> open(++counter));

 VBox root = new VBox();
 root.getChildren().addAll(sayHelloButton, openButton);
 Scene scene = new Scene(root, 200, 200);
 stage.setScene(scene);
 stage.setX(this.lastOpenStage.getX() + 50);
 stage.setY(this.lastOpenStage.getY() + 50);
 this.lastOpenStage = stage;

 System.out.println("Before stage.showAndWait(): " + stageNumber);

 // Show the stage and wait for it to close
 stage.showAndWait();

 System.out.println("After stage.showAndWait(): " + stageNumber);
 }
}

Tip ■ JavaFX does not provide a built-in window that can be used as a dialog box (a message box or a
prompt window). You can develop one by setting the appropriate modality for a stage and showing it using the
showAndWait() method.

Chapter 4 ■ Managing StageS

148

Summary
The Screen class in the javafx.stage package is used to obtain the details, such as the DPI setting and
dimensions, of the user’s screens hooked to the machine running the program. If multiple screens are
present, one of the screens is known as the primary screen and the others are the nonprimary screens.
You can get the reference of the Screen object for the primary monitor using the static getPrimary() method
of the Screen class.

A stage in JavaFX is a top-level container that hosts a scene, which consists of visual elements. The
Stage class in the javafx.stage package represents a stage in a JavaFX application. The primary stage is
created by the platform and passed to the start(Stage s) method of the Application class. You can create
additional stages as needed.

A stage has bounds that comprise its position and size. The bounds of a stage are defined by its four
properties: x, y, width, and height. The x and y properties determine the location (or position) of the upper-left
corner of the stage. The width and height properties determine its size.

The area of a stage can be divided into two parts: content area and decorations. The content area
displays the visual content of its scene. Typically, decorations consist of a title bar and borders. The presence
of a title bar and its content vary depending on the type of decorations provided by the platform. You can
have five types of stages in JavaFX: decorated, undecorated, transparent, unified, and utility.

JavaFX allows you to have two types of windows: modal and modeless. When a modal window is
displayed, the user cannot work with other windows in the application until the modal window is dismissed.
If an application has multiple modeless windows showing, the user can switch between them at any time.
JavaFX defines three types of modality for a stage: none, window modal, and application modal. A stage with
none as its modality is modeless window. A stage with window modal as its modality blocks all windows in its
owner hierarchy. A stage with application modal as its modality blocks all other windows in the application.

The opacity of a stage determines how much you can see through the stage. You can set the opacity of a
stage using its setOpacity(double opacity) method. The opacity value ranges from 0.0 to 1.0. Opacity of 0.0
means the stage is fully translucent; the opacity of 1.0 means the stage is fully opaque. Opacity affects the
entire area of a stage, including its decorations.

You can set a hint whether a user can resize a stage by using its setResizable(boolean resizable)
method. The setMinWidth(), setMinHeight(), setMaxWidth(), and setMaxHeight() methods of the Stage
class let you set the range within which the user can resize a stage. A stage may enter full-screen mode by
calling its setFullScreen(true) method.

You can use the show() and showAndWait() methods of the Stage class to show a stage. The show()
method shows the stage and returns, whereas the showAndWait() method shows the stage and blocks until
the stage is closed.

The next chapter will show you how to create scenes and work with scene graphs.

149

Chapter 5

Making Scenes

In this chapter, you will learn:

What a scene and a scene graph are in a JavaFX application•	

About different rendering modes of a scene graph•	

How to set the cursor for a scene•	

How to determine the focus owner in a scene•	

How to use the •	 Platform and HostServices classes

What Is a Scene?
A scene represents the visual contents of a stage. The Scene class in the javafx.scene package represents
a scene in a JavaFX program. A Scene object is attached to, at the most, one stage at a time. If an already
attached scene is attached to another stage, it is first detached from the previous stage. A stage can have, at
the most, one scene attached to it at any time.

A scene contains a scene graph that consists of visual nodes. In this sense, a scene acts as a container for
a scene graph. A scene graph is a tree data structure whose elements are known as nodes. Nodes in a scene
graph form a parent-child hierarchical relationship. A node in a scene graph is an instance of the
javafx.scene.Node class. A node can be a branch node or a leaf node. A branch node can have children
nodes, whereas a leaf node cannot. The first node in a scene graph is called the root node. The root node can
have children nodes; however, it never has a parent node. Figure 5-1 shows the arrangement of nodes in a
scene graph. Branch nodes are shown in rounded rectangles and leaf nodes in rectangles.

Root Node

Leaf Node

Branch Node

Leaf Node

Branch NodeLeaf Node

Leaf Node

A Scene Graph

Figure 5-1. The arrangement of nodes in a scene graph

Chapter 5 ■ Making SCeneS

150

The JavaFX class library provides many classes to represent branch and leaf nodes in a scene graph.
The Node class in the javafx.scene package is the superclass of all nodes in a scene graph. Figure 5-2 shows
a partial class diagram for classes representing nodes.

A scene always has a root node. If the root node is resizable, for example, a Region or a Control, it tracks
the size of the scene. That is, if the scene is resized, the resizable root node resizes itself to fill the entire scene.
Based on the policy of a root node, the scene graph may be laid out again when the size of the scene changes.

A Group is a nonresizable Parent node that can be set as the root node of a scene. If a Group is the root
node of a scene, the content of the scene graph is clipped by the size of the scene. If the scene is resized, the
scene graph is not laid out again.

Parent is an abstract class. It is the base class for all branch nodes in a scene graph. If you want to add
a branch node to a scene graph, use objects of one of its concrete subclasses, for example, Group, Pane,
HBox, or VBox. Classes that are subclasses of the Node class, but not the Parent class, represent leaf nodes, for
example, Rectangle, Circle, Text, Canvas, or ImageView. The root node of a scene graph is a special branch
node that is the topmost node. This is the reason you use a Group or a VBox as the root node while creating
a Scene object. I will discuss classes representing branch and leaf nodes in detail in Chapters 10 and 12.
Table 5-1 lists some of the commonly used properties of the Scene class.

Figure 5-2. A partial class diagram for the javafx.scene.Node class

Chapter 5 ■ Making SCeneS

151

Graphics Rendering Modes
The scene graph plays a vital role in rendering the content of a JavaFX application on the screen. Typically,
two types of APIs are used to render graphics on a screen:

Immediate mode API•	

Retained mode API•	

In immediate mode API, the application is responsible for issuing the drawing commands when a
frame is needed on the screen. The graphics are drawn directly on the screen. When the screen needs to be
repainted, the application needs to reissue the drawing commands to the screen. Java2D is an example of
the immediate mode graphics-rendering API.

In retained mode API, the application creates and attaches drawing objects to a graph. The graphics
library, not the application code, retains the graph in memory. Graphics are rendered on the screen by the
graphics library when needed. The application is responsible only for creating the graphic objects—the
“what” part; the graphics library is responsible for storing and rendering the graphics—the “when” and
“how” parts. Retained mode rendering API relieves developers of writing the logic for rendering the
graphics. For example, adding or removing part of a graphic from a screen is simple by adding or removing a
graphic object from the graph using high-level APIs; the graphics library takes care of the rest. In comparison
to the immediate mode, retained mode API uses more memory, as the graph is stored in memory.
The JavaFX scene graph uses retained mode APIs.

You might think that using immediate mode API would always be faster than using retained mode API
because the former renders graphics directly on the screen. However, using retained mode API opens the
door for optimizations by the class library that is not possible in the immediate mode where every developer
is in charge of writing the logic as to what and when it should be rendered.

Figures 5-3 and 5-4 illustrate how immediate and retained mode APIs work, respectively. They show
how a text, Hello, and a hexagon are drawn on the screen using the two APIs.

Table 5-1. Commonly Used Properties of the Scene Class

Type Name Property and Description

ObjectProperty<Cursor> cursor It defines the mouse cursor for the Scene.

ObjectProperty<Paint> fill It defines the background fill of the Scene.

ReadOnlyObjectProperty<Node> focusOwner It defines the node in the Scene that owns the focus.

ReadOnlyDoubleProperty height It defines the height of the Scene.

ObjectProperty<Parent> root It defines the root Node of the scene graph.

ReadOnlyDoubleProperty width It defines the width of the Scene.

ReadOnlyObjectProperty<Window> window It defines the Window for the Scene.

ReadOnlyDoubleProperty x It defines the horizontal location of the Scene on the
Window.

ReadOnlyDoubleProperty y It defines the vertical location of the Scene on the
window.

Chapter 5 ■ Making SCeneS

152

Setting the Cursor for a Scene
An instance of the javafx.scene.Cursor class represents a mouse cursor. The Cursor class contains many
constants, for example, HAND, CLOSED_HAND, DEFAULT, TEXT, NONE, WAIT, for standard mouse cursors.
The following snippet of code sets the WAIT cursor for a scene:

Scene scene;
...
scene.setCursor(Cursor.WAIT);

You can also create and set a custom cursor to a scene. The cursor(String name) static method of the
Cursor class returns a standard cursor if the specified name is the name of a standard cursor. Otherwise, it
treats the specified name as a URL for the cursor bitmap. The following snippet of code creates a cursor from
a bitmap file named mycur.png, which is assumed to be in the CLASSPATH:

// Create a Cursor from a bitmap
URL url = getClass().getClassLoader().getResource("mycur.png");
Cursor myCur = Cursor.cursor(url.toExternalForm());
scene.setCursor(myCur);

// Get the WAIT standard cursor using its name
Cursor waitCur = Cursor.cursor("WAIT")
scene.setCursor(waitCur);

Application

Build a scene
graph using

retained mode
API

Hello

Hello

The scene graph
stored in memory

Retained Mode API

Figure 5-4. An illustration of the retained mode API

Application

HelloHello

Issue drawing commands using
immediate mode API

Figure 5-3. An illustration of the immediate mode API

Chapter 5 ■ Making SCeneS

153

The Focus Owner in a Scene
Only one node in a scene can be the focus owner. The focusOwner property of the Scene class tracks the
Node class that has the focus. Note that the focusOwner property is read-only. If you want a specific node in a
scene to be the focus owner, you need to call the requestFocus() method of the Node class.

You can use the getFocusOwner() method of the Scene class to get the reference of the node having the
focus in the scene. A scene may not have a focus owner, and in that case, the getFocusOwner() method returns
null. For example, a scene does not have a focus owner when it is created but is not attached to a window.

It is important to understand the distinction between a focus owner and a node having focus. Each
scene may have a focus owner. For example, if you open two windows, you will have two scenes and you can
have two focus owners. However, only one of the two focus owners can have the focus at a time. The focus
owner of the active window will have the focus. To check if the focus owner node also has the focus, you
need to use the focused property of the Node class. The following snippet of code shows the typical logic in
using the focus owner:

Scene scene;
...
Node focusOwnerNode = scene.getFocusOwner();
if (focusOwnerNode == null) {
 // The scene does not have a focus owner
}
else if (focusOwnerNode.isFocused()) {
 // The focus owner is the one that has the focus
}
else {
 // The focus owner does not have the focus
}

Using Builder Classes
JavaFX provides two classes for creating and configuring objects that constitute the building blocks of a
scene graph. One class is named after the type of object that the class represents; another with the former
class name suffixed with the word “Builder.” For example, Rectangle and RectangleBuilder classes exist to
work with rectangles, Scene and SceneBuilder classes exist to work with scenes, and so on.

Note ■ as of JavaFX 8, builder classes have been deprecated and they are not visible in the api documentation.
this section is provided in case you need to maintain JavaFX code written in the older version such as version 2.
Do not use the builder classes in JavaFX 8 or later. if you do not have to look at older version of JavaFX code,
you can skip this section.

Chapter 5 ■ Making SCeneS

154

Builder classes provide three types of methods:

They have a •	 create() static method to create an instance of the builder class.

They contain methods to set properties. Method names are the same as the property •	
names that they set.

They have a •	 build() method that returns the object of the class for which the builder
class exists. For example, the build() method of the RectangleBuilder class returns
an object of the Rectangle class.

Builder classes are designed to use method chaining. Their methods to configure properties return
the same builder instance. Assuming that p1 and p2 are properties of an object of XXX type, the following
statement uses the builder class to create an object of the XXX type. It sets the properties p1 and p2 to v1 and
v2, respectively:

XXX x = XXXBuilder.create()
 .p1(v1)
 .p2(v2)
 .build();

The following snippet of code creates a rectangle, using the Rectangle class, with (x, y) coordinates at
(10, 20), with a width of 100px and a height of 200px. It also sets the fill property to red:

Rectangle r1 = new Rectangle(10, 20, 100, 200);
r1.setFill(Color.RED);

You can use the RectangleBuilder class to create the same rectangle:

Rectangle r1 = RectangleBuilder.create()
 .x(10)
 .y(20)
 .width(100)
 .height(200)
 .fill(Color.RED)
 .build();

Using builder classes requires longer code; however, it is more readable compared to using constructors
to set the properties. Another advantage of builder classes is that they can be reused to build objects with
slightly different properties. Suppose you want to create multiple rectangles with a 100px width and a 200px
height, filled with the color red. However, they have different x and y coordinates. You can do so with the
following code:

// Create a partially configured RectangleBuilder
RectangleBuilder builder = RectangleBuilder.create()
 .width(100)
 .height(200)
 .fill(Color.RED);

// Create a Rectangles at (10, 20) and (120, 20) using the builder
Rectangle r3 = builder.x(10).y(20).build();
Rectangle r4 = builder.x(120).y(20).build();

Chapter 5 ■ Making SCeneS

155

The program in Listing 5-1 constructs a scene graph using builder classes. It adds a Label and a Button
to a VBox. It also sets an action event handler for the button. The resulting screen is shown in Figure 5-5.

Listing 5-1. Using Builder Classes to Construct Scene Graphs

// BuilderApp.java
package com.jdojo.scene;

import javafx.application.Application;
import javafx.application.Platform;
import javafx.scene.Scene;
import javafx.scene.SceneBuilder;
import javafx.scene.control.ButtonBuilder;
import javafx.scene.control.LabelBuilder;
import javafx.scene.layout.VBoxBuilder;
import javafx.stage.Stage;

public class BuilderApp extends Application {
 public static void main(String[] args) {
 Application.launch(args);
 }

 @Override
 public void start(Stage stage) {
 Scene scene = SceneBuilder.create()
 .width(300)
 .height(100)
 .root(VBoxBuilder.create()
 .children(LabelBuilder.create()
 .text("Hello Builder")
 .build(),
 ButtonBuilder.create()
 .text("Exit")
 .onAction(e -> Platform.exit())
 .build()
)
 .build()
)
 .build();

 stage.setScene(scene);
 stage.setTitle("Using Builder Classes");
 stage.show();
 }
}

Chapter 5 ■ Making SCeneS

156

If you used JavaFX script, which was removed from JavaFX version 2.0, you may be inclined to use
builder classes for building scenes. If you have been using Swing/AWT, you may be comfortable using
constructors and setters instead. The examples in this book do not use builder classes.

Table 5-2. Methods of the Platform Class

Method Description

void exit() It terminates a JavaFX application.

boolean isFxApplicationThread() It returns true if the calling thread is the JavaFX
Application Thread. Otherwise, it returns false.

boolean isImplicitExit() It returns the value of the implicit implicitExit
attribute of the application. If it returns true, it means
that the application will terminate after the last window
is closed. Otherwise, you need to call the exit() method
of this class to terminate the application.

boolean
isSupported(ConditionalFeature feature)

It returns true if the specified conditional feature is
supported by the platform. Otherwise, it returns false.

void runLater(Runnable runnable) It executes the specified Runnable on the JavaFX
Application Thread. The timing of the execution is not
specified. The method posts the Runnable to an event
queue and returns immediately. If multiple Runnables
are posted using this method, they are executed in the
order they are submitted to the queue.

void setImplicitExit(boolean value) It sets the implicitExit attribute to the specified value.

Understanding the Platform Class
The Platform class in the javafx.application package is a utility class used to support platform-related
functionalities. It consists of all static methods, which are listed in Table 5-2.

The runLater() method is used to submit a Runnable task to an event queue, so it is executed on
the JavaFX Application Thread. JavaFX allow developers to execute some of the code only on the JavaFX
Application Thread. Listing 5-2 creates a task in the init() method that is called on the JavaFX Launcher
Thread. It uses the Platform.runLater() method to submit the task to be executed on the JavaFX
Application Thread later.

Figure 5-5. A screen whose scene graph is created using builder classes

Chapter 5 ■ Making SCeneS

157

Tip ■ Use the Platform.runLater() method to execute a task that is created on a thread other than the
JavaFX application thread but needs to run on the JavaFX application thread.

Listing 5-2. Using the Platform.runLater() Method

// RunLaterApp.java
package com.jdojo.scene;

import javafx.application.Application;
import javafx.application.Platform;
import javafx.scene.Group;
import javafx.scene.Scene;
import javafx.stage.Stage;

public class RunLaterApp extends Application {
 public static void main(String[] args) {
 Application.launch(args);
 }

 @Override
 public void init() {
 System.out.println("init(): " + Thread.currentThread().getName());

 // Create a Runnable task
 Runnable task = () -> System.out.println("Running the task on the "
 + Thread.currentThread().getName());

 // Submit the task to be run on the JavaFX Aplication Thread
 Platform.runLater(task);
 }

 @Override
 public void start(Stage stage) throws Exception {
 stage.setScene(new Scene(new Group(), 400, 100));
 stage.setTitle("Using Platform.runLater() Method");
 stage.show();
 }
}

init(): JavaFX-Launcher
Running the task on the JavaFX Application Thread

Some features in a JavaFX implementation are optional (or conditional). They may not be available
on all platforms. Using an optional feature on a platform that does not support the feature does not result
in an error; the optional feature is simply ignored. Optional features are defined as enum constants in the
ConditionalFeature enum in the javafx.application package, as listed in Table 5-3.

Chapter 5 ■ Making SCeneS

158

Suppose your JavaFX application uses 3D GUI on user demand. You can write your logic for enabling
3D features as shown in the following code:

import javafx.application.Platform;
import static javafx.application.ConditionalFeature.SCENE3D;
...
if (Platform.isSupported(SCENE3D)) {
 // Enable 3D features
}
else {
 // Notify the user that 3D features are not available
}

Knowing the Host Environment
The HostServices class in the javafx.application package provides services related to the launching
environment (desktop, web browser, or WebStart) hosting the JavaFX application. You cannot create an
instance of the HostServices class directly. The getHostServices() method of the Application class
returns an instance of the HostServices class. The following is an example of how to get an instance of
HostServices inside a class that inherits from the Application class:

HostServices host = getHostServices();

The HostServices class contains the following methods:

•	 String getCodeBase()

•	 String getDocumentBase()

•	 JSObject getWebContext()

•	 String resolveURI(String base, String relativeURI)

•	 void showDocument(String uri)

The getCodeBase() method returns the code base uniform resource identifier (URI) of the application.
In a stand-alone mode, it returns the URI of the directory that contains the JAR file used to launch the
application. If the application is launched using a class file, it returns an empty string. If the application is
launched using a JNLP file, it returns the value for the specified code base parameter in the JNLP file.

Table 5-3. Constants Defined in the ConditionalFeature Enum

Enum Constant Description

EFFECT Indicates the availability of filter effects, for example, reflection, shadow, etc.

INPUT_METHOD Indicates the availability of text input method.

SCENE3D Indicates the availability of 3D features.

SHAPE_CLIP Indicates the availability of clipping of a node against an arbitrary shape.

TRANSPARENT_WINDOW Indicates the availability of the full window transparency.

Chapter 5 ■ Making SCeneS

159

The getDocumentBase() method returns the URI of the document base. In a web environment, it
returns the URI of the web page that contains the application. If the application is launched using WebStart,
it returns the code base parameter specified in the JNLP file. It returns the URI of the current directory for
application launched in stand-alone mode.

The getWebContext() method returns a JSObject that allows a JavaFX application to interact with the
JavaScript objects in a web browser. If the application is not running in a web page, it returns null. You can
use the eval() method of the JSObject to evaluate a JavaScript expression from inside your JavaFX code.
The following snippet of code displays an alert box using the window.alert() function. If the application
runs in a nonweb environment, it shows a JavaFX modal stage instead:

HostServices host = getHostServices();
JSObject js = host.getWebContext();
if (js == null) {
 Stage s = new Stage(StageStyle.UTILITY);
 s.initModality(Modality.WINDOW_MODAL);
 s.setTitle("FX Alert");

 Scene scene = new Scene(new Group(new Label("This is an FX alert!")));
 s.setScene(scene);
 s.show();
}
else {
 js.eval("window.alert('This is a JavaScript alert!')");
}

The resolveURI() method resolves the specified relative URI with respect to the specified base URI and
returns the resolved URI.

The showDocument() method opens the specified URI in a new browser window. Depending on the
browser preference, it may open the URI in a new tab instead. This method can be used in a stand-alone
mode as well as in a web environment. The following snippet of code opens the Yahoo! home page:

getHostServices().showDocument("http://www.yahoo.com");

The program in Listing 5-3 uses all of the methods of the HostServices class. It shows a stage with two
buttons and host details. One button opens the Yahoo! home page and another shows an alert box. The
output shown on the stage will vary depending on how the application is launched.

Listing 5-3. Knowing the Details of the Host Environment for a JavaFX Application

// KnowingHostDetailsApp.java
package com.jdojo.scene;

import java.util.HashMap;
import java.util.Map;
import javafx.application.Application;
import javafx.application.HostServices;
import javafx.scene.Group;
import javafx.scene.Scene;
import javafx.scene.control.Button;
import javafx.scene.control.Label;
import javafx.scene.layout.VBox;
import javafx.stage.Modality;

Chapter 5 ■ Making SCeneS

160

import javafx.stage.Stage;
import javafx.stage.StageStyle;
import netscape.javascript.JSObject;

public class KnowingHostDetailsApp extends Application {
 public static void main(String[] args) {
 Application.launch(args);
 }

 @Override
 public void start(Stage stage) {
 String yahooURL = "http://www.yahoo.com";
 Button openURLButton = new Button("Go to Yahoo!");
 openURLButton.setOnAction(e -> getHostServices().showDocument(yahooURL));

 Button showAlert = new Button("Show Alert");
 showAlert.setOnAction(e -> showAlert());

 VBox root = new VBox();

 // Add buttons and all host related details to the VBox
 root.getChildren().addAll(openURLButton, showAlert);

 Map<String, String> hostdetails = getHostDetails();
 for(Map.Entry<String, String> entry : hostdetails.entrySet()) {
 String desc = entry.getKey() + ": " + entry.getValue();
 root.getChildren().add(new Label(desc));
 }

 Scene scene = new Scene(root);
 stage.setScene(scene);
 stage.setTitle("Knowing the Host");
 stage.show();
 }

 protected Map<String, String> getHostDetails() {
 Map<String, String> map = new HashMap<>();
 HostServices host = this.getHostServices();

 String codeBase = host.getCodeBase();
 map.put("CodeBase", codeBase);

 String documentBase = host.getDocumentBase();
 map.put("DocumentBase", documentBase);

 JSObject js = host.getWebContext();
 map.put("Environment", js == null?"Non-Web":"Web");

 String splashImageURI = host.resolveURI(documentBase, "splash.jpg");
 map.put("Splash Image URI", splashImageURI);

 return map;
 }

Chapter 5 ■ Making SCeneS

161

 protected void showAlert() {
 HostServices host = getHostServices();
 JSObject js = host.getWebContext();
 if (js == null) {
 Stage s = new Stage(StageStyle.UTILITY);
 s.initModality(Modality.WINDOW_MODAL);

 Label msgLabel = new Label("This is an FX alert!");
 Group root = new Group(msgLabel);
 Scene scene = new Scene(root);
 s.setScene(scene);

 s.setTitle("FX Alert");
 s.show();
 }
 else {
 js.eval("window.alert('This is a JavaScript alert!')");
 }
 }
}

Summary
A scene represents the visual contents of a stage. The Scene class in the javafx.scene package represents a
scene in a JavaFX program. A Scene object is attached to at the most one stage at a time. If an already-attached
scene is attached to another stage, it is first detached from the previous stage. A stage can have at the most
one scene attached to it at any time.

A scene contains a scene graph that consists of visual nodes. In this sense, a scene acts as a container
for a scene graph. A scene graph is a tree data structure whose elements are known as nodes. Nodes in a
scene graph form a parent-child hierarchical relationship. A node in a scene graph is an instance of the
javafx.scene.Node class. A node can be a branch node or a leaf node. A branch node can have children
nodes, whereas a leaf node cannot. The first node in a scene graph is called the root node. The root node can
have children nodes; however, it never has a parent node.

An instance of the javafx.scene.Cursor class represents a mouse cursor. The Cursor class contains
many constants, for example, HAND, CLOSED_HAND, DEFAULT, TEXT, NONE, WAIT, for standard mouse cursors.
You can set a cursor for the scene using the setCursor() method of the Scene class.

Only one node in a scene can be the focus owner. The read-only focusOwner property of the Scene class
tracks the node that has the focus. If you want a specific node in a scene to be the focus owner, you need to
call the requestFocus() method of the Node class. Each scene may have a focus owner. For example, if you
open two windows, you will have two scenes and you may have two focus owners. However, only one of the
two focus owners can have the focus at a time. The focus owner of the active window will have the focus.
To check if the focus owner node also has the focus, you need to use the focused property of the Node class.

The Platform class in the javafx.application package is a utility class used to support platform-related
functionalities. It contains methods for terminating the application, checking if the code being executed is
executed on the JavaFX Application Thread, and so on.

The HostServices class in the javafx.application package provides services related to the launching
environment (desktop, web browser, or WebStart) hosting the JavaFX application. You cannot create an
instance of the HostServices class directly. The getHostServices() method of the Application class
returns an instance of the HostServices class.

The next chapter will discuss nodes in detail.

163

Chapter 6

Understanding Nodes

In this chapter, you will learn:

What a node is in JavaFX•	

About the Cartesian coordinate system•	

About the bounds and bounding box of nodes•	

How to set the size of a node and how to position a node•	

How to store user data in a node•	

What a managed node is•	

How to transform node’s bounds between coordinate spaces•	

What Is a Node?
Chapter 5 introduced you to scenes and scene graphs. A scene graph is a tree data structure. Every item in
a scene graph is called a node. An instance of the javafx.scene.Node class represents a node in the scene
graph. Note that the Node class is an abstract class, and several concrete classes exist to represent specific
type of nodes.

A node can have subitems (also called children), and these node are called branch nodes. A branch
node is an instance of the Parent, whose concrete subclasses are Group, Region, and WebView. A node that
does cannot have subitems is called a leaf node. Instances of classes such as Rectangle, Text, ImageView, and
MediaView are examples of leaf nodes. Only a single node within each scene graph tree will have no parent,
which is referred to as the root node. A node may occur at the most once anywhere in the scene graph.

A node may be created and modified on any thread if it is not yet attached to a scene. Attaching a node
to a scene and subsequent modification must occur on the JavaFX Application Thread.

A node has several types of bounds. Bounds are determined with respect to different coordinate
systems. The next section will discuss the Cartesian coordinate system in general; the following section
explains how Cartesian coordinate systems are used to compute the bounds of a node in JavaFX.

The Cartesian Coordinate System
If you have studied (and still remember) the Cartesian coordinate system from your coordinate geometry
class in high school, you may skip this section.

The Cartesian coordinate system is a way to define each point on a 2D plane uniquely. Sometimes it is
also known as a rectangular coordinate system. It consists of two perpendicular, directed lines known as the
x axis and the y axis. The point where the two axes intersect is known as the origin.

Chapter 6 ■ Understanding nodes

164

A point in a 2D plane is defined using two values known as its x and y coordinates. The x and y
coordinates of a point are its perpendicular distances from the y axis and x axis, respectively. Along an axis,
the distance is measured as positive on one side from the origin and as negative on the other side. The origin
has (x, y) coordinates, such as (0, 0). The axes divide the plane into four quadrants. Note that the 2D plane
itself is infinite and so are the four quadrants. The set of all points in a Cartesian coordinate system defines
the coordinate space of that system.

Figure 6-1 shows an illustration of the Cartesian coordinate system. It shows a point P having x and
y coordinates of x1 and y1. It shows the type of values for the x and y coordinates in each quadrant. For
example, the upper right quadrant shows (+, +), meaning that both x and y coordinates for all points in this
quadrant will have positive values.

A transformation is a mapping of points in a coordinate space to themselves, preserving distances and
directions between them. Several types of transformations can be applied to points in a coordinate space.
Some examples of transformation types are translation, rotation, scaling, and shearing.

In a translation transformation, a fixed pair of numbers is added to the coordinates of all points.
Suppose you want to apply translation to a coordinate space by (a, b). If a point had coordinates (x, y) before
translation, it will have the coordinate of (x + a, y + b) after translation.

In a rotation transformation, the axes are rotated around a pivot point in the coordinate space and the
coordinates of points are mapped to the new axes. Figure 6-2 shows examples of translation and rotation
transformations.

x-axis

y-axis

P(x1, y1)
x1

y1

(0, 0)

Origin

(+, -)

(+, +)

(-, -)

(-, +)

Figure 6-1. A two-dimensional Cartesian coordinate system used in coordinate geometry

Chapter 6 ■ Understanding nodes

165

In Figure 6-2, axes before the transformations are shown in solid lines, and axes after the
transformations are shown in dashed lines. Note that the coordinates of the point P at (4, 3) remains the
same in the translated and rotated coordinate spaces. However, the coordinates of the point relative to the
original coordinate space change after the transformation. The point in the original coordinate space is
shown in a solid black fill color, and in the transformed coordinate space, it is shown without a fill color.
In the rotation transformation, you have used the origin as the pivot point. Therefore, the origins for the
original and the transformed coordinate space are the same.

Cartesian Coordinate System of a Node
Each node in a scene graph has its own coordinate system. A node uses a Cartesian coordinate system that
consists of an x axis and a y axis. In computer systems, the values on the x axis increase to the right and
the values on y axis increase downward, as shown in Figure 6-3. Typically, when showing the coordinate
system of nodes, the negative sides of the x axis and y axis are not shown, even though they always exist.
The simplified version of the coordinate system is shown on the right part of Figure 6-3. A node can have
negative x and y coordinates.

Translation Rotation

P(4, 3)

x-axis

y-axis

(0, 0)

P(4, 3)

Translated x-axis

Translated y-axis

(3, 2) x-axis

y-axis

(0, 0)
30 deg

P(4, 3)

P(4, 3)

Rotated x-axis

Rotated y-axis

Figure 6-2. Examples of translation and rotation transformations

(0, 0)

(0, 0) x-axis

y-axis

x-axis

y-axis

Node’s Coordinate System Simplified Node’s Coordinate System

Figure 6-3. The coordinate system of nodes

Chapter 6 ■ Understanding nodes

166

In a typical GUI application, nodes are placed within their parents. A root node is the ultimate parent
of all nodes and it is placed inside a scene. The scene is placed inside a stage and the stage is placed inside
a screen. Each element comprising a window, from nodes to the screen, has its own coordinate system, as
shown in Figure 6-4.

The outermost rectangular area with a thick black border is the screen. The rest is a JavaFX stage
with a region and a rectangle. The region has a light-gray background color and a rectangle has a blue
background color. The region is the parent of the rectangle. This simple window uses five coordinate
spaces as indicated in Figure 6-4. I have labeled only the x axes. All y axes are vertical lines meeting the
respective x axes at their origins.

What are the coordinates of the upper left corner of the rectangle? The question is incomplete. The
coordinates of a point are defined relative to a coordinate system. As shown in Figure 6-4, you have five
coordinate systems at play, and hence, five coordinate spaces. Therefore, you must specify the coordinate
system in which you want to know the coordinates of the upper left corner of the rectangle. In a node’s
coordinate system, they are (10, 15); in a parent’s coordinate system, they are (40, 45); in a scene’s coordinate
system, they are (60, 55); in a stage’s coordinate system, they are (64, 83); in a screen’s coordinate system,
they are (80, 99).

The Concept of Bounds and Bounding Box
Every node has a geometric shape and it is positioned in a coordinate space. The size and the position
of a node are collectively known as its bounds. The bounds of a node are defined in terms of a bounding
rectangular box that encloses the entire geometry of the node. Figure 6-5 shows a triangle, a circle, a rounded
rectangle, and a rectangle with a solid border. Rectangles around them, shown with a dashed border, are the
bounding boxes for those shapes (nodes).

Screen x-axis

Stage x-axis

Scene x-axis
Parent x-axis

Node x-axis

Screen

Rectangle
(A Node)

Figure 6-4. Coordinate systems of all elements comprising a GUI window

Chapter 6 ■ Understanding nodes

167

The area (area in a 2D space and volume in a 3D space) covered by the geometric shape of a node and
its bounding box may be different. For example, for the first three nodes in Figure 6-5, counting from the
left, the areas of the nodes and their bounding boxes are different. However, for the last rectangle, without
rounded corners, its area and that of its bounding box are the same.

An instance of the javafx.geometry.Bounds class represents the bounds of a node. The Bounds class
is an abstract class. The BoundingBox class is a concrete implementation of the Bounds class. The Bounds
class is designed to handle bounds in a 3D space. It encapsulates the coordinates of the upper left corner
with the minimum depth in the bounding box and the width, height, and depth of the bounding box. The
methods getMinX(), getMinY(), and getMinZ() are used to get the coordinates. The three dimensions of the
bounding box are accessed using the getWidth()getHeight(), and getDepth() methods. The Bounds class
contains the getMaxX() getMaxY() and getMaxZ() methods that return the coordinates of the lower right
corner, with the maximum depth, in the bounding box.

In a 2D space, the minX and minY define the x and y coordinates of the upper left corner of the
bounding box, respectively, and the maxX and maxY define the x and y coordinates of the lower right corner,
respectively. In a 2D space, the values of the z coordinate and the depth for a bounding box are zero.
Figure 6-6 shows the details of a bounding box in a 2D coordinate space.

The Bounds class contains isEmpty(), contains(), and intersects() utility methods. The isEmpty()
method returns true if any of the three dimensions (width, height, or depth) of a Bounds is negative. The
contains() method lets you check if a Bounds contains another Bounds, a 2D point, or a 3D point. The
intersects() method lets you check if the interior of a Bounds intersects the interior of another Bounds, a 2D
point, or a 3D point.

Bounding boxes

Figure 6-5. The bounding rectangular boxdefining the geometric shape of nodes

x-axis

y-axis

(0, 0)

(minX, minY)

(maxX, maxY)

width

height

A bounding box

Figure 6-6. The makings of a bounding box in a 2D space

Chapter 6 ■ Understanding nodes

168

Knowing the Bounds of a Node
So far, I have covered topics such as coordinate systems, bounds, and bounding boxes related to a node. That
discussion was to prepare you for this section, which is about knowing the bounds of a node. You might have
guessed (though incorrectly) that the Node class should have a getBounds() method to return the bounds of
a node. It would be great if it were that simple! In this section, I will discuss the details of different types of
bounds of a node. In the next section, I will walk you through some examples.

Figure 6-7 shows a button with the text “Close” in three forms.

The first one, starting from the left, has no effects or transformations. The second one has a drop
shadow effect. The third one has a drop shadow effect and a rotation transformation. Figure 6-8 shows the
bounding boxes representing the bounds of the button in those three forms. Ignoring the coordinates for
now, you may notice that the bounds of the button change as effects and transformations are applied.

A node in a scene graph has three types of bounds defined as three read-only properties in the Node class:

•	 layoutBounds

•	 boundsInLocal

•	 boundsInParent

When you are trying to understand the three types of the bounds of a node, you need to look for
three points:

How the (•	 minX, minY) values are defined. They define the coordinates of the upper
left corner of the bounding box described by the Bounds object.

Remember that coordinates of a point are always defined relative to a coordinate •	
space. Therefore, pay attention to the coordinate space in which the coordinates, as
described in the first step, are defined.

What properties of the node—geometry, stroke, effects, clip, and transformations—•	
are included in a particular type of bounds.

Figure 6-7. A button with and without an effect and a transformation

Figure 6-8. A button with and with an effect and a transformation with bounding boxes

Chapter 6 ■ Understanding nodes

169

Figure 6-9 shows the properties of a node contributing to the bounds of a node. They are applied from
left to right in order. Some node types (e.g., Circle, Rectangle) may have a nonzero stroke. A nonzero stroke
is considered part of the geometry of a node for computing its bounds.

Table 6-1 lists the properties that contribute to a particular type of the bounds of a node and the
coordinate space in which the bounds are defined. The boundsInLocal and boundsInParent of a node
are also known as its physical bounds as they correspond to the physical properties of the node. The
layoutBounds of a node is known as the logical bounds as it is not necessarily tied to the physical bounds of
the node. When the geometry of a node is changed, all bounds are recomputed.

Transformations

layoutBounds

Node Geometry Effects Clip

boundsInLocal

boundsInParent

Figure 6-9. Factors contributing to the size of a node

Table 6-1. Contributing Properties to the Bounds of a Node

Bounds Type Coordinate Space Contributors

layoutBounds Node (Untransformed) Geometry of the node
Nonzero stroke

boundsInLocal Node (Untransformed) Geometry of the node
Nonzero stroke
Effects
Clip

boundsInParent Parent Geometry of the node
Nonzero stroke
Effects
Clip
Transformations

Tip ■ the boundsInLocal and BoundsInParent are known as physical or visual bounds as they
correspond to how the node looks visually. the layoutBounds is also known as the logical bounds as it does
not necessarily correspond to the physical bounds of the node.

Chapter 6 ■ Understanding nodes

170

The layoutBounds Property
The layoutBounds property is computed based on the geometric properties of the node in the untransformed
local coordinate space of the node. Effects, clip, and transformations are not included. Different rules,
depending on the resizable behavior of the node, are used to compute the coordinates of the upper left corner
of the bounding box described by the layoutBounds:

For a resizable node (a •	 Region, a Control, and a WebView), the coordinates for the
upper left corner of the bounding box are always set to (0, 0). For example,
the (minX, minY) values in the layoutBounds property are always (0, 0) for a button.

For a nonresizable node (a •	 Shape, a Text, and a Group), the coordinates of the upper
left corner of the bounding box are computed based on the geometric properties. For
a shape (a rectangle, a circle, etc.) or a Text, you can specify the (x, y) coordinates
of a specific point in the node relative to the untransformed coordinate space of
the node. For example, for a rectangle, you can specify the (x, y) coordinates of the
upper left corner, which become the (x, y) coordinates of the upper left corner of the
bounding box described by its layoutBounds property. For a circle, you can specify
the centerX, centerY, and radius properties, where centerX and centerY are the x
and y coordinates of the center of the circle, respectively. The (x, y) coordinates of
the upper left corner of the bounding box described by the layoutBounds for a circle
are computed as (centerX - radius, centerY - radius).

The width and height in layoutBounds are the width and height of the node. Some nodes let you set
their width and height; but some compute them automatically for you and let you override them.

Where do you use the layoutBounds property of a node? Containers allocate spaces to lay out child
nodes based on their layoutBounds. Let’s look at an example as shown in Listing 6-1. It displays four
buttons in a VBox. The first button has a drop shadow effect. The third button has a drop shadow effect and a
30-degree rotation transformation. The second and the fourth buttons have no effect or transformation. The
resulting screen is shown in Figure 6-10. The output shows that irrespective of the effect and transformation,
all buttons have the same layoutBounds values. The size (width and height) in the layoutBounds objects for
all buttons is determined by the text of the button and the font, which is the same for all buttons. The output
may differ on your platform.

Listing 6-1. Accessing the layoutBounds of Buttons with and without Effects

// LayoutBoundsTest.java
package com.jdojo.node;

import javafx.application.Application;
import javafx.scene.Scene;
import javafx.scene.control.Button;
import javafx.scene.effect.DropShadow;
import javafx.scene.layout.VBox;
import javafx.stage.Stage;

public class LayoutBoundsTest extends Application {
 public static void main(String[] args) {
 Application.launch(args);
 }

Chapter 6 ■ Understanding nodes

171

 @Override
 public void start(Stage stage) {
 Button b1 = new Button("Close");
 b1.setEffect(new DropShadow());

 Button b2 = new Button("Close");

 Button b3 = new Button("Close");
 b3.setEffect(new DropShadow());
 b3.setRotate(30);

 Button b4 = new Button("Close");

 VBox root = new VBox();
 root.getChildren().addAll(b1, b2, b3, b4);

 Scene scene = new Scene(root);
 stage.setScene(scene);
 stage.setTitle("Testing LayoutBounds");
 stage.show();

 System.out.println("b1=" + b1.getLayoutBounds());
 System.out.println("b2=" + b2.getLayoutBounds());
 System.out.println("b3=" + b3.getLayoutBounds());
 System.out.println("b4=" + b4.getLayoutBounds());
 }
}

b1=BoundingBox [minX:0.0, minY:0.0, minZ:0.0, width:57.0, height:23.0, depth:0.0,
maxX:57.0, maxY:23.0, maxZ:0.0]
b2=BoundingBox [minX:0.0, minY:0.0, minZ:0.0, width:57.0, height:23.0, depth:0.0,
maxX:57.0, maxY:23.0, maxZ:0.0]
b3=BoundingBox [minX:0.0, minY:0.0, minZ:0.0, width:57.0, height:23.0, depth:0.0,
maxX:57.0, maxY:23.0, maxZ:0.0]
b4=BoundingBox [minX:0.0, minY:0.0, minZ:0.0, width:57.0, height:23.0, depth:0.0,
maxX:57.0, maxY:23.0, maxZ:0.0]

Figure 6-10. The layoutBounds property does not include the effects and transformations

Chapter 6 ■ Understanding nodes

172

Sometimes you may want to include the space needed to show the effects and transformations of a
node in its layoutBounds. The solution for this is easy. You need to wrap the node in a Group and the Group
in a container. Now the container will query the Group for its layoutBounds. The layoutBounds of a Group is
the union of the boundsInParent for all its children. Recall that (see Table 6-1) the boundsInParent of a node
includes the space needed for showing effects and transformation of the node. If you change the statement

root.getChildren().addAll(b1, b2, b3, b4);

in Listing 6-1 to

root.getChildren().addAll(new Group(b1), b2, new Group(b3), b4);

the resulting screen is shown in Figure 6-11. This time, VBox allocated enough space for the first and the third
groups to account for the effect and transformation applied to the wrapped buttons.

Figure 6-11. Using a Group to allocate space for effects and transformations of a node

Tip ■ the layoutBounds of a node is computed based on the geometric properties of a node. therefore,
you should not bind such properties of a node to an expression that includes the layoutBounds of the node.

The boundsInLocal Property
The boundsInLocal property is computed in the untransformed coordinate space of the node. It includes the
geometric properties of the node, effects, and clip. Transformations applied to a node are not included.

Listing 6-2 prints the layoutBounds and boundsInLocal of a button. The boundsInLocal property
includes the drop shadow effect around the button. Notice that the coordinates of the upper left corner of
the bounding box defined by the layoutBounds are (0.0, 0.0) and they are (-9.0, -9.0) for the boundsInLocal.
The output may be a bit different on different platforms as the size of nodes is computed automatically
based on the platform running the program.

Chapter 6 ■ Understanding nodes

173

Listing 6-2. Accessing the boundsInLocal Property of a Node

// BoundsInLocalTest.java
package com.jdojo.node;

import javafx.application.Application;
import javafx.scene.Scene;
import javafx.scene.control.Button;
import javafx.scene.effect.DropShadow;
import javafx.scene.layout.VBox;
import javafx.stage.Stage;

public class BoundsInLocalTest extends Application {
 public static void main(String[] args) {
 Application.launch(args);
 }

 @Override
 public void start(Stage stage) {
 Button b1 = new Button("Close");
 b1.setEffect(new DropShadow());

 VBox root = new VBox();
 root.getChildren().addAll(b1);

 Scene scene = new Scene(root);
 stage.setScene(scene);
 stage.setTitle("Testing LayoutBounds");
 stage.show();

 System.out.println("b1(layoutBounds)=" + b1.getLayoutBounds());
 System.out.println("b1(boundsInLocal)=" + b1.getBoundsInLocal());
 }
}

b1(layoutBounds)=BoundingBox [minX:0.0, minY:0.0, minZ:0.0, width:57.0, height:23.0,
depth:0.0, maxX:57.0, maxY:23.0, maxZ:0.0]
b1(boundsInLocal)=BoundingBox [minX:-9.0, minY:-9.0, minZ:0.0, width:75.0, height:42.0,
depth:0.0, maxX:66.0, maxY:33.0, maxZ:0.0]

When do you use the boundsInLocal of a node? You would use boundsInLocal when you need to
include the effects and the clip of a node. Suppose you have a Text node with a reflection and you want
to center it vertically. If you use the layoutBounds of the Text node, it will only center the text portion of
the node and would not include the reflection. If you use the boundsInLocal, it will center the text with its
reflection. Another example would be checking for collisions of balls that have effects. If a collision between
two balls occurs when one ball moves inside the bounds of another ball that include their effects, use the
boundsInLocal for the balls. If a collision occurs only when they intersect their geometric boundaries, use
the layoutBounds.

Chapter 6 ■ Understanding nodes

174

The boundsInParent Property
The boundsInParent property of a node is in the coordinate space of its parent. It includes the geometric
properties of the node, effects, clip, and transformations. It is rarely used directly in code.

Bounds of a Group
The computation of layoutBounds, boundsInLocal, and boundsInParent for a Group is different from
that of a node. A Group takes on the collection bounds of its children. You can apply effects, clip, and
transformations separately on each child of a Group. You can also apply effects, clip, and transformations
directly on a Group and they are applied to all of its children nodes.

The layoutBounds of a Group is the union of the boundsInParent of all its children. It includes effects,
clip, and transformations applied directly to the children. It does not include effects, clip, and transformations
applied directly to the Group. The boundsInLocal of a Group is computed by taking its layoutBounds and
including the effects and clip applied directly to the Group. The boundsInParent of a Group is computed by
taking its boundsInLocal and including the transformations applied directly to the Group.

When you want to allocate space for a node that should include effects, clip, and transformations, you
need to try wrapping the node in a Group. Suppose you have a node with effects and transformations and
you only want to allocate layout space for its effects, not its transformations. You can achieve this by applying
the effects on the node and wrapping it in a Group, and then applying the transformations on the Group.

A Detailed Example on Bounds
In this section, I will walk you through an example to show how the bounds of a node are computed. You will
use a rectangle and its different properties, effects, and transformations in this example.

Consider the following snippet of code that creates a 50 by 20 rectangle and places it at (0, 0) in the local
coordinate space of the rectangle. The resulting rectangle is shown in Figure 6-12, which shows the axes of
the parent and the untransformed local axes of the node (the rectangle in this case), which are the same at
this time:

Rectangle r = new Rectangle(0, 0, 50, 20);
r.setFill(Color.GRAY);

layoutBounds,
boundsInLocal, and

boundsInParent

(0, 0)

y-axis (Parent/Untransformed Local)

x-axis (Parent/Untransformed Local)

Figure 6-12. A 50 by 20 rectangle placed at (0, 0) with no effects and transformations

Chapter 6 ■ Understanding nodes

175

Three types of bounds of the rectangle are the same, as follows:

layoutBounds[minX=0.0, minY=0.0, width=50.0, height=20.0]
boundsInLocal[minX=0.0, minY=0.0, width=50.0, height=20.0]
boundsInParent[minX=0.0, minY=0.0, width=50.0, height=20.0]

Let’s modify the rectangle to place it at (75, 50) as follows:

Rectangle r = new Rectangle(75, 50, 50, 20);

The resulting node is shown in Figure 6-13.

Figure 6-13. A 50 by 20 rectangle placed at (75, 50) with no effects and transformations

The axes for the parent and the node are still the same. All bounds are the same, as follows: The upper
left corner of all bounding boxes have moved to (75, 50) with the same width and height:

layoutBounds[minX=75.0, minY=50.0, width=50.0, height=20.0]
boundsInLocal[minX=75.0, minY=50.0, width=50.0, height=20.0]
boundsInParent[minX=75.0, minY=50.0, width=50.0, height=20.0]

Let’s modify the rectangle and give it a drop shadow effect, as follows:

Rectangle r = new Rectangle(75, 50, 50, 20);
r.setEffect(new DropShadow());

The resulting node is shown in Figure 6-14.

Chapter 6 ■ Understanding nodes

176

The axes for the parent and the node are still the same. Now, the layoutBounds did not change. To
accommodate the drop shadow effect, the boundsInLocal and boundsInParent have changed and they have
the same values. Recall that the boundsInLocal is defined in the untransformed coordinate space of the
node and the boundsInParent in the coordinate space of the parent. In this case, both coordinate spaces are
the same. Therefore, the same values for the two bounds define the same bounding box. The values for the
bounds are as follows:

layoutBounds[minX=75.0, minY=50.0, width=50.0, height=20.0]
boundsInLocal[minX=66.0, minY=41.0, width=68.0, height=38.0]
boundsInParent[minX=66.0, minY=41.0, width=68.0, height=38.0]

Let’s modify the previous rectangle to have a (x, y) translation of (150, 75) as follows:

Rectangle r = new Rectangle(75, 50, 50, 20);
r.setEffect(new DropShadow());
r.getTransforms().add(new Translate(150, 75));

The resulting node is shown in Figure 6-15. A transformation (a translation, in this case) transforms
the coordinate space of the node, and as a result, you see the node being transformed. In this case, you
have three coordinate spaces to consider: the coordinate space of the parent, and the untransformed and
transformed coordinate spaces of the node. The layoutBounds and boundsInParent are relative to the
untransformed local coordinate space of the node. The boundsInParent is relative to the coordinate space of
the parent. Figure 6-15 shows all coordinate spaces at play. The values for the bounds are as follows:

layoutBounds[minX=75.0, minY=50.0, width=50.0, height=20.0]
boundsInLocal[minX=66.0, minY=41.0, width=68.0, height=38.0]
boundsInParent[minX=216.0, minY=116.0, width=68.0, height=38.0]

layoutBounds

boundsInLocal and boundsInParent

(66, 41)

y-axis (Parent/Untransformed Local)

(0, 0)
x-axis (Parent/Untransformed Local)

(75, 50)

Figure 6-14. A 50 by 20 rectangle placed at (75, 50) with a drop shadow and no transformations

Chapter 6 ■ Understanding nodes

177

Let’s modify the rectangle to have a (x, y) translation of (150, 75) and a 30-degree clockwise rotation:

Rectangle r = new Rectangle(75, 50, 50, 20);
r.setEffect(new DropShadow());
r.getTransforms().addAll(new Translate(150, 75), new Rotate(30));

The resulting node is shown in Figure 6-16. Notice that the translation and rotation have been applied
to the local coordinate space of the rectangle and the rectangle appears in the same position relative to its
transformed local coordinate axes. The layoutBounds and boundsInLocal remained the same because you
did not change the geometry of the rectangle and the effects. The boundsInParent has changed because you
added a rotation. The values for the bounds are as follows:

layoutBounds[minX=75.0, minY=50.0, width=50.0, height=20.0]
boundsInLocal[minX=66.0, minY=41.0, width=68.0, height=38.0]
boundsInParent[minX=167.66, minY=143.51, width=77.89, height=66.91]

Figure 6-16. A 50 by 20 rectangle placed at (75, 50) with a drop shadow, a (150, 75) translation, and a
30-degree clockwise rotation

Figure 6-15. A 50 by 20 rectangle placed at (75, 50) with a drop shadow and a (150, 75) translation

Chapter 6 ■ Understanding nodes

178

As the last example, you will add scale and shear transformations to the rectangle:

Rectangle r = new Rectangle(75, 50, 50, 20);
r.setEffect(new DropShadow());
r.getTransforms().addAll(new Translate(150, 75), new Rotate(30),
 new Scale(1.2, 1.2), new Shear(0.30, 0.10));

The resulting node is shown in Figure 6-17.

Figure 6-17. A 50 by 20 rectangle placed at (75, 50) with a drop shadow, a (150, 75) translation, a 30-degree
clockwise rotation, a 1.2 in x and y scales, and a 0.30 x shear and 0.10 y shear

Notice that only boundsInParent has changed. The values for the bounds are as follows:

layoutBounds[minX=75.0, minY=50.0, width=50.0, height=20.0]
boundsInLocal[minX=66.0, minY=41.0, width=68.0, height=38.0]
boundsInParent[minX=191.86, minY=171.45, width=77.54, height=94.20]

For a beginner, it is not easy to grasp the concepts behind different types of bounds of a node. A beginner
is one who is learning something for the first time. I started out as a beginner while learning about bounds.
During the learning process, another beautiful concept and hence its implementation in a JavaFX program
came about. The program, which is a very detailed demo application, helps you understand visually how
bounds are affected by changing the state of a node. You can save the scene graph with all coordinate axes.
You can run the NodeBoundsApp class as shown in Listing 6-3 to see all the examples in this section in action.

Listing 6-3. Computing the Bounds of a Node

// NodeBoundsApp.java
package com.jdojo.node;
...
public class NodeBoundsApp extends Application {
 // The code for this class is not included here as it is very big.
 // Please refer to the source code. You can download the source code
 // for all programs in this book from http://www.apress.com/source-code
}

Chapter 6 ■ Understanding nodes

179

Positioning a Node Using layoutX and layoutY
If you do not understand the details and the reasons behind the existence of all layout-related properties,
laying out nodes in JavaFX is as confusing as it can get. The Node class has two properties, layoutX and
layoutY, to define translation of its coordinate space along the x axis and y axis, respectively. The Node class
has translateX and translateY properties that do the same thing. The final translation of the coordinate
space of a node is the sum of the two:

finalTranslationX = layoutX + translateX
finalTranslationY = layoutY + translateY

Why do you have two properties to define translations of the same kind? The reason is simple. They
exist to achieve the similar results in different situations. Use layoutX and layoutY to position a node for a
stable layout. Use translateX and translateY to position a node for a dynamic layout, for example, during
animation.

It is important to keep in mind that the layoutX and layoutY properties do not specify the final position
of a node. They are translations applied to the coordinate space of the node. You need to factor the minX and
minY values of the layoutBounds when you compute the value of layoutX and layoutY to position a node at
a particular position. To position the upper left corner of the bounding box of a node at finalX and finalY,
use the following formula:

layoutX = finalX - node.getLayoutBounds().getMinX()
layoutY = finalY - node.getLayoutBounds().getMinY()

Tip ■ the Node class has a convenience method, relocate(double finalX, double finalY), to position
the node at the (finalX, finalY) location. the method computes and sets the layoutX and layoutY values
correctly, taking into account the minX and minY values of the layoutBounds. to avoid errors and misplacement
of nodes, i prefer using the relocate() method over the setLayoutX() and setLayoutY() methods.

Sometimes setting the layoutX and layoutY properties of a node may not position them at the desired
location inside its parent. If you are caught in this situation, check the parent type. Most parents, which
are the subclasses of the Region class, use their own positioning policy, ignoring the layoutX and layoutY
settings of their children. For example, HBox and VBox use their own positioning policy and they will ignore
the layoutX and layoutY values for their children.

The following snippet of code will ignore the layoutX and layoutY values for two buttons, as they are
placed inside a VBox that uses its own positioning policy. The resulting layout is shown in Figure 6-18.

Button b1 = new Button("OK");
b1.setLayoutX(20);
b1.setLayoutY(20);

Button b2 = new Button("Cancel");
b2.setLayoutX(50);
b2.setLayoutY(50);

VBox vb = new VBox();
vb.getChildren().addAll(b1, b2);

Chapter 6 ■ Understanding nodes

180

If you want to have full control on positioning a node within its parent, use a Pane or a Group. A Pane is
a Region, which does not position its children. You will need to position the children using the layoutX and
layoutY properties. The following snippet of code will lay out two buttons as shown in Figure 6-19, which
shows the coordinate grid in which lines are placed 10px apart.

Button b1 = new Button("OK");
b1.setLayoutX(20);
b1.setLayoutY(20);

Button b2 = new Button("Cancel");
b2.setLayoutX(50);
b2.setLayoutY(50);

Group parent = new Group(); //Or. Pane parent = new Pane();
parent.getChildren().addAll(b1, b2);

Figure 6-18. Two buttons using layoutX and layoutY properties and placed inside a VBox

Figure 6-19. Two buttons using layoutX and layoutY properties and placed inside a Group or a Pane

Setting the Size of a Node
Every node has a size (width and height), which may be changed. That is, every node can be resized. There are
two types of nodes: resizable nodes and nonresizable nodes. Aren’t the previous two sentences contradictory?
The answer is yes and no. It is true that every node has the potential to be resized. However, by a resizable node,
it is meant that a node can be resized by its parent during layout. For example, a button is a resizable node and
a rectangle is a nonresizable node. When a button is placed in a container, for example, in an HBox, the HBox
determines the best size for the button. The HBox resizes the button depending on how much space is needed
for the button to display and how much space is available to the HBox. When a rectangle is placed in an HBox,
the HBox does not determine its size; rather, it uses the size of the rectangle specified by the application.

Tip ■ a resizable node can be resized by its parent during a layout. a nonresizable node is not resized by its
parent during a layout. if you want to resize a nonresizable node, you need to modify its properties that affect its size.
For example, to resize a rectangle, you need to change its width and height properties. Regions, Controls, and
WebView are examples of resizable nodes. Group, Text, and Shapes are examples of nonresizable nodes.

Chapter 6 ■ Understanding nodes

181

How do you know if a node is resizable? The isResizable() method in the Node class returns true for a
resizable node; it returns false for a nonresizable node.

The program in Listing 6-4 shows the behavior of resizable and nonresizable nodes during a layout.
It adds a button and a rectangle to an HBox. After you run the program, make the stage shorter in width.
The button becomes smaller up to a point when it displays an ellipsis (...). The rectangle remains the same
size all the time. Figure 6-20 shows the stage at three different points during resizing.

Listing 6-4. A Button and a Rectangle in an HBox

// ResizableNodeTest.java
package com.jdojo.node;

import javafx.application.Application;
import javafx.scene.Scene;
import javafx.scene.control.Button;
import javafx.scene.layout.HBox;
import javafx.scene.paint.Color;
import javafx.scene.shape.Rectangle;
import javafx.stage.Stage;

public class ResizableNodeTest extends Application {
 public static void main(String[] args) {
 Application.launch(args);
 }

 @Override
 public void start(Stage stage) {
 Button btn = new Button("A big button");
 Rectangle rect = new Rectangle(100, 50);
 rect.setFill(Color.WHITE);
 rect.setStrokeWidth(1);
 rect.setStroke(Color.BLACK);

 HBox root = new HBox();
 root.setSpacing(20);
 root.getChildren().addAll(btn, rect);

 Scene scene = new Scene(root);
 stage.setScene(scene);
 stage.setTitle("Resizable Nodes");
 stage.show();

 System.out.println("btn.isResizable(): " + btn.isResizable());
 System.out.println("rect.isResizable(): " + rect.isResizable());
 }
}

btn.isResizable(): true
rect.isResizable(): false

Chapter 6 ■ Understanding nodes

182

Resizable Nodes
The actual size of a resizable node is determined by two things:

The sizing policy of the container in which the node is placed•	

The sizing range specified by the node itself•	

Each container has a resizing policy for its children. I will discuss the resizing policy of containers in
Chapter 10. A resizable node may specify a range for its size (width and height), which should be taken into
account by an honoring container for laying out the node. A resizable node specifies three types of sizes that
constitute the range of its size:

Preferred size•	

Minimum size•	

Maximum size•	

The preferred size of a node is its ideal width and height to display its contents. For example, a button in its
preferred size would be big enough to display all its contents, based on the current properties such as the image,
text, font, and text wrapping. The minimum size of a node is the smallest width and height that it would like to
have. For example, a button in its minimum size would be big enough to display the image and an ellipsis for its
text. The maximum size of a node is the largest width and height that it would like to have. In the case of a button,
the maximum size of a button is the same as its preferred size. Sometimes you may want to extend a node to an
unlimited size. In those cases, the maximum width and height are set to Double.MAX_VALUE.

Most of the resizable nodes compute their preferred, minimum, and maximum sizes automatically,
based on their contents and property settings. These sizes are known as their intrinsic sizes. The Region
and Control classes define two constants that act as sentinel values for the intrinsic sizes of nodes. Those
constants are:

•	 USE_COMPUTED_SIZE

•	 USE_PREF_SIZE

Both constants are of double type. The values for USE_COMPUTED_SIZE and USE_PREF_SIZE are -1 and
Double.NEGATIVE_INFINITY, respectively. It was not documented as to why the same constants were defined
twice. Maybe the designers did not want to move them up in the class hierarchy, as they do not apply to all
types of nodes.

If the size of a node is set to the sentinel value USE_COMPUTED_SIZE, the node will compute that size
automatically based on its contents and properties settings. The USE_PREF_SIZE sentinel value is used to set
the minimum and maximum sizes if they are the same as the preferred size.

Figure 6-20. A button and a rectangle shown in full size and after resizing the stage

Chapter 6 ■ Understanding nodes

183

The Region and Control classes have six properties of the DoubleProperty type to define preferred,
minimum, and maximum values for their width and height:

•	 prefWidth

•	 prefHeight

•	 minWidth

•	 minHeight

•	 maxWidth

•	 maxHeight

By default, these properties are set to the sentinel value USE_COMPUTED_SIZE. That means, nodes compute
these sizes automatically. You can set one of these properties to override the intrinsic size of a node. For
example, you can set the preferred, minimum, and maximum width of a button to be 50 pixels as follows:

Button btn = new Button("Close");
btn.setPrefWidth(50);
btn.setMinWidth(50);
btn.setMaxWidth(50);

The above snippet of code sets preferred, minimum, and maximum widths of the button to the same
value that makes the button horizontally nonresizable.

The following snippet of code sets the minimum and maximum widths of a button to the preferred
width, where the preferred width itself is computed internally:

Button btn = new Button("Close");
btn.setMinWidth(Control.USE_PREF_SIZE);
btn.setMaxWidth(Control.USE_PREF_SIZE);

Tip ■ in most cases, the internally computed values for preferred, minimum, and maximum sizes of nodes
are fine. Use these properties to override the internally computed sizes only if they do not meet the needs of
your application. if you need to bind the size of a node to an expression, you would need to bind the prefWidth
and prefHeight properties.

How do you get the actual preferred, minimum, and maximum sizes of a node? You might guess
that you can get them using the getPrefWidth(), getPrefHeight(), getMinWidth(), getMinHeight(),
getMaxWidth(), and getMaxHeight() methods. But you should not use these methods to get the actual
sizes of a node. These sizes may be set to the sentinel values and the node will compute the actual sizes
internally. These methods return the sentinel values or the override values. Listing 6-5 creates two buttons
and overrides the preferred intrinsic width for one of them to 100 pixels. The resulting screen is shown in
Figure 6-21. The output below proves that these methods are not very useful to learn the actual sizes of a
node for layout purposes.

Chapter 6 ■ Understanding nodes

184

Listing 6-5. Using getXXXWidth() and getXXXHeight() Methods of Regions and Controls

// NodeSizeSentinelValues.java
package com.jdojo.node;

import javafx.application.Application;
import javafx.scene.Scene;
import javafx.scene.control.Button;
import javafx.scene.layout.VBox;
import javafx.stage.Stage;

public class NodeSizeSentinelValues extends Application {
 public static void main(String[] args) {
 Application.launch(args);
 }

 @Override
 public void start(Stage stage) {
 Button okBtn = new Button("OK");
 Button cancelBtn = new Button("Cancel");

 // Override the intrinsic width of the cancel button
 cancelBtn.setPrefWidth(100);

 VBox root = new VBox();
 root.getChildren().addAll(okBtn, cancelBtn);

 Scene scene = new Scene(root);
 stage.setScene(scene);
 stage.setTitle("Overriding Node Sizes");
 stage.show();

 System.out.println("okBtn.getPrefWidth(): " + okBtn.getPrefWidth());
 System.out.println("okBtn.getMinWidth(): " + okBtn.getMinWidth());
 System.out.println("okBtn.getMaxWidth(): " + okBtn.getMaxWidth());

 System.out.println("cancelBtn.getPrefWidth(): " + cancelBtn.getPrefWidth());
 System.out.println("cancelBtn.getMinWidth(): " + cancelBtn.getMinWidth());
 System.out.println("cancelBtn.getMaxWidth(): " + cancelBtn.getMaxWidth());
 }
}

okBtn.getPrefWidth(): -1.0
okBtn.getMinWidth(): -1.0
okBtn.getMaxWidth(): -1.0
cancelBtn.getPrefWidth(): 100.0
cancelBtn.getMinWidth(): -1.0
cancelBtn.getMaxWidth(): -1.0

Chapter 6 ■ Understanding nodes

185

To get the actual sizes of a node, you need to use the following methods in the Node class. Note that
the Node class does not define any properties related to sizes. The size-related properties are defined in the
Region, Control, and other classes.

•	 double prefWidth(double height)

•	 double prefHeight(double width)

•	 double minWidth(double height)

•	 double minHeight(double width)

•	 double maxWidth(double height)

•	 double maxHeight(double width)

Here you can see another twist in getting the actual sizes of a node. You need to pass the value of its
height to get its width and vice versa. For most nodes in JavaFX, width and height are independent. However,
for some nodes, the height depends on the width and vice versa. When the width of a node depends on
its height or vice versa, the node is said to have a content bias. If the height of a node depends on its width,
the node has a horizontal content bias. If the width of a node depends on its height, the node has a vertical
content bias. Note that a node cannot have both horizontal and vertical content biases, which will lead to a
circular dependency.

The getContentBias() method of the Node class returns the content bias of a node. Its return type is the
javafx.geometry.Orientation enum type, which has two constants: HORIZONTAL and VERTICAL. If a node
does not have a content bias, for example, Text or ChoiceBox, the method returns null.

All controls that are subclasses of the Labeled class, for example, Label, Button, or CheckBox, have a
HORIZONTAL content bias when they have the text wrapping property enabled. For some nodes, their content
bias depends on their orientation. For example, if the orientation of a FlowPane is HORIZONTAL, its content
bias is HORIZONTAL; if its orientation is VERTICAL, its content bias is VERTICAL.

You are supposed to use the above-listed six methods to get the sizes of a node for layout purposes. If a node
type does not have a content bias, you need to pass -1 to these methods as the value for the other dimension. For
example, a ChoiceBox does not have a content bias, and you would get its preferred size as follows:

ChoiceBox choices = new ChoiceBox();
...
double prefWidth = choices.prefWidth(-1);
double prefHeight = choices.prefHeight(-1);

Figure 6-21. Buttons using sentinel and override values for their widths

Chapter 6 ■ Understanding nodes

186

For those nodes that have a content bias, you need to pass the biased dimension to get the other
dimension. For example, for a button, which has a HORIZONTAL content bias, you would pass -1 to get its
width, and you would pass its width value to get its height as follows:

Button b = new Button("Hello JavaFX");

// Enable text wrapping for the button, which will change its
// content bias from null (default) to HORIZONTAL
b.setWrapText(true);
...
double prefWidth = b.prefWidth(-1);
double prefHeight = b.prefHeight(prefWidth);

If a button does not have the text wrap property enabled, you can pass -1 to both methods prefWidth()
and prefHeight(), as it would not have a content bias.

The generic way to get the width and height of a node for layout purposes is outlined as follows.
The code shows how to get the preferred width and height, and the code would be similar to get minimum
and maximum width and height of a node:

Node node = get the reference of of the node;
...
double prefWidth = -1;
double prefHeight = -1;

Orientation contentBias = b.getContentBias();

if (contentBias == HORIZONTAL) {
 prefWidth = node.prefWidth(-1);
 prefHeight = node.prefHeight(prefWidth);
} else if (contentBias == VERTICAL) {
 prefHeight = node.prefHeight(-1);
 prefWidth = node.prefWidth(prefHeight);
} else {
 // contentBias is null
 prefWidth = node.prefWidth(-1);
 prefHeight = node.prefHeight(-1);
}

Now you know how to get the specified values and the actual values for the preferred, minimum, and
maximum sizes of a node. These values indicate the range for the size of a node. When a node is laid out
inside a container, the container tries to give the node its preferred size. However, based on the container’s
policy and the specified size of the node, the node may not get its preferred size. Instead, an honoring
container will give a node a size that is within its specified range. This is called the current size. How do you
get the current size of a node? The Region and Control classes define two read-only properties, width and
height, that hold the values for the current width and height of a node.

Now let’s see all these methods in action. Listing 6-6 places a button in an HBox, prints different types
of sizes for the button, changes some properties, and prints the sizes of the button again. The output below
shows that as the preferred width of the button becomes smaller, its preferred height becomes bigger.

Chapter 6 ■ Understanding nodes

187

Listing 6-6. Using Different Size-Related Methods of a Node

// NodeSizes.java
package com.jdojo.node;

import javafx.application.Application;
import javafx.scene.Scene;
import javafx.scene.control.Button;
import javafx.scene.layout.HBox;
import javafx.stage.Stage;

public class NodeSizes extends Application {
 public static void main(String[] args) {
 Application.launch(args);
 }

 @Override
 public void start(Stage stage) {
 Button btn = new Button("Hello JavaFX!");

 HBox root = new HBox();
 root.getChildren().addAll(btn);

 Scene scene = new Scene(root);
 stage.setScene(scene);
 stage.setTitle("Sizes of a Node");
 stage.show();

 // Print button's sizes
 System.out.println("Before changing button properties:");
 printSizes(btn);

 // Change button's properties
 btn.setWrapText(true);
 btn.setPrefWidth(80);
 stage.sizeToScene();

 // Print button's sizes
 System.out.println("\nAfter changing button properties:");
 printSizes(btn);

 }

 public void printSizes(Button btn) {
 System.out.println("btn.getContentBias() = " + btn.getContentBias());

 System.out.println("btn.getPrefWidth() = " + btn.getPrefWidth() +
 ", btn.getPrefHeight() = " + btn.getPrefHeight());

 System.out.println("btn.getMinWidth() = " + btn.getMinWidth() +
 ", btn.getMinHeight() = " + btn.getMinHeight());

Chapter 6 ■ Understanding nodes

188

 System.out.println("btn.getMaxWidth() = " + btn.getMaxWidth() +
 ", btn.getMaxHeight() = " + btn.getMaxHeight());

 double prefWidth = btn.prefWidth(-1);
 System.out.println("btn.prefWidth(-1) = " + prefWidth +
 ", btn.prefHeight(prefWidth) = " + btn.prefHeight(prefWidth));

 double minWidth = btn.minWidth(-1);
 System.out.println("btn.minWidth(-1) = " + minWidth +
 ", btn.minHeight(minWidth) = " + btn.minHeight(minWidth));

 double maxWidth = btn.maxWidth(-1);
 System.out.println("btn.maxWidth(-1) = " + maxWidth +
 ", btn.maxHeight(maxWidth) = " + btn.maxHeight(maxWidth));

 System.out.println("btn.getWidth() = " + btn.getWidth() +
 ", btn.getHeight() = " + btn.getHeight());
 }
}

Before changing button properties:
btn.getContentBias() = null
btn.getPrefWidth() = -1.0, btn.getPrefHeight() = -1.0
btn.getMinWidth() = -1.0, btn.getMinHeight() = -1.0
btn.getMaxWidth() = -1.0, btn.getMaxHeight() = -1.0
btn.prefWidth(-1) = 107.0, btn.prefHeight(prefWidth) = 22.8984375
btn.minWidth(-1) = 37.0, btn.minHeight(minWidth) = 22.8984375
btn.maxWidth(-1) = 107.0, btn.maxHeight(maxWidth) = 22.8984375
btn.getWidth() = 107.0, btn.getHeight() = 23.0

After changing button properties:
btn.getContentBias() = HORIZONTAL
btn.getPrefWidth() = 80.0, btn.getPrefHeight() = -1.0
btn.getMinWidth() = -1.0, btn.getMinHeight() = -1.0
btn.getMaxWidth() = -1.0, btn.getMaxHeight() = -1.0
btn.prefWidth(-1) = 80.0, btn.prefHeight(prefWidth) = 39.796875
btn.minWidth(-1) = 37.0, btn.minHeight(minWidth) = 22.8984375
btn.maxWidth(-1) = 80.0, btn.maxHeight(maxWidth) = 39.796875
btn.getWidth() = 80.0, btn.getHeight() = 40.0

The list of methods to get or set sizes of resizable nodes is not over. There are some convenience
methods that can be used to perform the same task as the methods discussed in this section. Table 6-2 lists
the size-related methods with their defining classes and usage.

Chapter 6 ■ Understanding nodes

189

Table 6-2. Size-Related Methods of Resizable Nodes

Methods/Properties Defining Class Usage

Properties:
prefWidth
prefHeight
minWidth
minHeight
maxWidth
maxHeight

Region, Control They define the preferred, minimum, and
maximum sizes. They are set to sentinel
values by default. Use them to override the
default values.

Methods:
double prefWidth(double h)
double prefHeight(double w)
double minWidth(double h)
double minHeight(double w)
double maxWidth(double h)
double maxHeight(double w)

Node Use them to get the actual sizes of nodes.
Pass -1 as the argument if the node does
not have a content bias. Pass the actual
value of the other dimension as the
argument if the node has a content bias.
Note that there are no corresponding
properties to these methods.

Properties:
width
height

Region, Control These are read-only properties that hold
the current width and height of resizable
nodes.

Methods:
void setPrefSize(double w, double h)
void setMinSize(double w, double h)
void setMaxSize(double w, double h)

Region, Control These are convenience methods to
override the default computed width and
height of nodes.

Methods:
void resize(double w, double h)

Node It resizes a node to the specified width
and height. It is called by the parent of
the node during a layout. You should not
call this method directly in your code.
If you need to set the size of a node, use
the setMinSize(), setPrefSize(), or
setMaxSize() methods instead. This
method has no effect on a nonresizable
node.

Methods:
void autosize()

Node For a resizable node, it sets the layout
bounds to its current preferred width
and height. It takes care of the content
bias. This method has no effect on a
nonresizable node.

Nonresizable Nodes
Nonresizable nodes are not resized by their parents during layout. However, you can change their sizes by
changing their properties. Nonresizable nodes (e.g., all shapes) have different properties that determine
their sizes. For example, the width and height of a rectangle, the radius of a circle, and the (startX, startY)
and (endX, endY) of a line determine their sizes.

Chapter 6 ■ Understanding nodes

190

There are several size-related methods defined in the Node class. Those methods have no effect
when they are called on nonresizable nodes or they return their current size. For example, calling the
resize(double w, double h) method of the Node class on a nonresizable node has no effect. For a
nonresizable node, the prefWidth(double h), minWidth(double h), and maxWidth(double h) methods in
the Node class return its layoutBounds width; whereas prefHeight(double w), minHeight(double w), and
maxHeight(double w) methods return its layoutBounds height. Nonresizable nodes do not have content
bias. Pass -1 to all these methods as the argument for the other dimension.

Storing User Data in a Node
Every node maintains an observable map of user-defined properties (key/value pairs). You can use it to store
any useful information. Suppose you have a TextField that lets the user manipulate a person’s name. You
can store the originally retrieved person’s name from the database as the property of the TextField. You
can use the property later to reset the name or to generate an UPDATE statement to update the name in the
database. Another use of the properties would be to store micro help text. When a node receives the focus,
you can read its micro help property and display it, for example, in a status bar, to help the user understand
the use of the node.

The getProperties() method of the Node class returns an ObservableMap<Object, Object> in
which you can add or remove properties for the node. The following snippet of code adds a property
"originalData" with a value "Advik" to a TextField node:

TextField nameField = new TextField();
...
ObservableMap<Object, Object> props = nameField.getProperties();
props.put("originalData", "Advik");

The following snippet of code reads the value of the "originalData" property from the nameField node:

ObservableMap<Object, Object> props = nameField.getProperties();
if (props.containsKey("originalData")) {
 String originalData = (String)props.get("originalData");
} else {
 // originalData property is not set yet
}

The Node class has two convenience methods, setUserData(Object value) and getUserData(), to
store a user-defined value as a property for a node. The value specified in the setUserData() method uses
the same ObservableMap to store the data that are returned by the getProperties() method. The Node class
uses an internal Object as the key to store the value. You need to use the getUserData() method to get the
value that you store using the setUserData() method, as follows:

nameField.setUserData("Saved"); // Set the user data
...
String userData = (String)nameField.getUserData(); // Get the user data

Tip ■ You cannot access the user data of a node directly except by using the getUserData() method.
Because it is stored in the same ObservableMap returned by the getProperties() method, you can get to it
indirectly by iterating through the values in that map.

Chapter 6 ■ Understanding nodes

191

The Node class has a hasProperties() method. It tests if a node has properties. Its implementation
seems to be wrong as of JavaFX version 2.2. The Node class creates an ObservableMap to store properties
lazily. It is created when you call the getProperties() of setUserData() method for the first time. The
implementation of the hasProperties() method returns true if the internal ObservableMap object has been
created. It does not check if the internal map has any key/value pair in it:

TextField nameField = new TextField();
System.out.println(nameField.hasProperties());
ObservableMap<Object, Object> props = nameField.getProperties();
System.out.println(nameField.hasProperties());

false
true

The above snippet of code should print false twice. However, it prints true for the second time because
you have called the getProperties() method, which is wrong. Your nameField node still has no properties.
Let’s see if this would get fixed in the later version.

What Is a Managed Node?
The Node class has a managed property, which is of type BooleanProperty. By default, all nodes are
managed. The laying out of a managed node is managed by its parent. A Parent node takes into account
the layoutBounds of all its managed children when it computes its own size. A Parent node is responsible
for resizing its managed resizable children and positioning them according to its layout policy. When the
layoutBounds of a managed child changes, the relevant part of the scene graph is relaid out.

If a node is unmanaged, the application is solely responsible for laying it out (computing its size and
position). That is, a Parent node does not lay out its unmanaged children. Changes in the layoutBounds of
an unmanaged node do not trigger the relayout above it. An unmanaged Parent node acts as a layout root. If
a child node calls the Parent.requestLayout() method, only the branch rooted by the unmanaged Parent
node is relaid out.

Tip ■ Contrast the visible property of the Node class with its managed property. a Parent node takes into
account the layoutBounds of all its invisible children for layout purposes and ignores the unmanaged children.

When would you use an unmanaged node? Typically, you do not need to use unmanaged nodes in
applications because they need additional work on your part. However, just know that they exist and you can
use them, if needed.

You can use an unmanaged node when you want to show a node in a container without the container
considering its layoutBounds. You will need to size and position the node yourself. Listing 6-7 demonstrates how
to use unmanaged nodes. It uses an unmanaged Text node to display a micro help when a node has the focus.
The node needs to have a property named "microHelpText". When the micro help is shown, the layout for the
entire application is not disturbed as the Text node to show the micro help is an unmanaged node. You place
the node at an appropriate position in the focusChanged() method. The program registers a change listener to
the focusOwner property of the scene, so you show or hide the micro help Text node when the focus inside the
scene changes. The resulting screens, when two different nodes have focus, are shown in Figure 6-22. Note that
positioning the Text node, in this example, was easy as all nodes were inside the same parent node, a GridPane.
The logic to position the Text node becomes complex if nodes are placed inside different parents.

Chapter 6 ■ Understanding nodes

192

Listing 6-7. Using an Unmanaged Text Node to Show Micro Help

// MicroHelpApp.java
package com.jdojo.node;

import javafx.application.Application;
import javafx.application.Platform;
import javafx.beans.value.ObservableValue;
import javafx.geometry.VPos;
import javafx.scene.Node;
import javafx.scene.Scene;
import javafx.scene.control.Button;
import javafx.scene.control.Label;
import javafx.scene.control.TextField;
import javafx.scene.layout.GridPane;
import javafx.scene.paint.Color;
import javafx.scene.text.Font;
import javafx.scene.text.Text;
import javafx.stage.Stage;

public class MicroHelpApp extends Application {
 // An instance variable to store the Text node reference
 private Text helpText = new Text();

 public static void main(String[] args) {
 Application.launch(args);
 }

 @Override
 public void start(Stage stage) {
 TextField fName = new TextField();
 TextField lName = new TextField();
 TextField salary = new TextField();

 Button closeBtn = new Button("Close");
 closeBtn.setOnAction(e -> Platform.exit());

 fName.getProperties().put("microHelpText", "Enter the first name");
 lName.getProperties().put("microHelpText", "Enter the last name");
 salary.getProperties().put("microHelpText",
 "Enter a salary greater than $2000.00.");

 // The help text node is unmanaged
 helpText.setManaged(false);
 helpText.setTextOrigin(VPos.TOP);
 helpText.setFill(Color.RED);
 helpText.setFont(Font.font(null, 9));
 helpText.setMouseTransparent(true);

 // Add all nodes to a GridPane
 GridPane root = new GridPane();

Chapter 6 ■ Understanding nodes

193

 root.add(new Label("First Name:"), 1, 1);
 root.add(fName, 2, 1);
 root.add(new Label("Last Name:"), 1, 2);
 root.add(lName, 2, 2);

 root.add(new Label("Salary:"), 1, 3);
 root.add(salary, 2, 3);
 root.add(closeBtn, 3, 3);
 root.add(helpText, 4, 3);

 Scene scene = new Scene(root, 300, 100);

 // Add a change listener to the scene, so you know when the focus owner
 // changes and display the micro help
 scene.focusOwnerProperty().addListener(
 (ObservableValue<? extends Node> value, Node oldNode, Node newNode)
 -> focusChanged(value, oldNode, newNode));
 stage.setScene(scene);
 stage.setTitle("Showing Micro Help");
 stage.show();
 }

 public void focusChanged(ObservableValue<? extends Node> value,
 Node oldNode, Node newNode) {
 // Focus has changed to a new node
 String microHelpText = (String)newNode.getProperties().get("microHelpText");

 if (microHelpText != null && microHelpText.trim().length() > 0) {
 helpText.setText(microHelpText);
 helpText.setVisible(true);

 // Position the help text node
 double x = newNode.getLayoutX() +
 newNode.getLayoutBounds().getMinX() -
 helpText.getLayoutBounds().getMinX();
 double y = newNode.getLayoutY() +
 newNode.getLayoutBounds().getMinY() +
 newNode.getLayoutBounds().getHeight() -
 helpText.getLayoutBounds().getMinX();

 helpText.setLayoutX(x);
 helpText.setLayoutY(y);
 helpText.setWrappingWidth(newNode.getLayoutBounds().getWidth());
 }
 else {
 helpText.setVisible(false);
 }
 }
}

Chapter 6 ■ Understanding nodes

194

Sometimes you may want to use the space that is used by a node if the node becomes invisible. Suppose
you have an HBox with several buttons. When one of the buttons becomes invisible, you want to slide all
buttons from right to left. You can achieve a slide-up effect in VBox. Achieving sliding effects in HBox and VBox
(or any other containers with relative positioning) is easy by binding the managed property of the node to the
visible property. Listing 6-8 shows how to achieve the slide-left feature in an HBox. It displays four buttons.
The first button is used to make the third button, b2, visible and invisible. The managed property of the b2
button is bound to its visible property:

b2.managedProperty().bind(b2.visibleProperty());

When the b2 button is made invisible, it becomes unmanaged, and the HBox does not use its
layoutBounds in computing its own layoutBounds. This makes the b3 button slide to the left. Figure 6-23
shows two screenshots when the application is run.

Listing 6-8. Simulating the Slide-Left Feature Using Unmanaged Nodes

// SlidingLeftNodeTest.java
package com.jdojo.node;

import javafx.application.Application;
import javafx.beans.binding.When;
import javafx.scene.Scene;
import javafx.scene.control.Button;
import javafx.scene.layout.HBox;
import javafx.stage.Stage;

public class SlidingLeftNodeTest extends Application {
 public static void main(String[] args) {
 Application.launch(args);
 }

 @Override
 public void start(Stage stage) {
 Button b1 = new Button("B1");
 Button b2 = new Button("B2");
 Button b3 = new Button("B3");
 Button visibleBtn = new Button("Make Invisible");

 // Add an action listener to the button to make b2 visible
 // if it is invisible and invisible if it is visible
 visibleBtn.setOnAction(e -> b2.setVisible(!b2.isVisible()));

Figure 6-22. Using an unmanaged Text node to show micro help

Chapter 6 ■ Understanding nodes

195

 // Bind the text property of the button to the visible
 // property of the b2 button
 visibleBtn.textProperty().bind(new When(b2.visibleProperty())
 .then("Make Invisible")
 .otherwise("Make Visible"));

 // Bind the managed property of b2 to its visible property
 b2.managedProperty().bind(b2.visibleProperty());

 HBox root = new HBox();
 root.getChildren().addAll(visibleBtn, b1, b2, b3);

 Scene scene = new Scene(root);
 stage.setScene(scene);
 stage.setTitle("Sliding to the Left");
 stage.show();
 }
}

Transforming Bounds between Coordinate Spaces
I have already covered coordinate spaces used by nodes. Sometimes you may need to translate a Bounds or
a point from one coordinate space to another. The Node class contains several methods to support this.
The following transformations of a Bounds or a point are supported:

Local to parent•	

Local to scene•	

Parent to local•	

Scene to local•	

The localToParent() method transforms a Bounds or a point in the local coordinate space of a node to
the coordinate space of its parent. The localToScene() method transforms a Bounds or a point in the local
coordinate space of a node to the coordinate space of its scene. The parentToLocal() method transforms a
Bounds or a point in the coordinate space of the parent of a node to the local coordinate space of the node.
The sceneToLocal() method transforms a Bounds or a point in the coordinate space of the scene of a node
to the local coordinate space of the node. All methods have three overloaded versions; one version takes a
Bounds as an argument and returns the transformed Bounds; another version takes a Point2D as an argument
and returns the transformed Point2D; another version takes the x and y coordinates of a point and returns
the transformed Point2D.

Figure 6-23. Simulating the slide-left feature for B2 button

Chapter 6 ■ Understanding nodes

196

These methods are sufficient to transform the coordinate of a point in one coordinate space to
another within a scene graph. Sometimes you may need to transform the coordinates of a point in the local
coordinate space of a node to the coordinate space of the stage or screen. You can achieve this using the x
and y properties of the Scene and Stage classes. The (x, y) properties of a scene define the coordinates of
the top left corner of the scene in the coordinate space of its stage. The (x, y) properties of a stage define the
coordinates of the top left corner of the stage in the coordinate space of the screen. For example, if (x1, y1) is
a point in the coordinate space of the scene, (x1 + x2, y1 + y2) defines the same point in the coordinate space
of the state, where x2 and y2 are the x and y properties of the stage, respectively. Apply the same logic to get
the coordinate of a point in the coordinate space of the screen.

Let’s look at an example that uses transformations between the coordinate spaces of a node, its parent,
and its scene. A scene has three Labels and three TextFields placed under different parents. A red, small
circle is placed at the top left corner of the bounding box of the node that has the focus. As the focus changes,
the position of the circle needs to be computed, which would be the same as the position of the top left
corner of the current node, relative to the parent of the circle. The center of the circle needs to coincide with
the top left corner of the node that has the focus. Figure 6-24 shows the stage when the focus is in the first
name and last name nodes. Listing 6-9 has the complete program to achieve this.

The program has a scene consisting of three Labels and TextFields. A pair of a Label and a TextField
is placed in an HBox. All HBoxes are placed in a VBox. An unmanaged Circle is placed in the VBox. The
program adds a change listener to the focusOwner property of the scene to track the focus change. When the
focus changes, the circle is placed at the top left corner of the node that has the focus.

The placeMarker() contains the main logic. It gets the (x, y) coordinates of the top left corner of the
bounding box of the node in focus in the local coordinate space:

double nodeMinX = newNode.getLayoutBounds().getMinX();
double nodeMinY = newNode.getLayoutBounds().getMinY();

It transforms the coordinates of the top left corner of the node from the local coordinate space to the
coordinate space of the scene:

Point2D nodeInScene = newNode.localToScene(nodeMinX, nodeMinY);

Now the coordinates of the top left corner of the node are transformed from the coordinate space of the
scene to the coordinate space of the circle, which is named marker in the program:

Point2D nodeInMarkerLocal = marker.sceneToLocal(nodeInScene);

Figure 6-24. Using coordinate space transformations to move a circle to a focused node

Chapter 6 ■ Understanding nodes

197

Finally, the coordinate of the top left corner of the node is transformed to the coordinate space of the
parent of the circle:

Point2D nodeInMarkerParent = marker.localToParent(nodeInMarkerLocal);

At this point, the nodeInMarkerParent is the point (the top left corner of the node in focus) relative
to the parent of the circle. If you relocate the circle to this point, you will place the top left corner of the
bounding box of the circle to the top left corner of the node in focus:

marker.relocate(nodeInMarkerParent.getX(), nodeInMarkerParent.getY())

If you want to place the center of the circle to the top left corner of the node in focus, you will need to
adjust the coordinates accordingly:

marker.relocate(nodeInMarkerParent.getX() + marker.getLayoutBounds().getMinX(),
 nodeInMarkerParent.getY() + marker.getLayoutBounds().getMinY());

Listing 6-9. Transforming the Coordinates of a Point from One Coordinate Space to Another

// CoordinateConversion.java
package com.jdojo.node;

import javafx.application.Application;
import javafx.geometry.Point2D;
import javafx.scene.Node;
import javafx.scene.Scene;
import javafx.scene.control.Label;
import javafx.scene.control.TextField;
import javafx.scene.layout.HBox;
import javafx.scene.layout.VBox;
import javafx.scene.paint.Color;
import javafx.scene.shape.Circle;
import javafx.stage.Stage;

public class CoordinateConversion extends Application {
 // An instance variable to store the reference of the circle
 private Circle marker;

 public static void main(String[] args) {
 Application.launch(args);
 }

 @Override
 public void start(Stage stage) {
 TextField fName = new TextField();
 TextField lName = new TextField();
 TextField salary = new TextField();

Chapter 6 ■ Understanding nodes

198

 // The Circle node is unmanaged
 marker = new Circle(5);
 marker.setManaged(false);
 marker.setFill(Color.RED);
 marker.setMouseTransparent(true);

 HBox hb1 = new HBox();
 HBox hb2 = new HBox();
 HBox hb3 = new HBox();
 hb1.getChildren().addAll(new Label("First Name:"), fName);
 hb2.getChildren().addAll(new Label("Last Name:"), lName);
 hb3.getChildren().addAll(new Label("Salary:"), salary);

 VBox root = new VBox();
 root.getChildren().addAll(hb1, hb2, hb3, marker);

 Scene scene = new Scene(root);

 // Add a focus change listener to the scene
 scene.focusOwnerProperty().addListener(
 (prop, oldNode, newNode) -> placeMarker(newNode));

 stage.setScene(scene);
 stage.setTitle("Coordinate Space Transformation");
 stage.show();
 }

 public void placeMarker(Node newNode) {
 double nodeMinX = newNode.getLayoutBounds().getMinX();
 double nodeMinY = newNode.getLayoutBounds().getMinY();
 Point2D nodeInScene = newNode.localToScene(nodeMinX, nodeMinY);
 Point2D nodeInMarkerLocal = marker.sceneToLocal(nodeInScene);
 Point2D nodeInMarkerParent = marker.localToParent(nodeInMarkerLocal);

 // Position the circle approperiately
 marker.relocate(nodeInMarkerParent.getX()
 + marker.getLayoutBounds().getMinX(),
 nodeInMarkerParent.getY()
 + marker.getLayoutBounds().getMinY());
 }
}

Summary
A scene graph is a tree data structure. Every item in a scene graph is called a node. An instance of the
javafx.scene.Node class represents a node in the scene graph. A node can have subitems (also called
children) and such a node is called a branch node. A branch node is an instance of the Parent class whose
concrete subclasses are Group, Region, and WebView. A node that cannot have subitems is called a leaf node.
Instances of classes such as Rectangle, Text, ImageView, and MediaView are examples of leaf nodes. Only a
single node within each scene graph tree will have no parent, which is referred to as the root node. A node
may occur at the most once anywhere in the scene graph.

Chapter 6 ■ Understanding nodes

199

A node may be created and modified on any thread if it is not yet attached to a scene. Attaching a node
to a scene and subsequent modification must occur on the JavaFX Application Thread. A node has several
types of bounds. Bounds are determined with respect to different coordinate systems. A node in a scene
graph has three types of bounds: layoutBounds, boundsInLocal, and boundsInParent.

The layoutBounds property is computed based on the geometric properties of the node in the
untransformed local coordinate space of the node. Effects, clip, and transformations are not included. The
boundsInLocal property is computed in the untransformed coordinate space of the node. It includes the
geometric properties of the node, effects, and clip. Transformations applied to a node are not included.
The boundsInParent property of a node is in the coordinate space of its parent. It includes the geometric
properties of the node, effects, clip, and transformations. It is rarely used directly in code.

The computation of layoutBounds, boundsInLocal, and boundsInParent for a Group is different
from that of a node. A Group takes on the collection bounds of its children. You can apply effects, clip, and
transformations separately on each child of a Group. You can also apply effects, clip, and transformations
directly on a Group and they are applied to all its children nodes. The layoutBounds of a Group is the union
of the boundsInParent of all its children. It includes effects, clip, and transformations applied directly
to the children. It does not include effects, clip, and transformations applied directly to the Group. The
boundsInLocal of a Group is computed taking its layoutBounds and including the effects and clip applied
directly to the Group. The boundsInParent of a Group is computed by taking its boundsInLocal and including
the transformations applied directly to the Group.

Every node maintains an observable map of user-defined properties (key/value pairs). You can use it
to store any useful information. A node can be managed or unmanaged. A managed node is laid out by its
parent, whereas the application is responsible for laying out an unmanaged node.

The next chapter will discuss how to use colors in JavaFX.

201

Chapter 7

Playing with Colors

In this chapter, you will learn:

How colors are represented in JavaFX•	

What different color patterns are•	

How to use image pattern•	

How to use linear color gradient•	

How to use radial color gradient•	

Understanding Colors
In JavaFX, you can specify color for text and background color for regions. You can specify a color as a
uniform color, an image pattern, or a color gradient. A uniform color uses the same color to fill the entire
region. An image pattern lets you fill a region with an image pattern. A color gradient defines a color pattern
in which the color varies along a straight line from one color to another. The variation in a color gradient can
be linear or radial. I will present examples using all color types in this chapter. Figure 7-1 shows the class
diagram for color-related classes in JavaFX. All classes are included in the javafx.scene.paint package.

Figure 7-1. The class diagram of color-related classes in JavaFX

The Paint class is an abstract class and it is the base class for other color classes. It contains only one
static method that takes a String argument and returns a Paint instance. The returned Paint instance
would be of the Color, LinearGradient, or RadialGradient class, as shown in the following code:

public static Paint valueOf(String value)

Chapter 7 ■ playing with Colors

202

You will not use the valueOf() method of the Paint class directly. It is used to convert the color value
read in a String from the CSS files. The following snippet of code creates instances of the Paint class
from Strings:

// redColor is an instance of the Color class
Paint redColor = Paint.valueOf("red");

// aLinearGradientColor is an instance of the LinearGradient class
Paint aLinearGradientColor = Paint.valueOf("linear-gradient(to bottom right, red, black)");

// aRadialGradientColor is an instance of the RadialGradient class
Paint aRadialGradientColor =
 Paint.valueOf("radial-gradient(radius 100%, red, blue, black)");

A uniform color, an image pattern, a linear color gradient, and a radial color gradient are instances of
the Color, ImagePattern, LinearGradient, and RadialGradient classes, respectively. The Stop class and the
CycleMethod enum are used while working with color gradients.

Tip ■ typically, methods for setting the color attribute of a node take the Paint type as an argument,
 allowing you to use any of the four color patterns.

Using the Color Class
The Color class represents a solid uniform color from the RGB color space. Every color has an alpha value
defined between 0.0 to 1.0 or 0 to 255. An alpha value of 0.0 or 0 means the color is completely transparent,
and an alpha value of 1.0 or 255 denotes a completely opaque color. By default, the alpha value is set to 1.0.
You can have an instance of the Color class in three ways:

Using the constructor•	

Using one of the factory methods•	

Using one of the color constants declared in the •	 Color class

The Color class has only one constructor that lets you specify the RGB and opacity in the range of 1,0
and 1.0:

public Color(double red, double green, double blue, double opacity)

The following snippet of code creates a completely opaque blue color:

Color blue = new Color(0.0, 0.0, 1.0, 1.0);

You can use the following static methods in the Color class to create Color objects. The double values
need to be between 0.0 and 1.0 and int values between 0 and 255:

•	 Color color(double red, double green, double blue)

•	 Color color(double red, double green, double blue, double opacity)

•	 Color hsb(double hue, double saturation, double brightness)

Chapter 7 ■ playing with Colors

203

•	 Color hsb(double hue, double saturation, double brightness,
double opacity)

•	 Color rgb(int red, int green, int blue)

•	 Color rgb(int red, int green, int blue, double opacity)

The valueOf() and web() factory methods let you create Color objects from strings in web color value
formats. The following snippet of code creates blue Color objects using different string formats:

Color blue = Color.valueOf("blue");
Color blue = Color.web("blue");
Color blue = Color.web("#0000FF");
Color blue = Color.web("0X0000FF");
Color blue = Color.web("rgb(0, 0, 255)");
Color blue = Color.web("rgba(0, 0, 255, 0.5)"); // 50% transparent blue

The Color class defines about 140 color constants, for example, RED, WHITE, TAN, BLUE, among others.
Colors defined by these constants are completely opaque.

Using the ImagePattern Class
An image pattern lets you fill a shape with an image. The image may fill the entire shape or use a tiling
pattern. Here are the steps you would use to get an image pattern:

 1. Create an Image object using an image from a file.

 2. Define a rectangle, known as the anchor rectangle, relative to the upper left
corner of the shape to be filled.

The image is shown in the anchor rectangle and is then resized to fit the anchor rectangle. If the
bounding box for the shape to be filled is bigger than that of the anchor rectangle, the anchor rectangle with
the image is repeated within the shape in a tiling pattern.

You can create an object of the ImagePattern using one of its constructors:

•	 ImagePattern(Image image)

•	 ImagePattern(Image image, double x, double y, double width, double
height, boolean proportional)

The first constructor fills the entire bounding box with the image without any pattern. The second
constructor lets you specify the x and y coordinates, width, and height of the anchor rectangle. If the
proportional argument is true, the anchor rectangle is specified relative to the bounding box of the shape
to be filled in terms of a unit square. If the proportional argument is false, the anchor rectangle is specified
in the local coordinate system of the shape. The following two calls to the two constructors would produce
the same result:

ImagePatterm ip1 = new ImagePattern(anImage);
ImagePatterm ip2 = new ImagePattern(anImage, 0.0, 0.0, 1.0, 1.0, true);

For the example here, you will use the image shown in Figure 7-2. It is a 37px by 25px blue rounded
rectangle. It can be found in the resources/picture/blue_rounded_rectangle.png file under the source
code folder.

Chapter 7 ■ playing with Colors

204

Using that file, let’s create an image pattern, using the following code:

Image img = create the image object...
ImagePattern p1 = new ImagePattern(img, 0, 0, 0.25, 0.25, true);

The last argument in the ImagePattern constructor set to true makes the bounds of the anchor
rectangle, 0, 0, 0.25, and 0.25, to be interpreted proportional to the size of the shape to be filled. The image
pattern will create an anchor rectangle at (0, 0) of the shape to be filled. Its width and height will be 25%
of the shape to be filled. This will make the anchor rectangle repeat four times horizontally and four times
vertically. If you use the following code with the above image pattern, it will produce a rectangle as shown
in Figure 7-3.

Rectangle r1 = new Rectangle(100, 50);
r1.setFill(p1);

If you use the same image pattern to fill a triangle with the following snippet of code, the resulting
triangle will look like the one shown in Figure 7-4.

Polygon triangle = new Polygon(50, 0, 0, 50, 100, 50);
triangle.setFill(p1);

How would you fill a shape completely with an image without having a tiling pattern? You would need
to use an ImagePattern with the proportional argument set to true. The center of the anchor rectangle
should be at (0, 0) and its width and height should be set to 1 as follows:

// An image pattern to completely fill a shape with the image
ImagePatterm ip = new ImagePattern(yourImage, 0.0, 0.0, 1.0, 1.0, true);

Figure 7-3. Filling a rectangle with an image pattern

Figure 7-4. Filling a triangle with an image pattern

Figure 7-2. A blue rounded rectangle

Chapter 7 ■ playing with Colors

205

The program in Listing 7-1 shows how to use an image pattern. The resulting screen is shown in
Figure 7-5. Its init() method loads an image in an Image object and stores it in an instance variable. If the
image file is not found in the CLASSPATH, it prints an error message and quits.

Listing 7-1. Using and Image Pattern to Fill Different Shapes

// ImagePatternApp.java
package com.jdojo.color;

import java.net.URL;
import javafx.application.Application;
import javafx.application.Platform;
import javafx.scene.Scene;
import javafx.scene.image.Image;
import javafx.scene.layout.HBox;
import javafx.scene.paint.ImagePattern;
import javafx.scene.shape.Circle;
import javafx.scene.shape.Rectangle;
import javafx.stage.Stage;

public class ImagePatternApp extends Application {
 private Image img;

 public static void main(String[] args) {
 Application.launch(args);
 }

 @Override
 public void init() {
 // Create an Image object
 final String IMAGE_PATH = "resources/picture/blue_rounded_rectangle.png";
 URL url = this.getClass().getClassLoader().getResource(IMAGE_PATH);
 if (url == null) {
 System.out.println(IMAGE_PATH + " file not found in CLASSPATH");
 Platform.exit();
 return;
 }
 img = new Image(url.toExternalForm());
 }

 @Override
 public void start(Stage stage) {
 // An anchor rectangle at (0, 0) that is 25% wide and 25% tall
 // relative to the rectangle to be filled
 ImagePattern p1 = new ImagePattern(img, 0, 0, 0.25, 0.25, true);
 Rectangle r1 = new Rectangle(100, 50);
 r1.setFill(p1);

 // An anchor rectangle at (0, 0) that is 50% wide and 50% tall
 // relative to the rectangle to be filled
 ImagePattern p2 = new ImagePattern(img, 0, 0, 0.5, 0.5, true);
 Rectangle r2 = new Rectangle(100, 50);
 r2.setFill(p2);

Chapter 7 ■ playing with Colors

206

 // Using absolute bounds for the anchor rectangle
 ImagePattern p3 = new ImagePattern(img, 40, 15, 20, 20, false);
 Rectangle r3 = new Rectangle(100, 50);
 r3.setFill(p3);

 // Fill a circle
 ImagePattern p4 = new ImagePattern(img, 0, 0, 0.1, 0.1, true);
 Circle c = new Circle(50, 50, 25);
 c.setFill(p4);

 HBox root = new HBox();
 root.getChildren().addAll(r1, r2, r3, c);

 Scene scene = new Scene(root);
 stage.setScene(scene);

 stage.setTitle("Using Image Patterns");
 stage.show();
 }
}

Understanding Linear Color Gradient
A linear color gradient is defined using an axis known as a gradient line. Each point on the gradient line is
of a different color. All points on a line that is perpendicular to the gradient line have the same color, which
is the color of the point of intersection between the two lines. The gradient line is defined by a starting
point and an ending point. Colors along the gradient line are defined at some points on the gradient line,
which are known as stop-color points (or stop points). Colors between two stop points are computed using
interpolation.

The gradient line has a direction, which is from the starting point to the ending point. All points on a
line perpendicular to the gradient line that pass through a stop point will have the color of the stop point. For
example, suppose you have defined a stop point P1 with a color C1. If you draw a line perpendicular to the
gradient line passing through the point P1, all points on that line will have the color C1.

Figure 7-6 shows the details of the elements constituting a linear color gradient. It shows a rectangular
region filled with a linear color gradient. The gradient line is defined from the left side to the right side. The
starting point has a white color and the ending point has a black color. On the left side of the rectangle, all
points have the white color, and on the right side, all points have the black color. In between the left and the
right sides, the color varies between white and black.

Figure 7-5. Filling different shapes with image patterns

Chapter 7 ■ playing with Colors

207

Using the LinearGradient Class
In JavaFX, an instance of the LinearGradient class represents a linear color gradient. The class has the
following two constructors. The types of their last arguments are different:

•	 LinearGradient(double startX, double startY, double endX, double endY,
boolean proportional, CycleMethod cycleMethod, List<Stop> stops)

•	 LinearGradient(double startX, double startY, double endX, double endY,
boolean proportional, CycleMethod cycleMethod, Stop... stops)

The startX and startY arguments define the x and y coordinates of the starting point of the gradient
line. The endX and endY arguments define the x and y coordinates of the starting point of the gradient line.

The proportional argument affects the way the coordinates of the starting and ending points are treated.
If it is true, the starting and ending points are treated relative to a unit square. Otherwise, they are treated as
absolute value in the local coordinate system. The use of this argument needs a little more explanation.

Typically, a color gradient is used to fill a region, for example, a rectangle. Sometimes, you know the
size of the region and sometimes you will not. The value of this argument lets you specify the gradient line
in relative or absolute form. In relative form, the region is treated as a unit square. That is, the coordinates of
the upper left and the lower right corners are (0.0, 0.0) and (1.0, 1.0), respectively. Other points in the regions
will have x and y coordinates between 0.0 and 1.0. Suppose you specify the starting point as (0.0, 0.0) and the
ending point as (1.0, 0.0). It defines a horizontal gradient line from the left to right. The starting and ending
points of (0.0, 0.0) and (0.0, 1.0) define a vertical gradient line from top to bottom. The starting and ending
points of (0.0, 0.0) and (0.5, 0.0) define a horizontal gradient line from left to middle of the region.

When the proportional argument is false, the coordinate values for the starting and ending points are
treated as absolute values with respect to the local coordinate system. Suppose you have a rectangle of
width 200 and height 100. The starting and ending points of (0.0, 0.0) and (200.0, 0.0) define a horizontal
gradient line from left to right. The starting and ending points of (0.0, 0.0) and (200.0, 100.0) define a
diagonal gradient line from the top left corner to the bottom right corner.

The cycleMethod argument defines how the regions outside the color gradient bounds, defined by the
starting and ending points, should be filled. Suppose you define the starting and ending points with the
proportional argument set to true as (0.0, 0.0) and (0.5, 0.0), respectively. This covers only the left half of the
region. How should the right half of the region be filled? You specify this behavior using the cycleMethod
argument. Its value is one of the enum constants defined in the CycleMethod enum:

•	 CycleMethod.NO_CYCLE

•	 CycleMethod.REFLECT

•	 CycleMethod.REPEAT

Gradient line

Starting point Ending point

A line perpendicular to
the gradient line

The point of intersection between the
gradient line and a line perpendicular to it

Figure 7-6. The details of a linear color gradient

Chapter 7 ■ playing with Colors

208

The cycle method of NO_CYCLE fills the remaining region with the terminal color. If you have defined color
a stop point only from the left to the middle of a region, the right half will be filled with the color that is defined
for the middle of the region. Suppose you define a color gradient for only the middle half of a region, leaving
the 25% at the left side and 25% at the right side undefined. The NO_CYCLE method will fill the left 25% region
with the color that is defined at the 25% distance from left and the right 25% region with the color defined at the
25% distance from right. The color for the middle 50% will be determined by the color-stop points.

The cycle method of REFLECT fills the remaining regions by reflecting the color gradient, as start-to-end
and end-to-start, from the nearest filled region. The cycle method of REPEAT repeats the color gradient to fill
the remaining region.

The stops argument defines the color-stop points along the gradient line. A color-stop point is
represented by an instance of the Stop class, which has only one constructor:

Stop(double offset, Color color)

The offset value is between 0.0 and 1.0. It defines the relative distance of the stop point along the
gradient line from the starting point. For example, an offset of 0.0 is the starting point, an offset of 1.0 is the
ending point, an offset of 0.5 is in the middle of the starting and ending points, and so forth. You define at
least two stop points with two different colors to have a color gradient. There are no limits on the number of
stop points you can define for a color gradient.

That covers the explanation for the arguments of the LinearGradient constructors. So let’s look at some
examples on how to use them.

The following snippet of code fills a rectangle with a linear color gradient, as shown in Figure 7-7:

Stop[] stops = new Stop[]{new Stop(0, Color.WHITE), new Stop(1, Color.BLACK)};
LinearGradient lg = new LinearGradient(0, 0, 1, 0, true, NO_CYCLE, stops);
Rectangle r = new Rectangle(200, 100);
r.setFill(lg);

You have two color-stop points. The stop point in the beginning is colored white and that of the end is
colored black. The starting point (0, 0) and ending point (1, 0) define a horizontal gradient from left to right.
The proportional argument is set to true, which means the coordinate values are interpreted as relative
to a unit square. The cycle method argument, which is set to NO_CYCLE, has no effect in this case as your
gradient bounds cover the entire region. In the above code, if you want to set the proportional argument
value to false, to have the same effect, you would create the LinearGradient object as follows. Note the use
of 200 as the x coordinate for the ending point to denote the end of the rectangle width:

LinearGradient lg = new LinearGradient(0, 0, 200, 0, false, NO_CYCLE, stops);

Figure 7-7. A horizontal linear color gradient with two stop points: white at starting and black at
ending point

Chapter 7 ■ playing with Colors

209

Let’s look at another example. The resulting rectangle after running the following snippet of code is
shown in Figure 7-8:

Stop[] stops = new Stop[]{new Stop(0, Color.WHITE), new Stop(1, Color.BLACK)};
LinearGradient lg = new LinearGradient(0, 0, 0.5, 0, true, NO_CYCLE, stops);
Rectangle r = new Rectangle(200, 100);
r.setFill(lg);

In this code, you have made a slight change. You defined a horizontal gradient line, which starts at the left
side of the rectangle and ends in the middle. Note the use of (0.5, 0) as the coordinates for the ending point.
This leaves the right half of the rectangle with no color gradient. The cycle method is effective in this case as
its job is to fill the unfilled regions. The color at the middle of the rectangle is black, which is defined by the
second stop point. The NO_CYCLE value uses the terminal black color to fill the right half of the rectangle.

Let’s look at a slight variant of the previous example. You change the cycle method from NO_CYCLE to
REFLECT, as shown in the following snippet of code, which results in a rectangle as shown in Figure 7-9.
Note that the right half region (the region with undefined gradient) is the reflection of the left half:

Stop[] stops = new Stop[]{new Stop(0, Color.WHITE), new Stop(1, Color.BLACK)};
LinearGradient lg = new LinearGradient(0, 0, 0.5, 0, true, REFLECT, stops);
Rectangle r = new Rectangle(200, 100);
r.setFill(lg);

Let’s make a slight change in the previous example so the ending point coordinate covers only one-tenth
of the width of the rectangle. The code is as follows, and the resulting rectangle is shown in Figure 7-10. The
right 90% of the rectangle is filled using the REFLECT cycle method by alternating end-to-start and start-to-end
color patterns:

Stop[] stops = new Stop[]{new Stop(0, Color.WHITE), new Stop(1, Color.BLACK)};
LinearGradient lg = new LinearGradient(0, 0, 0.1, 0, true, REFLECT, stops);
Rectangle r = new Rectangle(200, 100);
r.setFill(lg);

Figure 7-8. A horizontal linear color gradient with two stop points: white at starting and black at midpoint

Figure 7-9. A horizontal linear color gradient with two stop points: white at starting and black at midpoint
and REFLECT as the cycle method

Chapter 7 ■ playing with Colors

210

Now let’s look at the effect of using the REPEAT cycle method. The following snippet of code uses an
ending point at the middle of the width of the rectangle and a cycle method of REPEAT. This results in a
rectangle as shown in Figure 7-11. If you set the ending point to one-tenth of the width in this example, it will
result in a rectangle as shown in Figure 7-12.

Stop[] stops = new Stop[]{new Stop(0, Color.WHITE), new Stop(1, Color.BLACK)};
LinearGradient lg = new LinearGradient(0, 0, 0.5, 0, true, REPEAT, stops);
Rectangle r = new Rectangle(200, 100);
r.setFill(lg);

You could also define more than two stop points, as shown in the following snippet of code. It divides
the distance between the starting and the ending points on the gradient line into four segments, each by
25% of the width. The first segment (from left) will have colors between red and green, the second between
green and blue, the third between blue and orange, and the fourth between orange and yellow. The resulting
rectangle is shown in Figure 7-13. If you are reading a printed copy of the book, you may not see the colors.

Figure 7-10. A horizontal linear color gradient with two stop points: white at starting and black at one-tenth
point and REFLECT as the cycle method

Figure 7-11. A horizontal linear color gradient with two stop points: white at starting and black at midpoint
and REPEAT as the cycle method

Figure 7-12. A horizontal linear color gradient with two stop points: white at starting and black at one-tenth
point and REPEAT as the cycle method

Chapter 7 ■ playing with Colors

211

Stop[] stops = new Stop[]{new Stop(0, Color.RED),
 new Stop(0.25, Color.GREEN),
 new Stop(0.50, Color.BLUE),
 new Stop(0.75, Color.ORANGE),
 new Stop(1, Color.YELLOW)};
LinearGradient lg = new LinearGradient(0, 0, 1, 0, true, NO_CYCLE, stops);
Rectangle r = new Rectangle(200, 100);
r.setFill(lg);

You are not limited to defining only horizontal color gradients. You can define a color gradient with
a gradient line with any angle. The following snippet of code creates a gradient from the top left corner to
the bottom right corner. Note that when the proportional argument is true, (0, 0) and (1, 1) define the (x, y)
coordinates of the top left and bottom right corners of the region:

Stop[] stops = new Stop[]{new Stop(0, Color.WHITE), new Stop(1, Color.BLACK)};
LinearGradient lg = new LinearGradient(0, 0, 1, 1, true, NO_CYCLE, stops);
Rectangle r = new Rectangle(200, 100);
r.setFill(lg);

The following snippet of code defines a gradient line between (0, 0) and (0.1, 0.1) points. It uses the
REPEAT cycle method to fill the rest of the region. The resulting rectangle is shown in Figure 7-14.

Stop[] stops = new Stop[]{new Stop(0, Color.WHITE), new Stop(1, Color.BLACK)};
LinearGradient lg = new LinearGradient(0, 0, 0.1, 0.1, true, REPEAT, stops);
Rectangle r = new Rectangle(200, 100);
r.setFill(lg);

Figure 7-13. A horizontal linear color gradient with five stop points

Figure 7-14. An angled linear color gradient with two stop points: white at the starting point (0, 0) and black
at the ending point (0.1, 0.1) with REPEAT as the cycle method

Chapter 7 ■ playing with Colors

212

Defining Linear Color Gradients Using a String Format
You can also specify a linear color gradient in string format using the static method valueOf(String
colorString) of the LinearGradient class. Typically, the string format is used to specify a linear color
gradient in a CSS file. It has the following syntax:

linear-gradient([gradient-line], [cycle-method], color-stops-list)

The arguments within square brackets ([and]) are optional. If you do not specify an optional argument,
the comma that follows also needs to be excluded. The default value for the gradient-line argument is
“to bottom.” The default value for the cycle-method argument is NO_CYCLE. You can specify the gradient
line in two ways:

Using two points—the starting point and the ending point•	

Using a side or s corner•	

The syntax for using two points for the gradient line is:

from point-1 to point-2

The coordinates of the points may be specified in percentage of the area or in actual measurement in
pixels. For a 200px wide by 100px tall rectangle, a horizontal gradient line may be specified in the following
two ways:

from 0% 0% to 100% 0%

or

from 0px 0px to 200px 0px

The syntax for using a side or a corner is:

to side-or-corner

The side-or-corner value may be top, left, bottom, right, top left, bottom left, bottom right, or top right.
When you define the gradient line using a side or a corner, you specify only the ending point. The starting
point is inferred. For example, the value “to top” infers the starting point as “from bottom”; the value
“to bottom right” infers the starting point as “from top left,” and so forth. If the gradient-line value is missing,
it defaults to “to bottom.”

The valid values for the cycle-method are repeat and reflect. If it is missing, it defaults to NO_CYCLE.
It is a runtime error to specify the value of the cycle-method argument as NO_CYCLE. If you want it to be
NO_CYCLE, simply omit the cycle-method argument from the syntax.

The color-stops-list argument is a list of color stops. A color stop consists of a web color name and,
optionally, a position in pixels or percentage from the starting point. Examples of lists of color stops are:

•	 white, black

•	 white 0%, black 100%

•	 white 0%, yellow 50%, blue 100%

•	 white 0px, yellow 100px, red 200px

Chapter 7 ■ playing with Colors

213

When you do not specify positions for the first and the last color stops, the positions for the first one
defaults to 0% and the second one to 100%. So, the color stop lists "white, black" and "white 0%, black
100%" are fundamentally the same.

If you do not specify positions for any of the color stops in the list, they are assigned positions in such a
way that they are evenly placed between the starting point and the ending point. The following two lists of
color stops are the same:

•	 white, yellow, black, red, green

•	 white 0%, yellow 25%, black 50%, red 75%, green 100%

You can specify positions for some color stops in a list and not for others. In this case, the color stops
without positions are evenly spaced between the preceding and following color stops with positions. The
following two lists of color stops are the same:

•	 white, yellow, black 60%, red, green

•	 white 0%, yellow 30%, black 50%, red 80%, green 100%

If a color stop in a list has its position set less than the position specified for any previous color stops,
its position is set equal to the maximum position set for the previous color stops. The following list of color
stops sets 10% for the third color stop, which is less than the position of the second color stop (50%):

white, yellow 50%, black 10%, green

This will be changed at runtime to use 50% for the third color stop as follows:

white 0%, yellow 50%, black 50%, green 100%

Now let’s look at some examples. The following string will create a linear gradient from top to bottom
with NO_CYCLE as the cycle method. Colors are white and black at the top and bottom, respectively:

linear-gradient(white, black)

This value is the same as

linear-gradient(to bottom, white, black)

The following snippet of code will create a rectangle as shown in Figure 7-15. It defines a horizontal
color gradient with the ending point midway through the width of the rectangle. It uses repeat as the
cycle method:

String value = "from 0px 0px to 100px 0px, repeat, white 0%, black 100%";
LinearGradient lg2 = LinearGradient.valueOf(value);
Rectangle r2 = new Rectangle(200, 100);
r2.setFill(lg2);

Chapter 7 ■ playing with Colors

214

The following string value for a linear color gradient will create a diagonal gradient from the top left
corner to the bottom right corner filling the area with white and black colors:

"to bottom right, white 0%, black 100%"

Understanding Radial Color Gradient
In a radial color gradient, colors start at a single point, transitioning smoothly outward in a circular or
elliptical shape. The shape, let’s say a circle, is defined by a center point and a radius. The starting point of
colors is known as the focus point of the gradient. The colors change along a line, starting at the focus point
of the gradient, in all directions until the periphery of the shape is reached. A radial color gradient is defined
using three components:

A gradient shape (the center and radius of the of the gradient circle)•	

A focus point that has the first color of the gradient•	

Color stops•	

The focus point of the gradient and the center point of the gradient shape may be different. Figure 7-16
shows the components of a radial color gradient. The figure shows two radial gradients: In the left side, the
focus point and the center point are located at the same place; in the right side, the focus point is located
horizontally right to the center point of the shape.

Periphery of the shape

Gradient focus point
and

Center point of the
shape

Radius of the gradient shape

Center point of the
shape

Gradient focus point

Figure 7-16. Elements defining a radial color gradient

Figure 7-15. Creating a linear color gradient using the string format

The focus point is defined in terms of a focus angle and a focus distance, as shown in Figure 7-17. The
focus angle is the angle between a horizontal line passing through the center point of the shape and a line
joining the center point and the focus point. The focus distance is the distance between the center point of
the shape and the focus point of the gradient.

Chapter 7 ■ playing with Colors

215

The list of color stops determines the value of the color at a point inside the gradient shape. The focus
point defines the 0% position of the color stops. The points on the periphery of the circle define the 100%
position for the color stops. How would you determine the color at a point inside the gradient circle? You
would draw a line passing through the point and the focus point. The color at the point will be interpolated
using the nearest color stops on each side of the point on the line.

Using the RadialGradient Class
An instance of the RadialGradient class represents a radial color gradient. The class contains the following
two constructors that differ in the types of their last argument:

•	 RadialGradient(double focusAngle, double focusDistance, double centerX,
double centerY, double radius, boolean proportional, CycleMethod
cycleMethod, List<Stop> stops)

•	 RadialGradient(double focusAngle, double focusDistance, double centerX,
double centerY, double radius, boolean proportional, CycleMethod
cycleMethod, Stop... stops)

The focusAngle argument defines the focus angle for the focus point. A positive focus angle is
measured clockwise from the horizontal line passing through the center point and the line connecting the
center point and the focus point. A negative value is measured counterclockwise.

The focusDistance argument is specified in terms of the percentage of the radius of the circle. The value
is clamped between -1 and 1. That is, the focus point is always inside the gradient circle. If the focus distance
sets the focus point outside the periphery of the gradient circle, the focus point that is used is the point of
intersection of the periphery of the circle and the line connecting the center point and the set focus point.

The focus angle and the focus distance can have positive and negative values. Figure 7-18 illustrates
this: it shows four focus points located at 80% distance, positive and negative, from the center point and at a
60-degree angle, positive and negative.

A horizontal line passing
through the center point

Focus angle

Center point

Focus point
Focus distance

Figure 7-17. Defining a focus point in a radial color gradient

Focus angle = 60 degree

Focus angle = -60 degree

(60 degree, 0.8)

(60 degree, -0.8) (-60 degree, 0.8)

(-60 degree, -0.8)

Figure 7-18. Locating a focus point with its focus angle and focus distance

Chapter 7 ■ playing with Colors

216

The centerX and centerY arguments define the x and y coordinates of the center point, respectively,
and the radius argument is the radius of the gradient circle. These arguments can be specified relative to a
unit square (between 0.0 and 1.0) or in pixels.

The proportional argument affects the way the values for the coordinates of the center point and
radius are treated. If it is true, they are treated relative to a unit square. Otherwise, they are treated as
absolute values in the local coordinate system. For more details on the use of the proportional argument,
please refer to the section “Using the LinearGradient Class” earlier in this chapter.

Tip ■ JavaFX lets you create a radial gradient of a circular shape. however, when the region to be filled
by a radial color gradient has a nonsquare bounding box (e.g., a rectangle) and you specify the radius of the
gradient circle relative to the size of the shape to be filled, JavaFX will use an elliptical radial color gradient.
this is not documented in the api documentation of the RadialGradient class. i will present an example of
this kind shortly.

The cycleMethod and stops arguments have the same meaning as described earlier in the section on
using the LinearGradient class. In a radial color gradient, stops are defined along lines connecting the focus
point and points on the periphery of the gradient circle. The focus point defines the 0% stop point and the
points on the circle periphery define 100% stop points.

Let’s look at some examples of using the RadialGradient class. The following snippet of code produces
a radial color gradient for a circle as shown in Figure 7-19:

Stop[] stops = new Stop[]{new Stop(0, Color.WHITE), new Stop(1, Color.BLACK)};
RadialGradient rg = new RadialGradient(0, 0, 0.5, 0.5, 0.5, true, NO_CYCLE, stops);
Circle c = new Circle(50, 50, 50);
c.setFill(rg);

Figure 7-19. A radial color gradient with the same center point and focus point

The zero value for the focus angle and focus distance locates the focus point at the center of the gradient
circle. A true proportional argument interprets the center point coordinates (0.5, 0.5) as (25px, 25px) for
the 50 by 50 rectangular bounds of the circle. The radius value of 0.5 is interpreted as 25px, and that places
the center of the gradient circle at the same location as the center of the circle to fill. The cycle method of
NO_CYCLE has no effect in this case as the gradient circle fills the entire circular area. The color stop at the
focus point is white and at the periphery of the gradient circle it is black.

Chapter 7 ■ playing with Colors

217

The following snippet of code specifies the radius of the gradient circle as 0.2 of the circle to be filled.
This means that it will use a gradient circle of 10px (0.2 multiplied by 50px, which is the radius of the circle to
be filled). The resulting circle is shown in Figure 7-20. The region of the circle beyond the 0.2 of its radius has
been filled with the color black, as the cycle method was specified as NO_CYCLE:

Stop[] stops = new Stop[]{new Stop(0, Color.WHITE), new Stop(1, Color.BLACK)};
RadialGradient rg = new RadialGradient(0, 0, 0.5, 0.5, 0.2, true, NO_CYCLE, stops);
Circle c = new Circle(50, 50, 50);
c.setFill(rg);

Now let’s use the cycle method of REPEAT in the above snippet of code. The resulting circle is shown in
Figure 7-21.

Stop[] stops = new Stop[]{new Stop(0, Color.WHITE), new Stop(1, Color.BLACK)};
RadialGradient rg = new RadialGradient(0, 0, 0.5, 0.5, 0.2, true, REPEAT, stops);
Circle c = new Circle(50, 50, 50);
c.setFill(rg);

Figure 7-20. A radial color gradient with the same center point and focus point having a gradient circle with
a radius of 0.20

Figure 7-21. A radial color gradient with the same center point and focus point, a gradient circle with a
radius of 0.20, and the cycle method as REPEAT

Chapter 7 ■ playing with Colors

218

So now let’s use a different center point and focus point. Use a 60-degree focus angle and 0.2 times the
radius as the focus distance as in the following code. The resulting circle is shown in Figure 7-22. Notice the
3D effect you get by moving the focus point away from the center point.

Stop[] stops = new Stop[]{new Stop(0, Color.WHITE), new Stop(1, Color.BLACK)};
RadialGradient rg = new RadialGradient(60, 0.2, 0.5, 0.5, 0.2, true, REPEAT, stops);
Circle c = new Circle(50, 50, 50);
c.setFill(rg);

Now let’s fill a rectangular region (nonsquare) with a radial color gradient. The code for this effect
follows and the resulting rectangle is shown in Figure 7-23. Notice the elliptical gradient shape used by
JavaFX. You have specified the radius of the gradient as 0.5 and the proportional argument as true. Since
your rectangle is 200px wide and 100px tall, it results in two radii: one along the x-axis and one along the
y-axis, giving rise to an ellipse. The radii along the x and y axes are 100px and 50px, respectively.

Stop[] stops = new Stop[]{new Stop(0, Color.WHITE), new Stop(1, Color.BLACK)};
RadialGradient rg = new RadialGradient(0, 0, 0.5, 0.5, 0.5, true, REPEAT, stops);
Rectangle r = new Rectangle(200, 100);
r.setFill(rg);

If you want a rectangle to be filled with a color gradient of a circular shape rather than elliptical shape,
you should specify the proportional argument as false and the radius value will be treated in pixels.
The following snippet of code produces a rectangle, as shown in Figure 7-24:

Stop[] stops = new Stop[]{new Stop(0, Color.WHITE), new Stop(1, Color.BLACK)};
RadialGradient rg = new RadialGradient(0, 0, 100, 50, 50, false, REPEAT, stops);
Rectangle r = new Rectangle(200, 100);
r.setFill(rg);

Figure 7-23. A rectangle filled with a radial color gradient with a proportional argument value of true

Figure 7-22. A radial color gradient using different center and focus points

Chapter 7 ■ playing with Colors

219

How can you fill a triangle or any other shape with a radial color gradient? The shape of a radial
gradient, circular or elliptical, depends on the several conditions. Table 7-1 shows the combinations of the
criteria that will determine the shape of a radial color gradient.

I should emphasize here that, in the above discussion, I am talking about the bounds of the regions to
be filled, not the region. For example, suppose you want to fill a triangle with a radial color gradient. The
bounds of the triangle will be determined by its width and height. If the triangle has the same width and
height, its bounds take a square region. Otherwise, its bounds take a rectangular region.

The following snippet of code fills a triangle with vertices (0.0, 0.0), (0.0, 100.0), and (100.0, 100.0).
Notice that the bounding box for this triangle is a 100px by 100px square. The resulting triangle is the left one
shown in Figure 7-25.

Stop[] stops = new Stop[]{new Stop(0, Color.WHITE), new Stop(1, Color.BLACK)};
RadialGradient rg = new RadialGradient(0, 0, 0.5, 0.5, 0.2, true, REPEAT, stops);
Polygon triangle = new Polygon(0.0, 0.0, 0.0, 100.0, 100.0, 100.0);
triangle.setFill(rg);

Figure 7-24. A rectangle filled with a radial color gradient with a proportional argument value of false

Table 7-1. Criteria Used to Determine the Shape of a Radial Color Gradient

Proportional Argument Bounding Box for the Filled Region Gradient Shape

true Square Circle

true Nonsquare Ellipse

false Square Circle

false Nonsquare Circle

Figure 7-25. Filling triangles with radial color gradients of circular and elliptical shapes

Chapter 7 ■ playing with Colors

220

The triangle in the right side of Figure 7-25 uses a rectangular bounding box of 200px by 100px, which is
produced by the following snippet of code. Notice that the gradient uses an elliptical shape:

Polygon triangle = new Polygon(0.0, 0.0, 0.0, 100.0, 200.0, 100.0);

Finally, let’s look at an example of using multiple color stops with the focus point on the periphery of
the circle, as shown in Figure 7-26. The code to produce the effect is as follows:

Stop[] stops = new Stop[]{new Stop(0, Color.WHITE),
 new Stop(0.40, Color.GRAY),
 new Stop(0.60, Color.TAN),
 new Stop(1, Color.BLACK)};
RadialGradient rg = new RadialGradient(-30, 1.0, 0.5, 0.5, 0.5, true, REPEAT, stops);
Circle c = new Circle(50, 50, 50);
c.setFill(rg);

Defining Radial Color Gradients in String Format
You can also specify a radial color gradient in string format by using the static method valueOf(String
colorString) of the RadialGradient class. Typically, the string format is used to specify a radial color
gradient in a CSS file. It has the following syntax:

radial-gradient([focus-angle], [focus-distance], [center], radius, [cycle-method],
color-stops-list)

The arguments within square brackets are optional. If you do not specify an optional argument, the
comma that follows needs to be excluded as well.

The default value for focus-angle and focus-distance is 0. You can specify the focus angle in degrees,
radians, gradians, and turns. The focus distance is specified as a percentage of the radius. Examples are as
follows:

•	 focus-angle 45.0deg

•	 focus-angle 0.5rad

•	 focus-angle 30.0grad

•	 focus-angle 0.125turn

•	 focus-distance 50%

Figure 7-26. Using multiple color stops in a radial color gradient

Chapter 7 ■ playing with Colors

221

The center and radius arguments are specified in a percentage relative to the region being filled or
in absolute pixels. You cannot specify one argument in a percentage and the other in pixels. Both must be
specified in the same unit. The default value for center is (0, 0) in the unit. Examples are as follows:

•	 center 50px 50px, radius 50px

•	 center 50% 50%, radius 50%

The valid values for the cycle-method argument are repeat and reflect. If this is not specified, it
defaults to NO_CYCLE.

A list of color stops is specified using colors and their positions. Positions are specified as a percentage
of distance on a line from the focus point to the periphery of the shape of the gradient. Please refer to the
earlier discussion on specifying the color stops in a linear color gradient for more details. Examples are as
follows:

•	 white, black

•	 white 0%, black 100%

•	 red, green, blue

•	 red 0%, green 80%, blue 100%

The following snippet of code will produce a circle, as shown in Figure 7-27:

String colorValue = "radial-gradient(focus-angle 45deg, focus-distance 50%, " +
 "center 50% 50%, radius 50%, white 0%, black 100%)";
RadialGradient rg = RadialGradient.valueOf(colorValue);
Circle c = new Circle(50, 50, 50);
c.setFill(rg);

Summary
In JavaFX, you can specify text color and background color for regions. You can specify a color as a uniform
color, an image pattern, or a color gradient. A uniform color uses the same color to fill the entire region. An
image pattern lets you fill a region with an image pattern. A color gradient defines a color pattern in which
the color varies along a straight line from one color to another. The variation in a color gradient can be linear
or radial. All classes are included in the javafx.scene.paint package.

Figure 7-27. Using string format for specifying a radial color gradient

Chapter 7 ■ playing with Colors

222

The Paint class is an abstract class and it is the base class for other color classes. A uniform color, an
image pattern, a linear color gradient, and a radial color gradient are instances of the Color, ImagePattern,
LinearGradient, and RadialGradient classes, respectively. The Stop class and the CycleMethod enum are
used when working with color gradients. You can specify colors using instances of one of these classes or in
string forms. When you use a CSS to style nodes, you specify colors using string forms.

An image pattern lets you fill a shape with an image. The image may fill the entire shape or use a
tiling pattern.

A linear color gradient is defined using an axis known as a gradient line. Each point on the gradient
line is of a different color. All points on a line that is perpendicular to the gradient line have the same color,
which is the color of the point of intersection between the two lines. The gradient line is defined by a starting
point and an ending point. Colors along the gradient line are defined at some points on the gradient line,
which are known as stop-color points (or stop points). Colors between two stop points are computed using
interpolation. The gradient line has a direction, which is from the starting point to the ending point. All points
on a line perpendicular to the gradient line that passes through a stop point will have the color of the stop
point. For example, suppose you have defined a stop point P1 with a color C1. If you draw a line perpendicular
to the gradient line passing through the point P1, all points on that line will have the color C1.

In a radial color gradient, colors start at a single point, transitioning smoothly outward in a circular or
elliptical shape. The shape is defined by a center point and a radius. The starting point of colors is known as
the focus point of the gradient. The colors change along a line, starting at the focus point of the gradient, in
all directions until the periphery of the shape is reached.

The next chapter will show you how to style nodes in a scene graph using CSS.

223

Chapter 8

Styling Nodes

In this chapter, you will learn:

What a cascading style sheets is•	

The difference between styles, skins, and themes•	

Naming conventions of cascading style sheets styles in JavaFX•	

How to add style sheets to a scene•	

How to use and override the default style sheet in a JavaFX application•	

How to add inline styles for a node•	

About the different types of cascading style sheet properties•	

About cascading style sheets style selectors•	

How to look up nodes in a scene graph using cascading style sheets selectors•	

How to use compiled style sheets•	

What Is a Cascading Style Sheet?
A cascading style sheet (CSS) is a language used to describe the presentation (the look or the style) of UI
elements in a GUI application. CSS was primarily developed for use in web pages for styling HTML elements.
It allows for the separation of the presentation from the content and behavior. In a typical web page, the
content and presentation are defined using HTML and CSS, respectively.

JavaFX allows you to define the look (or the style) of JavaFX applications using CSS. You can define UI
elements using JavaFX class libraries or FXML and use CSS to define their look.

CSS provides the syntax to write rules to set the visual properties. A rule consists of a selector and a set
of property-value pairs. A selector is a string that identifies the UI elements to which the rules will be applied.
A property-value pair consists of a property name and its corresponding value separated by a colon (:). Two
property-value pairs are separated by a semicolon (;). The set of property-value pairs is enclosed within curly
braces ({ }) preceded by the selector. An example of a rule in CSS is as follows:

.button {
 -fx-background-color: red;
 -fx-text-fill: white;
}

Chapter 8 ■ Styling nodeS

224

Here, .button is a selector, which specifies that the rule will apply to all buttons; -fx-background-color
and -fx-text-fill are property names with their values set to red and white, respectively. When the above
rule is applied, all buttons will have the red background color and white text color.

Tip ■ Using CSS in JavaFX is similar to using CSS with htMl. if you have worked with CSS and htMl before,
the information in this chapter will sound familiar. prior experience with CSS is not necessary to understand
how to use CSS in JavaFX. this chapter covers all of the necessary material to enable you to use CSS in JavaFX.

What are Styles, Skins, and Themes?
A CSS rule is also known as a style. A collection of CSS rules is known as a style sheet. Styles, skins, and themes
are three related, and highly confused, concepts.

Styles provide a mechanism to separate the presentation and content of UI elements. They also facilitate
grouping of visual properties and their values, so they can be shared by multiple UI elements. JavaFX lets
you create styles using JavaFX CSS.

Skins are collections of application-specific styles, which define the appearance of an application.
Skinning is the process of changing the appearance of an application (or the skin) on the fly. JavaFX does not
provide a specific mechanism for skinning. However, using the JavaFX CSS and JavaFX API, available for the
Scene class and other UI-related classes, you can provide skinning for your JavaFX application easily.

Themes are visual characteristics of an operating system that are reflected in the appearance of UI
elements of all applications. For example, changing the theme on the Windows operating system changes
the appearance of UI elements in all applications that are running. To contrast skins and themes, skins are
application specific, whereas themes are operating system specific. It is typical to base skins on themes.
That is, when the current theme is changed, you would change the skin of an application to match the
theme. JavaFX has no direct support for themes.

A Quick Example
Let’s look at a simple, though complete, example of using style sheets in JavaFX. You will set the background color
and text color of all buttons to red and white, respectively. The code for the styles is shown in Listing 8-1.

Listing 8-1. The Content of the File buttonstyles.css

.button {
 -fx-background-color: red;
 -fx-text-fill: white;
}

Save the content of Listing 8-1 in a buttonstyles.css file under the resources\css directory. You can
place the file in any other directory; however, make sure that you change the file path accordingly. Finally,
place the resources\css directory in the application CLASSPATH.

A scene contains an ObservableList of string URLs of styles sheets. You can get the reference of the
ObservableList using the getStylesheets() method of the Scene class. The following snippet of code adds
the URL for the buttonstyles.css style sheet to the scene:

Scene scene;
...
scene.getStylesheets().add("resources/css/buttonstyles.css");

Chapter 8 ■ Styling nodeS

225

Listing 8-2 contains the complete program, which shows three buttons with a red background and
white text. If you get the following warning message and do not see the buttons in red background with white
text, it indicates that you have not placed the resources\css directory in the CLASSPATH.

WARNING: com.sun.javafx.css.StyleManager loadStylesheetUnPrivileged Resource
"resources/css/buttonstyles.css" not found.

If one of the CLASSPATH entries is C:\abc\xyz, you need to place the buttonstyles.css file under the

C:\abc\xyz\resources\css directory.

Listing 8-2. Using a Style Sheet to Change the Background and Text Colors for Buttons

// ButtonStyleTest.java
package com.jdojo.style;

import javafx.application.Application;
import javafx.scene.Scene;
import javafx.scene.control.Button;
import javafx.scene.layout.HBox;
import javafx.stage.Stage;

public class ButtonStyleTest extends Application {
 public static void main(String[] args) {
 Application.launch(args);
 }

 @Override
 public void start(Stage stage) {
 Button yesBtn = new Button("Yes");
 Button noBtn = new Button("No");
 Button cancelBtn = new Button("Cancel");

 HBox root = new HBox();
 root.getChildren().addAll(yesBtn, noBtn, cancelBtn);

 Scene scene = new Scene(root);

 // Add a style sheet to the scene
 scene.getStylesheets().add("resources/css/buttonstyles.css");

 stage.setScene(scene);
 stage.setTitle("Styling Buttons");
 stage.show();
 }
}

Chapter 8 ■ Styling nodeS

226

Naming Conventions in JavaFX CSS
JavaFX uses slightly different naming conventions for the CSS style classes and properties. CSS style class
names are based on the simple names of the JavaFX classes representing the node in a scene graph. All style
class names are lowercased. For example, the style class name is button for the Button class. If the class
name for the JavaFX node consists of multiple words, for example, TextField, a hyphen is inserted between
two words to get the style class name. For example, the style classes for the TextField and CheckBox classes
are text-field and check-box, respectively.

Tip ■ it is important to understand the difference between a JavaFX class and a CSS style class. a JavaFX
class is a Java class, for example, javafx.scene.control.Button. a CSS style class is used as a selector in
a style sheet, for example, button in listing 8-1.

Property names in JavaFX styles start with -fx-. For example, the property name font-size in normal
CSS styles becomes -fx-font-size in JavaFX CSS style. JavaFX uses a convention to map the style
property names to the instance variables. It takes an instance variable; it inserts a hyphen between two
words; if the instance variable consists of multiple words, it converts the name to the lowercase and
prefixes it with -fx-. For example, for an instance variable named textAlignment, the style property
name would be -fx-text-alignment.

Adding Style Sheets
You can add multiple style sheets to a JavaFX application. Style sheets are added to a scene or parents.
Scene and Parent classes maintain an observable list of string URLs linking to style sheets. Use the
getStylesheets() method in the Scene and Parent classes to get the reference of the observable list and
add additional URLs to the list. The following code would accomplish this:

// Add two style sheets, ss1.css and ss2.css to a scene
Scene scene = ...
scene.getStylesheets().addAll("resources/css/ss1.css", "resources/css/ss2.css");

// Add a style sheet, vbox.css, to a VBox (a Parent)
VBox root = new VBox();
root.getStylesheets().add("vbox.css");

How are the string URLs for a style sheet resolved? You can specify a style sheet URL in three forms:

A relative URL, for example, •	 "resources/css/ss1.css"

An absolute URL with no scheme or authority, for example, •	 "/resources/css/ss1.css"

An absolute URL, for example, •	 "http://jdojo.com/resources/css/ss1.css" and
"file:/C:/css/ss2.css"

The first two types of URLs are resolved the same way. They are resolved relative to the base URL of
the ClassLoader of the concrete class that extends the Application class. This needs a little explanation.
Suppose you have a com.jdojo.style.FXApp class, which extends the Application class and it is the main
application class for your JavaFX application. To resolve the style sheets URLs correctly, you need to place
your style sheet files in the same directory that contains the com/jdojo/style/FXApp.class file.

http://jdojo.com/resources/css/ss1.css

Chapter 8 ■ Styling nodeS

227

If you have problems accessing your style sheets using the above technique, you can use the absolute
URLs. You can also use class’s getResource() method or the ClassLoader of a class to get the URL of your
style sheet. The following snippet of code uses the base URL of the ClassLoader of the Test class to resolve
the relative URL of the style sheet:

Scene scene;
...
String urlString = Test.class.getClassLoader()
 .getResource("resources/css/hjfx.css")
 .toExternalForm();
scene.getStylesheets().add(urlString);

Default Style Sheet
In previous chapters you developed JavaFX applications with UI elements without the use of any style sheets.
However, JavaFX runtime was always using a style sheet behind the scenes. The style sheet is named
Modena.css, which is known as the default style sheet or the user-agent style sheet. The default look that you
get for a JavaFX application is defined in the default style sheet.

The modena.css file is packaged in the JavaFX runtime jfxrt.jar file. If you want to know the details
of how styles are set for specific nodes, you need to look at the modena.css file. You can extract this file using
the following command:

jar -xf jfxrt.jar com/sun/javafx/scene/control/skin/modena/modena.css

This command places the modena.css file in the com\sun\javafx\scene\control\skin\modena
directory under the current directory. Note that the jar command is in the JAVA_HOME\bin directory.

Prior to JavaFX 8, Caspian was the default style sheet. Caspian is defined in the jfxrt.jar file in the
file named com/sun/javafx/scene/control/skin/caspian/caspian.css. In JavaFX 8, Modena is the
default style sheet. The Application class defines two String constants named STYLESHEET_CASPIAN and
STYLESHEET_MODENA to represent the two themes. Use the following static methods of the Application class
to set and get the application-wide default style sheet:

•	 public static void setUserAgentStylesheet(String url)

•	 public static String getUserAgentStylesheet()

Use the setUserAgentStylesheet(String url) method to set an application–wide default. A value of
null will restore the platform default style sheet, for example, Modena on JavaFX 8 and Caspian on the prior
versions. The following statement sets Caspian as the default style sheet:

Application.setUserAgentStylesheet(Application.STYLESHEET_CASPIAN);

Use the getUserAgentStylesheet() method to return the current default style sheet for the application.
If one of the built-in style sheet is the default, it returns null.

Chapter 8 ■ Styling nodeS

228

Adding Inline Styles
CSS styles for a node in a scene graph may come from style sheets or an inline style. In the previous section,
you learned how to add style sheets to the Scene and Parent objects. In this section, you will learn how to
specify an inline style for a node.

The Node class has a style property that is of StringProperty type. The style property holds the inline
style for a node. You can use the setStyle(String inlineStyle) and getStyle() methods to set and get
the inline style of a node.

There is a difference between a style in a style sheet and an inline style. A style in a style sheet consists
of a selector and a set of property-value pairs, and it may affect zero or more nodes in a scene graph. The
number of nodes affected by a style in a style sheet depends on the number of nodes that match the selector
of the style. An inline style does not contain a selector. It consists of only set property-value pairs. An inline
style affects the node on which it is set. The following snippet of code uses an inline style for a button to
display its text in red and bold:

Button yesBtn = new Button("Yes");
yesBtn.setStyle("-fx-text-fill: red; -fx-font-weight: bold;");

Listing 8-3 displays six buttons. It uses two VBox instances to hold three buttons. It places both VBox
instances into an HBox. Inline styles are used to set a 4.0px blue border for both VBox instances. The inline
style for the HBox sets a 10.0px navy border. The resulting screen is shown in Figure 8-1.

Listing 8-3. Using Inline Styles

// InlineStyles.java
package com.jdojo.style;

import javafx.application.Application;
import javafx.geometry.Insets;
import javafx.scene.Scene;
import javafx.scene.control.Button;
import javafx.scene.layout.HBox;
import javafx.scene.layout.VBox;
import javafx.stage.Stage;

public class InlineStyles extends Application {
 public static void main(String[] args) {
 Application.launch(args);
 }

 @Override
 public void start(Stage stage) {
 Button yesBtn = new Button("Yes");
 Button noBtn = new Button("No");
 Button cancelBtn = new Button("Cancel");

 // Add an inline style to the Yes button
 yesBtn.setStyle("-fx-text-fill: red; -fx-font-weight: bold;");

Chapter 8 ■ Styling nodeS

229

 Button openBtn = new Button("Open");
 Button saveBtn = new Button("Save");
 Button closeBtn = new Button("Close");

 VBox vb1 = new VBox();
 vb1.setPadding(new Insets(10, 10, 10, 10));
 vb1.getChildren().addAll(yesBtn, noBtn, cancelBtn);

 VBox vb2 = new VBox();
 vb2.setPadding(new Insets(10, 10, 10, 10));
 vb2.getChildren().addAll(openBtn, saveBtn, closeBtn);

 // Add a border to VBoxes using an inline style
 vb1.setStyle("-fx-border-width: 4.0; -fx-border-color: blue;");
 vb2.setStyle("-fx-border-width: 4.0; -fx-border-color: blue;");

 HBox root = new HBox();
 root.setSpacing(20);
 root.setPadding(new Insets(10, 10, 10, 10));
 root.getChildren().addAll(vb1, vb2);

 // Add a border to the HBox using an inline style
 root.setStyle("-fx-border-width: 10.0; -fx-border-color: navy;");

 Scene scene = new Scene(root);
 stage.setScene(scene);
 stage.setTitle("Using Inline Styles");
 stage.show();
 }
}

Figure 8-1. A button, two VBox instances, and an HBox using inline styles

Chapter 8 ■ Styling nodeS

230

Priorities of Styles for a Node
In a JavaFX application, it is possible, and very common, for the visual properties of nodes to come from
multiple sources. For example, the font size of a button can be set by the JavaFX runtime, style sheets
can be added to the parent and the scene of the button, an inline style can be set for the button, and
programmatically can be added using the setFont(Font f) method. If the value for the font size of a button
is available from multiple sources, JavaFX uses a rule to decide the source whose value is to be used.

Consider the following snippet of code along with the stylespriorities.css style sheet whose content
is shown in Listing 8-4:

Button yesBtn = new Button("Yes");
yesBtn.setStyle("-fx-font-size: 16px");
yesBtn.setFont(new Font(10));

Scene scene = new Scene(yesBtn);
scene.getStylesheets().addAll("resources/css/stylespriorities.css");
...

Listing 8-4. The Content of stylespriorities.css File

.button {
 -fx-font-size: 24px;
 -fx-font-weight: bold;
}

What will be the font size of the button? Will it be the default font size set by the JavaFX runtime, 24px,
declared in the stylespriorities.css, 16px set by the inline style, or 10px set by the program using the
setFont() method? The correct answer is 16px, which is set by the inline style.

The JavaFX runtime uses the following priority rules to set the visual properties of a node. The source
with a higher priority that has a value for a property is used:

Inline style (the highest priority)•	

Parent style sheets•	

Scene style sheets•	

Values set in the code using JavaFX API•	

User agent style sheets (the lowest priority)•	

The style sheet added to the parent of a node is given higher priority than the style sheets added to the
scene. This enables developers to have custom styles for different branches of the scene graph. For example,
you can use two style sheets that set properties of buttons differently: one for buttons in the scene and one
for buttons in any HBox. Buttons in an HBox will use styles from its parent, whereas all other buttons will use
styles from the scene.

The values set using the JavaFX API, for example, setFont() method, have the second lowest priority.

Note ■ it is a common mistake to set the same properties of a node in a style sheet and code using the
Java api. in that case, the styles in the style sheet win and developers spend countless hours trying to find the
reasons why the properties set in the code are not taking effect.

Chapter 8 ■ Styling nodeS

231

The lowest priority is given to style sheets used by the user agent. What is a user agent? A user agent, in
general, is a program that interprets a document and applies style sheets to the document to format, print, or
read. For example, a web browser is a user agent that applies default formatting to HTML documents. In our
case, the user agent is the JavaFX runtime, which uses the caspian.css style sheet for providing the default
look for all UI nodes.

Tip ■ the default font size that is inherited by nodes is determined by the system font size. not all nodes
use fonts. Fonts are used by only those nodes that display text, for example, a Button or a CheckBox.
to experiment with the default font, you can change the system font and check it in code using the getFont()
method of those nodes.

Listing 8-5 demonstrates the priority rules for choosing a style from multiple sources. It adds the style
sheet, as shown in Listing 8-4, to the scene. The resulting screen is shown in Figure 8-2.

Listing 8-5. Testing Priorities of Styles for a Node

// StylesPriorities.java
package com.jdojo.style;

import javafx.application.Application;
import javafx.scene.Scene;
import javafx.scene.control.Button;
import javafx.scene.layout.HBox;
import javafx.scene.text.Font;
import javafx.stage.Stage;

public class StylesPriorities extends Application {
 public static void main(String[] args) {
 Application.launch(args);
 }

 @Override
 public void start(Stage stage) {
 Button yesBtn = new Button("Yes");
 Button noBtn = new Button("No");
 Button cancelBtn = new Button("Cancel");

 // Change the font size for the Yes button
 // using two methods: inline style and JavaFX API
 yesBtn.setStyle("-fx-font-size: 16px");
 yesBtn.setFont(new Font(10));

 // Change the font size for the No button using the JavaFX API
 noBtn.setFont(new Font(8));

 HBox root = new HBox();
 root.setSpacing(10);
 root.getChildren().addAll(yesBtn, noBtn, cancelBtn);

Chapter 8 ■ Styling nodeS

232

 Scene scene = new Scene(root);

 // Add a style sheet to the scene
 scene.getStylesheets().addAll("resources/css/stylespriorities.css");

 stage.setScene(scene);
 stage.setTitle("Styles Priorities");
 stage.show();
 }
}

Figure 8-2. Nodes using styles from different sources

The font size value for the Yes button comes from four sources:

Inline style (16px)•	

Style sheet added to the scene (24px)•	

JavaFX API (10px)•	

Default font size set by the user agent (the JavaFX runtime)•	

The Yes button gets a 16px font size from its inline style, because that has the highest priority. The font
size value for the No button comes from three sources:

Style sheet added to the scene (24px)•	

JavaFX API (10px)•	

Default font size set by the user agent (the JavaFX runtime)•	

The No button gets a 24px font size from the style sheet added to the scene because that has the highest
priority among the three available sources.

The font size value for the Cancel button comes from two sources:

Style sheet added to the scene (24px)•	

Default font size set by the user agent (the JavaFX runtime)•	

The Cancel button gets a 24px font size from the style sheet added to the scene, because that has the
highest priority between the two available sources. The text for all buttons are shown in bold, because you
have used the "-fx-font-weight: bold;" style in the style sheet and this property value is not overridden by
any other sources.

Chapter 8 ■ Styling nodeS

233

At this point, several questions may arise in your mind:

How do you let the •	 Cancel button use the default font size that is set by the
JavaFX runtime?

How do you use one font size (or any other properties) for buttons if they are •	
inside an HBox and use another font size if they are inside a VBox?

You can achieve all these and several other effects using appropriate selectors for a style declared
in a style sheet. I will discuss different types of selectors supported by JavaFX CSS shortly.

Inheriting CSS Properties
JavaFX offers two types of inheritance for CSS properties:

Inheritance of CSS property types•	

Inheritance of CSS property values•	

In the first type of inheritance, all CSS properties declared in a JavaFX class are inherited by all its
subclasses. For example, the Node class declares a cursor property and its corresponding CSS property is
-fx-cursor. Because the Node class is the superclass of all JavaFX nodes, the -fx-cursor CSS property is
available for all node types.

In the second type of inheritance, a CSS property for a node may inherit its value from its parent.
The parent of a node is the container of the node in the scene graph, not its JavaFX superclass. The values of
some properties of a node are inherited from its parent by default, and for some, the node needs to specify
explicitly that it wants to inherit the values of the properties from its parent.

You can specify inherit as the value for a CSS property of a node if you want the value to be inherited
from its parent. If a node inherits a CSS property from its parent by default, you do not need to do anything,
that is, you do not even need to specify the property value as inherit. If you want to override the inherited
value, you need to specify the value explicitly (overriding the parent’s value).

Listing 8-6 demonstrates how a node inherits the CSS properties of its parent. It adds two buttons,
OK and Cancel, to HBox. The following CSS properties are set on the parent and the OK button. No CSS
properties are set on the Cancel button:

/* Parent Node (HBox)*/
-fx-cursor: hand;
-fx-border-color: blue;
-fx-border-width: 5px;

/* Child Node (OK Button)*/
-fx-border-color: red;
-fx-border-width: inherit;

The -fx-cursor CSS property is declared in the Node class and is inherited by all nodes by default. The HBox
overrides the default value and overrides it to the HAND cursor. Both the OK and Cancel buttons inherit the HAND
cursor value for their -fx-cursor from their parent, HBox. When you point your mouse to the area occupied by
the HBox and these buttons, your mouse pointer will change to a HAND cursor. You can use the "-fx-cursor:
inherit" style on the OK and Cancel buttons to achieve the same functionality you get by default.

Border-related CSS properties are not inherited by nodes by default. The HBox sets its -fx-border-color
to blue and -fx-border-width to 5px. The OK button sets its -fx-border-color to red and -fx-border-
width to inherit. The inherit value will make the -fx-border-width of the OK button to inherit from its
parent (the HBox), which is 5px. Figure 8-3 shows the changes after adding this coding.

Chapter 8 ■ Styling nodeS

234

Listing 8-6. Inheriting CSS Properties from the Parent Node

// CSSInheritance.java
package com.jdojo.style;

import javafx.application.Application;
import javafx.scene.Scene;
import javafx.scene.control.Button;
import javafx.scene.layout.HBox;
import javafx.stage.Stage;

public class CSSInheritance extends Application {
 public static void main(String[] args) {
 Application.launch(args);
 }

 @Override
 public void start(Stage stage) {
 Button okBtn = new Button("OK");
 Button cancelBtn = new Button("Cancel");

 HBox root = new HBox(10); // 10px spacing
 root.getChildren().addAll(okBtn, cancelBtn);

 // Set styles for the OK button and its parent HBox
 root.setStyle("-fx-cursor: hand;-fx-border-color: blue;-fx-border-width: 5px;");
 okBtn.setStyle("-fx-border-color: red;-fx-border-width: inherit;");

 Scene scene = new Scene(root);
 stage.setScene(scene);
 stage.setTitle("CSS Inheritance");
 stage.show();
 }
}

Figure 8-3. A button inheriting its border width and cursor CSS properties from its parent

Tip ■ a node inherits -fx-cursor, -fx-text-alignment, and -fx-font CSS properties from its parent by default.

Chapter 8 ■ Styling nodeS

235

Types of CSS Properties
All values in Java (and in JavaFX as well) have a type. The values of CSS properties set in styles also have
types. Each type of value has a different syntax. JavaFX CSS supports the following types:

•	 inherit

•	 boolean

•	 string

•	 number

•	 angle

•	 point

•	 color-stop

•	 URI

•	 effect

•	 font

•	 paint

Note that the CSS types have nothing to do with Java types. They can only be used in specifying the
values in CSS style sheets or inline styles. The JavaFX runtime takes care of parsing and converting these
types to appropriate JavaFX types before assigning them to nodes.

The inherit Type
You have seen an example of the use of the inherit type in the previous section. It is used to inherit the
value of a CSS property for a node from its parent.

The boolean Type
You can specify the boolean type values as true or false. They can also be specified as strings: "true" or
"false". The following style sets the -fx-display-caret CSS property of a TextField node to false:

.text-field {
 -fx-display-caret: false;
}

The string Type
String values can be enclosed in single quotes or double quotes. If the string value is enclosed in double
quotes, a double quote as part of the value should be escaped, such as \" or \22. Similarly, a single quote as
part of the string value enclosed in single quotes must be escaped, such as \' or \27. The following style uses
strings to set the skin and font properties. It encloses the string value for the skin property in double quotes
and the font family for the font property in single quotes:

.my-control {
 -fx-skin: "com.jdojo.MySkin";
 -fx-font: normal bold 20px 'serif';
}

Chapter 8 ■ Styling nodeS

236

Tip ■ a string value cannot contain a newline directly. to embed a newline in a string value, use the escape
sequence \A or \00000a.

The number Type
Number values may be represented as integers or real numbers. They are specified using the decimal
number format. The following style sets the opacity to 0.60:

.my-style {
 -fx-opacity: 0.60;
}

The value of a CSS property denoting a size can be specified using a number following by a unit of length.
The unit of length can be px (pixels), mm (millimeters), cm (centimeters), in (inches), pt (points), pc (picas), em,
or ex. A size can also be specified using the percentage of a length, for example, the width or height of a node.
If a unit of a percentage is specified, it must immediately follow the number, for example, 12px, 2em, 80%:

.my-style {
 -fx-font-size: 12px;
 -fx-background-radius: 0.5em;
 -fx-border-width: 5%;
}

The angle Type
An angle is specified using a number and a unit. The unit of an angle can be deg (degrees), rad (radians),
grad (gradients), or turn (turns). The following style sets the -fx-rotate CSS property to 45 degrees:

.my-style {
 -fx-rotate: 45deg;
}

The point Type
A point is specified using x and y coordinates. It can be specified using two numbers separated by
whitespaces, for example, 0 0, 100, 0, 90 67, or in percentage form, for example, 2% 2%. The following
style specifies a linear gradient color from the point (0, 0) to (100, 0):

.my-style {
 -fx-background-color: linear-gradient(from 0 0 to 100 0, repeat, red, blue);
}

The color-stop Type
A color-stop is used to specify color at a specific distance in linear or radial color gradients. A color-stop
consists of a color and a stop distance. The color and the distance are separated by whitespaces. The stop
distance may be specified as a percentage, for example 10%, or as a length, for example, 65px. Some examples
of color-stops are white 0%, yellow 50%, yellow 100px. Please refer to Chapter 7 for more details on how to
use color-stops in colors.

Chapter 8 ■ Styling nodeS

237

The URI Type
A URI can be specified using the url(<address>) function. A relative <address> is resolved relative to the
location of the CSS file:

.image-view {
 -fx-image: url("http://jdojo.com/myimage.png");
}

The effect Type
Drop shadow and inner shadow effects can be specified for nodes using CSS styles using the dropshadow()
and innershadow() CSS functions, respectively. Their signature are:

•	 dropshadow(<blur-type>, <color>, <radius>, <spread>, <x-offset>, <y-offset>)

•	 innershadow(<blur-type>, <color>, <radius>, <choke>, <x-offset>, <y-offset>)

The <blur-type> value can be Gaussian, one-pass-box, three-pass-box, or two-pass-box. The color
of the shadow is specified in <color>. The <radius> value specifies the radius of the shadow blur kernel
between 0.0 and 127.0. The spread/choke of the shadow is specified between 0.0 and 1.0. The last two
parameters specify the shadow offsets in pixels in x and y directions. The following styles show how to
specify the values for the -fx-effect CSS property:

.drop-shadow-1 {
 -fx-effect: dropshadow(gaussian, gray, 10, 0.6, 10, 10);
}

.drop-shadow-2 {
 -fx-effect: dropshadow(one-pass-box, gray, 10, 0.6, 10, 10);
}

.inner-shadow-1 {
 -fx-effect: innershadow(gaussian, gray, 10, 0.6, 10, 10);
}

The font Type
A font consists of four attributes: family, size, style, and weight. There are two ways to specify the font CSS property:

Specify the four attributes of a font separately using the four CSS properties: •	
-fx-font-family, -fx-font-size, -fx-font-style, and -fx-font-weight.

Use a shorthand CSS property •	 -fx-font to specify all four attributes as one value.

The font family is a string value that can be the actual font family available on the system, for example,
"Arial", "Times", or generic family names, for example, "serif", "sans-serif", "monospace".

The font size can be specified in units such as px, em, pt, in, cm. If the unit for the font size is omitted, px
(pixels) is assumed.

The font style can be normal, italic, or oblique.
The font weight can be specified as normal, bold, bolder, lighter, 100, 200, 300, 400, 500, 600,

700, 800, or 900.

Chapter 8 ■ Styling nodeS

238

The following style sets the font attributes separately:

.my-font-style {
 -fx-font-family: "serif";
 -fx-font-size: 20px;
 -fx-font-style: normal;
 -fx-font-weight: bolder;
}

Another way to specify the font property is to combine all four attributes of the font into one value and
use the -fx-font CSS property. The syntax for using the -fx-font property is:

-fx-font: <font-style> <font-weight> <font-size> <font-family>;

The following style uses the -fx-font CSS property to set the font attributes:

.my-font-style {
 -fx-font: italic bolder 20px "serif";
}

The paint Type
A paint type value specifies a color, for example, the fill color of a rectangle or the background color of a
button. You can specify a color value in the following ways:

Using the •	 linear-gradient() function

Using the •	 radial-gradient() function

Using various color values and color functions•	

Please refer to Chapter 7 for a complete discussion on how to specify gradient colors in string format
using the linear-gradient() and radial-gradient() functions. These functions are used to specify color
gradients. The following style shows how to use these functions:

.my-style {
 -fx-fill: linear-gradient(from 0% 0% to 100% 0%, black 0%, red 100%);
 -fx-background-color: radial-gradient(radius 100%, black, red);
}

You can specify a solid color in several ways:

Using named colors•	

Using looked-up colors•	

Using the •	 rgb() and rgba() functions

Using red, green, blue (RGB) hexadecimal notation•	

Using the •	 hsb() or hsba() function

Using color functions: •	 derive() and ladder()

Chapter 8 ■ Styling nodeS

239

You can use predefined color names to specify the color values, for example, red, blue, green, or aqua:

.my-style {
 -fx-background-color: red;
}

You can define a color as a CSS property on a node or any of its parents and, later, look it up by name,
when you want to use its value. The following styles define a color named my-color and refer to it later:

.root {
 my-color: black;
}

.my-style {
 -fx-fill: my-color;
}

You can use the rgb(red, green, blue) and the rgba(red, green, blue, alpha) functions to define
colors in terms of RGB components:

.my-style-1 {
 -fx-fill: rgb(0, 0, 255);
}

.my-style-2 {
 -fx-fill: rgba(0, 0, 255, 0.5);
}

You can specify a color value in the #rrggbb or #rgb format, where rr, gg, and bb are the values for
red, green, and blue components, respectively, in hexadecimal format. Note that you need to specify the
three components using two digits or one hexadecimal digit. You cannot specify some components in one
hexadecimal digit and others in two:

.my-style-1 {
 -fx-fill: #0000ff;
}

.my-style-2 {
 -fx-fill: #0bc;
}

You can specify a color value in hue, saturation, brightness (HSB) color components using the hsb(hue,
saturation, brightness) or hsba(hue, saturation, brightness, alpha) function:

.my-style-1 {
 -fx-fill: hsb(200, 70%, 40%);
}

.my-style-2 {
 -fx-fill: hsba(200, 70%, 40%, 0.30);
}

Chapter 8 ■ Styling nodeS

240

You can compute colors from other colors using the derive() and ladder() functions. The JavaFX
default CSS, caspian.css, uses this technique. It defines some base colors and derives other colors from the
base colors.

The derive function takes two parameters:

derive(color, brightness)

The derive() function derives a brighter or darker version of the specified color. The brightness
value ranges from -100% to 100%. A brightness of -100% means completely black, 0% means no change
in brightness, and 100% means completely white. The following style will use a version of red that is
20% darker:

.my-style {
 -fx-fill: derive(red, -20%);
}

The ladder() function takes a color and one or more color-stops as parameters:

ladder(color, color-stop-1, color-stop-2, ...)

Think of the ladder() function as creating a gradient using the color-stops and then using the
brightness of the specified color to return the color value. If the brightness of the specified color is x%, the
color at the x% distance from the beginning of the gradient will be returned. For example, for 0% brightness,
the color at the 0.0 end of the gradient is returned; for 40% brightness, the color at the 0.4 end of the gradient
is returned.

Consider the following two styles:

.root {
 my-base-text-color: red;
}

.my-style {
 -fx-text-fill: ladder(my-base-text-color, white 29%, black 30%);
}

The ladder() function will return the color white or black depending on the brightness of the
my-base-text-color. If its brightness is 29% or lower, white is returned; otherwise, black is returned.
You can specify as many color-stops as you want in the ladder() function to choose from a variety of colors
depending on the brightness of the specified color.

You can use this technique to change the color of a JavaFX application on the fly. The default style sheet,
caspian.css, defines some base colors and uses the derive() and ladder() functions to derive other colors
of different brightnesses. You need to redefine the base colors in your style sheet for the root class to make
an application-wide color change.

Chapter 8 ■ Styling nodeS

241

Specifying Background Colors
A node (a Region and a Control) can have multiple background fills, which are specified using three properties:

•	 -fx-background-color

•	 -fx-background-radius

•	 -fx-background-insets

The -fx-background-color property is a list of comma-separated color values. The number of colors
in the list determines the number of rectangles that will be painted. You need to specify the radius values for
four corners and insets for four sides, for each rectangle, using the other two properties. The number of color
values must match the number of radius values and inset values.

The -fx-background-radius property is a list of a comma-separated set of four radius values for the
rectangles to be filled. A set of radius values in the list may specify only one value, for example, 10, or four
values separated by whitespaces, for example, 10 5 15 20. The radius values are specified for the top-left,
top-right, bottom-right, and bottom-left corners in order. If only one radius value is specified, the same
radius value is used for all corners.

The -fx-background-insets property is a list of a comma-separated set of four inset values for the
rectangles to be filled. A set of inset values in the list may specify only one value, for example, 10, or four
values separated by whitespaces, for example, 10 5 15 20. The inset values are specified for the top, right,
bottom, and left sides in order. If only one inset value is specified, the same inset value is used for all sides.

Let’s look at an example. The following snippet of code creates a Pane, which is a subclass of the
Region class:

Pane pane = new Pane();
pane.setPrefSize(100, 100);

Figure 8-4 shows how the Pane looks when the following three styles are supplied:

.my-style-1 {
 -fx-background-color: gray;
 -fx-background-insets: 5;
 -fx-background-radius: 10;
}

.my-style-2 {
 -fx-background-color: gray;
 -fx-background-insets: 0;
 -fx-background-radius: 0;
}

.my-style-3 {
 -fx-background-color: gray;
 -fx-background-insets: 5 10 15 20;
 -fx-background-radius: 10 0 0 5;
}

Chapter 8 ■ Styling nodeS

242

All three styles use a gray fill color, which means that only one rectangle will be drawn. The first style
uses a 5px inset on all four sides, and a radius of 10px for all corners. The second style uses a 0px inset and a
0px radius, which makes the fill rectangle occupy the entire area of the pane. The third style uses a different
inset on each side: 5px on the top, 10px on the right, 15px on the bottom, and 20px on the left. Notice the
different unfilled background on each side for the third style. The third style also sets different values for the
radius of four corners: 10px for the top-left, 0px for the top-right, 0px for the bottom-right, and 5px for the
bottom-left. Notice that if the radius of a corner is 0px, the two sides at the corner meet at 90 degrees.

If you apply the following style to the same pane, the background will be filled as shown in Figure 8-5:

.my-style-4 {
 -fx-background-color: red, green, blue;
 -fx-background-insets: 5 5 5 5, 10 15 10 10, 15 20 15 15;
 -fx-background-radius: 5 5 5 5, 0 0 10 10, 0 20 5 10;
}

Figure 8-5. A pane with three background fills with different radius and inset values

my-style-3my-style-1 my-style-2

Figure 8-4. A Pane with three different background fills

The style uses three colors and, therefore, three background rectangles will be painted. The background
rectangles are painted in the order they are specified in the style: red, green, and blue. The inset and radius
values are specified in the same order as the colors. The style uses the same value for insets and radii for the
red color. You can replace the set of four similar values with one value; that is, 5 5 5 5 in the above style can
be replaced with 5.

Specifying Borders
A node (a Region and a Control) can have multiple borders through CSS. A border is specified using five
properties:

•	 -fx-border-color

•	 -fx-border-width

Chapter 8 ■ Styling nodeS

243

•	 -fx-border-radius

•	 -fx-border-insets

•	 -fx-border-style

Each property consists of a comma-separated list of items. Each item may consist of a set of values,
which are separated by whitespaces.

Border Colors
The number of items in the list for the -fx-border-color property determines the number of borders that
are painted. The following style will paint one border with the red color:

-fx-border-color: red;

The following style specifies a set of red, green, blue, and aqua colors to paint the borders on top,
right, bottom, and left sides, respectively. Note that it still results in only one border, not four borders, with
different colors on four sides:

-fx-border-color: red green blue aqua;

The following style specifies two sets of border colors:

-fx-border-color: red green blue aqua, tan;

The first set consists of four colors, red green blue aqua, and the second set consists of only one
color, tan. It will result in two borders. The first border will be painted with different colors on four sides; the
second border will use the same color on all four sides.

Tip ■ a node may not be rectangular in shape. in that case, only the first border color (and other properties)
in the set will be used to paint the entire border.

Border Widths
You can specify the width for borders using the -fx-border-width property. You have an option to specify
different widths for all four sides of a border. Different border widths are specified for top, right, bottom, and
left sides in order. If the unit for the width value is not specified, pixel is used.

The following style specifies one border with all sides painted in red in 2px width:

-fx-border-color: red;
-fx-border-width: 2;

The following style specifies three borders, as determined by the three sets of colors specified in the
-fx-border-color property. The first two borders use different border widths of four sides. The third border
uses the border width of 3px on all sides:

-fx-border-color: red green blue black, tan, aqua;
-fx-border-width: 2 1 2 2, 2 2 2 1, 3;

Chapter 8 ■ Styling nodeS

244

Border Radii
You can specify the radius values for four corners of a border using the -fx-border-radius property. You
can specify the same radius value for all corners. Different radius values are specified for top-left, top-right,
bottom-right, and bottom-left corners in order. If the unit for the radius value is not specified, pixel is used.

The following style specifies one border in red, 2px width, and 5px radii on all four corners:

-fx-border-color: red;
-fx-border-width: 2;
-fx-border-radius: 5;

The following style specifies three borders. The first two borders use different radius values for four
corners. The third border uses the radius value of 0px for all corners:

-fx-border-color: red green blue black, tan, aqua;
-fx-border-width: 2 1 2 2, 2 2 2 1, 3;
-fx-border-radius: 5 2 0 2, 0 2 0 1, 0;

Border Insets
You can specify the inset values for four sides of a border using the -fx-border-insets property. You can
specify the same inset value for all sides. Different inset values are specified for top, right, bottom, and left
sides in order. If the unit for the inset value is not specified, pixel is used.

The following style specifies one border in red, 2px width, 5px radius, and 20px inset on all four sides:

-fx-border-color: red;
-fx-border-width: 2;
-fx-border-radius: 5;
-fx-border-insets: 20;

The following style specifies three borders with insets 10px, 20px, and 30px on all sides:

-fx-border-color: red green blue black, tan, aqua;
-fx-border-width: 2 1 2 2, 2 2 2 1, 3;
-fx-border-radius: 5 2 0 2, 0 2 0 1, 0;
-fx-border-insets: 10, 20, 30;

Tip ■ an inset is the distance from the side of the node at which the border will be painted. the final location
of the border also depends of other properties, for example, -fx-border-width and -fx-border-style.

Border Styles
The -fx-border-style property defines the style of a border. Its value may contain several parts as follows:

-fx-border-style: <dash-style> [phase <number>] [<stroke-type>] [line-join <line-join-value>]
[line-cap <line-cap-value>]

Chapter 8 ■ Styling nodeS

245

The value for <dash-style> can be none, solid, dotted, dashed, or segments(<number>, <number>...).
The value for <stroke-type> can be centered, inside, or outside. The value for <line-join-value> can be
miter <number>, bevel, or round. The value for <line-cap-value> can be square, butt, or round.

The simplest border style would be to specify just the value for the <dash-style>:

-fx-border-style: solid;

The segments() function is used to have a border with a pattern using alternate dashes and gaps:

-fx-border-style: segments(dash-length, gap-length, dash-length, ...);

The first argument to the function is the length of the dash; the second argument is the length of the
gap, and so on. After the last argument, the pattern repeats itself from the beginning. The following style will
paint a border with a pattern of a 10px dash, a 5px gap, a 10px dash, and so on:

-fx-border-style: segments(10px, 5px);

You can pass as many dashes and gap segments to the function as you want. The function expects you
to pass an even number of values. If you pass an odd number of values, this will result in values that are
concatenated to make them even in number. For example, if you use segments(20px, 10px, 5px), it is the
same as if you passed segments(20px, 10px, 5px, 20px, 10px, 5px).

The phase parameter is applicable only when you use the segments() function. The number following
the phase parameter specifies the offset into the dashed pattern that corresponds to the beginning of the
stroke. Consider the following style:

-fx-border-style: segments(20px, 5px) phase 10.0;

It specifies the phase parameter as 10.0. The length of the dashing pattern is 25px. The first segment will
start at 10px from the beginning of the pattern. That is, the first dash will only be 10px in length. The second
segment will be a 5px gap followed by a 20px dash, and so on. The default value for phase is 0.0.

The <stroke-type> has three valid values: centered, inside, and outside. Its value determines where the
border is drawn relative to the inset. Assume that you have a 200px by 200px region. Assume that you have
specified the top inset as 10px and a top border width of 4px. If <stroke-type> is specified as centered, the
border thickness at the top will occupy the area from the eighth pixel to the 12th pixel from the top boundary
of the region. For <stroke-type> as inside, the border thickness will occupy the area from the 10th pixel to
14th pixel. For <stroke-type> as outside, the border thickness at the top will occupy the area from the sixth
pixel to the tenth pixel.

You can specify how the two segments of the borders are joined using the line-join parameter. Its
value can be miter, bevel, or round. If you specify the value of line-join as miter, you need to pass a miter
limit value. If the specified miter limit is less than the miter length, a bevel join is used instead. Miter length
is the distance between the inner point and the outer point of a miter join. Miter length is measured in terms
of the border width. The miter limit parameter specifies how far the outside edges of two meeting border
segments can extend to form a miter join. For example, suppose the miter length is 5 and you specify the
miter limit as 4, a bevel join is used; however, if you specify a miter limit greater than 5, a miter join is used.
The following style uses a miter limit of 30:

-fx-border-style: solid line-join miter 30;

The value for the line-cap parameter specifies how the start and end of a border segment are drawn.
The valid values are square, butt, and round. The following style specified a line-cap of round:

-fx-border-style: solid line-join bevel 30 line-cap round;

Chapter 8 ■ Styling nodeS

246

Let’s look at some examples. Figure 8-6 shows four instances of the Pane class of 100px by 50px, when
the following styles are applied to them:

.my-style-1 {
 -fx-border-color: black;
 -fx-border-width: 5;
 -fx-border-radius: 0;
 -fx-border-insets: 0;
 -fx-border-style: solid line-join bevel line-cap square;
}

.my-style-2 {
 -fx-border-color: red, black;
 -fx-border-width: 5, 5;
 -fx-border-radius: 0, 0;
 -fx-border-insets: 0, 5;
 -fx-border-style: solid inside, dotted outside;
}

.my-style-3 {
 -fx-border-color: black, black;
 -fx-border-width: 1, 1;
 -fx-border-radius: 0, 0;
 -fx-border-insets: 0, 5;
 -fx-border-style: solid centered, solid centered;
}

.my-style-4 {
 -fx-border-color: red black red black;
 -fx-border-width: 5;
 -fx-border-radius: 0;
 -fx-border-insets: 0;
 -fx-border-style: solid line-join bevel line-cap round;
}

my-style-1 my-style-2 my-style-3 my-style-4

Figure 8-6. Using border styles

Notice that the second style achieves overlapping of two borders, one in solid red and one in dotted
black, by specifying the appropriate insets and stroke type (inside and outside). Borders are drawn in the
order they are specified. It is important that you draw the solid border first in this case; otherwise, you would
not see the dotted border. The third one draws two borders, giving it the look of a double border type.

Chapter 8 ■ Styling nodeS

247

Tip ■ a Region can also have a background image and a border image specified through CSS. please refer
to the JavaFX CSS Reference Guide, which is available online, for more details. Many other CSS styles are
supported by nodes in JavaFX. the styles for those nodes will be discussed later in this book.

Understanding Style Selectors
Each style in a style sheet has an associated selector that identifies the nodes in the scene graph to which
the associated JavaFX CSS property values are applied. JavaFX CSS supports several types of selectors: class
selectors, pseudo-class selectors, ID selectors, among others. Let’s look at some of these selector types briefly.

Using Class Selectors
The Node class defines a styleClass variable that is an ObservableList<String>. Its purpose is to
maintain a list of JavaFX style class names for a node. Note that the JavaFX class name and the style class
name of a node are two different things. A JavaFX class name of a node is a Java class name, for example,
javafx.scene.layout.VBox, or simply VBox, which is used to create objects of that class. A style class name
of a node is a string name that is used in CSS styling.

You can assign multiple CSS class names to a node. The following snippet of code assigns two style class
names, "hbox" and "myhbox", to an HBox:

HBox hb = new HBox();
hb.getStyleClass().addAll("hbox", "myhbox");

A style class selector applies the associated style to all nodes, which have the same style class name as
the name of the selector. A style class selector starts with a period followed by the style class name. Note that
the style class names of nodes do not start with a period.

Listing 8-7 shows the content of a style sheet. It has two styles. Both styles use style class selectors
because both of them start with a period. The first style class selector is "hbox", which means it will match
all nodes with a style class named hbox. The second style uses the style class name as button. Save the style
sheet in a file named resources\css\styleclass.css in the CLASSPATH.

Listing 8-7. A Style Sheet with Two Style Class Selectors Named hbox and button

.hbox {
 -fx-border-color: blue;
 -fx-border-width: 2px;
 -fx-border-radius: 5px;
 -fx-border-insets: 5px;
 -fx-padding: 10px;
 -fx-spacing: 5px;
 -fx-background-color: lightgray;
 -fx-background-insets: 5px;
}

.button {
 -fx-text-fill: blue;
}

Chapter 8 ■ Styling nodeS

248

Listing 8-8 has the complete program to demonstrate the use of the style class selectors hbox and
button. The resulting screen is shown in Figure 8-7.

Listing 8-8. Using Style Class Selectors in Code

// StyleClassTest.java
package com.jdojo.style;

import javafx.application.Application;
import javafx.application.Platform;
import javafx.scene.Scene;
import javafx.scene.control.Button;
import javafx.scene.control.Label;
import javafx.scene.control.TextField;
import javafx.scene.layout.HBox;
import javafx.stage.Stage;

public class StyleClassTest extends Application {
 public static void main(String[] args) {
 Application.launch(args);
 }

 @Override
 public void start(Stage stage) {
 Label nameLbl = new Label("Name:");
 TextField nameTf = new TextField("");
 Button closeBtn = new Button("Close");
 closeBtn.setOnAction(e -> Platform.exit());

 HBox root = new HBox();
 root.getChildren().addAll(nameLbl, nameTf, closeBtn);

 // Set the styleClass for the HBox to "hbox"
 root.getStyleClass().add("hbox");

 Scene scene = new Scene(root);
 scene.getStylesheets().add("resources/css/styleclass.css");

 stage.setScene(scene);
 stage.setTitle("Using Style Class Selectors");
 stage.show();
 }
}

Figure 8-7. An HBox using border, padding, spacing, and background color from a style sheet

Chapter 8 ■ Styling nodeS

249

Notice that you have set the style class name for the HBox (named root in the code) to "hbox",
which will apply CSS properties to the HBox from the style with the class selector hbox. The text color
of the Close button is blue because of the second style with the style class selector button. You did not
set the style class name for the Close button to "button". The Button class adds a style class, which is
named "button", to all its instances. This is the reason that the Close button was selected by the button
style class selector.

Most of the commonly used controls in JavaFX have a default style class name. You can add more
style class names if needed. The default style class names are constructed from the JavaFX class names.
The JavaFX class name is converted to lowercase and a hyphen is inserted in the middle of two words.
If the JavaFX class name consists of only one word, the corresponding default style class name is created
by just converting it to lowercase. For example, the default style class name is button for Button, label for
Label, hyperlink for Hyperlink, text-field for TextField, text-area for TextArea, check-box
for CheckBox.

JavaFX container classes, for example, Region, Pane, HBox, VBox, do not have a default style class
name. If you want to style them using style class selectors, you need to add a style class name to them.
This is the reason that you had to add a style class name to the HBox that you used in Listing 8-8 to use the
style class selector.

Tip ■ Style class names in JavaFX are case-sensitive.

Sometimes you might need to know the default style class name of a node to use it in a style sheet.
There are three ways to determine the default style class name of a JavaFX node:

Guess it using the described rules to form the default style class name from the •	
JavaFX class name;

Use the online •	 JavaFX CSS Reference Guide to look up the name;

Write a small piece of code.•	

The following snippet of code shows how to print the default style class name for the Button class.
Change the name of the JavaFX node class, for example, from Button to TextField, to print the default style
class name for other types of nodes:

Button btn = new Button();
ObservableList<String> list = btn.getStyleClass();

if (list.isEmpty()) {
 System.out.println("No default style class name");
} else {
 for(String styleClassName : list) {
 System.out.println(styleClassName);
 }
}

button

Chapter 8 ■ Styling nodeS

250

Class Selector for the root Node
The root node of a scene is assigned a style class named "root". You can use the root style class selector for
CSS properties that are inherited by other nodes. The root node is the parent of all nodes in a scene graph.
Storing CSS properties in the root node is preferred because they can be looked up from any node in the
scene graph.

Listing 8-9 shows the content of a style sheet saved in a file resources\css\rootclass.css. The style
with the root class selector declares two properties: -fx-cursor and -my-button-color. The -fx-cursor
property is inherited by all nodes. If this style sheet is attached to a scene, all nodes will have a HAND cursor
unless they override it. The -my-button-color property is a look-up property, which is looked up in the
second style to set the text color of buttons.

Listing 8-9. The Content of the Style Sheet with Root as a Style Class Selector

.root {
 -fx-cursor: hand;
 -my-button-color: blue;
}

.button {
 -fx-text-fill: -my-button-color;
}

Run the program in Listing 8-10 to see the effects of these changes. Notice that you get a HAND cursor
when you move the mouse anywhere in the scene, except over the name text field. This is because the
TextField class overrides the -fx-cursor CSS property to set it to the TEXT cursor.

Listing 8-10. Using the Root Style Class Selector

// RootClassTest.java
package com.jdojo.style;

import javafx.application.Application;
import javafx.scene.Scene;
import javafx.scene.control.Button;
import javafx.scene.control.Label;
import javafx.scene.control.TextField;
import javafx.scene.layout.HBox;
import javafx.stage.Stage;

public class RootClassTest extends Application {
 public static void main(String[] args) {
 Application.launch(args);
 }

 @Override
 public void start(Stage stage) {
 Label nameLbl = new Label("Name:");
 TextField nameTf = new TextField("");
 Button closeBtn = new Button("Close");

Chapter 8 ■ Styling nodeS

251

 HBox root = new HBox();
 root.getChildren().addAll(nameLbl, nameTf, closeBtn);

 Scene scene = new Scene(root);
 /* The root variable is assigned a default style class name "root" */

 scene.getStylesheets().add("resources/css/rootclass.css");

 stage.setScene(scene);
 stage.setTitle("Using the root Style Class Selector");
 stage.show();
 }
}

Using ID Selectors
The Node class has an id property of the StringProperty type, which can be used to assign a unique id to
each node in a scene graph. Maintaining the uniqueness of an id in a scene graph is the responsibility of the
developer. It is not an error to set a duplicate id for a node.

You do not use the id property of a node directly in your code, except when you are setting it. It is
mainly used for styling nodes using ID selectors. The following snippet of code sets the id property of a
Button to "closeBtn":

Button b1 = new Button("Close");
b1.setId("closeBtn");

An ID selector in a style sheet is preceded by the pound (#) sign. Note that the ID value set for a node
does not include the # sign. Listing 8-11 shows the content of a style sheet, which contains two styles, one
with a class selector ".button" and one with an ID selector "#closeButton". Save the content of Listing 8-11
in a file called resources\css\idselector.css in the CLASSPATH. Figure 8-8 shows the results after
the program is run.

Listing 8-11. A Style Sheet that Uses a Class Selector and an ID Selector

.button {
 -fx-text-fill: blue;
}

#closeButton {
 -fx-text-fill: red;
}

Listing 8-12 presents the program that uses the style sheet in Listing 8-11. The program creates three
buttons. It sets the ID for a button to "closeButton". The other two buttons do not have an ID. When the
program is run, the Close button’s text is in red, whereas the other two have blue text.

Chapter 8 ■ Styling nodeS

252

Listing 8-12. Using ID Selector in a Style Sheet

// IDSelectorTest.java
package com.jdojo.style;

import javafx.application.Application;
import javafx.scene.Scene;
import javafx.scene.control.Button;
import javafx.scene.layout.HBox;
import javafx.stage.Stage;

public class IDSelectorTest extends Application {
 public static void main(String[] args) {
 Application.launch(args);
 }

 @Override
 public void start(Stage stage) {
 Button openBtn = new Button("Open");
 Button saveBtn = new Button("Save");

 Button closeBtn = new Button("Close");
 closeBtn.setId("closeButton");

 HBox root = new HBox();
 root.getChildren().addAll(openBtn, saveBtn, closeBtn);

 Scene scene = new Scene(root);
 scene.getStylesheets().add("resources/css/idselector.css");

 stage.setScene(scene);
 stage.setTitle("Using ID selectors");
 stage.show();
 }
}

Figure 8-8. Buttons using class and ID selectors

Did you notice a conflict in the styles for the Close button? All buttons in JavaFX are assigned a default
style class named button, so does the Close button. The Close button also has an ID that matches with the
ID style selector. Therefore, both selectors in the style sheet match the Close button. In cases where there are
multiple selectors matching a node, JavaFX uses the specificity of selectors to determine which selector will
be used. In cases where a class selector and an ID selector are used, the ID selector has higher specificity.
This is the reason that the ID selector matched the Close button, not the class selector.

Chapter 8 ■ Styling nodeS

253

Tip ■ CSS uses complex rules to calculate the specificity of selectors. please refer to
http://www.w3.org/TR/CSS21/cascade.html#specificity for more details.

Combining ID and Class Selectors
A selector can use the combination of a style class and an ID. In this case, the selector matches all nodes with
the specified style class and ID. Consider the following style:

#closeButton.button {
 -fx-text-fill: red;
}

The selector #closeButton.button matches all nodes with a closeButton ID and a button style class.
You can also reverse the order:

.button#closeButton {
 -fx-text-fill: red;
}

Now it matches all nodes with a button style class and a closeButton ID.

The Universal Selector
An asterisk (*) is used as a universal selector, which matches any node. The universal selector has the lowest
specificity. The following style uses the universal selector to set the text fill property of all nodes to blue:

* {
 -fx-text-fill: blue;
}

When the universal selector does not appear by itself, it can be ignored. For example, the selectors
*.button and .button are the same.

Grouping Multiple Selectors
If the same CSS properties apply to multiple selectors, you have two choices:

You can use multiple styles by duplicating the property declarations.•	

You can group all selectors into one style, separating the selectors by a comma.•	

Suppose you want to set the button and label classes text fill color to blue. The following code uses two
styles with the duplicate property declarations:

.button {
 -fx-text-fill: blue;
}

.label {
 -fx-text-fill: blue;
}

http://www.w3.org/TR/CSS21/cascade.html#specificity

Chapter 8 ■ Styling nodeS

254

The two styles can be combined into one style as follows:

.button, .label {
 -fx-text-fill: blue;
}

Descendant Selectors
A descendant selector is used to match nodes that are descendants of another node in the scene graph.
A descendant selector consists of two or more selectors separated by whitespaces. The following style uses a
descendant selector:

.hbox .button {
 -fx-text-fill: blue;
}

It will select all nodes that have a button style class and are descendants of a node with an hbox style
class. The term descendant in this context means a child at any level (immediate or nonimmediate).

A descendant selector comes in handy when you want to style parts of JavaFX controls. Many controls
in JavaFX consist of subnodes, which are JavaFX nodes. In the JavaFX CSS Reference Guide, those subnodes
are listed as substructures. For example, a CheckBox consists of a LabeledText (not part of the public API)
with a style class name of text and a StackPane with a style class name of box. The box contains another
StackPane with the style class name of mark. You can use these pieces of information for the substructure of
the CheckBox class to style the subparts. The following styles use descendant selectors to set the text color of
all CheckBox instances to blue and the box to a dotted border:

.check-box .text {
 -fx-fill: blue;
}

.check-box .box {
 -fx-border-color: black;
 -fx-border-width: 1px;
 -fx-border-style: dotted;
}

Child Selectors
A child selector matches a child node. It consists of two or more selectors separated by the greater than
sign (>). The following style matches all nodes with a button style class, which are the children of a node
with an hbox style class:

.hbox > .button {
 -fx-text-fill: blue;
}

Tip ■ CSS supports other types of selectors, for example, sibling selectors and attribute selectors.
JavaFX CSS does not support them yet.

Chapter 8 ■ Styling nodeS

255

State-Based Selectors
State-based selectors are also known as pseudo-class selectors. A pseudo-class selector matches nodes based
on their current states, for example, matching a node that has focus or matching text input controls that
are read-only. A pseudo-class is preceded by a colon and is appended to an existing selector. For example,
.button:focused is a pseudo-class selector that matches a node with the button style class name that also
has the focus; #openBtn:hover is another pseudo-class selector that matches a node with the ID #openBtn,
when the mouse hovers over the node. Listing 8-13 presents the content of a style sheet that has a pseudo-
class selector. It changes the text color to red when the mouse hovers over the node. When you add this style
sheet to a scene, all buttons will change their text color to red when the mouse hovers over them.

Listing 8-13. A Style Sheet with a Pseudo-class Selector

.button:hover {
 -fx-text-fill: red;
}

JavaFX CSS does not support the :first-child and :lang pseudo-classes that are supported by CSS.
JavaFX does not support pseudo-elements that allow you to style the content of nodes (e.g., the first line in a
TextArea). Table 8-1 contains a partial list of the pseudo-classes supported by JavaFX CSS. Please refer to the
online JavaFX CSS Reference Guide for the complete list of pseudo-classes supported by JavaFX CSS.

Table 8-1. Some Pseudo-classes Supported by JavaFX CSS

Pseudo-class Applies to Description

disabled Node It applies when the node is disabled.

focused Node It applies when the node has the focus.

hover Node It applies when the mouse hovers over the node.

pressed Node It applies when the mouse button is clicked over the node.

show-mnemonic Node It applies when the mnemonic should be shown.

cancel Button It applies when the Button would receive VK_ESC if the event
is not consumed.

default Button It applies when the Button would receive VK_ENTER if the
event is not consumed.

empty Cell It applies when the Cell is empty.

filled Cell It applies when the Cell is not empty.

selected Cell, CheckBox It applies when the node is selected.

determinate CheckBox It applies when the CheckBox is in a determinate state.

indeterminate CheckBox It applies when the CheckBox is in an indeterminate state.

visited Hyperlink It applies when the Hyperlink has been visited.

horizontal ListView It applies when the node is horizontal.

vertical ListView It applies when the node is vertical.

Chapter 8 ■ Styling nodeS

256

Using JavaFX Class Names as Selectors
It is allowed, but not recommended, to use the JavaFX class name as a type selector in a style. Consider the
following content of a style sheet:

HBox {
 -fx-border-color: blue;
 -fx-border-width: 2px;
 -fx-border-insets: 10px;
 -fx-padding: 10px;
}

Button {
 -fx-text-fill: blue;
}

Notice that a type selector differs from a class selector in that the former does not start with a period.
A class selector is the JavaFX class name of the node without any modification (HBOX and HBox are not the
same). If you attach a style sheet with the above content to a scene, all HBox instances will have a border and
all Button instances will have blue text.

It is not recommended to use the JavaFX class names as type selectors because the class name may
be different when you subclass a JavaFX class. If you depend on the class name in your style sheet, the new
classes will not pick up your styles.

Looking Up Nodes in a Scene Graph
You can look up a node in a scene graph by using a selector. Scene and Node classes have a lookup(String
selector) method, which returns the reference of the first node found with the specified selector. If
no node is found, it returns null. The methods in two classes work a little differently. The method in the
Scene class searches the entire scene graph. The method in the Node class searches the node on which it
is called and its subnodes. The Node class also has a lookupAll(String selector) method that returns a
Set of all Nodes that are matched by the specified selector, including the node on which this method is
called and its subnode.

The following snippet of code shows how to use the look-up methods using ID selectors. However, you
are not limited to using only ID selectors in these methods. You can use all selectors that are valid in JavaFX:

Button b1 = new Button("Close");
b1.setId("closeBtn");
VBox root = new VBox();
root.setId("myvbox");
root.getChildren().addAll(b1);
Scene scene = new Scene(root, 200, 300);
...
Node n1 = scene.lookup("#closeBtn"); // n1 is the reference of b1
Node n2 = root.lookup("#closeBtn"); // n2 is the reference of b1
Node n3 = b1.lookup("#closeBtn"); // n3 is the reference of b1
Node n4 = root.lookup("#myvbox"); // n4 is the reference of root
Node n5 = b1.lookup("#myvbox"); // n5 is null
Set<Node> s = root.lookupAll("#closeBtn"); // s contains the reference of b1

Chapter 8 ■ Styling nodeS

257

Using Compiled Style Sheets
When packaging JavaFX projects, you can convert the CSS files into binary form to improve the runtime
performance of your application. The .css files are converted to .bss files. You can convert CSS files into
binary form using the javafxpackager tool with -createbss command:

javafxpackager -createbss -srcfiles mystyles.css -outdir compiledcss

If you are using the NetBeans IDE, you can select the Project Properties ➤ Build ➤ Packaging ➤ Binary
Encode JavaFX CSS Files property, which will convert all your CSS files into BSS files while packaging
your project.

Summary
CSS is a language used to describe the presentation of UI elements in a GUI application. It was primarily
used in web pages for styling HTML elements and separating presentation from contents and behavior. In a
typical web page, the content and presentation are defined using HTML and CSS, respectively.

JavaFX allows you to define the look of JavaFX applications using CSS. You can define UI elements using
JavaFX class libraries or FXML, and use CSS to define their look.

A CSS rule is also known as a style. A collection of CSS rules is known as a style sheet. Skins are
collections of application-specific styles, which define the appearance of an application. Skinning is the
process of changing the appearance of an application (or the skin) on the fly. JavaFX does not provide a
specific mechanism for skinning. Themes are visual characteristics of an operating system that are reflected
in the appearance of UI elements of all applications. JavaFX has no direct support for themes.

You can add multiple style sheets to a JavaFX application. Style sheets are added to a scene or parents.
Scene and Parent classes maintain an observable list of string URLs linking to style sheets.

JavaFX 8 use a default style sheet called Modena. Prior to JavaFX 8, the default style sheet was called
Caspian. You can still use the Caspian style sheet as the default in JavaFX 8 using the static method
setUserAgentStylesheet(String url) of the Application class. You can refer to the Caspian and Modena
stylesheets’ URLs using the constants named STYLESHEET_CASPIAN and STYLESHEET_MODENA defined in the
Application class.

It is common for the visual properties of nodes to come from multiple sources. The JavaFX runtime uses
the following priority rules to set the visual properties of a node: inline style (the highest priority), parent
style sheets, scene style sheets, values set in the code using JavaFX API, and user agent style sheets (the
lowest priority).

JavaFX offers two types of inheritance for CSS properties: CSS property types and CSS property values.
In the first type of inheritance, all CSS properties declared in a JavaFX class are inherited by all its subclasses.
In the second type of inheritance, a CSS property for a node may inherit its value from its parent. The parent
of a node is the container of the node in the scene graph, not its JavaFX superclass.

Each style in a style sheet has a selector that identifies the nodes in the scene graph to which the style
is applied. JavaFX CSS supports several types of selectors: class selectors and most of them work the
same way they do in web browsers. You can look up a node in a scene graph by using a selector and the
lookup(String selector) method of the Scene and Node classes.

The next chapter will discuss how to handle events in a JavaFX application.

259

Chapter 9

Event Handling

In this chapter, you will learn:

What an event is•	

What an event source, an event target, and event type are•	

About the event processing mechanism•	

How to handle events using event filters and event handlers•	

How to handle mouse events, key events, and window events•	

What Is an Event?
In general, the term event is used to describe an occurrence of interest. In a GUI application, an event is an
occurrence of a user interaction with the application. Clicking the mouse and pressing a key on the keyboard
are examples of events in a JavaFX application.

An event in JavaFX is represented by an object of the javafx.event.Event class or any of its subclasses.
Every event in JavaFX has three properties:

An event source•	

An event target•	

An event type•	

When an event occurs in an application, you typically perform some processing by executing a piece
of code. The piece of code that is executed in response to an event is known as an event handler or an event
filter. I will clarify the difference between these shortly. For now, think of both as a piece of code and I will
refer to both of them as event handlers. When you want to handle an event for a UI element, you need to add
event handlers to the UI element, for example, a Window, a Scene, or a Node. When the UI element detects the
event, it executes your event handlers.

The UI element that calls event handlers is the source of the event for those event handlers. When an
event occurs, it passes through a chain of event dispatchers. The source of an event is the current element in
the event dispatcher chain. The event source changes as the event passes through one dispatcher to another
in the event dispatcher chain.

The event target is the destination of an event. The event target determines the route through which
the event travels during its processing. Suppose a mouse click occurs over a Circle node. In this case, the
Circle node is the event target of the mouse-clicked event.

The event type describes the type of the event that occurs. Event types are defines in a hierarchical
fashion. Each event type has a name and a supertype.

Chapter 9 ■ event handling

260

The three properties that are common to all events in JavaFX are represented by objects of three
different classes. Specific events define additional event properties; for example, the event class to represent
a mouse event adds properties to describe the location of the mouse cursor, state of the mouse buttons,
among others. Table 9-1 lists the classes and interfaces involved in event processing. JavaFX has an event
delivery mechanism that defines the details of the occurrence and processing of events. I will discuss all of
these in detail in subsequent sections.

Event Class Hierarchy
Classes representing events in JavaFX are arranged in hierarchical fashion through class inheritance.
Figure 9-1 shows a partial class diagram for the Event class. The Event class is at the top of the class
hierarchy and it inherits from java.util.EventObject class, which is not shown in the diagram.

Subclasses of the Event class represent specific types of events. Sometimes a subclass of the Event class
is used to represent a generic event of some kind. For example, the InputEvent class represents a generic
event to indicate a user input event, whereas the KeyEvent and MouseEvent classes represent specific input
events such as the user input from the keyboard and mouse, respectively. An object of the WindowEvent
class represents an event of a window, for example, showing and hiding of the window. An object of the
ActionEvent is used to represent several kinds of events denoting some type of action, for example, firing a
button or a menu item. Firing of a button may happen if the user clicks it with the mouse, presses some keys,
or touches it on the touch screen.

Table 9-1. Classes Involved in Event Processing

Name Class/Interface Description

Event Class An instance of this class represents an event. Several subclasses of
the Event class exist to represent specific types of events.

EventTarget Interface An instance of this interface represents an event target.

EventType Class An instance of this class represents an event type, for example,
mouse pressed, mouse released, mouse moved.

EventHandler Interface An instance of this interface represents an event handler or an event
filter. Its handle() method is called when the event for which it has
been registered occurs.

Figure 9-1. A partial class hierarchy for the javafx.event.Event class

Chapter 9 ■ event handling

261

The Event class provides properties and methods that are common to all events. The getSource()
method returns an Object, which is the source of the event. The Event class inherits this method from the
EventObject class. The getTarget() method returns an instance of the EventTarget interface, which is the
target of the event. The getEventType() method returns an object of the EventType class, which indicates
the type of the event.

The Event class contains consume() and isConsumed() methods. As noted before, an event travels from one
element to another in an event-dispatching chain. Calling the consume() method on an Event object indicates
that the event has been consumed and no further processing is required. After the consume() method is called,
the event does not travel to the next element in the event-processing chain. The isConsumed() method returns
true if the consume() method has been called, otherwise, it returns false.

Specific Event subclasses define more properties and methods. For example, the MouseEvent class
defines getX() and getY() methods that return the x and y coordinates of the mouse cursor relative to the
source of the event. I’ll explain the details of the methods in event-specific classes when I discuss them later
in this chapter or subsequent chapters.

Event Targets
An event target is a UI element (not necessarily just Nodes) that can respond to events. Technically, a UI
element that wants to respond to events must implement the EventTarget interface. That is, in JavaFX,
implementing the EventTarget interface makes a UI element eligible to be an event target.

The Window, Scene, and Node classes implement the EventTarget interface. This means that all nodes,
including windows and scenes, can respond to events. The classes for some UI elements, for example, Tab,
TreeItem, and MenuItem, do not inherit from the Node class. They can still respond to events because they
implement the EventTarget interface. If you develop a custom UI element, you will need to implement this
interface if you want your UI element to respond to events.

The responsibility of an event target is to build a chain of event dispatchers, which is also called the
event route. An event dispatcher is an instance of the EventDispatcher interface. Each dispatcher in the
chain can affect the event by handling and consuming. An event dispatcher in the chain can also modify the
event properties, substitute the event with a new event, or chain the event route. Typically, an event target
route consists of dispatchers associated with all UI elements in the container-child hierarchy. Suppose
you have a Circle node placed in an HBox, which is placed in a Scene. The Scene is added to a Stage. If the
mouse is clicked on the Circle, the Circle becomes the event target. The Circle builds an event dispatcher
chain whose route will be, from head to tail, the Stage, Scene, HBox, and Circle.

Event Types
An instance of the EventType class defines an event type. Why do you need a separate class to define event
types? Aren’t separate event classes, for example, KeyEvent, MouseEvent, for each event sufficient to define
event types? Can’t you distinguish one event from another based on the event class? The EventType class is
used to further classify the events within an event class. For example, the MouseEvent class only tells us that
the user has used the mouse. It does not tell us the details of the mouse use, for example, whether the mouse
was pressed, released, dragged, or clicked. The EventType class is used to classify these subevent types of an
event. The EventType class is a generic class whose type parameter is defined as follows:

EventType<T extends Event>

Chapter 9 ■ event handling

262

Event types are hierarchical. They are hierarchical by implementation, not by class inheritance. Each
event type has a name and a supertype. The getName() and getSuperType() methods in the EventType class
return the name and supertype of an event type. The constant Event.ANY, which is the same as the constant
EventType.ROOT, is the supertype of all events in JavaFX. Figure 9-2 shows a partial list of some event types
that have been predefined in some event classes.

Note that the arrows in the diagram do not denote class inheritance. They denote dependencies. For
example, the InputEvent.ANY event type depends on the Event.ANY event type, as the latter is the supertype
of the former.

An event class, which has subevent types, defines an ANY event type. For example, the MouseEvent class
defines an ANY event type that represents a mouse event of any type, for example, mouse released, mouse
clicked, mouse moved. MOUSE_PRESSED and MOUSE_RELEASED are other event types defined in the MouseEvent
class. The ANY event type in an event class is the supertype of all other event types in the same event class. For
example, the MouseEvent.ANY event type is the supertype of MOUSE_RELEASED and MOUSE_PRESSED mouse events.

Event Processing Mechanism
When an event occurs, several steps are performed as part of the event processing:

Event target selection•	

Event route construction•	

Event route traversal•	

Figure 9-2. A partial list of predefined event types for some event classes

Chapter 9 ■ event handling

263

Event Target Selection
The first step in the event processing is the selection of the event target. Recall that an event target is the
destination node of an event. The event target is selected based on the event type.

For mouse events, the event target is the node at the mouse cursor. Multiple nodes can be available
at the mouse cursor. For example, you can have a circle placed over a rectangle. The topmost node at the
mouse cursor is selected as the event target.

The event target for key events is the node that has focus. How a node gets the focus depends on the
type of the node. For example, a TextField may gain focus by clicking the mouse inside it or using the focus
traversal keys such as Tab or Shift + Tab on the Windows format. Shapes such as Circles or Rectangles
do not get focus by default. If you want them to receive key events, you can give them focus by calling the
requestFocus() method of the Node class.

JavaFX supports touch and gesture events on touch-enabled devices. A touch event is generated by
touching a touch screen. Each touch action has a point of contact called a touch point. It is possible to
touch a touch screen with multiple fingers, resulting in multiple touch points. Each state of a touch point,
for example, pressed, released, and so forth, generates a touch event. The location of the touch point
determines the target of the touch event. For example, if the location of the touch event is a point within
a circle, the circle becomes the target of the touch event. In case of multiple nodes at the touch point, the
topmost node is selected as the target.

Users can interact with a JavaFX application using gestures. Typically, a gesture on a touch screen and
a track pad consists of multiple touch points with touch actions. Examples of gesture events are rotating,
scrolling, swiping, and zooming. A rotating gesture is performed by rotating two fingers around each other.
A scrolling gesture is performed by dragging a finger on touch screen. A swiping gesture is performed by
dragging a finger (or multiple fingers) on the touch screen in one direction. A zooming gesture is performed
to scale a node by dragging two fingers apart or closer.

The target for gesture events are selected depending on the type of gesture. For direct gestures, for
example, gestures performed on touch screens, the topmost node at the center point of all touch points at
the start of the gesture is selected as the event target. For indirect gestures, for example, gestures performed
on a track pad, the topmost node at the mouse cursor is selected as the event target.

Event Route Construction
An event travels through event dispatchers in an event dispatch chain. The event dispatch chain is the event
route. The initial and default routes for an event are determined by the event target. The default event route
consists of the container-children path starting at the stage to the event target node.

Suppose you have placed a Circle and a Rectangle in an HBox and the HBox is the root node of the
Scene of a Stage. When you click the Circle, the Circle becomes the event target. The Circle constructs th
e default event route, which is the path starting at the stage to the event target (the Circle).

In fact, an event route consists of event dispatchers that are associated with nodes. However, for all
practical and understanding purposes, you can think of the event route as the path comprising the nodes.
Typically, you do not deal with event dispatchers directly.

Figure 9-3 shows the event route for the mouse-clicked event. The nodes on the event route have been
shown in gray background fills. The nodes on the event route are connected by solid lines. Note that the
Rectangle that is part of the scene graph is not part of the event path when the Circle is clicked.

Chapter 9 ■ event handling

264

An event dispatch chain (or event route) has a head and a tail. In Figure 9-3, the Stage and the Circle
are the head and the tail of the event dispatch chain, respectively. The initial event route may be modified as
the event processing progresses. Typically, but not necessarily, the event passes through all nodes in its route
twice during the event traversal step, as described in the next section.

Event Route Traversal
An event route traversal consists of two phases:

Capture phase•	

Bubbling phase•	

An event travels through each node in its route twice: once during the capture phase and once during
the bubbling phase. You can register event filters and event handlers to a node for specific events types.
The event filters and event handlers registered to a node are executed as the event passes through the node
during the capture phase and the bubbling phase, respectively. The event filters and handlers are passed in
the reference of the current node as the source of the event. As the event travels from one node to another,
the event source keeps changing. However, the event target remains the same from the start to the finish of
the event route traversal.

During the route traversal, a node can consume the event in event filters or handlers, thus completing
the processing of the event. Consuming an event is simply calling the consume() method on the event object.
When an event is consumed, the event processing is stopped, even though some of the nodes in the route
were not traversed at all.

Event Capture Phase
During the capture phase, an event travels from the head to the tail of its event dispatch chain. Figure 9-4
shows the traveling of a mouse-clicked event for the Circle in our example in the capture phase. The
down arrows in the figure denote the direction of the event travel. As the event passes through a node, the
registered event filters for the node are executed. Note that the event capture phase executes only event
filters, not event handlers, for the current node.

Stage

Scene

HBox

Circle Rectangle

Figure 9-3. Construction of the default event route for an event

Chapter 9 ■ event handling

265

In Figure 9-4, the event filters for the Stage, Scene, HBox, and Circle are executed in order, assuming
none of the event filters consumes the event.

You can register multiple event filters for a node. If the node consumes the event in one of its event
filters, its other event filters, which have not been executed yet, are executed before the event processing
stops. Suppose you have registered five event filters for the Scene in our example, and the first event filter
that is executed consumes the event. In this case, the other four event filters for the Scene will still be
executed. After executing the fifth event filter for the Scene, the event processing will stop, without the event
traveling to the remaining nodes (HBox and Circle).

In the event capture phase, you can intercept events (and provide a generic response) that are targeted
at the children of a node. For example, you can add event filters for the mouse-clicked event to the Stage in
our example to intercept all mouse-clicked events for all its children. You can block events from reaching
their targets by consuming the event in event filters for a parent node. For example, if you consume the
mouse-clicked event in a filter for the Stage, the event will not reach its target, in our example, the Circle.

Event Bubbling Phase
During the bubbling phase, an event travels from the tail to the head of its event dispatch chain.
Figure 9-5 shows the traveling of a mouse-clicked event for the Circle in the bubbling phase.

Stage

Scene

HBox

Circle Rectangle

Figure 9-4. The event capture phase

Chapter 9 ■ event handling

266

The up arrows in Figure 9-5 denote the direction of the event travel. As the event passes through a node,
the registered event handlers for the node are executed. Note that the event bubbling phase executes event
handlers for the current node, whereas the event capture phase executes the event filters.

In our example, the event handlers for the Circle, HBox, Scene, and Stage are executed in order,
assuming none of the event filters consumes the event. Note that the event bubbling phase starts at the
target of the event and travels up to the topmost parent in the parent-children hierarchy.

You can register multiple event handlers for a node. If the node consumes the event in one of its
event handlers, its other event handlers, which have not been executed yet, are executed before the event
processing stops. Suppose you have registered five event handlers for the Circle in our example, and the
first event handler that is executed consumes the event. In this case, the other four event handlers for the
Circle will still be executed. After executing the fifth event handler for the Circle, the event processing will
stop, without the event traveling to the remaining nodes (HBox, Scene, and Stage).

Typically, event handlers are registered to target nodes to provide a specific response to events. Sometimes
event handlers are installed on parent nodes to provide a default event response for all its children. If an event
target decides to provide a specific response to the event, it can do so by adding event handlers and consuming
the event, thus blocking the event from reaching the parent nodes in the event bubbling phase.

Let’s look at a trivial example. Suppose you want to display a message box to the user when he clicks
anywhere inside a window. You can register an event handler to the window to display the message box.
When the user clicks inside a circle in the window, you want to display a specific message. You can register
an event handler to the circle to provide the specific message and consume the event. This will provide a
specific event response when the circle is clicked, whereas for other nodes, the window provides a default
event response.

Handling Events
Handling an event means executing the application logic in response to the occurrence of the event.
The application logic is contained in the event filters and handlers, which are objects of the EventHandler
interface, as shown in the following code:

public interface EventHandler<T extends Event> extends EventListener
 void handle(T event);
}

Stage

Scene

HBox

Circle Rectangle

Figure 9-5. The event bubbling phase

Chapter 9 ■ event handling

267

The EventHandler class is a generic class in the javafx.event package. It extends the EventListener
marker interface, which is in the java.util package. The handle() method receives the reference of the
event object, for example, the reference of the KeyEvent, MouseEvent, among others.

Both event filters and handlers are objects of the same EventHandler interface. You cannot tell whether
an EventHandler object is an event filter or an event handler by just looking at it. In fact, you can register
the same EventHandler object as event filters as well as handlers at the same time. The distinction between
the two is made when they are registered to a node. Nodes provide different methods to register them.
Internally, nodes know whether an EventHandler object was registered as an event filter or a handler.
Another distinction between them is made based on the event traversal phase in which they are called.
During the event capture phase, the handle() method of registered filters is called, whereas the handle()
method of registered handlers is called in the event bubbling phase.

Tip ■ in essence, handling an event means writing the application logic for EventHandler objects and
registering them to nodes as event filters, handlers, or both.

Creating Event Filters and Handlers
Creating event filters and handlers is as simple as creating objects of the class that implement the
EventHandler interface. Before Java 8, you would use inner classes to create event filters and handlers, as in
the following code:

EventHandler<MouseEvent> aHandler = new EventHandler<MouseEvent>() {
 @Override
 public void handle(MouseEvent e) {
 /* Event handling code goes here */
 }
};

Starting in Java 8, using lambda expressions is the best choice for creating the event filters and handlers,
as in the following code:

EventHandler<MouseEvent> aHandler = e -> /* Event handling code goes here */;

I use lambda expressions in this book to create event filters and handlers. If you are not familiar
with lambda expressions in Java 8, I suggest you learn at least the basics so you can understand the event
handling code.

The following snippet of code creates a MouseEvent handler. It prints the type of the mouse event that
occurs:

EventHandler<MouseEvent> mouseEventHandler =
 e -> System.out.println("Mouse event type: " + e.getEventType());

Registering Event Filters and Handlers
If you want a node to process events of specific types, you need to register event filters and handlers for those
event types to the node. When the event occurs, the handle() method of the registered event filters and
handlers for the node are called following the rules discussed in the previous sections. If the node is

Chapter 9 ■ event handling

268

no longer interested in processing the events, you need to unregister the event filters and handlers from the
node. Registering and unregistering event filters and handlers are also known as adding and removing event
filters and handlers, respectively.

JavaFX provides two ways to register and unregister event filters and handlers to nodes:

Using the •	 addEventFilter(), addEventHandler(), removeEventFilter(), and
removeEventHandler() methods

Using the •	 onXXX convenience properties

Using addXXX() and removeXXX() Methods
You can use the addEventFilter() and addEventHandler() methods to register event filters and handlers to
nodes, respectively. These methods are defined in the Node class, Scene class, and Window class. Some classes
(e.g., MenuItem and TreeItem) can be event targets; however, they are not inherited from the Node class. The
classes provide only the addEventHandler() method for event handlers registration, such as:

•	 <T extends Event> void addEventFilter(EventType<T> eventType,
EventHandler<? super T> eventFilter)

•	 <T extends Event> void addEventHandler(EventType<T> eventType,
EventHandler<? super T> eventHandler)

These methods have two parameters. The first parameter is the event type and the second is an object
of the EventHandler interface.

You can handle mouse-clicked events for a Circle using the following snippet of code:

import javafx.scene.shape.Circle;
import javafx.event.EventHandler;
import javafx.scene.input.MouseEvent;
...
Circle circle = new Circle (100, 100, 50);

// Create a MouseEvent filter
EventHandler<MouseEvent> mouseEventFilter =
 e -> System.out.println("Mouse event filter has been called.");

// Create a MouseEvent handler
EventHandler<MouseEvent> mouseEventHandler =
 e -> System.out.println("Mouse event handler has been called.");

// Register the MouseEvent filter and handler to the Circle
// for mouse-clicked events
circle.addEventFilter(MouseEvent.MOUSE_CLICKED, mouseEventFilter);
circle.addEventHandler(MouseEvent.MOUSE_CLICKED, mouseEventHandler);

This code creates two EventHandler objects, which prints a message on the console. At this stage, they
are not event filters or handlers. They are just two EventHandler objects. Note that giving the reference
variables names and printing messages that use the words filter and handler does not make any difference
in their status as filters and handlers. The last two statements register one of the EventHandler objects as an
event filter and another as an event handler; both are registered for the mouse-clicked event.

Chapter 9 ■ event handling

269

Registering the same EventHandler object as event filters as well as handlers is allowed. The following
snippet of code uses one EventHandler object as the filter and handler for the Circle to handle the
mouse-clicked event:

// Create a MouseEvent EventHandler object
EventHandler<MouseEvent> handler =
 e -> System.out.println("Mouse event filter or handler has been called.");

// Register the same EventHandler object as the MouseEvent filter and handler
// to the Circle for mouse-clicked events
circle.addEventFilter(MouseEvent.MOUSE_CLICKED, handler);
circle.addEventHandler(MouseEvent.MOUSE_CLICKED, handler);

Tip ■ You can add multiple event filters and events for a node using the addEventFilter() and
addEventHandler() methods. You need to call these methods once for every instance of the event filters
and handlers that you want to add.

Listing 9-1 has the complete program to demonstrate the handling of the mouse-clicked events of a
Circle object. It uses an event filter and an event handler. Run the program and click inside the circle. When
the circle is clicked, the event filter is called first, followed by the event handler. This is evident from the
output. The mouse-clicked event occurs every time you click any point inside the circle. If you click outside
the circle, the mouse-clicked event still occurs; however, you do not see any output because you have not
registered event filters or handlers on the HBox, Scene, and Stage.

Listing 9-1. Registering Event Filters and Handlers

// EventRegistration.java
package com.jdojo.event;

import javafx.application.Application;
import javafx.event.EventHandler;
import javafx.scene.Scene;
import javafx.scene.input.MouseEvent;
import javafx.scene.layout.HBox;
import javafx.scene.paint.Color;
import javafx.scene.shape.Circle;
import javafx.stage.Stage;

public class EventRegistration extends Application {
 public static void main(String[] args) {
 Application.launch(args);
 }

 @Override
 public void start(Stage stage) {
 Circle circle = new Circle (100, 100, 50);
 circle.setFill(Color.CORAL);

Chapter 9 ■ event handling

270

 // Create a MouseEvent filter
 EventHandler<MouseEvent> mouseEventFilter =
 e -> System.out.println("Mouse event filter has been called.");

 // Create a MouseEvent handler
 EventHandler<MouseEvent> mouseEventHandler =
 e -> System.out.println("Mouse event handler has been called.");

 // Register the MouseEvent filter and handler to the Circle
 // for mouse-clicked events
 circle.addEventFilter(MouseEvent.MOUSE_CLICKED, mouseEventFilter);
 circle.addEventHandler(MouseEvent.MOUSE_CLICKED, mouseEventHandler);

 HBox root = new HBox();
 root.getChildren().add(circle);
 Scene scene = new Scene(root);
 stage.setScene(scene);
 stage.setTitle("Registering Event Filters and Handlers");
 stage.show();
 stage.sizeToScene();
 }
}

Mouse event filter has been called.
Mouse event handler has been called.
...

To unregister an event filter and an event handler, you need to call the removeEventFilter() and
removeEventHandler() methods, respectively:

•	 <T extends Event> void removeEventFilter(EventType<T> eventType,
EventHandler<? super T> eventFilter)

•	 <T extends Event> void removeEventHandler(EventType<T> eventType,
EventHandler<? super T> eventHandler)

The following snippet of code adds and removes an event filter to a Circle, and later, it removes them.
Note that once an EventHandler is removed from a node, its handle() method is not called when the
event occurs:

// Create a MouseEvent EventHandler object
EventHandler<MouseEvent> handler =
 e -> System.out.println("Mouse event filter or handler has been called.");

// Register the same EventHandler object as the MouseEvent filter and handler to the Circle
// for mouse-clicked events
circle.addEventFilter(MouseEvent.MOUSE_CLICKED, handler);
circle.addEventHandler(MouseEvent.MOUSE_CLICKED, handler);

...

Chapter 9 ■ event handling

271

// At a later stage, when you are no longer interested in handling the mouse
// clicked event for the Circle, unregister the event filter and handler
circle.removeEventFilter(MouseEvent.MOUSE_CLICKED, handler);
circle.removeEventHandler(MouseEvent.MOUSE_CLICKED, handler);

Using onXXX Convenience Properties
The Node, Scene, and Window classes contain event properties to store event handlers of some selected
event types. The property names use the event type pattern. They are named as onXXX. For example, the
onMouseClicked property stores the event handler for the mouse-clicked event type; the onKeyTyped
property stores the event handler for the key-typed event, and so on. You can use the setOnXXX() methods
of these properties to register event handlers for a node. For example, use the setOnMouseClicked() method
to register an event handler for the mouse-clicked event and use the setOnKeyTyped() method to register an
event handler for the key-typed event, and so on. The setOnXXX() methods in various classes are known as
convenience methods for registering event handlers.

You need to remember some points about the onXXX convenience properties:

They only support the registration of event handlers, not event filters. If you need to •	
register event filters, use the addEventFilter() method.

They only support the registration of •	 one event handler for a node. Multiple event
handlers for a node may be registered using the addEventHandler() method.

These properties exist only for the commonly used events for a node type. For •	
example, the onMouseClicked property exists in the Node and Scene classes, but not
the Window class; the onShowing property exists in the Window class, but not in the
Node and Scene classes.

The program in Listing 9-2 works the same as the program in Listing 9-1. This time, you have used the
onMouseClicked property of the Node class to register the mouse-clicked event handler for the circle. Notice
that to register the event filter, you have to use the addEventFilter() method as before. Run the program
and click inside the circle. You will get the same output you got when running the code in Listing 9-1.

Listing 9-2. Using the Convenience Event Handler Properties

// EventHandlerProperties.java
package com.jdojo.event;

import javafx.application.Application;
import javafx.event.EventHandler;
import javafx.scene.Scene;
import javafx.scene.input.MouseEvent;
import javafx.scene.layout.HBox;
import javafx.scene.paint.Color;
import javafx.scene.shape.Circle;
import javafx.stage.Stage;

public class EventHandlerProperties extends Application {
 public static void main(String[] args) {
 Application.launch(args);
 }

Chapter 9 ■ event handling

272

 @Override
 public void start(Stage stage) {
 Circle circle = new Circle (100, 100, 50);
 circle.setFill(Color.CORAL);

 HBox root = new HBox();
 root.getChildren().add(circle);
 Scene scene = new Scene(root);
 stage.setScene(scene);
 stage.setTitle("Using convenience event handler properties");
 stage.show();
 stage.sizeToScene();

 // Create a MouseEvent filter
 EventHandler<MouseEvent> eventFilter =
 e -> System.out.println("Mouse event filter has been called.");

 // Create a MouseEvent handler
 EventHandler<MouseEvent> eventHandler =
 e -> System.out.println("Mouse event handler has been called.");

 // Register the filter using the addEventFilter() method
 circle.addEventFilter(MouseEvent.MOUSE_CLICKED, eventFilter);

 // Register the handler using the setter method for
 // the onMouseCicked convenience event property
 circle.setOnMouseClicked(eventHandler);
 }
}

The convenience event properties do not provide a separate method to unregister the event handler.
Setting the property to null unregisters the event handler that has already been registered:

// Register an event handler for the mouse-clicked event
circle.setOnMouseClicked(eventHandler);

...

// Later, when you are no longer interested in processing the mouse-clicked event,
// unregister it.
circle.setOnMouseClicked(null);

Classes that define the onXXX event properties also define getOnXXX() getter methods that return the
reference of the registered event handler. If no event handler is set, the getter method returns null.

Chapter 9 ■ event handling

273

Execution Order of Event Filters and Handlers
There are some execution order rules for event filters and handlers for both similar and different nodes:

Event filters are called before event handlers. Event filters are executed from the •	
topmost parent to the event target in the parent-child order. Event handlers are
executed in the reverse order of the event filters. That is, the execution of the event
handlers starts at the event target and moves up in the child-parent order.

For the same node, event filters and handlers for a specific event type are called •	
before the event filters and handlers for generic types. Suppose you have registered
event handlers to a node for MouseEvent.ANY and MouseEvent.MOUSE_CLICKED. Event
handlers for both event types are capable of handling mouse-clicked events. When the
mouse is clicked on the node, the event handler for the MouseEvent.MOUSE_CLICKED
event type is called before the event handler for the MouseEvent.ANY event type. Note
that a mouse-pressed event and a mouse-released event occur before a mouse-clicked
event occurs. In our example, these events will be handled by the event handler for the
MouseEvent.ANY event type.

The order in which the event filters and handlers for the same event type for a node •	
are executed is not specified. There is one exception to this rule. Event handlers
registered to a node using the addEventHandler() method are executed before the
event handlers registered using the setOnXXX() convenience methods.

Listing 9-3 demonstrates the execution order of the event filters and handlers for different nodes. The
program adds a Circle and a Rectangle to an HBox. The HBox is added to the Scene. An event filter and
an event handler are added to the Stage, Scene, HBox, and Circle for the mouse-clicked event. Run the
program and click anywhere inside the circle. The output shows the order in which filters and handlers are
called. The output contains the event phase, type, target, source, and location. Notice that the source of the
event changes as the event travels from one node to another. The location is relative to the event source.
Because every node uses its own local coordinate system, the same point, where the mouse is clicked, has
different values for (x, y) coordinates relative to different nodes.

Listing 9-3. Execution Order for Event Filters and Handlers

// CaptureBubblingOrder.java
package com.jdojo.event;

import javafx.application.Application;
import javafx.event.EventHandler;
import javafx.geometry.Insets;
import javafx.scene.Scene;
import javafx.scene.input.MouseEvent;
import javafx.scene.layout.HBox;
import javafx.scene.paint.Color;
import javafx.scene.shape.Circle;
import javafx.scene.shape.Rectangle;
import javafx.stage.Stage;
import static javafx.scene.input.MouseEvent.MOUSE_CLICKED;

If you click the rectangle, you will notice that the output shows the same path for the event through
its parents as it did for the circle. The event still passes through the rectangle, which is the event target.
However, you do not see any output, because you have not registered any event filters or handlers for the
rectangle to output any message. You can click at any point outside the circle and rectangle to see the event
target and the event path.

Chapter 9 ■ event handling

274

public class CaptureBubblingOrder extends Application {
 public static void main(String[] args) {
 Application.launch(args);
 }

 @Override
 public void start(Stage stage) {
 Circle circle = new Circle (50, 50, 50);
 circle.setFill(Color.CORAL);

 Rectangle rect = new Rectangle(100, 100);
 rect.setFill(Color.TAN);

 HBox root = new HBox();
 root.setPadding(new Insets(20));
 root.setSpacing(20);
 root.getChildren().addAll(circle, rect);

 Scene scene = new Scene(root);

 // Create two EventHandlders
 EventHandler<MouseEvent> filter = e -> handleEvent("Capture", e);
 EventHandler<MouseEvent> handler = e -> handleEvent("Bubbling", e);

 // Register filters
 stage.addEventFilter(MOUSE_CLICKED, filter);
 scene.addEventFilter(MOUSE_CLICKED, filter);
 root.addEventFilter(MOUSE_CLICKED, filter);
 circle.addEventFilter(MOUSE_CLICKED, filter);

 // Register handlers
 stage.addEventHandler(MOUSE_CLICKED, handler);
 scene.addEventHandler(MOUSE_CLICKED, handler);
 root.addEventHandler(MOUSE_CLICKED, handler);
 circle.addEventHandler(MOUSE_CLICKED, handler);

 stage.setScene(scene);
 stage.setTitle("Event Capture and Bubbling Execution Order");
 stage.show();
 }

 public void handleEvent(String phase, MouseEvent e) {
 String type = e.getEventType().getName();
 String source = e.getSource().getClass().getSimpleName();
 String target = e.getTarget().getClass().getSimpleName();

 // Get coordinates of the mouse cursor relative to the event source
 double x = e.getX();
 double y = e.getY();

Chapter 9 ■ event handling

275

 System.out.println(phase + ": Type=" + type +
 ", Target=" + target + ", Source=" + source +
 ", location(" + x + ", " + y + ")");
 }
}

Listing 9-4 demonstrates the execution order of event handlers for a node. It displays a circle. It registers
three event handlers for the circle:

One for the •	 MouseEvent.ANY event type

One for the •	 MouseEvent.MOUSE_CLICKED event type using the
addEventHandler() method

One for the •	 MouseEvent.MOUSE_CLICKED event type using the
setOnMouseClicked() method

Run the program and click inside the circle. The output shows the order in which three event handlers
are called. The order will be similar to that presented in the discussion at the beginning of the section.

Listing 9-4. Order of Execution of Event Handlers for a Node

// HandlersOrder.java
package com.jdojo.event;

import javafx.application.Application;
import javafx.scene.Scene;
import javafx.scene.input.MouseEvent;
import javafx.scene.layout.HBox;
import javafx.scene.paint.Color;
import javafx.scene.shape.Circle;
import javafx.stage.Stage;

public class HandlersOrder extends Application {
 public static void main(String[] args) {
 Application.launch(args);
 }

 @Override
 public void start(Stage stage) {
 Circle circle = new Circle(50, 50, 50);
 circle.setFill(Color.CORAL);

 HBox root = new HBox();
 root.getChildren().addAll(circle);
 Scene scene = new Scene(root);

 /* Register three handlers for the circle that can handle mouse-clicked events */
 // This will be called last
 circle.addEventHandler(MouseEvent.ANY, e -> handleAnyMouseEvent(e));

Chapter 9 ■ event handling

276

 // This will be called first
 circle.addEventHandler(MouseEvent.MOUSE_CLICKED,
 e -> handleMouseClicked("addEventHandler()", e));

 // This will be called second
 circle.setOnMouseClicked(e -> handleMouseClicked("setOnMouseClicked()", e));

 stage.setScene(scene);
 stage.setTitle("Execution Order of Event Handlers of a Node");
 stage.show();
 }

 public void handleMouseClicked(String registrationMethod, MouseEvent e) {
 System.out.println(registrationMethod
 + ": MOUSE_CLICKED handler detected a mouse click.");
 }

 public void handleAnyMouseEvent(MouseEvent e) {
 // Print a message only for mouse-clicked events, ignoring
 // other mouse events such as mouse-pressed, mouse-released, etc.
 if (e.getEventType() == MouseEvent.MOUSE_CLICKED) {
 System.out.println("MouseEvent.ANY handler detected a mouse click.");
 }
 }
}

addEventHandler(): MOUSE_CLICKED handler detected a mouse click.
setOnMouseClicked(): MOUSE_CLICKED handler detected a mouse click.
MouseEvent.ANY handler detected a mouse click.

Consuming Events
An event is consumed by calling its consume() method. The event class contains the method and it is
inherited by all event classes. Typically, the consume() method is called inside the handle() method of the
event filters and handlers.

Consuming an event indicates to the event dispatcher that the event processing is complete and that
the event should not travel any farther in the event dispatch chain. If an event is consumed in an event filter
of a node, the event does not travel to any child node. If an event is consumed in an event handler of a node,
the event does not travel to any parent node.

All event filters or handlers for the consuming node are called, irrespective of which filter or handler
consumes the event. Suppose you have registered three event handlers for a node and the event handler, which
is called first, consumes the event. In this case, the other two event handlers for the node are still called.

If a parent node does not want its child nodes to respond to an event, it can consume the event in its
event filter. If a parent node provides a default response to an event in an event handler, a child node can
provide a specific response and consume the event, thus suppressing the default response of the parent.

Typically, nodes consume most input events after providing a default response. The rule is that all event
filters and handlers of a node are called, even if one of them consumes the event. This makes it possible for
developers to execute their event filters and handlers for a node even if the node consumes the event.

Chapter 9 ■ event handling

277

The code in Listing 9-5 shows how to consume an event. Figure 9-6 shows the screen when you run
the program.

Listing 9-5. Consuming Events

// ConsumingEvents.java
package com.jdojo.event;

import javafx.application.Application;
import javafx.event.EventHandler;
import javafx.geometry.Insets;
import javafx.scene.Scene;
import javafx.scene.control.CheckBox;
import javafx.scene.input.MouseEvent;
import static javafx.scene.input.MouseEvent.MOUSE_CLICKED;
import javafx.scene.layout.HBox;
import javafx.scene.paint.Color;
import javafx.scene.shape.Circle;
import javafx.scene.shape.Rectangle;
import javafx.stage.Stage;

The program adds a Circle, a Rectangle, and a CheckBox to an HBox. The HBox is added to the scene
as the root node. An event handler is added to the Stage, Scene, HBox, and Circle. Notice that you have a
different event handler for the Circle, just to keep the program logic simple. When the check box is selected,
the event handler for the circle consumes the mouse-clicked event, thus preventing the event from traveling
up to the HBox, Scene, and Stage. If the check box is not selected, the mouse-clicked event on the circle
travels from the Circle to the HBox, Scene, and Stage. Run the program and, using the mouse, click the
different areas of the scene to see the effect. Notice that the mouse-clicked event handler for the HBox, Scene,
and Stage are executed, even if you click a point outside the circle, because they are in the event dispatch
chain of the clicked nodes.

public class ConsumingEvents extends Application {
 private CheckBox consumeEventCbx = new CheckBox("Consume Mouse Click at Circle");

 public static void main(String[] args) {
 Application.launch(args);
 }

Figure 9-6. Consuming events

Chapter 9 ■ event handling

278

 @Override
 public void start(Stage stage) {
 Circle circle = new Circle (50, 50, 50);
 circle.setFill(Color.CORAL);

 Rectangle rect = new Rectangle(100, 100);
 rect.setFill(Color.TAN);

 HBox root = new HBox();
 root.setPadding(new Insets(20));
 root.setSpacing(20);
 root.getChildren().addAll(circle, rect, consumeEventCbx);

 Scene scene = new Scene(root);

 // Register mouse-clicked event handlers to all nodes,
 // except the rectangle and checkbox
 EventHandler<MouseEvent> handler = e -> handleEvent(e);
 EventHandler<MouseEvent> circleMeHandler = e -> handleEventforCircle(e);

 stage.addEventHandler(MOUSE_CLICKED, handler);
 scene.addEventHandler(MOUSE_CLICKED, handler);
 root.addEventHandler(MOUSE_CLICKED, handler);
 circle.addEventHandler(MOUSE_CLICKED, circleMeHandler);

 stage.setScene(scene);
 stage.setTitle("Consuming Events");
 stage.show();
 }

 public void handleEvent(MouseEvent e) {
 print(e);
 }

 public void handleEventforCircle(MouseEvent e) {
 print(e);
 if (consumeEventCbx.isSelected()) {
 e.consume();
 }
 }

 public void print(MouseEvent e) {
 String type = e.getEventType().getName();
 String source = e.getSource().getClass().getSimpleName();
 String target = e.getTarget().getClass().getSimpleName();

 // Get coordinates of the mouse cursor relative to the event source
 double x = e.getX();
 double y = e.getY();

Chapter 9 ■ event handling

279

 System.out.println("Type=" + type + ", Target=" + target +
 ", Source=" + source +
 ", location(" + x + ", " + y + ")");
 }
}

Clicking the check box does not execute the mouse-clicked event handlers for the HBox, Scene, and
Stage, whereas clicking the rectangle does. Can you think of a reason for this behavior? The reason is simple.
The check box has a default event handler that takes a default action and consumes the event, preventing it
from traveling up the event dispatch chain. The rectangle does not consume the event, allowing it to travel
up the event dispatch chain.

Tip ■ Consuming an event by the event target in an event filter has no effect on the execution of any other
event filters. however, it prevents the event bubbling phase from happening. Consuming an event in the
event handlers of the topmost node, which is the head of the event dispatch chain, has no effect on the event
 processing at all.

Handling Input Events
An input event indicates a user input (or a user action), for example, clicking the mouse, pressing a key,
touching a touch screen, and so forth. JavaFX supports many types of input events. Figure 9-7 shows the
class diagram for some of the classes that represent input event. All input event–related classes are in the
javafx.scene.input package. The InputEvent class is the superclass of all input event classes. Typically,
nodes execute the user-registered input event handlers before taking the default action. If the user event
handlers consume the event, nodes do not take the default action. Suppose you register key-typed event
handlers for a TextField, which consume the event. When you type a character, the TextField will not add
and display it as its content. Therefore, consuming input events for nodes gives you a chance to disable the
default behavior of the node. In next sections, I will discuss mouse and key input events.

Figure 9-7. Class hierarchy for some input events

Chapter 9 ■ event handling

280

Handling Mouse Events
An object of the MouseEvent class represents a mouse event. The MouseEvent class defines the following
mouse-related event types constants. All constants are of the type EventType<MouseEvent>. The Node class
contains the convenience onXXX properties for most of the mouse event types that can be used to add one
event handler of a specific mouse event type for a node:

•	 ANY: It is the supertype of all mouse event types. If a node wants to receive all types of
mouse events, you would register handlers for this type. The InputEvent.ANY is the
supertype of this event type.

•	 MOUSE_PRESSED: Pressing a mouse button generates this event. The getButton()
method of the MouseEvent class returns the mouse button that is responsible for the
event. A mouse button is represented by the NONE, PRIMARY, MIDDLE, and SECONDARY
constants defined in the MouseButton enum.

•	 MOUSE_RELEASED: Releasing a mouse button generates this event. This event is
delivered to the same node on which the mouse was pressed. For example, you can
press a mouse button on a circle, drag the mouse outside the circle, and release the
mouse button. The MOUSE_RELEASED event will be delivered to the circle, not the
node on which the mouse button was released.

•	 MOUSE_CLICKED: This event is generated when a mouse button is clicked on a node.
The button should be pressed and released on the same node for this event to occur.

•	 MOUSE_MOVED: Moving the mouse without pressing any mouse buttons generates
this event.

•	 MOUSE_ENTERED: This event is generated when the mouse enters a node. The event
capture and bubbling phases do not take place for this event. That is, event filters
and handlers of the parent nodes of the event target of this event are not called.

•	 MOUSE_ENTERED_TARGET: This event is generated when the mouse enters a node. It is
a variant of the MOUSE_ENTERED event type. Unlike the MOUSE_ENTER event, the event
capture and bubbling phases take place for this event.

•	 MOUSE_EXITED: This event is generated when the mouse leaves a node. The event
capture and bubbling phases do not take place for this event, that is, it is delivered
only to the target node.

•	 MOUSE_EXITED_TARGET: This event is generated when the mouse leaves a node. It is
a variant of the MOUSE_EXITED event type. Unlike the MOUSE_EXITED event, the event
capture and bubbling phases take place for this event.

•	 DRAG_DETECTED: This event is generated when the mouse is pressed and dragged over
a node over a platform-specific distance threshold.

•	 MOUSE_DRAGGED: Moving the mouse with a pressed mouse button generates this
event. This event is delivered to the same node on which the mouse button was
pressed, irrespective of the location of the mouse pointer during the drag.

Chapter 9 ■ event handling

281

Getting Mouse Location
The MouseEvent class contains methods to give you the location of the mouse when a mouse event occurs.
You can obtain the mouse location relative to the coordinate systems of the event source node, the scene,
and the screen. The getX() and getY() methods give the (x, y) coordinates of the mouse relative to the event
source node. The getSceneX() and getSceneY() methods give the (x, y) coordinates of the mouse relative to
the scene to which the node is added. The getScreenX() and getScreenY() methods give the
(x, y) coordinates of the mouse relative to the screen to which the node is added.

Listing 9-6 contains the program to show how to use the methods in the MouseEvent class to know
the mouse location. It adds a MOUSE_CLICKED event handler to the stage, and the stage can receive the
notification when the mouse is clicked anywhere in its area. Run the program and click anywhere in
the stage, excluding its title bar if you are running it on the desktop. Each mouse click prints a message
describing the source, target, and location of the mouse relative to the source, scene, and screen.

Listing 9-6. Determining the Mouse Location During Mouse Events

// MouseLocation.java
package com.jdojo.event;

import javafx.application.Application;
import javafx.geometry.Insets;
import javafx.scene.Scene;
import javafx.scene.input.MouseEvent;
import javafx.scene.layout.HBox;
import javafx.scene.paint.Color;
import javafx.scene.shape.Circle;
import javafx.scene.shape.Rectangle;
import javafx.stage.Stage;

public class MouseLocation extends Application {
 public static void main(String[] args) {
 Application.launch(args);
 }

 @Override
 public void start(Stage stage) {
 Circle circle = new Circle (50, 50, 50);
 circle.setFill(Color.CORAL);

 Rectangle rect = new Rectangle(100, 100);
 rect.setFill(Color.TAN);

 HBox root = new HBox();
 root.setPadding(new Insets(20));
 root.setSpacing(20);
 root.getChildren().addAll(circle, rect);

Chapter 9 ■ event handling

282

 // Add a MOUSE_CLICKED event handler to the stage
 stage.addEventHandler(MouseEvent.MOUSE_CLICKED, e -> handleMouseMove(e));

 Scene scene = new Scene(root);
 stage.setScene(scene);
 stage.setTitle("Mouse Location");
 stage.show();
 }

 public void handleMouseMove(MouseEvent e) {
 String source = e.getSource().getClass().getSimpleName();
 String target = e.getTarget().getClass().getSimpleName();

 // Mouse location relative to the event source
 double sourceX = e.getX();
 double sourceY = e.getY();

 // Mouse location relative to the scene
 double sceneX = e.getSceneX();
 double sceneY = e.getSceneY();

 // Mouse location relative to the screen
 double screenX = e.getScreenX();
 double screenY = e.getScreenY();

 System.out.println("Source=" + source + ", Target=" + target +
 ", Location:" +
 " source(" + sourceX + ", " + sourceY + ")" +
 ", scene(" + sceneX + ", " + sceneY + ")" +
 ", screen(" + screenX + ", " + screenY + ")");
 }
}

Representing Mouse Buttons
Typically, a mouse has three buttons. You will also find some that have only one or two buttons. Some platforms
provide ways to simulate the missing mouse buttons. The MouseButton enum in the javafx.scene.input
package contains constants to represent mouse button. Table 9-2 contains the list of constants defined in the
MouseButton enum.

Table 9-2. Constants for the MouseButton Enum

MouseButton Enum Constant Description

NONE It represents no button.

PRIMARY It represents the primary button. Usually it is the left button in the mouse.

MIDDLE It represents the middle button.

SECONDARY It represents the secondary button. Usually it is the right button in the
mouse.

Chapter 9 ■ event handling

283

The location of the primary and second mouse buttons depends on the mouse configuration. Typically,
for right-handed users, the left and right buttons are configured as the primary and secondary buttons,
respectively. For the left-handed users, the buttons are configured in the reverse order. If you have a two-
button mouse, you do not have a middle button.

State of Mouse Buttons
The MouseEvent object that represents a mouse event contains the state of the mouse buttons at the time the
event occurs. The MouseEvent class contains many methods to report the state of mouse buttons. Table 9-3
contains a list of such methods with their descriptions.

In many circumstances, the getButton() method may return MouseButton.NONE, for example, when a
mouse event is triggered on a touch screen by using the fingers instead of a mouse or when a mouse event,
such as a mouse-moved event, is not triggered by a mouse button.

It is important to understand the difference between the getButton() method and other methods,
for example, isPrimaryButtonDown(), which returns the pressed state of buttons. The getButton()
method returns the button that triggers the event. Not all mouse events are triggered by buttons.
For example, a mouse-move event is triggered when the mouse moves, not by pressing or releasing a button.
If a button is not responsible for a mouse event, the getButton() method returns MouseButton.NONE. The
isPrimaryButtonDown() method returns true if the primary button is currently pressed, whether or not it
triggered the event. For example, when you press the primary button, the mouse-pressed event occurs. The
getButton() method will return MouseButton.PRIMARY because this is the button that triggered the
mouse-pressed event. The isPrimaryButtonDown() method returns true because this button is pressed
when the mouse-pressed event occurs. Suppose you keep the primary button pressed and you press the
secondary button. Another mouse-pressed event occurs. However, this time, the getButton() returns
MouseButton.SECONDARY and both isPrimaryButtonDown() and isSecondaryButtonDown() methods return
true, because both of these buttons are in the pressed state at the time of the second mouse-pressed event.

Table 9-3. Methods Related to the State of Mouse Buttons in the MouseEvent Class

Method Description

MouseButton getButton() It returns the mouse button responsible for the mouse event.

int getClickCount() It returns the number of mouse clicks associated with the mouse event.

boolean isPrimaryButtonDown() It returns true if the primary button is currently pressed. Otherwise,
it returns false.

boolean isMiddleButtonDown() It returns true if the middle button is currently pressed. Otherwise,
it returns false.

boolean isSecondaryButtonDown() It returns true if the secondary button is currently pressed.
Otherwise, it returns false.

boolean isPopupTrigger() It returns true if the mouse event is the pop-up menu trigger event
for the platform. Otherwise, it returns false.

boolean isStillSincePress() It returns true if the mouse cursor stays within a small area, which
is known as the system-provided hysteresis area, between the last
mouse-pressed event and the current mouse event.

Chapter 9 ■ event handling

284

A pop-up menu, also known as a context, contextual, or shortcut menu, is a menu that gives a user a set
of choices that are available in a specific context in an application. For example, when you click the right
mouse button in a browser on the Windows platform, a pop-up menu is displayed. Different platforms
trigger pop-up menu events differently upon use of a mouse or keyboard. On the Windows platform,
typically it is a right-mouse click or Shift + F10 key press.

The isPopupTrigger() method returns true if the mouse event is the pop-up menu trigger event for the
platform. Otherwise, it returns false. If you perform an action based on the returned value of this method,
you need to use it in both mouse-pressed and mouse-released events. Typically, when this method returns
true, you let the system display the default pop-up menu.

Tip ■ JavaFX provides a context menu event that is a specific type of input event. it is represented by the
ContextMenuEvent class in the javafx.scene.input package. if you want to handle context menu events,
use ContextMenuEvent.

Hysteresis in GUI Applications
Hysteresis is a feature that allows user inputs to be within a range of time or location. The time range within
which user inputs are accepted is known as the hysteresis time. The area in which user inputs are accepted
is known as the hysteresis area. Hysteresis time and area are system dependent. For example, modern GUI
applications provide features that are invoked by double-clicking a mouse button. A time gap exists between
two clicks. If the time gap is within the hysteresis time of the system, two clicks are considered a double-click.
Otherwise, they are considered two separate single clicks.

Typically, during a mouse-click event, the mouse is moved by a very tiny distance between the
mouse-pressed and mouse-released events. Sometimes it is important to take into account the distance the
mouse is moved during a mouse click. The isStillSincePress() method returns true if the mouse stays in
the system-provided hysteresis area since the last mouse-pressed event and the current event. This method
is important when you want to consider a mouse-drag action. If this method returns true, you may ignore
mouse drags as the mouse movement is still within the hysteresis distance from the point where the mouse
was last pressed.

State of Modifier Keys
A modifier key is used to change the normal behavior of other keys. Some examples of modifier keys are
Alt, Shift, Ctrl, Meta, Caps Lock, and Num Lock. Not all platforms support all modifier keys. The Meta key
is present on Mac, not on Windows. Some systems let you simulate the functionality of a modifier key
even if the modifier key is physically not present, for example, you can use the Windows key on Windows to
work as the Meta key. The MouseEvent method contains methods to report the pressed state of some of the
modifier keys when the mouse event occurs. Table 9-4 lists the methods related to the modifier keys in the
MouseEvent class.

Chapter 9 ■ event handling

285

Picking Mouse Events on Bounds
The Node class has a pickOnBounds property to control the way mouse events are picked (or generated) for
a node. A node can have any geometric shape, whereas its bounds always define a rectangular area. If the
property is set to true, the mouse events are generated for the node if the mouse is on the perimeter or inside
of its bounds. If the property is set to false, which is the default value, mouse events are generated for the
node if the mouse is on the perimeter or inside of its geometric shape. Some nodes, such as the Text node,
have the default value for the pickOnBounds property set to true.

Figure 9-8 shows the perimeter for the geometric shape and bounds of a circle. If the pickOnBounds
property for the circle is false, the mouse event will not be generated for the circle if the mouse is one of the
four areas in the corners that lie between the perimeter of the geometric shape and bounds.

Listing 9-7 contains the program to show the effects of the pickOnBounds property of a Circle node. It
displays a window as shown in Figure 9-9. The program adds a Rectangle and a Circle to a Group. Note that
the Rectangle is added to the Group before the Circle to keep the former below the latter in Z-order.

Geometric shape perimeter

Bounds perimeter

Area between geometric
shape and bounds

Figure 9-8. Difference between the geometric shape and bounds of a circle

Table 9-4. Methods, Related to the State of Modifier Keys, in the MouseEvent Class

Method Description

boolean isAltDown() It returns true if the Alt key is down for this mouse event. Otherwise,
it returns false.

boolean isControlDown() It returns true if the Ctrl key is down for this mouse event. Otherwise,
it returns false.

boolean isMetaDown() It returns true if the Meta key is down for this mouse event. Otherwise,
it returns false.

boolean isShiftDown() It returns true if the Shift key is down for this mouse event. Otherwise,
it returns false.

boolean isShortcutDown() It returns true if the platform-specific shortcut key is down for this
mouse event. Otherwise, it returns false. The shortcut modifier key is
the Ctrl key on Windows and Meta key on Mac.

Chapter 9 ■ event handling

286

The Rectangle uses red as the fill color, whereas light gray is used as the fill color for the Circle. The
area in red is the area between the perimeters of the geometric shape and bounds of the Circle.

You have a check box that controls the pickOnBounds property of the circle. If it is selected, the property
is set to true. Otherwise, it is set to false.

When you click the gray area, Circle always picks up the mouse-clicked event. When you click the
red area with the check box unselected, the Rectangle picks up the event. When you click the red area
with the check box selected, the Circle picks up the event. The output shows who picks up the mouse-
clicked event.

Listing 9-7. Testing the Effects of the pickOnBounds Property for a Circle Node

// PickOnBounds.java
package com.jdojo.event;

import javafx.application.Application;
import javafx.event.ActionEvent;
import javafx.geometry.Insets;
import javafx.scene.Group;
import javafx.scene.Scene;
import javafx.scene.control.CheckBox;
import javafx.scene.input.MouseEvent;
import javafx.scene.layout.HBox;
import javafx.scene.paint.Color;
import javafx.scene.shape.Circle;
import javafx.scene.shape.Rectangle;
import javafx.stage.Stage;

public class PickOnBounds extends Application {
 private CheckBox pickonBoundsCbx = new CheckBox("Pick on Bounds");
 Circle circle = new Circle(50, 50, 50, Color.LIGHTGRAY);

 public static void main(String[] args) {
 Application.launch(args);
 }

Figure 9-9. Demonstrating the effects of the pickOnBounds property of a Circle node

Chapter 9 ■ event handling

287

 @Override
 public void start(Stage stage) {
 Rectangle rect = new Rectangle(100, 100);
 rect.setFill(Color.RED);

 Group group = new Group();
 group.getChildren().addAll(rect, circle);

 HBox root = new HBox();
 root.setPadding(new Insets(20));
 root.setSpacing(20);
 root.getChildren().addAll(group, pickonBoundsCbx);

 // Add MOUSE_CLICKED event handlers to the circle and rectangle
 circle.setOnMouseClicked(e -> handleMouseClicked(e));
 rect.setOnMouseClicked(e -> handleMouseClicked(e));

 // Add an Action handler to the checkbox
 pickonBoundsCbx.setOnAction(e -> handleActionEvent(e));

 Scene scene = new Scene(root);
 stage.setScene(scene);
 stage.setTitle("Pick on Bounds");
 stage.show();
 }

 public void handleMouseClicked(MouseEvent e) {
 String target = e.getTarget().getClass().getSimpleName();
 String type = e.getEventType().getName();
 System.out.println(type + " on " + target);
 }

 public void handleActionEvent(ActionEvent e) {
 if (pickonBoundsCbx.isSelected()) {
 circle.setPickOnBounds(true);
 } else {
 circle.setPickOnBounds(false);
 }
 }
}

Mouse Transparency
The Node class has a mouseTransparent property to control whether or not a node and its children receive
mouse events. Contrast the pickOnBounds and mouseTransparent properties: The former determines the
area of a node that generates mouse events, and the latter determines whether or not a node and its children
generate mouse events, irrespective of the value of the former. The former affects only the node on which it
is set; the latter affects the node on which it is set and all its children.

Chapter 9 ■ event handling

288

The code in Listing 9-8 shows the effects of the mouseTransparent property of a Circle. This is a variant
of the program in Listing 9-7. It displays a window that is very similar to the one shown in Figure 9-9. When
the check box MouseTransparency is selected, it sets the mouseTransparent property of the circle to true.
When the check box is unselected, it sets the mouseTransparent property of the circle to false.

Click the circle, in the gray area, when the check box is selected and all mouse-clicked events will be
delivered to the rectangle. This is because the circle is mouse transparent and it lets the mouse events pass
through. Unselect the check box, and all mouse-clicks in the gray area are delivered to the circle. Note that
clicking the red area always delivers the event to the rectangle, because the pickOnBounds property for the
circle is set to false by default. The output shows the node that receives the mouse-clicked events.

Listing 9-8. Testing the Effects of the mouseTransparent Property for a Circle Node

// MouseTransparency.java
package com.jdojo.event;

import javafx.application.Application;
import javafx.event.ActionEvent;
import javafx.geometry.Insets;
import javafx.scene.Group;
import javafx.scene.Scene;
import javafx.scene.control.CheckBox;
import javafx.scene.input.MouseEvent;
import javafx.scene.layout.HBox;
import javafx.scene.paint.Color;
import javafx.scene.shape.Circle;
import javafx.scene.shape.Rectangle;
import javafx.stage.Stage;

public class MouseTransparency extends Application {
 private CheckBox mouseTransparentCbx = new CheckBox("Mouse Transparent");
 Circle circle = new Circle(50, 50, 50, Color.LIGHTGRAY);

 public static void main(String[] args) {
 Application.launch(args);
 }

 @Override
 public void start(Stage stage) {
 Rectangle rect = new Rectangle(100, 100);
 rect.setFill(Color.RED);

 Group group = new Group();
 group.getChildren().addAll(rect, circle);

 HBox root = new HBox();
 root.setPadding(new Insets(20));
 root.setSpacing(20);
 root.getChildren().addAll(group, mouseTransparentCbx);

 // Add MOUSE_CLICKED event handlers to the circle and rectangle
 circle.setOnMouseClicked(e -> handleMouseClicked(e));
 rect.setOnMouseClicked(e -> handleMouseClicked(e));

Chapter 9 ■ event handling

289

 // Add an Action handler to the checkbox
 mouseTransparentCbx.setOnAction(e -> handleActionEvent(e));

 Scene scene = new Scene(root);
 stage.setScene(scene);
 stage.setTitle("Mouse Transparency");
 stage.show();
 }

 public void handleMouseClicked(MouseEvent e) {
 String target = e.getTarget().getClass().getSimpleName();
 String type = e.getEventType().getName();
 System.out.println(type + " on " + target);
 }

 public void handleActionEvent(ActionEvent e) {
 if (mouseTransparentCbx.isSelected()) {
 circle.setMouseTransparent(true);
 } else {
 circle.setMouseTransparent(false);
 }
 }
}

Synthesized Mouse Events
A mouse event can be generated using several types of devices, such as a mouse, track pad, or touch screen.
Some actions on a touch screen generate mouse events, which are considered synthesized mouse events.
The isSynthesized() method of the MouseEvent class returns true if the event is synthesized from using a
touch screen. Otherwise, it returns false.

When a finger is dragged on a touch screen, it generates both a scrolling gesture event and a mouse-drag
event. The return value of the isSynthesized() method can be used inside the mouse-drag event handlers to
detect if the event is generated by dragging a finger on a touch screen or by dragging a mouse.

Handling Mouse Entered and Exited Events
Four mouse event types deal with events when the mouse enters or exits a node:

•	 MOUSE_ENTERED

•	 MOUSE_EXITED

•	 MOUSE_ENTERED_TARGET

•	 MOUSE_EXITED_TARGET

You have two sets of event types for mouse-entered and mouse-exited events. One set contains two
types called MOUSE_ENTERED and MOUSE_EXITED and another set contains MOUSE_ENTERED_TARGET and
MOUSE_EXITED_TARGET. They both have something in common, such as when they are triggered. They differ
in their delivery mechanisms. I will discuss all of them this section.

When the mouse enters a node, a MOUSE_ENTERED event is generated. When the mouse leaves a node, a
MOUSE_EXITED event is generated. These events do not go through the capture and bubbling phases. That is,
they are delivered directly to the target node, not to any of its parent nodes.

Chapter 9 ■ event handling

290

Tip ■ the MOUSE_ENTERED and MOUSE_EXITED events do not participate in the capture and bubbling phases.
however, all event filters and handlers are executed for the target following the rules for event handling.

The program in Listing 9-9 shows how mouse-entered and mouse-exited events are delivered. The
program displays a window as shown in Figure 9-10. It shows a circle with gray fill inside an HBox. Event
handlers for mouse-entered and mouse-exited events are added to the HBox and the Circle. Run the
program and move the mouse in and out of the circle. When the mouse enters the white area in the window,
its MOUSE_ENTERED event is delivered to the HBox. When you move the mouse in and out of the circle, the
output shows that the MOUSE_ENTERED and MOUSE_EXITED events are delivered only to the Circle, not to the
HBox. Notice that in the output the source and target of these events are always the same, proving that the
capture and bubbling phases do not occur for these events. When you move the mouse in and out of the
circle, keeping it in the white area, the MOUSE_EXITED event for the HBox does not fire, as the mouse stays on
the HBox. To fire the MOUSE_EXITED event on the HBox, you will need to move the mouse outside the scene
area, for example, outside the window or over the title bar of the window.

Listing 9-9. Testing Mouse-Entered and Mouse-Exited Events

// MouseEnteredExited.java
package com.jdojo.event;

import javafx.application.Application;
import javafx.geometry.Insets;
import javafx.scene.Scene;
import javafx.scene.input.MouseEvent;
import javafx.scene.layout.HBox;
import javafx.scene.paint.Color;
import javafx.scene.shape.Circle;
import javafx.event.EventHandler;
import javafx.stage.Stage;
import static javafx.scene.input.MouseEvent.MOUSE_ENTERED;
import static javafx.scene.input.MouseEvent.MOUSE_EXITED;

public class MouseEnteredExited extends Application {
 public static void main(String[] args) {
 Application.launch(args);
 }

 @Override
 public void start(Stage stage) {
 Circle circle = new Circle (50, 50, 50);
 circle.setFill(Color.GRAY);

 HBox root = new HBox();
 root.setPadding(new Insets(20));
 root.setSpacing(20);
 root.getChildren().addAll(circle);

Chapter 9 ■ event handling

291

 // Create a mouse event handler
 EventHandler<MouseEvent> handler = e -> handle(e);

 // Add mouse-entered and mouse-exited event handlers to the HBox
 root.addEventHandler(MOUSE_ENTERED, handler);
 root.addEventHandler(MOUSE_EXITED, handler);

 // Add mouse-entered and mouse-exited event handlers to the Circle
 circle.addEventHandler(MOUSE_ENTERED, handler);
 circle.addEventHandler(MOUSE_EXITED, handler);

 Scene scene = new Scene(root);
 stage.setScene(scene);
 stage.setTitle("Mouse Entered and Exited Events");
 stage.show();
 }

 public void handle(MouseEvent e) {
 String type = e.getEventType().getName();
 String source = e.getSource().getClass().getSimpleName();
 String target = e.getTarget().getClass().getSimpleName();
 System.out.println("Type=" + type + ", Target=" + target +

", Source=" + source);
 }
}

Type=MOUSE_ENTERED, Target=HBox, Source=HBox
Type=MOUSE_ENTERED, Target=Circle, Source=Circle
Type=MOUSE_EXITED, Target=Circle, Source=Circle
Type=MOUSE_ENTERED, Target=Circle, Source=Circle
Type=MOUSE_EXITED, Target=Circle, Source=Circle
Type=MOUSE_EXITED, Target=HBox, Source=HBox
...

Figure 9-10. Demonstrating mouse-entered and mouse-exited events

Chapter 9 ■ event handling

292

The MOUSE_ENTERED and MOUSE_EXITED event types provide the functionality needed in most cases.
Sometimes you need these events to go through the normal capture and bubbling phases, so parent nodes
can apply filters and provide default responses. The MOUSE_ENTERED_TARGET and MOUSE_EXITED_TARGET
event types provide these features. They participate in the event capture and bubbling phases.

The MOUSE_ENTERED and MOUSE_EXITED event types are subtypes of the MOUSE_ENTERED_TARGET and
MOUSE_EXITED_TARGET event types. A node interested in the mouse-entered event of its children should
add event filters and handlers for the MOUSE_ENTERED_TARGET type. The child node can add MOUSE_ENTERED,
MOUSE_ENTERED_TARGET, or both event filters and handlers. When the mouse enters the child node, parent
nodes receive the MOUSE_ENTERED_TARGET event. Before the event is delivered to the child node, which is
the target node of the event, the event type is changed to the MOUSE_ENTERED type. Therefore, in the same
event processing, the target node receives the MOUSE_ENTERED event, whereas all its parent nodes receive the
MOUSE_ENTERED_TARGET event. Because the MOUSE_ENTERED event type is a subtype of the MOUSE_ENTERED_
TARGET type, either type of event handler on the target can handle this event. The same would apply to the
mouse-exited event and its corresponding event types.

Sometimes, inside the parent event handler, it is necessary to distinguish the node that fires the
MOUSE_ENTERED_TARGET event. A parent node receives this event when the mouse enters the parent node
itself or any of its child nodes. You can check the target node reference, using the getTarget() method of the
Event class, for equality with the reference of the parent node, inside the event filters and handlers, to know
whether or not the event was fired by the parent.

The program in Listing 9-10 shows how to use the mouse-entered-target and mouse-exited-target events.
It adds a Circle and a CheckBox to an HBox. The HBox is added to the Scene. It adds the mouse-entered-target
and mouse-exited-target event filters to the HBox and event handlers to the Circle. It also adds mouse-entered
and mouse-exited event handlers to the Circle. When the check box is selected, events are consumed by the
HBox, so they do not reach the Circle. Below are a few observations when you run the program:

With the check box unselected, when the mouse enters or leaves the •	 Circle,
the HBox receives the MOUSE_ENTERED_TARGET and MOUSE_EXITED_TARGET events.
The Circle receives the MOUSE_ENTERED and MOUSE_EXITED events.

With the check box selected, the •	 HBox receives the MOUSE_ENTERED_TARGET and
MOUSE_EXITED_TARGET events and consumes them. The Circle does not receive
any events.

When the mouse enters or leaves the •	 HBox, the white area in the window, the HBox
receives the MOUSE_ENTERED and MOUSE_EXITED events, because the HBox is the target
of the event.

Play with the application by moving the mouse around, selecting and unselecting the check box. Look
at the output to get a feel for how these events are processed.

Listing 9-10. Using the Mouse-Entered-Target and Mouse-Exited-Target Events

// MouseEnteredExitedTarget.java
package com.jdojo.event;

import javafx.application.Application;
import javafx.event.EventHandler;
import javafx.geometry.Insets;
import javafx.scene.Scene;
import javafx.scene.control.CheckBox;
import javafx.scene.input.MouseEvent;
import static javafx.scene.input.MouseEvent.MOUSE_ENTERED;
import static javafx.scene.input.MouseEvent.MOUSE_EXITED;

Chapter 9 ■ event handling

293

import static javafx.scene.input.MouseEvent.MOUSE_ENTERED_TARGET;
import static javafx.scene.input.MouseEvent.MOUSE_EXITED_TARGET;
import javafx.scene.layout.HBox;
import javafx.scene.paint.Color;
import javafx.scene.shape.Circle;
import javafx.stage.Stage;

public class MouseEnteredExitedTarget extends Application {
 private CheckBox consumeCbx = new CheckBox("Consume Events");

 public static void main(String[] args) {
 Application.launch(args);
 }

 @Override
 public void start(Stage stage) {
 Circle circle = new Circle(50, 50, 50);
 circle.setFill(Color.GRAY);

 HBox root = new HBox();
 root.setPadding(new Insets(20));
 root.setSpacing(20);
 root.getChildren().addAll(circle, consumeCbx);

 // Create mouse event handlers
 EventHandler<MouseEvent> circleHandler = e -> handleCircle(e);
 EventHandler<MouseEvent> circleTargetHandler =
 e -> handleCircleTarget(e);
 EventHandler<MouseEvent> hBoxTargetHandler = e -> handleHBoxTarget(e);

 // Add mouse-entered-target and mouse-exited-target event
 // handlers to HBox
 root.addEventFilter(MOUSE_ENTERED_TARGET, hBoxTargetHandler);
 root.addEventFilter(MOUSE_EXITED_TARGET, hBoxTargetHandler);

 // Add mouse-entered-target and mouse-exited-target event
 // handlers to the Circle
 circle.addEventHandler(MOUSE_ENTERED_TARGET, circleTargetHandler);
 circle.addEventHandler(MOUSE_EXITED_TARGET, circleTargetHandler);

 // Add mouse-entered and mouse-exited event handlers to the Circle
 circle.addEventHandler(MOUSE_ENTERED, circleHandler);
 circle.addEventHandler(MOUSE_EXITED, circleHandler);

 Scene scene = new Scene(root);
 stage.setScene(scene);
 stage.setTitle("Mouse Entered Target and Exited Target Events");
 stage.show();
 }

Chapter 9 ■ event handling

294

 public void handleCircle(MouseEvent e) {
 print(e, "Circle Handler");
 }

 public void handleCircleTarget(MouseEvent e) {
 print(e, "Circle Target Handler");
 }

 public void handleHBoxTarget(MouseEvent e) {
 print(e, "HBox Target Filter");
 if (consumeCbx.isSelected()) {
 e.consume();
 System.out.println("HBox consumed the " + e.getEventType() + " event");
 }
 }

 public void print(MouseEvent e, String msg) {
 String type = e.getEventType().getName();
 String source = e.getSource().getClass().getSimpleName();
 String target = e.getTarget().getClass().getSimpleName();
 System.out.println(msg + ": Type=" + type +
 ", Target=" + target +
 ", Source=" + source);
 }
}

Handling Key Events
A key event is a type of input event that denotes the occurrence of a keystroke. It is delivered to the node
that has focus. An instance of the KeyEvent class, which is declared in the javafx.scene.input package,
represents a key event. Key pressed, key released, and key typed are three types of key events. Table 9-5 lists
all of the constants in the KeyEvent class, which represent key event types.

Table 9-5. Constants in the KeyEvent Class to Represent Key Event Types

Constant Description

ANY It is the supertype of other key events types.

KEY_PRESSED It occurs when a key is pressed.

KEY_RELEASED It occurs when a key is released.

KEY_TYPED It occurs when a Unicode character is entered.

Tip ■ it may not be obvious that shapes, for example circles or rectangles, can also receive key events.
the criterion for a node to receive key events is that the node should have focus. By default, shapes are not part
of the focus traversal chain and mouse clicks do not bring focus to them. Shape nodes can get focus by calling
the requestFocus() method.

Chapter 9 ■ event handling

295

The key-pressed and key-released events are lower-level events compared to the key-typed event; they
occur with a key press and release, respectively, and depend of the platform and keyboard layout.

The key-typed event is a higher-level event. Generally, it does not depend on the platform and keyboard
layout. It occurs when a Unicode character is typed. Typically, a key press generates a key-typed event.
However, a key release may also generate a key-typed event. For example, when using the Alt key and
number pad on Windows, a key-typed event is generated by the release of the Alt key, irrespective of the
number of keystrokes entered on the number pad. A key-typed event can also be generated by a series
of key presses and releases. For example, the character A is entered by pressing Shift + A, which includes
two key presses (Shift and A). In this case, two key presses generate one key-typed event. Not all key presses
or releases generate key-typed events. For example, when you press a function key (F1, F2, etc.) or modifier
keys (Shift, Ctrl, etc.), no Unicode character is entered, and hence, no key-typed event is generated.

The KeyEvent class maintains three variables to describe the keys associated with the event: code, text,
and character. These variables can be accessed using the getter methods in the KeyEvent class as listed in
Table 9-6.

Table 9-6. Methods in the KeyEvent Class Returning Key Details

Method Valid for Description

KeyCode getCode() KEY_PRESSED

KEY_RELEASED

The KeyCode enum contains a constant to represent all keys
on the keyboard. This method returns the KeyCode enum
constant that is associated with the key being pressed
or released. For the key-typed events, it always returns
KeyCode.UNDEFINED, because the key-typed event may not
necessarily be triggered by a single keystroke.

String getText() KEY_PRESSED

KEY_RELEASED

It returns a String description of the KeyCode associated
with the key-pressed and key-released events. It always
returns an empty string for the key-typed events.

String getCharacter() KEY_TYPED It returns a character or a sequence of character associated
with a key-typed event as a String. For the key-pressed
and key-released events, it always returns KeyEvent.
CHAR_UNDEFINED.

It is interesting to note that the return type of the getCharacter() method is String, not char. The
design is intentional. Unicode characters outside the basic multilingual plane cannot be represented in one
character. Some devices may produce multiple characters using a single keystroke. The return type of String
for the getCharacter() method covers these odd cases.

The KeyEvent class contains isAltDown(), isControlDown(), isMetaDown(), isShiftDown(), and
isShortcutDown() methods that let you check whether modifier keys are down when a key event occurs.

Handling Key-pressed and Key-released Events
Key-pressed and key-released events are handled simply by adding the event filters and handlers to nodes
for the KEY_PRESED and KEY_RELEASED event types. Typically you use these events to know which keys were
pressed or released and to perform an action. For example, you can detect the F1 function key press and
display a custom Help window for the node in focus.

Chapter 9 ■ event handling

296

The program in Listing 9-11 shows how to handle key-pressed and key-released events. It displays a
Label and a TextField. When you run the program, the TextField has focus. Notice the following points
when you use keystrokes while running this program:

Press and release some keys. Output will show the details of events as they occur. •	
A key-released event does not occur for every key-pressed event.

The mapping between key-pressed and key-released events is not one-to-one. There •	
may be no key-released event for a key-pressed event (refer to the next item). There
may be one key-released event for several key-pressed events. This can happen when
you keep a key pressed for a longer period. Sometimes you do it to type the same
character multiple times. Press the A key and hold it for some time and then release
it. This will generate several key-pressed events and only one key-released event.

Press the F1 key. It will display the Help window. Notice that pressing the F1 key •	
does not generate an output for a key-released event, even after you release the key.
Can you think of the reason for this? On the key-pressed event, the Help window is
displayed, which grabs the focus. The TextField on the main window no longer has
focus. Recall that the key events are delivered to the node that has focus, and only
one node can have focus in a JavaFX application. Therefore, the key-released event is
delivered to the Help window, not the TextField.

Listing 9-11. Handling Key-pressed and Key-released Events

// KeyPressedReleased.java
package com.jdojo.event;

import javafx.application.Application;
import javafx.geometry.Insets;
import javafx.scene.Scene;
import javafx.scene.control.Label;
import javafx.scene.control.TextField;
import javafx.scene.input.KeyCode;
import javafx.scene.input.KeyEvent;
import static javafx.scene.input.KeyEvent.KEY_PRESSED;
import javafx.scene.layout.HBox;
import javafx.scene.text.Text;
import javafx.stage.Stage;

public class KeyPressedReleased extends Application {
 public static void main(String[] args) {
 Application.launch(args);
 }

 @Override
 public void start(Stage stage) {
 Label nameLbl = new Label("Name:");
 TextField nameTfl = new TextField();

 HBox root = new HBox();
 root.setPadding(new Insets(20));
 root.setSpacing(20);
 root.getChildren().addAll(nameLbl, nameTfl);

Chapter 9 ■ event handling

297

 // Add key pressed and released events to the TextField
 nameTfl.setOnKeyPressed(e -> handle(e));
 nameTfl.setOnKeyReleased(e -> handle(e));

 Scene scene = new Scene(root);
 stage.setScene(scene);
 stage.setTitle("Key Pressed and Released Events");
 stage.show();
 }

 public void handle(KeyEvent e) {
 String type = e.getEventType().getName();
 KeyCode keyCode = e.getCode();
 System.out.println(type + ": Key Code=" + keyCode.getName() +
 ", Text=" + e.getText());

 // Show the help window when the F1 key is pressed
 if (e.getEventType() == KEY_PRESSED && e.getCode() == KeyCode.F1) {
 displayHelp();
 e.consume();
 }
 }

 public void displayHelp() {
 Text helpText = new Text("Please enter a name.");
 HBox root = new HBox();
 root.setStyle("-fx-background-color: yellow;");
 root.getChildren().add(helpText);

 Scene scene = new Scene(root, 200, 100);
 Stage helpStage = new Stage();
 helpStage.setScene(scene);
 helpStage.setTitle("Help");
 helpStage.show();
 }
}

Handling the Key-typed Event
The typical use of the key-typed event is to detect specific keystrokes to prevent some characters from being
entered. For example, you may allow users to only enter letters in a name field. You can do so by consuming
all key-typed events for the field associated with all nonletters.

The program in Listing 9-12 shows a Label and a TextField. It adds a key-typed event handler to the
TextField, which consumes the event if the character typed is not a letter. Otherwise, it prints the character
typed on the standard output. Run the program. You should be able to enter letters in the TextField. When
you press any nonletter keys, for example, 1, 2, 3, nothing happens.

This example is not a correct solution to stop users from entering nonletter characters. For example,
users can still paste nonletters using the context menu (right-click on Windows) or using the keyboard
shortcut Ctrl + V. The correct solution lies in detecting and handling the event on the TextField that is
generated, irrespective of the method used. For now, this example serves the purpose of showing how to use
key-typed events.

Chapter 9 ■ event handling

298

Listing 9-12. Using the Key-typed Event

// KeyTyped.java
package com.jdojo.event;

import javafx.application.Application;
import javafx.geometry.Insets;
import javafx.scene.Scene;
import javafx.scene.control.Label;
import javafx.scene.control.TextField;
import javafx.scene.input.KeyEvent;
import javafx.scene.layout.HBox;
import javafx.stage.Stage;

public class KeyTyped extends Application {
 public static void main(String[] args) {
 Application.launch(args);
 }

 @Override
 public void start(Stage stage) {
 Label nameLbl = new Label("Name:");
 TextField nameTfl = new TextField();

 HBox root = new HBox();
 root.setPadding(new Insets(20));
 root.setSpacing(20);
 root.getChildren().addAll(nameLbl, nameTfl);

 // Add key-typed event to the TextField
 nameTfl.setOnKeyTyped(e -> handle(e));

 Scene scene = new Scene(root);
 stage.setScene(scene);
 stage.setTitle("Key Typed Event");
 stage.show();
 }

 public void handle(KeyEvent e) {
 // Consume the event if it is not a letter
 String str = e.getCharacter();
 int len = str.length();
 for(int i = 0; i < len; i++) {
 Character c = str.charAt(i);
 if (!Character.isLetter(c)) {
 e.consume();
 }
 }

Chapter 9 ■ event handling

299

 // Print the details if it is not consumed
 if (!e.isConsumed()) {
 String type = e.getEventType().getName();
 System.out.println(type + ": Character=" + e.getCharacter());
 }
 }
}

Handling Window Events
A window event occurs when a window is shown, hidden, or closed. An instance of the WindowEvent class in
the javafx.stage package represents a window event. Table 9-7 lists the constants in the WindowEvent class.

Table 9-7. Constants in the WindowEvent Class to Represent Window Event Types

Constant Description

ANY It is the supertype of all other window event types.

WINDOW_SHOWING It occurs just before the window is shown.

WINDOW_SHOWN It occurs just after the window is shown.

WINDOW_HIDING It occurs just before the window is hidden.

WINDOW_HIDDEN It occurs just after the window is hidden.

WINDOW_CLOSE_REQUEST It occurs when there is an external request to close this window.

The window-showing and window-shown events are straightforward. They occur just before and after
the window is shown. Event handlers for the window-showing event should have time-consuming logic, as
it will delay showing the window to the user, and hence, degrading the user experience. Initializing some
window-level variables is a good example of the kind of code you need to write in this event. Typically, the
window-shown event sets the starting direction for the user, for example, setting focus to the first editable
field on the window, showing alerts to the user about the tasks that need his attention, among others.

The window-hiding and window-hidden events are counterparts of the window-showing and
window-shown events. They occur just before and after the window is hidden.

The window-close-request event occurs when there is an external request to close the window. Using
the Close menu from the context menu or the Close icon in the window title bar or pressing Alt + F4 key
combination on Windows is considered an external request to close the window. Note that closing a window
programmatically, for example, using the close() method of the Stage class or Platform.exit() method, is
not considered an external request. If the window-close-request event is consumed, the window is not closed.

The program in Listing 9-13 shows how to use all window events. You may get a different output than
that shown below the code. It adds a check box and two buttons to the primary stage. If the check box is
unselected, external requests to close the window are consumed, thus preventing the window from closing.
The Close button closes the window. The Hide button hides the primary window and opens a new window,
so the user can show the primary window again.

The program adds event handlers to the primary stage for window event types. When the show() method
on the stage is called, the window-showing and window-shown events are generated. When you click the
Hide button, the window-hiding and window-hidden events are generated. When you click the button on the
pop-up window to show the primary window, the window-showing and window-shown events are generated
again. Try clicking the Close icon on the title bar to generate the window-close-request event. If the Can Close
Window check box is not selected, the window is not closed. When you use the Close button to close the

Chapter 9 ■ event handling

300

window, the window-hiding and window-hidden events are generated, but not the window-close-request
event, as it is not an external request to close the window.

Listing 9-13. Using Window Events

// WindowEventApp.java
package com.jdojo.event;

import javafx.application.Application;
import javafx.event.EventType;
import javafx.geometry.Insets;
import javafx.scene.Scene;
import javafx.scene.control.Button;
import javafx.scene.control.CheckBox;
import javafx.scene.layout.HBox;
import javafx.stage.Stage;
import javafx.stage.WindowEvent;
import static javafx.stage.WindowEvent.WINDOW_CLOSE_REQUEST;

public class WindowEventApp extends Application {
 private CheckBox canCloseCbx = new CheckBox("Can Close Window");

 public static void main(String[] args) {
 Application.launch(args);
 }

 @Override
 public void start(Stage stage) {
 Button closeBtn = new Button("Close");
 closeBtn.setOnAction(e -> stage.close());

 Button hideBtn = new Button("Hide");
 hideBtn.setOnAction(e -> {showDialog(stage); stage.hide(); });

 HBox root = new HBox();
 root.setPadding(new Insets(20));
 root.setSpacing(20);
 root.getChildren().addAll(canCloseCbx, closeBtn, hideBtn);

 // Add window event handlers to the stage
 stage.setOnShowing(e -> handle(e));
 stage.setOnShown(e -> handle(e));
 stage.setOnHiding(e -> handle(e));
 stage.setOnHidden(e -> handle(e));
 stage.setOnCloseRequest(e -> handle(e));

 Scene scene = new Scene(root);
 stage.setScene(scene);
 stage.setTitle("Window Events");
 stage.show();
 }

Chapter 9 ■ event handling

301

 public void handle(WindowEvent e) {
 // Consume the event if the CheckBox is not selected
 // thus preventing the user from closing the window
 EventType<WindowEvent> type = e.getEventType();
 if (type == WINDOW_CLOSE_REQUEST && !canCloseCbx.isSelected()) {
 e.consume();
 }

 System.out.println(type + ": Consumed=" + e.isConsumed());
 }

 public void showDialog(Stage mainWindow) {
 Stage popup = new Stage();

 Button closeBtn = new Button("Click to Show Main Window");
 closeBtn.setOnAction(e -> { popup.close(); mainWindow.show();});

 HBox root = new HBox();
 root.setPadding(new Insets(20));
 root.setSpacing(20);
 root.getChildren().addAll(closeBtn);

 Scene scene = new Scene(root);
 popup.setScene(scene);
 popup.setTitle("Popup");
 popup.show();
 }
}

WINDOW_SHOWING: Consumed=false
WINDOW_SHOWN: Consumed=false
WINDOW_HIDING: Consumed=false
WINDOW_HIDDEN: Consumed=false
WINDOW_SHOWING: Consumed=false
WINDOW_SHOWN: Consumed=false
WINDOW_CLOSE_REQUEST: Consumed=true

Summary
In general, the term event is used to describe an occurrence of interest. In a GUI application, an event is
an occurrence of a user interaction with the application such as clicking the mouse, pressing a key on the
keyboard, and so forth. An event in JavaFX is represented by an object of the javafx.event.Event class or
any of its subclasses. Every event in JavaFX has three properties: an event source, an event target, and an
event type.

When an event occurs in an application, you typically perform some processing by executing a piece of
code. The piece of code that is executed in response to an event is known as an event handler or an event filter.
When you want to handle an event for a UI element, you need to add event handlers to the UI element, for
example, a Window, a Scene, or a Node. When the UI element detects the event, it executes your event handlers.

Chapter 9 ■ event handling

302

The UI element that calls event handlers is the source of the event for those event handlers. When an
event occurs, it passes through a chain of event dispatchers. The source of an event is the current element in
the event dispatcher chain. The event source changes as the event passes through one dispatcher to another
in the event dispatcher chain. The event target is the destination of an event, which determines the route the
event travels through during its processing. The event type describes the type of the event that occurs. They
are defined in a hierarchical fashion. Each event type has a name and a supertype.

When an event occurs, the following three steps are performed in order: event target selection, event route
construction, and event route traversal. An event target is the destination node of the event that is selected
based on the event type. An event travels through event dispatchers in an event dispatch chain. The event
dispatch chain is the event route. The initial and default route for an event is determined by the event target.
The default event route consists of the container-children path starting at the stage to the event target node.

An event route traversal consists of two phases: capture and bubbling. An event travels through each
node in its route twice: once during the capture phase and once during the bubbling phase. You can register
event filters and event handlers to a node for specific events types. The event filters and event handlers
registered to a node are executed as the event passes through the node during the capture and the bubbling
phases, respectively.

During the route traversal, a node can consume the event in event filters or handlers, thus completing
the processing of the event. Consuming an event is simply calling the consume() method on the event object.
When an event is consumed, the event processing is stopped, even though some of the nodes in the route
were not traversed at all.

Interaction of the user with the UI elements using the mouse, such as clicking, moving, or pressing the
mouse, triggers a mouse event. An object of the MouseEvent class represents a mouse event.

A key event denotes the occurrence of a keystroke. It is delivered to the node that has focus. An instance
of the KeyEvent class represents a key event. Key pressed, key released, and key typed are three types of key
events.

A window event occurs when a window is shown, hidden, or closed. An instance of the WindowEvent
class in the javafx.stage package represents a window event.

The next chapter discusses layout panes that are used as containers for other controls and nodes.

303

Chapter 10

Understanding Layout Panes

In this chapter, you will learn:

What a layout pane is•	

Classes in JavaFX representing layout panes•	

How to add children to layout panes•	

Utility classes such as •	 Insets, HPos, VPos, Side, Priority, etc.

How to use a •	 Group to layout nodes

How to work with •	 Regions and its properties

How to use different types of layout panes such as •	 HBox, VBox, FlowPane, BorderPane,
StackPane, TilePane, GridPane, AnchorPane, and TextFlow

What Is a Layout Pane?
You can use two types of layouts to arrange nodes in a scene graph:

Static layout•	

Dynamic layout•	

In a static layout, the position and size of nodes are calculated once, and they stay the same as the
window is resized. The user interface looks good when the window has the size for which the nodes were
originally laid out.

In a dynamic layout, nodes in a scene graph are laid out every time a user action necessitates a change
in their position, size, or both. Typically, changing the position or size of one node affects the position and
size of all other nodes in the scene graph. The dynamic layout forces the recomputation of the position and
size of some or all nodes as the window is resized.

Both static and dynamic layouts have advantages and disadvantages. A static layout gives developers
full control on the design of the user interface. It lets you make use of the available space as you see fit.
A dynamic layout requires more programming work, and the logic is much more involved. Typically,
programming languages supporting GUI: for example, JavaFX, supports dynamic layouts through libraries.
Libraries solve most of the use-cases for dynamic layouts. If they do not meet your needs, you must do the
hard work to roll out your own dynamic layout.

A layout pane is a node that contains other nodes, which are known as its children (or child nodes).
The responsibility of a layout pane is to lay out its children, whenever needed. A layout pane is also known
as a container or a layout container.

Chapter 10 ■ Understanding LayoUt panes

304

A layout pane has a layout policy that controls how the layout pane lays out its children. For example,
a layout pane may lay out its children horizontally, vertically, or in any other fashion.

JavaFX contains several layout-related classes, which are the topic of discussion in this chapter. A layout
pane performs two things:

It computes the position (the x and y coordinates) of the node within its parent.•	

It computes the size (the width and height) of the node.•	

For a 3D node, a layout pane also computes the z coordinate of the position and the depth of the size.
The layout policy of a container is a set of rules to compute the position and size of its children. When

I discuss containers in this chapter, pay attention to the layout policy of the containers as to how they
compute the position and size of their children. A node has three sizes: preferred size, minimum size, and
maximum size. Most of the containers attempt to give its children their preferred size. The actual (or current)
size of a node may be different from its preferred size. The current size of a node depends on the size of the
window, the layout policy of the container, and the expanding and shrinking policy for the node, etc.

Layout Pane Classes
JavaFX contains several container classes. Figure 10-1 shows a class diagram for the container classes.
A container class is a subclass, direct or indirect, of the Parent class.

Node

Parent

TextFlow TilePane

FlowPane

GridPane

AnchorPaneStackPane

BorderPane

VBox

HBox

Pane

RegionGroup

Figure 10-1. A class diagram for container classes in JavaFX

Chapter 10 ■ Understanding LayoUt panes

305

A Group lets you apply effects and transformations to all its children collectively. The Group class is in
the javafx.scene package.

Subclasses of the Region class are used to lay out children. They can be styled with CSS. The Region
class and most of its subclasses are in the javafx.scene.layout package.

It is true that a container needs to be a subclass of the Parent class. However, not all subclasses of the
Parent class are containers. For example, the Button class is a subclass of the Parent class; however, it is a
control, not a container. A node must be added to a container to be part of a scene graph. The container lays
out its children according to its layout policy. If you do not want the container to manage the layout for a
node, you need to set the managed property of the node to false. Please refer to the chapter on Understanding
Nodes for more details and examples on managed and unmanaged nodes.

A node can be a child node of only one container at a time. If a node is added to a container while it is
already the child node of another container, the node is removed from the first container before being added
to the second one. Oftentimes, it is necessary to nest containers to create a complex layout. That is, you can
add a container to another container as a child node.

The Parent class contains three methods to get the list of children of a container:

•	 protected ObservableList<Node> getChildren()

•	 public ObservableList<Node> getChildrenUnmodifiable()

•	 protected <E extends Node> List<E> getManagedChildren()

The getChildren() method returns a modifiable ObservableList of the child nodes of a container.
If you want to add a node to a container, you would add the node to this list. This is the most commonly used
method for container classes. We have been using this method to add children to containers such as Group,
HBox, VBox, etc., from the very first program.

Notice the protected access for the getChildren() method. If a subclass of the Parent class does not
want to be a container, it will keep the access for this method as protected. For example, control-related
classes (Button, TextField, etc.) keep this method as protected, so you cannot add child nodes to them.
A container class overrides this method and makes it public. For example, the Group and Pane classes
expose this method as public.

The getChildrenUnmodifiable() method is declared public in the Parent class. It returns a read-only
ObservableList of children. It is useful in two scenarios:

You need to pass the list of children of a container to a method that should not •	
modify the list.

You want to know what makes up a control, which is not a container.•	

The getManagedChildren() method has the protected access. Container classes do not expose it as
public. They use it internally to get the list of managed children, during layouts. You will use this method to
roll out your own container classes.

Table 10-1 has brief descriptions of the container classes. We will discuss them in detail with examples
in subsequent sections.

Chapter 10 ■ Understanding LayoUt panes

306

Adding Children to a Layout Pane
A container is meant to contain children. You can add children to a container when you create the container
object or after creating it. All container classes provide constructors that take a var-args Node type argument
to add the initial set of children. Some containers provide constructors to add an initial set of children and
set initial properties for the containers.

You can also add children to a container at any time after the container is created. Containers store their
children in an observable list, which can be retrieved using the getChildren() method. Adding a node to a
container is as simple as adding a node to that observable list. The following snippet of code shows how to
add children to an HBox when it is created and after it is created.

// Create two buttons
Button okBtn = new Button("OK");
Button cancelBtn = new Button("Cancel");

// Create an HBox with two buttons as its children
HBox hBox1 = new HBox(okBtn, cancelBtn);

// Create an HBox with two buttons with 20px horizontal spacing between them
double hSpacing = 20;
HBox hBox2 = new HBox(hSpacing, okBtn, cancelBtn);

// Create an empty HBox, and afterwards, add two buttons to it
HBox hBox3 = new HBox();
hBox3.getChildren().addAll(okBtn, cancelBtn);

Table 10-1. List of Container Classes

Container Class Description

Group A Group applies effects and transformations collectively to all its children.

Pane It is used for absolute positioning of its children.

HBox It arranges its children horizontally in a single row.

VBox It arranges its children vertically in a single column.

FlowPane It arranges its children horizontally or vertically in rows or columns. If they do not fit
in a single row or column, they are wrapped at the specified width or height.

BorderPane It divides its layout area in the top, right, bottom, left, and center regions and places
each of its children in one of the five regions.

StackPane It arranges its children in a back-to-front stack.

TilePane It arranges its children in a grid of uniformly sized cells.

GridPane It arranges its children in a grid of variable sized cells.

AnchorPane It arranges its children by anchoring their edges to the edges of the layout area.

TextFlow It lays out rich text whose content may consist of several Text nodes.

Chapter 10 ■ Understanding LayoUt panes

307

Tip ■ When you need to add multiple child nodes to a container, use the addAll() method of the
ObservableList rather than using the add() method multiple times.

Utility Classes and Enums
While working with layout panes, you will need to use several classes and enums that are related to spacing
and directions. These classes and enums are not useful when used stand-alone. They are always used as
properties for nodes. This section describes some of these classes and enums.

The Insets Class
The Insets class represents inside offsets in four directions: top, right, bottom, and left, for a rectangular
area. It is an immutable class. It has two constructors – one lets you set the same offset for all four directions
and another lets you set different offsets for each direction.

•	 Insets(double topRightBottomLeft)

•	 Insets(double top, double right, double bottom, double left)

The Insets class declares a constant, Insets.EMPTY, to represent a zero offset for all four directions.
Use the getTop(), getRight(), getBottom(), and getLeft() methods to get the value of the offset in a
specific direction.

It is a bit confusing to understand the exact meaning of the term insets by looking at the description
of the Insets class. Let us discuss its meaning in detail in this section. We talk about insets in the context
of two rectangles. An inset is the distance between the same edges (from top to top, from left to left, etc.) of
two rectangles. There are four inset values – one for each side of the rectangles. An object of the Insets class
stores the four distances. Figure 10-2 shows two rectangles and the insets of the inner rectangle relative to
the outer rectangle.

It is possible for two rectangles to overlap instead of one to be contained fully within another. In
this case, some inset values may be positive and some negative. Inset values are interpreted relative to
a reference rectangle. To interpret an inset value correctly, it is required that you get the position of the
reference rectangle, its edge, and the direction in which the inset needs to be measured. The context where
the term “insets” is used should make these pieces of information available. In the figure, we can define

Top

Bottom

RightLeft

Figure 10-2. Insets of a rectangular area relative to another rectangular area

Chapter 10 ■ Understanding LayoUt panes

308

the same insets relative to the inner or outer rectangle. The inset values would not change. However, the
reference rectangle and the direction in which the insets are measured (to determine the sign of the inset
values) will change.

Typically, in JavaFX, the term insets and the Insets object are used in four contexts:

Border insets•	

Background insets•	

Outsets•	

Insets•	

In the first two contexts, insets mean the distances between the edges of the layout bounds and the
inner edge of the border or the inner edge of the background. In these contents, insets are measured inwards
from the edges of the layout bounds. A negative value for an inset means a distance measured outward from
the edges of the layout bounds.

A border stroke or image may fall outside of the layout bounds of a Region. Outsets are the distances
between the edges of the layout bounds of a Region and the outer edges of its border. Outsets are also
represented as an Insets object.

Javadoc for JavaFX uses the term insets several times to mean the sum of the thickness of the border and
the padding measured inward from all edges of the layout bounds. Be careful interpreting the meaning of
the term insets when you encounter it in Javadoc.

The HPos Enum
The HPos enum defines three constants: LEFT, CENTER, and RIGHT, to describe the horizontal positioning and
alignment.

The VPos Enum
The constants of the VPos enum describe vertical positioning and alignment. It has four constants: TOP,
CENTER, BASELINE, and BOTTOM.

The Pos Enum
The constants in the Pos enum describe vertical and horizontal positioning and alignment. It has constants
for all combinations of VPos and HPos constants. Constants in Pos enum are BASELINE_CENTER, BASELINE_LEFT,
BASELINE_RIGHT, BOTTOM_CENTER, BOTTOM_LEFT, BOTTOM_RIGHT, CENTER, CENTER_LEFT, CENTER_RIGHT,
TOP_CENTER, TOP_LEFT, and TOP_RIGHT. It has two methods – getHpos() and getVpos() – that return
objects of HPos and VPos enum types, describing the horizontal and vertical positioning and alignment,
respectively.

The HorizontalDirection Enum
The HorizontalDirection enum has two constants, LEFT and RIGHT, which denote directions to the left and
right, respectively.

Chapter 10 ■ Understanding LayoUt panes

309

The VerticalDirection Enum
The VerticalDirection enum has two constants, UP and DOWN, which denote up and down directions,
respectively.

The Orientation Enum
The Orientation enum has two constants, HORIZONTAL and VERTICAL, which denote horizontal and vertical
orientations, respectively.

The Side Enum
The Side enum has four constants: TOP, RIGHT, BOTTOM, and LEFT, to denote the four sides of a rectangle.

The Priority Enum
Sometimes, a container may have more or less space available than required to layout its children using
their preferred sizes. The Priority enum is used to denote the priority of a node to grow or shrink when its
parent has more or less space. It contains three constants: ALWAYS, NEVER, and SOMETIMES. A node with the
ALWAYS priority always grows or shrinks as the available space increases or decreases. A node with NEVER
priority never grows or shrinks as the available space increases or decreases. A node with SOMETIMES priority
grows or shrinks when there are no other nodes with ALWAYS priority or nodes with ALWAYS priority could not
consume all the increased or decreased space.

Understanding Group
A Group has features of a container; for example, it has its own layout policy, coordinate system, and it is
a subclass of the Parent class. However, its meaning is best reflected by calling it a collection of nodes or a
group, rather than a container. It is used to manipulate a collection of nodes as a single node (or as a group).
Transformations, effects, and properties applied to a Group are applied to all nodes in the Group.

A Group has its own layout policy, which does not provide any specific layout to its children, except
giving them their preferred size:

It renders nodes in the order they are added.•	

It does not position its children. All children are positioned at (0, 0) by default. You •	
need to write code to position child nodes of a Group. Use the layoutX and layoutY
properties of the children nodes to position them within the Group.

By default, it resizes all its children to their preferred size. The auto-sizing behavior •	
can be disabled by setting its autoSizeChildren property to false. Note that if you
disable the auto-sizing property, all nodes, except shapes, will be invisible as their
size will be zero, by default.

A Group does not have a size of its own. It is not resizable directly. Its size is the collective bounds
of its children. Its bounds change, as the bounds of any or all of its children change. The chapter on
Understanding Nodes explains how different types of bounds of a Group are computed.

Chapter 10 ■ Understanding LayoUt panes

310

Creating a Group Object
You can use the no-args constructor to create an empty Group.

Group emptyGroup = new Group();

Other constructors of the Group class let you add children to the Group. One constructor takes a
Collection<Node> as the initial children; another takes a var-args of the Node type.

Button smallBtn = new Button("Small Button");
Button bigBtn = new Button("This is a big button");

// Create a Group with two buttons using its var-args constructor
Group group1 = new Group(smallBtn, bigBtn);

List<Node> initailList = new ArrayList<>();
initailList.add(smallBtn);
initailList.add(bigBtn);

// Create a Group with all Nodes in the initialList as its children
Group group2 = new Group(initailList);

Rendering Nodes in a Group
Children of a Group are rendered in the order they are added. The following snippet of code, when displayed
in a stage, looks as shown in Figure 10-3.

Button smallBtn = new Button("Small button");
Button bigBtn = new Button("This is a big button");
Group root = new Group();
root.getChildren().addAll(smallBtn, bigBtn);
Scene scene = new Scene(root);

Notice that we have added two buttons to the Group. Only one of the buttons is shown. The smaller
button is rendered first because it is the first one in the collection. The bigger button is rendered covering the
smaller button. Both buttons exist. One is just hidden under another. If we swap the order in which buttons
are added, using the following statement, the resulting screen would be as shown in Figure 10-4. Notice that
the left part of the bigger button is covered by the smaller button and the right part is still showing.

// Add the bigger button first
root.getChildren().addAll(bigBtn, smallBtn);

Figure 10-3. Rendering order of the children in a Group: first smaller and second bigger

Chapter 10 ■ Understanding LayoUt panes

311

Tip ■ if you do not want nodes in a Group to overlap, you need to set their positions.

Positioning Nodes in a Group
You can position child nodes in a Group by assigning them absolute positions using the layoutX and
layoutY properties of the nodes. Alternatively, you can use binding API to position them relative to other
nodes in the Group.

Listing 10-1 shows how to use the absolute and relative positioning in a Group. Figure 10-5 shows the
resulting screen. The program adds two buttons (OK and Cancel) to the Group. The OK button uses absolute
positioning; it is placed at (10, 10). The Cancel button is placed relative to the OK button; its vertical position
is the same as the OK button; its horizontal position is 20px after the right edge of the OK button. Notice the
use of the Fluent Binding API to accomplish the relative positioning for the Cancel button.

Listing 10-1. Laying Out Nodes in a Group

// NodesLayoutInGroup.java
package com.jdojo.container;

import javafx.application.Application;
import javafx.beans.binding.NumberBinding;
import javafx.scene.Group;
import javafx.scene.Scene;
import javafx.scene.control.Button;
import javafx.stage.Stage;

public class NodesLayoutInGroup extends Application {
 public static void main(String[] args) {
 Application.launch(args);
 }

 @Override
 public void start(Stage stage) {
 // Create two buttons
 Button okBtn = new Button("OK");
 Button cancelBtn = new Button("Cancel");

 // Set the location of the OK button
 okBtn.setLayoutX(10);
 okBtn.setLayoutY(10);

Figure 10-4. Rendering order of the children in a Group: first bigger and second smaller

Chapter 10 ■ Understanding LayoUt panes

312

 // Set the location of the Cancel botton relative to the OK button
 NumberBinding layoutXBinding =
 okBtn.layoutXProperty().add(okBtn.widthProperty().add(10));
 cancelBtn.layoutXProperty().bind(layoutXBinding);
 cancelBtn.layoutYProperty().bind(okBtn.layoutYProperty());

 Group root = new Group();
 root.getChildren().addAll(okBtn, cancelBtn);

 Scene scene = new Scene(root);
 stage.setScene(scene);
 stage.setTitle("Positioning Nodes in a Group");
 stage.show();
 }
}

Applying Effects and Transformations to a Group
When you apply effects and transformations to a Group, they are automatically applied to all of its children.
Setting a property, for example, the disable or opacity property, on a Group, sets the property on all of its
children.

Listing 10-2 shows how to apply effects, transformations, and states to a Group. The program adds two
buttons to the Group. It applies a rotation transformation of 10 degrees, a drop shadow effect, and opacity of
80%. Figure 10-6 shows that the transformation, effect, and state applied to the Group are applied to all of its
children (two buttons in this case).

Listing 10-2. Applying Effects and Transformations to a Group

// GroupEffect.java
package com.jdojo.container;

import javafx.application.Application;
import javafx.scene.Group;
import javafx.scene.Scene;
import javafx.scene.control.Button;
import javafx.scene.effect.DropShadow;
import javafx.stage.Stage;

public class GroupEffect extends Application {
 public static void main(String[] args) {
 Application.launch(args);
 }

Figure 10-5. A Group with two buttons using relative positions

Chapter 10 ■ Understanding LayoUt panes

313

 @Override
 public void start(Stage stage) {
 // Create two buttons
 Button okBtn = new Button("OK");
 Button cancelBtn = new Button("Cancel");

 // Set the locations of the buttons
 okBtn.setLayoutX(10);
 okBtn.setLayoutY(10);
 cancelBtn.setLayoutX(80);
 cancelBtn.setLayoutY(10);

 Group root = new Group();
 root.setEffect(new DropShadow()); // Set a drop shadow effect
 root.setRotate(10); // Rotate by 10 degrees clockwise
 root.setOpacity(0.80); // Set the opacity to 80%

 root.getChildren().addAll(okBtn, cancelBtn);

 Scene scene = new Scene(root);
 stage.setScene(scene);
 stage.setTitle("Applying Transformations and Effects to a Group");
 stage.show();
 }
}

Styling a Group with CSS
The Group class does not offer much CSS styling. All CSS properties for the Node class are available for
the Group class: for example, -fx-cursor, -fx-opacity, -fx-rotate, etc. A Group cannot have its own
appearance such as padding, backgrounds, and borders.

Understanding Region
Region is the base class for all layout panes. It can be styled with CSS. Unlike Group, it has its own size. It is
resizable. It can have a visual appearance, for example, with padding, multiple backgrounds, and multiple
borders. You do not use the Region class directly as a layout pane. If you want to roll out your own layout
pane, extend the Pane class, which extends the Region class.

Figure 10-6. Two buttons in a Group after effects, transformations, and states are applied to the Group

Chapter 10 ■ Understanding LayoUt panes

314

Tip ■ the Region class is designed to support the Css3 specification for backgrounds and borders, as they
are applicable to JavaFX. the specification for “Css Backgrounds and Borders Module Level 3” can be found
online at http://www.w3.org/TR/2012/CR-css3-background-20120724/.

By default, a Region defines a rectangular area. However, it can be changed to any shape. The drawing
area of a Region is divided into several parts. Depending on the property settings, a Region may draw outside
of its layout bounds. Parts of a Region:

Backgrounds (fills and images)•	

Content Area•	

Padding•	

Borders (strokes and images)•	

Margin•	

Region Insets•	

Figure 10-7 shows parts of a Region. The margin is not directly supported as of JavaFX 2. You can get the
same effect by using Insets for the border.

Margin

Border
Padding

Content Area

Margin edge

Border outer edge

Border inner edge

Padding edge

Content area edge

Layout bounds edge

Region insets

Figure 10-7. Different parts of a Region

A region may have a background that is drawn first. The content area is the area where the content of
the Region (e.g., controls) are drawn.

Padding is an optional space around the content area. If the padding has a zero width, the padding edge
and the content area edge are the same.

The border area is the space around the padding. If the border has a zero width, the border edge and the
padding edge are the same.

Margin is the space around the border. Padding and margin are very similar. The only difference
between them is that the margin defines the space around the outside edge of the border, whereas the
padding defines the space around the inside edge of the border. Margins are supported for controls when
they are added to panes, for example, HBox, VBox, etc. However, margins are not directly supported for a
Region directly.

The content area, padding, and borders affect the layout bounds of the Region. You can draw borders
outside the layout bounds of a Region, and those borders will not affect the layout bounds of the Region.
Margin does not affect the layout bounds of the Region.

http://www.w3.org/TR/2012/CR-css3-background-20120724/

Chapter 10 ■ Understanding LayoUt panes

315

The distance between the edge of the layout bounds of the Region and its content area defines the
insets for the Region. The Region class computes its insets automatically based on its properties. It has a
read-only insets property that you can read to know its insets. Note that a layout container would need to
know the area in which to place its children, and they can compute the content area knowing the layout
bounds and insets.

Tip ■ the background fills, background images, border strokes, border images, and content of a Region are
drawn in order.

Setting Backgrounds
A Region can have a background that consists of fills, images, or both. A fill consists of a color, radii for four
corners, and insets on four sides. Fills are applied in the order they are specified. The color defines the color
to be used for painting the background. The radii define the radii to be used for corners; set them to zero if
you want rectangular corners. The insets define the distance between the sides of the Region and the outer
edges of the background fill. For example, an inset of 10px on top means that a horizontal strip of 10px
inside the top edge of the layout bounds will not be painted by the background fill. An inset for the fill may
be negative. A negative inset extends the painted area outside of the layout bounds of the Region; and in this
case, the drawn area for the Region extends beyond its layout bounds.

The following CSS properties define the background fill for a Region.

•	 -fx-background-color

•	 -fx-background-radius

•	 -fx-background-insets

The following CSS properties fill the entire layout bounds of the Region with a red color.

-fx-background-color: red;
-fx-background-insets: 0;
-fx-background-radius: 0;

The following CSS properties use two fills.

-fx-background-color: lightgray, red;
-fx-background-insets: 0, 4;
-fx-background-radius: 4, 2;

The first fill covers the entire Region (see 0px insets) with a light gray color; it uses a 4px radius for all
four corners, making the Region look like a rounded rectangle. The second fill covers the Region with
a red color; it uses a 4px inset on all four sides, which means that 4px from the edges of the Region are not
painted by this fill, and that area will still have the light gray color used by the first fill. A 2px radius for all four
corners is used by the second fill.

Starting from JavaFX 8, you can also set the background of a Region in code using Java objects. An instance
of the Background class represents the background of a Region. The class defines a Background.EMPTY constant
to represent an empty background (no fills and no images).

Chapter 10 ■ Understanding LayoUt panes

316

Tip ■ a Background object is immutable. it can be safely used as the background of multiple Regions.

A Background object has zero or more fills and images. An instance of the BackgroundFill class
represents a fill; an instance of the BackgroundImage class represents an image.

The Region class contains a background property of the ObjectProperty<Background> type. The
background of a Region is set using the setBackground(Background bg) method.

The following snippet of code creates a Background object with two BackgroundFill objects. Setting
this to a Region produces the same effects of drawing a background with two fills as shown in the above
snippet of code using the CSS style. Notice that the Insets and CornerRadii classes are used to define the
insets and the radius for corners for the fills.

import javafx.geometry.Insets;
import javafx.scene.layout.Background;
import javafx.scene.layout.BackgroundFill;
import javafx.scene.layout.CornerRadii;
import javafx.scene.paint.Color;
...
BackgroundFill lightGrayFill =
 new BackgroundFill(Color.LIGHTGRAY, new CornerRadii(4), new Insets(0));

BackgroundFill redFill = new BackgroundFill(Color.RED, new CornerRadii(2), new Insets(4));

// Create a Background object with two BackgroundFill objects
Background bg = new Background(lightGrayFill, redFill);

The program in Listing 10-3 shows how to set the background for a Pane, which is a Region, using
both the CSS properties and the Background object. The resulting screen is shown in Figure 10-8. The
getCSSStyledPane() method creates a Pane, adds a background with two fills using CSS, and returns the
Pane. The getObjectStyledPane() method creates a Pane, adds a background with two fills using Java
classes, and returns the Pane. The start() method adds the two Panes to another Pane and positions them
side-by-side.

Listing 10-3. Using Background Fills as the Background for a Region

// BackgroundFillTest.java
package com.jdojo.container;

import javafx.application.Application;
import javafx.geometry.Insets;
import javafx.scene.Scene;
import javafx.scene.layout.Background;
import javafx.scene.layout.BackgroundFill;
import javafx.scene.layout.CornerRadii;
import javafx.scene.layout.Pane;
import javafx.scene.paint.Color;
import javafx.stage.Stage;

Chapter 10 ■ Understanding LayoUt panes

317

public class BackgroundFillTest extends Application {
 public static void main(String[] args) {
 Application.launch(args);
 }

 @Override
 public void start(Stage stage) {
 Pane p1 = this.getCSSStyledPane();
 Pane p2 = this.getObjectStyledPane();

 p1.setLayoutX(10);
 p1.setLayoutY(10);

 // Place p2 20px right to p1
 p2.layoutYProperty().bind(p1.layoutYProperty());
 p2.layoutXProperty().bind(p1.layoutXProperty().add(p1.widthProperty()).

add(20));

 Pane root = new Pane(p1, p2);
 root.setPrefSize(240, 70);
 Scene scene = new Scene(root);
 stage.setScene(scene);
 stage.setTitle("Setting Background Fills for a Region");
 stage.show();
 stage.sizeToScene();
 }

 public Pane getCSSStyledPane() {
 Pane p = new Pane();
 p.setPrefSize(100, 50);
 p.setStyle("-fx-background-color: lightgray, red;"
 + "-fx-background-insets: 0, 4;"
 + "-fx-background-radius: 4, 2;");

 return p;
 }

 public Pane getObjectStyledPane() {
 Pane p = new Pane();
 p.setPrefSize(100, 50);

 BackgroundFill lightGrayFill =
 new BackgroundFill(Color.LIGHTGRAY, new CornerRadii(4),

new Insets(0));

 BackgroundFill redFill =
 new BackgroundFill(Color.RED, new CornerRadii(2), new Insets(4));

Chapter 10 ■ Understanding LayoUt panes

318

 // Create a Background object with two BackgroundFill objects
 Background bg = new Background(lightGrayFill, redFill);
 p.setBackground(bg);

 return p;
 }
}

The following CSS properties define the background image for a Region.

•	 -fx-background-image

•	 -fx-background-repeat

•	 -fx-background-position

•	 -fx-background-size

The -fx-background-image property is a CSS URL for the image. The -fx-background-repeat property
indicates how the image will be repeated (or not repeated) to cover the drawing area of the Region. The
-fx-background-position determines how the image is positioned with the Region. The -fx-background-size
property determines the size of the image relative to the Region.

The following CSS properties fill the entire layout bounds of the Region with a red color.

-fx-background-image: URL('your_image_url_goes_here');
-fx-background-repeat: space;
-fx-background-position: center;
-fx-background-size: cover;

The following snippet of code and the above set of the CSS properties will produce identical effects
when they are set on a Region.

import javafx.scene.image.Image;
import javafx.scene.layout.Background;
import javafx.scene.layout.BackgroundImage;
import javafx.scene.layout.BackgroundPosition;
import javafx.scene.layout.BackgroundRepeat;
import javafx.scene.layout.BackgroundSize;
...
Image image = new Image("your_image_url_goes_here");
BackgroundSize bgSize = new BackgroundSize(100, 100, true, true, false, true);

Figure 10-8. Two Panes having identical backgrounds set: one using CSS and one using Java objects

Chapter 10 ■ Understanding LayoUt panes

319

BackgroundImage bgImage = new BackgroundImage(image,
 BackgroundRepeat.SPACE,
 BackgroundRepeat.SPACE,
 BackgroundPosition.DEFAULT,
 bgSize);

// Create a Background object with an BackgroundImage object
Background bg = new Background(bgImage);

Setting Padding
The padding of a Region is the space around its content area. The Region class contains a padding property
of the ObjectProperty<Insets> type. You can set separate padding widths for each of the four sides.

// Create an HBox
HBox hb = new HBox();

// A uniform padding of 10px around all edges
hb.setPadding(new Insets(10));

// A non-uniform padding: 2px top, 4px right, 6px bottom, and 8px left
hb.setPadding(new Insets(2, 4, 6, 8));

Setting Borders
A Region can have a border, which consists of strokes, images, or both. If strokes and images are not present,
the border is considered empty. Strokes and images are applied in the order they are specified; all strokes are
applied before images. Before JavaFX 8, you could set the border only using CSS. Starting JavaFX 8, you also
set the border using the Border class in code.

Note ■ We will use the phrases, “the edges of a Region” and “the layout bounds of a Region,” in this section,
synonymously, which mean the edges of the rectangle defined by the layout bounds of the Region.

A stroke consists of five properties:

A color•	

A style•	

A width•	

Radii for four corners•	

Insets on four sides•	

The color defines the color to be used for the stroke. You can specify four different colors for the four sides.
The style defines the style for the stroke: for example, solid, dashed, etc. The style also defines the

location of the border relative to its insets: for example, inside, outside, or centered. You can specify four
different styles for the four sides.

The radii define the radii for corners; set them to zero if you want rectangular corners.

Chapter 10 ■ Understanding LayoUt panes

320

The width of the stroke defines its thickness. You can specify four different widths for the four sides.
The insets of a stroke define the distance from the sides of the layout bounds of the Region where the

border is drawn. A positive value for the inset for a side is measured inward from the edge of the Region.
A negative value of the inset for a side is measured outward from the edge of the Region. An inset of zero
on a side means the edge of the layout bounds itself. It is possible to have positive insets for some sides
(e.g., top and bottom) and negative insets for others (e.g., right and left). Figure 10-9 shows the positions
of positive and negative insets relative to the layout bounds of a Region. The rectangle in solid lines is the
layout bounds of a Region, and the rectangles in dashed lines are the insets lines.

The border stroke may be drawn inside, outside, or partially inside and partially outside the layout
bounds of the Region. To determine the exact position of a stroke relative to the layout bounds, you need to
look at its two properties: insets and style.

If the style of the stroke is •	 inside, the stroke is drawn inside the insets.

If the style is outside, it is drawn outside the insets.•	

If the style is centered, it is drawn half inside and half outside the insets.•	

Figure 10-10 shows some examples of the border positions for a Region. The rectangle in dashed lines
indicates the layout bounds of the Region. Borders are shown in a light gray color. The label below each
Region shows the some details of the border properties (e.g., style, insets, and width).

The following CSS properties define border strokes for a Region.

•	 -fx-border-color

•	 -fx-border-style

•	 -fx-border-width

•	 -fx-border-radius

•	 -fx-border-insets

Negative insets

Positive insets

Layout bounds

Negative insets on
left and right

Positive insets on
top and bottom

Layout bounds

Figure 10-9. Positions of positive and negative insets relative to the layout bounds

Figure 10-10. Examples of determining the position of a border based on its style and insets

Chapter 10 ■ Understanding LayoUt panes

321

The following CSS properties draw a border with a stroke of 10px in width and red in color. The outside
edge of the border will be the same as the edges of the Region as we have set insets and style as zero and inside,
respectively. The border will be rounded on the corners as we have set the radii for all corners to 5px.

-fx-border-color: red;
-fx-border-style: solid inside;
-fx-border-width: 10;
-fx-border-insets: 0;
-fx-border-radius: 5;

The following CSS properties use two strokes for a border. The first stroke is drawn inside the edges of
the Region and the second one outside.

-fx-border-color: red, green;
-fx-border-style: solid inside, solid outside;
-fx-border-width: 5, 2 ;
-fx-border-insets: 0, 0;
-fx-border-radius: 0, 0;

Tip ■ the part of the border drawn outside the edges of the Region does not affect its layout bounds.
the part of the border drawn outside the edges of the Region is within the layout bounds of the Region. in other
words, the border area that falls inside the edges of a Region influences the layout bounds for that Region.

So far, we have discussed the insets for strokes of a border. A border also has insets and outsets, which
are computed automatically based on the properties for its strokes and images. The distance between the
edges of the Region and the inner edges of its border, considering all strokes and images that are drawn
inside the edges of the Region, is known as the insets of the border. The distance between the edges of the
Region and the outer edges of its border, considering all strokes and images that are drawn outside the edges
of the Region, is known as the outsets of the border. You must be able to differentiate between the insets of a
stroke and insets/outsets a border. The insets of a stroke determine the location where the stroke is drawn,
whereas the insets/outsets of a border tell you how far the border extends inside/outside of the edges of the
Region. Figure 10-11 shows how the insets and outsets of a border are computed. The dashed line shows the
layout bounds of a Region, which has a border with two strokes: one in red and one in green. The following
styles, when set on a 150px X 50px Region, results in the border as shown in Figure 10-11.

-fx-background-color: white;
-fx-padding: 10;
-fx-border-color: red, green, black;
-fx-border-style: solid inside, solid outside, dashed centered;
-fx-border-width: 10, 8, 1;
-fx-border-insets: 12, -10, 0;
-fx-border-radius: 0, 0, 0;

Chapter 10 ■ Understanding LayoUt panes

322

The insets of the border are 22px on all four sides, which is computed (10px + 12px) by adding the 10px
width of the red border drawn inside 12px (insets) from the edges of the Region. The outsets of the border
are 18px on all four sides, which is computed (8px + 10px) by adding the 8px width of the green border
drawn outside 10px (-10 insets) from the edges of the Region.

Starting from JavaFX 8, you can also set the border of a Region in code using Java objects. An instance of
the Border class represents the border of a Region. The class defines a Border.EMPTY constant to represent
an empty border (no strokes and no images).

Tip ■ a Border object is immutable. it can be safely used for multiple Regions.

A Border object has zero or more strokes and images. The Border class provides several constructors
that take multiple strokes and images as arguments. The Region class contains a border property of the
ObjectProperty<Border> type. The border of a Region is set using the setBorder(Border b) method.

An instance of the BorderStroke class represents a stroke; an instance of the BorderImage class
represents an image. The BorderStroke class provides constructors to set the style of the stroke. The
following are the two commonly used constructors. The third constructor allows you to set different color
and style of strokes on four sides.

•	 BorderStroke(Paint stroke, BorderStrokeStyle style, CornerRadii radii,
BorderWidths widths)

•	 BorderStroke(Paint stroke, BorderStrokeStyle style, CornerRadii radii,
BorderWidths widths, Insets insets)

The BorderStrokeStyle class represents the style of a stroke. The BorderWidths class represents widths
of a stroke on all four sides of a border. It lets you set the widths as absolute values or as a percentage of the
dimensions of the Region. The following snippet of code creates a Border and sets it to a Pane.

BorderStrokeStyle style = new BorderStrokeStyle(StrokeType.INSIDE,
 StrokeLineJoin.MITER,
 StrokeLineCap.BUTT,
 10,
 0,
 null);
BorderStroke stroke = new BorderStroke(Color.GREEN,
 style,
 CornerRadii.EMPTY,
 new BorderWidths(8),
 new Insets(10));

Region’s edges Border’s inset on right

Border’s outset on right

Figure 10-11. Relationship between insets/outsets of a border and the layout bounds of a Region

Chapter 10 ■ Understanding LayoUt panes

323

Pane p = new Pane();
p.setPrefSize(100, 50);
Border b = new Border(stroke);
p.setBorder(b);

The Border class provides getInsets() and getOutsets() methods that return the insets and outsets
for the Border. Both methods return an Insets object. Remember that the insets and outsets for a Border are
different from insets of strokes. They are computed automatically based on the insets and styles for strokes
and images that a Border has.

You can get all strokes and all images of a Border using its getStrokes() and getImages() methods,
which return List<BorderStroke> and List<BorderImage>, respectively. You can compare two Border
objects and two BorderStroke objects for equality using their equals() method.

Listing 10-4 demonstrates how to create and set a border to a Pane. It displays a screen with two Panes.
One Pane is styled using CSS and another using a Border object. The Panes look similar to the one shown in
Figure 10-11. The program prints the insets and outsets for the borders and checks whether both borders are
the same or not. Both borders use three strokes. The getCSSStyledPane() method returns a Pane styled with
CSS; the getObjectStyledPane() method returns a Pane styled using a Border object.

Listing 10-4. Using Strokes as the Border for a Region

// BorderStrokeTest.java
package com.jdojo.container;

import java.util.ArrayList;
import java.util.List;
import javafx.application.Application;
import javafx.geometry.Insets;
import javafx.scene.Scene;
import javafx.scene.layout.Background;
import javafx.scene.layout.Border;
import javafx.scene.layout.BorderStroke;
import javafx.scene.layout.BorderStrokeStyle;
import javafx.scene.layout.BorderWidths;
import javafx.scene.layout.CornerRadii;
import javafx.scene.layout.Pane;
import javafx.scene.paint.Color;
import javafx.scene.shape.StrokeLineCap;
import javafx.scene.shape.StrokeLineJoin;
import javafx.scene.shape.StrokeType;
import javafx.stage.Stage;

public class BorderStrokeTest extends Application {
 public static void main(String[] args) {
 Application.launch(args);
 }

 @Override
 public void start(Stage stage) {
 Pane p1 = this.getCSSStyledPane();
 Pane p2 = this.getObjectStyledPane();

Chapter 10 ■ Understanding LayoUt panes

324

 // Place p1 and p2
 p1.setLayoutX(20);
 p1.setLayoutY(20);
 p2.layoutYProperty().bind(p1.layoutYProperty());
 p2.layoutXProperty().bind(
 p1.layoutXProperty().add(p1.widthProperty()).add(40));

 Pane root = new Pane(p1, p2);
 root.setPrefSize(300, 120);
 Scene scene = new Scene(root);
 stage.setScene(scene);
 stage.setTitle("Setting Background Fills for a Region");
 stage.show();

 // Print borders details
 printBorderDetails(p1.getBorder(), p2.getBorder());
 }

 public Pane getCSSStyledPane() {
 Pane p = new Pane();
 p.setPrefSize(100, 50);
 p.setStyle("-fx-padding: 10;" +
 "-fx-border-color: red, green, black;" +
 "-fx-border-style: solid inside, solid outside, dashed

centered;" +
 "-fx-border-width: 10, 8, 1;" +
 "-fx-border-insets: 12, -10, 0;" +
 "-fx-border-radius: 0, 0, 0;");

 return p;
 }

 public Pane getObjectStyledPane() {
 Pane p = new Pane();
 p.setPrefSize(100, 50);
 p.setBackground(Background.EMPTY);
 p.setPadding(new Insets(10));

 // Create three border strokes
 BorderStroke redStroke = new BorderStroke(Color.RED,
 BorderStrokeStyle.SOLID,
 CornerRadii.EMPTY,
 new BorderWidths(10),
 new Insets(12));

 BorderStrokeStyle greenStrokeStyle = new BorderStrokeStyle(StrokeType.OUTSIDE,
 StrokeLineJoin.MITER,
 StrokeLineCap.BUTT,
 10,
 0,
 null);

Chapter 10 ■ Understanding LayoUt panes

325

 BorderStroke greenStroke = new BorderStroke(Color.GREEN,
 greenStrokeStyle,
 CornerRadii.EMPTY,
 new BorderWidths(8),
 new Insets(-10));

 List<Double> dashArray = new ArrayList<>();
 dashArray.add(2.0);
 dashArray.add(1.4);

 BorderStrokeStyle blackStrokeStyle
 = new BorderStrokeStyle(StrokeType.CENTERED,
 StrokeLineJoin.MITER,
 StrokeLineCap.BUTT,
 10,
 0,
 dashArray);
 BorderStroke blackStroke = new BorderStroke(Color.BLACK,
 blackStrokeStyle,
 CornerRadii.EMPTY,
 new BorderWidths(1),
 new Insets(0));

 // Create a Border object with three BorderStroke objects
 Border b = new Border(redStroke, greenStroke, blackStroke);
 p.setBorder(b);

 return p;
 }

 private void printBorderDetails(Border cssBorder, Border objectBorder) {
 System.out.println("cssBorder insets:" + cssBorder.getInsets());
 System.out.println("cssBorder outsets:" + cssBorder.getOutsets());
 System.out.println("objectBorder insets:" + objectBorder.getInsets());
 System.out.println("objectBorder outsets:" + objectBorder.getOutsets());

 if (cssBorder.equals(objectBorder)) {
 System.out.println("Borders are equal.");
 } else {
 System.out.println("Borders are not equal.");
 }
 }
}

cssBorder insets:Insets [top=22.0, right=22.0, bottom=22.0, left=22.0]
cssBorder outsets:Insets [top=18.0, right=18.0, bottom=18.0, left=18.0]
objectBorder insets:Insets [top=22.0, right=22.0, bottom=22.0, left=22.0]
objectBorder outsets:Insets [top=18.0, right=18.0, bottom=18.0, left=18.0]
Borders are equal.

Chapter 10 ■ Understanding LayoUt panes

326

Using an image for a border is not as straightforward as using a stroke. An image defines a rectangular
area; so does a Region. A border is drawn around a Region in an area called the border image area. The
border area of a Region may be the entire area of the Region; it may be partly or fully inside or outside of the
Region. The insets on four edges of the Region define the border image area. To make an image a border
around a Region, both the border image area and the image are divided into nine regions: four corners,
four sides, and a middle. The border area is divided into nine parts by specifying widths on all four sides,
top, right, bottom, and left. The width is the width of the border along those sides. The image is also sliced
(divided) into nine regions by specifying the slice width for each side. Figure 10-12 shows a Region, the
border image area with its nine regions, an image and its nine regions (or slices). In the figure, the border
image area is the same as the area of the Region.

A Region in nine partsA Region An image An image in nine parts

Figure 10-12. Slicing a Region and an image into nine parts

Tip ■ the border image is not drawn if a region uses a shape other than a rectangular shape.

Note that the four widths from the edges, while dividing a border area and an image, do not necessarily
have to be uniform. For example, you can specify widths as 2px on top, 10px on right, 2px on bottom, and
10px on left.

After you have divided the border image area and the image into nine regions, you need to specify
properties that control the positioning and resizing behavior of the image slices. Each of nine slices of the
image has to be positioned and fit inside its corresponding part in the border image area. For example, the
image slice in the upper left corner of the image has to fit in the upper-left corner part of the border image
area. The two components, an image slice and its corresponding border image slice, may not be of the same
size. You will need to specify how to fill the region in the border image area (scale, repeat, etc.) with the
corresponding image slice. Typically, the middle slice of the image is discarded. However, if you want to fill
the middle region of the border image area, you can do so with the middle slice of the image.

In Figure 10-12, the boundaries of the Region and the border image area are the same. Figure 10-13 has
examples in which the boundaries of the border image area fall inside and outside of the boundary of the
Region. It is possible that some regions of the border image area fall outside of the Region and some inside.

Region
boundary

A Region
Border Image
area boundary

Region
boundary

Border Image
area boundary

Figure 10-13. Relationship between the area of a Region and the border image area

Chapter 10 ■ Understanding LayoUt panes

327

The following CSS properties define border images for a Region.

•	 -fx-border-image-source

•	 -fx-border-image-repeat

•	 -fx-border-image-slice

•	 -fx-border-image-width

•	 -fx-border-image-insets

The -fx-border-image-source property is a CSS URL for the image. For multiple images, use a
comma-separated list of CSS URLs of images.

The -fx-border-image-repeat property specifies how a slice of the image will cover the corresponding
part of the Region. You can specify the property separately for the x-axis and y-axis. Valid values:

•	 no-repeat

•	 repeat

•	 round

•	 space

The no-repeat value specifies that the image slice should be scaled to fill the area without repeating it.
The repeat value specifies that the image should be repeated (tiled) to fill the area. The round value specifies
that the image should be repeated (tiled) to fill the area using a whole number of tiles, and if necessary, scale
the image to use the whole number of tiles. The space value specifies that the image should be repeated
(tiled) to fill the area using a whole number of tiles without scaling the image and by distributing the extra
space uniformly around the tiles.

The -fx-border-image-slice property specifies inward offsets from the top, right, bottom, and
left edges of the image to divide it into nine slices. The property can be specified as a number literal or a
percentage of the side of the image. If the word fill is present in the value, the middle slice of the image
is preserved and is used to fill the middle region of the border image area; otherwise, the middle slice is
discarded.

The -fx-border-image-width property specifies the inward offsets from four sides of the border image
area to divide the border image area into nine regions. Note that we divide the border image area into nine
regions, not the Region. The property can be specified as a number literal or a percentage of the side of the
border image area.

The -fx-border-image-insets property specifies the distance between the edges of the Region and
the edges of the border image area on four sides. A positive inset is measured from the edge of the Region
toward its center. A negative inset is measured outward from the edge of the Region. In Figure 10-13, the
border image area for the Region in the middle has positive insets, whereas the border image area for the
Region (third from the left) has negative insets.

Let us look at some examples of using images as a border. In all examples, we will use the image shown
in Figure 10-12 as a border for a 200px X 70px Pane.

Listing 10-5 contains the CSS and Figure 10-14 shows the resulting Panes when the -fx-border-image-
repeat property is set to no-repeat, repeat, space, and round. Notice that we have set the -fx-border-
image-width and the -fx-border-image-slice properties to the same value of 9px. This will cause the
corner slices to fit exactly into the corners of the border image area. The middle region of the border image
area is not filled because we have not specified the fill value for the -fx-border-image-slice property.
We have used a stroke to draw the boundary of the Pane.

Chapter 10 ■ Understanding LayoUt panes

328

Listing 10-5. Using an Image as a Border Without Filling the Middle Region

-fx-border-image-source: url('image_url_goes_here') ;
-fx-border-image-repeat: no-repeat;
-fx-border-image-slice: 9;
-fx-border-image-width: 9;
-fx-border-image-insets: 10;
-fx-border-color: black;
-fx-border-width: 1;
-fx-border-style: dashed inside;

Listing 10-6 contains the CSS, which is a slight variation of Listing 10-5. Figure 10-15 shows the resulting
Panes. This time, the middle region of the border image area is filled because we have specified the fill
value for the -fx-border-image-slice property.

Listing 10-6. Using an Image as a Border Filling the Middle Region

-fx-border-image-source: url('image_url_goes_here') ;
-fx-border-image-repeat: no-repeat;
-fx-border-image-slice: 9 fill;
-fx-border-image-width: 9;
-fx-border-image-insets: 10;
-fx-border-color: black;
-fx-border-width: 1;
-fx-border-style: dashed inside;

Figure 10-14. Using different values for repeat without the fill value for slice property

Figure 10-15. Using different values for repeat with the fill value for the slice property

Chapter 10 ■ Understanding LayoUt panes

329

The BorderImage class, which is immutable, represents a border image in a Border. All properties for
the border image are specified in the constructor:

BorderImage(Image image,
 BorderWidths widths,
 Insets insets,
 BorderWidths slices,
 boolean filled,
 BorderRepeat repeatX,
 BorderRepeat repeatY)

The BorderRepeat enum contains STRETCH, REPEAT, SPACE, and ROUND constants that are used to
indicate how the image slices are repeated in the x and y directions to fill the regions of the border image
area. They have the same effect of specifying no-repeat, repeat, space, and round in CSS.

BorderWidths regionWidths = new BorderWidths(9);
BorderWidths sliceWidth = new BorderWidths(9);
boolean filled = false;
BorderRepeat repeatX = BorderRepeat.STRETCH;
BorderRepeat repeatY = BorderRepeat.STRETCH;
BorderImage borderImage = new BorderImage(new Image("image_url_goes_here"),
 regionWidths,
 new Insets(10),
 sliceWidth,
 filled,
 repeatX,
 repeatY);

Listing 10-7 has a program that creates the border using CSS and Java classes. The resulting screen is
shown in Figure 10-16. The left and right Panes are decorated with the same borders: one uses CSS and
another Java classes.

Listing 10-7. Using Strokes and Images as a Border

// BorderImageTest.java
package com.jdojo.container;

import java.net.URL;
import java.util.ArrayList;
import java.util.List;
import javafx.application.Application;
import javafx.geometry.Insets;
import javafx.scene.Scene;
import javafx.scene.image.Image;
import javafx.scene.layout.Background;
import javafx.scene.layout.Border;
import javafx.scene.layout.BorderImage;
import javafx.scene.layout.BorderRepeat;
import javafx.scene.layout.BorderStroke;
import javafx.scene.layout.BorderStrokeStyle;
import javafx.scene.layout.BorderWidths;
import javafx.scene.layout.CornerRadii;

Chapter 10 ■ Understanding LayoUt panes

330

import javafx.scene.layout.Pane;
import javafx.scene.paint.Color;
import javafx.scene.shape.StrokeLineCap;
import javafx.scene.shape.StrokeLineJoin;
import javafx.scene.shape.StrokeType;
import javafx.stage.Stage;

public class BorderImageTest extends Application {
 public static void main(String[] args) {
 Application.launch(args);
 }

 @Override
 public void start(Stage stage) {
 // Get the URL of the image
 String imagePath = "resources/picture/border_with_triangles.jpg";
 URL imageURL = getClass().getResource(imagePath);
 String imageURLString = imageURL.toExternalForm();

 Pane p1 = this.getCSSStyledPane(imageURLString);
 Pane p2 = this.getObjectStyledPane(imageURLString);

 // Place p1 and p2
 p1.setLayoutX(20);
 p1.setLayoutY(20);
 p2.layoutYProperty().bind(p1.layoutYProperty());
 p2.layoutXProperty().bind(p1.layoutXProperty().add(p1.widthProperty()).add(20));

 Pane root = new Pane(p1, p2);
 root.setPrefSize(260, 100);

 Scene scene = new Scene(root);
 stage.setScene(scene);
 stage.setTitle("Strokes and Images as a Border");
 stage.show();
 }

 public Pane getCSSStyledPane(String imageURL) {
 Pane p = new Pane();
 p.setPrefSize(100, 70);
 p.setStyle("-fx-border-image-source: url('" + imageURL + "') ;" +
 "-fx-border-image-repeat: no-repeat;" +
 "-fx-border-image-slice: 9;" +
 "-fx-border-image-width: 9;" +
 "-fx-border-image-insets: 10;" +
 "-fx-border-color: black;" +
 "-fx-border-width: 1;" +
 "-fx-border-style: dashed inside;");

 return p;
 }

Chapter 10 ■ Understanding LayoUt panes

331

 public Pane getObjectStyledPane(String imageURL) {
 Pane p = new Pane();
 p.setPrefSize(100, 70);
 p.setBackground(Background.EMPTY);

 // Create a BorderImage object
 BorderWidths regionWidths = new BorderWidths(9);
 BorderWidths sliceWidth = new BorderWidths(9);
 boolean filled = false;
 BorderRepeat repeatX = BorderRepeat.STRETCH;
 BorderRepeat repeatY = BorderRepeat.STRETCH;
 BorderImage borderImage = new BorderImage(new Image(imageURL),
 regionWidths,
 new Insets(10),
 sliceWidth,
 filled,
 repeatX,
 repeatY);

 // Set the Pane's boundary with a dashed stroke
 List<Double> dashArray = new ArrayList<>();
 dashArray.add(2.0);
 dashArray.add(1.4);
 BorderStrokeStyle blackStrokeStyle =
 new BorderStrokeStyle(StrokeType.INSIDE,
 StrokeLineJoin.MITER,
 StrokeLineCap.BUTT,
 10,
 0,
 dashArray);
 BorderStroke borderStroke = new BorderStroke(Color.BLACK,
 blackStrokeStyle,
 CornerRadii.EMPTY,
 new BorderWidths(1),
 new Insets(0));

 // Create a Border object with a stroke and an image
 BorderStroke[] strokes = new BorderStroke[] { borderStroke };
 BorderImage[] images = new BorderImage[] { borderImage };
 Border b = new Border(strokes, images);

 p.setBorder(b);

 return p;
 }
}

Chapter 10 ■ Understanding LayoUt panes

332

Setting Margins
Setting margins on a Region is not supported directly. Most layout panes support margins for their children.
If you want margins for a Region, add it to a layout pane, for example, an HBox, and use the layout pane
instead of the Region.

Pane p1 = new Pane();
p1.setPrefSize(100, 20);

HBox box = new HBox();

// Set a margin of 10px around all four sides of the Pane
HBox.setMargin(p1, new Insets(10));
box.getChildren().addAll(p1);

Now, use box instead of p1 to get the margins around p1.

Understanding Panes
Pane is a subclass class of the Region class. It exposes the getChildren() method of the Parent class, which
is the superclass of the Region class, This means that instances of the Pane class and its subclasses can add
any children.

A Pane provides the following layout features:

It can be used when absolute positioning is needed. By default, it positions all its •	
children at (0, 0). You need to set the positions of the children explicitly.

It resizes all resizable children to their preferred sizes.•	

By default, a Pane has minimum, preferred, and maximum sizes. Its minimum width is the sum of the
left and right insets; its minimum height is the sum of the top and bottom insets. Its preferred width is the
width required to display all its children at their current x location with their preferred widths; its preferred
height is the height required to display all its children at their current y location with their preferred heights.
Its maximum width and height are set to Double.MAX_VALUE.

The program in Listing 10-8 shows how to create a Pane, add two Buttons to it, and how to position the
Buttons. The resulting screen is shown in Figure 10-17. The Pane uses a border to show the area it occupies
in the screen. Try resizing the window, and you will find that the Pane shrinks and expands.

Figure 10-16. Creating a border with a strike and an image using CSS and Java classes

Chapter 10 ■ Understanding LayoUt panes

333

Listing 10-8. Using Panes

// PaneTest.java
package com.jdojo.container;

import javafx.application.Application;
import javafx.scene.Scene;
import javafx.scene.control.Button;
import javafx.scene.layout.Pane;
import javafx.stage.Stage;

public class PaneTest extends Application {
 public static void main(String[] args) {
 Application.launch(args);
 }

 @Override
 public void start(Stage stage) {
 Button okBtn = new Button("OK");
 Button cancelBtn = new Button("Cancel");
 okBtn.relocate(10, 10);
 cancelBtn.relocate(60, 10);

 Pane root = new Pane();
 root.getChildren().addAll(okBtn, cancelBtn);
 root.setStyle("-fx-border-style: solid inside;" +
 "-fx-border-width: 3;" +
 "-fx-border-color: red;");

 Scene scene = new Scene(root);
 stage.setScene(scene);
 stage.setTitle("Using Panes");
 stage.show();
 }
}

A Pane lets you set its preferred size:

Pane root = new Pane();
root.setPrefSize(300, 200); // 300px wide and 200px tall

Figure 10-17. A pane with two Buttons

Chapter 10 ■ Understanding LayoUt panes

334

You can tell the Pane to compute its preferred size based on its children sizes by resetting its preferred
width and height to the computed width and height.

Pane root = new Pane();

// Set the preferred size to 300px wide and 200px tall
root.setPrefSize(300, 200);

/* Do some processing... */

// Set the default preferred size
root.setPrefSize(Region.USE_COMPUTED_SIZE, Region.USE_COMPUTED_SIZE);

Tip ■ a Pane does not clip its content; its children may be displayed outside its bounds.

Understanding HBox
An HBox lays out its children in a single horizontal row. It lets you set the horizontal spacing between adjacent
children, margins for any children, resizing behavior of children, etc. It uses 0px as the default spacing
between adjacent children. The default width of the content area and HBox is wide enough to display all its
children at their preferred widths, and the default height is the largest of the heights of all its children.

You cannot set the locations for children in an HBox. They are automatically computed by the HBox.
You can control the locations of children to some extent by customizing the properties of the HBox and
setting constraints on the children.

Creating HBox Objects
Constructors of the HBox class let you create HBox objects with or without specifying the spacing and initial
set of children.

// Create an empty HBox with the default spacing (0px)
HBox hbox1 = new HBox();

// Create an empty HBox with a 10px spacing
HBox hbox2 = new HBox(10);

// Create an HBox with two Buttons and a 10px spacing
Button okBtn = new Button("OK");
Button cancelBtn = new Button("Cancel");
HBox hbox3 = new HBox(10, okBtn, cancelBtn);

The program in Listing 10-9 shows how to use an HBox. It adds a Label, a TextField, and two Buttons to
an HBox. Spacing between adjacent children is set to 10px. A padding of 10px is used to maintain a distance
between the edges of the HBox and the edges of its children. The resulting window is shown in Figure 10-18.

Chapter 10 ■ Understanding LayoUt panes

335

Listing 10-9. Using the HBox Layout Pane

// HBoxTest.java
package com.jdojo.container;

import javafx.application.Application;
import javafx.scene.Scene;
import javafx.scene.control.Button;
import javafx.scene.control.Label;
import javafx.scene.control.TextField;
import javafx.scene.layout.HBox;
import javafx.stage.Stage;

public class HBoxTest extends Application {
 public static void main(String[] args) {
 Application.launch(args);
 }

 @Override
 public void start(Stage stage) {
 Label nameLbl = new Label("Name:");
 TextField nameFld = new TextField();
 Button okBtn = new Button("OK");
 Button cancelBtn = new Button("Cancel");

 HBox root = new HBox(10); // 10px spacing
 root.getChildren().addAll(nameLbl, nameFld, okBtn, cancelBtn);
 root.setStyle("-fx-padding: 10;" +
 "-fx-border-style: solid inside;" +
 "-fx-border-width: 2;" +
 "-fx-border-insets: 5;" +
 "-fx-border-radius: 5;" +
 "-fx-border-color: blue;");

 Scene scene = new Scene(root);
 stage.setScene(scene);
 stage.setTitle("Using HBox");
 stage.show();
 }
}

Figure 10-18. An HBox with a Label, a TextField, and two Buttons

Chapter 10 ■ Understanding LayoUt panes

336

HBox Properties
The HBox class declares three properties as listed in Table 10-2.

The Alignment Property
Using the alignment property is simple. It specifies how children are aligned within the content area of the HBox.
By default, an HBox allocates just enough space for its content to lay out all children at their preferred size.
The effect of the alignment property is noticeable when the HBox grows bigger than its preferred size.

The program in Listing 10-10 uses an HBox with two Buttons. It sets the alignment of the HBox to
Pos.BOTTOM_RIGHT. It sets the preferred size of the HBox a little bigger than needed to accommodate all its
children, so you can see the effect of the alignment. The resulting window is shown in Figure 10-19. When
you resize the window, the children stay aligned in the bottom-right area.

Listing 10-10. Using HBox Alignment Property

// HBoxAlignment.java
package com.jdojo.container;

import javafx.application.Application;
import javafx.geometry.Pos;
import javafx.scene.Scene;
import javafx.scene.control.Button;
import javafx.scene.layout.HBox;
import javafx.stage.Stage;

public class HBoxAlignment extends Application {
 public static void main(String[] args) {
 Application.launch(args);
 }

 @Override
 public void start(Stage stage) {
 Button okBtn = new Button("OK");
 Button cancelBtn = new Button("Cancel");

Table 10-2. Properties Declared in the HBox Class

Property Type Description

alignment ObjectProperty<Pos> It specifies the alignment of children relative to the content area
of the HBox. The fillHeight property is ignored if the vertical
alignment is set to BASELINE. The default value is Pos.TOP_LEFT.

fillHeight BooleanProperty It specifies whether the resizable children are resized to fill the
full height of the HBox or they are given their preferred heights.
This property is ignored, if the vertical alignment is set to
BASELINE. The default value is true.

spacing DoubleProperty It specifies the horizontal spacing between adjacent children.
The default value is zero.

Chapter 10 ■ Understanding LayoUt panes

337

 HBox hbox = new HBox(10);
 hbox.setPrefSize(200, 100);
 hbox.getChildren().addAll(okBtn, cancelBtn);

 // Set the alignment to bottom right
 hbox.setAlignment(Pos.BOTTOM_RIGHT);

 hbox.setStyle("-fx-padding: 10;" +
 "-fx-border-style: solid inside;" +
 "-fx-border-width: 2;" +
 "-fx-border-insets: 5;" +
 "-fx-border-radius: 5;" +
 "-fx-border-color: blue;");

 Scene scene = new Scene(hbox);
 stage.setScene(scene);
 stage.setTitle("Using HBox Alignment Property");
 stage.show();
 }
}

The fillHeight Property
The fillHeight property specifies whether the HBox expands its children vertically to fill the height of its
content area or keeps them to their preferred height. Note that this property affects only those child nodes
that allow for the vertical expansion. For example, by default, the maximum height of a Button is set to its
preferred height, and a Button does become taller than its preferred width in an HBox, even if vertical space
is available. If you want a Button to expand vertically, set its maximum height to Double.MAX_VALUE. By
default, a TextArea is set to expand. Therefore, a TextArea inside an HBox will become taller as the height
of the HBox is increased. If you do not want the resizable children to fill the height of the content area of an
HBox, set the fillHeight property to false.

Tip ■ the preferred height of the content area of an HBox is the largest of the preferred height of its children.
resizable children fill the full height of the content area, provided their maximum height property allows them to
expand. otherwise, they are kept at their preferred height.

Figure 10-19. An HBox with two Buttons and alignment property set to Pos.BOTTOM_RIGHT

Chapter 10 ■ Understanding LayoUt panes

338

The program in Listing 10-11 shows how the fillHeight property affects the height of the children of
an HBox. It displays some controls inside an HBox. A TextArea can grow vertically by default. The maximum
height of the Cancel button is set to Double.MAX_VALUE, so it can grow vertically. A CheckBox is provided
to change the value of the fillHeight property of the HBox. The initial window is shown in Figure 10-20.
Notice that the Ok button has the preferred height, whereas the Cancel button expends vertically to fill the
height of the content area as determined by the TextArea. Resize the window to make it taller and change
the fillHeight property using the CheckBox; the TextArea and the Cancel button expands and shrinks
vertically.

Listing 10-11. Using the fillHeight Property of an HBox

// HBoxFillHeight.java
package com.jdojo.container;

import javafx.application.Application;
import javafx.scene.Scene;
import javafx.scene.control.Button;
import javafx.scene.control.CheckBox;
import javafx.scene.control.Label;
import javafx.scene.control.TextArea;
import javafx.scene.layout.HBox;
import javafx.stage.Stage;

public class HBoxFillHeight extends Application {
 public static void main(String[] args) {
 Application.launch(args);
 }

 @Override
 public void start(Stage stage) {
 HBox root = new HBox(10); // 10px spacing

 Label descLbl = new Label("Description:");
 TextArea desc = new TextArea();
 desc.setPrefColumnCount(10);
 desc.setPrefRowCount(3);

 Button okBtn = new Button("OK");
 Button cancelBtn = new Button("Cancel");

 // Let the Cancel button expand vertically
 cancelBtn.setMaxHeight(Double.MAX_VALUE);

 CheckBox fillHeightCbx = new CheckBox("Fill Height");
 fillHeightCbx.setSelected(true);

 // Add an event handler to the CheckBox, so the user can set the
 // fillHeight property using the CheckBox
 fillHeightCbx.setOnAction(e ->
 root.setFillHeight(fillHeightCbx.isSelected()));

Chapter 10 ■ Understanding LayoUt panes

339

 root.getChildren().addAll(
 descLbl, desc, fillHeightCbx, okBtn,

cancelBtn);
 root.setStyle("-fx-padding: 10;" +
 "-fx-border-style: solid inside;" +
 "-fx-border-width: 2;" +
 "-fx-border-insets: 5;" +
 "-fx-border-radius: 5;" +
 "-fx-border-color: blue;");

 Scene scene = new Scene(root);
 stage.setScene(scene);
 stage.setTitle("Using HBox fillHeight Property");
 stage.show();
 }
}

The Spacing Property
The spacing property specifies the horizontal distance between adjacent children in an HBox. By default, it is
set to 0px. It can be set in constructors or using the setSpacing() method.

Setting Constraints for Children in HBox
HBox supports two types of constraints, hgrow and margin, which can be set on each child node individually.
The hgrow constraint specifies whether a child node expands horizontally when additional space is
available. The margin constraint specifies space outside the edges of a child node. The HBox class provides
setHgrow() and setMargin() static methods to specify these constraints. You can use null with these
methods to remove the constraints individually. Use the clearConstraints(Node child) method to remove
both constraints for a child node at once.

Letting Children Grow Horizontally
By default, the children in an HBox get their preferred widths. If the HBox is expanded horizontally, its children
may get the additional available space, provided their hgrow priority is set to grow. If an HBox is expanded
horizontally and none of its children has its hgrow constraint set, the additional space is left unused.

Figure 10-20. An HBox with some control, where the user can change the fillHeight property

Chapter 10 ■ Understanding LayoUt panes

340

The hgrow priority for a child node is set using the setHgrow() static method of the HBox class by
specifying the child node and the priority.

HBox root = new HBox(10);
TextField nameFld = new TextField();

// Let the TextField always grow horizontally
root.setHgrow(nameFld, Priority.ALWAYS);

To reset the hgrow priority of a child node, use null as the priority.

// Stop the TextField from growing horizontally
root.setHgrow(nameFld, null);

The program in Listing 10-12 shows how to set the priority of a TextField to Priority.ALWAYS, so it
can take all the additional horizontal space when the HBox is expanded. Figure 10-21 shows the initial and
expanded windows. Notice that all controls, except the TextField, stayed at their preferred widths, after the
window is expanded horizontally.

Listing 10-12. Letting a TextField Grow Horizontally

// HBoxHGrow.java
package com.jdojo.container;

import javafx.application.Application;
import javafx.scene.Scene;
import javafx.scene.control.Button;
import javafx.scene.control.Label;
import javafx.scene.control.TextField;
import javafx.scene.layout.HBox;
import javafx.scene.layout.Priority;
import javafx.stage.Stage;

public class HBoxHGrow extends Application {
 public static void main(String[] args) {
 Application.launch(args);
 }

 @Override
 public void start(Stage stage) {
 Label nameLbl = new Label("Name:");
 TextField nameFld = new TextField();

 Button okBtn = new Button("OK");
 Button cancelBtn = new Button("Cancel");

 HBox root = new HBox(10);
 root.getChildren().addAll(nameLbl, nameFld, okBtn, cancelBtn);

 // Let the TextField always grow horizontally
 HBox.setHgrow(nameFld, Priority.ALWAYS);

Chapter 10 ■ Understanding LayoUt panes

341

 root.setStyle("-fx-padding: 10;" +
 "-fx-border-style: solid inside;" +
 "-fx-border-width: 2;" +
 "-fx-border-insets: 5;" +
 "-fx-border-radius: 5;" +
 "-fx-border-color: blue;");

 Scene scene = new Scene(root);
 stage.setScene(scene);
 stage.setTitle("Using Horizontal Grow Priority in an HBox");
 stage.show();
 }
}

Setting Margins for Children
Margins are extra spaces added outside the edges of a node. The following snippet of code shows how to add
margins to the children of an HBox.

Label nameLbl = new Label("Name:");
TextField nameFld = new TextField();
Button okBtn = new Button("OK");
Button cancelBtn = new Button("Cancel");

HBox hbox = new HBox(nameLbl, nameFld, okBtn, cancelBtn);

// Set a margin for all children:
// 10px top, 2px right, 10px bottom, and 2px left
Insets margin = new Insets(10, 2, 10, 2);
HBox.setMargin(nameLbl, margin);
HBox.setMargin(nameFld, margin);
HBox.setMargin(okBtn, margin);
HBox.setMargin(cancelBtn, margin);

Initial

After
expanding
horizontally

Figure 10-21. An HBox with a TextField set to always grow horizontally

Chapter 10 ■ Understanding LayoUt panes

342

You can remove the margin from a child node by setting the margin value to null.

// Remove margins for okBtn
HBox.setMargin(okBtn, null);

Tip ■ Be careful when using the spacing property of the HBox and the margin constraint on its children.
Both will add to the horizontal gap between adjacent children. if you want margins applied, keep the horizontal
spacing between children uniform, and set the right and left margins for children to zero.

Understanding VBox
A VBox lays out its children in a single vertical column. It lets you set the vertical spacing between adjacent
children, margins for any children, resizing behavior of children, etc. It uses 0px as the default spacing
between adjacent children. The default height of the content area of a VBox is tall enough to display all its
children at their preferred heights, and the default width is the largest of the widths of all its children.

You cannot set the locations for children in a VBox. They are automatically computed by the VBox. You
can control the locations of children to some extent by customizing the properties of the VBox and setting
constraints on the children.

Working with a VBox is similar to working with an HBox with a difference that they work in opposite
directions. For example, in an HBox, the children fills the height of the content area by default, and in a VBox,
children fill the width of the content by default; an HBox lets you set hgrow constraints on a child node and a
VBox lets you set the vgrow constraint.

Creating VBox Objects
Constructors of the VBox class let you create VBox objects with or without specifying the spacing and initial
set of children.

// Create an empty VBox with the default spacing (0px)
VBox vbox1 = new VBox();

// Create an empty VBox with a 10px spacing
VBox vbox2 = new VBox(10);

// Create a VBox with two Buttons and a 10px spacing
Button okBtn = new Button("OK");
Button cancelBtn = new Button("Cancel");
VBox vbox3 = new VBox(10, okBtn, cancelBtn);

The program in Listing 10-13 shows how to use a VBox. It adds a Label, a TextField, and two Buttons
to a VBox. Spacing between adjacent children is set to 10px. A padding of 10px is used to maintain a distance
between the edges of the VBox and the edges of its children. The resulting window is shown in Figure 10-22.

Chapter 10 ■ Understanding LayoUt panes

343

Listing 10-13. Using the VBox Layout Pane

// VBoxTest.java
package com.jdojo.container;

import javafx.application.Application;
import javafx.scene.Scene;
import javafx.scene.control.Button;
import javafx.scene.control.Label;
import javafx.scene.control.TextField;
import javafx.scene.layout.VBox;
import javafx.stage.Stage;

public class VBoxTest extends Application {
 public static void main(String[] args) {
 Application.launch(args);
 }

 @Override
 public void start(Stage stage) {
 Label nameLbl = new Label("Name:");
 TextField nameFld = new TextField();
 Button okBtn = new Button("OK");
 Button cancelBtn = new Button("Cancel");

 VBox root = new VBox(10); // 10px spacing
 root.getChildren().addAll(nameLbl, nameFld, okBtn, cancelBtn);
 root.setStyle("-fx-padding: 10;" +
 "-fx-border-style: solid inside;" +
 "-fx-border-width: 2;" +
 "-fx-border-insets: 5;" +
 "-fx-border-radius: 5;" +
 "-fx-border-color: blue;");

 Scene scene = new Scene(root);
 stage.setScene(scene);
 stage.setTitle("Using VBox");
 stage.show();
 }
}

Chapter 10 ■ Understanding LayoUt panes

344

VBox Properties
The VBox class declares three properties as listed in Table 10-3.

The Alignment Property
Using the alignment property is simple. It specifies how children are aligned within the content area
of the VBox. By default, a VBox allocates just enough space for its content to lay out all children at their
preferred size. The effect of the alignment property is noticeable when the VBox grows bigger than its
preferred size.

The program in Listing 10-14 uses a VBox with two Buttons. It sets the alignment of the VBox to
Pos.BOTTOM_RIGHT. It sets the preferred size of the VBox a little bigger than needed to accommodate all its
children, so you can see the effect of the alignment. The resulting window is shown in Figure 10-23. When
you resize the window, the children stay aligned in the bottom-right area.

Figure 10-22. A VBox with a Label, a TextField, and two Buttons

Table 10-3. Properties Declared in the VBox Class

Property Type Description

alignment ObjectProperty<Pos> It specifies the alignment of children relative to the content area
of the VBox. The default value is Pos.TOP_LEFT.

fillWidth BooleanProperty It specifies whether the resizable children are resized to fill the
full width of the VBox or they are given their preferred widths.
The default value is true.

spacing DoubleProperty It specifies the vertical spacing between adjacent children.
The default value is zero.

Chapter 10 ■ Understanding LayoUt panes

345

Listing 10-14. Using VBox Alignment Property

// VBoxAlignment.java
package com.jdojo.container;

import javafx.application.Application;
import javafx.geometry.Pos;
import javafx.scene.Scene;
import javafx.scene.control.Button;
import javafx.scene.layout.VBox;
import javafx.stage.Stage;

public class VBoxAlignment extends Application {
 public static void main(String[] args) {
 Application.launch(args);
 }

 @Override
 public void start(Stage stage) {
 Button okBtn = new Button("OK");
 Button cancelBtn = new Button("Cancel");

 VBox vbox = new VBox(10);
 vbox.setPrefSize(200, 100);
 vbox.getChildren().addAll(okBtn, cancelBtn);

 // Set the alignment to bottom right
 vbox.setAlignment(Pos.BOTTOM_RIGHT);

 vbox.setStyle("-fx-padding: 10;" +
 "-fx-border-style: solid inside;" +
 "-fx-border-width: 2;" +
 "-fx-border-insets: 5;" +
 "-fx-border-radius: 5;" +
 "-fx-border-color: blue;");

 Scene scene = new Scene(vbox);
 stage.setScene(scene);
 stage.setTitle("Using VBox Alignment Property");
 stage.show();
 }
}

Chapter 10 ■ Understanding LayoUt panes

346

The fillWidth Property
The fillWidth property specifies whether the VBox expands its children horizontally to fill the width of its
content area or keeps them to their preferred height. Note that this property affects only those child nodes
that allow for the horizontal expansion. For example, by default, the maximum width of a Button is set to its
preferred width, and a Button does become wider than its preferred width in a VBox, even if horizontal space
is available. If you want a Button to expand horizontally, set its maximum width to Double.MAX_VALUE. By
default, a TextField is set to expand. Therefore, a TextField inside a VBox will become wider as the width
of the VBox is increased. If you do not want the resizable children to fill the width of the content area of a
VBox, set the fillWidth property to false. Run the program in Listing 10-13 and try expanding the window
horizontally. The TextField will expand horizontally as the window expands.

Tip ■ the preferred width of the content area of a VBox is the largest of the preferred width of its children.
resizable children fill the full width of the content area, provided their maximum width property allows them to
expand. otherwise, they are kept at their preferred width.

It is often needed in a GUI application that you need to arrange a set of Buttons in a vertical column and
make them the same size. You need to add the buttons to a VBox and set the maximum width of all buttons
to Double.MAX_VALUE so they can grow to match the width of the widest button in the group. The program in
Listing 10-15 shows how to achieve this. Figure 10-24 shows the window.

Listing 10-15. Using the fillWidth Property of a VBox

// VBoxFillWidth.java
package com.jdojo.container;

import javafx.application.Application;
import javafx.scene.Scene;
import javafx.scene.control.Button;
import javafx.scene.layout.VBox;
import javafx.stage.Stage;

public class VBoxFillWidth extends Application {
 public static void main(String[] args) {
 Application.launch(args);
 }

Figure 10-23. A VBox with two Buttons and alignment property set to Pos.BOTTOM_RIGHT

Chapter 10 ■ Understanding LayoUt panes

347

 @Override
 public void start(Stage stage) {
 Button b1 = new Button("New");
 Button b2 = new Button("New Modified");
 Button b3 = new Button("Not Modified");
 Button b4 = new Button("Data Modified");

 // Set the max width of the buttons to Double.MAX_VALUE,
 // so they can grow horizontally
 b1.setMaxWidth(Double.MAX_VALUE);
 b2.setMaxWidth(Double.MAX_VALUE);
 b3.setMaxWidth(Double.MAX_VALUE);
 b4.setMaxWidth(Double.MAX_VALUE);

 VBox root = new VBox(10, b1, b2, b3, b4);
 root.setStyle("-fx-padding: 10;" +
 "-fx-border-style: solid inside;" +
 "-fx-border-width: 2;" +
 "-fx-border-insets: 5;" +
 "-fx-border-radius: 5;" +
 "-fx-border-color: blue;");

 Scene scene = new Scene(root);
 stage.setScene(scene);
 stage.setTitle("Using VBox fillWidth Property");
 stage.show();
 }
}

Figure 10-24. A VBox with some control, where the user can change the fillWidth property

When you expand the VBox horizontally in Listing 10-16, all buttons grow to fill the available extra space.
To prevent the buttons growing when the VBox expands in the horizontal direction, you can add the VBox in
an HBox and add the HBox to the scene.

Chapter 10 ■ Understanding LayoUt panes

348

Tip ■ you can create powerful visual effects by nesting HBox and VBox layout panes. you can also add
 buttons (or any other types of nodes) in a column in a GridPane to make them the same size. please refer to
the Understanding GridPane section for more details.

The Spacing Property
The spacing property specifies the vertical distance between adjacent children in a VBox. By default, it is set
to 0px. It can be set in the constructors or using the setSpacing() method.

Setting Constraints for Children in VBox
VBox supports two types of constraints, vgrow and margin, that can be set on each child node individually.
The vgrow constraint specifies whether a child node expands vertically when additional space is available.
The margin constraint specifies space outside the edges of a child node. The VBox class provides setVgrow()
and setMargin() static methods to specify these constraints. You can use null with these methods to
remove the constraints individually. Use the clearConstraints(Node child) method to remove both
constraints for a child node at once.

Letting Children Grow Vertically
By default, the children in a VBox get their preferred heights. If the VBox is expanded vertically, its children
may get the additional available space, provided their vgrow priority is set to grow. If a VBox is expanded
vertically and none of its children has its vgrow constraint set, the additional space is left unused.

The vgrow priority for a child node is set using the setVgrow() static method of the VBox class by
specifying the child node and the priority.

VBox root = new VBox(10);
TextArea desc = new TextArea();

// Let the TextArea always grow vertically
root.setVgrow(desc, Priority.ALWAYS);

To reset the vgrow priority of a child node, use null as the priority.

// Stop the TextArea from growing horizontally
root.setVgrow(desc, null);

The program in Listing 10-16 shows how to set the priority of a TextArea to Priority.ALWAYS, so it can
take all the additional vertical space when the VBox is expanded. Figure 10-25 shows the initial and expanded
windows. Notice that the Label stays at its preferred height, after the window is expanded vertically.

Chapter 10 ■ Understanding LayoUt panes

349

Listing 10-16. Letting a TextArea Grow Vertically

// VBoxVGrow.java
package com.jdojo.container;

import javafx.application.Application;
import javafx.scene.Scene;
import javafx.scene.control.Label;
import javafx.scene.control.TextArea;
import javafx.scene.layout.Priority;
import javafx.scene.layout.VBox;
import javafx.stage.Stage;

public class VBoxVGrow extends Application {
 public static void main(String[] args) {
 Application.launch(args);
 }

 @Override
 public void start(Stage stage) {
 Label descLbl = new Label("Descrption:");
 TextArea desc = new TextArea();
 desc.setPrefColumnCount(10);
 desc.setPrefRowCount(3);

 VBox root = new VBox(10);
 root.getChildren().addAll(descLbl, desc);

 // Let the TextArea always grow vertically
 VBox.setVgrow(desc, Priority.ALWAYS);

 root.setStyle("-fx-padding: 10;" +
 "-fx-border-style: solid inside;" +
 "-fx-border-width: 2;" +
 "-fx-border-insets: 5;" +
 "-fx-border-radius: 5;" +
 "-fx-border-color: blue;");

 Scene scene = new Scene(root);
 stage.setScene(scene);
 stage.setTitle("Using Vertical Grow Priority in a VBox");
 stage.show();
 }
}

Chapter 10 ■ Understanding LayoUt panes

350

Setting Margin for Children
You can set margins for the children of a VBox using its setMargin() static method.

Button okBtn = new Button("OK");
Button cancelBtn = new Button("Cancel");
VBox vbox = new VBox(okBtn, cancelBtn);

// Set margins for OK and cancel buttons
Insets margin = new Insets(5);
VBox.setMargin(okBtn, margin);
VBox.setMargin(cancelBtn, margin);
...
// Remove margins for okBtn
VBox.setMargin(okBtn, null);

Understanding FlowPane
A FlowPane is a simple layout pane that lays out its children in rows or columns wrapping at a specified
width or height. It lets its children flow horizontally or vertically, and hence the name “flow pane.” You
can specify a preferred wrap length, which is the preferred width for a horizontal flow and the preferred
height for a vertical flow, where the content is wrapped. A FlowPane is used in situations where the relative
locations of children are not important: for example, displaying a series of pictures or buttons. A FlowPane
gives all its children their preferred sizes. Rows and columns may be of different heights and widths. You can
customize the vertical alignments of children in rows and the horizontal alignments of children in columns.

Tip ■ Children in a horizontal FlowPane may be arranged in rows from left to right or right to left, which is
controlled by the nodeOrientation property declared in the Node class. the default value for this property
is set to NodeOrientation.LEFT_TO_RIGHT. if you want the children to flow right to left, set the property
to NodeOrientation.RIGHT_TO_LEFT. this applies to all layout panes that arrange children in rows
(e.g., HBox, TilePane, etc.).

Initial

After expanding
vertically

Figure 10-25. A VBox with a TextArea set to always grow vertically

Chapter 10 ■ Understanding LayoUt panes

351

The orientation of a FlowPane, which can be set to horizontal or vertical, determines the direction of the
flow for its content. In a horizontal FlowPane, the content flows in rows. In a vertical FlowPane, the content
flows in columns. Figure 10-26 and Figure 10-27 show a FlowPane with ten buttons. The buttons are added in
the order they have been labeled. That is, Button 1 is added before Button 2. The FlowPane in Figure 10-26
has a horizontal orientation, whereas the FlowPane in Figure 10-27 has a vertical orientation. By default, a
FlowPane has a horizontal orientation.

Creating FlowPane Objects
The FlowPane class provides several constructors to create FlowPane objects with a specified orientation
(horizontal or vertical), a specified horizontal and vertical spacing between children, and a specified initial
list of children.

// Create an empty horizontal FlowPane with 0px spacing
FlowPane fpane1 = new FlowPane();

// Create an empty vertical FlowPane with 0px spacing
FlowPane fpane2 = new FlowPane(Orientation.VERTICAL);

// Create an empty horizontal FlowPane with 5px horizontal and 10px vertical spacing
FlowPane fpane3 = new FlowPane(5, 10);

// Create an empty vertical FlowPane with 5px horizontal and 10px vertical spacing
FlowPane fpane4 = new FlowPane(Orientation.VERTICAL, 5, 10);

// Create a horizontal FlowPane with two Buttons and 0px spacing
FlowPane fpane5 = new FlowPane(new Button("Button 1"), new Button("Button 2"));

Figure 10-26. A horizontal flow pane showing ten buttons

Figure 10-27. A vertical flow pane showing ten buttons

Chapter 10 ■ Understanding LayoUt panes

352

The program in Listing 10-17 shows how to create a FlowPane and add children. It adds ten Buttons and
uses 5px horizontal and 10px vertical gaps. The window is shown in Figure 10-28.

Listing 10-17. Using a Horizontal FlowPane

// FlowPaneTest.java
package com.jdojo.container;

import javafx.application.Application;
import javafx.scene.Scene;
import javafx.scene.control.Button;
import javafx.scene.layout.FlowPane;
import javafx.stage.Stage;

public class FlowPaneTest extends Application {
 public static void main(String[] args) {
 Application.launch(args);
 }

 @Override
 public void start(Stage stage) {
 double hgap = 5;
 double vgap = 10;
 FlowPane root = new FlowPane(hgap, vgap);

 // Add ten buttons to the flow pane
 for(int i = 1; i <= 10; i++) {
 root.getChildren().add(new Button("Button " + i));
 }

 root.setStyle("-fx-padding: 10;" +
 "-fx-border-style: solid inside;" +
 "-fx-border-width: 2;" +
 "-fx-border-insets: 5;" +
 "-fx-border-radius: 5;" +
 "-fx-border-color: blue;");

 Scene scene = new Scene(root);
 stage.setScene(scene);
 stage.setTitle("A Horizontal FlowPane");
 stage.show();
 }
}

Chapter 10 ■ Understanding LayoUt panes

353

FlowPane Properties
Table 10-4 lists several FlowPane class properties that are used to customize the layout of its children.

The Alignment Property
The alignment property of a FlowPane controls the alignment of its content. A Pos value contains a vertical
alignment (vpos) and horizontal alignment (hpos). For example, Pos.TOP_LEFT has the vertical alignment
as top and horizontal alignment as left. In a horizontal FlowPane, each row is aligned using the hpos value
of the alignment and rows (the entire content) is aligned using the vpos value. In a vertical FlowPane, each
column is aligned using the vpos value of the alignment and the columns (the entire content) are aligned
using the hpos value.

The program in Listing 10-18 displays three FlowPaness in an HBox. Each FlowPane has a different
alignment. The Text node in each FlowPane displays the alignment used. Figure 10-29 shows the window.

Figure 10-28. A horizontal pane with ten buttons using 5px hgap and 10px vgap

Table 10-4. The List of Properties Declared in the FlowPane Class

Property Type Description

alignment ObjectProperty<Pos> It specifies the alignment of rows and columns relative
to the content area of the FlowPane. The default value is
Pos.TOP_LEFT.

rowValignment ObjectProperty<VPos> It specifies the vertical alignment of the children within
each row in a horizontal FlowPane. It is ignored for a
vertical FlowPane.

columnHalignment ObjectProperty<HPos> It specifies the horizontal alignment of the children
within each column in a vertical FlowPane. It is ignored
for a horizontal FlowPane.

hgap, vgap DoubleProperty They specify the horizontal and vertical gaps between
children. The default is zero.

orientation ObjectProperty
<Orientation>

It specifies the orientation of the FlowPane. It defaults
to HORIZONTAL.

prefWrapLength DoubleProperty It is the preferred width in a horizontal FlowPane and
the preferred height in a vertical FlowPane where the
content should wrap. The default is 400.

Chapter 10 ■ Understanding LayoUt panes

354

Listing 10-18. Using the Alignment Property of the FlowPane

// FlowPaneAlignment.java
package com.jdojo.container;

import javafx.application.Application;
import javafx.geometry.Pos;
import javafx.scene.Scene;
import javafx.scene.control.Button;
import javafx.scene.layout.FlowPane;
import javafx.scene.layout.HBox;
import javafx.scene.text.Text;
import javafx.stage.Stage;

public class FlowPaneAlignment extends Application {
 public static void main(String[] args) {
 Application.launch(args);
 }

 @Override
 public void start(Stage stage) {
 FlowPane fp1 = createFlowPane(Pos.BOTTOM_RIGHT);
 FlowPane fp2 = createFlowPane(Pos.BOTTOM_LEFT);
 FlowPane fp3 = createFlowPane(Pos.CENTER);

 HBox root = new HBox(fp1, fp2, fp3);
 Scene scene = new Scene(root);
 stage.setScene(scene);
 stage.setTitle("FlowPane Alignment");
 stage.show();
 }

 private FlowPane createFlowPane(Pos alignment) {
 FlowPane fp = new FlowPane(5, 5);
 fp.setPrefSize(200, 100);
 fp.setAlignment(alignment);
 fp.getChildren().addAll(new Text(alignment.toString()),
 new Button("Button 1"),
 new Button("Button 2"),
 new Button("Button 3"));

 fp.setStyle("-fx-padding: 10;" +
 "-fx-border-style: solid inside;" +
 "-fx-border-width: 2;" +
 "-fx-border-insets: 5;" +
 "-fx-border-radius: 5;" +
 "-fx-border-color: blue;");

 return fp;
 }
}

Chapter 10 ■ Understanding LayoUt panes

355

The rowValignment and columnHalignment Properties
A FlowPane lays out its children at their preferred sizes. Rows and columns could be of different sizes.
You can align children in each row or column using the rowValignment and columnHalignment properties.

In a horizontal FlowPane, children in one row may be of different heights. The height of a row is the largest
of the preferred heights of all children in the row. The rowValignment property lets you specify the vertical
alignment of children in each row. Its value could be set to one of the constants of the VPos enum: BASELINE,
TOP, CENTER, and BOTTOM. If the maximum height value of a child node allows for vertical expansion, the child
node will be expanded to fill the height of the row. If the rowValignment property is set to VPos.BASELINE,
children are resized to their preferred height instead of expanding to fill the full height of the row.

In a vertical FlowPane, children in one column may be of different widths. The width of a column is
the largest of the preferred widths of all children in the column. The columnHalignment property lets you
specify the horizontal alignment of children in each column. Its value could be set to one of the constants of
the HPos enum: LEFT, RIGHT, and CENTER. If the maximum width value of a child node allows for horizontal
expansion, the child node will be expanded to fill the width of the column.

The program in Listing 10-19 creates three FlowPanes and adds them to an HBox. Figure 10-30 shows
the window. The first two FlowPanes have horizontal orientations and the last one has a vertical orientation.
The row and column alignments are displayed in the Text node and the orientations for the FlowPane are
displayed in the TextArea node.

Listing 10-19. Using Row and Column Alignments in a FlowPane

// FlowPaneRowColAlignment.java
package com.jdojo.container;

import javafx.application.Application;
import javafx.geometry.HPos;
import javafx.geometry.Orientation;
import static javafx.geometry.Orientation.HORIZONTAL;
import static javafx.geometry.Orientation.VERTICAL;
import javafx.geometry.VPos;
import javafx.scene.Scene;
import javafx.scene.control.TextArea;
import javafx.scene.layout.FlowPane;
import javafx.scene.layout.HBox;
import javafx.scene.text.Text;
import javafx.stage.Stage;

Figure 10-29. Flow:Panes using different alignments for their contents

Chapter 10 ■ Understanding LayoUt panes

356

public class FlowPaneRowColAlignment extends Application {
 public static void main(String[] args) {
 Application.launch(args);
 }

 @Override
 public void start(Stage stage) {
 FlowPane fp1 = createFlowPane(HORIZONTAL, VPos.TOP, HPos.LEFT);
 FlowPane fp2 = createFlowPane(HORIZONTAL, VPos.CENTER, HPos.LEFT);
 FlowPane fp3 = createFlowPane(VERTICAL, VPos.CENTER, HPos.RIGHT);

 HBox root = new HBox(fp1, fp2, fp3);
 Scene scene = new Scene(root);
 stage.setScene(scene);
 stage.setTitle("FlowPane Row and Column Alignment");
 stage.show();
 }

 private FlowPane createFlowPane(Orientation orientation,
 VPos rowAlign,
 HPos colAlign) {
 // Show the row or column alignment value in a Text
 Text t = new Text();
 if (orientation == Orientation.HORIZONTAL) {
 t.setText(rowAlign.toString());
 } else {
 t.setText(colAlign.toString());
 }

 // Show the orientation of the FlowPane in a TextArea
 TextArea ta = new TextArea(orientation.toString());
 ta.setPrefColumnCount(5);
 ta.setPrefRowCount(3);

 FlowPane fp = new FlowPane(orientation, 5, 5);
 fp.setRowValignment(rowAlign);
 fp.setColumnHalignment(colAlign);
 fp.setPrefSize(175, 130);
 fp.getChildren().addAll(t, ta);
 fp.setStyle("-fx-padding: 10;" +
 "-fx-border-style: solid inside;" +
 "-fx-border-width: 2;" +
 "-fx-border-insets: 5;" +
 "-fx-border-radius: 5;" +
 "-fx-border-color: blue;");

 return fp;
 }
}

Chapter 10 ■ Understanding LayoUt panes

357

The hgap and vgap Properties
Using the hgap and vgap properties is straightforward. In a horizontal FlowPane, the hgap property specifies
the horizontal spacing between adjacent children in a row and the vgap property specifies the spacing
between adjacent rows. In a vertical FlowPane, the hgap property specifies the horizontal spacing between
adjacent columns and the vgap property specifies the spacing between adjacent children in a column. You
can set these properties in the constructors or using the setter methods. We have been using these properties
in our examples discussed in this section.

// Create a FlowPane with 5px hgap and 10px vgap
FlowPane fpane = new FlowPane(5, 10);
...
// Change the hgap to 15px and vgap to 25px
fpane.setHgap(15);
fpane.setVgap(25);

The Orientation Property
The orientation property specifies the flow of content in a FlowPane. If it is set to Orientation.HORIZONTAL,
which is the default value, the content flows in rows. If it is set to Orientation.VERTICAL, the content flows
in columns. You can specify the orientation in the constructors or using the setter method.

// Create a horizontal FlowPane
FlowPane fpane = new FlowPane();
...
// Change the orientation of the FlowPane to vertical
fpane.setOrientation(Orientation.VERTICAL);

The prefWrapLength Property
The prefWrapLength property is the preferred width in a horizontal FlowPane or the preferred height in
a vertical FlowPane where content should wrap. This is only used to compute the preferred size of the
FlowPane. It defaults to 400. Treat the value of this property as a hint to resize your FlowPane. Suppose you
set this value to less than the largest preferred width or height of a child node. In this case, this value will not
be respected, as a row cannot be shorter than the widest child node in a horizontal FlowPane or a column
cannot be shorter than the tallest child node in a vertical FlowPane. If 400px is too wide or tall for your
FlowPane, set this value to a reasonable value.

Figure 10-30. FlowPanes using different row and column alignments

Chapter 10 ■ Understanding LayoUt panes

358

Content Bias of a FlowPane
Notice that the number of rows in a horizontal FlowPane depends on its width and the number of columns
in a vertical FlowPane depends on its height. That is, a horizontal FlowPane has a horizontal content bias and
a vertical FlowPane has a vertical content bias. Therefore, when you are getting the size of a FlowPane, make
sure to take into account its content bias.

Understanding BorderPane
A BorderPane divides its layout area into five regions: top, right, bottom, left, and center. You can place at
most one node in each of the five regions. Figure 10-31 shows five Buttons placed in the five regions of the
BorderPane – one Button in each region. The Buttons have been labeled the same as their regions in which
they are placed. Any of the regions may be null. If a region is null, no space is allocated for it.

In a typical Windows application, a screen uses the five regions to places its content.

A menu or a toolbar at the top•	

A status bar at the bottom•	

A navigation panel on the left•	

Additional information on the right•	

Main content in the center•	

A BorderPane satisfies all the layout requirements for a typical Windows-based GUI screen. This is the
reason that a BorderPane is most often used as the root node for a scene. Typically, you have more than five
nodes in a window. If you have more than one node to place in one of the five regions of a BorderPane, add
the nodes to a layout pane: for example, an HBox, a VBox, etc., and then add the layout pane to the desired
region of the BorderPane.

A BorderPane uses the following resizing policies for its children:

The children in the top and bottom regions are resized to their preferred heights. Their •	
widths are extended to fill the available extra horizontal space, provided the maximum
widths of the children allow extending their widths beyond their preferred widths.

The children in the right and left regions are resized to their preferred widths. Their •	
heights are extended to fill the extra vertical space, provided the maximum heights of
the children allow extending their heights beyond their preferred heights.

The child node in the center will fill the rest of the available space in both directions.•	

Figure 10-31. Five regions of a BorderPane

Chapter 10 ■ Understanding LayoUt panes

359

Children in a BorderPane may overlap if it is resized to a smaller size than its preferred size. The
overlapping rule is based on the order in which the children are added. The children are drawn in the order
they are added. This means that a child node may overlap all child nodes added prior to it. Suppose regions
are populated in the order of right, center, and left. The left region may overlap the center and right regions,
and the center region may overlap the right region.

Tip ■ you can set the alignments for all children within their regions. you can set the margins for children.
as with all layout panes, you can also style a BorderPane with Css.

Creating BorderPane Objects
The BorderPane class provides constructors to create BorderPane objects with or without children.

// Create an empty BorderPane
BorderPane bpane1 = new BorderPane();

// Create a BorderPane with a TextArea in the center
TextArea center = new TextArea();
BorderPane bpane2 = new BorderPane(center);

// Create a BorderPane with a Text node in each of the five regions
Text center = new Text("Center");
Text top = new Text("Top");
Text right = new Text("Right");
Text bottom = new Text("Bottom");
Text left = new Text("Left");
BorderPane bpane3 = new BorderPane(center, top, right, bottom, left);

The BorderPane class declares five properties named top, right, bottom, left, and center that store the
reference of five children in the five regions. Use the setters for these properties to add a child node to any
of the five regions. For example, use the setTop(Node topChild) method to add a child node to the top
region. To get the reference of the children in any of the five regions, use the getters for these properties.
For example, the getTop() method returns the reference of the child node in the top region.

// Create an empty BorderPane and add a text node in each of the five regions
BorderPane bpane = new BorderPane();
bpane.setTop(new Text("Top"));
bpane.setRight(new Text("Right"));
bpane.setBottom(new Text("Bottom"));
bpane.setLeft(new Text("Left"));
bpane.setCenter(new Text("Center"));

Tip ■ do not use the ObservableList<Node>, which is returned by the getChildren() method of the
BorderPane, to add children to a BorderPane. the children added to this list are ignored. Use the top, right,
bottom, left, and center properties instead.

Chapter 10 ■ Understanding LayoUt panes

360

The program in Listing 10-20 shows how to create a BorderPane and add children. It adds children to
the right, bottom, and center regions. Two Labels, a TextField, and a TextArea are added to the center
region. A VBox with two buttons are added to the right region. A Label to show the status is added to the
bottom region. The top and left regions are set to null. The BorderPane is set as the root node for the scene.
Figure 10-32 shows the window.

Listing 10-20. Using the BorderPane Layout Pane

// BorderPaneTest.java
package com.jdojo.container;

import javafx.application.Application;
import javafx.geometry.Insets;
import javafx.scene.Node;
import javafx.scene.Scene;
import javafx.scene.control.Button;
import javafx.scene.control.Label;
import javafx.scene.control.TextArea;
import javafx.scene.control.TextField;
import javafx.scene.layout.BorderPane;
import javafx.scene.layout.HBox;
import javafx.scene.layout.Priority;
import javafx.scene.layout.VBox;
import javafx.stage.Stage;

public class BorderPaneTest extends Application {
 public static void main(String[] args) {
 Application.launch(args);
 }

 @Override
 public void start(Stage stage) {
 // Set the top and left child nodes to null
 Node top = null;
 Node left = null;

 // Build the content nodes for the center region
 VBox center = getCenter();

 // Create the right child node
 Button okBtn = new Button("Ok");
 Button cancelBtn = new Button("Cancel");

 // Make the OK and cancel buttons the same size
 okBtn.setMaxWidth(Double.MAX_VALUE);
 VBox right = new VBox(okBtn, cancelBtn);
 right.setStyle("-fx-padding: 10;");

 // Create the bottom child node
 Label statusLbl = new Label("Status: Ready");
 HBox bottom = new HBox(statusLbl);
 BorderPane.setMargin(bottom, new Insets(10, 0, 0, 0));

Chapter 10 ■ Understanding LayoUt panes

361

 bottom.setStyle("-fx-background-color: lavender;" +
 "-fx-font-size: 7pt;" +
 "-fx-padding: 10 0 0 0;");

 BorderPane root = new BorderPane(center, top, right, bottom, left);
 root.setStyle("-fx-background-color: lightgray;");

 Scene scene = new Scene(root);
 stage.setScene(scene);
 stage.setTitle("Using a BorderPane");
 stage.show();
 }

 private VBox getCenter() {
 // A Label and a TextField in an HBox
 Label nameLbl = new Label("Name:");
 TextField nameFld = new TextField();
 HBox.setHgrow(nameFld, Priority.ALWAYS);
 HBox nameFields = new HBox(nameLbl, nameFld);

 // A Label and a TextArea
 Label descLbl = new Label("Description:");
 TextArea descText = new TextArea();
 descText.setPrefColumnCount(20);
 descText.setPrefRowCount(5);
 VBox.setVgrow(descText, Priority.ALWAYS);

 // Box all controls in a VBox
 VBox center = new VBox(nameFields, descLbl, descText);

 return center;
 }
}

Figure 10-32. A BorderPane using some controls in its top, right, bottom, and center regions

Chapter 10 ■ Understanding LayoUt panes

362

BorderPane Properties
The BorderPane class declares five properties: top, right, bottom, left, and center. They are of the
ObjectProperty<Node> type. They store the reference of the child node nodes in the five regions of the
BorderPane. Use the setters of these properties to add children to the BorderPane. Use the getters of
properties to get the reference of the child node in any regions.

Recall that not all of the five regions in a BorderPane need to have nodes. If a region does not a node,
no space is allocated for it. Use null to remove a child node from a region. For example, setTop(null) will
remove the already added node to the top region. By default, all regions have null nodes as their child nodes.

Setting Constraints for Children in BorderPane
A BorderPane allows you to set alignment and margin constraints on individual children. The alignment for
a child node is defined relative to its region. The default alignments:

•	 Pos.TOP_LEFT for the top child node

•	 Pos.BOTTOM_LEFT for the bottom child node

•	 Pos.TOP_LEFT for the left child node

•	 Pos.TOP_RIGHT for the right child node

•	 Pos.CENTER for the center child node

Use the setAlignment(Node child, Pos value) static method of the BorderPane class to set the alignment
for children. The getAlignment(Node child) static method returns the alignment for a child node.

BorderPane root = new BorderPane();
Button top = new Button("OK");
root.setTop(top);

// Place the OK button in the top right corner (default is top left)
BorderPane.setAlignment(top, Pos.TOP_RIGHT);
...
// Get the alignment of the top node
Pos alignment = BorderPane.getAlignment(top);

Use the setMargin(Node child, Insets value) static method of the BorderPane class to set the
margin for the children. The getMargin(Node child) static method returns the margin for a child node.

// Set 10px margin around the top child node
BorderPane.setMargin(top, new Insets(10));
...
// Get the margin of the top child node
Insets margin = BorderPane.getMargin(top);

Use null to reset the constraints to the default value. Use the clearConstraints(Node child) static
method of the BorderPane to reset all constraints for a child at once.

// Clear the alignment and margin constraints for the top child node
BorderPane.clearConstraints(top);

Chapter 10 ■ Understanding LayoUt panes

363

Understanding StackPane
A StackPane lays out its children in a stack of nodes. It is simple to use. However, it provides a powerful
means to overlay nodes. Children are drawn in the order they are added. That is, the first child node is drawn
first; the second child node is drawn next, etc. For example, overlaying text on a shape is as easy as using a
StackPane: add the shape as the first child node and the text as the second child node. The shape will be
drawn first followed by the text, which makes it seem as if the text is a part of the shape.

Figure 10-33 shows a window with a StackPane set as the root node for its scene. A Rectangle shape
and a Text node with text “A Rectangle” are added to the StackPane. The Text is added last, which overlays
the Rectangle. The outer border is the border of the StackPane. The dashed inner border is the border of the
Rectangle.

Figure 10-33. A Text node overlaying a Rectangle in a StackPane

Tip ■ you can create very appealing gUi using StackPanes by overlaying different types of nodes. you can
overlay text on an image to get an effect as if the text were part of the image. and you can overlay different
types of shapes to create a complex shape. remember that the node that overlays other nodes is added last to
the StackPane.

The preferred width of a StackPane is the width of its widest children. Its preferred height is the height of
its tallest children. StackPane does clip its content. Therefore, its children may be drawn outside its bounds.

A StackPane resizes its resizable children to fill its content area, provided their maximum size allows
them to expand beyond their preferred size. By default, a StackPane aligns all its children to the center of its
content area. You can change the alignment for a child node individually or for all children to use the same
alignment.

Creating StackPane Objects
The StackPane class provides constructors to create objects with or without children.

// Create an empty StackPane
StackPane spane1 = new StackPane();

// Add a Rectangle and a Text to the StackPane
Rectangle rect = new Rectangle(200, 50);
rect.setFill(Color.LAVENDER);
Text text = new Text("A Rectangle");
spane1.getChildren().addAll(rect, text);

Chapter 10 ■ Understanding LayoUt panes

364

// Create a StackPane with a Rectangle and a Text
StackPane spane2 = new StackPane(RectangleBuilder.create()
 .width(200)
 .height(50)
 .fill(Color.LAVENDER)
 .build(),
 new Text("A Rectangle"));

The program in Listing 10-21 shows how to create a StackPane. It adds a Rectangle and a Text to a
StackPane. The Rectangle is added first, and therefore it is overlaid with the Text. Figure 10-33 shows
the window.

Listing 10-21. Using StackPane

// StackPaneTest.java
package com.jdojo.container;

import javafx.application.Application;
import javafx.scene.Scene;
import javafx.scene.layout.StackPane;
import javafx.scene.shape.Rectangle;
import javafx.scene.text.Text;
import javafx.stage.Stage;

public class StackPaneTest extends Application {
 public static void main(String[] args) {
 Application.launch(args);
 }

 @Override
 public void start(Stage stage) {
 // Create a Rectangle and a Text
 Rectangle rect = new Rectangle(200, 50);
 rect.setStyle("-fx-fill: lavender;" +
 "-fx-stroke-type: inside;" +
 "-fx-stroke-dash-array: 5 5;" +
 "-fx-stroke-width: 1;" +
 "-fx-stroke: black;" +
 "-fx-stroke-radius: 5;");

 Text text = new Text("A Rectangle");

 // Create a StackPane with a Rectangle and a Text
 StackPane root = new StackPane(rect, text);
 root.setStyle("-fx-padding: 10;" +
 "-fx-border-style: solid inside;" +
 "-fx-border-width: 2;" +
 "-fx-border-insets: 5;" +
 "-fx-border-radius: 5;" +
 "-fx-border-color: blue;");

Chapter 10 ■ Understanding LayoUt panes

365

 Scene scene = new Scene(root);
 stage.setScene(scene);
 stage.setTitle("Using StackPane");
 stage.show();
 }
}

You must add the children to a StackPane in a specific order to create the desired overlay. Children are
drawn in the order they exist in the list. The following two statements will not get the same results.

// Overlay a Text on a Rectangle
spane1.getChildren().addAll(rect, text);

// Overlay a Rectangle on a Text
spane1.getChildren().addAll(text, rect);

If the Text is smaller than the Rectangle, overlaying the Rectangle on the Text will hide the
Text. If the Text size is bigger than the Rectangle, the part of the Text outside the Rectangle bounds will be
visible.

The program in Listing 10-22 shows how the overlay rules work in a StackPane. The createStackPane()
method creates a StackPane with a Rectangle and a Text. It takes the text for the Text node, the opacity
of the Rectangle, and a boolean value indicating whether the Rectangle should be added first to the
StackPane. The start method creates five StackPanes and adds them to an HBox. Figure 10-34 shows the
window.

In the first •	 StackPane, the text is overlaid on the rectangle. The rectangle is drawn
first and the text second. Both are visible.

In the second •	 StackPane, the rectangle is overlaid on the text. The text is hidden
behind the rectangle as the rectangle is drawn over the text and it is bigger than
the text.

In the third •	 StackPane, the rectangle is overlaid on the text. Unlike the second
StackPane, the text is visible because we have set the opacity for the rectangle to 0.5,
which makes it is 50% transparent.

In the fourth •	 StackPane, the rectangle is overlaid on a big text. The opacity of the
rectangle is 100%. Therefore, we see only the part of the text that is outside the
bounds of the rectangle.

In the fifth •	 StackPane, the rectangle is overlaid on a big text. The opacity of the
rectangle is 50%. We can see the entire text. The visibility of the text within the
bounds of the rectangle is 50% and that of outside the bounds is 100%.

Listing 10-22. Overlaying Rules in a StackPane

// StackPaneOverlayTest.java
package com.jdojo.container;

import javafx.application.Application;
import javafx.scene.Scene;
import javafx.scene.layout.HBox;
import javafx.scene.layout.StackPane;
import javafx.scene.shape.Rectangle;

Chapter 10 ■ Understanding LayoUt panes

366

import javafx.scene.text.Text;
import javafx.stage.Stage;

public class StackPaneOverlayTest extends Application {
 public static void main(String[] args) {
 Application.launch(args);
 }

 @Override
 public void start(Stage stage) {
 StackPane textOverRect = createStackPane("Hello", 1.0, true);
 StackPane rectOverText = createStackPane("Hello", 1.0, false);
 StackPane transparentRectOverText = createStackPane("Hello", 0.5, false);
 StackPane rectOverBigText = createStackPane("A bigger text", 1.0, false);
 StackPane transparentRectOverBigText = createStackPane("A bigger text",
 0.5, false);

 // Add all StackPanes to an HBox
 HBox root = new HBox(textOverRect,
 rectOverText,
 transparentRectOverText,
 rectOverBigText,
 transparentRectOverBigText);

 Scene scene = new Scene(root);
 stage.setScene(scene);
 stage.setTitle("Overlaying Rules in StackPane");
 stage.show();
 }

 public StackPane createStackPane(String str, double rectOpacity, boolean rectFirst) {
 Rectangle rect = new Rectangle(60, 50);
 rect.setStyle("-fx-fill: lavender;" + "-fx-opacity: " + rectOpacity + ";");

 Text text = new Text(str);

 // Create a StackPane
 StackPane spane = new StackPane();

 // add the Rectangle before the Text if rectFirst is true.
 // Otherwise add the Text first
 if (rectFirst) {
 spane.getChildren().addAll(rect, text);
 } else {
 spane.getChildren().addAll(text, rect);
 }

Chapter 10 ■ Understanding LayoUt panes

367

 spane.setStyle("-fx-padding: 10;" +
 "-fx-border-style: solid inside;" +
 "-fx-border-width: 2;" +
 "-fx-border-insets: 5;" +
 "-fx-border-radius: 5;" +
 "-fx-border-color: blue;");

 return spane;
 }
}

StackPane Properties
The StackPane class has an alignment property of the ObjectProperty<Pos> type. The property defines
the default alignment of all children within the content area of the StackPane. By default, its value is set to
Pos.CENTER, which means that all children, by default, are aligned in the center of the content area of the
StackPane. This is what we have seen in our previous examples. If you do not want the default alignment for
all children, you can change it to any other alignment value. Note that changing the value of the alignment
property sets the default alignment for all children.

Individual children may override the default alignment by setting its alignment constraint. We will
discuss how to set the alignment constraint on a child node in the next section.

StackPane has several other uses besides overlaying nodes. Whenever you have a requirement to align
a node or a collection of nodes in a specific position, try using a StackPane. For example, if you want to
display text in the center of your screen, use a StackPane with a Text node as the root node of the scene. The
StackPane takes care of keeping the text in the center as the window is resized. Without a StackPane, you will
need to use binding to keep the text positioned in the center of the window.

The program in Listing 10-23 uses five StackPanes in an HBox. Each StackPane has a Rectangle overlaid
with a Text. The alignment for the StackPane, and hence for all its children, is used as the text for the Text
node. Figure 10-35 shows the window. Notice that the Rectangles in StackPanes are bigger than the Texts.
Therefore, the Rectangles occupy the entire content area of the StackPanes and they seem not to be affected
by the alignment property.

Listing 10-23. Using the Alignment Property of a StackPane

// StackPaneAlignment.java
package com.jdojo.container;

import javafx.application.Application;
import javafx.geometry.Pos;
import javafx.scene.Scene;
import javafx.scene.layout.HBox;

Figure 10-34. Overlaying a Rectangle on a Text and vice versa

Chapter 10 ■ Understanding LayoUt panes

368

import javafx.scene.layout.StackPane;
import javafx.scene.paint.Color;
import javafx.scene.shape.Rectangle;
import javafx.scene.text.Text;
import javafx.stage.Stage;

public class StackPaneAlignment extends Application {
 public static void main(String[] args) {
 Application.launch(args);
 }

 @Override
 public void start(Stage stage) {
 StackPane topLeft = createStackPane(Pos.TOP_LEFT);
 StackPane topRight = createStackPane(Pos.TOP_RIGHT);
 StackPane bottomLeft = createStackPane(Pos.BOTTOM_LEFT);
 StackPane bottomRight = createStackPane(Pos.BOTTOM_RIGHT);
 StackPane center = createStackPane(Pos.CENTER);

 double spacing = 10.0;
 HBox root = new HBox(spacing,
 topLeft,
 topRight,
 bottomLeft,
 bottomRight,
 center);

 Scene scene = new Scene(root);
 stage.setScene(scene);
 stage.setTitle("Using StackPane");
 stage.show();
 }

 public StackPane createStackPane(Pos alignment) {
 Rectangle rect = new Rectangle(80, 50);
 rect.setFill(Color.LAVENDER);

 Text text = new Text(alignment.toString());
 text.setStyle("-fx-font-size: 7pt;");

 StackPane spane = new StackPane(rect, text);
 spane.setAlignment(alignment);
 spane.setStyle("-fx-padding: 10;" +
 "-fx-border-style: solid inside;" +
 "-fx-border-width: 2;" +
 "-fx-border-insets: 5;" +
 "-fx-border-radius: 5;" +
 "-fx-border-color: blue;");
 return spane;
 }
}

Chapter 10 ■ Understanding LayoUt panes

369

Setting Constraints for Children
A StackPane allows you to set alignment and margin constraints on individual children. The alignment for a
child node is defined relative to the content area of the StackPane.

You should be able to differentiate between the alignment property of a StackPane and the alignment
constraint on its children. The alignment property affects all children. Its value is used to align children by
default. The alignment constraint on a child node overrides the default alignment value set by the alignment
property. The alignment constraint on a child node affects the alignment of only that child node, whereas
the alignment property affects all child nodes. When a child node is drawn, JavaFX uses the alignment
constraint of the child node for aligning it within the content area of the StackPane. If its alignment
constraint is not set, the alignment property of the StackPane is used.

Tip ■ the default value for the alignment property of StackPane is Pos.CENTER. the default value for the
alignment constraint for children is null.

Use the setAlignment(Node child, Pos value) static method of the StackPane class to set the
alignment constraints for children. The getAlignment(Node child) static method returns the alignment for
a child node.

// Place a Text node in the top left corner of the StackPane
Text topLeft = new Text("top-left");
StackPane.setAlignment(topLeft, Pos.TOP_LEFT);
StackPane root = new StackPane(topLeft);
...
// Get the alignment of the topLeft node
Pos alignment = StackPane.getAlignment(topLeft);

Listing 10-24. Using the Alignment Constraints for Children in a StackPane

// StackPaneAlignmentConstraint.java
package com.jdojo.container;

import javafx.application.Application;
import javafx.geometry.Pos;
import javafx.scene.Scene;
import javafx.scene.layout.StackPane;
import javafx.scene.paint.Color;

Figure 10-35. StackPanes using different alignment values

Chapter 10 ■ Understanding LayoUt panes

370

import javafx.scene.shape.Rectangle;
import javafx.scene.text.Text;
import javafx.stage.Stage;

public class StackPaneAlignmentConstraint extends Application {
 public static void main(String[] args) {
 Application.launch(args);
 }

 @Override
 public void start(Stage stage) {
 Rectangle rect = new Rectangle(200, 60);
 rect.setFill(Color.LAVENDER);

 // Create a Text node with the default CENTER alignment
 Text center = new Text("Center");

 // Create a Text node with a TOP_LEFT alignemnt constraint
 Text topLeft = new Text("top-left");
 StackPane.setAlignment(topLeft, Pos.TOP_LEFT);

 // Create a Text node with a BOTTOM_LEFT alignemnt constraint
 Text bottomRight = new Text("bottom-right");
 StackPane.setAlignment(bottomRight, Pos.BOTTOM_RIGHT);

 StackPane root = new StackPane(rect, center, topLeft, bottomRight);
 root.setStyle("-fx-padding: 10;" +
 "-fx-border-style: solid inside;" +
 "-fx-border-width: 2;" +
 "-fx-border-insets: 5;" +
 "-fx-border-radius: 5;" +
 "-fx-border-color: blue;");

 Scene scene = new Scene(root);
 stage.setScene(scene);
 stage.setTitle("StackPane Alignment Constraint");
 stage.show();
 }
}

Figure 10-36. Children using different alignment constraints in a StackPane

Chapter 10 ■ Understanding LayoUt panes

371

Use the setMargin(Node child, Insets value) static method of the StackPane class to set the margin
for children. The getMargin(Node child) static method returns the margin for a child node.

// Set 10px margin around the topLeft child node
StackPane.setMargin(topLeft, new Insets(10));
...
// Get the margin of the topLeft child node
Insets margin = StackPane.getMargin(topLeft);

Use null to reset the constraints to the default value. Use the clearConstraints(Node child) static
method of the StackPane to reset all constraints for a child at once.

// Clear the alignment and margin constraints for the topLeft child node
StackPane.clearConstraints(topLeft);

After you clear all constraints for a child node, it will use the current value of the alignment property of
the StackPane as its alignment and 0px as the margins.

Understanding TilePane
A TilePane lays out its children in a grid of uniformly sized cells, known as tiles. TilePanes work similar
to FlowPanes with one difference: In a FlowPane, rows and columns can be of different heights and widths,
whereas in a TilePane, all rows have the same heights and all columns have the same widths. The width of
the widest child node and the height of the tallest child node are the default widths and heights of all tiles in
a TilePane.

The orientation of a TilePane, which can be set to horizontal or vertical, determines the direction of
the flow for its content. By default, a TilePane has a horizontal orientation. In a horizontal TilePane, the
content flows in rows. The content in rows may flow from left to right (the default) or from right to left. In a
vertical TilePane, the content flow in columns. Figures 10-37, 10-38, and 10-26 show horizontal and vertical
TilePanes.

Figure 10-37. A horizontal TilePane showing months in a year

Chapter 10 ■ Understanding LayoUt panes

372

You can customize the layout in a TilePane using its properties or setting constraints on individual
children:

You can override the default size of tiles.•	

You can customize the alignment of the entire content of a •	 TilePane within its
content area, which defaults to Pos.TOP_LEFT.

You can also customize the alignment of each child node within its tile, which •	
defaults to Pos.CENTER.

You specify the spacing between adjacent rows and columns, which defaults to 0px.•	

You can specify the preferred number of columns in a horizontal •	 TilePane and the
preferred number of rows in a vertical TilePane. The default values for the preferred
number of rows and columns are five.

Creating TilePane Objects
The TilePane class provides several constructors to create TilePane objects with a specified orientation
(horizontal or vertical), a specified horizontal and vertical spacing between children, and a specified initial
list of children.

// Create an empty horizontal TilePane with 0px spacing
TilePane tpane1 = new TilePane();

// Create an empty vertical TilePane with 0px spacing
TilePane tpane2 = new TilePane(Orientation.VERTICAL);

// Create an empty horizontal TilePane with 5px horizontal
// and 10px vertical spacing
TilePane tpane3 = new TilePane(5, 10);

// Create an empty vertical TilePane with 5px horizontal
// and 10px vertical spacing
TilePane tpane4 = new TilePane(Orientation.VERTICAL, 5, 10);

// Create a horizontal TilePane with two Buttons and 0px spacing
TilePane tpane5 = new TilePane(new Button("Button 1"), new Button("Button 2"));

Figure 10-38. A vertical TilePane showing months in a year

Chapter 10 ■ Understanding LayoUt panes

373

The program in Listing 10-25 shows how to create a TilePane and add children. It uses the Month enum
from the java.time package to get the names of ISO months. Note that java.time package was added in
Java 8. The resulting window is the same as shown in Figure 10-37.

Listing 10-25. Using TilePane

// TilePaneTest.java
package com.jdojo.container;

import java.time.Month;
import javafx.application.Application;
import javafx.scene.Scene;
import javafx.scene.control.Button;
import javafx.scene.layout.TilePane;
import javafx.stage.Stage;

public class TilePaneTest extends Application {
 public static void main(String[] args) {
 Application.launch(args);
 }

 @Override
 public void start(Stage stage) {
 double hgap = 5.0;
 double vgap = 5.0;
 TilePane root = new TilePane(hgap, vgap);
 root.setPrefColumns(5);

 // Add 12 Buttons - each having the name of the 12 months
 for(Month month: Month.values()) {
 Button b = new Button(month.toString());
 b.setMaxHeight(Double.MAX_VALUE);
 b.setMaxWidth(Double.MAX_VALUE);
 root.getChildren().add(b);
 }

 root.setStyle("-fx-padding: 10;" +
 "-fx-border-style: solid inside;" +
 "-fx-border-width: 2;" +
 "-fx-border-insets: 5;" +
 "-fx-border-radius: 5;" +
 "-fx-border-color: blue;");

 Scene scene = new Scene(root);
 stage.setScene(scene);
 stage.setTitle("A Horizontal TilePane");
 stage.show();
 }
}

Chapter 10 ■ Understanding LayoUt panes

374

You can modify the code in Listing 10-25 to get the window in Figure 10-38. You need to specify the
orientation of the TilePane as Orientation.VERTICAL and use three as the preferred number of rows.

import javafx.geometry.Orientation;
...
double hgap = 5.0;
double vgap = 5.0;
TilePane root = new TilePane(Orientation.VERTICAL, hgap, vgap);
root.setPrefRows(3);

TilePane Properties
The TilePane class contains several properties, as listed in Table 10-5, which let you customize the layout of
its children.

Table 10-5. The List of Properties Declared in the TilePane Class

Property Type Description

alignment ObjectProperty<Pos> It specifies the alignment of the content of the TilePane
relative to its content area. It defaults to Pos.TOP_LEFT.

tileAlignment ObjectProperty<Pos> It specifies the default alignment of all children within their
tiles. It defaults to Pos.CENTER.

hgap, vgap DoubleProperty The hgap property specifies the horizontal gap between
adjacent children in a row. The vgap property specifies the
vertical gap between adjacent children in a column. The
default is zero for both properties.

orientation ObjectProperty
<Orientation>

It specifies the orientation of the TilePane – horizontal
or vertical. It defaults to HORIZONTAL.

prefRows IntegerProperty It specifies the preferred number of rows for a vertical
TilePane. It is ignored for a horizontal TilePane.

prefColumns IntegerProperty It specifies the preferred number of columns for a
horizontal TilePane. It is ignored for a vertical TilePane.

prefTileWidth DoubleProperty It specifies the preferred width of each tile. The default is to
use the width of the widest children.

prefTileHeight DoubleProperty It specifies the preferred height of each tile. The default is to
use the height of the tallest children.

tileHeight ReadOnlyDoubleProperty It is a read-only property that stores the actual height of
each tile.

tileWidth ReadOnlyDoubleProperty It is a read-only property that stores the actual width of
each tile.

Chapter 10 ■ Understanding LayoUt panes

375

The Alignment Property
The alignment property of a TilePane controls the alignment of its content within its content area. You can
see the effects of this property when the size of the TilePane is bigger than its content. The property works
the same way as the alignment property for the FlowPane. Please refer to the description of the alignment
property for FlowPane for more details and illustrations.

The tileAlignment Property
The tileAlignment property specifies the default alignment of children within their tiles. Note that this
property affects children smaller than the size of tiles. This property affects the default alignment of
all children within their tiles. This can be overridden on individual children by setting their alignment
constraints. The program in Listing 10-26 shows how to use the tileAlignment property. It shows display
windows, as shown in Figure 10-39, with two TilePanes – one has the tileAlignment property set to
Pos.CENTER and another Pos.TOP_LEFT.

Listing 10-26. Using the TileAlignment Property of TilePane

// TilePaneTileAlignment.java
package com.jdojo.container;

import javafx.application.Application;
import javafx.geometry.Pos;
import javafx.scene.Scene;
import javafx.scene.control.Button;
import javafx.scene.layout.HBox;
import javafx.scene.layout.TilePane;
import javafx.stage.Stage;

public class TilePaneTileAlignment extends Application {
 public static void main(String[] args) {
 Application.launch(args);
 }

 @Override
 public void start(Stage stage) {
 TilePane tileAlignCenter = createTilePane(Pos.CENTER);
 TilePane tileAlignTopRight = createTilePane(Pos.TOP_LEFT);

 HBox root = new HBox(tileAlignCenter, tileAlignTopRight);
 root.setFillHeight(false);
 Scene scene = new Scene(root);
 stage.setScene(scene);
 stage.setTitle("The tileAlignment Property for TilePane");
 stage.show();
 }

Chapter 10 ■ Understanding LayoUt panes

376

 public TilePane createTilePane(Pos tileAlignment) {
 Button[] buttons = new Button[] {new Button("Tile"),
 new Button("are"),
 new Button("aligned"),
 new Button("at"),
 new Button(tileAlignment.toString())};

 TilePane tpane = new TilePane(5, 5, buttons);
 tpane.setTileAlignment(tileAlignment);
 tpane.setPrefColumns(3);
 tpane.setStyle("-fx-padding: 10;" +
 "-fx-border-style: solid inside;" +
 "-fx-border-width: 2;" +
 "-fx-border-insets: 5;" +
 "-fx-border-radius: 5;" +
 "-fx-border-color: blue;");
 return tpane;
 }
}

The hgap and vgap Properties
The hgap and vgap properties specify the spacing between adjacent columns and adjacent rows.
They default to zero. They can be specified in the constructors or using the setHgap(double hg) and
setVgap(double vg) methods of the TilePane.

The Orientation Property
The orientation property specifies the flow of content in a TilePane. If it is set to Orientation.HORIZONTAL,
which is the default value, the content flows in rows. If it is set to Orientation.VERTICAL, the content flows
in columns. You can specify the orientation in the constructors or using the setter method.

// Create a horizontal TilePane
TilePane tpane = new TilePane();
...
// Change the orientation of the TilePane to vertical
tpane.setOrientation(Orientation.VERTICAL);

Figure 10-39. Using the tileAlignment property

Chapter 10 ■ Understanding LayoUt panes

377

The prefRows and prefColumns Properties
The prefRows property specifies the preferred number of rows for a vertical TilePane. It is ignored for a
horizontal TilePane.

The prefColumns specifies the preferred number of columns for a horizontal TilePane. It is ignored for
a vertical TilePane.

The default values for prefRows and prefColumns is 5. It is recommended that you use a sensible value
for these properties.

Note that these properties are only used to compute the preferred size of the TilePane. If the TilePane
is resized to a size other than its preferred size, these values may not reflect the actual number of rows or
columns. In Listing 10-26, we have specified three as the preferred number of columns. If you resize the
window displayed by Listing 10-26 to a smaller width, you may get only one or two columns, and the number
of rows will increase accordingly.

Tip ■ recall the prefWrapLength property of the FlowPane that is used to determine the preferred width or
height of the FlowPane. the prefRows and prefColumns properties serve the same purpose in a TilePane,
as does the prefWrapLength in a Flowpane.

The prefTileWidth and prefTileHeight Properties
A TilePane computes the preferred size of its tiles based on the widest and the tallest children. You can
override the computed width and height of tiles using the prefTileWidth and prefTileHeight properties.
They default to Region.USE_COMPUTED_SIZE. The TilePane attempts to resize its children to fit in the tile size,
provided their minimum and maximum size allows them to be resized.

// Create a TilePane and set its preferred tile width and height to 40px
TilePane tpane = new TilePane();
tpane.setPrefTileWidth(40);
tpane.setPrefTileHeight(40);

The tileWidth and tileHeight Properties
The tileWidth and tileHeight properties specify the actual width and height of each tile. They are
read-only properties. If you specify the prefTileWidth and prefTileHeight properties, they return their
values. Otherwise, they return the computed size of tiles.

Setting Constraints for Children in TilePane
A TilePane allows you to set alignment and margin constraints on individual children. The alignment for a
child node is defined within the tile that contains the child node.

You should be able to differentiate between the three:

The •	 alignment property of a TilePane

The •	 tileAlignment property of the TilePane

The alignment constraint on individual children of the •	 TilePane

Chapter 10 ■ Understanding LayoUt panes

378

The alignment property is used to align the content (all children) within the content area of the
TilePane. It affects the content of TilePane as a whole.

The tileAlignment property is used to align all children within their tiles by default. Modifying this
property affects all children.

The alignment constraint on a child node is used to align the child node within its tile. It affects only the
child node on which it is set. It overrides the default alignment value for the child node that is set using the
tileAlignment property of the TilePane.

Tip ■ the default value for the tileAlignment property of a TilePane is Pos.CENTER. the default value for
the alignment constraint for children is null.

Use the setAlignment(Node child, Pos value) static method of the TilePane class to set the
alignment constraints for the children. The getAlignment(Node child) static method returns the alignment
for a child node.

// Place a Text node in the top left corner in a tile
Text topLeft = new Text("top-left");
TilePane.setAlignment(topLeft, Pos.TOP_LEFT);

TilePane root = new TilePane();
root.getChildren().add(topLeft);
...
// Get the alignment of the topLeft node
Pos alignment = TilePane.getAlignment(topLeft);

The program in Listing 10-27 adds five buttons to a TilePane. The button labeled “Three” uses a custom
tile alignment constraint of Pos.BOTTOM_RIGHT. All other buttons use the default tile alignment, which is
Pos.CENTER. Figure 10-40 shows the window.

Listing 10-27. Using the Alignment Constraints for Children in a TilePane

// TilePaneAlignmentConstraint.java
package com.jdojo.container;

import javafx.application.Application;
import javafx.geometry.Pos;
import javafx.scene.Scene;
import javafx.scene.control.Button;
import javafx.scene.layout.TilePane;
import javafx.stage.Stage;

public class TilePaneAlignmentConstraint extends Application {
 public static void main(String[] args) {
 Application.launch(args);
 }

Chapter 10 ■ Understanding LayoUt panes

379

 @Override
 public void start(Stage stage) {
 Button b12 = new Button("One\nTwo");
 Button b3 = new Button("Three");
 Button b4 = new Button("Four");
 Button b5 = new Button("Five");
 Button b6 = new Button("Six");

 // Set the tile alignment constraint on b3 to BOTTOM_RIGHT
 TilePane.setAlignment(b3, Pos.BOTTOM_RIGHT);

 TilePane root = new TilePane(b12, b3, b4, b5, b6);
 root.setPrefColumns(3);
 root.setStyle("-fx-padding: 10;" +
 "-fx-border-style: solid inside;" +
 "-fx-border-width: 2;" +
 "-fx-border-insets: 5;" +
 "-fx-border-radius: 5;" +
 "-fx-border-color: blue;");

 Scene scene = new Scene(root);
 stage.setScene(scene);
 stage.setTitle("Using Alignment Constraints in TilePane");
 stage.show();
 }
}

Use the setMargin(Node child, Insets value) static method of the TilePane class to set the margin
for children. The getMargin(Node child) static method returns the margin for a child node.

// Set 10px margin around the topLeft child node
TilePane.setMargin(topLeft, new Insets(10));
...
// Get the margin of the topLeft child node
Insets margin = TilePane.getMargin(topLeft);

Figure 10-40. Children using different alignment constraints in a TilePane

Chapter 10 ■ Understanding LayoUt panes

380

Use null to reset the constraints to the default value. Use the clearConstraints(Node child) static
method of the TilePane to reset all constraints for a child at once.

// Clear the tile alignment and margin constraints for the topLeft child node
TilePane.clearConstraints(topLeft);

After you clear all constraints for a child node, it will use the current value of the tileAlignment
property of the TilePane as its alignment and 0px as the margins.

Understanding GridPane
GridPane is one of the most powerful layout panes. With power comes complexity. Therefore, it is also a bit
complex to learn.

A GridPane lays out its children in a dynamic grid of cells arranged in rows and columns. The grid is
dynamic because the number and size of cells in the grid are determined based on the number of children.
They depend on the constraints set on children. Each cell in the grid is identified by its position in the
column and row. The indexes for columns and rows start at 0. A child node may be placed anywhere in the
grid spanning more than one cell. All cells in a row are of the same height. Cells in different rows may have
different heights. All cells in a column are of the same width. Cells in different columns may have different
widths. By default, a row is tall enough to accommodate the tallest child node in it. A column is wide enough
to accommodate the widest child node in it. You can customize the size of each row and column. GridPane
also allows for vertical spacing between rows and horizontal spacing between columns.

GridPane does not show the grid lines by default. For debug purposes, you can show the grid lines.
Figure 10-41 shows three instances of the GridPane. The first GridPane shows only the grid lines and no child
nodes. The second GridPane shows the cell positions, which are identified by row and column indexes. In
the figure, (cM, rN) means the cell at the (M+1)th column and the (N+1)th row. For example, (c3, r2) means
the cell at the 4th column and the 3rd row. The third GridPane shows six buttons in the grid. Five of the
buttons spans one row and one column; one of them spans two rows and one column.

Figure 10-41. GridPanes with grid only, with cell positions, and with children placed in the grid

In a GridPane, rows are indexed from top to bottom. The top row has an index of 0. Columns are
indexed from left to right or from right to left. If the nodeOrientation property for the GridPane is set to
LEFT_TO_RIGHT, the leftmost column has index 0. If it is set to RIGHT_TO_LEFT, the rightmost column has an
index of 0. The second grid in Figure 10-41 shows the leftmost column having an index of 0, which means
that its nodeOrientation property is set from LEFT_TO_RIGHT.

Chapter 10 ■ Understanding LayoUt panes

381

Tip ■ a question that is often asked about the GridPane is, “how many cells, and of what sizes, do we need
to lay out children in a GridPane?” the answer is simple but sometimes perplexing to beginners. you specify the
cell positions and cell spans for the children. GridPane will figure out the number of cells (rows and columns)
and their sizes for you. that is, GridPane computes the number of cells and their sizes based on the constraints
that you set for the children.

Creating GridPane Objects
The GridPane class contains a no-args constructor. It creates an empty GridPane with 0px spacing between
rows and columns, placing the children, which need to be added later, at the top-left corner within its
content area.

GridPane gpane = new GridPane();

Making Grid Lines Visible
The GridPane class contains a gridLinesVisible property of the BooleanProperty type. It controls the
visibility of the grid lines. By default, it is set to false and the grid lines are invisible. It exists for debugging
purposes only. Use it when you want to see the positions of children in the grid.

GridPane gpane = new GridPane();
gpane.setGridLinesVisible(true); // Make grid lines visible

Adding Children to GridPane
Like most of the other layout panes, a GridPane stores its children in an ObservableList<Node> whose
reference is returned by the getChildren() method. You should not add children to the GridPane directly to
the list. Rather, you should use one of the convenience methods to add children to the GridPane. You should
specify constraints for children when you add them to a GridPane. The minimum constraints would be the
column and row indexes to identify the cell in which they are placed.

Let us first see the effect of adding the children directly to the observable list of the GridPane. Listing 10-28
contains the program that directly adds three buttons to the list of children of a GridPane. Figure 10-42 shows
the window. Notice that the buttons overlap. They are all placed in the same cell (c0, r0). They are drawn in the
order they are added to the list.

Tip ■ in a GridPane, by default, all children are added in the first cell (c0, r0) spanning only one column and
one row, thus overlapping each other. they are drawn in the order they are added.

Chapter 10 ■ Understanding LayoUt panes

382

Listing 10-28. Adding Children to the List of Children for a GridPane Directly

// GridPaneChildrenList.java
package com.jdojo.container;

import javafx.application.Application;
import javafx.scene.Scene;
import javafx.scene.control.Button;
import javafx.scene.layout.GridPane;
import javafx.stage.Stage;

public class GridPaneChildrenList extends Application {
 public static void main(String[] args) {
 Application.launch(args);
 }

 @Override
 public void start(Stage stage) {
 Button b1 = new Button("One One One One One");
 Button b2 = new Button("Two Two Two");
 Button b3 = new Button("Three");

 GridPane root = new GridPane();

 // Add three buttons to the list of children of the GridPane directly
 root.getChildren().addAll(b1, b2, b3);

 root.setStyle("-fx-padding: 10;" +
 "-fx-border-style: solid inside;" +
 "-fx-border-width: 2;" +
 "-fx-border-insets: 5;" +
 "-fx-border-radius: 5;" +
 "-fx-border-color: blue;");

 Scene scene = new Scene(root);
 stage.setScene(scene);
 stage.setTitle("Adding Children to a GridPane");
 stage.show();
 }
}

Figure 10-42. Three buttons added to the list of children for a GridPane directly

Chapter 10 ■ Understanding LayoUt panes

383

There are two ways of fixing the problem of overlapping children in Listing 10-28:

We can set the position in which they are placed, before or after adding them •	
to the list.

We can use convenience methods of the •	 GridPane class that allow specifying the
positions, among other constraints, while adding children to the GridPane.

Setting Positions of Children
You can set the column and row indexes for a child node using one of the following three static methods of
the GridPane class.

public static void setColumnIndex(Node child, Integer value)•	

public static void setRowIndex(Node child, Integer value)•	

public static void setConstraints(Node child,int columnIndex, int rowIndex)•	

The program in Listing 10-29 is a modified version of the program in Listing 10-28. It adds the column
and row indexes to three buttons, so they are positioned in separate columns in one row. Figure 10-43 shows
the window.

Listing 10-29. Setting Positions for Children in a GridPane

// GridPaneChildrenPositions.java
package com.jdojo.container;

import javafx.application.Application;
import javafx.scene.Scene;
import javafx.scene.control.Button;
import javafx.scene.layout.GridPane;
import javafx.stage.Stage;

public class GridPaneChildrenPositions extends Application {
 public static void main(String[] args) {
 Application.launch(args);
 }

 @Override
 public void start(Stage stage) {
 Button b1 = new Button("One One One One One");
 Button b2 = new Button("Two Two Two");
 Button b3 = new Button("Three");

 GridPane root = new GridPane();

 // Add three buttons to the list of children of the GridPane directly
 root.getChildren().addAll(b1, b2, b3);

 // Set the cells the buttons
 GridPane.setConstraints(b1, 0, 0); // (c0, r0)
 GridPane.setConstraints(b2, 1, 0); // (c1, r0)
 GridPane.setConstraints(b3, 2, 0); // (c2, r0)

Chapter 10 ■ Understanding LayoUt panes

384

 root.setStyle("-fx-padding: 10;" +
 "-fx-border-style: solid inside;" +
 "-fx-border-width: 2;" +
 "-fx-border-insets: 5;" +
 "-fx-border-radius: 5;" +
 "-fx-border-color: blue;");

 Scene scene = new Scene(root);
 stage.setScene(scene);
 stage.setTitle("Setting Positions for Children in a GridPane");
 stage.show();
 }
}

Using Convenience Methods to Add Children
The GridPane class contains the following convenience methods to add children with constraints.

•	 void add(Node child, int columnIndex, int rowIndex)

•	 void add(Node child, int columnIndex, int rowIndex, int
colspan,int rowspan)

•	 void addRow(int rowIndex, Node... children)

•	 void addColumn(int columnIndex, Node... children)

The add() methods let you add a child node specifying the column index, row index, column span, and
row span.

The addRow() method adds the specified children in a row identified by the specified rowIndex.
Children are added sequentially. If the row already contains children, the specified children are appended
sequentially. For example, if the GridPane has no children in the specified row, it will add the first child node
at column index 0, the second at column index 1, etc. Suppose the specified row already has two children
occupying column indexes 0 and 1. The addRow() method will add children starting at column index 2.

Tip ■ all children added using the addRow() method spans only one cell. row and column spans for a
child node can be modified using the setRowSpan(Node child, Integer value) and setColumnSpan(Node
child, Integer value) static methods of the GridPane class. When you modify the row and column spans
for a child node, make sure to update row and column indexes of the affected children so they do not overlap.

Figure 10-43. Three buttons added to a GridPane directly and then their position set

Chapter 10 ■ Understanding LayoUt panes

385

The addColumn() method adds the specified children sequentially in a column identified by the
specified columnIndex. This method adds children to a column the same way the addRow() method adds
children to a row.

The following snippet code creates three GridPanes and adds four buttons to them using three different
ways. Figure 10-44 shows one of the GridPanes. All of them will look the same.

// Add a child node at a time
GridPane gpane1 = new GridPane();
gpane1.add(new Button("One"), 0, 0); // (c0, r0)
gpane1.add(new Button("Two"), 1, 0); // (c1, r0)
gpane1.add(new Button("Three"), 0, 1); // (c0, r1)
gpane1.add(new Button("Four"), 1, 1); // (c1, r1)

// Add a row at a time
GridPane gpane2 = new GridPane();
gpane2.addRow(0, new Button("One"), new Button("Two"));
gpane2.addRow(1, new Button("Three"), new Button("Four"));

// Add a column at a time
GridPane gpane3 = new GridPane();
gpane3.addColumn(0, new Button("One"), new Button("Three"));
gpane3.addColumn(1, new Button("Two"), new Button("Four"));

Specifying Row and Column Spans
A child node may span more than one row and column, which can be specified using the rowSpan and
colSpan constraints. By default, a child node spans one column and one row. These constraints can be
specified while adding the child node or later using any of the following methods in the GridPane class.

•	 void add(Node child, int columnIndex, int rowIndex, int colspan,
int rowspan)

•	 static void setColumnSpan(Node child, Integer value)

•	 static void setConstraints(Node child, int columnIndex, int rowIndex,
int columnspan, int rowspan)

The setConstraints() method is overloaded. Other versions of the method also let you specify the
column/row span.

The GridPane class defines a constant named REMAINING that is used for specifying the column/row
span. It means that the child node spans the remaining columns or remaining rows.

Figure 10-44. A GridPane with four buttons

Chapter 10 ■ Understanding LayoUt panes

386

The following snippet of code adds a Label and a TextField to the first row. It adds a TextArea to the
first column of the second row with its colSpan as REMAINING. This makes the TextArea occupy two columns
because there are two columns created by the controls added to the first row. Figure 10-45 shows the
window.

// Create a GridPane and set its background color to lightgray
GridPane root = new GridPane();
root.setGridLinesVisible(true);
root.setStyle("-fx-background-color: lightgray;");

// Add a Label and a TextField to the first row
root.addRow(0, new Label("First Name:"), new TextField());

// Add a TextArea in the second row to span all columns in row 2
TextArea ta = new TextArea();
ta.setPromptText("Enter your resume here");
ta.setPrefColumnCount(10);
ta.setPrefRowCount(3);
root.add(ta, 0, 1, GridPane.REMAINING, 1);

Suppose you add two more children in the first column to occupy the third and fourth columns.

// Add a Label and a TextField to the first row
root.addRow(0, new Label("Last Name:"), new TextField());

Now, the number of columns has increased from two to four. This will make the TextArea occupy four
columns as we set its colSpan as REMAINING. Figure 10-46 shows the new window.

Figure 10-45. A TextArea Using GridPane.REMAINING as the colSpan value

Figure 10-46. A TextArea using GridPane.REMAINING as the colSpan value

Chapter 10 ■ Understanding LayoUt panes

387

Creating Forms Using GridPanes
GridPane is best suited for creating forms. Let us build a form using a GridPane. The form will be similar
to the one shown in Figure 10-32 that was created using a BorderPane. Our new form will look as shown in
Figure 10-47. The figure shows two instances of the window: the form with children (on the left) and the
form with grid only (on the right). The form with grid only is shown, so you can visualize the positions and
spans of the children within the grid.

The grid will have three columns and four rows. It has seven children.

A •	 Label, a TextField, and an OK button in the first row

A •	 Label and a Cancel button in the second row

A •	 TextArea in the third row

A •	 Label in the fourth row

The following snippet of code creates all children.

// A Label and a TextField
Label nameLbl = new Label("Name:");
TextField nameFld = new TextField();

// A Label and a TextArea
Label descLbl = new Label("Description:");
TextArea descText = new TextArea();
descText.setPrefColumnCount(20);
descText.setPrefRowCount(5);

// Two buttons
Button okBtn = new Button("OK");
Button cancelBtn = new Button("Cancel");

All children in the first row span only one cell. The “Description” Label in the second row spans two
columns (c0 and c1) and the Cancel button only one column. The TextArea in the third row spans two
columns (c0 and c1). The Label in the fourth row spans three columns (c0, c1, and c1). The following
snippet of code places all children in the grid.

Figure 10-47. A GridPane with some controls to create a form

Chapter 10 ■ Understanding LayoUt panes

388

// Create a GridPane
GridPane root = new GridPane();

// Add children to the GridPane
root.add(nameLbl, 0, 0, 1, 1); // (c0, r0, colspan=1, rowspan=1)
root.add(nameFld, 1, 0, 1, 1); // (c1, r0, colspan=1, rowspan=1)
root.add(descLbl, 0, 1, 3, 1); // (c0, r1, colspan=3, rowspan=1)
root.add(descText, 0, 2, 2, 1); // (c0, r2, colspan=2, rowspan=1)
root.add(okBtn, 2, 0, 1, 1); // (c2, r0, colspan=1, rowspan=1)
root.add(cancelBtn, 2, 1, 1, 1); // (c2, r1, colspan=1, rowspan=1)

// Let the status bar start at column 0 and take up all remaning columns
// (c0, r3, colspan=REMAININg, rowspan=1)
root.add(statusBar, 0, 3, GridPane.REMAINING, 1);

If we add the GridPane to a scene, it will give us the desired look of the form, but not the desired resizing
behavior. The children will not resize correctly on resizing the window. We need to specify the correct
resizing behavior for some of the children.

The •	 OK and Cancel buttons should be of the same size.

The •	 TextField to enter name should expand horizontally.

The •	 TextArea to enter the description should expand horizontally and vertically.

The •	 Label used as the status bar at the bottom should expand horizontally.

Making the OK and Cancel buttons the same size is easy. By default, a GridPane resizes its children to
fill their cells, provided the maximum size of the children allows it. The maximum size of a Button is
clamped to its preferred size. We need to set the maximum size of the OK button big enough, so it can
expand to fill the width of its cell, which would be the same as the preferred width of the widest node in its
column (the Cancel button).

// The max width of the OK button should be big enough, so it can fill the
// width of its cell
okBtn.setMaxWidth(Double.MAX_VALUE);

By default, the rows and columns in a GridPane stay at their preferred size when the GridPane is resized.
Their horizontal and vertical grow constraints specify how they grow when additional space is available. To
let the name, description, and status bar fields grow when the GridPane is expanded, we will set their hgrow
and vgrow constraints appropriately.

// The name field in the first row should grow horizontally
GridPane.setHgrow(nameFld, Priority.ALWAYS);

// The description field in the third row should grow vertically
GridPane.setVgrow(descText, Priority.ALWAYS);

// The status bar in the last row should fill its cell
statusBar.setMaxWidth(Double.MAX_VALUE);

When the GridPane is expanded horizontally, the second column, occupied by the name field, grows by
taking the extra available width. It makes the description and status bar fields fill the extra width generated
in the second column.

Chapter 10 ■ Understanding LayoUt panes

389

When the GridPane is expanded vertically, the third row, occupied by the description field, grows by
taking the extra available height. The maximum size of a TextArea is unbounded. That is, it can grow to fill
the available space in both directions. The program in Listing 10-30 contains the complete code.

Listing 10-30. Using a GridPane to Create Forms

// GridPaneForm.java
package com.jdojo.container;

import javafx.application.Application;
import javafx.scene.Scene;
import javafx.scene.control.Button;
import javafx.scene.control.Label;
import javafx.scene.control.TextArea;
import javafx.scene.control.TextField;
import javafx.scene.layout.GridPane;
import javafx.scene.layout.Priority;
import javafx.stage.Stage;

public class GridPaneForm extends Application {
 public static void main(String[] args) {
 Application.launch(args);
 }

 @Override
 public void start(Stage stage) {
 // A Label and a TextField
 Label nameLbl = new Label("Name:");
 TextField nameFld = new TextField();

 // A Label and a TextArea
 Label descLbl = new Label("Description:");
 TextArea descText = new TextArea();
 descText.setPrefColumnCount(20);
 descText.setPrefRowCount(5);

 // Two buttons
 Button okBtn = new Button("OK");
 Button cancelBtn = new Button("Cancel");

 // A Label used as a status bar
 Label statusBar = new Label("Status: Ready");
 statusBar.setStyle("-fx-background-color: lavender;" +
 "-fx-font-size: 7pt;" +
 "-fx-padding: 10 0 0 0;");

 // Create a GridPane and set its background color to lightgray
 GridPane root = new GridPane();
 root.setStyle("-fx-background-color: lightgray;");

Chapter 10 ■ Understanding LayoUt panes

390

 // Add children to the GridPane
 root.add(nameLbl, 0, 0, 1, 1); // (c0, r0, colspan=1, rowspan=1)
 root.add(nameFld, 1, 0, 1, 1); // (c1, r0, colspan=1, rowspan=1)
 root.add(descLbl, 0, 1, 3, 1); // (c0, r1, colspan=3, rowspan=1)
 root.add(descText, 0, 2, 2, 1); // (c0, r2, colspan=2, rowspan=1)
 root.add(okBtn, 2, 0, 1, 1); // (c2, r0, colspan=1, rowspan=1)
 root.add(cancelBtn, 2, 1, 1, 1); // (c2, r1, colspan=1, rowspan=1)
 root.add(statusBar, 0, 3, GridPane.REMAINING, 1);

 /* Set constraints for children to customize their resizing behavior */

 // The max width of the OK button should be big enough,
 // so it can fill the width of its cell
 okBtn.setMaxWidth(Double.MAX_VALUE);

 // The name field in the first row should grow horizontally
 GridPane.setHgrow(nameFld, Priority.ALWAYS);

 // The description field in the third row should grow vertically
 GridPane.setVgrow(descText, Priority.ALWAYS);

 // The status bar in the last should fill its cell
 statusBar.setMaxWidth(Double.MAX_VALUE);

 Scene scene = new Scene(root);
 stage.setScene(scene);
 stage.setTitle("Creating Forms Using a GridPane");
 stage.show();
 }
}

GridPane Properties
The GridPane class contains several properties, as listed in Table 10-6, to customize its layout.

Table 10-6. The List of Properties Declared in the GridPane Class

Property Type Description

alignment ObjectProperty<Pos> It specifies the alignment of the grid (the content of the
GridPane) relative to its content area. It defaults to
Pos.TOP_LEFT.

gridLinesVisible BooleanProperty It is recommend to be used for debug purposes only.
It controls whether grid lines are visible or not. It defaults
to false.

hgap, vgap DoubleProperty They specify the gaps between adjacent columns and rows.
The hgap property specifies the horizontal gap between
adjacent columns. The vgap property specifies the vertical
gap between adjacent rows. They default to zero.

Chapter 10 ■ Understanding LayoUt panes

391

The Alignment Property
The alignment property of a GridPane controls the alignment of its content within its content area. You can
see the effects of this property when the size of the GridPane is bigger than its content. The property works
the same way as the alignment property for the FlowPane. Please refer to the description of the alignment
property for FlowPane for more details and illustrations.

The gridLinesVisible Property
When the gridLinesVisible is set to true, the grid lines in a GridPane are made visible. Otherwise, they are
invisible. You should use this feature only for debug purposes only.

GridPane gpane = new GridPane();
gpane.setGridLinesVisible(true); // Make grid lines visible

Sometimes, you may want to show the grid without showing the children to get an idea on how the grid
is formed. You can do so by making all children invisible. The GridPane computes the size of the grid for all
managed children irrespective of their visibility.

The following snippet of code creates a GridPane and sets the gridLinesVisible property to true.
It creates four Buttons, makes them invisible, and adds them to the GridPane. Figure 10-48 shows the
window when the GridPane is added to a scene as the root node.

GridPane root = new GridPane();

// Make the grid lines visible
root.setGridLinesVisible(true);

// Set the padding to 10px
root.setStyle("-fx-padding: 10;");

// Make the gridLInes
Button b1 = new Button("One");
Button b2 = new Button("Two");
Button b3 = new Button("Three");
Button b4 = new Button("Four and Five");

// Make all children invisible to see only grid lines
b1.setVisible(false);
b2.setVisible(false);
b3.setVisible(false);
b4.setVisible(false);

// Add children to the GridPane
root.addRow(1, b1, b2);
root.addRow(2, b3, b4);

Chapter 10 ■ Understanding LayoUt panes

392

The hgap and vgap Properties
You can specify spacing between adjacent columns and rows using the hgap and vgap properties, respectively.
By default, they are zero. The program in Listing 10-31 uses these properties of a GridPane. The grid lines are
visible to show the gaps clearly. Figure 10-49 shows the window.

Listing 10-31. Using the hgap and vgap Properties of a GridPane

// GridPaneHgapVgap.java
package com.jdojo.container;

import javafx.application.Application;
import javafx.scene.Scene;
import javafx.scene.control.Button;
import javafx.scene.control.Label;
import javafx.scene.control.TextField;
import javafx.scene.layout.GridPane;
import javafx.stage.Stage;

public class GridPaneHgapVgap extends Application {
 public static void main(String[] args) {
 Application.launch(args);
 }

 @Override
 public void start(Stage stage) {
 Label fnameLbl = new Label("First Name:");
 TextField fnameFld = new TextField();
 Label lnameLbl = new Label("Last Name:");
 TextField lnameFld = new TextField();
 Button okBtn = new Button("OK");
 Button cancelBtn = new Button("Cancel");

 // The Ok button should fill its cell
 okBtn.setMaxWidth(Double.MAX_VALUE);

 // Create a GridPane and set its background color to lightgray
 GridPane root = new GridPane();
 root.setGridLinesVisible(true); // Make grid lines visible
 root.setHgap(10); // hgap = 10px
 root.setVgap(5); // vgap = 5px
 root.setStyle("-fx-padding: 10;-fx-background-color: lightgray;");

Figure 10-48. A GridPane showing the grid without children

Chapter 10 ■ Understanding LayoUt panes

393

 // Add children to the GridPane
 root.addRow(0, fnameLbl, fnameFld, okBtn);
 root.addRow(1, lnameLbl, lnameFld, cancelBtn);

 Scene scene = new Scene(root);
 stage.setScene(scene);
 stage.setTitle("Using hgap and vgap Properties for a GridPane");
 stage.show();
 }
}

Customizing Columns and Rows
You can customize columns and rows in a GridPane using column and row constraints. For example, for a
column/row, you can specify:

How the width/height should be computed. Should it be computed based on its •	
content, a fixed width/height, or a percentage of the available width/height?

Should the children fill the width/height of the column/row?•	

Should the column/row grow when the •	 GridPane is resized larger than its preferred
width/height?

How should the children in a column/row be aligned within its layout area (cells)?•	

An object of the ColumnConstraints class represents constraints for a column and an object of the
RowConstraints class represents constraints for a row. Both classes declare several properties that represent
the constraints. Tables 10-7 and 10-8 list the properties with a brief description for the ColumnConstraints
and RowConstraints classes.

hgap

vgap

Figure 10-49. A GridPane using hgap and vgap properties

Chapter 10 ■ Understanding LayoUt panes

394

Table 10-7. The List of Properties for the ColumnConstraints Class

Property Type Description

fillWidth BooleanProperty It specifies whether the children in the column are expanded beyond
their preferred width to fill the width of the column. The default value
is true.

halignment ObjectProperty
<HPos>

It specifies the default horizontal alignment of the children in a
column. Its default value is null. By default, all children in a column
are horizontally aligned to HPos.LEFT. An individual child node in the
column may override this constraint.

hgrow ObjectProperty
<Priority>

It specifies the horizontal grow priority for the column. This property
is used to give additional space to the column when the GridPane is
resized larger than its preferred width. If the percentWidth property
is set, the value for this property is ignored.

minWidth,
prefWidth,
maxWidth

DoubleProperty They specify the minimum, preferred, and maximum widths of the
column. If the percentWidth property is set, the values for these
properties are ignored.

The default values for these properties are set to USE_COMPUTED_SIZE.
By default, the minimum width of a column is the largest of the
minimum widths of children in the column; the preferred width is
the largest of the preferred widths of children in the column; and, the
maximum width is the smallest of the maximum widths of children in
the column.

percentWidth DoubleProperty It specifies the width percentage of the column relative to the width
of the content area of the GridPane. If it is set to a value greater than
zero, the column is resized to have the width that is this percentage
of the available width of the GridPane. If this property is set, the
minWidth, prefWidth, maxWidth, and hgrow properties are ignored.

Table 10-8. Properties for the RowConstraints Class

Property Type Description

fillHeight BooleanProperty It specifies whether the children in the row are expanded beyond
their preferred height to fill the height of the row. The default value
is true.

valignment ObjectProperty
<HPos>

It specifies the default vertical alignment of the children in a row. Its
default value is null. By default, all children in a row are vertically
aligned to VPos.CENTER. An individual child node in the row may
override this constraint.

vgrow ObjectProperty
<Priority>

It specifies the vertical grow priority for the row. This property
is used to give additional space to the row when the GridPane
is resized larger than its preferred height. If the percentHeight
property is set, the value for this property is ignored.

(continued)

Chapter 10 ■ Understanding LayoUt panes

395

The ColumnConstraints and RowConstraints classes provide several constructors to create their
objects. Their no-args constructors create their objects with default property values.

// Create a ColumnConstraints object with default property values
ColumnConstraints cc1 = new ColumnConstraints();

// Set the percentWidth to 30% and horizontal alignment to center
cc1.setPercentWidth(30);
cc1.setHalignment(HPos.CENTER);

If you want to create a fixed width/height column/row, you can use one of the convenience contractors.

// Create a ColumnConstraints object with a fixed column width of 100px
ColumnConstraints cc2 = new ColumnConstraints(100);

// Create a RowConstraints object with a fixed row height of 80px
RowConstraints rc2 = new RowConstraints(80);

If you want to achieve the same effect of having a fixed width column, you can do so by setting the
preferred width to the desired fixed width value and setting the minimum and maximum widths to use the
preferred width as shown below.

// Create a ColumnConstraints object with a fixed column width of 100px
ColumnConstraints cc3 = new ColumnConstraints();
cc3.setPrefWidth(100);
cc3.setMinWidth(Region.USE_PREF_SIZE);
cc3.setMaxWidth(Region.USE_PREF_SIZE);

Property Type Description

minHeight,
prefHeight,
maxHeight

DoubleProperty They specify the minimum, preferred, and maximum heights of
the row. If the percentHeight property is set, the values for these
properties are ignored.

The default values for these properties are set to USE_COMPUTED_SIZE.
By default, the minimum height of a row is the largest of the
minimum heights of children in the row; the preferred height is
the largest of the preferred heights of children in the row; and, the
maximum height is the smallest of the maximum heights of children
in the row.

percentHeight DoubleProperty It specifies the height percentage of the row relative to the height of
the content area of the GridPane. If it is set to a value greater than
zero, the row is resized to have the height that is this percentage
of the available height for the GridPane. If this property is set, the
minHeight, prefHeight, maxHeight, and vgrow properties are
ignored.

Table 10-8. (continued)

Chapter 10 ■ Understanding LayoUt panes

396

The following snippet of code sets the column width to 30% of the GridPane width and the horizontal
alignment for the children in the column as center.

ColumnConstraints cc4 = new ColumnConstraints();
cc4.setPercentWidth(30); // 30% width
cc4.setHalignment(HPos.CENTER);

In a GridPane, the width/height of different columns/rows may be computed differently. Some
columns/row may set percent width/height, some fixed sizes, and some may choose to compute their sizes
based on their content. The percent size is given the first preference in allocating the space. For example,
if two columns set their widths based on percentage and one uses a fixed width, the available width will be
allocated first to the two columns using the percentage width, and then, to the column using the fixed width.

Tip ■ it is possible that the sum of the percentage width/height of all columns/rows exceeds 100.
For example, it is permissible to set the percentage width of columns in a GridPane to 30%, 30%, 30%, and
30%. in this case, the percentage value is used as weights and each of the four columns will be given
one-fourth (30/120) of the available width. as an another example, if columns use 30%, 30%, 60%, and 60% as
percentage width, they will be treated as weights, allocating them one-sixth (30/180), one-sixth (30/180),
one-third (60/180), and one-third (60/180) of the available width, respectively.

A GridPane stores the constraints for columns and rows in ObservableList of ColumnConstraints
and RowConstraints. You can obtain the reference of the lists using the getColumnConstraints() and
getRowConstraints() methods. The element at a particular index in the list stores the constraints object
for the column/row at the same index in the GridPane. The first element in the list, for example, stores the
column/row constraints for the first column/row, the second elements for the second column/row, etc. It is
possible to set the column/row constraints for some column/row, not for others. In this case, the constraints
for column/row for which the column/row constraints are absent will be computed based on the default
values. The following snippet of code creates three ColumnConstraints objects, sets their properties, and
adds them to the list of column constraints of a GridPane. Using RowConstraints objects for setting row
constraints would use the similar logic.

// Set the fixed width to 100px
ColumnConstraints cc1 = new ColumnConstraints(100);

// Set the percent width to 30% and horizontal alignment to center
ColumnConstraints cc2 = new ColumnConstraints();
cc2.setPercentWidth(30);
cc1.setHalignment(HPos.CENTER);

// Set the percent width to 50%
ColumnConstraints cc3 = new ColumnConstraints();
cc3.setPercentWidth(30);

// Add all column constraints to the column constraints list
GridPane root = new GridPane();
root.getColumnConstraints().addAll(cc1, cc2, cc3);

Chapter 10 ■ Understanding LayoUt panes

397

The program in Listing 10-32 uses column and row constraints to customize columns and rows in a
GridPane. Figure 10-50 shows the window, after it is resized.

Listing 10-32. Using Column and Row Constraints in a GridPane

// GridPaneColRowConstraints.java
package com.jdojo.container;

import javafx.application.Application;
import javafx.geometry.HPos;
import javafx.geometry.VPos;
import javafx.scene.Scene;
import javafx.scene.control.Button;
import javafx.scene.layout.ColumnConstraints;
import javafx.scene.layout.GridPane;
import javafx.scene.layout.RowConstraints;
import javafx.stage.Stage;

public class GridPaneColRowConstraints extends Application {
 public static void main(String[] args) {
 Application.launch(args);
 }

 @Override
 public void start(Stage stage) {
 GridPane root = new GridPane();
 root.setStyle("-fx-padding: 10;");
 root.setGridLinesVisible(true);

 // Add children
 for (int row = 0; row < 3; row++) {
 for (int col = 0; col < 3; col++) {
 Button b = new Button(col + " " + row);
 root.add(b, col, row);
 }
 }

 // Set the fixed width for the first column to 100px
 ColumnConstraints cc1 = new ColumnConstraints(100);

 // Set the percent width for the second column to 30% and
 // the horizontal alignment to center
 ColumnConstraints cc2 = new ColumnConstraints();
 cc2.setPercentWidth(35);
 cc2.setHalignment(HPos.CENTER);

 // Set the percent width for the third column to 50%
 ColumnConstraints cc3 = new ColumnConstraints();
 cc3.setPercentWidth(35);

Chapter 10 ■ Understanding LayoUt panes

398

 // Add all column constraints to the column constraints list
 root.getColumnConstraints().addAll(cc1, cc2, cc3);

 // Create two RowConstraints objects
 RowConstraints rc1 = new RowConstraints();
 rc1.setPercentHeight(35);
 rc1.setValignment(VPos.TOP);

 RowConstraints rc2 = new RowConstraints();
 rc2.setPercentHeight(35);
 rc2.setValignment(VPos.BOTTOM);

 // Add RowConstraints for the first two rows
 root.getRowConstraints().addAll(rc1, rc2);

 Scene scene = new Scene(root);
 stage.setScene(scene);
 stage.setTitle("Setting Column/Row Constraints");
 stage.show();
 }
}

The first column width is set to 100px fixed width. Each of the second and third columns is set to occupy
35% of the width. If the needed width (35% + 35% + 100px) is less than the available width, the extra width
will be left unused, as has been shown in the figure. The horizontal alignment for the first column is set to
center, so all buttons in the first column are horizontally aligned in the center. The buttons in the other two
columns use left as the horizontal alignment, which is the default setting. We have three rows. However,
the program adds constraints for only the first two rows. The constraints for the third row will be computed
based on its content.

When you set column/row constraints, you cannot skip some columns/rows in the middle. That is,
you must set the constraints for columns/rows sequentially starting from the first column/row. Setting null
for a constraint’s object throws a NullPointerException at runtime. If you want to skip setting custom
constraints for a row/column in the list, set it to a constraints object that is created using the no-args
constructor, which will use the default settings. The following snippet of code sets the column constraints for
the first three columns. The second column uses default settings for the constraints.

Figure 10-50. A GridPane using column and row constraints

Chapter 10 ■ Understanding LayoUt panes

399

// With 100px fied width
ColumnConstraints cc1 = new ColumnConstraints(100);

// Use all default settings
ColumnConstraints defaultCc2 = new ColumnConstraints();

// With 200px fied width
ColumnConstraints cc3 = new ColumnConstraints(200);

GridPane gpane = new GridPane();
gpane.getColumnConstraints().addAll(cc1, defaultCc2, cc3);

Tip ■ some column/row constraints set on a column/row can be overridden by children in the column/row
individually. some constraints can be set on children in a column/row and may affect the entire column/row.
We will discuss these situations in the next section.

Setting Constraints on Children in GridPane
Table 10-9 lists the constraints that can be set for the children in a GridPane. We have already discussed the
column/row index and span constraints. We will discuss the rest in this section. The GridPane class contains
two sets of static methods to set these constraints:

The •	 setConstraints() methods

The •	 setXxx(Node child, CType cvalue) methods, where Xxx is the constraint
name and CType is its type

To remove a constraint for a child node, set it to null

Table 10-9. List of Constraints That Can Be Set for the Children in a GridPane

Constraint Type Description

columnIndex Integer It is the column index where the layout area of the child node starts. The first
column has the index 0. The default value is 0.

rowIndex Integer It is the row index where the layout area of the child node starts. The first row
has the index 0. The default value is 0.

columnSpan Integer It is the number of columns the layout area of a child node spans. The default is 1.

rowSpan Integer It is the number of columns the layout area of a child node spans. The default is 1.

halignment HPos It specifies the horizontal alignment of the child node within its layout area.

valignment VPos It specifies the vertical alignment of the child node within its layout area.

hgrow Priority It specifies the horizontal grow priority of the child node.

vgrow Priority It specifies the vertical grow priority of the child node.

margin Insets It specifies the margin space around the outside of the layout bounds of the
child node.

Chapter 10 ■ Understanding LayoUt panes

400

The halignment and valignment Constraints
The halignment and valignment constraints specify the alignment of a child node within its layout area.
They default to HPos.LEFT and VPos.CENTER. They can be set on column/row affecting all children. Children
may set them individually. The final value applicable to a child node depends of some rules:

When they are not set for column/row and not for the child node, the child node will •	
use the default values.

When they are set for column/row and not for the child node, the child node will use •	
the value set for the column/row.

When they are set for column/row and for the child node, the child node will use the •	
value set for it, not the value set for the column/row. In essence, a child node can
override the default value or the value set for the column/row for these constraints.

The program in Listing 10-33 demonstrates the rules mentioned above. Figure 10-51 shows the window.
The program adds three buttons to a column. The column constraints override the default value of HPos.LEFT
for the halignment constraints for the children and set it to HPos.RIGHT. The button labeled “Two” overrides
this setting to HPos.CENTER. Therefore, all buttons in the column are horizontally aligned to the right, except
the button labeled “Two,” which is aligned to the center. We set constraints for all three rows. The first and
the second rows set valignment to VPos.TOP. The third row leaves the valignment to the default that is
VPos.CENTER. The button with the label “One” overrides the valignment constraint set on the first row to set
it to VPos.BOTTOM. Notice that all children follow the above thee rules to use the valignment and halignment
constraints.

Listing 10-33. Using the halignment and valignment Constraints for Children in a GridPane

// GridPaneHValignment.java
package com.jdojo.container;

import javafx.application.Application;
import javafx.geometry.HPos;
import javafx.geometry.VPos;
import javafx.scene.Scene;
import javafx.scene.control.Button;
import javafx.scene.layout.ColumnConstraints;
import javafx.scene.layout.GridPane;
import javafx.scene.layout.RowConstraints;
import javafx.stage.Stage;

public class GridPaneHValignment extends Application {
 public static void main(String[] args) {
 Application.launch(args);
 }

 @Override
 public void start(Stage stage) {
 GridPane root = new GridPane();
 root.setStyle("-fx-padding: 10;");
 root.setGridLinesVisible(true);

Chapter 10 ■ Understanding LayoUt panes

401

 // Add three buttons to a column
 Button b1 = new Button("One");
 Button b2 = new Button("Two");
 Button b3 = new Button("Three");
 root.addColumn(0, b1, b2, b3);

 // Set the column constraints
 ColumnConstraints cc1 = new ColumnConstraints(100);
 cc1.setHalignment(HPos.RIGHT);
 root.getColumnConstraints().add(cc1);

 // Set the row constraints
 RowConstraints rc1 = new RowConstraints(40);
 rc1.setValignment(VPos.TOP);

 RowConstraints rc2 = new RowConstraints(40);
 rc2.setValignment(VPos.TOP);

 RowConstraints rc3 = new RowConstraints(40);
 root.getRowConstraints().addAll(rc1, rc2, rc3);

 // Override the halignment for b2 set in the column
 GridPane.setHalignment(b2, HPos.CENTER);

 // Override the valignment for b1 set in the row
 GridPane.setValignment(b1, VPos.BOTTOM);

 Scene scene = new Scene(root);
 stage.setScene(scene);
 stage.setTitle("halignemnt and valignment Constraints");
 stage.show();
 }
}

Figure 10-51. Children overriding the halignment and valignment constraints in a GridPane

Chapter 10 ■ Understanding LayoUt panes

402

The hgrow and vgrow Constraints
The hgrow and vgrow constraints specify the horizontal and vertical grow priorities for the entire column
and row, even though it can be set for children individually. These constraints can also be set using the
ColumnConstraints and RowConstraints objects for columns and rows. By default, columns and rows do
not grow. The final value for these constraints for a column/row is computed using the following rules:

If the constraints are not set for the column/row and are not set for any children in •	
the column/row, the column/row does not grow if the GridPane is resized to a larger
width/height than the preferred width/height.

If the constraints are set for the column/row, the values set in the •	
ColumnConstraints and RowConstraints objects for hgrow and vgrow are used,
irrespective of whether the children set these constraints or not.

If the constraints are not set for the column/row, the maximum values for these •	
constraints set for children in the column/row are used for the entire column/row.
Suppose a column has three children and no column constraints have been set for
the column. The first child node sets the hgrow to Priority.NEVER; the second to
Priority.ALWAYS; and the third to Priority.SOMETIMES. In this case, the maximum
of the three priorities would be Priority.ALWAYS, which will be used for the entire
column. The ALWAYS priority has the highest value, SOMETIMES the second highest,
and NEVER the lowest.

If a column/row is set to have a fixed or percentage width/height, the •	 hgrow/vgrow
constraints will be ignored.

The program in Listing 10-34 demonstrates the above rules. Figure 10-52 shows the window when it is
expanded horizontally. Notice that the second column grows, but not the first column. The program adds
six buttons arranged in two columns. The first column sets the hgrow constraints to Priority.NEVER. The
hgrow value set by the column takes priority; the first column does not grow when the GridPane is expanded
horizontally. The second column does not use column constraints. The children in this column use three
different types of priorities: ALWAYS, NEVER, and SOMETIMES. The maximum of the three priorities is ALWAYS,
which makes the second column grow horizontally.

Listing 10-34. Using the hgrow Constraints for Columns and Rows in a GridPane

// GridPaneHVgrow.java
package com.jdojo.container;

import javafx.application.Application;
import javafx.scene.Scene;
import javafx.scene.control.Button;
import javafx.scene.layout.ColumnConstraints;
import javafx.scene.layout.GridPane;
import javafx.scene.layout.Priority;
import javafx.stage.Stage;

public class GridPaneHVgrow extends Application {
 public static void main(String[] args) {
 Application.launch(args);
 }

Chapter 10 ■ Understanding LayoUt panes

403

 @Override
 public void start(Stage stage) {
 GridPane root = new GridPane();
 root.setStyle("-fx-padding: 10;");
 root.setGridLinesVisible(true);

 // Add three buttons to a column
 Button b1 = new Button("One");
 Button b2 = new Button("Two");
 Button b3 = new Button("Three");
 Button b4 = new Button("Four");
 Button b5 = new Button("Five");
 Button b6 = new Button("Six");

 root.addColumn(0, b1, b2, b3);
 root.addColumn(1, b4, b5, b6);

 // Set the column constraints
 ColumnConstraints cc1 = new ColumnConstraints();
 cc1.setHgrow(Priority.NEVER);
 root.getColumnConstraints().add(cc1);

 // Set three different hgrow priorities for children in the second
 // column. The highest priority, ALWAYS, will be used.
 GridPane.setHgrow(b4, Priority.ALWAYS);
 GridPane.setHgrow(b5, Priority.NEVER);
 GridPane.setHgrow(b6, Priority.SOMETIMES);

 Scene scene = new Scene(root);
 stage.setScene(scene);
 stage.setTitle("hgrow and vgrow Constraints");
 stage.show();
 }
}

Figure 10-52. Columns and children using the hgrow constraint in a GridPane

Chapter 10 ■ Understanding LayoUt panes

404

The Margin Constraints
Use the setMargin(Node child, Insets value) static method of the GridPane class to set the margin
(the space around the layout bounds) for children. The getMargin(Node child) static method returns the
margin for a child node.

// Set 10px margin around the b1 child node
GridPane.setMargin(b1, new Insets(10));
...
// Get the margin of the b1 child node
Insets margin = GridPane.getMargin(b1);

Use null to reset the margin to the default value, which is zero.

Clearing All Constraints
Use the clearConstraints(Node child) static method of the GridPane class to reset all constraints
(columnIndex, rowIndex, columnSpan, rowSpan, halignment, valignment, hgrow, vgrow, margin) for a child at
once.

// Clear all constraints for the b1 child node
GridPane.clearConstraints(b1);

Understanding AnchorPane
An AnchorPane lays out its children by anchoring the four edges of its children to its own four edges at a
specified distance. Figure 10-53 shows a child node inside an AnchorPane with an anchor distance specified
on all four sides.

Bottom
anchor

Right
anchor

Left
anchor

Top anchor

A child node
Content area

of the
AnchorPane

Figure 10-53. The four side constraints for a child node in an AnchorPane

An AnchorPane may be used for two purposes:

For aligning children along one or more edges of the •	 AnchorPane

For stretching children when the •	 AnchorPane is resized

The specified distance between the edges of the children and the edges of the AnchorPane is called the
anchor constraint for the sides it is specified. For example, the distance between the top edge of the children
and the top edge of the AnchorPane is called topAnchor constraint, etc. You can specify at most four anchor
constraints for a child node: topAnchor, rightAnchor, bottomAnchor, and leftAnchor.

When you anchor a child node to the two opposite edges (top/bottom or left/right), the children are
resized to maintain the specified anchor distance as the AnchorPane is resized.

Chapter 10 ■ Understanding LayoUt panes

405

Tip ■ anchor distance is measured from the edges of the content area of the AnchorPane and the edges
of the children. that is, if the AnchorPane has a border and padding, the distance is measured from the inner
edges the insets (border + padding).

Creating AnchorPane Objects
You can create an empty AnchorPane using the no-args constructor:

AnchorPane apane1 = new AnchorPane();

You can also specify the initial list of children for the AnchorPane when you create it, like so:

Button okBtn = new Button("OK");
Button cancelBtn = new Button("Cancel");
AnchorPane apane2 = new AnchorPane(okBtn, cancelBtn);

You can add children to an AnchorPane after you create it, like so:

Button okBtn = new Button("OK");
Button cancelBtn = new Button("Cancel");
AnchorPane apane3 = new AnchorPane();
apane3.getChildren().addAll(okBtn, cancelBtn);

You need to keep two points in mind while working with an AnchorPane:

By default, an •	 AnchorPane places its children at (0, 0). You need to specify anchor
constraints for the children to anchor them to one or more edges of the AnchorPane
at a specified distance.

The preferred size of the •	 AnchorPane is computed based on the children preferred
sizes and their anchor constraints. It adds the preferred width, left anchor, and right
anchor for each child node. The child having maximum of this value determines the
preferred width of the AnchorPane. It adds the preferred height, left anchor, and right
anchor for each child node. The child having the maximum of this value determines
the preferred height of the AnchorPane. It is possible that children will overlap.
Children are drawn in the order they are added.

The program in Listing 10-35 adds two buttons to an AnchorPane. One button has a long label and
another has a short label. The button with the long label is added first, and hence, it is drawn first. The
second button is drawn second, which overlays the first button as shown in Figure 10-54. The figure
shows two views of the window: one when the program is run and another when the window is resized.
Both buttons are placed at (0, 0). This program does not take advantage of the anchoring features of the
AnchorPane.

Chapter 10 ■ Understanding LayoUt panes

406

Listing 10-35. Using Default Positions in an AnchorPane

// AnchorPaneDefaults.java
package com.jdojo.container;

import javafx.application.Application;
import javafx.scene.Scene;
import javafx.scene.control.Button;
import javafx.scene.layout.AnchorPane;
import javafx.stage.Stage;

public class AnchorPaneDefaults extends Application {
 public static void main(String[] args) {
 Application.launch(args);
 }

 @Override
 public void start(Stage stage) {
 Button bigBtn = new Button("This is a big button.");
 Button smallBtn = new Button("Small button");

 // Create an AnchorPane with two buttons
 AnchorPane root = new AnchorPane(bigBtn, smallBtn);

 Scene scene = new Scene(root);
 stage.setScene(scene);
 stage.setTitle("Using Defaults in AnchorPane");
 stage.show();
 }
}

Setting Constraints for Children in AnchorPane
Table 10-10 lists the constraints that can be set for the children in a GridPane. Note that the anchor distance
is measured from the edges of the content area of the AnchorPane, not the edges of the layout bounds. Recall
that a Region has padding and border insets between the edges of the content area and the layout bounds.

Initial

After resizing

Figure 10-54. An AnchorPane with two Buttons without having anchor constraints specified

Chapter 10 ■ Understanding LayoUt panes

407

The AnchorPane class contains four static methods that let you set the values for the four anchor
constraints. To remove a constraint for a child node, set it to null

// Create a Button and anchor it to top and left edges at 10px from each
Button topLeft = new Button("Top Left");
AnchorPane.setTopAnchor(topLeft, 10.0); // 10px from the top edge
AnchorPane.setLeftAnchor(topLeft, 10.0); // 10px from the left edge

AnchorPane root = new AnchorPane(topLeft);

Use the clearConstraints(Node child) static method to clear the values for all four anchor
constraints for a child node.

The setXxxAnchor(Node child, Double value) method takes a Double value as its second
parameters. Therefore, you must pass a double value or a Double object to these methods. When you pass
a double value, the autoboxing feature of Java will box the value into a Double object for you. A common
mistake is to pass an int value:

Button b1 = new Button("A button");
AnchorPane.setTopAnchor(b1, 10); // An error: 10 is an int, not a double

The above code generates an error:

Error(18): error: method setTopAnchor in class AnchorPane cannot be applied to given types;

The error is generated because we have passed 10 as the second argument. The value 10 is an int literal,
which is boxed to an Integer object, not a Double object. Changing 10 to 10D or 10.0 will make it a double
value and will fix the error.

The program in Listing 10-36 adds two Buttons to an AnchorPane. The first button has its top and
left anchors set. The second button has its bottom and right anchors set. Figure 10-55 shows the window
in two states: one when the program is run and another when the window is resized. The initial size of the
window is not wide enough to display both buttons, so the buttons overlap. The JavaFX runtime computes
the width of the content area of the window based on the preferred size of the bottom-right button, which
has the maximum preferred width, and its right anchor value. The figure also shows the window after it
is resized. You need to set a sensible preferred size for an AnchorPane, so all children are visible without
overlapping.

Table 10-10. The List of Constraints That Can Be Set for the Children in a GridPane

Constraint Type Description

topAnchor Double It specifies the distance between the top edge of the content area of the
AnchorPane and the top edge of the child node.

rightAnchor Double It specifies the distance between the right edge of the content area of the
AnchorPane and the right edge of the child node.

bottomAnchor Double It specifies the distance between the bottom edge of the content area of the
AnchorPane and the bottom edge of the child node.

leftAnchor Double It specifies the distance between the left edge of the content area of the
AnchorPane and the left edge of the child node.

Chapter 10 ■ Understanding LayoUt panes

408

Listing 10-36. Using an AnchorPane to Align Children to Its Corners

// AnchorPaneTest.java
package com.jdojo.container;

import javafx.application.Application;
import javafx.scene.Scene;
import javafx.scene.control.Button;
import javafx.scene.layout.AnchorPane;
import javafx.stage.Stage;

public class AnchorPaneTest extends Application {
 public static void main(String[] args) {
 Application.launch(args);
 }

 @Override
 public void start(Stage stage) {
 Button topLeft = new Button("Top Left");
 AnchorPane.setTopAnchor(topLeft, 10.0);
 AnchorPane.setLeftAnchor(topLeft, 10.0);

 Button bottomRight = new Button("Botton Right");
 AnchorPane.setBottomAnchor(bottomRight, 10.0);
 AnchorPane.setRightAnchor(bottomRight, 10.0);

 AnchorPane root = new AnchorPane();
 root.getChildren().addAll(topLeft, bottomRight);
 root.setStyle("-fx-padding: 10;" +
 "-fx-border-style: solid inside;" +
 "-fx-border-width: 2;" +
 "-fx-border-insets: 5;" +
 "-fx-border-radius: 5;" +
 "-fx-border-color: blue;");

 Scene scene = new Scene(root);
 stage.setScene(scene);
 stage.setTitle("Using an AnchorPane");
 stage.show();
 }
}

Initial

After resizing

Figure 10-55. Two Buttons in an AnchorPane aligned at top-left and bottom-right corners

Chapter 10 ■ Understanding LayoUt panes

409

When a child node in an AnchorPane is anchored to opposite edges, for example, top/bottom or left/
right, the AnchorPane stretches the child node to maintaining the specified anchors.

The program in Listing 10-37 adds a button to an AnchorPane and anchors it to the left and right edges
(opposite edges) using an anchor of 10px from each edge. This will make the button stretch when the
AnchorPane is resized to a width larger than its preferred width. The button is also anchored to the top edge.
Figure 10-56 shows the initial and resized windows.

Listing 10-37. Anchoring Children to Opposite Sides in an AnchorPane

// AnchorPaneStretching.java
package com.jdojo.container;

import javafx.application.Application;
import javafx.scene.Scene;
import javafx.scene.control.Button;
import javafx.scene.layout.AnchorPane;
import javafx.stage.Stage;

public class AnchorPaneStretching extends Application {
 public static void main(String[] args) {
 Application.launch(args);
 }

 @Override
 public void start(Stage stage) {
 Button leftRight = new Button("A button");
 AnchorPane.setTopAnchor(leftRight, 10.0);
 AnchorPane.setLeftAnchor(leftRight, 10.0);
 AnchorPane.setRightAnchor(leftRight, 10.0);

 AnchorPane root = new AnchorPane();
 root.getChildren().addAll(leftRight);
 root.setStyle("-fx-padding: 10;" +
 "-fx-border-style: solid inside;" +
 "-fx-border-width: 2;" +
 "-fx-border-insets: 5;" +
 "-fx-border-radius: 5;" +
 "-fx-border-color: blue;");

 Scene scene = new Scene(root);
 stage.setScene(scene);
 stage.setTitle("Streching Children in an AnchorPane");
 stage.show();
 }
}

Chapter 10 ■ Understanding LayoUt panes

410

Understanding TextFlow
A TextFlow layout pane is designed to display rich text. The rich text is composed of multiple Text nodes.
The TextFlow combines the text in all Text nodes to display in a single text flow. A new line character ('\n')
in the text of the Text child nodes indicates the start of a new paragraph. The text is wrapped at the width of
the TextFlow.

A Text node has its position, size, and wrapping width. However, when it is added to a TextFlow pane,
these properties are ignored. Text nodes are placed one after another wrapping them when necessary.
A Text node in e TextFlow may span multiple lines in a TextFlow, whereas in a Text node it is displayed in
only one line. Figure 10-57 shows a window with a TextFlow as its root node.

Initial

After resizing

Figure 10-56. An AnchorPane with a Button anchored to Oopposite sides

Figure 10-57. A TextFlow showing rich text

The TextFlow is especially designed to display rich text using multiple Text nodes. However, you are not
limited to adding only Text nodes to a TextFlow. You can add any other nodes to it, for example: Buttons,
TextFields, etc. Nodes other than Text nodes are displayed using their preferred sizes.

Tip ■ you can think of a TextFlow very similar to a FlowPane. Like a FlowPane, a TextFlow lays out its
children in a flow from one end to another by treating text nodes differently. When a text node is encountered
past its width boundary, it breaks the text of the text node at its width and displays the remaining text in the
next line.

Chapter 10 ■ Understanding LayoUt panes

411

Creating TextFlow Objects
Unlike the classes for other layout panes, the TextFlow class is in the javafx.scene.text package where all
other text related classes exist.

You can create an empty TextFlow using the no-args constructor:

TextFlow tflow1 = new TextFlow ();

You can also specify the initial list of children for the TextFlow when you create it:

Text tx1 = new Text("TextFlow layout pane is cool! ");
Text tx2 = new Text("It supports rich text display.");
TextFlow tflow2 = new TextFlow(tx1, tx2);

You can add children to a TextFlow after you create it.

Text tx1 = new Text("TextFlow layout pane is cool! ");
Text tx2 = new Text("It supports rich text display.");
TextFlow tflow3 = new TextFlow();
tflow3.getChildren().addAll(tx1, tx2);

The program in Listing 10-38 shows how to use a TextFlow. It adds three Text nodes to a TextFlow. The
text in the third Text node starts with a newline character (\n), which starts a new paragraph. The program
sets the preferred width of the TextFlow to 300px and the line spacing to 5px. Figure 10-58 shows the window.
When you resize the window, the TextFlow redraws the text wrapping, if necessary, at the new width.

Listing 10-38. Using the TextFlow Layout Pane to Display Rich Text

// TextFlowTest.java
package com.jdojo.container;

import javafx.application.Application;
import javafx.scene.Scene;
import javafx.scene.paint.Color;
import javafx.scene.text.Font;
import javafx.scene.text.FontWeight;
import javafx.scene.text.Text;
import javafx.scene.text.TextFlow;
import javafx.stage.Stage;

public class TextFlowTest extends Application {
 public static void main(String[] args) {
 Application.launch(args);
 }

 @Override
 public void start(Stage stage) {
 // Create three Text nodes
 Text tx1 = new Text("TextFlow layout pane is cool! ");
 tx1.setFill(Color.RED);
 tx1.setFont(Font.font("Arial", FontWeight.BOLD, 12));

Chapter 10 ■ Understanding LayoUt panes

412

 Text tx2 = new Text("It supports rich text display.");
 tx2.setFill(Color.BLUE);

 Text tx3 = new Text("\nThis is a new paragraph, which was " +
 "created using the \\n newline character.");

 // Create a TextFlow object with the three Text nodes
 TextFlow root = new TextFlow(tx1, tx2, tx3);

 // Set the preferred width and line spacing
 root.setPrefWidth(300);
 root.setLineSpacing(5);

 root.setStyle("-fx-padding: 10;" +
 "-fx-border-style: solid inside;" +
 "-fx-border-width: 2;" +
 "-fx-border-insets: 5;" +
 "-fx-border-radius: 5;" +
 "-fx-border-color: blue;");

 Scene scene = new Scene(root);
 stage.setScene(scene);
 stage.setTitle("Using TextFlow");
 stage.show();
 }
}

Figure 10-58. Several Text nodes displayed in a TextFlow as rich text

A TextFlow also lets you embed nodes other than Text nodes. You can create a form to display
text mixed with other types of nodes that users can use. The program in Listing 10-39 embeds a pair of
RadioButtons, a TextField, and a Button to a TextFlow to create an online form with text. Users can use
these nodes to interact with the form.

Figure 10-59 shows the window. At the time of testing this example, the RadioButtons and TextField
nodes did not gain focus using the mouse. Use the Tab key to navigate to these nodes and the spacebar to
select a RadioButton.

Chapter 10 ■ Understanding LayoUt panes

413

Listing 10-39. Embedding Nodes Other Than Text Nodes in a TextFlow

// TextFlowEmbeddingNodes.java
package com.jdojo.container;

import javafx.application.Application;
import javafx.scene.Scene;
import javafx.scene.control.Button;
import javafx.scene.control.RadioButton;
import javafx.scene.control.TextField;
import javafx.scene.control.ToggleGroup;
import javafx.scene.text.Text;
import javafx.scene.text.TextFlow;
import javafx.stage.Stage;

public class TextFlowEmbeddingNodes extends Application {
 public static void main(String[] args) {
 Application.launch(args);
 }

 @Override
 public void start(Stage stage) {
 Text tx1 = new Text("I, ");

 RadioButton rb1 = new RadioButton("Mr.");
 RadioButton rb2 = new RadioButton("Ms.");
 rb1.setSelected(true);

 ToggleGroup group = new ToggleGroup();
 rb1.setToggleGroup(group);
 rb2.setToggleGroup(group);

 TextField nameFld = new TextField();
 nameFld.setPromptText("Your Name");

 Text tx2 = new Text(", acknowledge the receipt of this letter...\n\n" +
 "Sincerely,\n\n");

 Button submitFormBtn = new Button("Submit Form");

 // Create a TextFlow object with all nodes
 TextFlow root = new TextFlow(tx1, rb1, rb2, nameFld, tx2, submitFormBtn);

 // Set the preferred width and line spacing
 root.setPrefWidth(350);
 root.setLineSpacing(5);
 root.setStyle("-fx-padding: 10;" +
 "-fx-border-style: solid inside;" +
 "-fx-border-width: 2;" +
 "-fx-border-insets: 5;" +
 "-fx-border-radius: 5;" +
 "-fx-border-color: blue;");

Chapter 10 ■ Understanding LayoUt panes

414

 Scene scene = new Scene(root);
 stage.setScene(scene);
 stage.setTitle("Creating Forms Using TextFlow");
 stage.show();
 }
}

Figure 10-59. Nodes other than Text nodes embedded in a TextFlow

TextFlow Properties
The TextFlow class contains two properties, as listed in Table 10-11, to customize its layout.

Table 10-11. The List of Properties Declared in the GridPane Class

Property Type Description

lineSpacing DoubleProperty It specifies the vertical space between lines. Its default value is
0px.

textAlignment ObjectProperty
<TextAlignment>

It specifies the alignment of the content of the TextFlow. Its value
is one of the constants of the TextAlignment enum: LEFT, RIGHT,
CENTER, and JUSTIFY. Its default value is LEFT.

The lineSpacing property specifies the vertical space (in pixel) between lines in a TextFlow. We have
used it in our previous examples.

TextFlow tflow = new TextFlow();
tflow.setLineSpacing(5); // 5px lineSpacing

The textAlignment property specifies the alignment of the overall content of the TextFlow. By default,
the content is aligned to the left. Figure 10-60 shows the window for the program in Listing 10-39 when the
following statement is added after the TextFlow object is created in the program.

// Set the textAlignment to CENTER
root.setTextAlignment(TextAlignment.CENTER);

Chapter 10 ■ Understanding LayoUt panes

415

Setting Constraints for Children in TextFlow
TextFlow does not allow you to add any constraints to its children, not even a margin.

Snapping to Pixel
Figure 10-61 shows a screen of a device that is five pixels wide and five pixels tall. A circle in the figure
represents a pixel. A coordinate (0, 0) is mapped to the upper-left corner of the upper-left pixel. The center
of the upper-left pixel maps to the coordinates (0.5, 0.5). All integer coordinates fall in the corners and cracks
between the pixels. In the figure, solid lines are drawn through the cracks of pixels and dashed lines through
the centers of the pixels.

Figure 10-60. A TextFlow using CENTER as its textAligmment

(0, 0)

1

2

3.5

1 2 3.5

Figure 10-61. A 5X5 pixel region on the screen

In JavaFX, coordinates can be specified in floating-point numbers: for example, 0.5, 6.0, etc., which
lets you represent any part of a pixel. If the floating-point number is an integer (e.g., 2.0, 3.0, etc.), it will
represent corners of the pixel.

Chapter 10 ■ Understanding LayoUt panes

416

A Region using floating-point numbers as coordinates will not align exactly at the pixel boundary and its
border may look fuzzy. The Region class contains a snapToPixel property to address this issue. By default, it
is set to true and a Region adjusts the position, spacing, and size values of its children to an integer to match
the pixel boundaries, resulting in crisp boundaries for the children. If you do not want a Region to adjust
these values to integers, set the snapToPixel property to false.

Summary
A layout pane is a node that contains other nodes, which are known as its children (or child nodes). The
responsibility of a layout pane is to lay out its children, whenever needed. A layout pane is also known as
a container or a layout container. A layout pane has a layout policy that controls how the layout pane lays
out its children. For example, a layout pane may lay out its children horizontally, vertically, or in any other
fashion. JavaFX contains several layout-related classes. A layout pane computes the position and size of its
children. The layout policy of a layout pane is a set of rules to compute the position and size of its children.

Objects of the following classes represent layout panes: HBox, VBox, FlowPane, BorderPane, StackPane,
TilePane, GridPane, AnchorPane, and TextFlow. All layout pane classes inherits from the Pane class.

A Group has features of a container; for example, it has its own layout policy, coordinate system, and it
is a subclass of the Parent class. However, its meaning is best reflected by calling it a collection of nodes or a
group, rather than a container. It is used to manipulate a collection of nodes as a single node (or as a group).
Transformations, effects, and properties applied to a Group are applied to all nodes in the Group. A Group
has its own layout policy, which does not provide any specific layout to its children, except giving them their
preferred size.

An HBox lays out its children in a single horizontal row. It lets you set the horizontal spacing between
adjacent children, margins for any children, resizing behavior of children, etc. It uses 0px as the default
spacing between adjacent children. The default width of the content area and HBox is wide enough to display
all its children at their preferred widths and the default height is the largest of the heights of all its children.

A VBox lays out its children in a single vertical column. It lets you set the vertical spacing between
adjacent children, margins for any children, resizing behavior of children, etc. It uses 0px as the default
spacing between adjacent children. The default height of the content area of a VBox is tall enough to display
all its children at their preferred heights, and the default width is the largest of the widths of all its children.

A FlowPane is a simple layout pane that lays out its children in rows or columns wrapping at a specified
width or height. It lets its children flow horizontally or vertically, and hence the name “flow pane.” You
can specify a preferred wrap length, which is the preferred width for a horizontal flow and the preferred
height for a vertical flow, where the content is wrapped. A FlowPane is used in situations where the relative
locations of children are not important: for example, displaying a series of pictures or buttons.

A BorderPane divides its layout area into five regions: top, right, bottom, left, and center. You can place
at most one node in each of the five regions. The children in the top and bottom regions are resized to
their preferred heights. Their widths are extended to fill the available extra horizontal space, provided the
maximum widths of the children allow extending their widths beyond their preferred widths. The children
in the right and left regions are resized to their preferred widths. Their heights are extended to fill the extra
vertical space, provided the maximum heights of the children allow extending their heights beyond their
preferred heights. The child node in the center will fill the rest of the available space in both directions.

A StackPane lays out its children in a stack of nodes. It provides a powerful means to overlay nodes.
Children are drawn in the order they are added.

A TilePane lays out its children in a grid of uniformly sized cells, known as tiles. TilePanes work similar
to FlowPanes with one difference: In a FlowPane, rows and columns can be of different heights and widths,
whereas in a TilePane, all rows have the same heights and all columns have the same widths. The width of
the widest child node and the height of the tallest child node are the default widths and heights of all tiles
in a TilePane. The orientation of a TilePane, which can be set to horizontal or vertical, determines the
direction of the flow for its content. By default, a TilePane has a horizontal orientation.

Chapter 10 ■ Understanding LayoUt panes

417

A GridPane lays out its children in a dynamic grid of cells arranged in rows and columns. The grid is
dynamic because the number and size of cells in the grid are determined based on the number of children.
They depend on the constraints set on children. Each cell in the grid is identified by its position in the
column and row. The indexes for columns and rows start at 0. A child node may be placed anywhere in the
grid spanning more than one cell. All cells in a row are of the same height. Cells in different rows may have
different heights. All cells in a column are of the same width. Cells in different columns may have different
widths. By default, a row is tall enough to accommodate the tallest child node in it. A column is wide enough
to accommodate the widest child node in it. You can customize the size of each row and column. GridPane
also allows for vertical spacing between rows and horizontal spacing between columns. For debug purposes,
you can show the grid lines. Figure 10-41 shows three instances of the GridPane.

An AnchorPane lays out its children by anchoring the four edges of its children to its own four edges
at a specified distance. An AnchorPane may be used for aligning children along one or more edges of the
AnchorPane or for stretching children when the AnchorPane is resized.

The specified distance between the edges of the children and the edges of the AnchorPane is called the
anchor constraint for the sides it is specified. When you anchor a child node to the two opposite edges
(top/bottom or left/right), the children are resized to maintain the specified anchor distance as the
AnchorPane is resized.

A TextFlow layout pane is designed to display rich text. The rich text is composed of multiple Text
nodes. The TextFlow combines the text in all Text nodes to display in a single text flow. A new line character
('\n') in the text of the Text child nodes indicates the start of a new paragraph. The text is wrapped at the
width of the TextFlow.

419

Chapter 11

Model-View-Controller Pattern

In this chapter, you will learn:

What the model-view-controller pattern is•	

What other variants of the model-view-controller pattern are, such as the •	
model-view-presenter pattern

How to develop a JavaFX application using the model-view-presenter pattern•	

What Is the Model-View-Controller Pattern?
JavaFX lets you create applications using GUI components. A GUI application performs three tasks:
accepts inputs from the user, processes the input, and displays outputs. A GUI application contains two
types of code:

Domain code that deals with domain-specific data and business rules•	

Presentation code that deals with manipulating user interface widgets•	

It is often required that the same data in a specific domain be presented in different forms. For
example, you may have a web interface using HTML and a desktop interface using JavaFX to present the
same data. For easy maintenance of the application code, it is often necessary to divide the application
into two logical modules where one module contains presentation code and another domain code
(domain-specific business logic and data). The division is made in such a way that the presentation
module can see the domain module, but not vice versa. This type of division supports multiple
presentations with the same domain code.

Model-view-controller (MVC) pattern is the oldest and the most popular pattern to model GUI
applications to facilitate such a division. The MVC pattern consists of three components: model, view, and
controller. Figure 11-1 shows a pictorial view of the MVC components and the interactions among them.

Chapter 11 ■ Model-View-Controller pattern

420

In MVC, the model consists of the domain objects that model the real world problems. The view and
controller consist of the presentation objects that deal with the presentation such as input, output, and user
interactions with GUI elements. The controller accepts the inputs from the users and decides what to do
with it. That is, the user interacts with the controller directly. The view displays the output on the screen.
Each view is associated with a unique controller and vice versa. Each widget on the screen is a view, which
has a corresponding controller. Therefore, there are typically multiple view-controller pairs in a GUI screen.
The model is not aware of any specific views and controllers. However, views and controllers are model
specific. The controller commands the model to modify its state. The views and model always stay in sync.
The model notifies views about changes in its state, so views can display the updated data. The model-to-view
interaction is facilitated through an observer pattern. Keep in mind that the model is fully unaware of
any specific views. The model provides a way for views to subscribe to its state change notifications. Any
interested views subscribe to the model to receive state change notifications. The model notifies all views
that had subscribed whenever a model’s state changes.

What has been described so far about the MVC pattern is the original concept of MVC that was used
in developing user interfaces in Smalltalk-80 language that was created in 1980. There have been many
variants of Smalltalk. The concept in MVC that the presentation and domain logic should be separated in a
GUI application still holds true. However, in MVC, dividing the responsibilities between three components
had issues. Which component, for example, will have the logic to update the attributes of the view, such as
changing the view color or disabling it, that depend on the state of the model? Views can have their own
states. A list that displays a list of items has the index of the currently selected item. The selected index is the
state of the view, not the model. A model may be associated with several views at one time, and it is not the
responsibility of the model to store the state of all views.

The issues of which component in MVC has the responsibility of storing the view logic and state led
to another variant of MVC called the Application Model MVC (AM-MVC). In AM-MVC, a new component,
called Application Model, is introduced between the model and the view/controller. Its purpose is to contain
presentation logic and the state, thus solving the issue of which component keeps the presentation logic
and the state in the original MVC. The model in MVC is decoupled from the view, and this is also true in
AM-MVC. Both use the same observer technique to keep the view and the model in sync. In AM-MVC,
the Application Model was supposed to keep the view-related logic but was not allowed to access the view
directly. This resulted in bulky and ugly code when the Application Model had to update the view attributes.
Figure 11-2 shows a pictorial view of the AM-MVC components and the interactions among them.

Model

Change state commands

User inputs from
keyboard, mouse, etc.

Controller

Controller

Screen

 State change notifications

View

View

Figure 11-1. Interaction between participants in the classic MVC pattern

Chapter 11 ■ Model-View-Controller pattern

421

Later, modern graphical operating systems like Microsoft Windows and Mac OS offered native widgets,
which users can interact with directly. These widgets combined the functions of the view and controller into
one. This led to another variant of MVC, called the model-view-presenter (MVP) pattern. Modern widgets
also support data binding, which helps keep the view and model in sync with fewer lines of code. Figure 11-3
shows a pictorial view of the MVP components and the interactions among them.

User inputs from
keyboard, mouse, etc.

Controller

Controller

Screen

Change display

State changed notifications Change state commands

Application Model

Model

Process inputs

View

View

Figure 11-2. Interaction among participants in the AM-MVC pattern

Model

State Changed

User inputs

Command

Change display

Query

Presenter View
User inputs from
keyboard, mouse, etc.

Figure 11-3. Interactions among participants in the MVP pattern

In MVC, each widget on the screen is a view, and it has its own unique controller. In MPV, the view is
composed of several widgets. The view intercepts the inputs from the user and hands over the control to
the presenter. Note that the view does not react to the user inputs. It only intercepts them. The view is also
responsible for displaying the data from the model.

The presenter is notified by the view about the user inputs. It determines how to react to the user’s
input. The presenter is responsible for the presentation logic, manipulating the view, and issuing commands
to the model. Once the presenter modifies the model, the view is updated using the observer pattern, as was
done in MVC.

The model is responsible for storing domain-specific data and logic. Like MVC, it is independent of any
views and presenters. The presenter commands the model to change, and the view updates itself when it
receives state-changed notifications from the model.

Chapter 11 ■ Model-View-Controller pattern

422

There are some variants of MVP as well. They vary in the responsibility of the view and the presenter.
In one variant, the view is responsible for all view-related logic without the help of the presenter. In another
variant, the view is responsible for all the simple logic that can be handled declaratively, except when the
logic is complex, which is handled by the presenter. In another variant, the presenter handles all view-related
logic and manipulates the view. This variant is called passive view MVP in which the view is unaware of
the model. Figure 11-4 shows a pictorial view of the components in MVP passive view and the interactions
among them.

Model

User inputs

Command
and

Query

Change display

State Changed

Presenter View
User inputs from
keyboard, mouse, etc.

Figure 11-4. Interactions among the participants in the passive view MVP pattern

The concept of MVC that the presentation logic should be separated from the domain logic has been
around for over 30 years, and it is going to stay in one form or another. All variants of MVC have been
attempting to achieve the same function of what the classic MVC did, though in different ways. The variants
vary from the classic MVC in the responsibilities of their components. When someone talks about MVC in
a GUI application design, make sure you understand which variant of MVC is used and which components
perform which tasks.

A Model-View-Presenter Example
This section presents a detailed example that uses the MVP pattern.

The Requirements
For the example here, you will develop a GUI application that will let the user enter the details of a person,
validate the data, and save it. The form should contain:

Person ID field: An autogenerated unique noneditable field•	

First name field: An editable text field•	

Last name field: An editable text field•	

Birth date: An editable text field•	

Age category: An autocomputed noneditable field based on the birth date•	

Save button: A button to save the data•	

Close button: A button to close the window•	

The personal data should be validated against the following rules:

The first and last names must be at least one character long.•	

If a birth date is entered, it must not be a future date.•	

Chapter 11 ■ Model-View-Controller pattern

423

The Design
Three classes will represent the three components of an MVP:

•	 Person class

•	 PersonView and PersonPresenter classes

The Person class represents the model, the PersonView class the view, and the PersonPresenter class
the presenter. As required by the MVP pattern, the Person class will be agnostic about the PersonView and
the PersonPresenter classes. The PersonView and the PersonPresenter classes will interact with each other
and they will use the Person class directly.

Let’s divide the classes related to the model and the view logically by placing them in different Java
packages. The com.jdojo.mvc.model package will contain model-related classes, and the com.jdojo.mvc.view
package will contain the view-related classes. Figure 11-5 shows the finished window.

Figure 11-5. The initial screenshot of the person management window

The Implementation
The Model
Listing 11-1 contains the complete code for the Person class. The Person class contains the code for the
domain data and the business rules. In real life you might want to separate the two into multiple classes.
However, for a small application like this, let’s keep them in one class.

Listing 11-1. The Person Class Used as the Model

// Person.java
package com.jdojo.mvc.model;

import java.time.LocalDate;
import java.time.temporal.ChronoUnit;
import java.util.ArrayList;
import java.util.List;
import java.util.concurrent.atomic.AtomicInteger;
import javafx.beans.property.ObjectProperty;
import javafx.beans.property.ReadOnlyIntegerWrapper;

Chapter 11 ■ Model-View-Controller pattern

424

import javafx.beans.property.SimpleObjectProperty;
import javafx.beans.property.SimpleStringProperty;
import javafx.beans.property.StringProperty;
import javafx.beans.property.ReadOnlyIntegerProperty;

public class Person {
 // An enum for age categories
 public enum AgeCategory {
 BABY, CHILD, TEEN, ADULT, SENIOR, UNKNOWN
 };

 private final ReadOnlyIntegerWrapper personId =
 new ReadOnlyIntegerWrapper(this, "personId", personSequence.incrementAndGet());
 private final StringProperty firstName =
 new SimpleStringProperty(this, "firstName", null);
 private final StringProperty lastName =
 new SimpleStringProperty(this, "lastName", null);
 private final ObjectProperty<LocalDate> birthDate =
 new SimpleObjectProperty<>(this, "birthDate", null);

 // Keeps track of last generated person id
 private static AtomicInteger personSequence = new AtomicInteger(0);

 public Person() {
 this(null, null, null);
 }

 public Person(String firstName, String lastName, LocalDate birthDate) {
 this.firstName.set(firstName);
 this.lastName.set(lastName);
 this.birthDate.set(birthDate);
 }

 /* personId Property */
 public final int getPersonId() {
 return personId.get();
 }

 public final ReadOnlyIntegerProperty personIdProperty() {
 return personId.getReadOnlyProperty();
 }

 /* firstName Property */
 public final String getFirstName() {
 return firstName.get();
 }

 public final void setFirstName(String firstName) {
 firstNameProperty().set(firstName);
 }

Chapter 11 ■ Model-View-Controller pattern

425

 public final StringProperty firstNameProperty() {
 return firstName;
 }

 /* lastName Property */
 public final String getLastName() {
 return lastName.get();
 }

 public final void setLastName(String lastName) {
 lastNameProperty().set(lastName);
 }

 public final StringProperty lastNameProperty() {
 return lastName;
 }

 /* birthDate Property */
 public final LocalDate getBirthDate() {
 return birthDate.get();
 }

 public final void setBirthDate(LocalDate birthDate) {
 birthDateProperty().set(birthDate);
 }

 public final ObjectProperty<LocalDate> birthDateProperty() {
 return birthDate;
 }

 /* Domain specific business rules */
 public boolean isValidBirthDate(LocalDate bdate) {
 return isValidBirthDate(bdate, new ArrayList<>());
 }

 /* Domain specific business rules */
 public boolean isValidBirthDate(LocalDate bdate, List<String> errorList) {
 if (bdate == null) {
 return true;
 }

 // Birth date cannot be in the future
 if (bdate.isAfter(LocalDate.now())) {
 errorList.add("Birth date must not be in future.");
 return false;
 }

 return true;
 }

Chapter 11 ■ Model-View-Controller pattern

426

 /* Domain specific business rules */
 public boolean isValidPerson(List<String> errorList) {
 return isValidPerson(this, errorList);
 }

 /* Domain specific business rules */
 public boolean isValidPerson(Person p, List<String> errorList) {
 boolean isValid = true;

 String fn = p.firstName.get();
 if (fn == null || fn.trim().length() == 0) {
 errorList.add("First name must contain minimum one character.");
 isValid = false;
 }

 String ln = p.lastName.get();
 if (ln == null || ln.trim().length() == 0) {
 errorList.add("Last name must contain minimum one character.");
 isValid = false;
 }

 if (!isValidBirthDate(this.birthDate.get(), errorList)) {
 isValid = false;
 }

 return isValid;
 }

 /* Domain specific business rules */
 public AgeCategory getAgeCategory() {
 if (birthDate.get() == null) {
 return AgeCategory.UNKNOWN;
 }

 long years = ChronoUnit.YEARS.between(birthDate.get(), LocalDate.now());
 if (years >= 0 && years < 2) {
 return AgeCategory.BABY;
 } else if (years >= 2 && years < 13) {
 return AgeCategory.CHILD;
 } else if (years >= 13 && years <= 19) {
 return AgeCategory.TEEN;
 } else if (years > 19 && years <= 50) {
 return AgeCategory.ADULT;
 } else if (years > 50) {
 return AgeCategory.SENIOR;
 } else {
 return AgeCategory.UNKNOWN;
 }
 }

Chapter 11 ■ Model-View-Controller pattern

427

 /* Domain specific business rules */
 public boolean save(List<String> errorList) {
 boolean isSaved = false;
 if (isValidPerson(errorList)) {
 System.out.println("Saved " + this.toString());
 isSaved = true;
 }

 return isSaved;
 }

 @Override
 public String toString() {
 return "[personId=" + personId.get() +
 ", firstName=" + firstName.get() +
 ", lastName=" + lastName.get() +
 ", birthDate=" + birthDate.get() + "]";
 }
}

The Person class declares an AgeCategory enum to represents different ages:

public enum AgeCategory {BABY, CHILD, TEEN, ADULT, SENIOR, UNKNOWN};

The person ID, first name, last name, and birth date are represented by JavaFX properties. The personId
property is declared read-only and it is autogenerated. Relevant setter and getter methods are provided for
these properties.

The isValidBirthDate() and isValidPerson() methods are included to perform domain-specific
validations. The getAgeCategory() method belongs to the Person class as it computes the age category of a
person based on his birth date. I have made up some date ranges to divide the age of a person into different
categories. You may be tempted to add this method to the view. However, you would then need to duplicate
the logic inside this method for each view. The method uses the model data and computes a value. It knows
nothing about views, so it belongs to the model, not to the view.

The save() method saves the personal data. The save method is trivial; it simply displays a message
on the standard output if the personal data are valid. In a real world application, it would save the data to a
database or a file.

The View
The PersonView class shown in Listing 11-2 represents the view in this application. It is mainly responsible
for displaying the data in the model.

Listing 11-2. The PersonView Class Used as the View

// PersonView.java
package com.jdojo.mvc.view;

import com.jdojo.mvc.model.Person;
import java.time.LocalDate;
import java.time.format.DateTimeFormatter;
import javafx.scene.control.Button;

Chapter 11 ■ Model-View-Controller pattern

428

import javafx.scene.control.Label;
import javafx.scene.control.TextField;
import javafx.scene.layout.GridPane;
import javafx.scene.layout.VBox;

public class PersonView extends GridPane {
 private final Person model;

 // Labels
 Label personIdLbl = new Label("Person Id:");
 Label fNameLbl = new Label("First Name:");
 Label lNameLbl = new Label("Last Name:");
 Label bDateLbl = new Label("Birth Date:");
 Label ageCategoryLbl = new Label("Age Category:");

 // Fields
 TextField personIdFld = new TextField();
 TextField fNameFld = new TextField();
 TextField lNameFld = new TextField();
 TextField bDateFld = new TextField();
 TextField ageCategoryFld = new TextField();

 // Buttons
 Button saveBtn = new Button("Save");
 Button closeBtn = new Button("Close");

 // Date format
 String dateFormat;

 public PersonView(Person model, String dateFormat) {
 this.model = model;
 this.dateFormat = dateFormat;
 layoutForm();
 initFieldData();
 bindFieldsToModel();
 }

 private void initFieldData() {
 // Id and names are populated using bindings.
 // Populate birth date and age category
 syncBirthDate();
 }

 private void layoutForm() {
 this.setHgap(5);
 this.setVgap(5);

 this.add(personIdLbl, 1, 1);
 this.add(fNameLbl, 1, 2);
 this.add(lNameLbl, 1, 3);
 this.add(bDateLbl, 1, 4);
 this.add(ageCategoryLbl, 1, 5);

Chapter 11 ■ Model-View-Controller pattern

429

 this.add(personIdFld, 2, 1);
 this.add(fNameFld, 2, 2);
 this.add(lNameFld, 2, 3);
 this.add(bDateFld, 2, 4);
 this.add(ageCategoryFld, 2, 5);

 // Add buttons and make them the same width
 VBox buttonBox = new VBox(saveBtn, closeBtn);
 saveBtn.setMaxWidth(Double.MAX_VALUE);
 closeBtn.setMaxWidth(Double.MAX_VALUE);

 this.add(buttonBox, 3, 1, 1, 5);

 // Disable the personId field
 personIdFld.setDisable(true);
 ageCategoryFld.setDisable(true);

 // Set the prompt text for the birth date field
 bDateFld.setPromptText(dateFormat.toLowerCase());
 }

 public void bindFieldsToModel() {
 personIdFld.textProperty().bind(model.personIdProperty().asString());
 fNameFld.textProperty().bindBidirectional(model.firstNameProperty());
 lNameFld.textProperty().bindBidirectional(model.lastNameProperty());
 }

 public void syncBirthDate() {
 LocalDate bdate = model.getBirthDate();
 if (bdate != null) {
 bDateFld.setText(bdate.format(DateTimeFormatter.

ofPattern(dateFormat)));
 }

 syncAgeCategory();
 }

 public void syncAgeCategory() {
 ageCategoryFld.setText(model.getAgeCategory().toString());
 }
}

The PersonView class inherits from the GridPane class. It contains an instance variable for each
UI component. Its constructor takes the model (an instance of the Person class) and a date format as
arguments. The date format is the format used to display the birth date. Note that the format for the birth
date is view specific and it should be part of the view as such. The model knows nothing about the format in
which the birth date is displayed by views.

The initFieldData() method initializes the view with the data. I used JavaFX bindings to bind the data
in UI nodes to the model data except for the birth date and age category fields. This method synchronizes
the birth date and the age category fields with the model. The layoutForm() method lays out the UI nodes in
the grid pane. The bindFieldsToModel() method binds the person ID, first name, and last name TextFields
to the corresponding data fields in the model, so they stay in sync. The syncBirthDate() method reads

Chapter 11 ■ Model-View-Controller pattern

430

the birth date from the model, formats it, and displays it in the view. The syncAgeCategory() method
synchronizes the age category field, which is computed by the model based on the birth date.

Notice that the view, the PersonView class, does not know about the presenter, the PersonPresenter
class. So how will the view and the presenter communicate? The role of a presenter is mainly to get the user’s
inputs from the view and act upon them. The presenter will have a reference to the view. It will add event
listeners to the view, so it is notified when the data in the view change. In the event handlers, the presenter
takes control and processes the inputs. If the application requires a reference to the presenter in the view,
you can have that as an argument to the constructor of the view class. Alternatively, you can provide a setter
method in the view class to set the presenter.

The Presenter
The PersonPresenter class shown in Listing 11-3 represents the presenter in this application. It is mainly
responsible for intercepting the new input in the view and processing it. It communicates directly with the
model and the view.

Listing 11-3. The PersonPresenter Class Used as the Presenter

// PersonPresenter.java
package com.jdojo.mvc.view;

import com.jdojo.mvc.model.Person;
import java.time.LocalDate;
import java.time.format.DateTimeFormatter;
import java.time.format.DateTimeParseException;
import java.util.ArrayList;
import java.util.List;
import javafx.beans.value.ObservableValue;
import javafx.scene.Node;
import javafx.scene.Scene;
import javafx.scene.control.Button;
import javafx.scene.control.Label;
import javafx.scene.layout.StackPane;
import javafx.scene.layout.VBox;
import javafx.stage.Modality;
import javafx.stage.Stage;
import javafx.stage.StageStyle;

public class PersonPresenter {
 private final Person model;
 private final PersonView view;

 public PersonPresenter(Person model, PersonView view) {
 this.model = model;
 this.view = view;
 attachEvents();
 }

 private void attachEvents() {
 // We need to detect the birth date change when the bDate field loses
 // focus or the user presses the Enter key while it still has focus

Chapter 11 ■ Model-View-Controller pattern

431

 view.bDateFld.setOnAction(e -> handleBirthDateChange());
 view.bDateFld.getScene().focusOwnerProperty()
 .addListener(this::focusChanged);

 // Save the data
 view.saveBtn.setOnAction(e -> saveData());

 // Close the window when the Close button is pressed
 view.closeBtn.setOnAction(e -> view.getScene().getWindow().hide());
 }

 public void focusChanged(ObservableValue<? extends Node> value,
 Node oldNode,
 Node newNode) {

 // The birth date field has lost focus
 if (oldNode == view.bDateFld) {
 handleBirthDateChange();
 }
 }

 private void handleBirthDateChange() {
 String bdateStr = view.bDateFld.getText();
 if (bdateStr == null || bdateStr.trim().equals("")) {
 model.setBirthDate(null);
 view.syncBirthDate();
 } else {
 try {
 DateTimeFormatter formatter = DateTimeFormatter.

ofPattern(view.dateFormat);
 LocalDate bdate = LocalDate.parse(bdateStr, formatter);

 List<String> errorList = new ArrayList<>();
 if (model.isValidBirthDate(bdate, errorList)) {
 model.setBirthDate(bdate);
 view.syncAgeCategory();
 } else {
 this.showError(errorList);
 view.syncBirthDate();
 }
 }
 catch (DateTimeParseException e) {
 // Birth date is not in the specified date format
 List<String> errorList = new ArrayList<>();
 errorList.add("Birth date must be in the " +
 view.dateFormat.toLowerCase() + " format.");
 this.showError(errorList);

 // Refresh the view
 view.syncBirthDate();
 }
 }
 }

Chapter 11 ■ Model-View-Controller pattern

432

 private void saveData() {
 List<String> errorList = new ArrayList<>();
 boolean isSaved = model.save(errorList);
 if (!isSaved) {
 this.showError(errorList);
 }
 }

 public void showError(List<String> errorList) {
 String msg = "";
 if (errorList.isEmpty()) {
 msg = "No message to display.";
 } else {
 for (String s : errorList) {
 msg = msg + s + "\n";
 }
 }

 Label msgLbl = new Label(msg);
 Button okBtn = new Button("OK");
 VBox root = new VBox(new StackPane(msgLbl), new StackPane(okBtn));
 root.setSpacing(10);

 Scene scene = new Scene(root);
 Stage stage = new Stage(StageStyle.UTILITY);
 stage.initModality(Modality.WINDOW_MODAL);
 stage.setScene(scene);
 stage.initOwner(view.getScene().getWindow());

 // Set the Action listener for the OK button
 okBtn.setOnAction(e -> stage.close());

 stage.setTitle("Error");
 stage.sizeToScene();
 stage.showAndWait();
 }
}

The constructor of the PersonPresenter class takes the model and the view as arguments. The
attachEvents() method attaches event handlers to the UI components of the view. In this example you are
not interested in intercepting all inputs in the view. But you are interested in the birth date changes and the
clicking of the Save and Close buttons. You do not want to detect all edit changes in the birth date field.
If you are interested in all changes in the birth date field, you would need to add a change listener for its text
property. You want to detect changes only when the user is done entering the birth date. For this reason:

You attach a focus listener to the scene and detect if the birth date has lost the focus.•	

You attach an action listener to the birth date field, so you intercept the Enter key •	
press while the field has focus.

Chapter 11 ■ Model-View-Controller pattern

433

This validates and refreshes the birth date and age category whenever the birth date field loses focus or
the Enter key is pressed while focus is still in the field.

The handleBirthDateChange() method handles a change in the birth date field. It validates the birth
date format before updating the model. It displays an error message to the user if the birth date is not valid.
Finally, it tells the view to update the birth date and age category.

The saveData() method is called when the user clicks the Save button, and it commands the model
to save the data. The showError() method does not belong to the presenter. Here you added it instead of
creating a new view class. It is used to display an error message.

Putting Them Together
Let’s put the model, view, and presenter together to use them in an application. The program in Listing 11-4
creates the model, view, and presenter, glues them together, and displays the view in a window as shown in
Figure 11-5. Notice that the view must be attached to a scene before the presenter is created. It is required
because the presenter attaches a focus change listener to the scene. Creating the presenter before adding the
view to the scene will result in a NullPointerException.

Listing 11-4. The PersonApp Class Uses the Model, View, and Presenter to Create a GUI Application

// PersonApp.java
package com.jdojo.mvc;

import com.jdojo.mvc.view.PersonView;
import com.jdojo.mvc.view.PersonPresenter;
import com.jdojo.mvc.model.Person;
import javafx.application.Application;
import javafx.scene.Scene;
import javafx.stage.Stage;

public class PersonApp extends Application {
 public static void main(String[] args) {
 Application.launch(args);
 }

 @Override
 public void start(Stage stage) {
 Person model = new Person();
 String dateFormat = "MM/dd/yyyy";
 PersonView view = new PersonView(model, dateFormat);

 // Must set the scene before creating the presenter that uses
 // the scene to listen for the focus change
 Scene scene = new Scene(view);

 PersonPresenter presenter = new PersonPresenter(model, view);
 view.setStyle("-fx-padding: 10;" +
 "-fx-border-style: solid inside;" +
 "-fx-border-width: 2;" +

Chapter 11 ■ Model-View-Controller pattern

434

 "-fx-border-insets: 5;" +
 "-fx-border-radius: 5;" +
 "-fx-border-color: blue;");

 stage.setScene(scene);
 stage.setTitle("Person Management");
 stage.show();
 }
}

Summary
It is often required that the same domain data be presented in different forms. For example, you may
have a web interface using HTML and a desktop interface using JavaFX to present the same data. For easy
maintenance of the application code, it is often necessary to divide the application into two logical modules
where one module contains presentation code and another domain code (domain-specific business logic
and data). The division is made in such a way that the presentation module can see the domain module, but
not vice versa. This type of division supports multiple presentations with the same domain code. The MVC
pattern is the oldest and the most popular pattern to model GUI applications to facilitate such a division.
The MVC pattern consists of three components: model, view, and controller.

In MVC, the model consists of the domain objects that model the real world problems. The view and
controller consist of the presentation objects that deal with the presentation such as input, output, and user
interactions with GUI elements. The controller accepts the inputs from the users and decides what to do
with them. That is, the user interacts with the controller directly. The view displays the output on the screen.
Each view is associated with a unique controller and vice versa. Each widget on the screen is a view, which
has a corresponding controller. In MVC, dividing the responsibilities between three components created
issues. Which component, for example, would have the logic to update the attributes of the view, such as
changing the view color or disabling it, that depend on the state of the model?

The issues for which component in MVC has the responsibility storing the view logic and the state led
to another variant of MVC called the Application Model MVC. In AM-MVC, a new component, called the
Application Model, was introduced between the model and the view/controller. Its purpose is to contain
presentation logic and the state, thus solving the issue of which component keeps the presentation logic
and state in the original MVC.

Later, modern graphical operating systems like Microsoft Windows and Mac OS offered native widgets,
which users can interact with directly. These widgets combined the functions of the view and controller into
one. This led to another variant of MVC, called the model-view-presenter pattern.

In MVC, each widget on the screen is a view and it has its unique controller. In MVP, the view is
composed of several widgets. The view intercepts the inputs from the user and hands over the control to
the presenter. Note that the view does not react to the user’s inputs; it only intercepts them. The presenter
is notified by the view about the user’s inputs and determines how to react to them. The presenter is
responsible for the presentation logic, manipulating the view, and issuing commands to the model. Once the
presenter modifies the model, the view is updated using the observer pattern, as was done in MVC.

There are some variants of MVP as well. They vary in the responsibility of the view and the presenter.
In one variant, the view is responsible for all view-related logic without the help of the presenter. In
another variant, the view is responsible for all the simple logic that can be handled declaratively, except
when the logic is complex, which is handled by the presenter. In another variant, the presenter handles all
view-related logic and manipulates the view. This variant is called passive view MVP, in which the view is
unaware of the model.

The next chapter will introduce you to controls that are used to build the view in JavaFX applications.

435

Chapter 12

Understanding Controls

In this chapter, you will learn:

What a control is in Java•	

About classes whose instances represent controls in JavaFX•	

About controls such as •	 Label, Button, CheckBox, RadioButton, Hyperlink,
ChoiceBox, ComboBox, ListView, ColorPicker, DatePicker, TextField,
TextArea, and Menu

How to style controls using a CSS•	

How to use the •	 FileChooser and DirectoryChooser dialogs

What Is a Control?
JavaFX lets you create applications using GUI components. An application with a GUI performs three tasks:

Accepts inputs from the user through input devices such as a keyboard or a mouse•	

Processes the inputs (or takes actions based on the input)•	

Displays outputs•	

The UI provides a means to exchange information in terms of input and output between an application
and its users. Entering text using a keyboard, selecting a menu item using a mouse, clicking a button, or
other actions are examples of providing input to a GUI application. The application displays outputs on a
computer monitor using text, charts, dialog boxes, and so forth.

Users interact with a GUI application using graphical elements called controls or widgets. Buttons,
labels, text fields, text area, radio buttons, and check boxes are a few examples of controls. Devices like
a keyboard, a mouse, and a touch screen are used to provide input to controls. Controls can also display
output to the users. Controls generate events that indicate an occurrence of some kind of interaction
between the user and the control. For example, pressing a button using a mouse or a spacebar generates an
action event indicating that the user has pressed the button.

JavaFX provides a rich set of easy-to-use controls. Controls are added to layout panes that position
and size them. Layout panes were discussed in Chapter 10. This chapter discusses how to use the controls
available in JavaFX.

Typically, the MVP pattern (discussed in Chapter 11) is used to develop a GUI application in JavaFX.
MVP requires you to have at least three classes and place your business logic in a certain way and in certain
classes. Generally, this bloats the application code, although for the right reason. This chapter will focus on
the different types of controls, not on learning the MVP pattern. You will embed classes required for MVP
patterns into one class to keep the code brief and save a lot of space in this book as well!

Chapter 12 ■ Understanding Controls

436

Understanding Control Classes Hierarchy
Each control in JavaFX is represented by an instance of a class. If multiple controls share basic features, they
inherit from a common base class. Control classes are included in the javafx.scene.control package.
A control class is a subclass, direct or indirect, of the Control class, which in turn inherits from the Region.
Recall that the Region class inherits from the Parent class. Therefore, technically, a Control is also a Parent.
All our discussions about the Parent and Region classes in the previous chapters also apply to all
control-related classes.

A Parent can have children. Typically, a control is composed of another node (sometimes,
multiple nodes), which is its child node. Control classes do not expose the list of its children through the
getChildren() method, and therefore, you cannot add any children to them.

Control classes expose the list of their internal unmodifiable children through the
getChildrenUnmodifiable() method, which returns an ObservableList<Node>. You are not required
to know about the internal children of a control to use the control. However, if you need the list of their
children, the getChildrenUnmodifiable() method will give you that.

Figure 12-1 shows a class diagram for classes of some commonly used controls. The list of control
classes is a lot bigger than the one shown in the class diagram.

Figure 12-1. A class diagram for control classes in JavaFX

The Control class is the base class for all controls. It declares three properties, as shown in Table 12-1,
that are common to all controls.

Chapter 12 ■ Understanding Controls

437

The contextMenu property specifies the context menu for the control. A context menu gives a list of
choices to the user. Each choice is an action that can be taken on the control in its current state. Some
controls have their default context menus. For example, a TextField, when right-clicked, displays a context
menu with choices like Undo, Cut, Copy, and Paste. Typically, a context menu is displayed when the user
presses a combination of keys (e.g., Shift + F10 on Windows) or clicks the mouse (right-click on Windows)
when the control has focus. I will revisit the contextMenu property when I discuss the text input controls.

At the time of this writing, JavaFX doesn’t allow access or customization of the default context menu
for controls. The contextMenu property is null even if the control has a default context menu. When you set
the contextMenu property, it replaces the default context for the control. Note that not all controls have a
default context menu and a context menu is not suitable for all controls. For example, a Button control does
not use a context menu.

The visual appearance of a control is known as its skin. A skin responds to the state changes in a control
by changing its visual appearance. A skin is represented by an instance of the Skin interface. The Control
class implements the Skinnable interface, giving all controls the ability to use a skin.

The skin property in the Control class specifies the custom skin for a control. Developing a new skin
is not an easy task. For the most part, you can customize the appearance of a control using CSS styles. All
controls can be styled using CSS. The Control class implements the Styleable interface, so all controls can
be styled. Please refer to Chapter 8 for more details on how to use a CSS. I will discuss some commonly used
CSS attributes for some controls in this chapter.

Controls can display a short message called a tool tip when the mouse hovers over the control for a
short period. An object of the Tooltip class represents a tool tip in JavaFX. The tooltip property in the
Control class specifies the tool tip for a control.

Labeled Controls
A labeled control contains a read-only textual content and optionally a graphic as part of its UI. Label,
Button, CheckBox, RadioButton, and Hyperlink are some examples of labeled controls in JavaFX. All labeled
controls are inherited, directly or indirectly, from the Labeled class, which is declared abstract. The Labeled
class inherits from the Control class. Figure 12-2 shows a class diagram for labeled controls. Some of the
classes have been left out in the diagram for brevity.

Table 12-1. Properties Declared in the Control Class

Property Type Description

contextMenu ObjectProperty<ContextMenu> Specifies the content menu for the control.

skin ObjectProperty<Skin<?>> Specifies the skin for the control.

tooltip ObjectProperty<Tooltip> Specifies the tool tip for the control.

Chapter 12 ■ Understanding Controls

438

The Labeled class declares text and graphic properties to represent the textual and graphic contents,
respectively. It declares several other properties to deal with the visual aspects of its contents, for example,
alignment, font, padding, and text wrapping. Table 12-2 contains the list of those properties with their brief
descriptions. I will discuss some of these properties in the subsequent sections.

Table 12-2. Properties Declared in the Labeled Class

Property Type Description

alignment ObjectProperty<Pos> It specifies the alignment of the content of
the control within the content area. Its effect
is visible when the content area is bigger than
the content (text + graphic). The default value
is Pos.CENTER_LEFT.

contentDisplay ObjectProperty<ContentDisplay> It specifies positioning of the graphic relative
to the text.

ellipsisString StringProperty It specifies the string to display for the ellipsis
when the text is truncated because the
control has a smaller size than the preferred
size. The default value is "..." for most
locales. Specifying an empty string for this
property does not display an ellipsis string in
truncated text.

font ObjectProperty It specifies the default font for the text.

graphic ObjectProperty<Node> It specifies an optional icon for the control.

graphicTextGap DoubleProperty It specifies the amount of text between the
graphic and text.

labelPadding ReadOnlyObjectProperty<Insets> It is the padding around the content area of
the control. By default, it is Insets.EMPTY.

Figure 12-2. A class diagram for labeled control classes

(continued)

Chapter 12 ■ Understanding Controls

439

Property Type Description

lineSpacing DoubleProperty It specifies the space between adjacent lines
when the control displays multiple lines.

mnemonicParsing BooleanProperty It enables or disables text parsing to detect
a mnemonic character. If it is set to true,
the text for the control is parsed for an
underscore (_) character. The character
following the first underscore is added as
the mnemonic for the control. Pressing the
Alt key on Windows computers highlights
mnemonics for all controls.

textAlignment ObjectProperty<TextAlignment> It specifies the text alignment within the text
bounds for multiline text.

textFill ObjectProperty<Paint> It specifies the text color.

textOverrun ObjectProperty<OverrunStyle> It specifies how to display the text when the
text content exceeds the available space.

text StringProperty It specifies the text content.

underline BooleanProperty It specifies whether the text content should
be underlined.

wrapText BooleanProperty It specifies whether the text should be
wrapped if the text cannot be displayed in
one line.

Positioning Graphic and Text
The contentDisplay property of labeled controls specifies the positioning of the graphic relative to the text.
Its value is one of the constants of the ContentDisplay enum: TOP, RIGHT, BOTTOM, LEFT, CENTER, TEXT_ONLY,
and GRAPHIC_ONLY. If you do not want to display the text or the graphic, you can use the GRAPHIC_ONLY and
TEXT_ONLY values instead of setting the text to an empty string and the graphic to null. Figure 12-3 shows the
effects of using different values for the contentDisplay property of a Label. The Label uses Name: as the text
and a blue rectangle as the graphic. The value for the contentDisplay property is displayed at the bottom of
each instance.

Figure 12-3. Effects of the contentDisplay property on labeled controls

Table 12-2. (continued)

Chapter 12 ■ Understanding Controls

440

Understanding Mnemonics and Accelerators
Labeled controls support keyboard mnemonics, which is also known as a keyboard shortcut or keyboard
indicator. A mnemonic is a key that sends an ActionEvent to the control. The mnemonic key is often pressed
in combination with a modifier key such as an Alt key. The modifier key is platform dependent; however,
it is usually an Alt key. For example, suppose you set the C key as a mnemonic for a Close button. When you
press Alt + C, the Close button is activated.

Finding the documentation about mnemonics in JavaFX is not easy. It is buried in the documentation
for the Labeled and Scene classes. Setting a mnemonic key for a labeled control is easy. You need to precede
the mnemonic character with an underscore in the text content and make sure that the mnemonicParsing
property for the control is set to true. The first underscore is removed and the character following it is set as
the mnemonic for the control. For some labeled controls, the mnemonic parsing is set to true by default,
and for others, you will need to set it.

Tip ■ Mnemonics are not supported on all platforms. Mnemonic characters in the text for controls are not
underlined, at least on Windows, until the alt key is pressed.

The following statement will set the C key as the mnemonic for the Close button:

// For Button, mnemonic parsing is true by default
Button closeBtn = new Button("_Close");

When you press the Alt key, the mnemonic characters for all controls are underlined and pressing the
mnemonic character for any controls will set focus to the control and send it an ActionEvent.

JavaFX provides the following four classes in the javafx.scene.input package to set mnemonics for all
types of controls programmatically:

•	 Mnemonic

•	 KeyCombination

•	 KeyCharacterCombination

•	 KeyCodeCombination

An object of the Mnemonic class represents a mnemonic. An object of the KeyCombination class, which
is declared abstract, represents the key combination for a mnemonic. The KeyCharacterCombination and
KeyCodeCombination classes are subclasses of the KeyCombination class. Use the former to construct a
key combination using a character; use the latter to construct a key combination using a key code. Note
that not all keys on the keyboard represent characters. The KeyCodeCombination class lets you create a key
combination for any key on the keyboard.

The Mnemonic object is created for a node and is added to a Scene. When the Scene receives an
unconsumed key event for the key combination, it sends an ActionEvent to the target node.

The following snippet of code achieves the same result that was achieved using one statement in the
above example:

Button closeBtn = new Button("Close");

// Create a KeyCombination for Alt + C
KeyCombination kc = new KeyCodeCombination(KeyCode.C, KeyCombination.ALT_DOWN);

Chapter 12 ■ Understanding Controls

441

// Create a Mnemonic object for closeBtn
Mnemonic mnemonic = new Mnemonic(closeBtn, kc);

Scene scene = create a scene...;
scene.addMnemonic(mnemonic); // Add the mnemonic to the scene

The KeyCharacterCombination class can also be used to create a key combination for Alt + C:

KeyCombination kc = new KeyCharacterCombination("C", KeyCombination.ALT_DOWN);

The Scene class supports accelerator keys. An accelerator key, when pressed, executes a Runnable task.
Notice the difference between mnemonics and accelerator keys. A mnemonic is associated with a control,
and pressing its key combination sends an ActionEvent to the control. An accelerator key is not associated
with a control, but rather to a task. The Scene class maintains an ObservableMap<KeyCombination,
Runnable>, whose reference can be obtained using the getAccelerators() method.

The following snippet of code adds an accelerator key (Ctrl + X on Windows and Meta + X on Mac) to a
Scene, which closes the window associated with the Scene. The SHORTCUT key represents the shortcut key on
the platform—Ctrl on Windows and Meta on Mac:

Scene scene = create a scene object...;
...
KeyCombination kc = new KeyCodeCombination(KeyCode.X,
 KeyCombination.SHORTCUT_DOWN);
Runnable task = () -> scene.getWindow().hide();
scene.getAccelerators().put(kc, task);

The program in Listing 12-1 shows how to use mnemonics and accelerator keys. Press Alt + 1 and
Alt + 2 to activate Button 1 and Button 2, respectively. Pressing these buttons changes the text for the Label.
Pressing the shortcut key + X will close the window.

Listing 12-1. Using Mnemonics and Accelerator Keys

// MnemonicTest.java
package com.jdojo.control;

import javafx.application.Application;
import javafx.scene.Scene;
import javafx.scene.control.Button;
import javafx.scene.control.Label;
import javafx.scene.input.KeyCode;
import javafx.scene.input.KeyCodeCombination;
import javafx.scene.input.KeyCombination;
import javafx.scene.input.Mnemonic;
import javafx.scene.layout.VBox;
import javafx.stage.Stage;

public class MnemonicTest extends Application {
 public static void main(String[] args) {
 Application.launch(args);
 }

Chapter 12 ■ Understanding Controls

442

 @Override
 public void start(Stage stage) {
 VBox root = new VBox();
 root.setSpacing(10);
 root.setStyle("-fx-padding: 10;" +
 "-fx-border-style: solid inside;" +
 "-fx-border-width: 2;" +
 "-fx-border-insets: 5;" +
 "-fx-border-radius: 5;" +
 "-fx-border-color: blue;");

 Scene scene = new Scene(root);
 Label msg = new Label("Press Ctrl + X on Windows \nand " +
 "\nMeta + X on Mac to close the window");
 Label lbl = new Label("Press Alt + 1 or Alt + 2");

 // Use Alt + 1 as the mnemonic for Button 1
 Button btn1 = new Button("Button _1");
 btn1.setOnAction(e -> lbl.setText("Button 1 clicked!"));

 // Use Alt + 2 as the mnemonic key for Button 2
 Button btn2 = new Button("Button 2");
 btn2.setOnAction(e -> lbl.setText("Button 2 clicked!"));
 KeyCombination kc = new KeyCodeCombination(KeyCode.DIGIT2,
 KeyCombination.ALT_DOWN);
 Mnemonic mnemonic = new Mnemonic(btn2, kc);
 scene.addMnemonic(mnemonic);

 // Add an accelarator key to the scene
 KeyCombination kc4 =
 new KeyCodeCombination(KeyCode.X, KeyCombination.SHORTCUT_DOWN);
 Runnable task = () -> scene.getWindow().hide();
 scene.getAccelerators().put(kc4, task);

 // Add all children to the VBox
 root.getChildren().addAll(msg, lbl, btn1, btn2);

 stage.setScene(scene);
 stage.setTitle("Using Mnemonics and Accelerators");
 stage.show();
 }
}

Understanding the Label Control
An instance of the Label class represents a label control. As the name suggest, a Label is simply a label that is
used to identify or describe another component on a screen. It can display a text, an icon, or both. Typically,
a Label is placed next to (to the right or left) or at the top of the node it describes.

A Label is not focus traversable. That is, you cannot set the focus to a Label using the Tab key. A Label
control does not generate any interesting events that are typically used in an application.

Chapter 12 ■ Understanding Controls

443

A Label control can also be used to display text in situations where it is acceptable to truncate the
text if enough space is not available to display the entire text. Please refer to the API documentation on the
textOverrun and ellipsisString properties of the Labeled class for more details on how to control the text
truncation behavior in a Label control.

Figure 12-4 shows a window with two Label controls with text First Name: and Last Name:. The Label
with the text First Name: is an indicator for the user that he should enter a first name in the field that is
placed right next to it. A similar argument goes for the Last Name: Label control.

Figure 12-4. A window with two Label controls

The Label class has a very useful labelFor property of ObjectProperty<Node> type. It is set to another
node in the scene graph. A Label control can have a mnemonic. Mnemonic parsing for Label controls is
set to false by default. When you press the mnemonic key for a Label, the focus is set to the labelFor node
for that Label. The following snippet of code creates a TextField and a Label. The Label sets a mnemonic,
enables mnemonic parsing, and sets the TextField as its labelFor property. When the Alt + F keys are
pressed, focus is moved to the TextField:

TextField fNameFld = new TextField();
Label fNameLbl = new Label("_First Name:"); // F is mnemonic
fNameLbl.setLabelFor(fNameFld);
fNameLbl.setMnemonicParsing(true);

The program in Listing 12-2 produces the screen shown in Figure 12-4. Press Alt + F and Alt + L to shift
focus between the two TextField controls.

Listing 12-2. Using the Label Control

// LabelTest.java
package com.jdojo.control;

import javafx.application.Application;
import javafx.scene.Scene;
import javafx.scene.control.Label;
import javafx.scene.control.TextField;
import javafx.scene.layout.GridPane;
import javafx.stage.Stage;

public class LabelTest extends Application {
 public static void main(String[] args) {
 Application.launch(args);
 }

Chapter 12 ■ Understanding Controls

444

 @Override
 public void start(Stage stage) {
 TextField fNameFld = new TextField();
 Label fNameLbl = new Label("_First Name:");
 fNameLbl.setLabelFor(fNameFld);
 fNameLbl.setMnemonicParsing(true);

 TextField lNameFld = new TextField();
 Label lNameLbl = new Label("_Last Name:");
 lNameLbl.setLabelFor(lNameFld);
 lNameLbl.setMnemonicParsing(true);

 GridPane root = new GridPane();
 root.addRow(0, fNameLbl, fNameFld);
 root.addRow(1, lNameLbl, lNameFld);
 root.setStyle("-fx-padding: 10;" +
 "-fx-border-style: solid inside;" +
 "-fx-border-width: 2;" +
 "-fx-border-insets: 5;" +
 "-fx-border-radius: 5;" +
 "-fx-border-color: blue;");

 Scene scene = new Scene(root);
 stage.setScene(scene);
 stage.setTitle("Using Labels");
 stage.show();
 }
}

Understanding Buttons
JavaFX provides three types of controls that represent buttons:

Buttons to execute commands•	

Buttons to make choices•	

Buttons to execute commands as well as make choices•	

All button classes inherit from the ButtonBase class. Please refer to Figure 12-2 for a class diagram. All
types of buttons support the ActionEvent. Buttons trigger an ActionEvent when they are activated. A button
can be activated in different ways, for example, by using a mouse, a mnemonic, an accelerator key, or other
key combinations.

A button that executes a command when activated is known as a command button. The Button,
Hyperlink, and MenuButton classes represent command buttons. A MenuButton lets the user execute a
command from a list of commands. Buttons used for presenting different choices to users are known as
choice buttons. The ToggleButton, CheckBox, and RadioButton classes represent choice buttons. The third
kind of button is a hybrid of the first two kinds. They let users execute a command or make choices. The
SplitMenuButton class represents a hybrid button.

Chapter 12 ■ Understanding Controls

445

Tip ■ all buttons are labeled controls. therefore, they can have a textual content, a graphic, or both. all types
of buttons are capable of firing an ActionEvent.

Understanding Command Buttons
You have already used command buttons in several instances, for example, a Close button to close a window.
In this section, I will discuss buttons that are used as command buttons.

Understanding the Button Control
An instance of the Button class represents a command button. Typically, a Button has text as its label and
an ActionEvent handler is registered to it. The mnemonicParsing property for the Button class is set to true
by default.

A Button can be in one of three modes:

A normal button•	

A default button•	

A cancel button•	

For a normal button, its ActionEvent is fired when the button is activated. For a default button, the
ActionEvent is fired when the Enter key is pressed and no other node in the scene consumes the key press.
For a cancel button, the ActionEvent is fired when the Esc key is pressed and no other node in the scene
consumes the key press.

By default, a Button is a normal button. The default and cancel modes are represented by the
defaultButton and cancelButton properties. You would set one of these properties to true to make a button
a default or cancel button. By default, both properties are set to false.

The following snippet of code creates a normal Button and adds an ActionEvent handler. When the
button is activated, for example, by clicking using a mouse, the newDocument() method is called:

// A normal button
Button newBtn = new Button("New");
newBtn.setOnAction(e -> newDocument());

The following snippet of code creates a default button and adds an ActionEvent handler. When the
button is activated, the save() method is called. Note that a default Button is also activated by pressing the
Enter key if no other node in the scene consumes the key press:

// A default button
Button saveBtn = new Button("Save");
saveBtn.setDefaultButton(true); // Make it a default button
saveBtn.setOnAction(e -> save());

Chapter 12 ■ Understanding Controls

446

The program in Listing 12-3 creates a normal button, a default button, and a cancel button. It adds
an ActionEvent listener to all three buttons. Notice that all buttons have a mnemonic (e.g., N for the New
button). When the buttons are activated, a message is displayed in a Label. You can activate the buttons by
different means:

Clicking on buttons•	

Setting focus to the buttons using the Tab key and pressing the spacebar•	

Pressing Alt key and their mnemonics•	

Pressing the Enter key to activate the •	 Save button

Pressing Esc key to activate the •	 Cancel button

No matter how you activate the buttons, their ActionEvent handler is called. Typically, the ActionEvent
handler for a button contains the command for the button.

Listing 12-3. Using the Button Class to Create Command Buttons

// ButtonTest.java
package com.jdojo.control;

import javafx.application.Application;
import javafx.scene.Scene;
import javafx.scene.control.Button;
import javafx.scene.control.Label;
import javafx.scene.layout.HBox;
import javafx.scene.layout.VBox;
import javafx.stage.Stage;

public class ButtonTest extends Application {
 Label msgLbl = new Label("Press Enter or Esc key to see the message");

 public static void main(String[] args) {
 Application.launch(args);
 }

 @Override
 public void start(Stage stage) {
 // A normal button with N as its mnemonic
 Button newBtn = new Button("_New");
 newBtn.setOnAction(e -> newDocument());

 // A default button with S as its mnemonic
 Button saveBtn = new Button("_Save");
 saveBtn.setDefaultButton(true);
 saveBtn.setOnAction(e -> save());

 // A cancel button with C as its mnemonic
 Button cancelBtn = new Button("_Cancel");
 cancelBtn.setCancelButton(true);
 cancelBtn.setOnAction(e -> cancel());

Chapter 12 ■ Understanding Controls

447

 HBox buttonBox = new HBox(newBtn, saveBtn, cancelBtn);
 buttonBox.setSpacing(15);
 VBox root = new VBox(msgLbl, buttonBox);
 root.setSpacing(15);
 root.setStyle("-fx-padding: 10;" +
 "-fx-border-style: solid inside;" +
 "-fx-border-width: 2;" +
 "-fx-border-insets: 5;" +
 "-fx-border-radius: 5;" +
 "-fx-border-color: blue;");

 Scene scene = new Scene(root);
 stage.setScene(scene);
 stage.setTitle("Command Buttons");
 stage.show();
 }

 public void newDocument() {
 msgLbl.setText("Creating a new document...");
 }

 public void save() {
 msgLbl.setText("Saving...");
 }

 public void cancel() {
 msgLbl.setText("Cancelling...");
 }
}

Tip ■ it is possible to set more than one button in a scene as a default or cancel button. however, only the
first one is used. it is poor designing to declare multiple buttons as default and cancel buttons in a scene.
By default, JavaFX highlights the default button with a light shade of color to give it a unique look. You can
customize the appearance of default and cancel buttons using Css styles. setting the same button as a default
button and a cancel button is also allowed, but it is a sign of bad design when this is done.

The default CSS style-class name for a Button is button. The Button class supports two CSS pseudo-classes:
default and cancel. You can use these pseudo-classes to customize the look for default and cancel buttons.
The following CSS style will set the text color for default buttons to blue and cancel buttons to gray:

.button:default {
 -fx-text-fill: blue;
}

.button:cancel {
 -fx-text-fill: gray;
}

Chapter 12 ■ Understanding Controls

448

Tip ■ You can use Css styles to create stylish buttons. please visit the web site at
http://fxexperience.com/2011/12/styling-fx-buttons-with-css/ for examples.

Understanding the Hyperlink Control
An instance of the Hyperlink class represents a hyperlink control, which looks like a hyperlink in a
web page. In a web page, a hyperlink is used to navigate to another web page. However, in JavaFX, an
ActionEvent is triggered when a Hyperlink control is activated, for example, by clicking it, and you are free
to perform any action in the ActionEvent handler.

A Hyperlink control is simply a button styled to look like a hyperlink. By default, mnemonic parsing is off.
A Hyperlink control can have focus, and by default, it draws a dashed rectangular border when it has focus.
When the mouse cursor hovers over a Hyperlink control, the cursor changes to a hand and its text is underlined.

The Hyperlink class contains a visited property of BooleanProperty type. When a Hyperlink control
is activated for the first time, it is considered “visited” and the visited property is set to true automatically.
All visited hyperlinks are shown in a different color than the not visited ones. You can also set the visited
property manually using the setVisited() method of the Hyperlink class.

The following snippet of code creates a Hyperlink control with the text "JDojo" and adds an
ActionEvent handler for the Hyperlink. When the Hyperlink is activated, the www.jdojo.com web page
is opened in a WebView, which is another JavaFX control to display a web page. I will discuss the WebView
control in Chapter 16; here I will use it without any explanation:

Hyperlink jdojoLink = new Hyperlink("JDojo");
WebView webview = new WebView();
jdojoLink.setOnAction(e -> webview.getEngine().load("http://www.jdojo.com"));

The program in Listing 12-4 adds three Hyperlink controls to the top region of a BorderPane. A WebView
control is added in the center region. When you click one of the hyperlinks, the corresponding web page is
displayed.

Listing 12-4. Using the Hyperlink Control

// HyperlinkTest.java
package com.jdojo.control;

import javafx.application.Application;
import javafx.geometry.Pos;
import javafx.scene.Scene;
import javafx.scene.control.Hyperlink;
import javafx.scene.layout.BorderPane;
import javafx.scene.layout.HBox;
import javafx.scene.web.WebView;
import javafx.stage.Stage;

public class HyperlinkTest extends Application {
 private WebView webview;

 public static void main(String[] args) {
 Application.launch(args);
 }

http://fxexperience.com/2011/12/styling-fx-buttons-with-css/
http://www.jdojo.com/

Chapter 12 ■ Understanding Controls

449

 @Override
 public void start(Stage stage) {
 // Must create a WebView object from the JavaFX Application Thread
 webview = new WebView();

 // Create some hyperlinks
 Hyperlink jdojoLink = new Hyperlink("JDojo");
 jdojoLink.setOnAction(e -> loadPage("http://www.jdojo.com"));

 Hyperlink yahooLink = new Hyperlink("Yahoo!");
 yahooLink.setOnAction(e -> loadPage("http://www.yahoo.com"));

 Hyperlink googleLink = new Hyperlink("Google");
 googleLink.setOnAction(e -> loadPage("http://www.google.com"));

 HBox linkBox = new HBox(jdojoLink, yahooLink, googleLink);
 linkBox.setSpacing(10);
 linkBox.setAlignment(Pos.TOP_RIGHT);

 BorderPane root = new BorderPane();
 root.setTop(linkBox);
 root.setCenter(webview);

 Scene scene = new Scene(root);
 stage.setScene(scene);
 stage.setTitle("Using Hyperlink Controls");
 stage.show();
 }

 public void loadPage(String url) {
 webview.getEngine().load(url);
 }
}

Understanding the MenuButton Control
A MenuButton control looks like a button and behaves like a menu. When it is activated (by clicking or other
means), it shows a list of options in the form of a pop-up menu. The list of options in the menu is maintained
in an ObservableList<MenuItem> whose reference is returned by the getItems() method. To execute a
command when a menu option is selected, you need to add the ActionEvent handler to the MenuItems.

The following snippet of code creates a MenuButton with two MenuItems. Each menu item has an
ActionEvent hander attached to it. Figure 12-5 shows the MenuButton in two states: not showing and
showing.

// Create two menu items with an ActionEvent handler.
// Assume that the loadPage() method exists
MenuItem jdojo = new MenuItem("JDojo");
jdojo.setOnAction(e -> loadPage("http://www.jdojo.com"));

MenuItem yahoo = new MenuItem("Yahoo");
yahoo.setOnAction(e -> loadPage("http://www.yahoo.com"));

Chapter 12 ■ Understanding Controls

450

// Create a MenuButton and the two menu items
MenuButton links = new MenuButton("Visit");
links.getItems().addAll(jdojo, yahoo);

Figure 12-5. A MenuButton in not showing and showing states

The MenuButton class declares two properties:

•	 popupSide

•	 showing

The popupSide property is of the ObjectProperty<Side> type and the showing property is of the
ReadOnlyBooleanProperty type.

The popupSide property determines which side of the menu should be displayed. Its value is one of the
constants in the Side enum: TOP, LEFT, BOTTOM, and RIGHT. The default value is Side.BOTTOM. An arrow in the
MenuItem shows the direction set by the popupSide property. The arrow in Figure 12-5 is pointing downward,
indicating that the popupSide property is set to Side.BOTTOM. The menu is opened in the direction set in the
popupSide property only if space is available to display the menu in that side. If space is not available, the
JavaFX runtime will make a smart decision as to which side the menu should be displayed. The value of the
showing property is true when the pop-up menu is showing. Otherwise, it is false.

The program in Listing 12-5 creates an application using a MenuButton control that works similar to the
one in Listing 12-4 that used Hyperlink control. Run the application, click the Visit MenuButton at the top
right of the window, and select a page to open.

Listing 12-5. Using the MenuButton Control

// MenuButtonTest.java
package com.jdojo.control;

import javafx.application.Application;
import javafx.geometry.Pos;
import javafx.scene.Scene;
import javafx.scene.control.MenuButton;
import javafx.scene.control.MenuItem;
import javafx.scene.layout.BorderPane;
import javafx.scene.web.WebView;
import javafx.stage.Stage;

public class MenuButtonTest extends Application {
 private WebView webview;

 public static void main(String[] args) {
 Application.launch(args);
 }

Chapter 12 ■ Understanding Controls

451

 @Override
 public void start(Stage stage) {
 // Must create a WebView object from the JavaFX Application Thread
 webview = new WebView();

 MenuItem jdojo = new MenuItem("JDojo");
 jdojo.setOnAction(e -> loadPage("http://www.jdojo.com"));

 MenuItem yahoo = new MenuItem("Yahoo");
 yahoo.setOnAction(e -> loadPage("http://www.yahoo.com"));

 MenuItem google = new MenuItem("Google");
 google.setOnAction(e -> loadPage("http://www.google.com"));

 // Add menu items to the MenuButton
 MenuButton links = new MenuButton("Visit");
 links.getItems().addAll(jdojo, yahoo, google);

 BorderPane root = new BorderPane();
 root.setTop(links);
 BorderPane.setAlignment(links, Pos.TOP_RIGHT);
 root.setCenter(webview);

 Scene scene = new Scene(root);
 stage.setScene(scene);
 stage.setTitle("Using MenuButton Controls");
 stage.show();
 }

 public void loadPage(String url) {
 webview.getEngine().load(url);
 }
}

Understanding Choice Buttons
JavaFX provides several controls to make one or more selections from a list of available choices:

•	 ToggleButton

•	 CheckBox

•	 RadioButton

Tip ■ JavaFX also provides ChoiceBox, ComboBox, and ListView controls to allow the user to make a
selection from multiple available choice. i will discuss these controls in a separate section.

Chapter 12 ■ Understanding Controls

452

All three controls are labeled controls and they help you present multiple choices to the user in different
formats. The number of available choices may vary from two to N, where N is a number greater than two.

Selection from the available choices may be mutually exclusive. That is, the user can only make one
selection from the list of choices. If the user changes the selection, the previous selection is automatically
deselected. For example, the list of gender selection with three choices, Male, Female, and Unknown, is
mutually exclusive. The user must select only one of the three choices, not two or more of them. The
ToggleButton and RadioButton controls are typically used in this case.

There is a special case of selection where the number of choices is two. In this case, the choices are of
boolean type: true or false. Sometimes, it is also referred to as a Yes/No or On/Off choice. The ToggleButton
and CheckBox controls are typically used in this case.

Sometimes the user can have multiple selections from a list of choices. For example, you may present
the user with a list of hobbies to choose zero or more hobbies from the list. The ToggleButton and CheckBox
controls are typically used in this case.

Understanding the ToggleButton Control
ToggleButton is a two-state button control. The two states are selected and unselected. Its selected property
indicates whether it is selected. The selected property is true when it is in the selected state. Otherwise, it is
false. When it is in the selected state, it stays depressed. You can toggle between the selected and unselected
states by pressing it, and hence it got the name ToggleButton. For ToggleButtons, mnemonic parsing is
enabled by default.

Figure 12-6 shows four toggle buttons with Spring, Summer, Fall, and Winter as their labels. Two of the
toggle buttons, Spring and Fall, are selected and the other two are unselected.

Figure 12-6. A window showing four toggle buttons

You create a ToggleButton the same way you create a Button, using the following code:

ToggleButton springBtn = new ToggleButton("Spring");

A ToggleButton is used to select a choice, not to execute a command. Typically, you do not add
ActionEvent handlers to a ToggleButton. Sometimes you can use a ToggleButton to start or stop an action.
For that, you will need to add a ChangeListener for its selected property.

Tip ■ the ActionEvent handler for a ToggleButton is invoked every time you click it. notice that the first
click selects a ToggleButton and the second click deselects it. if you select and deselect a ToggleButton,
the ActionEvent handler will be called twice.

Chapter 12 ■ Understanding Controls

453

Toggle buttons may be used in a group from which zero or one ToggleButton can be selected. To
add toggle buttons to a group, you need to add them to a ToggleGroup. The ToggleButton class contains
a toggleGroup property. To add a ToggleButton to a ToggleGroup, set the toggleGroup property of the
ToggleButton to the group. Setting the toggleGroup property to null removes a ToggleButton from the
group. The following snippet of code creates four toggle buttons and adds them to a ToggleGroup:

ToggleButton springBtn = new ToggleButton("Spring");
ToggleButton summerBtn = new ToggleButton("Summer");
ToggleButton fallBtn = new ToggleButton("Fall");
ToggleButton winterBtn = new ToggleButton("Winter");

// Create a ToggleGroup
ToggleGroup group = new ToggleGroup();

// Add all ToggleButtons to the ToggleGroup
springBtn.setToggleGroup(group);
summerBtn.setToggleGroup(group);
fallBtn.setToggleGroup(group);
winterBtn.setToggleGroup(group);

Each ToggleGroup maintains an ObservableList<Toggle>. Note that Toggle is an interface that is
implemented by the ToggleButton class. The getToggles() method of the ToggleGroup class returns the
list of Toggles in the group. You can add a ToggleButton to a group by adding it to the list returned by the
getToggles() method. The above snippet of code may be rewritten as follows:

ToggleButton springBtn = new ToggleButton("Spring");
ToggleButton summerBtn = new ToggleButton("Summer");
ToggleButton fallBtn = new ToggleButton("Fall");
ToggleButton winterBtn = new ToggleButton("Winter");

// Create a ToggleGroup
ToggleGroup group = new ToggleGroup();

// Add all ToggleButtons to the ToggleGroup
group.getToggles().addAll(springBtn, summerBtn, fallBtn, winterBtn);

The ToggleGroup class contains a selectedToggle property that keeps track of the selected Toggle
in the group. The getSelectedToggle() method returns the reference of the Toggle that is selected. If no
Toggle is selected in the group, it returns null. Add a ChangeListener to this property if you are interested in
tracking the change in selection inside a ToggleGroup.

Tip ■ You can select zero or one ToggleButton in a ToggleGroup. selecting a ToggleButton in a group
deselects the already selected ToggleButton. Clicking an already selected ToggleButton in a group deselects
it, leaving no ToggleButton in the group selected.

The program in Listing 12-6 adds four toggle buttons to a ToggleGroup. You can select none or at the most
one ToggleButton from the group. Figure 12-7 shows two screenshots: one when there is no selection and one
when the ToggleButton with the label Summer is selected. The program adds a ChangeListener to the group
to track the change in selection and displays the label of the selected ToggleButton in a Label control.

Chapter 12 ■ Understanding Controls

454

Listing 12-6. Using Toggle Buttons in a ToggleGroup and Tracking the Selection

// ToggleButtonTest.java
package com.jdojo.control;

import javafx.application.Application;
import javafx.beans.value.ObservableValue;
import javafx.scene.Scene;
import javafx.scene.control.Label;
import javafx.scene.control.Labeled;
import javafx.scene.control.Toggle;
import javafx.scene.control.ToggleButton;
import javafx.scene.control.ToggleGroup;
import javafx.scene.layout.HBox;
import javafx.scene.layout.VBox;
import javafx.stage.Stage;

public class ToggleButtonTest extends Application {
 Label userSelectionMsg = new Label("Your selection: None");

 public static void main(String[] args) {
 Application.launch(args);
 }

 @Override
 public void start(Stage stage) {
 // Create four ToggleButtons
 ToggleButton springBtn = new ToggleButton("Spring");
 ToggleButton summerBtn = new ToggleButton("Summer");
 ToggleButton fallBtn = new ToggleButton("Fall");
 ToggleButton winterBtn = new ToggleButton("Winter");

 // Add all ToggleButtons to a ToggleGroup
 ToggleGroup group = new ToggleGroup();
 group.getToggles().addAll(springBtn, summerBtn, fallBtn, winterBtn);

 // Track the selection changes and display the currently selected season
 group.selectedToggleProperty().addListener(this::changed);

 Label msg = new Label("Select the season you like:");

Figure 12-7. Four toggle buttons in a ToggleGroup allowing selection of one button at a time

Chapter 12 ■ Understanding Controls

455

 // Add ToggleButtons to an HBox
 HBox buttonBox = new HBox(springBtn, summerBtn, fallBtn, winterBtn);
 buttonBox.setSpacing(10);

 VBox root = new VBox(userSelectionMsg, msg, buttonBox);
 root.setSpacing(10);
 root.setStyle("-fx-padding: 10;" +
 "-fx-border-style: solid inside;" +
 "-fx-border-width: 2;" +
 "-fx-border-insets: 5;" +
 "-fx-border-radius: 5;" +
 "-fx-border-color: blue;");

 Scene scene = new Scene(root);
 stage.setScene(scene);
 stage.setTitle("Using ToggleButtons in a Group");
 stage.show();
 }

 // A change listener to track the selection in the group
 public void changed(ObservableValue<? extends Toggle> observable,
 Toggle oldBtn,
 Toggle newBtn) {
 String selectedLabel = "None";
 if (newBtn != null) {
 selectedLabel = ((Labeled)newBtn).getText();
 }

 userSelectionMsg.setText("Your selection: " + selectedLabel);
 }
}

Understanding the RadioButton Control
An instance of the RadioButton class represents a radio button. It inherits from the ToggleButton class.
Therefore, it has all of the features of a toggle button. A radio button is rendered differently compared to a
toggle button. Like a toggle button, a radio button can be in one of the two states: selected and unselected.
Its selected property indicates its current state. Like a toggle button, its mnemonic parsing is enabled by
default. Like a toggle button, it also sends an ActionEvent when it is selected and unselected. Figure 12-8
shows a RadioButton with Summer as its text in selected and unselected states.

Figure 12-8. Showing a radio button in selected and unselected states

Chapter 12 ■ Understanding Controls

456

There is a significant difference in the use of radio buttons compared to the use of toggle buttons.
Recall that when toggle buttons are used in a group, there may not be any selected toggle button in the
group. When radio buttons are used in a group, there must be one selected radio button in the group. Unlike
a toggle button, clicking a selected radio button in a group does not unselect it. To enforce the rule that
one radio button must be selected in a group of radio buttons, one radio button from the group is selected
programmatically by default.

Tip ■ radio buttons are used when the user must make a selection from a list of choices. toggle buttons are
used when the user has an option to make one selection or no selection from a list of choices.

The program in Listing 12-7 shows how to use radio buttons inside a ToggleGroup. Figure 12-9 shows
the window with the results of running the code. The program is very similar to the previous program that
used toggle buttons. With the following code, Summer is set as the default selection:

// Select the default season as Summer
summerBtn.setSelected(true);

You set the default season in the radio button after you have added the change listener to the group, so
the message to display the selected season is updated correctly.

Listing 12-7. Using Radio Buttons in a ToggleGroup and Tracking the Selection

// RadioButtonTest.java
package com.jdojo.control;

import javafx.application.Application;
import javafx.beans.value.ObservableValue;
import javafx.scene.Scene;
import javafx.scene.control.Label;
import javafx.scene.control.Labeled;
import javafx.scene.control.Toggle;
import javafx.scene.control.RadioButton;
import javafx.scene.control.ToggleGroup;
import javafx.scene.layout.HBox;
import javafx.scene.layout.VBox;
import javafx.stage.Stage;

public class RadioButtonTest extends Application {
 Label userSelectionMsg = new Label("Your selection: None");

 public static void main(String[] args) {
 Application.launch(args);
 }

 @Override
 public void start(Stage stage) {
 // Create four RadioButtons
 RadioButton springBtn = new RadioButton("Spring");
 RadioButton summerBtn = new RadioButton("Summer");

Chapter 12 ■ Understanding Controls

457

 RadioButton fallBtn = new RadioButton("Fall");
 RadioButton winterBtn = new RadioButton("Winter");

 // Add all RadioButtons to a ToggleGroup
 ToggleGroup group = new ToggleGroup();
 group.getToggles().addAll(springBtn, summerBtn, fallBtn, winterBtn);

 // Track the selection changes and display the currently selected season
 group.selectedToggleProperty().addListener(this::changed);

 // Select the default season as Summer
 summerBtn.setSelected(true);

 Label msg = new Label("Select the season you like the most:");

 // Add RadioButtons to an HBox
 HBox buttonBox = new HBox(springBtn, summerBtn, fallBtn, winterBtn);
 buttonBox.setSpacing(10);

 VBox root = new VBox(userSelectionMsg, msg, buttonBox);
 root.setSpacing(10);
 root.setStyle("-fx-padding: 10;" +
 "-fx-border-style: solid inside;" +
 "-fx-border-width: 2;" +
 "-fx-border-insets: 5;" +
 "-fx-border-radius: 5;" +
 "-fx-border-color: blue;");

 Scene scene = new Scene(root);
 stage.setScene(scene);
 stage.setTitle("Using RadioButtons in a Group");
 stage.show();
 }

 // A change listener to track the selection in the group
 public void changed(ObservableValue<? extends Toggle> observable,
 Toggle oldBtn,
 Toggle newBtn) {
 String selectedLabel = "None";
 if (newBtn != null) {
 selectedLabel = ((Labeled)newBtn).getText();
 }
 userSelectionMsg.setText("Your selection: " + selectedLabel);
 }
}

Chapter 12 ■ Understanding Controls

458

Understanding the CheckBox Control
CheckBox is a three-state selection control: checked, unchecked, and undefined. The undefined state is also
known as an indeterminate state. A CheckBox supports a selection of three choices: true/false/unknown or
yes/no/unknown. Usually, a CheckBox has text as a label, but not a graphic (even though it can). Clicking a
CheckBox transitions it from one state to another cycling through three states.

A box is drawn for a CheckBox. In the unchecked state, the box is empty. A tick mark (or a check mark)
is present in the box when it is in the checked state. In the undefined state, a horizontal line is present in the
box. Figure 12-10 shows a CheckBox labeled Hungry in its three states.

Figure 12-9. Four radio buttons in a ToggleGroup

Figure 12-10. Showing a check box in unchecked, checked, and undefined states

By default, the CheckBox control supports only two states: checked and unchecked. The
allowIndeterminate property specifies whether the third state (the undefined state) is available for
selection. By default, it is set to false:

// Create a CheckBox that supports checked and unchecked states only
CheckBox hungryCbx = new CheckBox("Hungry");

// Create a CheckBox and configure it to support three states
CheckBox agreeCbx = new CheckBox("Hungry");
agreeCbx.setAllowIndeterminate(true);

The CheckBox class contains selected and indeterminate properties to track its three states. If the
indeterminate property is true, it is in the undefined state. If the indeterminate property is false, it is
defined and it could be in a checked or unchecked state. If the indeterminate property is false and the
selected property is true, it is in a checked state. If the indeterminate property is false and the selected
property is false, it is in an unchecked state. Table 12-3 summarizes the rules for determining the state of a
check box.

Chapter 12 ■ Understanding Controls

459

Sometimes you may want to detect the state transition in a check box. Because a check box maintains
the state information in two properties, you will need to add a ChangeListener to both properties. An
ActionEvent is fired when a check box is clicked. You can also use an ActionEvent to detect a state change in
a check box. The following snippet of code shows how to use two ChangeListeners to detect a state change
in a CheckBox. It is assumed that the changed() method and the rest of the code are part of the same class:

// Create a CheckBox to support three states
CheckBox agreeCbx = new CheckBox("I agree");
agreeCbx.setAllowIndeterminate(true);

// Add a ChangeListener to the selected and indeterminate properties
agreeCbx.selectedProperty().addListener(this::changed);
agreeCbx.indeterminateProperty().addListener(this::changed);
...
// A change listener to track the selection in the group
public void changed(ObservableValue<? extends Boolean> observable,
 Boolean oldValue,
 Boolean newValue) {
 String state = null;
 if (agreeCbx.isIndeterminate()) {
 state = "Undefined";
 } else if (agreeCbx.isSelected()) {
 state = "Checked";
 } else {
 state = "Unchecked";
 }
 System.out.println(state);
}

The program in Listing 12-8 shows how to use CheckBox controls. Figure 12-11 shows the window that
results from running this code. The program creates two CheckBox controls. The Hungry CheckBox supports
only two states. The I agree CheckBox is configured to support three states. When you change the state for the
I agree CheckBox by clicking it, the Label at the top displays the description of the state.

Table 12-3. Determining the State of a Check Box Based on Its Indeterminate and Selected Properties

indeterminate selected State

false true Checked

false false Unchecked

true true/false Undefined

Chapter 12 ■ Understanding Controls

460

Listing 12-8. Using the CheckBox Control

// CheckBoxTest.java
package com.jdojo.control;

import javafx.application.Application;
import javafx.beans.value.ObservableValue;
import javafx.scene.Scene;
import javafx.scene.control.Label;
import javafx.scene.control.CheckBox;
import javafx.scene.layout.VBox;
import javafx.stage.Stage;

public class CheckBoxTest extends Application {
 Label userSelectionMsg = new Label("Do you agree? No");
 CheckBox agreeCbx;

 public static void main(String[] args) {
 Application.launch(args);
 }

 @Override
 public void start(Stage stage) {
 // Create a CheckBox to support only two states
 CheckBox hungryCbx = new CheckBox("Hungry");

 // Create a CheckBox to support three states
 agreeCbx = new CheckBox("I agree");
 agreeCbx.setAllowIndeterminate(true);

 // Track the state change for the "I agree" CheckBox
 // Text for the Label userSelectionMsg will be updated
 agreeCbx.selectedProperty().addListener(this::changed);
 agreeCbx.indeterminateProperty().addListener(this::changed);

 VBox root = new VBox(userSelectionMsg, hungryCbx, agreeCbx);
 root.setSpacing(20);
 root.setStyle("-fx-padding: 10;" +
 "-fx-border-style: solid inside;" +
 "-fx-border-width: 2;" +
 "-fx-border-insets: 5;" +
 "-fx-border-radius: 5;" +
 "-fx-border-color: blue;");

 Scene scene = new Scene(root, 200, 130);
 stage.setScene(scene);
 stage.setTitle("Using CheckBoxes");
 stage.show();
 }

Chapter 12 ■ Understanding Controls

461

 // A change listener to track the state change in agreeCbx
 public void changed(ObservableValue<? extends Boolean> observable,
 Boolean oldValue,
 Boolean newValue) {
 String msg;
 if (agreeCbx.isIndeterminate()) {
 msg = "Not sure";
 } else if (agreeCbx.isSelected()) {
 msg = "Yes";
 } else {
 msg = "No";
 }
 this.userSelectionMsg.setText("Do you agree? " + msg);
 }
}

Figure 12-11. Two check boxes: one uses two states and one uses three states

The default CSS style-class name for a CheckBox is check-box. The CheckBox class supports three CSS
pseudo-classes: selected, determinate, and indeterminate. The selected pseudo-class applies when the
selected property is true. The determinate pseudo-class applies when the indeterminate property is false.
The indeterminate pseudo-class applies when the indeterminate property is true.

The CheckBox control contains two substructures: box and mark. You can style them to change their
appearance. You can change the background color and border for the box and you can change the color and
shape of the tick mark. Both box and mark are an instance of StackPane. The tick mark is shown giving a
shape to the StackPane. You can change the shape for the mark by supplying a different shape in a CSS. By
changing the background color of the mark, you change the color of the tick mark. The following CSS will
show the box in tan and tick mark in red:

.check-box .box {
 -fx-background-color: tan;
}

.check-box:selected .mark {
 -fx-background-color: red;
}

Chapter 12 ■ Understanding Controls

462

Understanding the Hybrid Button Control
With our definitions of different button types, a SplitMenuButton falls under the hybrid category. It combines
the features of a pop-up menu and a command button. It lets you select an action like a MenuButton control
and execute a command like a Button control. The SplitMenuButton class inherits from the MenuButton class.

A SplitMenuButton is divided into two areas: the action area and the menu-open area. When you
click in the action area, ActionEvent is fired. The registered ActionEvent handlers execute the command.
When the menu-open area is clicked, a menu is shown from which the user will select an action to execute.
Mnemonic parsing for SplitMenuButton is enabled by default.

Figure 12-12 shows a SplitMenuButton in two states. The picture on the left shows it in the collapsed
state. In the picture on the right, it shows the menu items. Notice the vertical line dividing the control in two
halves. The half containing the text Home is the action area. The other half containing the down arrow is the
menu-open area.

Action
area

Menu-open
area

Figure 12-12. A SplitMenuButton in the collapsed and showing states

You can create a SplitMenuButton with menu items or without them using its constructors with the
following code:

// Create an empty SplitMenuItem
SplitMenuButton splitBtn = new SplitMenuButton();
splitBtn.setText("Home"); // Set the text as "Home"

// Create MenuItems
MenuItem jdojo = new MenuItem("JDojo");
MenuItem yahoo = new MenuItem("Yahoo");
MenuItem google = new MenuItem("Google");

// Add menu items to the MenuButton
splitBtn.getItems().addAll(jdojo, yahoo, google);

You need to add an ActionEvent handler to execute an action when the SplitMenuButton is clicked in
the action area:

// Add ActionEvent handler when "Home" is clicked
splitBtn.setOnAction(e -> /* Take some action here */);

The program in Listing 12-9 shows how to use a SplitMenuButton. It adds a SplitMenuButton with the
text Home and three menu items in the top right region of a BorderPane. A WebView is added in the center
region. When you click Home, the www.jdojo.com web page is opened. When you select a web site using the
menu by clicking the down arrow, the corresponding web site is opened. The program is very similar to the
ones you developed earlier using MenuButton and Hyperlink controls.

http://www.jdojo.com/

Chapter 12 ■ Understanding Controls

463

Listing 12-9. Using the SplitMenuButton Control

// SplitMenuButtonTest.java
package com.jdojo.control;

import javafx.application.Application;
import javafx.geometry.Pos;
import javafx.scene.Scene;
import javafx.scene.control.MenuItem;
import javafx.scene.control.SplitMenuButton;
import javafx.scene.layout.BorderPane;
import javafx.scene.web.WebView;
import javafx.stage.Stage;

public class SplitMenuButtonTest extends Application {
 private WebView webview;

 public static void main(String[] args) {
 Application.launch(args);
 }

 @Override
 public void start(Stage stage) {
 // Must create a WebView object from the JavaFX Application Thread
 webview = new WebView();

 MenuItem jdojo = new MenuItem("JDojo");
 jdojo.setOnAction(e -> loadPage("http://www.jdojo.com"));

 MenuItem yahoo = new MenuItem("Yahoo");
 yahoo.setOnAction(e -> loadPage("http://www.yahoo.com"));

 MenuItem google = new MenuItem("Google");
 google.setOnAction(e -> loadPage("http://www.google.com"));

 // Create a SplitMenuButton
 SplitMenuButton splitBtn = new SplitMenuButton();
 splitBtn.setText("Home");

 // Add menu items to the SplitMenuButton
 splitBtn.getItems().addAll(jdojo, yahoo, google);

 // Add ActionEvent handler when "Home" is clicked
 splitBtn.setOnAction(e -> loadPage("http://www.jdojo.com"));

 BorderPane root = new BorderPane();
 root.setTop(splitBtn);
 BorderPane.setAlignment(splitBtn, Pos.TOP_RIGHT);
 root.setCenter(webview);

Chapter 12 ■ Understanding Controls

464

 Scene scene = new Scene(root);
 stage.setScene(scene);
 stage.setTitle("Using SplitMenuButton Controls");
 stage.show();
 }

 public void loadPage(String url) {
 webview.getEngine().load(url);
 }
}

Making Selections from a List of Items
In the previous sections, you have seen how to present users with a list of items, for example, using toggle
buttons and radio buttons. Toggle and radio buttons are easier to use because all options are always visible
to the users. However, they use a lot of space on the screen. Think about using radio buttons to show the
names of all 50 states in the United States to the user. It would take a lot of space. Sometimes none of the
available items in the list is suitable for selection, so you will want to give users a chance to enter a new item
that is not in the list.

JavaFX provides some controls that let users select an item(s) from a list of items. They take less space
compared to buttons. They provide advanced features to customize their appearance and behaviors. I will
discuss the following such controls in subsequent sections:

•	 ChoiceBox

•	 ComboBox

•	 ListView

•	 ColorPicker

•	 DatePicker

ChoiceBox lets users select an item from a small list of predefined items. ComboBox is an advanced
version of ChoiceBox. It has many features, for example, the ability to be editable or change the appearance
of the items in the list, which are not offered in ChoiceBox. ListView provides users an ability to select
multiple items from a list of items. Typically, all or more than one item in a ListView is visible to the user
all the time. ColorPicker lets users select a color from a standard color palette or define a custom color
graphically. DatePicker lets users select a date from a calendar pop-up. Optionally, users can enter a date as
text. ComboBox, ColorPicker, and DatePicker have the same superclass ComboBoxBase.

Understanding the ChoiceBox Control
ChoiceBox is used to let a user select an item from a small list of items. The items may be any type of objects.
ChoiceBox is a parameterized class. The parameter type is the type of the items in its list. If you want to store
mixed types of items in a ChoiceBox, you can use its raw type, as shown in the following code:

// Create a ChoiceBox for any type of items
ChoiceBox seasons = new ChoiceBox();

// Create a ChoiceBox for String items
ChoiceBox<String> seasons = new ChoiceBox<String>();

Chapter 12 ■ Understanding Controls

465

You can specify the list items while creating a ChoiceBox with the following code:

ObservableList<String> seasonList = FXCollections.<String>observableArrayList(
 "Spring", "Summer", "Fall", "Winter");
ChoiceBox<String> seasons = new ChoiceBox<>(seasonList);

After you create a ChoiceBox, you can add items to its list of items using the items property, which is
of the ObjectProperty<ObservableList<T>> type in which T is the type parameter for the ChoiceBox.
The following code will accomplish this:

ChoiceBox<String> seasons = new ChoiceBox<>();
seasons.getItems().addAll("Spring", "Summer", "Fall", "Winter");

Figure 12-13 shows a choice box in four different states. It has four names of seasons in the list of items.
The first picture (labeled #1) shows it in its initial state when there is no selection. The user can open the list
of items using the mouse or the keyboard. Clicking anywhere inside the control opens the list of items in a
pop-up window, as shown in the picture labeled #2. Pressing the down arrow key when the control has focus
also opens the list of items. You can select an item from the list by clicking it or using the up/down arrow
and the Enter key. When you select an item, the pop-up window showing the items list is collapsed and
the selected item is shown in the control, as shown in the picture labeled #3. The picture labeled #4 shows
the control when an item is selected (Spring in this case) and the list items are shown. The pop-up window
displays a check mark with the item already selected in the control. Table 12-4 lists the properties declared in
the ChoiceBox class.

Figure 12-13. A choice box in different states

Chapter 12 ■ Understanding Controls

466

Tip ■ You are not limited to showing the items list using the mouse or keyboard. You can show and hide the
list programmatically using the show() and hide() methods, respectively.

The value property of the ChoiceBox stores the selected item in the control. Its type is
ObjectProperty<T>, where T is the type parameter for the control. If the user has not selected an item, its
value is null. The following snippet of code sets the value property:

// Create a ChoiceBox for String items
ChoiceBox<String> seasons = new ChoiceBox<String>();
seasons.getItems().addAll("Spring", "Summer", "Fall", "Winter");

// Get the selected value
String selectedValue = seasons.getValue();

// Set a new value
seasons.setValue("Fall");

When you set a new value using the setValue() method, the ChoiceBox selects the specified value
in the control if the value exists in the list of items. It is possible to set a value that does not exist in the list
of items. In that case, the value property contains the newly set item, but the control does not show it. The
control keeps showing the previously selected item, if any. When the new item is later added to the list of
items, the control shows the item set in the value property.

The ChoiceBox needs to track the selected item and its index in the list of items. It uses a separate
object, called the selection model, for this purpose. The ChoiceBox class contains a selectionModel property
to store the item selection details. ChoiceBox uses an object of the SingleSelectionModel class as its

Table 12-4. Properties Declared in the ChoiceBox Class

Property Type Description

converter ObjectProperty
<StringConverter<T>>

It serves as a converter object whose toString()
method is called to get the string representation of
the items in the list.

items ObjectProperty
<ObservableList<T>>

It is the list of choices to display in the ChoiceBox.

selectionModel ObjectProperty
<SingleSelectionModel<T>>

It serves as a selection model that keeps track of the
selections in a ChoiceBox.

showing ReadOnlyBooleanProperty Its true value indicates that the control is showing the
list of choices to the user. Its false value indicates that
the list of choices is collapsed.

value ObjectProperty<T> It is the selected item in the ChoiceBox.

Chapter 12 ■ Understanding Controls

467

selection model, but you can use your own selection model. The default selection model works in almost all
cases. The selection model provides you selection-related functionality:

It lets you select an item using the index of the item in the list.•	

It lets you select the first, next, previous, or last item in the list.•	

It lets you clear the selection.•	

Its •	 selectedIndex and selectedItem properties track the index and value of the
selected item. You can add a ChangeListener to these properties to handle a change
in selection in a ChoiceBox. When no item is selected, the selected index is -1 and the
selected item is null.

The following snippet of code forces a value in a ChoiceBox by selecting the first item in the list by default:

ChoiceBox<String> seasons = new ChoiceBox<>();
seasons.getItems().addAll("Spring", "Summer", "Fall", "Winter", "Fall");

// Select the first item in the list
seasons.getSelectionModel().selectFirst();

Use the selectNext() method of the selection model to select the next item from the list. Calling the
selectNext() method when the last item is already selected has no effect. Use the selectPrevious() and
selectLast() methods to select the previous and the last item in the list, respectively. The select(int index)
and select(T item) methods select an item using the index and value of the item, respectively. Note that
you can also use the setValue() method of the ChoiceBox to select an item from the list by its value.
The clearSelection() method of the selection model clears the current selection, returning the ChoiceBox
to a state as if no item had been selected.

The program in Listing 12-10 displays a window as shown in Figure 12-14. It uses a ChoiceBox with a
list of four seasons. By default, the program selects the first season from the list. The application forces the
user to select one season name by selecting one by default. It adds ChangeListeners to the selectedIndex
and selectedItem properties of the selection model. They print the details of the selection change on the
standard output. The current selection is shown in a Label control whose text property is bound to the
value property of the ChoiceBox. Select a different item from the list and watch the standard output and the
window for the details.

Listing 12-10. Using ChoiceBox with a Preselected Item

// ChoiceBoxTest.java
package com.jdojo.control;

import javafx.application.Application;
import javafx.beans.value.ObservableValue;
import javafx.scene.Scene;
import javafx.scene.control.ChoiceBox;
import javafx.scene.control.Label;
import javafx.scene.layout.GridPane;
import javafx.stage.Stage;

public class ChoiceBoxTest extends Application {
 public static void main(String[] args) {
 Application.launch(args);
 }

Chapter 12 ■ Understanding Controls

468

 @Override
 public void start(Stage stage) {
 Label seasonLbl = new Label("Select a Season:");
 ChoiceBox<String> seasons = new ChoiceBox<>();
 seasons.getItems().addAll("Spring", "Summer", "Fall", "Winter");

 // Select the first season from the list
 seasons.getSelectionModel().selectFirst();

 // Add ChangeListeners to track change in selected index and item. Only
 // one listener is necessary if you want to track change in selection
 seasons.getSelectionModel().selectedItemProperty()
 .addListener(this::itemChanged);
 seasons.getSelectionModel().selectedIndexProperty()
 .addListener(this::indexChanged);

 Label selectionMsgLbl = new Label("Your selection:");
 Label selectedValueLbl = new Label("None");

 // Bind the value property to the text property of the Label
 selectedValueLbl.textProperty().bind(seasons.valueProperty());

 // Display controls in a GridPane
 GridPane root = new GridPane();
 root.setVgap(10);
 root.setHgap(10);
 root.addRow(0, seasonLbl, seasons);
 root.addRow(1, selectionMsgLbl, selectedValueLbl);
 root.setStyle("-fx-padding: 10;" +
 "-fx-border-style: solid inside;" +
 "-fx-border-width: 2;" +
 "-fx-border-insets: 5;" +
 "-fx-border-radius: 5;" +
 "-fx-border-color: blue;");

 Scene scene = new Scene(root);
 stage.setScene(scene);
 stage.setTitle("Using ChoiceBox Controls");
 stage.show();
 }

 // A change listener to track the change in selected item
 public void itemChanged(ObservableValue<? extends String> observable,
 String oldValue,
 String newValue) {
 System.out.println("Itemchanged: old = " + oldValue + ",
 new = " + newValue);
 }

Chapter 12 ■ Understanding Controls

469

 // A change listener to track the change in selected index
 public void indexChanged(ObservableValue<? extends Number> observable,
 Number oldValue,
 Number newValue) {
 System.out.println("Indexchanged: old = " + oldValue + ", new = " + newValue);
 }
}

Figure 12-15. A choice box showing four Person objects as its list of items

Figure 12-14. A choice box with a preselected item

Using Domain Objects in ChoiceBox
In the previous example, you used String objects as items in the choice box. You can use any object type as
items. ChoiceBox calls the toString() method of every item and displays the returned value in the pop-up
list. The following snippet of code creates a choice box and adds four Person objects as its items. Figure 12-15
shows the choice box in the showing state. Notice the items are displayed using the String object returned
from toString() method of the Person class.

import com.jdojo.mvc.model.Person;
import javafx.scene.control.ChoiceBox;
...
ChoiceBox<Person> persons = new ChoiceBox<>();
persons.getItems().addAll(new Person("John", "Jacobs", null),
 new Person("Donna", "Duncan", null),
 new Person("Layne", "Estes", null),
 new Person("Mason", "Boyd", null));

Chapter 12 ■ Understanding Controls

470

Typically, the toString() method of an object returns a String that represents the state of the object.
It is not meant to provide a customized string representation of the object to be displayed in a choice box.
The ChoiceBox class contains a converter property. It is an ObjectProperty of the StringConverter<T>
type. A StringConverter<T> object acts as a converter from the object type T to a string and vice versa.
The class is declared abstract, as in the following snippet of code:

public abstract class StringConverter<T> {
 public abstract String toString(T object);
 public abstract T fromString(String string);
}

The toString(T object) method converts the object of type T to a string. The fromString(String
string) method converts a string to a T object.

By default, the converter property in a choice box is null. If it is set, the toString(T object)
method of the converter is called to get the list of items instead of the toString() method of the class of
the item. The PersonStringConverter class shown in Listing 12-11 can act as a converter in a choice box.
Notice that you are treating the argument string in the fromString() method as the name of a person
and trying to construct a Person object from it. You do not need to implement the fromString() method
for a choice box. It will be used in a ComboBox, which I will discuss next. The ChoiceBox will use only the
toString(Person p) method.

Listing 12-11. A Person to String Converter

// PersonStringConverter.java
package com.jdojo.control;

import com.jdojo.mvc.model.Person;
import javafx.util.StringConverter;

public class PersonStringConverter extends StringConverter<Person> {
 @Override
 public String toString(Person p) {
 return p == null? null : p.getLastName() + ", " + p.getFirstName();
 }

 @Override
 public Person fromString(String string) {
 Person p = null;
 if (string == null) {
 return p;
 }

 int commaIndex = string.indexOf(",");
 if (commaIndex == -1) {
 // Treat the string as first name
 p = new Person(string, null, null);
 } else {

Chapter 12 ■ Understanding Controls

471

 // Ignoring string bounds check for brevity
 String firstName = string.substring(commaIndex + 2);
 String lastName = string.substring(0, commaIndex);
 p = new Person(firstName, lastName, null);
 }

 return p;
 }
}

The following snippet of code uses a converter in a ChoiceBox to convert Person objects in its list of
items to strings. Figure 12-16 shows the choice box in the showing state.

import com.jdojo.mvc.model.Person;
import javafx.scene.control.ChoiceBox;
...
ChoiceBox<Person> persons = new ChoiceBox<>();

// Set a converter to convert a Person object to a String object
persons.setConverter(new PersonStringConverter());

// Add five person objects to the ChoiceBox
persons.getItems().addAll(new Person("John", "Jacobs", null),
 new Person("Donna", "Duncan", null),
 new Person("Layne", "Estes", null),
 new Person("Mason", "Boyd", null));

Figure 12-16. Person objects using a converter in a choice box

Allowing Nulls in ChoiceBox
Sometimes a choice box may allow the user to select null as a valid choice. This can be achieved by using
null as an item in the list of choices, as shown in the following code:

ChoiceBox<String> seasons = new ChoiceBox<>();
seasons.getItems().addAll(null, "Spring", "Summer", "Fall", "Winter");

The above snippet of code produces a choice box as shown in Figure 12-17. Notice that the null item is
shown as an empty space.

Chapter 12 ■ Understanding Controls

472

It is often required that the null choice be shown as a custom string, for example, "[None]". This can
be accomplished using a converter. In the previous section, you used a converter to customize the choices
for Person objects. Here you will use the converter to customize the choice item for null. You can do both
in one converter as well. The following snippet of code uses a converter with a ChoiceBox to convert a null
choice as "[None]". Figure 12-18 shows the resulting choice box.

ChoiceBox<String> seasons = new ChoiceBox<>();
seasons.getItems().addAll(null, "Spring", "Summer", "Fall", "Winter");

// Use a converter to convert null to "[None]"
seasons.setConverter(new StringConverter<String>() {
 @Override
 public String toString(String string) {
 return (string == null) ? "[None]" : string;
 }

 @Override
 public String fromString(String string) {
 return string;
 }
});

Figure 12-17. Null as a choice in a choice box

Chapter 12 ■ Understanding Controls

473

Using Separators in ChoiceBox
Sometimes you may want to separate choices into separate groups. Suppose you want to show fruits and
cooked items in a breakfast menu, and you want to separate one from the other. You would use an instance
of the Separator class to achieve this. It appears as a horizontal line in the list of choices. A Separator is not
selectable. The following snippet of code creates a choice box with one of its items as a Separator.
Figure 12-19 shows the choice box in the showing state.

ChoiceBox breakfasts = new ChoiceBox();
breakfasts.getItems().addAll("Apple", "Banana", "Strawberry",
 new Separator(),
 "Apple Pie", "Donut", "Hash Brown");

Figure 12-19. A choice box using a separator

Figure 12-18. A null choice in a choice box converted as "[None]"

Chapter 12 ■ Understanding Controls

474

Styling a ChoiceBox with CSS
The default CSS style-class name for a ChoiceBox is choice-box. The ChoiceBox class supports a showing
CSS pseudo-class, which applies when the showing property is true.

The ChoiceBox control contains two substructures: open-button and arrow. You can style them to
change their appearance. Both are instances of StackPane. ChoiceBox shows the selected item in a Label.
The list of choices are shown in a ContextMenu whose ID is set to choice-box-popup-menu. Each choice is
displayed in a menu item whose IDs are set to choice-box-menu-item. The following styles customize the
ChoiceBox control. Currently, there is no way to customize the pop-up menu for an individual choice box.
The style will affect all instances of ChoiceBox control at the level (scene or layout pane) at which it is set.

/* Set the text color and font size for the selected item in the control */
.choice-box .label {
 -fx-text-fill: blue;
 -fx-font-size: 8pt;
}

/* Set the text color and text font size for choices in the popup list */
#choice-box-menu-item * {
 -fx-text-fill: blue;
 -fx-font-size: 8pt;
}

/* Set background color of the arrow */
.choice-box .arrow {
 -fx-background-color: blue;
}

/* Set the background color for the open-button area */
.choice-box .open-button {
 -fx-background-color: yellow;
}

/* Change the background color of the popup */
#choice-box-popup-menu {
 -fx-background-color: yellow;
}

Tip ■ there is a bug in applying the styles to the ChoiceBox pop-up. styles are not effective until the pop-up
is opened twice.

Understanding the ComboBox Control
ComboBox is used to let a user select an item from a list of items. You can think of ComboBox as an advanced
version of ChoiceBox. ComboBox is highly customizable. The ComboBox class inherits from ComboBoxBase
class, which provides the common functionality for all ComboBox-like controls, such as ComboBox,
ColorPicker, and DatePicker. If you want to create a custom control that will allow users to select an item
from a pop-up list, you need to inherit your control from the ComboBoxBase class.

Chapter 12 ■ Understanding Controls

475

The items list in a ComboBox may comprise any type of objects. ComboBox is a parameterized class.
The parameter type is the type of the items in the list. If you want to store mixed types of items in a ComboBox,
you can use its raw type, as in the following code:

// Create a ComboBox for any type of items
ComboBox seasons = new ComboBox();

// Create a ComboBox for String items
ComboBox<String> seasons = new ComboBox<String>();

You can specify the list items while creating a ComboBox, as in the following code:

ObservableList<String> seasonList = FXCollections.<String>observableArrayList(
 "Spring", "Summer", "Fall", "Winter");
ComboBox<String> seasons = new ComboBox<>(seasonList);

After you create a combo box, you can add items to its list of items using the items property, which is
of the ObjectProperty<ObservableList<T>> type, in which T is the type parameter for the combo box, as in
the following code:

ComboBox<String> seasons = new ComboBox<>();
seasons.getItems().addAll("Spring", "Summer", "Fall", "Winter");

Like ChoiceBox, ComboBox needs to track the selected item and its index in the list of items. It uses a
separate object, called selection model, for this purpose. The ComboBox class contains a selectionModel
property to store the item selection details. ComboBox uses an object of the SingleSelectionModel class
as its selection model. The selection model lets you select an item from the list of items and lets you add
ChangeListeners to track changes in index and item selections. Please refer to the section “Understanding
the ChoiceBox Control” for more details on using a selection model.

Unlike ChoiceBox, ComboBox can be editable. Its editable property specifies whether or not it is
editable. By default, it is not editable. When it is editable, it uses a TextField control to show the selected or
entered item. The editor property of the ComboBox class stores the reference of the TextField and it is null
if the combo box is not editable, as shown in the following code:

ComboBox<String> breakfasts = new ComboBox<>();

// Add some items to choose from
breakfasts.getItems().addAll("Apple", "Banana", "Strawberry");

// By making the control editable, let users enter an item
breakfasts.setEditable(true);

ComboBox has a value property that stores the currently selected or entered value. Note that when a user
enters a value in an editable combo box, the entered string is converted to the item type T of the combo box.
If the item type is not a string, a StringConverter<T> is needed to convert the String value to type T. I will
present an example of this shortly.

You can set a prompt text for a combo box that is displayed when the control is editable, it does not have
focus, and its value property is null. The prompt text is stored in the promptText property, which is of the
StringProperty type, as in the following code:

breakfasts.setPromptText("Select/Enter an item"); // Set a prompt text

Chapter 12 ■ Understanding Controls

476

The ComboBox class contains a placeholder property, which stores a Node reference. When the items
list is empty or null, the placeholder node is shown in the pop-up area. The following snippet of code sets a
Label as a placeholder:

Label placeHolder = new Label("List is empty.\nPlease enter an item");
breakfasts.setPlaceholder(placeHolder);

The program in Listing 12-12 creates two ComboBox controls: seasons and breakfasts. The combo
box having the list of seasons is not editable. The combo box having the list of breakfast items is editable.
Figure 12-20 shows the screenshot when the user selected a season and entered a breakfast item, Donut,
which is not in the list of breakfast items. A Label control displays the user selection. When you enter a new
value in the breakfast combo box, you need to change the focus, press the Enter key, or open the pop-up list
to refresh the message Label.

Listing 12-12. Using ComboBox Controls

// ComboBoxTest.java
package com.jdojo.control;

import javafx.application.Application;
import javafx.beans.property.SimpleStringProperty;
import javafx.beans.property.StringProperty;
import javafx.scene.Scene;
import javafx.scene.control.ComboBox;
import javafx.scene.control.Label;
import javafx.scene.layout.HBox;
import javafx.scene.layout.VBox;
import javafx.stage.Stage;

public class ComboBoxTest extends Application {
 public static void main(String[] args) {
 Application.launch(args);
 }

 @Override
 public void start(Stage stage) {
 Label seasonsLbl = new Label("Season:");
 ComboBox<String> seasons = new ComboBox<>();
 seasons.getItems().addAll("Spring", "Summer", "Fall", "Winter");

 Label breakfastsLbl = new Label("Breakfast:");
 ComboBox<String> breakfasts = new ComboBox<>();
 breakfasts.getItems().addAll("Apple", "Banana", "Strawberry");
 breakfasts.setEditable(true);

 // Show the user's selection in a Label
 Label selectionLbl = new Label();
 StringProperty str = new SimpleStringProperty("Your selection: ");
 selectionLbl.textProperty().bind(str.concat("Season=")
 .concat(seasons.valueProperty())
 .concat(", Breakfast=")
 .concat(breakfasts.valueProperty()));

Chapter 12 ■ Understanding Controls

477

 HBox row1 = new HBox(seasonsLbl, seasons, breakfastsLbl, breakfasts);
 row1.setSpacing(10);
 VBox root = new VBox(row1, selectionLbl);
 root.setSpacing(10);
 root.setStyle("-fx-padding: 10;" +
 "-fx-border-style: solid inside;" +
 "-fx-border-width: 2;" +
 "-fx-border-insets: 5;" +
 "-fx-border-radius: 5;" +
 "-fx-border-color: blue;");

 Scene scene = new Scene(root);
 stage.setScene(scene);
 stage.setTitle("Using ComboBox Controls");
 stage.show();
 }
}

Figure 12-20. Two ComboBox controls: one noneditable and one editable

Detecting Value Change in ComboBox
Detecting an item change in a noneditable combo box is easily performed by adding a ChangeListener to
the selectedIndex or selectedItem property of its selection model. Please refer to the “Understanding the
ChoiceBox Control” section for more details.

You can still use a ChangeListener for the selectedItem property to detect when the value in an
editable combo box changes by selecting from the items list or entering a new value. When you enter a new
value, the selectedIndex property does not change because the entered value does not exist in the items list.

Sometimes you want to perform an action when the value in a combo box changes. You can do so by
adding an ActionEvent handler, which is fired when the value changes by any means. You would do this by
setting it programmatically, selecting from items list, or entering a new value, as in the following code:

ComboBox<String> list = new ComboBox<>();
list.setOnAction(e -> System.out.println("Value changed"));

Using Domain Objects in Editable ComboBox
In an editable ComboBox<T> where T is something other than String, you must set the converter property to
a valid StringConverter<T>. Its toString(T object) method is used to convert the item object to a string
to show it in the pop-up list. Its fromString(String s) method is called to convert the entered string to an
item object. The value property is updated with the item object converted from the entered string. If the
entered string cannot be converted to an item object, the value property is not updated.

Chapter 12 ■ Understanding Controls

478

The program in Listing 12-13 shows how to use a StringConverter in a combo box, which uses domain
objects in its items list. The ComboBox uses Person objects. The PersonStringConverter class, as shown in
Listing 12-11, is used as the StringConverter. You can enter a name in the format LastName, FirstName or
FirstName in the ComboBox and press the Enter key. The entered name will be converted to a Person object
and shown in the Label. The program ignores the error checking in name formatting. For example, if you
enter Kishori as the name, it displays null, Kishori in the Label. The program adds a ChangeListener to the
selectedItem and selectedIndex properties of the selection model to track the selection change. Notice that
when you enter a string in the ComboBox, a change in selectedIndex property is not reported. An ActionEvent
handler for the ComboBox is used to keep the values in the combo box and the text in the Label in sync.

Listing 12-13. Using a StringConverter in a ComboBox

// ComboBoxWithConverter.java
package com.jdojo.control;

import com.jdojo.mvc.model.Person;
import javafx.application.Application;
import javafx.beans.value.ObservableValue;
import javafx.scene.Scene;
import javafx.scene.control.ComboBox;
import javafx.scene.control.Label;
import javafx.scene.layout.GridPane;
import javafx.stage.Stage;

public class ComboBoxWithConverter extends Application {
 Label userSelectionMsgLbl = new Label("Your selection:");
 Label userSelectionDataLbl = new Label("");

 public static void main(String[] args) {
 Application.launch(args);
 }

 @Override
 public void start(Stage stage) {
 Label personLbl = new Label("Select/Enter Person:");
 ComboBox<Person> persons = new ComboBox<>();
 persons.setEditable(true);
 persons.setConverter(new PersonStringConverter());
 persons.getItems().addAll(new Person("John", "Jacobs", null),
 new Person("Donna", "Duncan", null),
 new Person("Layne", "Estes", null),
 new Person("Mason", "Boyd", null));

 // Add ChangeListeners to the selectedItem and selectedIndex
 // properties of the selection model
 persons.getSelectionModel().selectedItemProperty()
 .addListener(this::personChanged);
 persons.getSelectionModel().selectedIndexProperty()
 .addListener(this::indexChanged);

 // Update the message Label when the value changes
 persons.setOnAction(e -> valueChanged(persons));

Chapter 12 ■ Understanding Controls

479

 GridPane root = new GridPane();
 root.addRow(0, personLbl, persons);
 root.addRow(1, userSelectionMsgLbl, userSelectionDataLbl);
 root.setStyle("-fx-padding: 10;" +
 "-fx-border-style: solid inside;" +
 "-fx-border-width: 2;" +
 "-fx-border-insets: 5;" +
 "-fx-border-radius: 5;" +
 "-fx-border-color: blue;");

 Scene scene = new Scene(root);
 stage.setScene(scene);
 stage.setTitle("Using StringConverter in ComboBox");
 stage.show();
 }

 public void valueChanged(ComboBox<Person> list) {
 Person p = list.getValue();
 String name = p.getLastName() + ", " + p.getFirstName();
 userSelectionDataLbl.setText(name);
 }

 // A change listener to track the change in item selection
 public void personChanged(ObservableValue<? extends Person> observable,
 Person oldValue,
 Person newValue) {
 System.out.println("Itemchanged: old = " + oldValue +
 ", new = " + newValue);
 }

 // A change listener to track the change in index selection
 public void indexChanged(ObservableValue<? extends Number> observable,
 Number oldValue,
 Number newValue) {
 System.out.println("Indexchanged: old = " + oldValue + ",

new = " + newValue);
 }
}

Customizing the Height of Pop-up List
By default, ComboBox shows only ten items in the pop-up list. If the number of items is more than ten,
the pop-up list shows a scrollbar. If the number of items is less than ten, the height of the pop-up list is
shortened to show only the available items. The visibleRowCount property of the ComboBox controls how
many rows are visible in the pop-up list, as in the following code:

ComboBox<String> states = new ComboBox<>();
...
// Show five rows in the popup list
states.setVisibleRowCount(5);

Chapter 12 ■ Understanding Controls

480

Using Nodes as Items in ComboBox
A combo box has two areas:

Button area to display the selected item•	

Pop-up area to display the items list•	

Both areas use ListCells to display items. A ListCell is a Cell. A Cell is a Labeled control to display
some form of content that may have text, a graphic, or both. The pop-up area is a ListView that contains an
instance of ListCell for each item in the list. I will discuss ListView in the next section.

Elements in the items list of a combo box can be of any type, including Node type. It is not recommended
to add instances of the Node class directly to the items list. When nodes are used as items, they are added as
the graphic to the cells. Scene graphics need to follow the rule that a node cannot be displayed in two places
at the same time. That is, a node must be inside one container at a time. When a node from the items list is
selected, the node is removed from the pop-up ListView cell and added to the button area. When the pop-up
is displayed again, the selected node is not shown in the list as it is already showing in the button area. To
avoid this inconsistency in display, avoid using nodes directly as items in a combo box.

Figure 12-21 show three views of a combo box created using the following snippet of code. Notice that
the code adds three instances of HBox, which is a node to the items list. The figure labeled #1 shows the
pop-up list when it is opened for the first time, and you see all three items correctly. The figure labeled
#2 shows after the second item is selected and you see the correct item in the button area. At this time, the
second item in the list, an HBox with a rectangle, was removed from the cell in the ListView and added to the
cell in the button area. The figure labeled #3 shows the pop-up list when it is open for the second time. At
this time, the second item is missing from the list because it is already selected. This problem was discussed
in the previous paragraph.

Label shapeLbl = new Label("Shape:");
ComboBox<HBox> shapes = new ComboBox<>();
shapes.getItems().addAll(new HBox(new Line(0, 10, 20, 10), new Label("Line")),
 new HBox(new Rectangle(0, 0, 20, 20), new Label("Rectangle")),
 new HBox(new Circle(20, 20, 10), new Label("Circle")));

Figure 12-21. Three views of a combo box with nodes in the items list

You can fix the display issue that occurs when you use nodes as items. The solution is to add nonnode
items in the list and supply a cell factory to create the desired node inside the cell factory. You need to make
sure that the nonnode items will provide enough pieces of information to create the node you wanted to
insert. The next section explains how to use a cell factory.

Chapter 12 ■ Understanding Controls

481

Using a Cell Factory in ComboBox
The ComboBox class contains a cellFactory property, which is declared as follows:

public ObjectProperty<Callback<ListView<T>, ListCell<T>>> cellFactory;

Callback is an interface in the javafx.util package. It has a call() method that takes an argument of
type P and returns and object of type R, as in the following code:

public interface Callback<P,R> {
 public R call(P param);
}

The declaration of the cellFactory property states that it stores a Callback object whose call()
method receives a ListView<T> and returns a ListCell<T>. Inside the call() method, you create an
instance of the ListCell<T> class and override the updateItem(T item, boolean empty) method of the
Cell class to populate the cell.

Let’s use a cell factory to display nodes in the button area and the pop-up area of a combo box.
Listing 12-14 will be our starting point. It declares a StringShapeCell class, which inherits from the
ListCell<String> class. You need to update its content in its updateItem() method, which is automatically
called. The method receives the item, which in this case is String, and a boolean argument indicating
whether the cell is empty. Inside the method, you call the method in the superclass first. You derive a
shape from the string argument and set the text and graphic in the cell. The shape is set as the graphic.
The getShape() method returns a Shape from a String.

Listing 12-14. A Custom ListCell that Displays a Shape and Its Name

// StringShapeCell.java
package com.jdojo.control;

import javafx.scene.control.ListCell;
import javafx.scene.shape.Circle;
import javafx.scene.shape.Line;
import javafx.scene.shape.Rectangle;
import javafx.scene.shape.Shape;

public class StringShapeCell extends ListCell<String> {
 @Override
 public void updateItem(String item, boolean empty) {
 // Need to call the super first
 super.updateItem(item, empty);

 // Set the text and graphic for the cell
 if (empty) {
 setText(null);
 setGraphic(null);
 } else {
 setText(item);
 Shape shape = this.getShape(item);
 setGraphic(shape);
 }
 }

Chapter 12 ■ Understanding Controls

482

 public Shape getShape(String shapeType) {
 Shape shape = null;
 switch (shapeType.toLowerCase()) {
 case "line":
 shape = new Line(0, 10, 20, 10);
 break;
 case "rectangle":
 shape = new Rectangle(0, 0, 20, 20);
 break;
 case "circle":
 shape = new Circle(20, 20, 10);
 break;
 default:
 shape = null;
 }
 return shape;
 }
}

The next step is to create a Callback class, as shown in Listing 12-15. The program in this listing is
very simple. Its call() method returns an object of the StringShapeCell class. The class will act as a cell
factory for ComboBox.

Listing 12-15. A Callback Implementation for Callback<ListView<String>, ListCell<String>>

// ShapeCellFactory.java
package com.jdojo.control;

import javafx.scene.control.ListCell;
import javafx.scene.control.ListView;
import javafx.util.Callback;

public class ShapeCellFactory implements Callback<ListView<String>, ListCell<String>> {
 @Override
 public ListCell<String> call(ListView<String> listview) {
 return new StringShapeCell();
 }
}

The program in Listing 12-16 shows how to use a custom cell factory and button cell in a combo
box. The program is very simple. It creates a combo box with three String items. It sets an object of the
ShapeCellFactory as the cell factory, as in the following code:

// Set the cellFactory property
shapes.setCellFactory(new ShapeCellFactory());

Setting the cell factory is not enough in this case. It will only resolve the issue of displaying the shapes in
the pop-up area. When you select a shape, it will display the String item, not the shape, in the button area.
To make sure, you see the same item in the list for selection and after you select one, you need to set the
buttonCell property, as in the following code:

// Set the buttonCell property
shapes.setButtonCell(new StringShapeCell());

Chapter 12 ■ Understanding Controls

483

Notice the use of the StringShapeCell class in the buttonCell property and ShapeCellFactory class.
Run the program in Listing 12-16. You should be able to select a shape from the list and the shape

should be displayed in the combo box correctly. Figure 12-22 shows three views of the combo box.

Listing 12-16. Using a Cell Factory in a Combo Box

// ComboBoxCellFactory.java
package com.jdojo.control;

import javafx.application.Application;
import javafx.scene.Scene;
import javafx.scene.control.ComboBox;
import javafx.scene.control.Label;
import javafx.scene.layout.HBox;
import javafx.stage.Stage;

public class ComboBoxCellFactory extends Application {
 public static void main(String[] args) {
 Application.launch(args);
 }

 @Override
 public void start(Stage stage) {
 Label shapeLbl = new Label("Shape:");
 ComboBox<String> shapes = new ComboBox<>();
 shapes.getItems().addAll("Line", "Rectangle", "Circle");

 // Set the cellFactory property
 shapes.setCellFactory(new ShapeCellFactory());

 // Set the buttonCell property
 shapes.setButtonCell(new StringShapeCell());

 HBox root = new HBox(shapeLbl, shapes);
 root.setStyle("-fx-padding: 10;" +
 "-fx-border-style: solid inside;" +
 "-fx-border-width: 2;" +
 "-fx-border-insets: 5;" +
 "-fx-border-radius: 5;" +
 "-fx-border-color: blue;");

 Scene scene = new Scene(root);
 stage.setScene(scene);
 stage.setTitle("Using CellFactory in ComboBox");
 stage.show();
 }
}

Chapter 12 ■ Understanding Controls

484

Using a custom cell factory and button cell in a combo box gives you immense power to customize the
look of the pop-up list and the selected item. If using a cell factory looks hard or confusing to you, keep in
mind that a cell is a Labeled control and you are setting the text and graphic in that Labeled control inside
the updateItem() method. The Callback interface comes into play because the ComboBox control needs to
give you a chance to create a cell when it needs it. Otherwise, you would have to know how many cells to
create and when to create them. There is nothing more to it.

The ComboBoxBase class provides four properties that can also be used with ComboBox:

•	 onShowing

•	 onShown

•	 onHiding

•	 onHidden

These properties are of the type ObjectProperty<EventHandler<Event>>. You can set an event handler
to these properties, which will be called before the pop-up list is shown, after it is shown, before it is hidden,
and after it is hidden. For example, the onShowing event handlers are handy when you want to customize the
pop-up list just before it is shown.

Styling ComboBox with CSS
The default CSS style-class name for a ComboBox is combo-box. A combo box contains several CSS
substructures, as shown in Figure 12-23.

Figure 12-22. Three views of a combo box with a cell factory

list-cell

list-cell or text-input

list-view

combo-box-popup

arrow

arrow-button

Figure 12-23. Substructures of a combo box that can be styled separately using CSS

Chapter 12 ■ Understanding Controls

485

The CSS names for the substructure are:

•	 arrow-button

•	 list-cell

•	 text-input

•	 combo-box-popup

An arrow-button contains a substructure called arrow. Both arrow-button and arrow are instances of
StackPane. The list-cell area represents the ListCell used to show the selected item in a noneditable
combo box. The text-input area is the TextField used to show the selected or entered item in an editable
combo box. The combo-box-popup is the Popup control that shows the pop-up list when the button is clicked.
It has two substructures: list-view and list-cell. The list-view is the ListView control that shows the
list of items, and list-cell represents each cell in the ListView. The following CSS styles customize the
appearance of some substructures of ComboBox:

/* The ListCell that shows the selected item in a non-editable ComboBox */
.combo-box .list-cell {
 -fx-background-color: yellow;
}

/* The TextField that shows the selected item in an editable ComboBox */
.combo-box .text-input {
 -fx-background-color: yellow;
}

/* Style the arrow button area */
.combo-box .arrow-button {
 -fx-background-color: lightgray;
}

/* Set the text color in the popup list for ComboBox to blue */
.combo-box-popup .list-view .list-cell {
 -fx-text-fill: blue;
}

Understanding the ListView Control
ListView is used to allow a user to select one item or multiple items from a list of items. Each item in
ListView is represented by an instance of the ListCell class, which can be customized. The items list in a
ListView may contain any type of objects. ListView is a parameterized class. The parameter type is the type
of the items in the list. If you want to store mixed types of items in a ListView, you can use its raw type, as
shown in the following code:

// Create a ListView for any type of items
ListView seasons = new ListView();

// Create a ListView for String items
ListView<String> seasons = new ListView<String>();

Chapter 12 ■ Understanding Controls

486

You can specify the list items while creating a ListView, as in the following code:

ObservableList<String> seasonList = FXCollections.<String>observableArrayList(
 "Spring", "Summer", "Fall", "Winter");
ListView<String> seasons = new ListView<>(seasonList);

After you create a ListView, you can add items to its list of items using the items property, which is of
the ObjectProperty<ObservableList<T>> type in which T is the type parameter for the ListView, as in the
following code:

ListView<String> seasons = new ListView<>();
seasons.getItems().addAll("Spring", "Summer", "Fall", "Winter");

ListView sets its preferred width and height, which are normally not the width and height that you
want for your control. It would have helped developers if the control had provided a property such as
visibleItemCount. Unfortunately, the ListView API does not support such a property. You need to set them
to reasonable values in your code, as follows:

// Set preferred width = 100px and height = 120px
seasons.setPrefSize(100, 120);

If the space needed to display items is larger than what is available, a vertical, a horizontal, or both
scrollbars are automatically added.

The ListView class contains a placeholder property, which stores a Node reference. When the items
list is empty or null, the placeholder node is shown in the list area of the ListView. The following snippet of
code sets a Label as a placeholder:

Label placeHolder = new Label("No seasons available for selection.");
seasons.setPlaceholder(placeHolder);

ListView offers a scrolling feature. Use the scrollTo(int index) or scrollTo(T item) method to
scroll to a specified index or item in the list. The specified index or item is made visible, if it is not already
visible. The ListView class fires a ScrollToEvent when scrolling takes place using the scrollTo() method
or by the user. You can set an event handler using the setOnScrollTo() method to handle scrolling.

Each item in a ListView is displayed using an instance of the ListCell class. In essence, a ListCell is
a labeled control that is capable of displaying text and a graphic. Several subclasses of ListCell exist to give
ListView items a custom look. ListView lets you specify a Callback object as a cell factory, which can create
custom list cells. A ListView does not need to create as many ListCell objects as the number items. It can
have only as many ListCell object as the number of visible items on the screen. As items are scrolled,
it can reuse the ListCell objects to display different items. Figure 12-24 shows a class diagram for
ListCell–related classes.

Chapter 12 ■ Understanding Controls

487

Cells are used as building blocks in different types of controls. For example, ListView, TreeView, and
TableView controls use cells in one form or another to display and edit their data. The Cell class is the
superclass for all cells. You can override its updateItem(T object, boolean empty) and take full control
of how the cell is populated. This method is called automatically by these controls when the item in the cell
needs to be updated. The Cell class declares several useful properties: editable, editing, empty, item, and
selected. When a Cell is empty, which means it is not associated with any data item, its empty property is true.

The IndexedCell class adds an index property, which is the index of the item in the underlying
model. Suppose a ListView uses an ObservableList as a model. The list cell for the second item in the
ObservableList will have index 1 (index starts at 0). The cell index facilitates customization of cells based on
their indices, for example, using different colors for cells at odd and even index cells. When a cell is empty,
its index is -1.

Orientation of a ListView
The items in a ListView may be arranged vertically in a single column (default) or horizontally in a single
row. It is controlled by the orientation property, as shown in the following code:

// Arrange list of seasons horizontally
seasons.setOrientation(Orientation.HORIZONTAL);

Figure 12-25 shows two instances of ListView: one uses vertical orientation and one horizontal orientation.
Notice that the odd and even rows or columns have different background colors. This is the default look of
the ListView. You can change the appearance using a CSS. Please refer to the “Styling ListView with CSS”
section for details.

Figure 12-24. A class diagram for ListCell–related classes

Chapter 12 ■ Understanding Controls

488

Selection Model in ListView
ListView has a selection model that stores the selected state of its items. Its selectionModel property
stores the reference of the selection model. By default, it uses an instance of the MultipleSelectionModel
class. You can use a custom selection model, however, that is rarely needed. The selection model can be
configured to work in two modes:

Single selection mode•	

Multiple selection mode•	

In single selection mode, only one item can be selected at a time. If an item is selected, the previously
selected item is deselected. By default, a ListView supports single selection mode. An item can be selected
using a mouse or a keyboard. You can select an item using a mouse-click. Using a keyboard to select an item
requires that the ListView has focus. You can use the up/down arrow in a vertical ListView and the left/
right arrow in a horizontal ListView to select items.

In multiple selection mode, multiple items can be selected at a time. Using only a mouse lets you select
only one item at a time. Clicking an item selects the item. Clicking an item with the Shift key pressed selects
all contiguous items. Clicking an item with the Ctrl key pressed selects a deselected item and deselects a
selected item. You can use the up/down or left/right arrow key to navigate and the Ctrl key with the spacebar
or Shift key with the spacebar to select multiple items. If you want a ListView to operate in multiple
selection mode, you need to set the selectionMode property of its selection model, as in the following code:

// Use multiple selection mode
seasons.getSelectionModel().setSelectionMode(SelectionMode.MULTIPLE);

// Set it back to single selection mode, which is the default for a ListView
seasons.getSelectionModel().setSelectionMode(SelectionMode.SINGLE);

The MultipleSelectionModel class inherits from the SelectionModel class, which contains
selectedIndex and selectedItem properties.

The selectedIndex property is -1 if there is no selection. In single selection mode, it is the index of
the currently selected item. In multiple selection mode, it is the index of the last selected item. In multiple
selection mode, use the getSelectedIndices() method that returns a read-only ObservableList<Integer>
containing the indices of all selected items. If you are interested in listening for selection change in a
ListView, you can add a ChangeListener to the selectedIndex property or a ListChangeListener to the
ObservableList returned by the getSelectedIndices() method.

The selectedItem property is null if there is no selection. In single selection mode, it is the currently
selected item. In multiple selection mode, it is the last selected item. In multiple selection mode, use
the getSelectedItems() method that returns a read-only ObservableList<T> containing all selected

Vertical orientation

Horizontal orientation

Figure 12-25. Two instances of ListView having the same items but different orientations

Chapter 12 ■ Understanding Controls

489

items. If you are interested in listening for selection change in a ListView, you can add a ChangeListener
to the selectedItem property or a ListChangeListener to the ObservableList<T> returned by the
getSelectedItems() method.

The selection model of ListView contains several methods to select items in different ways:

The •	 selectAll() method selects all items.

The •	 selectFirst() and selectLast() methods select the first item and the last
item, respectively.

The •	 selectIndices(int index, int... indices) method selects items at the
specified indices. Indices outside the valid range are ignored.

The •	 selectRange(int start, int end) method selects all indices from the start
index (inclusive) to the end index (exclusive).

The •	 clearSelection() and clearSelection(int index) methods clear all selection
and the selection at the specified index, respectively.

The program in Listing 12-17 demonstrates how to use the selection model of a ListView for making
selections and listening for selection change events. Figure 12-26 shows the window that results from
running this code. Run the application and use a mouse or buttons on the window to select items in the
ListView. The selection details are displayed at the bottom.

Listing 12-17. Using ListView Selection Model

// ListViewSelectionModel.java
package com.jdojo.control;

import javafx.application.Application;
import javafx.beans.value.ObservableValue;
import javafx.collections.ObservableList;
import javafx.scene.Scene;
import javafx.scene.control.Button;
import javafx.scene.control.Label;
import javafx.scene.control.ListView;
import javafx.scene.control.SelectionMode;
import javafx.scene.layout.GridPane;
import javafx.scene.layout.VBox;
import javafx.stage.Stage;

public class ListViewSelectionModel extends Application {
 private ListView<String> seasons;
 private final Label selectedItemsLbl = new Label("[None]");
 private final Label lastSelectedItemLbl = new Label("[None]");

 public static void main(String[] args) {
 Application.launch(args);
 }

 @Override
 public void start(Stage stage) {
 Label seasonsLbl = new Label("Select Seasons:");
 seasons = new ListView<>();
 seasons.setPrefSize(120, 120);
 seasons.getItems().addAll("Spring", "Summer", "Fall", "Winter");

Chapter 12 ■ Understanding Controls

490

 // Enable multiple selection
 seasons.getSelectionModel().setSelectionMode(SelectionMode.MULTIPLE);

 // Add a selection change listener
 seasons.getSelectionModel()
 .selectedItemProperty()
 .addListener(this::selectionChanged);

 // Add some buttons to assist in selection
 Button selectAllBtn = new Button("Select All");
 selectAllBtn.setOnAction(e -> seasons.getSelectionModel().selectAll());

 Button clearAllBtn = new Button("Clear All");
 clearAllBtn.setOnAction(
 e -> seasons.getSelectionModel().clearSelection());

 Button selectFirstBtn = new Button("Select First");
 selectFirstBtn.setOnAction(
 e -> seasons.getSelectionModel().selectFirst());

 Button selectLastBtn = new Button("Select Last");
 selectLastBtn.setOnAction(e -> seasons.getSelectionModel().selectLast());

 Button selectNextBtn = new Button("Select Next");
 selectNextBtn.setOnAction(e -> seasons.getSelectionModel().selectNext());

 Button selectPreviousBtn = new Button("Select Previous");
 selectPreviousBtn.setOnAction(
 e -> seasons.getSelectionModel().selectPrevious());

 // Let all buttons expand as needed
 selectAllBtn.setMaxWidth(Double.MAX_VALUE);
 clearAllBtn.setMaxWidth(Double.MAX_VALUE);
 selectFirstBtn.setMaxWidth(Double.MAX_VALUE);
 selectLastBtn.setMaxWidth(Double.MAX_VALUE);
 selectNextBtn.setMaxWidth(Double.MAX_VALUE);
 selectPreviousBtn.setMaxWidth(Double.MAX_VALUE);

 // Display controls in a GridPane
 GridPane root = new GridPane();
 root.setHgap(10);
 root.setVgap(5);

 // Add buttons to two VBox objects
 VBox singleSelectionBtns = new VBox(selectFirstBtn, selectNextBtn,
 selectPreviousBtn, selectLastBtn);
 VBox allSelectionBtns = new VBox(selectAllBtn, clearAllBtn);
 root.addColumn(0, seasonsLbl, seasons);
 root.add(singleSelectionBtns, 1, 1, 1, 1);
 root.add(allSelectionBtns, 2, 1, 1, 1);

Chapter 12 ■ Understanding Controls

491

 // Add controls to display the user selection
 Label selectionLbl = new Label("Your selection:");
 root.add(selectionLbl, 0, 2);
 root.add(selectedItemsLbl, 1, 2, 2, 1);

 Label lastSelectionLbl = new Label("Last selection:");
 root.add(lastSelectionLbl, 0, 3);
 root.add(lastSelectedItemLbl, 1, 3, 2, 1);

 root.setStyle("-fx-padding: 10;" +
 "-fx-border-style: solid inside;" +
 "-fx-border-width: 2;" +
 "-fx-border-insets: 5;" +
 "-fx-border-radius: 5;" +
 "-fx-border-color: blue;");

 Scene scene = new Scene(root);
 stage.setScene(scene);
 stage.setTitle("Using ListView Selection Model");
 stage.show();
 }

 // A change listener to track the change in item selection
 public void selectionChanged(ObservableValue<? extends String> observable,
 String oldValue,
 String newValue) {
 String lastItem = (newValue == null)?"[None]":"[" + newValue + "]";
 lastSelectedItemLbl.setText(lastItem);

 ObservableList<String> selectedItems =
 seasons.getSelectionModel().getSelectedItems();
 String selectedValues =
 (selectedItems.isEmpty())?"[None]":selectedItems.toString();
 this.selectedItemsLbl.setText(selectedValues);
 }
}

Figure 12-26. A ListView with several buttons to make selections

Chapter 12 ■ Understanding Controls

492

Using Cell Factory in ListView
Each item in a ListView is displayed in an instance of ListCell, which a Labeled control. Recall that a
Labeled control contains text and a graphic. The ListView class contains a cellFactory property that lets you
use custom cells for its items. The property type is ObjectProperty<Callback<ListView<T>,ListCell<T>>>.
The reference of the ListView is passed to the call() method of the Callback object and it returns an instance
of the ListCell class. In a large ListView, say 1,000 items, the ListCell returned from the cell factory may
be reused. The control needs to create only the number of cells that are visible. Upon scrolling, it may reuse
the cells that went out of the view to display newly visible items. The updateItem() method of the ListCell
receives the reference of the new item.

By default, a ListView calls the toString() method of its items and it displays the string in its cell. In
the updateItem() method of your custom ListCell, you can populate the text and graphic for the cell to
display anything you want in the cell based on the item in that cell.

Tip ■ You used a custom cell factory for the pop-up list of the combo box in the previous section. the pop-up
list in a combo box uses a ListView. therefore, using a custom cell factory in a ListView would be the same
as discussed in the earlier combo box section.

The program in Listing 12-18 shows how to use a custom cell factory to display the formatted names of
Person items. Figure 12-27 shows the resulting window after running the code. The snippet of code in the
program creates and sets a custom cell factory. The updateItem() method of the ListCell formats the name
of the Person object and adds a serial number that is the index of the cell plus one.

Listing 12-18. Using a Custom Cell Factory for ListView

// ListViewDomainObjects.java
package com.jdojo.control;

import com.jdojo.mvc.model.Person;
import javafx.application.Application;
import javafx.scene.Scene;
import javafx.scene.control.Label;
import javafx.scene.control.ListCell;
import javafx.scene.control.ListView;
import javafx.scene.layout.HBox;
import javafx.stage.Stage;
import javafx.util.Callback;

public class ListViewDomainObjects extends Application {
 public static void main(String[] args) {
 Application.launch(args);
 }

 @Override
 public void start(Stage stage) {
 ListView<Person> persons = new ListView<>();
 persons.setPrefSize(150, 120);

Chapter 12 ■ Understanding Controls

493

 persons.getItems().addAll(new Person("John", "Jacobs", null),
 new Person("Donna", "Duncan", null),
 new Person("Layne", "Estes", null),
 new Person("Mason", "Boyd", null));

 // Add a custom cell factory to display formatted names of persons
 persons.setCellFactory(
 new Callback<ListView<Person>,ListCell<Person>>() {
 @Override
 public ListCell<Person> call(ListView<Person> listView) {
 return new ListCell<Person>() {
 @Override
 public void updateItem(Person item, boolean empty) {
 // Must call super
 super.updateItem(item, empty);

 int index = this.getIndex();
 String name = null;

 // Format name
 if (item == null || empty) {
 // No action to perform
 } else {
 name = (index + 1) + ". " +
 item.getLastName() + ", " +
 item.getFirstName();
 }

 this.setText(name);
 setGraphic(null);
 }
 };
 }});

 HBox root = new HBox(new Label("Persons:"), persons);
 root.setSpacing(20);
 root.setStyle("-fx-padding: 10;" +
 "-fx-border-style: solid inside;" +
 "-fx-border-width: 2;" +
 "-fx-border-insets: 5;" +
 "-fx-border-radius: 5;" +
 "-fx-border-color: blue;");

 Scene scene = new Scene(root);
 stage.setScene(scene);
 stage.setTitle("Using ListView Cell Factory");
 stage.show();
 }
}

Chapter 12 ■ Understanding Controls

494

Using Editable ListView
The ListView control offers many customizations, and one of them is its ability to let users edit the items.
You need to set two properties for a ListView before it can be edited:

Set the •	 editable property of the ListView to true.

Set the •	 cellFactory property of the ListView to a cell factory that produces an
editable ListCell.

Select a cell and click to start editing. Alternatively, press the spacebar when a cell has focus to start
editing. If a ListView is editable and has an editable cell, you can also use the edit(int index) method of
the ListView to edit the item in the cell at the specified index.

Tip ■ the ListView class contains a read-only editingIndex property. its value is the index of the item
 being edited. its value is -1 if no item is being edited.

JavaFX provides cell factories that let you edit a ListCell using TextField, ChoiceBox, ComboBox,
and CheckBox. You can create a custom cell factory to edit cells in some other way. Instances of the
TextFieldListCell, ChoiceBoxListCell, ComboBoxListCell, and CheckBoxListCell classes, as list cells in a
ListView, provide editing support. These classes are included in the javafx.scene.control.cell package.

Using a TextField to Edit ListView Items
An instance of the TextFieldListCell is a ListCell that displays an item in a Label when the item is not
being edited and in a TextField when the item is being edited. If you want to edit a domain object to a
ListView, you will need to use a StringConverter to facilitate the two-way conversion. The forListView()
static method of the TextFieldListCell class returns a cell factory configured to be used with String items.
The following snippet of code shows how to set a TextField as the cell editor for a ListView:

ListView<String> breakfasts = new ListView<>();
...
breakfasts.setEditable(true);

Figure 12-27. A ListView displaying Person objects in its list of items using a custom cell factory

Chapter 12 ■ Understanding Controls

495

// Set a TextField as the editor
Callback<ListView<String>, ListCell<String>> cellFactory =
 TextFieldListCell.forListView();
breakfasts.setCellFactory(cellFactory);

The following snippet of code shows how to set a TextField as the cell editor with a converter for a
ListView that contains Person objects. The converter used in the code was shown in Listing 12-11. The
converter object will be used to convert a Person object to a String for displaying and a String to a Person
object after editing.

ListView<Person> persons = new ListView<>();
...
persons.setEditable(true);

// Set a TextField as the editor.
// Need to use a StringConverter for Person objects.
StringConverter<Person> converter = new PersonStringConverter();
Callback<ListView<Person>, ListCell<Person>> cellFactory
 = TextFieldListCell.forListView(converter);
persons.setCellFactory(cellFactory);

The program in Listing 12-19 shows how to edit a ListView item in a TextField. It uses a ListView of
domain objects (Person) and a ListView of String objects. After running the program, double-click on any
items in the two ListViews to start editing. When you are done editing, press the Enter key to commit the
changes.

Listing 12-19. Using an Editable ListView

// ListViewEditing.java
package com.jdojo.control;

import com.jdojo.mvc.model.Person;
import javafx.application.Application;
import javafx.scene.Scene;
import javafx.scene.control.Label;
import javafx.scene.control.ListCell;
import javafx.scene.control.ListView;
import javafx.scene.control.cell.TextFieldListCell;
import javafx.scene.layout.GridPane;
import javafx.stage.Stage;
import javafx.util.Callback;
import javafx.util.StringConverter;

public class ListViewEditing extends Application {
 public static void main(String[] args) {
 Application.launch(args);
 }

 @Override
 public void start(Stage stage) {
 ListView<String> breakfasts = getBreakfastListView();
 ListView<Person> persons = getPersonListView();

Chapter 12 ■ Understanding Controls

496

 GridPane root = new GridPane();
 root.setHgap(20);
 root.setVgap(10);
 root.add(new Label("Double click an item to edit."), 0, 0, 2, 1);
 root.addRow(1, new Label("Persons:"), new Label("Breakfasts:"));
 root.addRow(2, persons, breakfasts);
 root.setStyle("-fx-padding: 10;" +
 "-fx-border-style: solid inside;" +
 "-fx-border-width: 2;" +
 "-fx-border-insets: 5;" +
 "-fx-border-radius: 5;" +
 "-fx-border-color: blue;");

 Scene scene = new Scene(root);
 stage.setScene(scene);
 stage.setTitle("Using ListView Cell Factory");
 stage.show();
 }

 public ListView<Person> getPersonListView() {
 ListView<Person> persons = new ListView<>();
 persons.setPrefSize(200, 120);
 persons.setEditable(true);
 persons.getItems().addAll(new Person("John", "Jacobs", null),
 new Person("Donna", "Duncan", null),
 new Person("Layne", "Estes", null),
 new Person("Mason", "Boyd", null));

 // Set a TextField cell factory to edit the Person items. Also use a
 // StringConverter to convert a String to a Person and vice-versa
 StringConverter<Person> converter = new PersonStringConverter();
 Callback<ListView<Person>, ListCell<Person>> cellFactory =
 TextFieldListCell.forListView(converter);
 persons.setCellFactory(cellFactory);

 return persons;
 }

 public ListView<String> getBreakfastListView() {
 ListView<String> breakfasts = new ListView<>();
 breakfasts.setPrefSize(200, 120);
 breakfasts.setEditable(true);
 breakfasts.getItems().addAll("Apple", "Banana", "Donut", "Hash Brown");

 // Set a TextField cell factory to edit the String items
 Callback<ListView<String>, ListCell<String>> cellFactory =
 TextFieldListCell.forListView();
 breakfasts.setCellFactory(cellFactory);

 return breakfasts;
 }
}

Chapter 12 ■ Understanding Controls

497

Using a ChoiceBox/ComboBox to Edit ListView Items
An instance of the ChoiceBoxListCell is a ListCell that displays an item in a Label when the item is not
being edited and in a ChoiceBox when the item is being edited. If you want to edit a domain object to a
ListView, you will need to use a StringConverter to facilitate two-way conversion. You need to supply the
list of items to show in the choice box. Use the forListView() static method of the ChoiceBoxListCell
class to create a cell factory. The following snippet of code shows how to set a choice box as the cell editor
for a ListView:

ListView<String> breakfasts = new ListView<>();
...
breakfasts.setEditable(true);

// Set a cell factory to use a ChoiceBox for editing
ObservableList<String> items =
 FXCollections.<String>observableArrayList("Apple", "Banana", "Donut", "Hash Brown");
breakfasts.setCellFactory(ChoiceBoxListCell.forListView(items));

The program in Listing 12-20 uses a choice box to edit items in a ListView. Double-click an item in a
cell to start editing. In edit mode, the cell becomes a choice box. Click the arrow to show the list of items to
select. Using a combo box for editing is similar to using a choice box.

Listing 12-20. Using a ChoiceBox for Editing Items in a ListView

// ListViewChoiceBoxEditing.java
package com.jdojo.control;

import javafx.application.Application;
import javafx.collections.FXCollections;
import javafx.collections.ObservableList;
import javafx.scene.Scene;
import javafx.scene.control.Label;
import javafx.scene.control.ListView;
import javafx.scene.control.SelectionMode;
import javafx.scene.control.cell.ChoiceBoxListCell;
import javafx.scene.layout.VBox;
import javafx.stage.Stage;

public class ListViewChoiceBoxEditing extends Application {
 public static void main(String[] args) {
 Application.launch(args);
 }

 @Override
 public void start(Stage stage) {
 ListView<String> breakfasts = new ListView<>();
 breakfasts.setPrefSize(200, 120);
 breakfasts.setEditable(true);
 breakfasts.getSelectionModel().setSelectionMode(SelectionMode.MULTIPLE);

Chapter 12 ■ Understanding Controls

498

 // Let the user select a maximum of four breakfast items
 breakfasts.getItems().addAll("[Double click to select]",
 "[Double click to select]",
 "[Double click to select]",
 "[Double click to select]");

 // The breakfast items to select from
 ObservableList<String> items = FXCollections.<String>observableArrayList(
 "Apple", "Banana", "Donut", "Hash Brown");

 // Set a ChoiceBox cell factory for editing
 breakfasts.setCellFactory(ChoiceBoxListCell.forListView(items));

 VBox root = new VBox(new Label("Double click an item to select."),
 new Label("Breakfasts:"),
 breakfasts);
 root.setSpacing(10);
 root.setStyle("-fx-padding: 10;" +
 "-fx-border-style: solid inside;" +
 "-fx-border-width: 2;" +
 "-fx-border-insets: 5;" +
 "-fx-border-radius: 5;" +
 "-fx-border-color: blue;");

 Scene scene = new Scene(root);
 stage.setScene(scene);
 stage.setTitle("Using ListView Cell Factory");
 stage.show();
 }
}

Using a Check Box to Edit ListView Items
The CheckBoxListCell class provides the ability to edit a ListCell using a check box. It draws a check box
in the cell, which can be selected or deselected. Note that the third state, the indeterminate state, of the
check box is not available for selection while using a check box to edit ListView items.

Using a check box to edit ListView items is a little different. You need to provide the CheckBoxListCell
class with an ObservableValue<Boolean> object for each item in the ListView. Internally, the observable
value is bound bidirectionally to the selected state of the check box. When the user selects or deselects an
item in the ListView using the check box, the corresponding ObservableValue object is updated with a
true or false value. If you want to know which item is selected, you will need to keep the reference of the
ObservableValue object.

Let’s redo our earlier breakfast example using a check box. The following snippet of code creates a map
and adds all items as a key and a corresponding ObservableValue item with false value. Using a false value,
you want to indicate that the items will be initially deselected:

Map<String, ObservableValue<Boolean>> map = new HashMap<>();
map.put("Apple", new SimpleBooleanProperty(false));
map.put("Banana", new SimpleBooleanProperty(false));
map.put("Donut", new SimpleBooleanProperty(false));
map.put("Hash Brown", new SimpleBooleanProperty(false));

Chapter 12 ■ Understanding Controls

499

Now, you create an editable ListView with all keys in the map as its items:

ListView<String> breakfasts = new ListView<>();
breakfasts.setEditable(true);

// Add all keys from the map as items to the ListView
breakfasts.getItems().addAll(map.keySet());

The following snippet of code creates a Callback object. Its call() method returns the
ObservableValue object for the specified item passed to the call() method. The CheckBoxListCell class
will call the call() method of this object automatically:

Callback<String, ObservableValue<Boolean>> itemToBoolean = (String item) -> map.get(item);

Now it is time to create and set a cell factory for the ListView. The forListView() static method of the
CheckBoxListCell class takes a Callback object as an argument. If your ListView contains domain objects,
you can also provide a StringConverter to this method, using the following code:

// Set the cell factory
breakfasts.setCellFactory(CheckBoxListCell.forListView(itemToBoolean));

When the user selects or deselects an item using the check box, the corresponding ObservableValue in
the map will be updated. To know whether an item in the ListView is selected, you need to look at the value
in the ObservableValue object for that item.

The program in Listing 12-21 shows how to use a check box to edit items in a ListView. Figure 12-28
shows the resulting window after running the code. Select items using a mouse. Pressing the Print Selection
button prints the selected items on the standard output.

Listing 12-21. Using a Check Box to Edit ListView Items

// ListViewCheckBoxEditing.java
package com.jdojo.control;

import java.util.HashMap;
import java.util.Map;
import javafx.application.Application;
import javafx.beans.property.SimpleBooleanProperty;
import javafx.beans.value.ObservableValue;
import javafx.scene.Scene;
import javafx.scene.control.Button;
import javafx.scene.control.Label;
import javafx.scene.control.ListView;
import javafx.scene.control.SelectionMode;
import javafx.scene.control.cell.CheckBoxListCell;
import javafx.scene.layout.VBox;
import javafx.stage.Stage;
import javafx.util.Callback;

Chapter 12 ■ Understanding Controls

500

public class ListViewCheckBoxEditing extends Application {
 Map<String, ObservableValue<Boolean>> map = new HashMap<>();

 public static void main(String[] args) {
 Application.launch(args);
 }

 @Override
 public void start(Stage stage) {
 // Populate the map with ListView items as its keys and
 // their selected state as the value
 map.put("Apple", new SimpleBooleanProperty(false));
 map.put("Banana", new SimpleBooleanProperty(false));
 map.put("Donut", new SimpleBooleanProperty(false));
 map.put("Hash Brown", new SimpleBooleanProperty(false));

 ListView<String> breakfasts = new ListView<>();
 breakfasts.setPrefSize(200, 120);
 breakfasts.setEditable(true);
 breakfasts.getSelectionModel().setSelectionMode(SelectionMode.MULTIPLE);

 // Add all keys from the map as items to the ListView
 breakfasts.getItems().addAll(map.keySet());

 // Create a Callback object
 Callback<String, ObservableValue<Boolean>> itemToBoolean =
 (String item) -> map.get(item);

 // Set the cell factory
 breakfasts.setCellFactory(CheckBoxListCell.forListView(itemToBoolean));

 Button printBtn = new Button("Print Selection");
 printBtn.setOnAction(e -> printSelection());

 VBox root = new VBox(new Label("Breakfasts:"), breakfasts, printBtn);
 root.setSpacing(10);
 root.setStyle("-fx-padding: 10;" +
 "-fx-border-style: solid inside;" +
 "-fx-border-width: 2;" +
 "-fx-border-insets: 5;" +
 "-fx-border-radius: 5;" +
 "-fx-border-color: blue;");

 Scene scene = new Scene(root);
 stage.setScene(scene);
 stage.setTitle("Using ListView Cell Factory");
 stage.show();
 }

Chapter 12 ■ Understanding Controls

501

 public void printSelection() {
 System.out.println("Selected items: ");
 for(String key: map.keySet()) {
 ObservableValue<Boolean> value = map.get(key);
 if (value.getValue()) {
 System.out.println(key);
 }
 }

 System.out.println();
 }
}

Figure 12-28. A ListView with a check box for editing its items

Handling Events While Editing a ListView
An editable ListView fires three kinds of events:

An •	 editStart event when the editing starts

An •	 editCommit event when the edited value is committed

An •	 editcancel event when the editing is cancelled

The ListView class defines a ListView.EditEvent<T> static inner class to represent edit-related event
objects. Its getIndex() method returns the index of the item that is edited. The getNewValue() method
returns the new input value. The getSource() method returns the reference of the ListView firing the event.
The ListView class provides onEditStart, onEditCommit, and onEditCancel properties to set the event
handlers for these methods.

The following snippet of code adds an editStart event hander to a ListView. The handler prints the
index that is being edited and the new item value:

ListView<String> breakfasts = new ListView<>();
...
breakfasts.setEditable(true);
breakfasts.setCellFactory(TextFieldListCell.forListView());

Chapter 12 ■ Understanding Controls

502

// Add an editStart event handler to the ListView
breakfasts.setOnEditStart(e ->
 System.out.println("Edit Start: Index=" + e.getIndex() +
 ", item = " + e.getNewValue()));

Listing 12-22 contains a complete program to show how to handle edit-related events in a ListView.
Run the program and double-click an item to start editing. After changing the value, press Enter to commit
editing or Esc to cancel editing. Edit-related event handlers print messages on the standard output.

Listing 12-22. Handling Edit-Related Events in a ListView

// ListViewEditEvents.java
package com.jdojo.control;

import javafx.application.Application;
import javafx.scene.Scene;
import javafx.scene.control.Label;
import javafx.scene.control.ListView;
import javafx.scene.control.cell.TextFieldListCell;
import javafx.scene.layout.HBox;
import javafx.stage.Stage;

public class ListViewEditEvents extends Application {
 public static void main(String[] args) {
 Application.launch(args);
 }

 @Override
 public void start(Stage stage) {
 ListView<String> breakfasts = new ListView<>();
 breakfasts.setPrefSize(200, 120);
 breakfasts.getItems().addAll("Apple", "Banana", "Donut", "Hash Brown");
 breakfasts.setEditable(true);
 breakfasts.setCellFactory(TextFieldListCell.forListView());

 // Add Edit-related event handlers
 breakfasts.setOnEditStart(this::editStart);
 breakfasts.setOnEditCommit(this::editCommit);
 breakfasts.setOnEditCancel(this::editCancel);

 HBox root = new HBox(new Label("Breakfast:"), breakfasts);
 root.setSpacing(20);
 root.setStyle("-fx-padding: 10;" +
 "-fx-border-style: solid inside;" +
 "-fx-border-width: 2;" +
 "-fx-border-insets: 5;" +
 "-fx-border-radius: 5;" +
 "-fx-border-color: blue;");

Chapter 12 ■ Understanding Controls

503

 Scene scene = new Scene(root);
 stage.setScene(scene);
 stage.setTitle("Using ListView Edit Events");
 stage.show();
 }

 public void editStart(ListView.EditEvent<String> e) {
 System.out.println("Edit Start: Index=" + e.getIndex() +
 ", Item=" + e.getNewValue());
 }

 public void editCommit(ListView.EditEvent<String> e) {
 System.out.println("Edit Commit: Index=" + e.getIndex() +
 ", Item=" + e.getNewValue());
 }

 public void editCancel(ListView.EditEvent<String> e) {
 System.out.println("Edit Cancel: Index=" + e.getIndex() +
 ", Item=" + e.getNewValue());
 }
}

Styling ListView with CSS
The default CSS style-class name for a ListView is list-view and for ListCell it is list-cell. The ListView
class has two CSS pseudo-classes: horizontal and vertical. The -fx-orientation CSS property controls
the orientation of the ListView, which can be set to horizontal or vertical.

You can style a ListView as you style any other controls. Each item is displayed in an instance of
ListCell. ListCellprovides several CSS pseudo-classes:

•	 empty

•	 filled

•	 selected

•	 odd

•	 even

The empty pseudo-class applies when the cell is empty. The filled pseudo-class applies when the cell
is not empty. The selected pseudo-class applies when the cell is selected. The odd and even pseudo-classes
apply to cells with an odd and even index, respectively. The cell representing the first item is index 0 and it is
considered an even cell.

The following CSS styles will highlight even cells with tan and odd cells with light gray:

.list-view .list-cell:even {
 -fx-background-color: tan;
}

.list-view .list-cell:odd {
 -fx-background-color: lightgray;
}

Chapter 12 ■ Understanding Controls

504

Developers often ask how to remove the default alternate cell highlighting in a ListView. In the
modena.css file, the default background color for all list cells is set to -fx-control-inner-background,
which is a CSS-derived color. For all odd list cells, the default color is set to derive(-fx-control-inner-
background,-5%). To keep the background color the same for all cells, you need to override the background
color of odd list cells as follows:

.list-view .list-cell:odd {
 -fx-background-color: -fx-control-inner-background;
}

This only solves half of the problem; it only takes care of the background colors of the list cells in a
normal state inside a ListView. A list cell can be in several states, for example, focused, selected, empty,
or filled. To completely address this, you will need to set the appropriate background colors for list cells
for all states. Please refer to the modena.css file for a complete list of states that you will need to modify the
background colors for list cells.

The ListCell class supports an -fx-cell-size CSS property that is the height of the cells in a vertical
ListView and the width of cells in a horizontal ListView.

The list cell could be of the type ListCell, TextFieldListCell, ChoiceBoxListCell,
ComboBoxListCell, or CheckBoxListCell. The default CSS style-class names for subclasses of ListCell
are text-field-list-cell, choice-box-list-cell, combo-box-list-cell, and check-box-list-cell.
You can use these style class names to customize their appearance. The following CSS style will show the
TextField in an editable ListView in yellow background:

.list-view .text-field-list-cell .text-field {
 -fx-background-color: yellow;
}

Understanding the ColorPicker Control
ColorPicker is a combo box–style control that is especially designed for users to select a color from a
standard color palette or create a color using a built-in color dialog. The ColorPicker class inherits from
the ComboBoxBase<Color> class. Therefore, all properties declared in the ComboBoxBase class apply to the
ColorPicker control as well. I have discussed several of these properties earlier in the “Understanding the
ComboBox Control” section. If you want to know more about those properties, please refer to that section.
For example, the editable, onAction, showing, and value properties work the same way in a ColorPicker as
they do in a combo box. A ColorPicker has three parts:

•	 ColorPicker control

Color palette•	

Custom color dialog•	

A ColorPicker control consists of several components, as shown in Figure 12-29. You can customize
their looks. The color indicator is a rectangle displaying the current color selection. The color label displays
the color in text format. If the current selection is one of the standard colors, the label displays the color
name. Otherwise, it displays the color value in hex format. Figure 12-30 shows a ColorPicker control and its
color palette.

Chapter 12 ■ Understanding Controls

505

The color palette is shown as a pop-up when you click the arrow button in the control. The color palette
consists of three areas:

A color palette area to show a set of standard colors•	

A custom colors area showing the list of custom colors•	

A hyperlink to open the custom color dialog box•	

The color palette area shows a set of predefined standard colors. If you click one of the colors, it closes
the pop-up and sets the selected color as the value for the ColorPicker control.

The custom color area shows a set of custom colors. When you open this pop-up for the first time, this
area is absent. There are two ways to get colors in this area. You can load a set of custom colors or you can
build and save custom colors using the custom color dialog box.

When you click the Custom Color… hyperlink, a custom color dialog box, as shown in Figure 12-31, is
displayed. You can use HSB, RGB, or Web tab to build a custom color using one of these formats. You can
also define a new color by selecting a color from the color area or the color vertical bar, which are on the left
side of the dialog box. When you click the color area and the color bar, they show a small circle and rectangle

Color indicator Color label
Arrow button

Figure 12-29. Components of a ColorPicker control

Custom color dialog link

Custom color area

Color palette area

Figure 12-30. ColorPicker control and its color palette dialog box

Chapter 12 ■ Understanding Controls

506

to denote the new color. Clicking the Save button selects the custom color in the control and saves it to
display later in the custom color area when you open the pop-up again. Clicking the Use button selects the
custom color for the control.

Figure 12-31. Custom color dialog box of ColorPicker

Using the ColorPicker Control
The ColorPicker class has two constructors. One of them is the default constructor and the other takes the
initial color as an argument. The default constructor uses white as the initial color, as in the following code:

// Create a ColorPicker control with an initial color of white
ColorPicker bgColor1 = new ColorPicker();

// Create a ColorPicker control with an initial color of red
ColorPicker bgColor2 = new ColorPicker(Color.RED);

The value property of the control stores the currently selected color. Typically, the value property is set
when you select a color using the control. However, you can also set it directly in your code, as follows:

ColorPicker bgColor = new ColorPicker();
...
// Get the selected color
Color selectedCOlor = bgColor.getValue();

// Set the ColorPicker color to yellow
bgColor.setValue(Color.YELLOW);

Chapter 12 ■ Understanding Controls

507

The getCustomColors() method of the ColorPicker class returns a list of custom colors that you save in
the custom colors dialog box. Note that custom colors are saved only for the current session and the current
ColorPicker control. If you need to, you can save custom colors in a file or database and load them on
startup. You will have to write some code to achieve this:

ColorPicker bgColor = new ColorPicker();
...
// Load two custom colors
bgColor.getCustomColors().addAll(Color.web("#07FF78"), Color.web("#C2F3A7"));
...
// Get all custom colors
ObservableList<Color> customColors = bgColor.getCustomColors();

Typically, when a color is selected in a ColorPicker, you want to use the color for other controls. When
a color is selected, the ColorPicker control generates an ActionEvent. The following snippet of code adds
an ActionEvent handler to a ColorPicker. When a color is selected, the handler sets the new color as the fill
color of a rectangle:

ColorPicker bgColor = new ColorPicker();
Rectangle rect = new Rectangle(0, 0, 100, 50);

// Set the selected color in the ColorPicker as the fill color of the Rectangle
bgColor.setOnAction(e -> rect.setFill(bgColor.getValue()));

The program in Listing 12-23 shows how to use ColorPicker controls. When you select a color using the
ColorPicker, the fill color for the rectangle is updated.

Listing 12-23. Using the ColorPicker Control

// ColorPickerTest.java
package com.jdojo.control;

import javafx.application.Application;
import javafx.scene.Scene;
import javafx.scene.control.ColorPicker;
import javafx.scene.control.Label;
import javafx.scene.layout.HBox;
import javafx.scene.paint.Color;
import javafx.scene.shape.Rectangle;
import javafx.stage.Stage;

public class ColorPickerTest extends Application {
 public static void main(String[] args) {
 Application.launch(args);
 }

 @Override
 public void start(Stage stage) {
 ColorPicker bgColor = new ColorPicker(Color.RED);

Chapter 12 ■ Understanding Controls

508

 // A Rectangle to show the selected color from the color picker
 Rectangle rect = new Rectangle(0, 0, 100, 50);
 rect.setFill(bgColor.getValue());
 rect.setStyle("-fx-stroke-width: 2; -fx-stroke: black;");

 // Add an ActionEvent handler to the ColorPicker, so you change
 // the fill color for the rectangle when you pick a new color
 bgColor.setOnAction(e -> rect.setFill(bgColor.getValue()));

 HBox root = new HBox(new Label("Color:"), bgColor, rect);
 root.setSpacing(10);
 root.setStyle("-fx-padding: 10;" +
 "-fx-border-style: solid inside;" +
 "-fx-border-width: 2;" +
 "-fx-border-insets: 5;" +
 "-fx-border-radius: 5;" +
 "-fx-border-color: blue;");

 Scene scene = new Scene(root);
 stage.setScene(scene);
 stage.setTitle("Using ColorPicker Controls");
 stage.show();
 }
}

The ColorPicker control supports three looks: combo-box look, button look, and split-button look.
Combo-box look is the default look. Figure 12-32 shows a ColorPicker in these three looks, respectively.

Figure 12-32. Three looks of a ColorPicker

The ColorPicker class contains two string contents that are the CSS style-class name for the button and
split-button looks. The constants are:

•	 STYLE_CLASS_BUTTON

•	 STYLE_CLASS_SPLIT_BUTTON

If you want to change the default look of a ColorPicker, add one of the above constants as its style class,
as follows:

// Use default combo-box look
ColorPicker cp = new ColorPicker(Color.RED);

// Change the look to button
cp.getStyleClass().add(ColorPicker.STYLE_CLASS_BUTTON);

// Change the look to split-button
cp.getStyleClass().add(ColorPicker.STYLE_CLASS_SPLIT_BUTTON);

Chapter 12 ■ Understanding Controls

509

Tip ■ it is possible to add both STYLE_CLASS_BUTTON and STYLE_CLASS_SPLIT_BUTTON as style classes for
a ColorPicker. in such a case, the STYLE_CLASS_BUTTON is used.

Styling ColorPicker with CSS
The default CSS style-class name for a ColorPicker is color-picker. You can style almost every part of a
ColorPicker, for example, color indicator, color label, color palette dialog, and custom color dialog. Please
refer to the modena.css file for complete reference.

The -fx-color-label-visible CSS property of the ColorPicker sets whether the color label is visible
or not. Its default value is true. The following code makes the color label invisible:

.color-picker {
 -fx-color-label-visible: false;
}

The color indicator is a rectangle, which has a style class name of picker-color-rect. The color label
is a Label, which has a style class name of color-picker-label. The following code shows the color label in
blue and sets a 2px thick black stroke around the color indicator rectangle:

.color-picker .color-picker-label {
 -fx-text-fill: blue;
}

.color-picker .picker-color .picker-color-rect {
 -fx-stroke: black;
 -fx-stroke-width: 2;
}

The style class name for the color palette is color-palette. The following code hides the Custom
Colors… hyperlink on the color palette:

.color-palette .hyperlink {
 visibility: hidden;
}

Understanding the DatePicker Control
DatePicker is a combo-box style control. The user can enter a date as text or select a date from a calendar.
The calendar is displayed as a pop-up for the control, as shown in Figure 12-33. The DatePicker class
inherits from the ComboBoxBase<LocalDate> class. All properties declared in the ComboBoxBase class are also
available to the DatePicker control.

Chapter 12 ■ Understanding Controls

510

The first row of the pop-up displays the month and year. You can scroll through months and years using
the arrows. The second row displays the short names of weeks. The first column displays the week number
of the year. By default, the week numbers column is not displayed. You can use the context menu on the
pop-up to display it or you can set the showWeekNumbers property of the control to show it.

The calendar always displays dates for 42 days. Dates not applicable to the current month are disabled
for selection. Each day cell is an instance of the DateCell class. You can provide a cell factory to use your
custom cells. You will have an example of using a custom cell factory later.

Right-clicking the first row, week names, week number column, or disabled dates displays the context
menu. The context menu also contains a Show Today menu item, which scrolls the calendar to the current date.

Using the DatePicker Control
You can create a DatePicker using its default constructor; it uses null as the initial value. You can also pass a
LocalDate to another constructor as the initial value, as in the following code:

// Create a DatePicker with null as its initial value
DatePicker birthDate1 = new DatePicker();

// Use September 19, 1969 as its initial value
DatePicker birthDate2 = new DatePicker(LocalDate.of(1969, 9, 19));

The value property of the control holds the current date in the control. You can use the property to set
a date. When the control has a null value, the pop-up shows the dates for the current month. Otherwise, the
pop-up shows the dates of the month of the current value, as with the following code:

// Get the current value
LocalDate dt = birthDate.getValue();

// Set the current value
birthDate.setValue(LocalDate.of(1969, 9, 19));

Figure 12-33. Calendar pop-up for a DatePicker control

Chapter 12 ■ Understanding Controls

511

The DatePicker control provides a TextField to enter a date as text. Its editor property stores the
reference of the TextField. The property is read-only. If you do not want users to enter a date, you can set
the editable property of the DatePicker to false, as in the following code:

DatePicker birthDate = new DatePicker();

// Users cannot enter a date. They must select one from the popup.
birthDate.setEditable(false);

DatePicker has a converter property that uses a StringConverter to convert a LocalDate to a string
and vice versa. Its value property stores the date as LocalDate and its editor displays it as a string, which is
the formatted date. When you enter a date as text, the converter converts it to a LocalDate and stores it in
the value property. When you pick a date from the calendar pop-up, the converter creates a LocalDate to
store in the value property and it converts it to a string to display in the editor. The default converter uses
the default Locale and chronology to format the date. When you enter a date as text, the default converter
expects the text in the default Locale and chronology format.

Listing 12-24 contains the code for a LocalDateStringConverter class that is a StringConverter
for LocalDate. By default, it formats dates in MM/dd/yyyy format. You can pass a different format in its
constructor.

Listing 12-24. A StringConverter to Convert a LocalDate to a String and Vice Versa

// LocalDateStringConverter.java
package com.jdojo.control;

import javafx.util.StringConverter;
import java.time.LocalDate;
import java.time.format.DateTimeFormatter;

public class LocalDateStringConverter extends StringConverter<LocalDate> {
 private String pattern = "MM/dd/yyyy";
 private DateTimeFormatter dtFormatter;

 public LocalDateStringConverter() {
 dtFormatter = DateTimeFormatter.ofPattern(pattern);
 }

 public LocalDateStringConverter(String pattern) {
 this.pattern = pattern;
 dtFormatter = DateTimeFormatter.ofPattern(pattern);
 }

 @Override
 public LocalDate fromString(String text) {
 LocalDate date = null;
 if (text != null && !text.trim().isEmpty()) {
 date = LocalDate.parse(text, dtFormatter);
 }
 return date;
 }

Chapter 12 ■ Understanding Controls

512

 @Override
 public String toString(LocalDate date) {
 String text = null;
 if (date != null) {
 text = dtFormatter.format(date);
 }
 return text;
 }
}

To format the date in "MMMM dd, yyyy" format, for example, May 29, 2013, you would create and set the
convert as follows:

DatePicker birthDate = new DatePicker();
birthDate.setConverter(new LocalDateStringConverter("MMMM dd, yyyy"));

You can configure the DatePicker control to work with a specific chronology instead of the default one.
The following statement sets the chronology to Thai Buddhist chronology:

birthDate.setChronology(ThaiBuddhistChronology.INSTANCE);

You can change the default Locale for the current instance of the JVM and the DatePicker will use the
date format and chronology for the default Locale:

// Change the default Locale to Canada
Locale.setDefault(Locale.CANADA);

Each day cell in the pop-up calendar is an instance of the DateCell class, which is inherited from the
Cell<LocalDate> class. The dayCellFactory property of the DatePicker class lets you provide a custom
day cell factory. The concept is the same as discussed earlier for providing the cell factory for the ListView
control. The following statement creates a day cell factory. It changes the text color of weekend cells to blue
and disables all future day cells. If you set this day cell factory to a DatePicker, the pop-up calendar will not
let users select a future date because you will have disabled all future day cells:

Callback<DatePicker, DateCell> dayCellFactory =
 new Callback<DatePicker, DateCell>() {
 public DateCell call(final DatePicker datePicker) {
 return new DateCell() {
 @Override
 public void updateItem(LocalDate item, boolean empty) {
 // Must call super
 super.updateItem(item, empty);

 // Disable all future date cells
 if (item.isAfter(LocalDate.now())) {
 this.setDisable(true);
 }

Chapter 12 ■ Understanding Controls

513

 // Show Weekends in blue
 DayOfWeek day = DayOfWeek.from(item);
 if (day == DayOfWeek.SATURDAY ||
 day == DayOfWeek.SUNDAY) {
 his.setTextFill(Color.BLUE);
 }
 }
 };
 }
 };

The following snippet of code sets a custom day cell factory for a birth date DatePicker control. It also
makes the control noneditable. The control will force the user to select a nonfuture date from the pop-up
calendar:

DatePicker birthDate = new DatePicker();

// Set a day cell factory to disable all future day cells
// and show weekends in blue
birthDate.setDayCellFactory(dayCellFactory);

// Users must select a date from the popup calendar
birthDate.setEditable(false);

The DatePicker control fires an ActionEvent when its value property changes. The value property
may change when a user enters a date, selects a date from the pop-up, or a date is set programmatically,
as provided in the following code:

// Add an ActionEvent handler
birthDate.setOnAction(e -> System.out.println("Date changed to:" + birthDate.getValue()));

Listing 12-25 has a complete program showing how to use a DatePicker control. It uses most of the
features of the DatePicker. It displays a window as shown in Figure 12-34. The control is noneditable,
forcing the user to select a nonfuture date from the pop-up.

Listing 12-25. Using the DatePicker Control

// DatePickerTest.java
package com.jdojo.control;

import java.time.DayOfWeek;
import java.time.LocalDate;
import javafx.application.Application;
import javafx.scene.Scene;
import javafx.scene.control.DateCell;
import javafx.scene.control.DatePicker;
import javafx.scene.control.Label;
import javafx.scene.layout.HBox;
import javafx.scene.paint.Color;
import javafx.stage.Stage;
import javafx.util.Callback;

Chapter 12 ■ Understanding Controls

514

public class DatePickerTest extends Application {
 public static void main(String[] args) {
 Application.launch(args);
 }

 public void start(Stage stage) {
 DatePicker birthDate = new DatePicker();
 birthDate.setEditable(false);

 // Print the new date on standard output
 birthDate.setOnAction(e ->
 System.out.println("New Date:" + birthDate.getValue()));

 String pattern = "MM/dd/yyyy";
 birthDate.setConverter(new LocalDateStringConverter(pattern));
 birthDate.setPromptText(pattern.toLowerCase());

 // Create a day cell factory
 Callback<DatePicker, DateCell> dayCellFactory =
 new Callback<DatePicker, DateCell>() {
 public DateCell call(final DatePicker datePicker) {
 return new DateCell() {
 @Override
 public void updateItem(LocalDate item, boolean empty) {
 // Must call super
 super.updateItem(item, empty);

 // Disable all future date cells
 if (item.isAfter(LocalDate.now())) {
 this.setDisable(true);
 }

 // Show Weekends in blue color
 DayOfWeek day = DayOfWeek.from(item);
 if (day == DayOfWeek.SATURDAY ||
 day == DayOfWeek.SUNDAY) {
 this.setTextFill(Color.BLUE);
 }
 }
 };
 }};

 // Set the day cell factory
 birthDate.setDayCellFactory(dayCellFactory);

 HBox root = new HBox(new Label("Birth Date:"), birthDate);
 root.setStyle("-fx-padding: 10;" +
 "-fx-border-style: solid inside;" +
 "-fx-border-width: 2;" +
 "-fx-border-insets: 5;" +
 "-fx-border-radius: 5;" +
 "-fx-border-color: blue;");

Chapter 12 ■ Understanding Controls

515

 Scene scene = new Scene(root);
 stage.setScene(scene);
 stage.setTitle("Using DatePicker Control");
 stage.show();
 stage.sizeToScene();
 }
}

Figure 12-34. A DatePicker control to select a nonfuture date

Styling DatePicker with CSS
The default CSS style-class name for a DatePicker is date-picker, and for its pop-up, the class name is
date-picker-popup. You can style almost every part of a DatePicker, for example, the month-year pane in
the top area of the pop-up, day cells, week number cells, and current day cell. Please refer to the modena.css
file for complete reference.

The CSS style-class name for day cell is day-cell. The day cell for the current date has the style-class
name as today. The following styles display the current day number in bold and all day numbers in blue:

/* Display current day numbers in bolder font */
.date-picker-popup > * > .today {
 -fx-font-weight: bolder;
}

/* Display all day numbers in blue */
.date-picker-popup > * > .day-cell {
 -fx-text-fill: blue;
}

Understanding Text Input Controls
JavaFX supports text input controls that let users work with single line or multiple lines of plain text. I will
discuss TextField, PasswordField, and TextArea text input controls in this section. All text input controls
are inherited from the TextInputControl class. Please refer to Figure 12-1 for a class diagram for the text
input controls.

Chapter 12 ■ Understanding Controls

516

Tip ■ JavaFX provides a rich text edit control named HTMLEditor. i will discuss HTMLEditor later in
this chapter.

The TextInputControl class contains the properties and methods that apply to all types of text input
controls. Properties and methods related to the current caret position and movement and text selection
are in this class. Subclasses add properties and methods applicable to them. Table 12-5 lists the properties
declared in the TextInputControl class.

Table 12-5. Properties Declared in the TextInputControl Class

Property Type Description

anchor ReadOnlyIntegerProperty It is the anchor of the text selection. It is at the
opposite end of the caret position in the selection.

caretPosition ReadOnlyIntegerProperty It is the current position of the caret within the text.

editable BooleanProperty It is true if the control is editable. Otherwise, it is false.

font ObjectProperty It is the default font for the control.

length ReadOnlyIntegerProperty It is the number of characters in the control.

promptText StringProperty It is the prompt text. It is displayed in the control when
control has no content.

selectedText ReadOnlyStringProperty It is the selected text in the control.

selection ReadOnlyObjectProperty
<IndexRange>

It is the selected text index range.

text StringProperty It is the text in the control.

Positioning and Moving Caret
All text input controls provide a caret. By default, a caret is a blinking vertical line when the control has focus.
The current caret position is the target for the next input character from the keyboard. The caret position
starts at zero, which is before the first character. Position 1 is after the first character and before the second
character and so on. Figure 12-35 shows the caret positions in a text input control that has four characters.
The number of characters in the text determines the valid range for the caret position, which is zero to the
length of the text. Zero is the only valid caret position if the control does not contain text.

Figure 12-35. Caret positions in a text input control having four characters

Chapter 12 ■ Understanding Controls

517

Several methods take a caret position as an argument. Those methods clamp the argument value to the
valid caret position range. Passing a caret position outside the valid range will not throw an exception. For
example, if the control has four characters and you want to move the caret to position 10, the caret will be
positioned at position 4.

The read-only caretPosition property contains the current caret position. Use the positionCaret
(int pos) method to position the caret at the specified pos. The backward() and forward() methods move
the caret one character backward and forward, respectively, if there is no selection. If there is a selection, they
move the caret position to the beginning and end and clear the selection. The home() and end() methods
move the caret before the first character and after the last character, respectively, and clear the selection.
The nextWord() method moves the caret to the beginning of the next word and clears the selection.
The endOfNextWord() method moves the caret to the end of the next word and clears the selection. The
previousWord() method moves the caret to the beginning of the previous word and clears the selection.

Making Text Selection
The TextInputControl class provides a rich API through its properties and methods to deal with text
selection. Using the selection API, you can select the entire or partial text and get the selection information.

The selectedText property contains the value of the selected text. Its value is an empty string if there
is no selection. The selection property contains an IndexRange that holds the index range of the selection.
The getStart() and getEnd() methods of the IndexRange class return the start index and end index of the
selection, respectively, and its getLength() method returns the length of the selection. If there is no selection,
the lower and upper limits of the range are the same and they are equal to the caretPosition value.

The anchor and caretPosition properties play a vital role in text selection. The value of these
properties defines the selection range. The same value for both properties indicates no selection. Either
property may indicate the start or end of the selection range. The anchor value is the caret position when
the selection started. You can select characters by moving the caret backward or forward. For example, you
can use the left or right arrow key with the Shift key pressed to select a range of characters. If you move the
caret forward during the selection process, the anchor value will be less than the caretPosition value.
If you move the caret backward during the selection process, the anchor value will be greater than the
caretPosition value. Figure 12-36 shows the relation between the anchor and caretPosition values.

anchor
caretPosition

caretPosition
anchor0 1 2 3 6 7 8 9...

#1 #2 #3 #4

Figure 12-36. Relation between the anchor and caretPosition properties of a text input control

In Figure 12-36, the part labeled #1 shows a text input control with the text BLESSINGS. The
caretPosition value is 1.The user selects four characters by moving the caret four positions forward, for
example, by pressing Shift key and right arrow key or by dragging the mouse. The selectedText property, as
shown in the part labeled #2, is LESS. The anchor value is 1 and the caretPosition value is 5. The selection
property has an IndexRange of 1 to 5.

In the part labeled #3, the caretPosition value is 5. The user selects four characters by moving the
caret backward as shown in the part labeled #4. The selectedText property, as shown in part labeled #4, is
LESS. The anchor value is 5 and the caretPosition value is 1. The selection property has an IndexRange of
1 to 5. Notice that in the parts labeled #2 and #4, the anchor and caretPosition values are different and the
selectedText and selection properties are the same.

Chapter 12 ■ Understanding Controls

518

Apart from the selection properties, the TextInputControl contains several useful selection-related
methods:

•	 selectAll()

•	 deselect()

•	 selectRange(int anchor, int caretPosition)

•	 selectHome()

•	 selectEnd()

•	 extendSelection(int pos)

•	 selectBackward()

•	 selectForward()

•	 selectPreviousWord()

•	 selectEndOfNextWord()

•	 selectNextWord()

•	 selectPositionCaret(int pos)

•	 replaceSelection(String replacement)

Notice that you have a positionCaret(int pos) method and a selectPositionCaret(int pos)
method. The former positions the caret at the specified position and clears the selection. The latter moves
the caret to the specified pos and extends the selection if one exists. If no selection exists, it forms a selection
by the current caret position as the anchor and moving the caret to the specified pos.

The replaceSelection(String replacement) method replaces the selected text by the specified
replacement. If there is no selection, it clears the selection and inserts the specified replacement at the
current caret position.

Modifying the Content
The text property of the TextInputControl class represents the textual content of text input controls. You
can change the content using the setText(String text) method and get it using the getText() method.
The clear() method sets the content to an empty string.

The insertText(int index, String text) method inserts the specified text at the specified index.
It throws an IndexOutOfBoundsException if the specified index is outside the valid range (zero to the length
of the content). The appendText(String text) method appends the specified text to the content. The
deleteText() method lets you delete a range of characters from the content. You can specify the range as
an IndexRange object or start and end index. The deleteNextChar() and deletePreviousChar() methods
delete the next and previous character, respectively, from the current caret position if there is no selection.
If there is a selection, they delete the selection. They return true if the deletion was successful. Otherwise,
they return false.

The read-only length property represents the length of the content. It changes as you modify the
content. Practically, the length value can be very big. There is no direct way to restrict the number of
characters in a text input control. I will cover an example of restricting the length of text shortly.

Chapter 12 ■ Understanding Controls

519

Cutting, Copying, and Pasting Text
The text input controls supports cut, copy, and paste features programmatically, using the mouse and
keyboard. To use these features using the mouse and keyboard, use the standard steps supported on your
platform. Use the cut(), copy(), and paste() methods to use these features programmatically. The cut()
method transfers the currently selected text to the clipboard and removes the current selection. The copy()
method transfers the currently selected text to the clipboard without removing the current selection. The
paste() method replaces the current selection with the content in the clipboard. If there is no selection, it
inserts the clipboard content at the current caret position.

An Example
The program in Listing 12-26 demonstrates how the different properties of text input control change. It
displays a window as shown in Figure 12-37. The program uses a TextField, which is a text input control, to
display one line of text. Each property is displayed in a Label by binding the text properties to the properties
of the TextField. After running the program, change the text in the name field, move the caret, and change
the selection to see how the properties of the TextField change.

Listing 12-26. Using the Properties of Text Input Controls

// TextControlProperties.java
package com.jdojo.control;

import javafx.application.Application;
import javafx.scene.Scene;
import javafx.scene.control.Label;
import javafx.scene.control.TextField;
import javafx.scene.layout.GridPane;
import javafx.stage.Stage;

public class TextControlProperties extends Application {
 public static void main(String[] args) {
 Application.launch(args);
 }

 @Override
 public void start(Stage stage) {
 TextField nameFld = new TextField();
 Label anchorLbl = new Label("");
 Label caretLbl = new Label("");
 Label lengthLbl = new Label("");
 Label selectedTextLbl = new Label("");
 Label selectionLbl = new Label("");
 Label textLbl = new Label("");

 // Bind text property of the Labels to the properties of the TextField
 anchorLbl.textProperty().bind(nameFld.anchorProperty().asString());
 caretLbl.textProperty().bind(nameFld.caretPositionProperty().asString());
 lengthLbl.textProperty().bind(nameFld.lengthProperty().asString());
 selectedTextLbl.textProperty().bind(nameFld.selectedTextProperty());
 selectionLbl.textProperty().bind(nameFld.selectionProperty().asString());
 textLbl.textProperty().bind(nameFld.textProperty());

Chapter 12 ■ Understanding Controls

520

 GridPane root = new GridPane();
 root.setHgap(10);
 root.setVgap(5);
 root.addRow(0, new Label("Name:"), nameFld);
 root.addRow(1, new Label("Anchor Position:"), anchorLbl);
 root.addRow(2, new Label("Caret Postion:"), caretLbl);
 root.addRow(3, new Label("Length:"), lengthLbl);
 root.addRow(4, new Label("Selected Text:"), selectedTextLbl);
 root.addRow(5, new Label("Selection:"), selectionLbl);
 root.addRow(6, new Label("Text:"), textLbl);
 root.setStyle("-fx-padding: 10;" +
 "-fx-border-style: solid inside;" +
 "-fx-border-width: 2;" +
 "-fx-border-insets: 5;" +
 "-fx-border-radius: 5;" +
 "-fx-border-color: blue;");

 Scene scene = new Scene(root);
 stage.setScene(scene);
 stage.setTitle("Text Input Control Properties");
 stage.show();
 }
}

Figure 12-37. Using properties of text input controls

Styling TextInputControl with CSS
The TextInputControl class introduces a CSS pseudo-class named readonly, which applies when the
control is not editable. It adds the following style properties:

•	 -fx-font

•	 -fx-text-fill

•	 -fx-prompt-text-fill

Chapter 12 ■ Understanding Controls

521

•	 -fx-highlight-fill

•	 -fx-highlight-text-fill

•	 -fx-display-caret

The -fx-font property is inherited from the parent by default. The value for the -fx-display-caret
property could be true or false. When it is true, the caret is displayed when the control has focus. Otherwise,
the caret is not displayed. Its default value is true. Most of the other properties affect background and
text colors.

Understanding the TextField Control
TextField is a text input control. It inherits from the TextInputControl class. It lets the user enter a single
line of plain text. If you need a control to enter multiline text, use TextArea instead. Newline and tab
characters in the text are removed. Figure 12-38 shows a window with two TextFields having the text Layne
and Estes.

Figure 12-38. A window with two TextField controls

You can create a TextField with an empty initial text or with a specified initial text, as shown in the
following code:

// Create a TextField with an empty string as initial text
TextField nameFld1 = new TextField();

// Create a TextField with "Layne Estes" as an initial text
TextField nameFld2 = new TextField("Layne Estes");

As I have already mentioned, the text property of the TextField stores the textual content. If you are
interested in handling the changes in a TextField, you need to add a ChangeListener to its text property.
Most of the time you will be using its setText(String newText) method to set new text and the getText()
method to get the text from it. TextField adds the following properties:

•	 alignment

•	 onAction

•	 prefColumnCount

Chapter 12 ■ Understanding Controls

522

The alignment property determines the alignment of the text within the TextField area when there is
empty space. Its default value is CENTER_LEFT if the node orientation is LEFT_TO_RIGHT and CENTER_RIGHT if
the node orientation is RIGHT_TO_LEFT. The onAction property is an ActionEvent handler, which is called
when the Enter key is pressed in the TextField, as shown in the following code:

TextField nameFld = new TextField();
nameFld.setOnAction(e -> /* Your ActionEvent handler code...*/);

The prefColumnCount property determines the width of the control. By default, its value is 12. A column
is wide enough to display an uppercase letter W. If you set its value to 10, the TextField will be wide enough
to display ten letter Ws, as shown in the following code:

// Set the preferred column count to 10
nameFld.setPrefColumnCount(10);

TextField provides a default context menu, as shown in Figure 12-39, that can be displayed by clicking
the right mouse button. Menu items are enabled or disabled based on the context. You can replace the
default context menu with a custom context menu. Currently, there is no way to customize the default
context menu.

Figure 12-39. The default context menu for TextField

The following snippet of code sets a custom context menu for a TextField. It displays a menu item
stating that the context menu is disabled. Selecting the menu item does nothing. You will need to add an
ActionEvent handler to the menu items in context menu to perform some action.

ContextMenu cm = new ContextMenu();
MenuItem dummyItem = new MenuItem("Context menu is disabled");
cm.getItems().add(dummyItem);

TextField nameFld = new TextField();
nameFld.setContextMenu(cm);

Chapter 12 ■ Understanding Controls

523

The program in Listing 12-27 shows how to use TextField controls. It displays two TextFields. It shows
adding ActionEvent handlers, a custom context menu, and ChangeListeners added to TextFields.

Listing 12-27. Using the TextField Control

// TextFieldTest.java
package com.jdojo.control;

import javafx.application.Application;
import javafx.beans.value.ObservableValue;
import javafx.scene.Scene;
import javafx.scene.control.ContextMenu;
import javafx.scene.control.Label;
import javafx.scene.control.MenuItem;
import javafx.scene.control.TextField;
import javafx.scene.layout.GridPane;
import javafx.stage.Stage;

public class TextFieldTest extends Application {
 public static void main(String[] args) {
 Application.launch(args);
 }

 public void start(Stage stage) {
 // Create a TextFiled with an empty string as its initial text
 TextField firstNameFld = new TextField();
 TextField lastNameFld = new TextField();

 // Both fields should be wide enough to display 15 chars
 firstNameFld.setPrefColumnCount(15);
 lastNameFld.setPrefColumnCount(15);

 // Add a ChangeListener to the text property
 firstNameFld.textProperty().addListener(this::changed);
 lastNameFld.textProperty().addListener(this::changed);

 // Add a dummy custom context menu for the firstname field
 ContextMenu cm = new ContextMenu();
 MenuItem dummyItem = new MenuItem("Context menu is disabled");
 cm.getItems().add(dummyItem);
 firstNameFld.setContextMenu(cm);

 // Set ActionEvent handlers for both fields
 firstNameFld.setOnAction(e -> nameChanged("First Name"));
 lastNameFld.setOnAction(e -> nameChanged("Last Name"));

 GridPane root = new GridPane();
 root.setHgap(10);
 root.setVgap(5);
 root.addRow(0, new Label("First Name:"), firstNameFld);

Chapter 12 ■ Understanding Controls

524

 root.addRow(1, new Label("Last Name:"), lastNameFld);
 root.setStyle("-fx-padding: 10;" +
 "-fx-border-style: solid inside;" +
 "-fx-border-width: 2;" +
 "-fx-border-insets: 5;" +
 "-fx-border-radius: 5;" +
 "-fx-border-color: blue;");

 Scene scene = new Scene(root);
 stage.setScene(scene);
 stage.setTitle("Using TextField Controls");
 stage.show();
 }

 public void nameChanged(String fieldName) {
 System.out.println("Action event fired on " + fieldName);
 }

 public void changed(ObservableValue<? extends String> prop,
 String oldValue,
 String newValue) {
 System.out.println("Old = " + oldValue + ", new = " + newValue);
 }
}

Styling TextField with CSS
The default CSS style-class name for a TextField is text-field. It adds an -fx-alignment property that is
the alignment of its text within its content area. There is nothing special that needs to be said about styling
TextField.

Understanding the PasswordField Control
PasswordField is a text input control. It inherits from TextField and it works much the same as TextField
except it masks its text, that is, it does not display the actual characters entered. Rather, it displays an echo
character for each character entered. The default echo character is a bullet. Figure 12-40 shows a window
with a PasswordField.

Figure 12-40. A window using a PasswordField control

Chapter 12 ■ Understanding Controls

525

The PasswordField class provides only one constructor, which is a no-args constructor. You can use the
setText() and getText() methods to set and get, respectively, the actual text in a PasswordField, as in
the following code. Typically, you do not set the password text. The user enters it.

// Create a PasswordField
PasswordField passwordFld = new PasswordField();
...
// Get the password text
String passStr = passwordFld.getText();

The PasswordField overrides the cut() and copy() methods of the TextInputControl class to make
them no-op methods. That is, you cannot transfer the text in a PasswordField to the clipboard using the
keyboard shortcuts or the context menu.

The default CSS style-class name for a PasswordField is password-field. It has all of the style
properties of TextField. It does not add any style properties.

Understanding the TextArea Control
TextArea is a text input control. It inherits from the TextInputControl class. It lets the user enter multiline
plain text. If you need a control to enter a single line of plain text, use TextField instead. If you want to
use rich text, use the HTMLEditor control. Unlike the TextField, newline and tab characters in the text are
preserved. A newline character starts a new paragraph in a TextArea. Figure 12-41 shows a window with a
TextField and a TextArea. The user can enter a multiline résumé in the TextArea.

A TextArea

A TextField

Figure 12-41. A window with a TextArea control

You can create a TextArea with an empty initial text or with a specified initial text using the
following code:

// Create a TextArea with an empty string as its initial text
TextArea resume1 = new TextArea();

// Create a TextArea an initial text
TextArea resume2 = new TextArea("Years of Experience: 19");

Chapter 12 ■ Understanding Controls

526

As already discussed in the previous section, the text property of the TextArea stores the textual
content. If you are interested in handling the changes in a TextArea, you need to add a ChangeListener to its
text property. Most of the time, you will be using its setText(String newText) method to set new text and
its getText() method to get the text from it.

TextArea adds the following properties:

•	 prefColumnCount

•	 prefRowCount

•	 scrollLeft

•	 scrollTop

•	 wrapText

The prefColumnCount property determines the width of the control. By default, its value is 32. A column
is wide enough to display an uppercase letter W. If you set its value to 80, the TextArea will be wide enough
to display 80 letter Ws. The following code accomplishes this:

// Set the preferred column count to 80
resume1.setPrefColumnCount(80);

The prefRowCount property determines the height of the control. By default, it is 10. The following code
sets the row count to 20:

// Set the preferred row count to 20
resume.setPrefColumnCount(20);

If the text exceeds the number of columns and rows, the horizontal and vertical scroll panes are
automatically displayed.

Like TextField, TextArea provides a default context menu. Please refer the “Understanding Text Input
Controls” section for more detail on how to customize the default context menu.

The scrollLeft and scrollTop properties are the number of pixels that the text is scrolled to at the top
and left. The following code sets it to 30px:

// Scroll the resume text by 30px to the top and 30 px to the left
resume.setScrollTop(30);
resume.setScrollLeft(30);

By default, TextArea starts a new line when it encounters a newline character in its text. A newline
character also creates a new paragraph except for the first paragraph. By default, the text is not wrapped to
the next line if it exceeds the width of the control. The wrapText property determines whether the text is
wrapped to another line when its run exceeds the width of the control. By default, its value is false.
The following code would set the default to true:

// Wrap the text if needed
resume.setWrapText(true);

Chapter 12 ■ Understanding Controls

527

The getParagraphs() method of the TextArea class returns an unmodifiable list of all paragraphs in its
text. Each element in the list is a paragraph, which is an instance of CharSequence. The returned paragraph
does not contain the newline characters. The following snippet of code prints the details, for example,
paragraph number, and number of characters, for all paragraphs in the resume TextArea:

ObservableList<CharSequence> list = resume.getParagraphs();
int size = list.size();
System.out.println("Paragraph Count:" + size);
for(int i = 0; i < size; i++) {
 CharSequence cs = list.get(i);
 System.out.println("Paragraph #" + (i + 1) + ", Characters=" + cs.length());
 System.out.println(cs);
}

The program in Listing 12-28 shows how to use TextArea. It displays a window with a button to print
the details of the text in the TextArea.

Listing 12-28. Using TextArea Controls

// TextAreaTest.java
package com.jdojo.control;

import javafx.application.Application;
import javafx.collections.ObservableList;
import javafx.scene.Scene;
import javafx.scene.control.Button;
import javafx.scene.control.Label;
import javafx.scene.control.TextArea;
import javafx.scene.control.TextField;
import javafx.scene.layout.VBox;
import javafx.stage.Stage;

public class TextAreaTest extends Application {
 public static void main(String[] args) {
 Application.launch(args);
 }

 @Override
 public void start(Stage stage) {
 TextField title = new TextField("Luci");
 title.setPromptText("Your poem title goes here");

 TextArea poem = new TextArea();
 poem.setPromptText("Your poem goes here");
 poem.setPrefColumnCount(20);
 poem.setPrefRowCount(10);
 poem.appendText("I told her this: her laughter light\n" +
 "Is ringing in my ears:\n" +
 "And when I think upon that night\n" +
 "My eyes are dim with tears.");

Chapter 12 ■ Understanding Controls

528

 Button printBtn = new Button("Print Poem Details");
 printBtn.setOnAction(e -> print(poem));

 VBox root = new VBox(new Label("Title:"), title,
 new Label("Poem:"), poem, printBtn);
 root.setStyle("-fx-padding: 10;" +
 "-fx-border-style: solid inside;" +
 "-fx-border-width: 2;" +
 "-fx-border-insets: 5;" +
 "-fx-border-radius: 5;" +
 "-fx-border-color: blue;");

 Scene scene = new Scene(root);
 stage.setScene(scene);
 stage.setTitle("Using TextArea Controls");
 stage.show();
 }

 public void print(TextArea poem) {
 System.out.println("Poem Length: " + poem.getLength());
 System.out.println("Poem Text:\n" + poem.getText());
 System.out.println();

 ObservableList<CharSequence> list = poem.getParagraphs();
 int size = list.size();
 System.out.println("Paragraph Count:" + size);
 for(int i = 0; i < size; i++) {
 CharSequence cs = list.get(i);
 System.out.println("Paragraph #" + (i + 1) +
 ", Characters=" + cs.length());
 System.out.println(cs);
 }
 }
}

Styling TextArea with CSS
The default CSS style-class name for a TextArea is text-area. It does not add any CSS properties to the
ones present in its ancestor TextInputControl. It contains scroll-pane and content substructures, which
are a ScrollPane and a Region, respectively. The scroll-pane is the scroll pane that appears when its text
exceeds its width or height. The content is the region that displays the text.

The following styles set the horizontal and vertical scrollbar policies to always, so the scrollbars should
always appear in TextArea. Padding for the content area is set to 10px:

.text-area > .scroll-pane {
 -fx-hbar-policy: always;
 -fx-vbar-policy: always;
}

.text-area .content {
 -fx-padding: 10;
}

Chapter 12 ■ Understanding Controls

529

Tip ■ at the time of this writing, setting the scrollbar policy for the scroll-pane substructure is ignored by
the TextArea.

Showing the Progress of a Task
When you have a long running task, you need to provide a visual feedback to the user about the progress of
the task for a better user experience. JavaFX offers two controls to show the progress:

•	 ProgressIndicator

•	 ProgressBar

They differ in the ways they display the progress. The ProgressBar class inherits from the
ProgressIndicator class. ProgressIndicator displays the progress in a circular control, whereas
ProgressBar uses a horizontal bar. The ProgressBar class does not add any properties or methods. It
just uses a different shape for the control. Figure 12-42 shows a ProgressIndicator in indeterminate and
determinate states. Figure 12-43 shows a ProgressBar in indeterminate and determinate states. Both figures
use the same progress values in the four instances of the determinate states.

Figure 12-43. A ProgressBar control in indeterminate and determinate states

Figure 12-42. A ProgressIndicator control in indeterminate and determinate states

The current progress of a task may be determined or not. If the progress cannot be determined, it is
said to be in an indeterminate state. If the progress is known, it is said to be in a determinate state. The
ProgressIndicator class declares two properties:

•	 indeterminate

•	 progress

The indeterminate property is a read-only boolean property. If it returns true, it means it is not
possible to determine the progress. A ProgressIndicator in this state is rendered with some kind of
repeated animation. The progress property is a double property. Its value indicates the progress between
0% and 100%. A negative value indicates that the progress is indeterminate. A value between 0 and 1.0
indicates a determinate state with a progress between 0% and 100%. A value greater than 1.0 is treated as 1.0
(i.e., 100% progress).

Chapter 12 ■ Understanding Controls

530

Both classes provide default constructors that create controls in indeterminate state, as shown in the
following code:

// Create an indeterminate progress indicator and a progress bar
ProgressIndicator indeterminateInd = new ProgressIndicator();
ProgressBar indeterminateBar = new ProgressBar();

The other constructors that take the progress value create controls in the indeterminate or determinate
state. If the progress value is negative, they create controls in indeterminate state. Otherwise, they create
controls in determinate state, as shown in the following code:

// Create a determinate progress indicator with 10% progress
ProgressIndicator indeterminateInd = new ProgressIndicator(0.10);

// Create a determinate progress bar with 70% progress
ProgressBar indeterminateBar = new ProgressBar(0.70);

The program in Listing 12-29 shows how to use ProgressIndicator and ProgressBar controls. Clicking
the Make Progress button increases the progress by 10%. Clicking the Complete Task button completes the
indeterminate tasks by setting their progress to 100%. Typically, the progress properties of these controls
are updated by a long running task when the task progresses to a milestone. You used a button to update the
progress property to keep the program logic simple.

Listing 12-29. Using the ProgressIndicator and ProgressBar Controls

// ProgressTest.java
package com.jdojo.control;

import javafx.application.Application;
import javafx.scene.Scene;
import javafx.scene.control.Button;
import javafx.scene.control.Label;
import javafx.scene.control.ProgressBar;
import javafx.scene.control.ProgressIndicator;
import javafx.scene.layout.GridPane;
import javafx.stage.Stage;

public class ProgressTest extends Application {
 public static void main(String[] args) {
 Application.launch(args);
 }

 @Override
 public void start(Stage stage) {
 ProgressIndicator indeterminateInd = new ProgressIndicator();
 ProgressIndicator determinateInd = new ProgressIndicator(0);

 ProgressBar indeterminateBar = new ProgressBar();
 ProgressBar determinateBar = new ProgressBar(0);

 Button completeIndBtn = new Button("Complete Task");
 completeIndBtn.setOnAction(e -> indeterminateInd.setProgress(1.0));

Chapter 12 ■ Understanding Controls

531

 Button completeBarBtn = new Button("Complete Task");
 completeBarBtn.setOnAction(e -> indeterminateBar.setProgress(1.0));

 Button makeProgresstIndBtn = new Button("Make Progress");
 makeProgresstIndBtn.setOnAction(e -> makeProgress(determinateInd));

 Button makeProgresstBarBtn = new Button("Make Progress");
 makeProgresstBarBtn.setOnAction(e -> makeProgress(determinateBar));

 GridPane root = new GridPane();
 root.setHgap(10);
 root.setVgap(5);
 root.addRow(0, new Label("Indeterminate Progress:"),
 indeterminateInd, completeIndBtn);
 root.addRow(1, new Label("Determinate Progress:"),
 determinateInd, makeProgresstIndBtn);
 root.addRow(2, new Label("Indeterminate Progress:"),
 indeterminateBar, completeBarBtn);
 root.addRow(3, new Label("Determinate Progress:"),
 determinateBar, makeProgresstBarBtn);
 root.setStyle("-fx-padding: 10;" +
 "-fx-border-style: solid inside;" +
 "-fx-border-width: 2;" +
 "-fx-border-insets: 5;" +
 "-fx-border-radius: 5;" +
 "-fx-border-color: blue;");

 Scene scene = new Scene(root);
 stage.setScene(scene);
 stage.setTitle("Using ProgressIndicator and ProgressBar Controls");
 stage.show();
 }

 public void makeProgress(ProgressIndicator p) {
 double progress = p.getProgress();
 if (progress <= 0) {
 progress = 0.1;
 } else {
 progress = progress + 0.1;
 if (progress >= 1.0) {
 progress = 1.0;
 }
 }
 p.setProgress(progress);
 }
}

Chapter 12 ■ Understanding Controls

532

Styling ProgressIndicator with CSS
The default CSS style-class name for a ProgressIndicator is progress-indicator. ProgressIndicator
supports determinate and indeterminate CSS pseudo-classes. The determinate pseudo-class applies when
the indeterminate property is false. The indeterminate pseudo-class applies when the indeterminate
property is true.

ProgressIndicator has a CSS style property named -fx-progress-color, which is the color of the
progress. The following styles set the progress color to red for the indeterminate progress and blue for
determinate progress:

.progress-indicator:indeterminate {
 -fx-progress-color: red;
}

.progress-indicator:determinate {
 -fx-progress-color: blue;
}

The ProgressIndicator contains four substructures:

An •	 indicator substructure, which is a StackPane

A •	 progress substructure, which is StackPane

A •	 percentage substructure, which is a Text

A •	 tick substructure, which is a StackPane

You can style all substructures of a ProgressIndicator. Please refer to the modena.css file for sample code.

Styling ProgressIndicator and Bar with CSS
The default CSS style-class name for a ProgressBar is progress-bar. It supports the CSS style properties:

•	 -fx-indeterminate-bar-length

•	 -fx-indeterminate-bar-escape

•	 -fx-indeterminate-bar-flip

•	 -fx-indeterminate-bar-animation-time

All properties apply to the bar that shows the indeterminate progress. The default bar length is 60px.
Use the -fx-indeterminate-bar-length property to specify a different bar length.

When the -fx-indeterminate-bar-escape property is true, the bar starting edge starts at the starting edge
of the track and the bar trailing edge ends at the ending edge of the track. That is, the bar is displayed beyond
the track length. When this property is false, the bar moves within the track length. The default value is true.

The -fx-indeterminate-bar-flip property indicates whether the bar moves only in one direction or
both. The default value is true, which means the bar moves in both directions by flipping its direction at the
end of each edge.

The -fx-indeterminate-bar-animation-time property is the time in seconds that the bar should take
to go from one edge to the other. The default value is 2.

The ProgressBar contains two substructures:

A track substructure, which is a •	 StackPane

A bar substructure, which is a region•	

Chapter 12 ■ Understanding Controls

533

The following styles modify the background color and radius of the bar and track of ProgressBar
control to give it a look as shown in Figure 12-44:

.progress-bar .track {
 -fx-background-color: lightgray;
 -fx-background-radius: 5;
}

.progress-bar .bar {
 -fx-background-color: blue;
 -fx-background-radius: 5;
}

Figure 12-44. Customizing the bar and track of the ProgressBar control

Arrow Graphic Title

Content

In expanded stateIn collapsed state

Figure 12-45. A TitledPane in the collapsed and expanded states

Understanding the TitledPane Control
TitledPane is a labeled control. The TitledPane class inherits from the Labeled class. A labeled control can
have text and a graphic, so it can have a TitledPane. TitledPane displays the text as its title. The graphic is
shown in the title bar.

Besides text and a graphic, a TitledPane has content, which is a Node. Typically, a group of controls is
placed in a container and the container is added as the content for the TitledPane. TitledPane can be in
a collapsed or expanded state. In the collapsed state, it displays only the title bar and hides the content. In
the expanded state, it displays the title bar and the content. In its title bar, it displays an arrow that indicates
whether it is expanded or collapsed. Clicking anywhere in the title bar expands or collapses the content.
Figure 12-45 shows a TitledPane in both states along with all of its parts.

Chapter 12 ■ Understanding Controls

534

Use the default constructor to create a TitledPane without a title and content. You can set them later
using the setText() and setContent() methods. Alternatively, you can provide the title and content as
arguments to its constructor, using the following code:

// Create a TitledPane and set its title and content
TitledPane infoPane1 = new TitledPane();
infoPane1.setText("Personal Info");
infoPane1.setContent(new Label("Here goes the content."));

// Create a TitledPane with a title and content
TitledPane infoPane2 = new TitledPane("Personal Info", new Label("Content"));

You can add a graphic to a TitledPane using the setGraphic() method, which is declared in the
Labeled class, as shown in the following code:

String imageStr = "resources/picture/privacy_icon.png";
URL imageUrl = getClass().getClassLoader().getResource(imageStr);
Image img = new Image(imageUrl.toExternalForm());
ImageView imgView = new ImageView(img);
infoPane2.setGraphic(imgView);

The TitledPane class declares four properties:

•	 animated

•	 collapsible

•	 content

•	 expanded

The animated property is a boolean property that indicates whether collapse and expand actions are
animated. By default, it is true and those actions are animated. The collapsible property is a boolean
property that indicates whether the TitledPane can collapse. By default, it is set to true and the TitledPane
can collapse. If you do not want your TitledPane to collapse, set this property to false. A noncollapsible
TitledPane does not display an arrow in its title bar. The content property is an Object property that
stores the reference of any node. The content is visible when the control is in the expanded state. The
expanded property is a boolean property. The TitledPane is in an expanded state when the property is true.
Otherwise, it is in a collapsed state. By default, a TitledPane is in an expanded state. Use the setExpanded()
method to expand and collapse the TitledPane programmatically, as shown in the following code:

// Set the state to expanded
infoPane2.setExpanded(true);

Tip ■ add a ChangeListener to its expanded property if you are interested in processing the expanded and
collapsed events for a TitledPane.

Typically, TitledPane controls are used in a group in an Accordion control, which displays only one
TitledPane from the group in the expanded state at a time to save space. You can also use a standalone
TitledPane if you want to show controls in groups.

Chapter 12 ■ Understanding Controls

535

Tip ■ recall that the height of a TitledPane changes as it expands and collapses. do not set its minimum,
preferred, and maximum heights in your code. otherwise, it may result in an unspecified behavior.

The program in Listing 12-30 shows how to use the TitledPane control. It displays a window with a
TitledPane, which lets the user enter the first name, last name, and birth date of a person.

Listing 12-30. Using the TitledPane Control

// TitledPaneTest.java
package com.jdojo.control;

import java.net.URL;
import javafx.application.Application;
import javafx.scene.Scene;
import javafx.scene.control.DatePicker;
import javafx.scene.control.Label;
import javafx.scene.control.TextField;
import javafx.scene.control.TitledPane;
import javafx.scene.image.Image;
import javafx.scene.image.ImageView;
import javafx.scene.layout.GridPane;
import javafx.scene.layout.HBox;
import javafx.stage.Stage;

public class TitledPaneTest extends Application {
 public static void main(String[] args) {
 Application.launch(args);
 }

 @Override
 public void start(Stage stage) {
 TextField firstNameFld = new TextField();
 firstNameFld.setPrefColumnCount(8);

 TextField lastNameFld = new TextField();
 lastNameFld.setPrefColumnCount(8);

 DatePicker dob = new DatePicker();
 dob.setPrefWidth(150);

 GridPane grid = new GridPane();
 grid.addRow(0, new Label("First Name:"), firstNameFld);
 grid.addRow(1, new Label("Last Name:"), lastNameFld);
 grid.addRow(2, new Label("DOB:"), dob);

 TitledPane infoPane = new TitledPane();
 infoPane.setText("Personal Info");
 infoPane.setContent(grid);

Chapter 12 ■ Understanding Controls

536

 String imageStr = "resources/picture/privacy_icon.png";
 URL imageUrl = getClass().getClassLoader().getResource(imageStr);
 Image img = new Image(imageUrl.toExternalForm());
 ImageView imgView = new ImageView(img);
 infoPane.setGraphic(imgView);

 HBox root = new HBox(infoPane);
 root.setSpacing(10);
 root.setStyle("-fx-padding: 10;" +
 "-fx-border-style: solid inside;" +
 "-fx-border-width: 2;" +
 "-fx-border-insets: 5;" +
 "-fx-border-radius: 5;" +
 "-fx-border-color: blue;");

 Scene scene = new Scene(root);
 stage.setScene(scene);
 stage.setTitle("Using TitledPane Controls");
 stage.show();
 }
}

Styling TitledPane with CSS
The default CSS style-class name for a TitledPane is titled-pane. TitledPane adds two style properties
of boolean type:

•	 -fx-animated

•	 -fx-collapsible

The default values for both properties are true. The -fx-animated property indicates whether the
expanding and collapsing actions are animated. The -fx-collapsible property indicates whether
the control can be collapsed.

TitledPane supports two CSS pseudo-classes:

•	 collapsed

•	 expanded

The collapsed pseudo-class applies when the control is collapsed and the expanded pseudo-class
applies when it is expanded.

TitledPane contains two substructures:

•	 title

•	 Content

The title substructure is a StackPane that contains the content of the title bar. The title substructure
contains text and arrow-button substructures. The text substructure is a Label and it holds the title text and
the graphic. The arrow-button substructure is a StackPane that contains an arrow substructure, which is
also a StackPane. The arrow substructure is an indicator that shows whether the control is in an expanded or
collapsed state. The content substructure is a StackPane that contains the content of the control.

Chapter 12 ■ Understanding Controls

537

Let’s look at an example of the effects of applying the four different styles to a TitledPane control, as
presented in the following code:

/* #1 */
.titled-pane > .title {
 -fx-background-color: lightgray;
 -fx-alignment: center-right;
}

/* #2 */
.titled-pane > .title > .text {
 -fx-font-size: 14px;
 -fx-underline: true;
}

/* #3 */
.titled-pane > .title > .arrow-button > .arrow {
 -fx-background-color: blue;
}

/* #4 */
.titled-pane > .content {
 -fx-background-color: burlywood;
 -fx-padding: 10;
}

Style #1 sets the background color of the title to light gray and places the graphic and title at the center
right in the title bar. Style #2 changes the font size of the title text to 14px and underlines it. Setting the text
color of the title using the -fx-text-fill property does not work at the time of this writing and setting the
-fx-text-fill property on the TitledPane itself affects the text color of the content as well. Style #3 sets the
background color of the arrow to blue. Style #4 sets the background color and padding of the content region.
Figure 12-46 shows the same window as show in Figure 12-45 after applying the above styles.

Figure 12-46. Effects of applying styles to a TitledPane

Chapter 12 ■ Understanding Controls

538

Understanding the Accordion Control
Accordion is a simple control. It displays a group of TitledPane controls where only one of them is in
the expanded state at a time. Figure 12-47 shows a window with an Accordion, which contains three
TitledPanes. The General TitledPane is expanded. The Address and Phone TitledPanes are collapsed.

Figure 12-47. An Accordion with three TitledPanes

The Accordion class contains only one constructor (a no-args constructor) to create its object:

// Create an Accordian
Accordion root = new Accordion();

Accordion stores the list of its TilePane controls in an ObservableList<TitledPane>. The getPanes()
method returns the list of the TitledPane. Use the list to add or remove any TitledPane to the Accordion,
as shown in the following code:

TitledPane generalPane = new TitledPane();
TitledPane addressPane = new TitledPane();
TitledPane phonePane = new TitledPane();
...
Accordion root = new Accordion();
root.getPanes().addAll(generalPane, addressPane, phonePane);

The Accordion class contains an expandedPane property, which stores the reference of the currently
expanded TitledPane. By default, an Accordion displays all of its TitledPanes in a collapsed state, and this
property is set to null. Click the title bar of a TitledPane or use the setExpandedPane() method to expand a
TitledPane. Add a ChangeListener to this property if you are interested in when the expanded TitledPane
changes. The program in Listing 12-31 shows how to create and populate an Accordion.

Chapter 12 ■ Understanding Controls

539

Listing 12-31. Using the TitledPane Control

// AccordionTest.java
package com.jdojo.control;

import javafx.application.Application;
import javafx.scene.Scene;
import javafx.scene.control.Accordion;
import javafx.scene.control.DatePicker;
import javafx.scene.control.Label;
import javafx.scene.control.TextField;
import javafx.scene.control.TitledPane;
import javafx.scene.layout.GridPane;
import javafx.stage.Stage;

public class AccordionTest extends Application {
 public static void main(String[] args) {
 Application.launch(args);
 }

 @Override
 public void start(Stage stage) {
 TitledPane generalPane = this.getGeneralPane();
 TitledPane addressPane = this.getAddressPane();
 TitledPane phonePane = this.getPhonePane();

 Accordion root = new Accordion();
 root.getPanes().addAll(generalPane, addressPane, phonePane);
 root.setExpandedPane(generalPane);
 root.setStyle("-fx-padding: 10;" +
 "-fx-border-style: solid inside;" +
 "-fx-border-width: 2;" +
 "-fx-border-insets: 5;" +
 "-fx-border-radius: 5;" +
 "-fx-border-color: blue;");

 Scene scene = new Scene(root);
 stage.setScene(scene);
 stage.setTitle("Using Accordion Controls");
 stage.show();
 }

 public TitledPane getGeneralPane() {
 GridPane grid = new GridPane();
 grid.addRow(0, new Label("First Name:"), new TextField());
 grid.addRow(1, new Label("Last Name:"), new TextField());
 grid.addRow(2, new Label("DOB:"), new DatePicker());

 TitledPane generalPane = new TitledPane("General", grid);
 return generalPane;
 }

Chapter 12 ■ Understanding Controls

540

 public TitledPane getAddressPane() {
 GridPane grid = new GridPane();
 grid.addRow(0, new Label("Street:"), new TextField());
 grid.addRow(1, new Label("City:"), new TextField());
 grid.addRow(2, new Label("State:"), new TextField());
 grid.addRow(3, new Label("ZIP:"), new TextField());

 TitledPane addressPane = new TitledPane("Address", grid);
 return addressPane;
 }

 public TitledPane getPhonePane() {
 GridPane grid = new GridPane();
 grid.addRow(0, new Label("Home:"), new TextField());
 grid.addRow(1, new Label("Work:"), new TextField());
 grid.addRow(2, new Label("Cell:"), new TextField());

 TitledPane phonePane = new TitledPane("Phone", grid);
 return phonePane;
 }
}

Styling Accordion with CSS
The default CSS style-class name for an Accordion is accordion. Accordion does not add any CSS
properties. It contains a first-titled-pane substructure, which is the first TitledPane. The following style
sets the background color and insets of the title bar of all TitledPanes:

.accordion > .titled-pane > .title {
 -fx-background-color: burlywood;
 -fx-background-insets: 1;
}

The following style sets the background color of the title bar of the first TitledPane of the Accordion:

.accordion > .first-titled-pane > .title {
 -fx-background-color: derive(red, 80%);
}

Understanding the Pagination Control
Pagination is used to display a large single content by dividing sections of it into smaller chunks called
pages, for example, the results of a search. Figure 12-48 shows a Pagination control. A Pagination control
has a page count, which is the number of pages in it. If the number of pages is not known, the page count
may be indeterminate. Each page has an index, which starts at 0.

Chapter 12 ■ Understanding Controls

541

A Pagination control is divided into two areas:

Content area•	

Navigation area•	

The content area displays the content of the current page. The navigation area contains parts to allow
the user to navigate from one page to another. You can navigate between pages sequentially or randomly.
The parts of a Pagination control are shown in Figure 12-49.

Figure 12-49. Parts of a Pagination control

Figure 12-48. A Pagination control

The previous and next page arrow buttons let the user navigate to the previous and next pages,
respectively. The previous page button is disabled when you are on the first page. The next page button is
disabled when you are on the last page. Page indicators also let you navigate to a specific page by showing
all of the page numbers. By default, page indicators use a tool tip to show the page number, which you have
the option to disable using a CSS property. The selected page indicator shows the current page. The selected
page label shows the current page selection details.

The Pagination class provides several constructors. They configure the control differently. The default
constructor creates a control with an indeterminate page count and zero as the index for the selected page,
as in the following code:

// Indeterminate page count and first page selected
Pagination pagination1 = new Pagination();

When the page count is indeterminate, the page indicator label displays x/..., where x is the current
page index plus 1.

You use another constructor to specify a page count, as in the following code:

// 5 as the page count and first page selected
Pagination pagination2 = new Pagination(5);

Chapter 12 ■ Understanding Controls

542

You can use yet another constructor to specify the page count and the selected page index, as in the
following code:

// 5 as the page count and second page selected (page index starts at 0)
Pagination pagination3 = new Pagination(5, 1);

The Pagination class declares an INDETERMINATE constant that can be used to specify an indeterminate
page count, as in the following code:

// Indeterminate page count and second page selected
Pagination pagination4 = new Pagination(Pagination.INDETERMINATE, 1);

The Pagination class contains the following properties:

•	 currentPageIndex

•	 maxPageIndicatorCount

•	 pageCount

•	 pageFactory

The currentPageIndex is an integer property. Its value is the page index of the page to display.
The default value is zero. You can specify its value using one of the constructors or using the
setCurrentPageIndex() method. If you set its value to less than zero, the first page index, which is zero, is set
as its value. If you set its value to greater than the page count minus 1, its value is set to page count minus 1. If
you want to know when a new page is displayed, add a ChangeListener to the currentPageIndex property.

The maxPageIndicatorCount is an integer property. It sets the maximum number of page indicators to
display. It defaults to 10. Its value remains unchanged if it is set beyond the page count range. If its value is
set too high, the value is reduced so that the number of page indicators fits the control. You can set its value
using the setMaxPageIndicatorCount() method.

The pageCount is an integer property. It is the number of pages in the Pagination control. Its value must
be greater than or equal to 1. It defaults to indeterminate. Its value can be set in the constructors or using the
setPageCount() method.

The pageFactory is the most important property. It is an object property of the Callback<Integer,
Node> type. It is used to generate pages. When a page needs to be displayed, the control calls the call()
method of the Callback object passing the page index. The call() method returns a node that is the content
of the page. The following snippet of code creates and sets a page factory for a Pagination control. The page
factory returns a Label:

// Create a Pagination with an indeterminate page count
Pagination pagination = new Pagination();

// Create a page factory that returns a Label
Callback<Integer, Node> factory = pageIndex -> new Label("Content for page " + (pageIndex + 1));

// Set the page factory
pagination.setPageFactory(factory);

Tip ■ the call() method of the page factory should return null if a page index does not exist. the current
page does not change when the call() method returns null.

Chapter 12 ■ Understanding Controls

543

The program in Listing 12-32 shows how to use a Pagination control. It sets the page count to 5.
The page factory returns a Label with text that shows the page number. It will display a window with a
Pagination control similar to the one shown in Figure 12-48.

Listing 12-32. Using the Pagination Control

// PaginationTest.java
package com.jdojo.control;

import javafx.application.Application;
import javafx.scene.Scene;
import javafx.scene.control.Label;
import javafx.scene.control.Pagination;
import javafx.scene.layout.VBox;
import javafx.stage.Stage;

public class PaginationTest extends Application {
 private static final int PAGE_COUNT = 5;

 public static void main(String[] args) {
 Application.launch(args);
 }

 @Override
 public void start(Stage stage) {
 Pagination pagination = new Pagination(PAGE_COUNT);

 // Set the page factory
 pagination.setPageFactory(this::getPage);

 VBox root = new VBox(pagination);
 root.setStyle("-fx-padding: 10;" +
 "-fx-border-style: solid inside;" +
 "-fx-border-width: 2;" +
 "-fx-border-insets: 5;" +
 "-fx-border-radius: 5;" +
 "-fx-border-color: blue;");

 Scene scene = new Scene(root);
 stage.setScene(scene);
 stage.setTitle("Using Pagination Controls");
 stage.show();
 }

 public Label getPage(int pageIndex) {
 Label content = null;

 if (pageIndex >= 0 && pageIndex < PAGE_COUNT) {
 content = new Label("Content for page " + (pageIndex + 1));
 }
 return content;
 }
}

Chapter 12 ■ Understanding Controls

544

The page indicators may be numeric buttons or bullet buttons. Numeric buttons are used by default.
The Pagination class contains a String constant named STYLE_CLASS_BULLET, which is the style class for
the control if you want to use bullet buttons. The following snippet of code creates a Pagination control and
sets its style class to use bullet buttons as page indicators. Figure 12-50 shows a Pagination control with
bullet buttons as page indicators.

Pagination pagination = new Pagination(5);

// Use bullet page indicators
pagination.getStyleClass().add(Pagination.STYLE_CLASS_BULLET);

3/5

Content for page 3

Figure 12-50. A Pagination control using bullet buttons as page indicators

Styling Pagination with CSS
The default CSS style-class name for a Pagination control is pagination. Pagination adds several CSS
properties:

•	 -fx-max-page-indicator-count

•	 -fx-arrows-visible

•	 -fx-tooltip-visible

•	 -fx-page-information-visible

•	 -fx-page-information-alignment

The -fx-max-page-indicator-count property specifies the maximum number of page indicators to
display. The default value is 10. The -fx-arrows-visible property specifies whether the previous and
next page buttons are visible. The default value is true. The -fx-tooltip-visible property specifies
whether a tool tip is displayed when the mouse hovers over a page indicator. The default value is true.
The -fx-page-information-visible specifies whether the selected page label is visible. The default value
is true. The -fx-page-information-alignment specifies the location of the selected page label relative to
the page indicators. The possible values are top, right, bottom, and left. The default value is bottom, which
displays the selected page indicator below the page indicators.

The Pagination control has two substructures of StackPane type:

•	 page

•	 pagination-control

Chapter 12 ■ Understanding Controls

545

The page substructure represents the content area. The pagination-control substructure represents
the navigation area and it has the following substructures:

•	 left-arrow-button

•	 right-arrow-Button

•	 bullet-button

•	 number-button

•	 page-information

The left-arrow-button and right-arrow-button substructures are of the Button type. They represent
the previous and next page buttons, respectively. The left-arrow-button substructure has a left-arrow
substructure, which is a StackPane, and it represents the arrow in the previous page button. The right-
arrow-button substructure has a right-arrow substructure, which is a StackPane, and it represents the
arrow in the next page button. The bullet-button and number-button are of the ToggleButton type, and
they represent the page indicators. The page-information substructure is a Label that holds the selected
page information. The pagination-control substructure holds the previous and next page buttons and the
page indicators in a substructure called control-box, which is an HBox.

The following styles make the selected page label invisible, set the page background to light gray, and
draw a border around the previous, next, and page indicator buttons. Please refer to the modena.css file for
more details on how to style a Pagination control.

.pagination {
 -fx-page-information-visible: false;
}

.pagination > .page {
 -fx-background-color: lightgray;
}

.pagination > .pagination-control > .control-box {
 -fx-padding: 2;
 -fx-border-style: dashed;
 -fx-border-width: 1;
 -fx-border-radius: 5;
 -fx-border-color: blue;
}

Understanding the Tool Tip Control
A tool tip is a pop-up control used to show additional information about a node. It is displayed when a
mouse pointer hovers over the node. There is a small delay between when the mouse pointer hovers over a
node and when the tool tip for the node is shown. The tool tip is hidden after a small period. It is also hidden
when the mouse pointer leaves the control. You should not design a GUI application where the user depends
on seeing tool tips for controls, as they may not be shown at all if the mouse pointer never hovers over the
controls. Figure 12-51 shows a window with a tool tip, which displays Saves the data text.

Chapter 12 ■ Understanding Controls

546

A tool tip is represented by an instance of the Tooltip class, which inherits from the PopupControl
class. A tool tip can have text and a graphic. You can create a tool tip using its default constructor, which
has no text and no graphic. You can also create a tool tip with text using the other constructor, as in the
following code:

// Create a Tooltip with No text and no graphic
Tooltip tooltip1 = new Tooltip();

// Create a Tooltip with text
Tooltip tooltip2 = new Tooltip("Closes the window");

A tool tip needs to be installed for a node using the install() static method of the Tooltip class.
Use the uninstall() static method to uninstalled a tool tip for a node:

Button saveBtn = new Button("Save");
Tooltip tooltip = new Tooltip("Saves the data");

// Install a tooltip
Tooltip.install(saveBtn, tooltip);
...
// Uninstall the tooltip
Tooltip.uninstall(saveBtn, tooltip);

Tool tips are frequently used for UI controls. Therefore, installing tool tips for controls has been made
easier. The Control class contains a tooltip property, which is an object property of the Tooltip type.
You can use the setTooltip() method of the Control class to set a Tooltip for controls. If a node is not a
control, for example, a Circle node, you will need to use the install() method to set a tool tip as shown
above. The following snippet of code shows how to use the tooltip property for a button:

Button saveBtn = new Button("Save");

// Install a tooltip
saveBtn.setTooltip(new Tooltip("Saves the data"));
...
// Uninstall the tooltip
saveBtn.setTooltip(null);

Tip ■ a tool tip can be shared among multiple nodes. a tool tip uses a Label control to display its text and
graphic. internally, all content-related properties set on a tool tip are delegated to the Label control.

Figure 12-51. A window showing a tool tip

Chapter 12 ■ Understanding Controls

547

The Tooltip class contains several properties:

•	 text

•	 graphic

•	 contentDisplay

•	 textAlignment

•	 textOverrun

•	 wrapText

•	 graphicTextGap

•	 font

•	 activated

The text property is a String property, which is the text to be displayed in the tool tip. The graphic
property is an object property of the Node type. It is an icon for the tool tip. The contentDisplay property
is an object property of the ContentDisplay enum type. It specifies the position of the graphic relative to
the text. The possible value is one of the constants in the ContentDisplay enum: TOP, RIGHT, BOTTOM, LEFT,
CENTER, TEXT_ONLY, and GRAPHIC_ONLY. The default value is LEFT, which places the graphic left to the text.

The following snippet of code uses an icon for a tool tip and places it above the text. The icon is just a
Label with X as its text. Figure 12-52 shows how the tool tip looks.

// Create and configure the Tooltip
Tooltip closeBtnTip = new Tooltip("Closes the window");
closeBtnTip.setStyle("-fx-background-color: yellow; -fx-text-fill: black;");

// Display the icon above the text
closeBtnTip.setContentDisplay(ContentDisplay.TOP);

Label closeTipIcon = new Label("X");
closeTipIcon.setStyle("-fx-text-fill: red;");
closeBtnTip.setGraphic(closeTipIcon);

// Create a Button and set its Tooltip
Button closeBtn = new Button("Close");
closeBtn.setTooltip(closeBtnTip);

Figure 12-52. Using an icon and placing it at the top of the text in a tool tip

Chapter 12 ■ Understanding Controls

548

The textAlignment property is an object property of the TextAlignment enum type. If specifies
the text alignment when the text spans multiple lines. The possible value is one of the constants in the
TextAlignment enum: LEFT, RIGHT, CENTER, and JUSTIFY.

The textOverrun property is an object property of the OverrunStyle enum type. It specifies the
behavior to use when there is not enough space in the tool tip to display the entire text. The default behavior
is to use an ellipsis.

The wrapText is a boolean property. It specifies whether text should be wrapped onto another line if its
run exceeds the width of the tool tip. The default value is false.

The graphicTextGap property is a double property that specifies the space between the text and graphic
in pixel. The default value is 4. The font property is an object property of the Font type. It specifies the
default font to use for the text. The activated property is a read-only boolean property. It is true when the
tool tip is activated. Otherwise, it is false. A tool tip is activated when the mouse moves over a control, and it
is shown after it is activated.

The program in Listing 12-33 shows how to create, configure, and set tool tips for controls. After you run
the application, place the mouse pointer over the name field, Save button, and Close button. After a short
time, their tool tips will be displayed. The tool tip for the Close button looks different from that of the Save
button. It uses an icon and different background and text colors.

Listing 12-33. Using the Tooltip Control

// TooltipTest.java
package com.jdojo.control;

import javafx.application.Application;
import javafx.scene.Scene;
import javafx.scene.control.Button;
import javafx.scene.control.ContentDisplay;
import javafx.scene.control.Label;
import javafx.scene.control.TextField;
import javafx.scene.control.Tooltip;
import javafx.scene.layout.HBox;
import javafx.stage.Stage;

public class TooltipTest extends Application {
 public static void main(String[] args) {
 Application.launch(args);
 }

 @Override
 public void start(Stage stage) {
 Label nameLbl = new Label("Name:");
 TextField nameFld = new TextField();
 Button saveBtn = new Button("Save");
 Button closeBtn = new Button("Close");

 // Set an ActionEvent handler
 closeBtn.setOnAction(e -> stage.close());

 // Add tooltips for Name field and Save button
 nameFld.setTooltip(new Tooltip("Enter your name\n(Max. 10 chars)"));
 saveBtn.setTooltip(new Tooltip("Saves the data"));

Chapter 12 ■ Understanding Controls

549

 // Create and configure the Tooltip for Close button
 Tooltip closeBtnTip = new Tooltip("Closes the window");
 closeBtnTip.setStyle("-fx-background-color: yellow; " +
 " -fx-text-fill: black;");

 // Display the icon above the text
 closeBtnTip.setContentDisplay(ContentDisplay.TOP);

 Label closeTipIcon = new Label("X");
 closeTipIcon.setStyle("-fx-text-fill: red;");
 closeBtnTip.setGraphic(closeTipIcon);

 // Set its Tooltip for Close button
 closeBtn.setTooltip(closeBtnTip);

 HBox root = new HBox(nameLbl, nameFld, saveBtn, closeBtn);
 root.setSpacing(10);
 root.setStyle("-fx-padding: 10;" +
 "-fx-border-style: solid inside;" +
 "-fx-border-width: 2;" +
 "-fx-border-insets: 5;" +
 "-fx-border-radius: 5;" +
 "-fx-border-color: blue;");

 Scene scene = new Scene(root);
 stage.setScene(scene);
 stage.setTitle("Using Tooltip Controls");
 stage.show();
 }
}

Styling Tooltip with CSS
The default CSS style-class name for a Tooltip control is tooltip. Tooltip add several CSS properties:

•	 -fx-text-alignment

•	 -fx-text-overrun

•	 -fx-wrap-text

•	 -fx-graphic

•	 -fx-content-display

•	 -fx-graphic-text-gap

•	 -fx-font

Chapter 12 ■ Understanding Controls

550

All of the CSS properties correspond to the content-related properties in the Tooltip class. Please refer
to the previous section for the description of all these properties. The following code sets the background
color, text color, and the wrap text properties for Tooltip:

.tooltip {
 -fx-background-color: yellow;
 -fx-text-fill: black;
 -fx-wrap-text: true;
}

Providing Scrolling Features in Controls
JavaFX provides two controls named ScrollBar and ScrollPane that provide scrolling features to other
controls. Typically, these controls are not used alone. They are used to support scrolling in other controls.

Understanding the ScrollBar Control
ScrollBar is a basic control that does not provide the scrolling feature by itself. It is represented as a
horizontal or vertical bar that lets users choose a value from a range of values. Figure 12-53 shows a
horizontal and a vertical scrollbar.

Thumb
Track

Increment
button

Decrement
button

A horizontal scrollbar A vertical scrollbar

Figure 12-53. Horizontal and vertical scrollbars with their parts

A ScrollBar control consists of four parts:

An increment button to increase the value•	

A decrement button to decrease the value•	

A thumb (or knob) to show the current value•	

A track where the thumb moves•	

The increment and decrement buttons in a vertical ScrollBar are on the bottom and top, respectively.
The ScrollBar class provides a default constructor that creates a horizontal scrollbar. You can set its

orientation to vertical using the setOrientation() method:

// Create a horizontal scroll bar
ScrollBar hsb = new ScrollBar();

// Create a vertical scroll bar
ScrollBar vsb = new ScrollBar();
vsb.setOrientation(Orientation.VERTICAL);

Chapter 12 ■ Understanding Controls

551

The min and max properties represent the range of its value. Its value property is the current value.
The default values for min, max, and value properties are 0, 100, and 0, respectively. If you are interested in
knowing when the value property changes, you need to add a ChangeListener to it. The following code
would set the value properties to 0, 200, and 150:

ScrollBar hsb = new ScrollBar();
hsb.setMin(0);
hsb.setMax(200);
hsb.setValue(150);

The current value of a scrollbar may be changed three different ways:

Programmatically using the •	 setValue(), increment(), and decrement() methods

By the user dragging the thumb on the track•	

By the user clicking the increment and decrement buttons•	

The blockIncrement and unitIncrement properties specify the amount to adjust the current value
when the user clicks the track and the increment or decrement buttons, respectively. Typically, the block
increment is set to a larger value than the unit increment.

The default CSS style-class name for a ScrollBar control is scroll-bar. ScrollBar supports two CSS
pseudo-classes: horizontal and vertical. Some of its properties can be set using CSS.

ScrollBar is rarely used directly by developers. It is used to build complete controls that support
scrolling, for example, the ScrollPane control. If you need to provide scrolling capability to a control, use the
ScrollPane, which I will discuss in the next section.

Understanding the ScrollPane Control
A ScrollPane provides a scrollable view of a node. A ScrollPane consists of a horizontal ScrollBar, a
vertical ScrollBar, and a content node. The node for which the ScrollPane provides scrolling is the content
node. If you want to provide a scrollable view of multiple nodes, add them to a layout pane, for example, a
GridPane, and then, add the layout pane to the ScrollPane as the content node. ScrollPane uses a scroll
policy to specify when to show a specific scrollbar. The area through which the content is visible is known as
viewport. Figure 12-54 shows a ScrollPane with a Label as its content node.

Figure 12-54. A ScrollPane with a Label as its content node

Tip ■ some of the commonly used controls that need scrolling capability, for example, a TextArea, provide
a built-in ScrollPane, which is part of such controls.

Chapter 12 ■ Understanding Controls

552

You can use the constructors of the ScrollPane class to create an empty ScrollPane or a ScrollPane
with a content node, as shown in the following code. You can set the content node later using the
setContent() method.

Label poemLbl1 = ...
Label poemLbl2 = ...

// Create an empty ScrollPane
ScrollPane sPane1 = new ScrollPane();

// Set the content node for the ScrollPane
sPane1.setContent(poemLbl1);

// Create a ScrollPane with a content node
ScrollPane sPane2 = new ScrollPane(poemLbl2);

Tip ■ the ScrollPane provides the scrolling for its content based on the layout bounds of the content. if the
content uses effects or transformation, for example, scaling, you need to wrap the content in a Group and add
the Group to the ScrollPane get proper scrolling.

The ScrollPane class contains several properties, most of which are commonly not used by developers:

•	 content

•	 pannable

•	 fitToHeight

•	 fitToWidth

•	 hbarPolicy

•	 vbarPolicy

•	 hmin

•	 hmax

•	 hvalue

•	 vmin

•	 vmax

•	 vvalue

•	 prefViewportHeight

•	 prefViewportWidth

•	 viewportBounds

The content property is an object property of the Node type and it specifies the content node. You can
scroll the content using the scrollbars or by panning. If you use panning, you need to drag the mouse while
left, right, or both buttons are pressed to scroll the content. By default, a ScrollPane is not pannable and you

Chapter 12 ■ Understanding Controls

553

need to use the scrollbars to scroll through the content. The pannable property is a boolean property that
specifies whether the ScrollPane is pannable. Use the setPannable(true) method to make a ScrollPane
pannable.

The fitToHeight and fitToWidth properties specify whether the content node is resized to match the
height and width of the viewport, respectively. By default, they are false. These properties are ignored if the
content node is not resizable. Figure 12-55 shows the same ScrollPane as shown in Figure 12-54 with its
fitToHeight and fitToWidth properties set to true. Notice that the Label content node has been resized to
fit into the viewport.

Figure 12-55. A ScrollPane with fitToHeight and fitToWidth properties set to true

The hbarPolicy and vbarPolicy properties are object properties of the ScrollPane.ScrollBarPolicy
enum type. They specify when to show the horizontal and vertical scrollbars. The possible values are ALWAYS,
AS_NEEDED, and NEVER. When the policy is set to ALWAYS, the scrollbar is shown all the time. When the policy
is set to AS_NEEDED, the scrollbar is shown when required based on the size of the content. When the policy is
set to NEVER, the scrollbar is never shown.

The hmin, hmax, and hvalue properties specify the min, max, and value properties of the horizontal
scrollbar, respectively. The vmin, vmax, and vvalue properties specify the min, max, and value properties
of the vertical scrollbar, respectively. Typically, you do not set these properties. They change based on the
content and as the user scrolls through the content.

The prefViewportHeight and prefViewportWidth are the preferred height and width, respectively, of
the viewport that is available to the content node.

The viewportBounds is an object property of the Bounds type. It is the actual bounds of the viewport.
The program in Listing 12-34 shows how to use a ScrollPane. It sets a Label with four lines of text as its
content. It also makes the ScrollPane pannable. That is, you can drag the mouse clicking its button to scroll
through the text.

Listing 12-34. Using ScrollPane

// ScrollPaneTest.java
package com.jdojo.control;

import javafx.application.Application;
import javafx.scene.Scene;
import javafx.scene.control.Label;
import javafx.scene.control.ScrollPane;
import javafx.scene.layout.HBox;
import javafx.stage.Stage;

public class ScrollPaneTest extends Application {
 public static void main(String[] args) {
 launch(args);
 }

Chapter 12 ■ Understanding Controls

554

 @Override
 public void start(Stage stage) {
 Label poemLbl = new Label("I told her this; her laughter light\n" +
 "Is ringing in my ears;\n" +
 "And when I think upon that night\n" +
 "My eyes are dim with tears.");

 // Create a scroll pane with poemLbl as its content
 ScrollPane sPane = new ScrollPane(poemLbl);
 sPane.setPannable(true);

 HBox root = new HBox(sPane);
 root.setStyle("-fx-padding: 10;" +
 "-fx-border-style: solid inside;" +
 "-fx-border-width: 2;" +
 "-fx-border-insets: 5;" +
 "-fx-border-radius: 5;" +
 "-fx-border-color: blue;");

 Scene scene = new Scene(root);
 stage.setScene(scene);
 stage.setTitle("Using ScrollPane Controls");
 stage.show();
 }
}

The default CSS style-class name for a ScrollPane control is scroll-pane. Please refer to the
modena.css file for sample styles and the online JavaFX CSS Reference Guide for the complete list of CSS
properties and pseudo-classes supported by the ScrollPane.

Keeping Things Separate
Sometimes you may want to place logically related controls side by side horizontally or vertically. For better
appearance, controls are grouped using different types of separators. Sometimes using a border suffices;
but sometimes you will use the TitledPane controls. The Separator and SplitPane controls are solely
meant for visually separating two controls or two groups of controls.

Understanding the Separator Control
A Separator is a horizontal or vertical line that separates two groups of controls. Typically, they are used in
menus or combo boxes. Figure 12-56 shows menu items of a restaurant separated by horizontal and vertical
separators.

Chapter 12 ■ Understanding Controls

555

The default constructor creates a horizontal Separator. To create a vertical Separator, you can specify a
vertical orientation in the constructor or use the setOrientation() method, as shown in the following code:

// Create a horizontal separator
Separator separator1 = new Separator();

// Change the orientation to vertical
separator1.setOrientation(Orientation.VERTICAL);

// Create a vertical separator
Separator separator2 = new Separator(Orientation.VERTICAL);

A separator resizes itself to fill the space allocated to it. A horizontal Separator resizes horizontally
and a vertical Separator resizes vertically. Internally, a Separator is a Region. You can change its color and
thickness using a CSS.

The Separator class contains three properties:

•	 orientation

•	 halignment

•	 valignment

The orientation property specifies the orientation of the control. The possible values are one of the
two constants of the Orientation enum: HORIZONTAL and VERTICAL. The halignment property specifies the
horizontal alignment of the separator line within the width of a vertical separator. This property is ignored
for a horizontal separator. The possible values are one of the constants of the HPos enum: LEFT, CENTER,
and RIGHT. The default value is CENTER. The valignment property specifies the vertical alignment of the
separator line within the height of a horizontal separator. This property is ignored for a vertical separator.
The possible values are one of the constants of the VPos enum: BASELINE, TOP, CENTER, and BOTTOM. The
default value is CENTER.

Figure 12-56. Using horizontal and vertical separators

Chapter 12 ■ Understanding Controls

556

Styling Separator with CSS
The default CSS style-class name for a Separator control is separator. Separator contains CSS properties,
which corresponds to its Java properties:

•	 -fx-orientation

•	 -fx-halignment

•	 -fx-valignment

Separator supports horizontal and vertical CSS pseudo-classes that apply to horizontal and vertical
separators, respectively. It contains a line substructure that is a Region. The line you see in a separator
is created by specifying the border for the line substructure. The following style was used to create the
separators in Figure 12-56:

.separator > .line {
 -fx-border-style: solid;
 -fx-border-width: 1;
}

You can use an image as a separator. Set the appropriate width or height of the separator and use an
image as the background image. The following code assumes that the separator.jpg image file exists in
the same directory as the CSS file containing the style. The styles set the preferred height of the horizontal
separator and the preferred width of the vertical separator to 10px.

.separator {
 -fx-background-image: url("separator.jpg");
 -fx-background-repeat: repeat;
 -fx-background-position: center;
 -fx-background-size: cover;
}

.separator:horizontal {
 -fx-pref-height: 10;
}

.separator:vertical {
 -fx-pref-width: 10;
}

Understanding the SplitPane Control
SplitPane arranges multiple nodes by placing them horizontally or vertically separated by a divider. The
divider can be dragged by the user, so the node on one side of the divider expands and the node on the other
side shrinks by the same amount. Typically, each node in a SplitPane is a layout pane containing some
controls. However, you can use any node, for example, a Button. If you have used Windows Explorer, you
are already familiar with using a SplitPane. In a Windows Explorer, the divider separates the tree view and
the list view. Using the divider, you can resize the width of the tree view and the width of the list view resizes
with the equal amount in the opposite direction. A resizable HTML frameset works similar to a SplitPane.
Figure 12-57 shows a window with a horizontal SplitPane. The SplitPane contains two VBox layout panes,
each of them contains a Label and a TextArea. Figure 12-57 shows the divider dragged to the right, so the
left VBox gets more width than the right one.

Chapter 12 ■ Understanding Controls

557

You can create a SplitPane using the default constructor of the SplitPane class:

SplitPane sp = new SplitPane();

The getItems() method of the SplitPane class returns the ObservableList<Node> that stores the list of
nodes in a SplitPane. Add all your nodes to this list, as shown in the following code:

// Create panes
GridPane leftPane = new GridPane();
GridPane centerPane = new GridPane();
GridPane rightPane = new GridPane();

/* Populate the left, center, and right panes with controls here */

// Add panels to the a SplitPane
SplitPane sp = new SplitPane();
sp.getItems().addAll(leftPane, centerPane, rightPane);

By default, SplitPane places its nodes horizontally. Its orientation property can be used to specify the
orientation:

// Place nodes vertically
sp.setOrientation(Orientation.VERTICAL);

A divider can be moved between the leftmost and rightmost edges or topmost and bottommost edges
provided it does not overlap any other divider. The divider position can be set between 0 and 1. The position
0 means topmost or leftmost. The position 1 means bottommost or rightmost. By default, a divider is placed
in the middle with its position set to 0.5. Use either of the following two methods to set the position of a
divider:

•	 setDividerPositions(double... positions)

•	 setDividerPosition(int dividerIndex, double position)

The setDividerPositions() method takes the positions of multiple dividers. You must provide
positions for all dividers from starting up to the one you want to set the positions.

If you want to set the position for a specific divider, use the setDividerPosition() method. The first
divider has the index 0. Positions passed in for an index outside the range are ignored.

Divider

Figure 12-57. A window with a horizontal SplitPane

Chapter 12 ■ Understanding Controls

558

The getDividerPositions() method returns the positions of all dividers. It returns a double array.
The index of dividers matches the index of the array elements.

By default, SplitPane resizes its nodes when it is resized. You can prevent a specific node from resizing
with the SplitPane using the setResizableWithParent() static method:

// Make node1 non-resizable
SplitPane.setResizableWithParent(node1, false);

The program in Listing 12-35 shows how to use SplitPane. It displays a window as shown in Figure 12-57.
Run the program and use the mouse to drag the divider to the left or right to adjust the spacing for the left
and right nodes.

Listing 12-35. Using SplitPane Controls

// SplitPaneTest.java
package com.jdojo.control;

import javafx.application.Application;
import javafx.scene.Scene;
import javafx.scene.control.Label;
import javafx.scene.control.SplitPane;
import javafx.scene.control.TextArea;
import javafx.scene.layout.HBox;
import javafx.scene.layout.VBox;
import javafx.stage.Stage;

public class SplitPaneTest extends Application {
 public static void main(String[] args) {
 Application.launch(args);
 }

 @Override
 public void start(Stage stage) {
 TextArea desc1 = new TextArea();
 desc1.setPrefColumnCount(10);
 desc1.setPrefRowCount(4);

 TextArea desc2 = new TextArea();
 desc2.setPrefColumnCount(10);
 desc2.setPrefRowCount(4);

 VBox vb1 = new VBox(new Label("Description1"), desc1);
 VBox vb2 = new VBox(new Label("Description2"), desc2);

 SplitPane sp = new SplitPane();
 sp.getItems().addAll(vb1, vb2);

 HBox root = new HBox(sp);
 root.setSpacing(10);
 root.setStyle("-fx-padding: 10;" +
 "-fx-border-style: solid inside;" +
 "-fx-border-width: 2;" +

Chapter 12 ■ Understanding Controls

559

 "-fx-border-insets: 5;" +
 "-fx-border-radius: 5;" +
 "-fx-border-color: blue;");

 Scene scene = new Scene(root);
 stage.setScene(scene);
 stage.setTitle("Using SplitPane Controls");
 stage.show();
 }
}

Styling SplitPane with CSS
The default CSS style-class name for a SplitPane control is split-pane. SplitPane contains -fx-orientation
CSS properties, which determine its orientation. The possible values are horizontal and vertical.

SplitPane supports horizontal and vertical CSS pseudo-classes that apply to horizontal and vertical
SplitPanes, respectively. The divider is a split-pane-divider substructure of the SplitPane, which is a
StackPane. The following code sets a blue background color for dividers, 5px preferred width for dividers in
a horizontal SplitPane, and 5px preferred height for dividers in a vertical SplitPane:

.split-pane > .split-pane-divider {
 -fx-background-color: blue;
}

.split-pane:horizontal > .split-pane-divider {
 -fx-pref-width: 5;
}

.split-pane:vertical > .split-pane-divider {
 -fx-pref-height: 5;
}

The split-pane-divider substructure contains a grabber substructure, which is a StackPane. Its CSS
style-class name is horizontal-grabber for a horizontal SplitPane and vertical-grabber for a vertical
SplitPane. The grabber is shown in the middle of the divider.

Understanding the Slider Control
A Slider lets the user select a numeric value from a numeric range graphically by sliding a thumb (or knob)
along a track. A slider can be horizontal or vertical. Figure 12-58 shows a horizontal slider.

Track Thumb

Tick label Major tick Minor tick

Figure 12-58. A horizontal Slider control and its parts

Chapter 12 ■ Understanding Controls

560

A slider has minimum and maximum values that determine the range of the valid selectable values. The
thumb of the slider indicates its current value. You can slide the thumb along the track to change the current
value. Major and minor tick marks shows the location of values along the track. You can also show tick
labels. Custom labels are also supported.

The following code creates a Slider control using its default constructor that sets 0, 100, and 0 as the
minimum, maximum, and current value, respectively. The default orientation is horizontal.

// Create a horizontal slider
Slider s1 = new Slider();

Use another constructor to specify the minimum, maximum, and current values:

// Create a horizontal slider with the specified min, max, and value
double min = 0.0;
double max = 200.0;
double value = 50.0;
Slider s2 = new Slider(min, max, value);

A Slider control contains several properties. I will discuss them by categories. The is horizontal.
orientation property specifies the orientation of the slider:

// Create a vertical slider
Slider vs = new Slider();
vs.setOrientation(Orientation.VERTICAL);

The following properties are related to the current value and the range of values:

•	 min

•	 max

•	 value

•	 valueChanging

•	 snapToTicks

The min, max, and value properties are double properties, and they represent the minimum, maximum,
and current values, respectively, of the slider. The current value of the slider can be changed by dragging the
thumb on the track or using the setValue() method. The following snippet of code creates a slider and sets
its min, max, and value properties to 0, 10, and 3, respectively:

Slider scoreSlider = new Slider();
scoreSlider.setMin(0.0);
scoreSlider.setMax(10.0);
scoreSlider.setValue(3.0);

Typically, you want to perform an action when the value property of the slider changes. You will need to
add a ChangeListener to the value property. The following statement adds a ChangeListener using a lambda
expression to the scoreSlider control and prints the old and new values whenever the value property changes:

scoreSlider.valueProperty().addListener(
 (ObservableValue<? extends Number> prop, Number oldVal, Number newVal) -> {
 System.out.println("Changed from " + oldVal + " to " + newVal);
});

Chapter 12 ■ Understanding Controls

561

The valueChanging property is a boolean property. It is set to true when the user presses the thumb
and is set to false when the thumb is released. As the user drags the thumb, the value keeps changing and
the valueChanging property is true. This property helps you avoid repeating an action if you want to take the
action only once when the value changes.

The snapToTicks property is a boolean property, which is false by default. It specifies whether the value
property of the slider is always aligned with the tick marks. If it is set to false, the value could be anywhere in
the min to max range.

Be careful in using the valueChanging property inside a ChangeListener. The listener may be called
several times for what the user sees as one change. Expecting that the ChangeListener will be notified when
the valueChanging property changes from true to false, you wrap the main logic for the action inside an if
statement:

if (scoreSlider.isValueChanging()) {
 // Do not perform any action as the value changes
} else {
 // Perform the action as the value has been changed
}

The logic works fine when the snapToTicks property is set to true. The ChangeListener for the value
property is notified when the valueChanging property changes from true to false only when the snapToTicks
property is set to true. Therefore, do not write the above logic unless you have set the snapToTicks property
to true as well.

The following properties of the Slider class specify the tick spacing:

•	 majorTickUnit

•	 minorTickCount

•	 blockIncrement

The majorTickUnit property is a double property. It specifies the unit of distance between two major
ticks. Suppose the min property is set to 0 and the majorTickUnit to 10. The slider will have major ticks
at 0, 10, 20, 30, and so forth. An out-of-range value for this property disables the major ticks. The default
value for the property is 25.

The minorTickCount property is an integer property. It specifies the number of minor ticks between two
major ticks. The default value for the property is 3.

You can change the thumb position by using keys, for example, using left and right arrow keys in a
horizontal slider and up and down arrow keys in a vertical slider. The blockIncrement property is a double
property. It specifies the amount by which the current value of the slider is adjusted when the thumb is
operating by using keys. The default value for the property is 10.

The following properties specify whether the tick marks and tick labels are shown; by default, they are
set to false:

•	 showTickMarks

•	 showTickLabels

Chapter 12 ■ Understanding Controls

562

The labelFormatter property is an object property of the StringConverter<Double> type. By default,
it is null and the slider uses a default StringConverter that displays the numeric values for the major ticks.
The values for the major ticks are passed to the toString() method and the method is supposed to return a
custom label for that value. The following snippet of code creates a slider with custom major tick labels, as
shown in Figure 12-59:

Slider scoreSlider = new Slider();
scoreSlider.setShowTickLabels(true);
scoreSlider.setShowTickMarks(true);
scoreSlider.setMajorTickUnit(10);
scoreSlider.setMinorTickCount(3);
scoreSlider.setBlockIncrement(20);
scoreSlider.setSnapToTicks(true);

// Set a custom major tick formatter
scoreSlider.setLabelFormatter(new StringConverter<Double>() {
 @Override
 public String toString(Double value) {
 String label = "";
 if (value == 40) {
 label = "F";
 } else if (value == 70) {
 label = "C";
 } else if (value == 80) {
 label = "B";
 } else if (value == 90) {
 label = "A";
 }

 return label;
 }

 @Override
 public Double fromString(String string) {
 return null; // Not used
 }
});

Figure 12-59. A slider with custom major tick labels

The program in Listing 12-36 shows how to use Slider controls. It adds a Rectangle, a Label, and three
Slider controls to a window. It adds a ChangeListener to the Sliders. Sliders represent red, green, and
blue components of a color. When you change the value for a slider, the new color is computed and set as the
fill color for the rectangle.

Chapter 12 ■ Understanding Controls

563

Listing 12-36. Using the Slider Control

// SliderTest.java
package com.jdojo.control;

import javafx.application.Application;
import javafx.beans.value.ObservableValue;
import javafx.scene.Scene;
import javafx.scene.control.Label;
import javafx.scene.control.Slider;
import javafx.scene.layout.GridPane;
import javafx.scene.paint.Color;
import javafx.scene.shape.Rectangle;
import javafx.stage.Stage;

public class SliderTest extends Application {
 Rectangle rect = new Rectangle(0, 0, 200, 50);
 Slider redSlider = getSlider();
 Slider greenSlider = getSlider();
 Slider blueSlider = getSlider();

 public static void main(String[] args) {
 Application.launch(args);
 }

 @Override
 public void start(Stage stage) {
 // Add a ChangeListener to all sliders
 redSlider.valueProperty().addListener(this::changed);
 greenSlider.valueProperty().addListener(this::changed);
 blueSlider.valueProperty().addListener(this::changed);

 GridPane root = new GridPane();
 root.setVgap(10);
 root.add(rect, 0, 0, 2, 1);
 root.add(new Label("Use sliders to change the fill color"), 0, 1, 2, 1);
 root.addRow(2, new Label("Red:"), redSlider);
 root.addRow(3, new Label("Green:"), greenSlider);
 root.addRow(4, new Label("Blue:"), blueSlider);

 root.setStyle("-fx-padding: 10;" +
 "-fx-border-style: solid inside;" +
 "-fx-border-width: 2;" +
 "-fx-border-insets: 5;" +
 "-fx-border-radius: 5;" +
 "-fx-border-color: blue;");

 Scene scene = new Scene(root);
 stage.setScene(scene);
 stage.setTitle("Using Slider Controls");
 stage.show();

Chapter 12 ■ Understanding Controls

564

 // Adjust the fill color of the rectangle
 changeColor();
 }

 public Slider getSlider() {
 Slider slider = new Slider(0, 255, 125);
 slider.setShowTickLabels(true);
 slider.setShowTickMarks(true);
 slider.setMajorTickUnit(85);
 slider.setMinorTickCount(10);
 slider.setBlockIncrement(20);
 slider.setSnapToTicks(true);
 return slider;
 }

 // A change listener to track the change in color
 public void changed(ObservableValue<? extends Number> prop,
 Number oldValue,
 Number newValue) {
 changeColor();
 }

 public void changeColor() {
 int r = (int)redSlider.getValue();
 int g = (int)greenSlider.getValue();
 int b = (int)blueSlider.getValue();
 Color fillColor = Color.rgb(r, g, b);
 rect.setFill(fillColor);
 }
}

Styling Slider with CSS
The default CSS style-class name for a Slider control is slider. Slider contains the following CSS
properties, each of them corresponds to its Java property in the Slider class:

•	 -fx-orientation

•	 -fx-show-tick-labels

•	 -fx-show-tick-marks

•	 -fx-major-tick-unit

•	 -fx-minor-tick-count

•	 -fx-show-tick-labels

•	 -fx-snap-to-ticks

•	 -fx-block-increment

Chapter 12 ■ Understanding Controls

565

Slider supports horizontal and vertical CSS pseudo-classes that apply to horizontal and vertical
sliders, respectively. A Slider control contains three substructures that can be styled:

•	 axis

•	 track

•	 thumb

The axis substructure is a NumberAxis. It displays the tick marks and tick labels. The following code sets
the tick label color to blue, major tick length to 15px, minor tick length to 5px, major tick color to red, and
minor tick color to green:

.slider > .axis {
 -fx-tick-label-fill: blue;
 -fx-tick-length: 15px;
 -fx-minor-tick-length: 5px
}

.slider > .axis > .axis-tick-mark {
 -fx-stroke: red;
}

.slider > .axis > .axis-minor-tick-mark {
 -fx-stroke: green;
}

The track substructure is a StackPane. The following code changes the background color of track
to red:

.slider > .track {
 -fx-background-color: red;
}

The thumb substructure is a StackPane. The thumb looks circular because it is given a background
radius. If you remove the background radius, it will look rectangular, as shown in the following code:

.slider .thumb {
 -fx-background-radius: 0;
}

You can make an image like a thumb by setting the background of the thumb substructure to an image
as follows (assuming that the thumb.jpg image file exists in the same directory as the CSS file containing
the style):

.slider .thumb {
 -fx-background-image: url("thumb.jpg");
}

You can give the thumb any shape using the -fx-shape CSS property. The following code gives the
thumb a triangular shape. The triangle is inverted for a horizontal slider and is pointed to the right for a
vertical slider. Figure 12-60 shows a horizontal slider with the thumb.

Chapter 12 ■ Understanding Controls

566

/* An inverted triangle */
.slider > .thumb {
 -fx-shape: "M0, 0L10, 0L5, 10 Z";
}

/* A triangle pointing to the right*/
.slider:vertical > .thumb {
 -fx-shape: "M0, 0L10, 5L0, 10 Z";
}

Figure 12-60. A slider with an inverted triangle thumb

The following code gives the thumb a shape of a triangle placed beside a rectangle. The triangle is
inverted for a horizontal slider and is pointed to the right for a vertical slider. Figure 12-61 shows a horizontal
slider with the thumb.

/* An inverted triangle below a rectangle*/
.slider > .thumb {
 -fx-shape: "M0, 0L10, 0L10, 5L5, 10L0, 5 Z";
}

/* A triangle pointing to the right by the right side of a rectangle */
.slider:vertical > .thumb {
 -fx-shape: "M0, 0L5, 0L10, 5L5, 10L0, 10 Z";
}

Figure 12-61. A slider with a thumb of an inverted triangle below a rectangle

Understanding Menus
A menu is used to provide a list of actionable items to the user in a compact form. You can also provide the
same list of items using a group of buttons, where each button represents an actionable item. It is a matter of
preference which one you use: a menu or a group of buttons.

There is a noticeable advantage of a using a menu. It uses much less space on the screen, compared to
a group of buttons, by folding (or nesting) the group of items under another item. For example, if you have
used a file editor, the menu items such as New, Open, Save, and Print are nested under a top-level File menu.
A user needs to click the File menu to see the list of items that are available under it. Typically, in cases of a
group of buttons, all items are visible to the user all the time, and it is easy for users to know what actions are
available. Therefore, there is little tradeoff between the amount of space and usability when you decide to
use a menu or buttons. Typically, a menu bar is displayed at the top of a window.

Chapter 12 ■ Understanding Controls

567

Tip ■ there is another kind of menu, which is called a context menu or pop-up menu, which is displayed on
demand. i will discuss context menus in the next section.

A menu consists of several parts. Figure 12-62 shows a menu and its parts when the Save As submenu
is expanded. A menu bar is the topmost part of the menu that holds menus. The menu bar is always visible.
File, Edit, Options, and Help are the menu items shown in Figure 12-62. A menu contains menu items and
submenus. In Figure 12-62, the File menu contains four menu items: New, Open, Save, and Exit; it contains
two separator menu items and one Save As submenu. The Save As submenu contains two menu items: Text
and PDF. A menu item is an actionable item. A separator menu item has a horizontal line that separates a
group of related menu items from another group of items in a menu. Typically, a menu represents a category
of items.

Menu bar

Menu
items

Submenu

Menu item

Menus

Separator menu item

Menu items

Figure 12-62. A menu with a menu bar, menus, submenus, separators, and menu items

Using a menu is a multistep process. The following sections describe the steps in detail. The following is
the summary of steps:

 1. Create a menu bar and add it to a container.

 2. Create menus and add them to the menu bar.

 3. Create menu items and add them to the menus.

 4. Add ActionEvent handlers to the menu items to perform actions when they are
clicked.

Using Menu Bars
A menu bar is a horizontal bar that acts as a container for menus. An instance of the MenuBar class represents
a menu bar. You can create a MenuBar using its default constructor:

MenuBar menuBar = new MenuBar();

Chapter 12 ■ Understanding Controls

568

MenuBar is a control. Typically, it is added to the top part of a window. If you use a BorderPane as the
root for a scene in a window, the top region is the usual place for a MenuBar:

// Add the MenuBar to the top region
BorderPane root = new BorderPane();
root.setBottom(menuBar);

The MenuBar class contains a useSystemMenuBar property, which is of boolean type. By default, it is
set to false. When set to true, it will use the system menu bar if the platform supports it. For example, Mac
supports a system menu bar. If you set this property to true on Mac, the MenuBar will use the system menu
bar to display its items:

// Let the MenuBar use system menu bar
menuBar.setUseSystemMenuBar(true);

A MenuBar itself does not take any space unless you add menus to it. Its size is computed based on
the details of the menus it contains. A MenuBar stores all of its menus in an ObservableList of Menu whose
reference is returned by its getMenus() method:

// Add some menus to the MenuBar
Menu fileMenu = new Menu("File");
Menu editMenu = new Menu("Edit");
menuBar.getMenus().addAll(fileMenu, editMenu);

Using Menus
A menu contains a list of actionable items, which are displayed on demand, for example, by clicking it.
The list of menu items is hidden when the user selects an item or moves the mouse pointer outside the list.
A menu is typically added to a menu bar or another menu as a submenu.

An instance of the Menu class represents a menu. A menu displays text and a graphic. Use the default
constructor to create an empty menu, and later, set the text and graphic:

// Create a Menu with an empty string text and no graphic
Menu aMenu = new Menu();

// Set the text and graphic to the Menu
aMenu.setText("Text");
aMenu.setGraphic(new ImageView(new Image("image.jpg")));

You can create a menu with its text, or text and a graphic, using other constructors:

// Create a File Menu
Menu fileMenu1 = new Menu("File");

// Create a File Menu
Menu fileMenu2 = new Menu("File", new ImageView(new Image("file.jpg")));

Chapter 12 ■ Understanding Controls

569

The Menu class is inherited from the MenuItem class, which is inherited from the Object class. Menu is not
a node, and therefore, it cannot be added to a scene graph directly. You need to add it to a MenuBar. Use the
getMenus() method to get the ObservableList<Menu> for the MenuBar and add instances of the Menu class to
the list. The following snippet of code adds four Menu instances to a MenuBar:

Menu fileMenu = new Menu("File");
Menu editMenu = new Menu("Edit");
Menu optionsMenu = new Menu("Options");
Menu helpMenu = new Menu("Help");

// Add menus to a menu bar
MenuBar menuBar = new MenuBar();
menuBar.getMenus().addAll(fileMenu, editMenu, optionsMenu, helpMenu);

When a menu is clicked, typically its list of menu items are displayed, but no action is taken. The Menu
class contains the following properties that can be set to handle when its list of options are showing, shown,
hiding, and hidden, respectively:

•	 onShowing

•	 onShown

•	 onHiding

•	 onHidden

•	 showing

The onShowing event handler is called just before the menu items for the menu is shown. The onShown
event handler is called after the menu items are displayed. The onHiding and onHidden event handlers are
the counterparts of the onShowing and onShown event handlers, respectively.

Typically, you add an onShowing event handler that enables or disables its menu items based on
some criteria. For example, suppose you have an Edit menu with Cut, Copy, and Paste menu items. In the
onShowing event handler, you would enable or disable these menu items depending on whether the focus is
in a text input control, if the control is enabled, or if the control has selection:

editMenu.setOnAction(e -> {/* Enable/disable menu items here */});

Tip ■ Users do not like surprises when using a gUi application. For a better user experience, you should
disable menu items instead of making them invisible when they are not applicable. Making them invisible
changes the positions of other items and users have to relocate them.

The showing property is a read-only boolean property. It is set to true when the items in the menu are
showing. It is set to false when they are hidden.

The program in Listing 12-37 puts this all together. It creates four menus, a menu bar, adds menus
to the menu bar, and adds the menu bar to the top region of a BorderPane. Figure 12-63 shows the menu
bar in the window. But you have not seen anything exciting about menus yet! You will need to add menu
items to the menus to experience some excitement.

Chapter 12 ■ Understanding Controls

570

Listing 12-37. Creating a Menu Bar and Adding Menus to It

// MenuTest.java
package com.jdojo.control;

import javafx.application.Application;
import javafx.scene.Scene;
import javafx.scene.control.Menu;
import javafx.scene.control.MenuBar;
import javafx.scene.layout.BorderPane;
import javafx.stage.Stage;

public class MenuTest extends Application {
 public static void main(String[] args) {
 Application.launch(args);
 }

 @Override
 public void start(Stage stage) {
 // Create some menus
 Menu fileMenu = new Menu("File");
 Menu editMenu = new Menu("Edit");
 Menu optionsMenu = new Menu("Options");
 Menu helpMenu = new Menu("Help");

 // Add menus to a menu bar
 MenuBar menuBar = new MenuBar();
 menuBar.getMenus().addAll(fileMenu, editMenu, optionsMenu, helpMenu);

 BorderPane root = new BorderPane();
 root.setTop(menuBar);
 root.setStyle("-fx-padding: 10;" +
 "-fx-border-style: solid inside;" +
 "-fx-border-width: 2;" +
 "-fx-border-insets: 5;" +
 "-fx-border-radius: 5;" +
 "-fx-border-color: blue;");

 Scene scene = new Scene(root);
 stage.setScene(scene);
 stage.setTitle("Using Menus");
 stage.show();
 }
}

Figure 12-63. A menu bar with four menus

Chapter 12 ■ Understanding Controls

571

Using Menu Items
A menu item is an actionable item in a menu. The action associated with a menu item is performed by the
mouse or keys. Menu items can be styled using a CSS.

An instance of the MenuItem class represents a menu item. The MenuItem class is not a node. It is
inherited from the Object class and, therefore, cannot be added directly to a scene graph. You need to add it
to a menu.

You can add several types of menu items to a menu. Figure 12-64 shows the class diagram for the
MenuItem class and its subclasses that represent a specific type of menu item.

Figure 12-64. A class diagram for the MenuItem class and its subclasses

You can use the following types of menu items:

A •	 MenuItem for an actionable option

A •	 RadioMenuItem for a group of mutually exclusive options

A •	 CheckMenuItem for a toggle option

A •	 Menu, when used as a menu item and acts as a submenu that holds a list of
menu items

A •	 CustomMenuItem for an arbitrary node to be used as an menu item

A •	 SeparatorMenuItem, which is a CustomMenuItem, to display a separator as a
menu item

I will discuss all menu item types in details in the sections to follow.

Using a MenuItem
A MenuItem represents an actionable option. When it is clicked, the registered ActionEvent handlers are
called. The following snippet of code creates an Exit MenuItem and adds an ActionEvent handler that exits
the application:

MenuItem exitItem = new MenuItem("Exit");
exitItem.setOnAction(e -> Platform.exit());

A MenuItem is added to a menu. A menu stores the reference of its MenuItems in an
ObservableList<MenuItem> whose reference can be obtained using the getItems() method:

Menu fileMenu = new Menu("File");
fileMenu.getItems().add(exitItem);

Chapter 12 ■ Understanding Controls

572

The MenuItem class contains the following properties that apply to all types of menu items:

•	 text

•	 graphic

•	 disable

•	 visible

•	 accelerator

•	 mnemonicParsing

•	 onAction

•	 onMenuValidation

•	 parentMenu

•	 parentPopup

•	 style

•	 id

The text and graphic properties are the text and graphics for the menu item, respectively, which
are of String and Node types. The disable and visible properties are boolean properties. They specify
whether the menu item is disabled and visible. The accelerator property is an object property of the
KeyCombination type that specifies a key combination that can be used to execute the action associated with
the menu item in one keystroke. The following snippet of code creates a Rectangle menu item and sets its
accelerator to Alt + R. The accelerator for a menu item is shown next to it, as shown in Figure 12-65, so the
user can learn about it by looking at the menu item. The user can activate the Rectangle menu item directly
by pressing Alt + R.

MenuItem rectItem = new MenuItem("Rectangle");
KeyCombination kr = new KeyCodeCombination(KeyCode.R, KeyCombination.ALT_DOWN);
rectItem.setAccelerator(kr);

Figure 12-65. A menu item with an accelerator Alt + R

The mnemonicParsing property is a boolean property. It enables or disables text parsing to detect a
mnemonic character. By default, it is set to true for menu items. If it is set to true, the text for the menu
item is parsed for an underscore character. The character following the first underscore is added as the
mnemonic for the menu item. Pressing the Alt key on Windows highlights mnemonics for all menu items.
Typically, mnemonic characters are shown in underlined font style. Pressing the key for the mnemonic
character activates the menu item.

// Create a menu item with x as its mnemonic character
MenuItem exitItem = new MenuItem("E_xit");

Chapter 12 ■ Understanding Controls

573

The onAction property is an ActionEvent handler that is called when the menu item is activated, for
example, by clicking it with a mouse or pressing its accelerator key:

// Close the application when the Exit menu item is activated
exitItem.setOnAction(e -> Platform.exit());

The onMenuValidation property is an event handler that is called when a MenuItem is accessed using its
accelerator or when the onShowing event handler for its menu (the parent) is called. For a menu, this handler
is called when its menu items are shown.

The parentMenu property is a read-only object property of the Menu type. It is the reference of the Menu,
which contains the menu item. Using this property and the items list returned by the getItems() method of
the Menu class, you can navigate the menu tree from top to bottom and vice versa.

The parentPopup property is a read-only object property of the ContextMenu type. It is the reference of
the ContextMenu in which the menu item appears. It is null for a menu item appearing in a normal menu.

The style and ID properties are included to support styling using a CSS. They represent the CSS style
and ID.

Using a RadioMenuItem
A RadioMenuItem represents a mutually exclusive option. Typically, you add RadioMenuItem in multiples
to a ToggleGroup, so only one item is selected. RadioMenuItem displays a check mark when selected. The
following snippet of code creates three instances of RadioMenuItem and adds them to a ToggleGroup. Finally,
they are all added to a File Menu. Typically, a RadioMenuItem in a group is selected by default. Figure 12-66
shows the group of RadioMenuItems: once when Rectangle is selected and once when Circle is selected.

// Create three RadioMenuItems
RadioMenuItem rectItem = new RadioMenuItem("Rectangle");
RadioMenuItem circleItem = new RadioMenuItem("Circle");
RadioMenuItem ellipseItem = new RadioMenuItem("Ellipse");

// Select the Rantangle option by default
rectItem.setSelected(true);

// Add them to a ToggleGroup to make them mutually exclusive
ToggleGroup shapeGroup = new ToggleGroup();
shapeGroup.getToggles().addAll(rectItem, circleItem, ellipseItem);

// Add RadioMenuItems to a File Menu
Menu fileMenu = new Menu("File");
fileMenu.getItems().addAll(rectItem, circleItem, ellipseItem);

Figure 12-66. RadioMenuItems in action

Chapter 12 ■ Understanding Controls

574

Add an ActionEvent handler to the RadioMenuItem if you want to perform an action when it is selected.
The following snippet of code adds an ActionEvent handler to each RadioMenuItem, which calls a draw()
method:

rectItem.setOnAction(e -> draw());
circleItem.setOnAction(e -> draw());
ellipseItem.setOnAction(e -> draw());

Using a CheckMenuItem
Use a CheckMenuItem to represent a boolean menu item that can be toggled between selected and
unselected states. Suppose you have an application that draws shapes. You can have a Draw Stroke menu
item as a CheckMenuItem. When it is selected, a stroke will be drawn for the shape. Otherwise, the shape will
not have a stroke, as indicated in the following code. Use an ActionEvent handler to be notified when the
state of the CheckMenuItem is toggled.

CheckMenuItem strokeItem = new CheckMenuItem("Draw Stroke");
strokeItem.setOnAction(e -> drawStroke());

When a CheckMenuItem is selected, a check mark is displayed beside it.

Using a Submenu Item
Notice that the Menu class is inherited from the MenuItem class. This makes it possible to use a Menu in place
of a MenuItem. Use a Menu as a menu item to create a submenu. When the mouse hovers over a submenu,
its list of options is displayed.

The following snippet of code creates a MenuBar, adds a File menu, adds New and Open MenuItems
and a Save As submenu to the File menu, and adds Text and PDF menu items to the Save As submenu.
It produces a menu as shown in Figure 12-67.

MenuBar menuBar = new MenuBar();
Menu fileMenu = new Menu("File");
menuBar.getMenus().addAll(fileMenu);

MenuItem newItem = new MenuItem("New");
MenuItem openItem = new MenuItem("Open");
Menu saveAsSubMenu = new Menu("Save As");

// Add menu items to the File menu
fileMenu.getItems().addAll(newItem, openItem, saveAsSubMenu);

MenuItem textItem = new MenuItem("Text");
MenuItem pdfItem = new MenuItem("PDF");
saveAsSubMenu.getItems().addAll(textItem, pdfItem);

Chapter 12 ■ Understanding Controls

575

Typically, you do not add an ActionEvent handler for a submenu. Rather, you set an event handler to
the onShowing property that is called before the list of items for the submenu is displayed. The event handler
is used to enable or disable menu items.

Using a CustomMenuItem
CustomMenuItem is a simple yet powerful menu item type. It opens the door for all kinds of creativity for
designing menu items. It lets you use any node. For example, you can use a Slider, a TextField, or an HBox
as a menu item. The CustomMenuItem class contains two properties:

•	 content

•	 hideOnClick

The content property is an object property of Node type. Its value is the node that you want to use as the
menu item.

When you click a menu item, all visible menus are hidden and only top-level menus in the menu bar
stay visible. When you use a custom menu item that has controls, you do not want to hide menus when the
user clicks it because the user needs to interact with the menu item, for example, to enter or select some
data. The hideOnClick property is a boolean property that lets you control this behavior. By default, it is set
to true, which means clicking a custom menu hides all showing menus.

The CustomMenuItem class provides several constructors. The default constructor creates a custom
menu item setting the content property to null and the hideOnClick property to true, as shown in the
following code:

// Create a Slider control
Slider slider = new Slider(1, 10, 1);

// Create a custom menu item and set its content and hideOnClick properties
CustomMenuItem cmi1 = new CustomMenuItem();
cmi1.setContent(slider);
cmi1.setHideOnClick(false);

Figure 12-67. A menu used as a submenu

Chapter 12 ■ Understanding Controls

576

// Create a custom menu item with a Slider content and
// set the hideOnClick property to false
CustomMenuItem cmi2 = new CustomMenuItem(slider);
cmi1.setHideOnClick(false);

// Create a custom menu item with a Slider content and false hideOnClick
CustomMenuItem cmi2 = new CustomMenuItem(slider, false);

The following snippet of code produces a menu as shown in Figure 12-68. One of the menu items is a
CustomMenuItem, which uses a slider as its content.

CheckMenuItem strokeItem = new CheckMenuItem("Draw Stroke");
strokeItem.setSelected(true);

Slider strokeWidthSlider = new Slider(1, 10, 1);
strokeWidthSlider.setShowTickLabels(true);
strokeWidthSlider.setShowTickMarks(true);
strokeWidthSlider.setMajorTickUnit(2);
CustomMenuItem strokeWidthItem = new CustomMenuItem(strokeWidthSlider, false);

Menu optionsMenu = new Menu("Options");
optionsMenu.getItems().addAll(strokeItem, strokeWidthItem);

MenuBar menuBar = new MenuBar();
menuBar.getMenus().add(optionsMenu);

Figure 12-68. A slider as a custom menu item

Using a SeparatorMenuItem
There is nothing special to discuss about the SeparatorMenuItem. It inherits from the CustomMenuItem.
It uses a horizontal Separator control as its content and sets the hideOnClick to false. It is used to separate
menu items belonging to different groups, as shown in the following code. It provides a default constructor.

// Create a separator menu item
SeparatorMenuItem smi = SeparatorMenuItem();

Chapter 12 ■ Understanding Controls

577

Putting All Parts of Menus Together
Understanding the parts of menus is easy. However, using them in code is tricky because you have to create
all parts separately, add listeners to them, and then assemble them.

The program in Listing 12-38 creates a shape drawing application using menus. It uses all types of menu
items. The program displays a window with a BorderPane as the root of its scene. The top region contains a
menu and the center region contains a canvas on which shapes are drawn.

Run the application and use the File menu to draw different types of shapes; clicking the Clear menu
item clears the canvas. Clicking the Exit menu item closes the application.

Use the Options menu to draw or not to draw the strokes and set the stroke width. Notice that a slider
is used as a custom menu item under the Options menu. When you adjust the slider value, the stroke width
of the drawn shape is adjusted accordingly. The Draw Stroke menu item is a CheckMenuItem. When it is
unselected, the slider menu item is disabled and the shape does not use a stroke.

Listing 12-38. Using Menus in a Shape Drawing Application

// MenuItemTest.java
package com.jdojo.control;

import javafx.application.Application;
import javafx.application.Platform;
import javafx.beans.value.ObservableValue;
import javafx.scene.Scene;
import javafx.scene.canvas.Canvas;
import javafx.scene.canvas.GraphicsContext;
import javafx.scene.control.CheckMenuItem;
import javafx.scene.control.CustomMenuItem;
import javafx.scene.control.Menu;
import javafx.scene.control.MenuBar;
import javafx.scene.control.MenuItem;
import javafx.scene.control.RadioMenuItem;
import javafx.scene.control.SeparatorMenuItem;
import javafx.scene.control.Slider;
import javafx.scene.control.ToggleGroup;
import javafx.scene.input.KeyCode;
import javafx.scene.input.KeyCodeCombination;
import javafx.scene.input.KeyCombination;
import javafx.scene.layout.BorderPane;
import javafx.scene.paint.Color;
import javafx.stage.Stage;

public class MenuItemTest extends Application {
 // A canvas to draw shapes
 Canvas canvas = new Canvas(200, 200);

 // Create three RadioMenuItems for shapes
 RadioMenuItem rectItem = new RadioMenuItem("_Rectangle");
 RadioMenuItem circleItem = new RadioMenuItem("_Circle");
 RadioMenuItem ellipseItem = new RadioMenuItem("_Ellipse");

 // A menu item to draw stroke
 CheckMenuItem strokeItem = new CheckMenuItem("Draw _Stroke");

Chapter 12 ■ Understanding Controls

578

 // To adjust the stroke width
 Slider strokeWidthSlider = new Slider(1, 10, 1);
 CustomMenuItem strokeWidthItem = new CustomMenuItem(strokeWidthSlider, false);

 public static void main(String[] args) {
 Application.launch(args);
 }

 @Override
 public void start(Stage stage) {
 Menu fileMenu = getFileMenu();
 Menu optionsMenu = getOptionsMenu();

 MenuBar menuBar = new MenuBar();
 menuBar.getMenus().addAll(fileMenu, optionsMenu);

 // Draw the default shape, which is a Rectangle
 this.draw();

 BorderPane root = new BorderPane();
 root.setTop(menuBar);
 root.setCenter(canvas);
 root.setStyle("-fx-padding: 10;" +
 "-fx-border-style: solid inside;" +
 "-fx-border-width: 2;" +
 "-fx-border-insets: 5;" +
 "-fx-border-radius: 5;" +
 "-fx-border-color: blue;");

 Scene scene = new Scene(root);
 stage.setScene(scene);
 stage.setTitle("Using Different Types of Menu Items");
 stage.show();
 }

 public void draw() {
 GraphicsContext gc = canvas.getGraphicsContext2D();
 gc.clearRect(0, 0, 200, 200); // First clear the canvas

 // Set drawing parameters
 gc.setFill(Color.TAN);
 gc.setStroke(Color.RED);
 gc.setLineWidth(strokeWidthSlider.getValue());

 String shapeType = getSelectedShape();
 switch(shapeType) {
 case "Rectangle":
 gc.fillRect(0, 0, 200, 200);
 if (strokeItem.isSelected()) {
 gc.strokeRect(0, 0, 200, 200);
 }
 break;

Chapter 12 ■ Understanding Controls

579

 case "Circle":
 gc.fillOval(10, 10, 180, 180);
 if (strokeItem.isSelected()) {
 gc.strokeOval(10, 10, 180, 180);
 }
 break;
 case "Ellipse":
 gc.fillOval(10, 10, 180, 150);
 if (strokeItem.isSelected()) {
 gc.strokeOval(10, 10, 180, 150);
 }
 break;
 default:
 clear(); // Do not know the shape type
 }
 }

 public void clear() {
 canvas.getGraphicsContext2D().clearRect(0, 0, 200, 200);
 this.rectItem.setSelected(false);
 this.circleItem.setSelected(false);
 this.ellipseItem.setSelected(false);
 }

 public Menu getFileMenu() {
 Menu fileMenu = new Menu("_File");

 // Make Rectangle the default option
 rectItem.setSelected(true);

 // Set Key Combinations for shapes
 KeyCombination kr =
 new KeyCodeCombination(KeyCode.R, KeyCombination.ALT_DOWN);
 KeyCombination kc =
 new KeyCodeCombination(KeyCode.C, KeyCombination.ALT_DOWN);
 KeyCombination ke =
 new KeyCodeCombination(KeyCode.E, KeyCombination.ALT_DOWN);
 rectItem.setAccelerator(kr);
 circleItem.setAccelerator(kc);
 ellipseItem.setAccelerator(ke);

 // Add ActionEvent handler to all shape radio menu items
 rectItem.setOnAction(e -> draw());
 circleItem.setOnAction(e -> draw());
 ellipseItem.setOnAction(e -> draw());

 // Add RadioMenuItems to a ToggleGroup to make them mutually exclusive
 ToggleGroup shapeGroup = new ToggleGroup();
 shapeGroup.getToggles().addAll(rectItem, circleItem, ellipseItem);

Chapter 12 ■ Understanding Controls

580

 MenuItem clearItem = new MenuItem("Cle_ar");
 clearItem.setOnAction(e -> clear());

 MenuItem exitItem = new MenuItem("E_xit");
 exitItem.setOnAction(e -> Platform.exit());

 // Add menu items to the File menu
 fileMenu.getItems().addAll(rectItem,
 circleItem, ellipseItem,
 new SeparatorMenuItem(),
 clearItem,
 new SeparatorMenuItem(),
 exitItem);
 return fileMenu;
 }

 public Menu getOptionsMenu() {
 // Draw stroke by default
 strokeItem.setSelected(true);

 // Redraw the shape when draw stroke option toggles
 strokeItem.setOnAction(e -> syncStroke());

 // Configure the slider
 strokeWidthSlider.setShowTickLabels(true);
 strokeWidthSlider.setShowTickMarks(true);
 strokeWidthSlider.setMajorTickUnit(2);
 strokeWidthSlider.setSnapToPixel(true);
 strokeWidthSlider.valueProperty().addListener(this::strokeWidthChanged);

 Menu optionsMenu = new Menu("_Options");
 optionsMenu.getItems().addAll(strokeItem, this.strokeWidthItem);

 return optionsMenu;
 }

 public void strokeWidthChanged (ObservableValue<? extends Number> prop,
 Number oldValue,
 Number newValue) {
 draw();
 }

 public String getSelectedShape() {
 if (rectItem.isSelected()) {
 return "Rectangle";
 }
 else if (circleItem.isSelected()) {
 return "Circle";
 }
 else if (ellipseItem.isSelected()) {
 return "Ellipse";

Chapter 12 ■ Understanding Controls

581

 } else {
 return "";
 }
 }

 public void syncStroke() {
 // Enable/disable the slider
 strokeWidthSlider.setDisable(!strokeItem.isSelected());
 draw();
 }
}

Styling Menus Using CSS
There are several components involved in using a menu. Table 12-6 lists the default CSS style-class names
for components related to menus.

Table 12-6. CSS Default Style-Class Names for Menu-Related Components

Menu Component Style-Class Name

MenuBar menu-bar

Menu menu

MenuItem menu-item

RadioMenuItem radio-menu-item

CheckMenuItem check-menu-item

CustomMenuItem custom-menu-item

SeparatorMenuItem separator-menu-item

MenuBar supports an -fx-use-system-menu-bar property, which is set to false by default. It indicates
whether to use a system menu for the menu bar. It contains a menu substructure that holds the menus
for the menu bar. Menu supports a showing CSS pseudo-class, which applies when the menu is showing.
RadioMenuItem and CheckMenuItem support a selected CSS pseudo-class, which applies when the menu
items are selected.

You can style several components of menus. Please refer to the modena.css file for the sample styles.

Understanding the ContextMenu Control
ContextMenu is a pop-up control that displays a list of menu items on request. It is also known as a context
or pop-up menu. By default, it is hidden. The user has to make a request, usually by right-clicking the mouse
button, to show it. It is hidden once a selection is made. The user can dismiss a context menu by pressing the
Esc key or clicking outside its bounds.

A context menu has a usability problem. It is difficult for users to know about its existence. Usually,
nontechnical users are not accustomed to right-clicking the mouse and making selections. For those users,
you can present the same options using toolbars or buttons instead. Sometimes, a text message is included
on the screen stating that the user needs to right-click to view or show the context menu.

Chapter 12 ■ Understanding Controls

582

An object of the ContextMenu class represents a context menu. It stores the reference of its menu items
in an ObservableList<MenuItem>. The getItems() method returns the reference of the observable list.

You will use the following three menu items in the examples presented below. Note that the menu items
in a context menu could be an object of the MenuItem class or its subclasses. For the complete list of menu
item types, please refer to the “Understanding Menus” section.

MenuItem rectItem = new MenuItem("Rectangle");
MenuItem circleItem = new MenuItem("Circle");
MenuItem ellipseItem = new MenuItem("Ellipse");

The default constructor of the ContextMenu class creates an empty menu. You need to add the menu
items later:

ContextMenu ctxMenu = new ContextMenu();
ctxMenu.getItems().addAll(rectItem, circleItem, ellipseItem);

You can use the other constructor to create a context menu with an initial list of menu items:

ContextMenu ctxMenu = new ContextMenu(rectItem, circleItem, ellipseItem);

Typically, context menus are provided for controls for accessing their commonly used features, for
example, Cut, Copy, and Paste features of text input controls. Some controls have default context menus.
The control class makes it easy to display a context menu. It has a contextMenu property. You need to set this
property to your context menu reference for the control. The following snippet of code sets the context menu
for a TextField control:

ContextMenu ctxMenu = ...
TextField nameFld = new TextField();
nameFld.setContextMenu(ctxMenu);

When you right-click the TextField, your context menu will be displayed instead the default one.

Tip ■ activating an empty context menu does not show anything. if you want to disable the default context
menu for a control, set its contextMenu property to an empty ContextMenu.

Nodes that are not controls do not have a contextMenu property. You need to use the show() method of
the ContextMenu class to display the context menu for these nodes. The show() method gives you full control
of the position where the context menu is displayed. You can use it for controls as well if you want to finetune
the positioning of the context menu. The show() method is overloaded:

void show(Node anchor, double screenX, double screenY)
void show(Node anchor, Side side, double dx, double dy)

The first version takes the node for which the context menu is to be displayed with the x and y
coordinates relative to the screen. Typically, you display a context menu in the mouse-clicked event where
the MouseEvent object provides you the coordinates of the mouse pointer relative to the screen through the
getScreenX() and getScreenY() methods.

Chapter 12 ■ Understanding Controls

583

The following snippet of code shows a context menu for a canvas at (100, 100) relative to the screen
coordinate system:

Canvas canvas = ...
ctxMenu.show(canvas, 100, 100);

The second version lets you finetune the position of the context menu relative to the specified anchor
node. The side parameter specifies on which side of the anchor node the context menu is displayed. The
possible values are one of the constants—TOP, RIGHT, BOTTOM, and LEFT—of the Side enum. The dx and dy
parameters specify the x and y coordinates, respectively, relative to the anchor node coordinate system. This
version of the show() method requires a little more explanation.

The side parameter has an effect of shifting the x axis and y axis of the anchor node. The dx and dy
parameters are applied after the axes are shifted. Note that the axes are shifted only for computing the
position of the context menu when this version of the method is called. They are not shifted permanently,
and the anchor node position does not change at all. Figure 12-69 shows an anchor node and its x and y
axes for the values of the side parameter. The dx and dy parameters are the x and y coordinates of the point
relative to the shifted x axis and y axis of the node.

Node Node Node Node Node

side = TOP side = BOTTOM side = LEFT side = RIGHT

Figure 12-69. Shifting the x axis and y axis of the anchor node with the side parameter value

Note that the LEFT and RIGHT values for the side parameter are interpreted based on the node
orientation of the anchor node. For a node orientation of RIGHT_TO_LEFT, the LEFT value means the right
side of the node.

When you specify TOP, LEFT, or null for the side parameter, the dx and dy parameters are measured
relative to the original x and y axes of the node. When you specify BOTTOM for the side parameter, the bottom
of the node becomes the new x axis and the y axis remains the same. When you specify RIGHT for the side
parameter, the right side of the node becomes the new y axis and the x axis remains the same.

The following call to the show() method displays a context menu at the upper left corner of the anchor
node. The value of Side.LEFT or null for the side parameter would display the context menu at the same
location:

ctxMenu.show(anchor, Side.TOP, 0, 0);

The following call to the show() method displays a context menu at the lower left corner of the
anchor node:

ctxMenu.show(anchor, Side.BOTTOM, 0, 0);

Values for dx and dy can be negative. The following call to the show() method displays a context menu
10px above the upper left corner of the anchor node:

ctxMenu.show(myAnchor, Side.TOP, 0, -10);

Chapter 12 ■ Understanding Controls

584

The hide() method of the ContextMenu class hides the context menu, if it was showing. Typically, the
context menu is hidden when you select a menu item. You need to use the hide() method when the context
menu uses a custom menu item with hideOnClick property set to true.

Typically, an ActionEvent handler is added to the menu items of a context menu. The ContextMenu
class contains an onAction property, which is an ActionEvent handler. The ActionEvent handler, if set,
for a ContextMenu is called every time a menu item is activated. You can use this ActionEvent to execute a
follow-up action when a menu item is activated.

The program in Listing 12-39 shows how to use a context menu. It displays a Label and a Canvas.
When you right-click the canvas, a context menu with three menu items—Rectangle, Circle, and Ellipse—is
displayed. Selecting one of the shapes from the menu items draws the shape on the canvas. The context
menu is displayed when the mouse pointer is clicked.

Listing 12-39. Using the ContextMenu Control

// ContextMenuTest.java
package com.jdojo.control;

import javafx.application.Application;
import javafx.scene.Scene;
import javafx.scene.canvas.Canvas;
import javafx.scene.canvas.GraphicsContext;
import javafx.scene.control.ContextMenu;
import javafx.scene.control.Label;
import javafx.scene.control.MenuItem;
import javafx.scene.input.MouseButton;
import javafx.scene.input.MouseEvent;
import javafx.scene.layout.BorderPane;
import javafx.scene.paint.Color;
import javafx.stage.Stage;

public class ContextMenuTest extends Application {
 // A canvas to draw shapes
 Canvas canvas = new Canvas(200, 200);

 public static void main(String[] args) {
 Application.launch(args);
 }

 @Override
 public void start(Stage stage) {
 // Add mouse click event handler to the canvas to show the context menu
 canvas.setOnMouseClicked(e -> showContextMenu(e));

 BorderPane root = new BorderPane();
 root.setTop(new Label("Right click below to display a context menu."));
 root.setCenter(canvas);
 root.setStyle("-fx-padding: 10;" +
 "-fx-border-style: solid inside;" +
 "-fx-border-width: 2;" +
 "-fx-border-insets: 5;" +
 "-fx-border-radius: 5;" +
 "-fx-border-color: blue;");

Chapter 12 ■ Understanding Controls

585

 Scene scene = new Scene(root);
 stage.setScene(scene);
 stage.setTitle("Using Context Menus");
 stage.show();
 }

 public void showContextMenu(MouseEvent me) {
 // Show menu only on right click
 if (me.getButton() == MouseButton.SECONDARY) {
 MenuItem rectItem = new MenuItem("Rectangle");
 MenuItem circleItem = new MenuItem("Circle");
 MenuItem ellipseItem = new MenuItem("Ellipse");
 rectItem.setOnAction(e -> draw("Rectangle"));
 circleItem.setOnAction(e -> draw("Circle"));
 ellipseItem.setOnAction(e -> draw("Ellipse"));
 ContextMenu ctxMenu =
 new ContextMenu(rectItem, circleItem, ellipseItem);
 ctxMenu.show(canvas, me.getScreenX(), me.getScreenY());
 }
 }

 public void draw(String shapeType) {
 GraphicsContext gc = canvas.getGraphicsContext2D();
 gc.clearRect(0, 0, 200, 200); // clear the canvas first
 gc.setFill(Color.TAN);

 if (shapeType.equals("Rectangle")) {
 gc.fillRect(0, 0, 200, 200);
 } else if (shapeType.equals("Circle")) {
 gc.fillOval(0, 0, 200, 200);
 } else if (shapeType.equals("Ellipse")) {
 gc.fillOval(10, 40, 180, 120);
 }
 }
}

Styling ContextMenu with CSS
The default CSS style-class name for a ContextMenu is context-menu. Please refer to the modena.css file
for sample styles for customizing the appearance of context menus. By default, a context menu uses a drop
shadow effect. The following style sets the font size to 8pt and removes the default effect:

.context-menu {
 -fx-font-size: 8pt;
 -fx-effect: null;
}

Chapter 12 ■ Understanding Controls

586

Understanding the ToolBar Control
ToolBar is used to display a group of nodes, which provide the commonly used action items on a screen.
Typically, a ToolBar control contains the commonly used items that are also available through a menu and a
context menu.

A ToolBar control can hold many types of nodes. The most commonly used nodes in a ToolBar are
buttons and toggle buttons. Separators are used to separate a group of buttons from others. Typically,
buttons are kept smaller by using small icons, preferably 16px by 16px in size.

If the items in a toolbar overflow, an overflow button appears to allow users to navigate to the hidden
items. A toolbar can have the orientation of horizontal or vertical. A horizontal toolbar arranges the items
horizontally in one row. A vertical toolbar arranges the items in one column. Figure 12-70 shows two
toolbars: one has no overflow and one has an overflow. The one with an overflow displays an overflow
button (>>). When you click the overflow button, the hidden toolbar items are displayed for selection.

A toolbar with no overflow A toolbar with an overflow An overflow button

Figure 12-70. A horizontal toolbar with three buttons

You will use the following four ToolBar items in the examples in this chapter:

Button rectBtn = new Button("", new Rectangle(0, 0, 16, 16));
Button circleBtn = new Button("", new Circle(0, 0, 8));
Button ellipseBtn = new Button("", new Ellipse(8, 8, 8, 6));
Button exitBtn = new Button("Exit");

A ToolBar control stores the reference of items in an ObservableList<Node>. Use the getItems()
method to get the reference of the observable list.

The default constructor of the ToolBar class creates an empty toolbar:

ToolBar toolBar = new ToolBar();
toolBar.getItems().addAll(circleBtn, ellipseBtn, new Separator(), exitBtn);

The ToolBar class provides another constructor that lets you add items:

ToolBar toolBar = new ToolBar(rectBtn, circleBtn, ellipseBtn,
 new Separator(),
 exitBtn);

The orientation property of the ToolBar class specifies its orientation: horizontal or vertical. By default,
a toolbar uses the horizontal orientation. The following code sets it to vertical:

// Create a ToolBar and set its orientation to VERTICAL
ToolBar toolBar = new ToolBar();
toolBar.setOrientation(Orientation.VERTICAL);

Chapter 12 ■ Understanding Controls

587

Tip ■ the orientation of a separator in a toolbar is automatically adjusted by the default Css. it is good
 practice to provide tool tips for items in a toolbar, as they are small in size and typically do not use text content.

The program in Listing 12-40 shows how to create and use ToolBar controls. It creates a toolbar and
adds four items. When you click one of the items with a shape, it draws the shape on a canvas. The Exit item
closes the application.

Listing 12-40. Using the ToolBar Control

// ToolBarTest.java
package com.jdojo.control;

import javafx.application.Application;
import javafx.application.Platform;
import javafx.scene.Scene;
import javafx.scene.canvas.Canvas;
import javafx.scene.canvas.GraphicsContext;
import javafx.scene.control.Button;
import javafx.scene.control.Label;
import javafx.scene.control.Separator;
import javafx.scene.control.ToolBar;
import javafx.scene.control.Tooltip;
import javafx.scene.layout.BorderPane;
import javafx.scene.layout.VBox;
import javafx.scene.paint.Color;
import javafx.scene.shape.Circle;
import javafx.scene.shape.Ellipse;
import javafx.scene.shape.Rectangle;
import javafx.stage.Stage;

public class ToolBarTest extends Application {
 // A canvas to draw shapes
 Canvas canvas = new Canvas(200, 200);

 public static void main(String[] args) {
 Application.launch(args);
 }

 public void start(Stage stage) {
 // Create ToolBar items
 Button rectBtn = new Button("", new Rectangle(0, 0, 16, 16));
 Button circleBtn = new Button("", new Circle(0, 0, 8));
 Button ellipseBtn = new Button("", new Ellipse(8, 8, 8, 6));
 Button exitBtn = new Button("Exit");

Chapter 12 ■ Understanding Controls

588

 // Set tooltips
 rectBtn.setTooltip(new Tooltip("Draws a rectangle"));
 circleBtn.setTooltip(new Tooltip("Draws a circle"));
 ellipseBtn.setTooltip(new Tooltip("Draws an ellipse"));
 exitBtn.setTooltip(new Tooltip("Exits application"));

 // Add ActionEvent handlers for items
 rectBtn.setOnAction(e -> draw("Rectangle"));
 circleBtn.setOnAction(e -> draw("Circle"));
 ellipseBtn.setOnAction(e -> draw("Ellipse"));
 exitBtn.setOnAction(e -> Platform.exit());

 ToolBar toolBar = new ToolBar(rectBtn, circleBtn, ellipseBtn,
 new Separator(),
 exitBtn);
 BorderPane root = new BorderPane();
 root.setTop(new VBox(new Label("Click a shape to draw."), toolBar));
 root.setCenter(canvas);
 root.setStyle("-fx-padding: 10;" +
 "-fx-border-style: solid inside;" +
 "-fx-border-width: 2;" +
 "-fx-border-insets: 5;" +
 "-fx-border-radius: 5;" +
 "-fx-border-color: blue;");

 Scene scene = new Scene(root);
 stage.setScene(scene);
 stage.setTitle("Using ToolBar Controls");
 stage.show();
 }

 public void draw(String shapeType) {
 GraphicsContext gc = canvas.getGraphicsContext2D();
 gc.clearRect(0, 0, 200, 200); // First clear the canvas
 gc.setFill(Color.TAN);

 if (shapeType.equals("Rectangle")) {
 gc.fillRect(0, 0, 200, 200);
 } else if (shapeType.equals("Circle")) {
 gc.fillOval(0, 0, 200, 200);
 } else if (shapeType.equals("Ellipse")) {
 gc.fillOval(10, 40, 180, 120);
 }
 }
}

Styling a Toolbar with CSS
The default CSS style-class name for a ToolBar is tool-bar. It contains an -fx-orientation CSS property
that specifies its orientation with the possible values of horizontal and vertical. It supports horizontal and
vertical CSS pseudo-classes that apply when its orientation is horizontal and vertical, respectively.

Chapter 12 ■ Understanding Controls

589

A toolbar uses a container to arrange the items. The container is an HBox for a horizontal orientation
and a VBox for a vertical orientation. The CSS style-class name for the container is container. You can use all
CSS properties for the HBox and VBox for the container. The -fx-spacing CSS property specifies the spacing
between two adjacent items in the container. You can set this property for the toolbar or the container. Both
of the following styles have the same effect on a horizontal toolbar:

.tool-bar {
 -fx-spacing: 2;
}

.tool-bar > .container {
 -fx-spacing: 2;
}

A toolbar contains a tool-bar-overflow-button substructure to represent the overflow button. It is a
StackPane. The tool-bar-overflow-button contains an arrow substructure to represent the arrow in the
overflow button. It is also a StackPane.

Understanding TabPane and Tab
A window may not have enough space to display all of the pieces of information in one page view. JavaFX
provides several controls to break down large content into multiple pages, for example, Accordion and
Pagination controls. TabPane and Tab let you present information in a page much better. A Tab represents a
page and a TabPane contains the Tab.

A Tab is not a control. An instance of the Tab class represents a Tab. The Tab class inherits from the
Object class. However, the Tab supports some features as controls do, for example, they can be disabled,
styled using CSS, and can have context menus and tool tips.

A Tab consists of a title and content. The title consists of text, an optional graphic, and an optional close
button to close the tab. The content consists of controls. Typically, controls are added to a layout pane,
which is added to the Tab as its content.

Typically, the titles of the Tab in a TabPane are visible. The content area is shared by all Tabs. You need to
select a Tab, by clicking its title, to view its content. You can select only one tab at a time in a TabPane. If the
titles of all tabs are not visible, a control button is displayed automatically that assists the user in selecting
the invisible tabs.

Tabs in a TabPane may be positioned at the top, right, bottom, or left side of the TabPane. By default, they
are positioned at the top.

Figure 12-71 shows two instances of a window. The window contains a TabPane with two tabs. In one
instance, the General tab is selected, and in another, the Address tab is selected.

Chapter 12 ■ Understanding Controls

590

A TabPane is divided into two parts: header area and content area. The header area displays the titles
of tabs; the content area displays the content of the selected tab. The header area is subdivided into the
following parts:

Headers region•	

Tab header background•	

Control buttons tab•	

Tab area•	

Figure 12-72 shows parts of the header area of a TabPane. The headers region is the entire header area.
The tab header background is the area occupied by the titles of the tabs. The control buttons tab contains
control buttons that are displayed when the width of the TabPane cannot display all of the tabs. The control
button tab lets you select the tabs that are currently not visible. The tab area contains a Label and a close
button (the X icon next to the tab label). The Label displays the text and icon for a tab. The close button is
used to close a selected tab.

Figure 12-71. A window with a TabPane, which contains two tabs

Control buttons tab

Tab header backgroundTab

Headers region Close button

Figure 12-72. Different parts of the header of a TabPane

Creating Tabs
You can create a tab using the default constructor of the Tab class with an empty title:

Tab tab1 = new Tab();

Chapter 12 ■ Understanding Controls

591

Use the setText() method to set the title text for the tab:

tab1.setText("General");

The other constructor takes the title text as an argument:

Tab tab2 = new Tab("General");

Setting the Title and Content of Tabs
The Tab class contains the following properties that let you set the title and content:

•	 text

•	 graphic

•	 closable

•	 content

The text, graphic, and closable properties specify what appears in the title bar of a tab. The text
property specifies a string as the title text. The graphic property specifies a node as the title icon. Notice
that the type of the graphic property is Node, so you can use any node as a graphic. Typically, a small icon
is set as the graphic. The text property can be set in the constructor or using the setText() method.
The following snippet of code creates a tab with text and sets an image as its graphic (assuming the file
resources/picture/address_icon.png is included in the package):

// Create an ImageView for graphic
String imagePath = "resources/picture/address_icon.png";
URL imageUrl = getClass().getClassLoader().getResource(imagePath);
Image img = new Image(imageUrl.toExternalForm());
ImageView icon = new ImageView(img);

// Create a Tab with "Address" text
Tab addressTab = new Tab("Address");

// Set the graphic
addressTab.setGraphic(icon);

The closable property is a boolean property that specifies whether the tab can be closed. If it is set to
false, the tab cannot be closed. Closing of tabs is also controlled by the tab-closing policy of the TabPane.
If the closable property is set to false, the tab cannot be closed by the user, irrespective of the tab-closing
policy of the TabPane. You will learn about tab-closing policy when I discuss the TabPane later.

The content property is a node that specifies the content of the tab. The content of the tab is visible
when the tab is selected. Typically, a layout pane with controls is set as the content of a tab. The following
snippet of code creates a GridPane, adds some controls, and sets the GridPane as the content of a tab:

// Create a GridPane layout pane with some controls
GridPane grid = new GridPane();
grid.addRow(0, new Label("Street:"), streetFld);
grid.addRow(1, new Label("City:"), cityFld);
grid.addRow(2, new Label("State:"), stateFld);
grid.addRow(3, new Label("ZIP:"), zipFld);

Chapter 12 ■ Understanding Controls

592

Tab addressTab = new Tab("Address");
addressTab.setContent(grid); // Set the content

Creating TabPanes
The TabPane class provides only one constructor—the default constructor. When you create a TabPane, it has
no tabs:

TabPane tabPane = new TabPane();

Adding Tabs to a TabPane
A TabPane stores the references of its tabs in an ObservableList<Tab>. The getTabs() method of the
TabPane class returns the reference of the observable list. To add a tab to the TabPane, you need to add it to
the observable list. The following snippet of code adds two tabs to a TabPane:

Tab generalTab = new Tab("General");
Tab addressTab = new Tab("Address");
...
TabPane tabPane = new TabPane();

// Add the two Tabs to the TabPane
tabPane.getTabs().addAll(generalTab, addressTab);

When a tab is not supposed to be part of a TabPane, you need to remove it from the observable list.
The TabPane will update its view automatically:

// Remove the Address tab
tabPane.getTabs().remove(addressTab);

The read-only tabPane property of the Tab class stores the reference of the TabPane that contains the
tab. If a tab has not yet been added to a TabPane, its tabPane property is null. Use the getTabPane() method
of the Tab class to get the reference of the TabPane.

Putting TabPanes and Tabs Together
I have covered enough information to allow you to see a TabPane with Tabs in action. Typically, a tab is
reused. Inheriting a class from the Tab class helps when reusing a tab. Listing 12-41 and Listing 12-42 create
two Tab classes. You will use them as tabs in subsequent examples. The GeneralTab class contains fields to
enter the name and birth date of a person. The AddressTab class contains fields to enter an address.

Listing 12-41. A GeneralTab Class that Inherits from the Tab Class

// GeneralTab.java
package com.jdojo.control;

import javafx.scene.Node;
import javafx.scene.control.DatePicker;
import javafx.scene.control.Label;
import javafx.scene.control.Tab;

Chapter 12 ■ Understanding Controls

593

import javafx.scene.control.TextField;
import javafx.scene.layout.GridPane;

public class GeneralTab extends Tab {
 TextField firstNameFld = new TextField();
 TextField lastNameFld = new TextField();
 DatePicker dob = new DatePicker();

 public GeneralTab(String text, Node graphic) {
 this.setText(text);
 this.setGraphic(graphic);
 init();
 }

 public void init() {
 dob.setPrefWidth(200);
 GridPane grid = new GridPane();
 grid.addRow(0, new Label("First Name:"), firstNameFld);
 grid.addRow(1, new Label("Last Name:"), lastNameFld);
 grid.addRow(2, new Label("DOB:"), dob);
 this.setContent(grid);
 }
}

Listing 12-42. An AddressTab Class that Inherits from the Tab Class

// AddressTab.java
package com.jdojo.control;

import javafx.scene.Node;
import javafx.scene.control.Label;
import javafx.scene.control.Tab;
import javafx.scene.control.TextField;
import javafx.scene.layout.GridPane;

public class AddressTab extends Tab {
 TextField streetFld = new TextField();
 TextField cityFld = new TextField();
 TextField stateFld = new TextField();
 TextField zipFld = new TextField();

 public AddressTab(String text, Node graphic) {
 this.setText(text);
 this.setGraphic(graphic);
 init();
 }

 public void init() {
 GridPane grid = new GridPane();
 grid.addRow(0, new Label("Street:"), streetFld);
 grid.addRow(1, new Label("City:"), cityFld);

Chapter 12 ■ Understanding Controls

594

 grid.addRow(2, new Label("State:"), stateFld);
 grid.addRow(3, new Label("ZIP:"), zipFld);
 this.setContent(grid);
 }
}

The program in Listing 12-43 creates two tabs. They are instances of the GeneralTab and AddressTab
classes. They are added to a TabPane, which is added to center region of a BorderPane. The program displays
a window as shown in Figure 12-71.

Listing 12-43. Using a TabPane and Tabs Together

// TabTest.java
package com.jdojo.control;

import javafx.application.Application;
import javafx.scene.Scene;
import javafx.scene.control.TabPane;
import javafx.scene.image.Image;
import javafx.scene.image.ImageView;
import javafx.scene.layout.BorderPane;
import javafx.stage.Stage;

public class TabTest extends Application {
 public static void main(String[] args) {
 Application.launch(args);
 }

 @Override
 public void start(Stage stage) {
 ImageView privacyIcon = getImage("privacy_icon.png");
 GeneralTab generalTab = new GeneralTab("General", privacyIcon);

 ImageView addressIcon = getImage("address_icon.png");
 AddressTab addressTab = new AddressTab("Address", addressIcon);

 TabPane tabPane = new TabPane();
 tabPane.getTabs().addAll(generalTab, addressTab);

 BorderPane root = new BorderPane();
 root.setCenter(tabPane);
 root.setStyle("-fx-padding: 10;" +
 "-fx-border-style: solid inside;" +
 "-fx-border-width: 2;" +
 "-fx-border-insets: 5;" +
 "-fx-border-radius: 5;" +
 "-fx-border-color: blue;");

 Scene scene = new Scene(root);
 stage.setScene(scene);
 stage.setTitle("Using TabPane and Tab Controls");
 stage.show();
 }

Chapter 12 ■ Understanding Controls

595

 public ImageView getImage(String fileName) {
 ImageView imgView = null;
 try {
 String imagePath = "resources/picture/" + fileName;
 Image img = new Image(imagePath);
 imgView = new ImageView(img);
 }
 catch(Exception e) {
 e.printStackTrace();
 }
 return imgView;
 }
}

Understanding Tab Selection
TabPane supports single selection model, which allows selecting only one tab at a time. If a tab is selected
by the user or programmatically, the previously selected tab is unselected. The Tab class provides the API
to allow working with the selection state of an individual tab. The TabPane class provides API that allows
working with the selection of all of its tabs.

The Tab class contains a read-only selected property of the boolean type. It is true when the tab is
selected. Otherwise, it is false. Note that it is a property of the Tab, not the TabPane.

Tab lets you add event handlers that are notified when the tab is selected or unselected. The
onSelectionChanged property stores the reference of such an event:

Tab generalTab = ...
generalTab.setOnSelectionChanged(e -> {
 if (generalTab.isSelected()) {
 System.out.println("General tab has been selected.");
 } else {
 System.out.println("General tab has been unselected.");
 }
});

TabPane tracks the selected tab and its index in the list of tabs. It uses a separate object, called selection
model, for this purpose. The TabPane class contains a selectionModel property to store the tab selection
details. The property is an object of the SingleSelectionModel class. You can use your own selection model,
which is almost never needed. The selection model provides the selection-related functionalities:

It lets you select a tab using the index of the tab. The first tab has an index of 0.•	

It lets you select the first, next, previous, or last tab in the list.•	

It lets you clear the selection. Note that this feature is available, but is not commonly •	
used. A TabPane should always typically have a selected tab.

The •	 selectedIndex and selectedItem properties track the index and reference
of the selected tab. You can add a ChangeListener to these properties to handle a
change in tab selection in a TabPane.

Chapter 12 ■ Understanding Controls

596

By default, a TabPane selects its first tab. The following snippet of code selects the last Tab in a TabPane:

tabPane.getSelectionModel().selectLast();

Use the selectNext() method of the selection model to select the next tab from the list. Calling this
method when the last tab is already selected has no effect.

Use the selectPrevious() and selectLast() methods to select the previous and the last tabs in the list.
The select(int index) and select(T item) methods select a tab using the index and reference of the tab.

The program in Listing 12-44 adds two tabs to a TabPane. It adds a selection-changed event handler
to both tabs. A ChangeListener is added to the selectedItem property of the selectionModel property of
the TabPane. When a selection is made, a detailed message is printed on the standard output. Notice that a
message is printed when you run the application because the TabPane selection model selects the first tab
by default.

Listing 12-44. Tracking Tab Selection in a TabPane

// TabSelection.java
package com.jdojo.control;

import javafx.application.Application;
import javafx.beans.value.ObservableValue;
import javafx.event.Event;
import javafx.scene.Scene;
import javafx.scene.control.Tab;
import javafx.scene.control.TabPane;
import javafx.scene.layout.HBox;
import javafx.stage.Stage;

public class TabSelection extends Application {
 public static void main(String[] args) {
 Application.launch(args);
 }

 @Override
 public void start(Stage stage) {
 GeneralTab generalTab = new GeneralTab("General", null);
 AddressTab addressTab = new AddressTab("Address", null);

 // Add selection a change listener to Tabs
 generalTab.setOnSelectionChanged(e -> tabSelectedChanged(e));
 addressTab.setOnSelectionChanged(e -> tabSelectedChanged(e));

 TabPane tabPane = new TabPane();

 // Add a ChangeListsner to the selection model
 tabPane.getSelectionModel().selectedItemProperty()
 .addListener(this::selectionChanged);

 tabPane.getTabs().addAll(generalTab, addressTab);

Chapter 12 ■ Understanding Controls

597

 HBox root = new HBox(tabPane);
 root.setStyle("-fx-padding: 10;" +
 "-fx-border-style: solid inside;" +
 "-fx-border-width: 2;" +
 "-fx-border-insets: 5;" +
 "-fx-border-radius: 5;" +
 "-fx-border-color: blue;");

 Scene scene = new Scene(root);
 stage.setScene(scene);
 stage.setTitle("TabPane Selection Model");
 stage.show();
 }

 public void selectionChanged(ObservableValue<? extends Tab> prop,
 Tab oldTab,
 Tab newTab) {
 String oldTabText = oldTab == null? "None": oldTab.getText();
 String newTabText = newTab == null? "None": newTab.getText();
 System.out.println("Selection changed in TabPane: old = " +
 oldTabText + ", new = " + newTabText);
 }

 public void tabSelectedChanged(Event e) {
 Tab tab = (Tab)e.getSource();
 System.out.println("Selection changed event for " + tab.getText() +
 " tab, selected = " + tab.isSelected());
 }
}

Closing Tabs in a TabPane
Sometimes the user needs to add tabs to a TabPane on demand and they should be able to close tabs as
well. For example, all modern web browsers use tabs for browsing and let you open and close tabs. Adding
tabs on demand requires some coding in JavaFX. However, closing tabs by the user is built in the Tab and
TabPane classes.

Users can close Tabs in a TabPane using the close button that appears in the title bar of Tabs. The tab-closing
feature is controlled by the following properties:

The •	 closable property of the Tab class

The •	 tabClosingPolicy property of the TabPane class

The closable property of a Tab class specifies whether the tab can be closed. If it is set to false, the tab
cannot be closed, irrespective of the value for the tabClosingPolicy. The default value for the property is
true. The tabClosingPolicy property specifies how the tab-closing buttons are available. Its value is one of
the following constants of the TabPane.TabClosingPolicy enum:

•	 ALL_TABS

•	 SELECTED_TAB

•	 UNAVAILABLE

Chapter 12 ■ Understanding Controls

598

ALL_TABS means the close button is available for all tabs. That is, any tab can be closed at any time
provided the closable property of the tab is true. SELECTED_TAB means the close button appears only for the
selected tab. That is, only the selected tab can be closed at any time. This is the default tab-closing policy of a
TabPane. UNAVAILABLE means the close button is not available for any tabs. That is, no tabs can be closed by
the user, irrespective of their closable properties.

A distinction has to be made between:

Closing tabs by the user using the close button•	

Removing them programmatically by removing them from the observable list of •	 Tabs
of the TabPane

Both have the same effect, that Tabs are removed from the TabPane. The discussion in this section
applies to closing tabs by the user.

The user action to closing tabs can be vetoed. You can add event handlers for the TAB_CLOSE_REQUEST_
EVENT event for a tab. The event handler is called when the user attempts to close the tab. If the event
handler consumes the event, the closing operation is canceled. You can use the onCloseRequest property of
the Tab class to set such an event:

Tab myTab = new Tab("My Tab");
myTab.setOnCloseRequest(e -> { if (SOME_CONDITION_IS_TRUE) {
 // Cancel the close request
 e.consume();
 }
 });

A tab also generates a closed event when it is closed by the user. Use the onClosed property of the Tab
class to set a closed event handler for a tab. The event handler is typically used to release resources held by
the tab:

myTab.setOnClosed(e -> {/* Release tab resources here */});

The program in Listing 12-45 shows how to use the tab-closing–related properties and events. It displays
two tabs in a TabPane. A check box lets you veto the closing of tabs. Unless the check box is selected, an
attempt to close tabs is vetoed on the close request event. If you close tabs, you can restore them using the
Restore Tabs button. Use the tab-closing policy ChoiceBox to use a different tab-closing policy. For example,
if you select UNAVAILABLE as the tab-closing policy, the close buttons will disappear from all tabs. When a tab
is closed, a message is printed on the standard output.

Listing 12-45. Using Properties and Events Related to Closing Tabs by Users

// TabClosingTest.java
package com.jdojo.control;

import javafx.application.Application;
import javafx.beans.value.ObservableValue;
import javafx.collections.ObservableList;
import javafx.event.Event;
import javafx.scene.Scene;
import javafx.scene.control.Button;
import javafx.scene.control.CheckBox;
import javafx.scene.control.ChoiceBox;
import javafx.scene.control.Label;

Chapter 12 ■ Understanding Controls

599

import javafx.scene.control.Tab;
import javafx.scene.control.TabPane;
import javafx.stage.Stage;
import javafx.scene.layout.BorderPane;
import javafx.scene.layout.GridPane;
import static javafx.scene.control.TabPane.TabClosingPolicy;

public class TabClosingTest extends Application {
 GeneralTab generalTab = new GeneralTab("General", null);
 AddressTab addressTab = new AddressTab("Address", null);
 TabPane tabPane = new TabPane();

 CheckBox allowClosingTabsFlag = new CheckBox("Are Tabs closable?");
 Button restoreTabsBtn = new Button("Restore Tabs");
 ChoiceBox<TabPane.TabClosingPolicy> tabClosingPolicyChoices = new ChoiceBox<>();

 public static void main(String[] args) {
 Application.launch(args);
 }

 @Override
 public void start(Stage stage) {
 // Add Tabs to the TabPane
 tabPane.getTabs().addAll(generalTab, addressTab);

 // Set a tab close request event handler for tabs
 generalTab.setOnCloseRequest(this::tabClosingRequested);
 addressTab.setOnCloseRequest(this::tabClosingRequested);

 // Set a closed event handler for the tabs
 generalTab.setOnClosed(e -> tabClosed(e));
 addressTab.setOnClosed(e -> tabClosed(e));

 // Set an action event handler for the restore button
 restoreTabsBtn.setOnAction(e -> restoreTabs());

 // Add choices to the choice box
 tabClosingPolicyChoices.getItems()
 .addAll(TabClosingPolicy.ALL_TABS,
 TabClosingPolicy.SELECTED_TAB,
 TabClosingPolicy.UNAVAILABLE);

 // Set the default value for the tab closing policy
 tabClosingPolicyChoices.setValue(tabPane.getTabClosingPolicy());

 // Bind the tabClosingPolicy of the tabPane to the value property of the
 // of the ChoiceBoxx
 tabPane.tabClosingPolicyProperty().bind(
 tabClosingPolicyChoices.valueProperty());

Chapter 12 ■ Understanding Controls

600

 BorderPane root = new BorderPane();
 GridPane grid = new GridPane();
 grid.setHgap(10);
 grid.setVgap(10);
 grid.setStyle("-fx-padding: 10;");
 grid.addRow(0, allowClosingTabsFlag, restoreTabsBtn);
 grid.addRow(1, new Label("Tab Closing Policy:"),
 tabClosingPolicyChoices);
 root.setTop(grid);
 root.setCenter(tabPane);
 root.setStyle("-fx-padding: 10;" +
 "-fx-border-style: solid inside;" +
 "-fx-border-width: 2;" +
 "-fx-border-insets: 5;" +
 "-fx-border-radius: 5;" +
 "-fx-border-color: blue;");

 Scene scene = new Scene(root);
 stage.setScene(scene);
 stage.setTitle("Closing Tabs");
 stage.show();
 }

 public void tabClosingRequested(Event e) {
 if (!allowClosingTabsFlag.isSelected()) {
 e.consume(); // Closing tabs is not allowed
 }
 }

 public void tabClosed(Event e) {
 Tab tab = (Tab)e.getSource();
 String text = tab.getText();
 System.out.println(text + " tab has been closed.");
 }

 public void restoreTabs() {
 ObservableList<Tab> list = tabPane.getTabs();
 if (!list.contains(generalTab)) {
 list.add(0, generalTab);
 }

 if (!list.contains(addressTab)) {
 list.add(1, addressTab);
 }
 }

 public void closingPolicyChanged(
 ObservableValue<? extends TabPane.TabClosingPolicy> prop,
 TabPane.TabClosingPolicy oldPolicy,
 TabPane.TabClosingPolicy newPolicy) {
 tabPane.setTabClosingPolicy(newPolicy);
 }
}

Chapter 12 ■ Understanding Controls

601

Positioning Tabs in a TabPane
Tabs in a TabPane may be positioned at the top, right, bottom, or left. The side property of the TabPane
specifies the position of tabs. It is set to one of the constants of the Side enum:

•	 TOP

•	 RIGHT

•	 BOTTOM

•	 LEFT

The default value for the side property is Side.TOP. The following snippet of code creates a TabPane and
sets the side property to Side.LEFT to position tabs on the left:

TabPane tabPane = new TabPane();
tabPane.setSide(Side.LEFT);

Tip ■ the actual placement of tabs also uses the node orientation. For example, if the side property is set to
Side.LEFT and the node orientation of the TabPane is set to RIGHT_TO_LEFT, the tabs will be positioned on the
right side.

The TabPane class contains a rotateGraphic property, which is a boolean property. The property is
related to the side property. When the side property is Side.TOP or Side.BOTTOM, the graphics of all tabs in
their title bars are in the upright position. By default, when the side property changes to Side.LEFT or Side.
RIGHT, the title text is rotated, keeping the graphic upright. The rotateGraphic property specifies whether
the graphic is rotated with the text, as shown in the following code. By default, it is set to false.

// Rotate the graphic with the text for left and right sides
tabPane.setRotateGraphic(true);

Figure 12-73 shows the title bar of a tab in a TabPane with the side property set to TOP and LEFT. Notice
the effect on the graphics when the side property is LEFT and the rotateGraphic property is false and true.
The rotateGraphic property has no effect when tabs are positioned at the top or bottom.

Figure 12-73. Effects of the side and rotateGraphic properties of the TabPane

Chapter 12 ■ Understanding Controls

602

Sizing Tabs in a TabPane
TabPane divides its layout into two parts:

Header area•	

Content area•	

The header area displays the titles of tabs. The content area displays the content of the selected tab.
The size of the content area is automatically computed based on the content of all tabs. TabPane contains the
following properties that allow you to set the minimum and maximum sizes of the title bars of tabs:

•	 tabMinHeight

•	 tabMaxHeight

•	 tabMinWidth

•	 tabMaxWidth

The default values are zero for minimum width and height, and Double.MAX_VALUE for maximum width
and height. The default size is computed based on the context of the tab titles. If you want all tab titles to be
of a fixed size, set the minimum and maximum width and height to the same value. Note that for the fixed
size tabs, the longer text in the title bar will be truncated.

The following snippet of code creates a TabPane and sets the properties, so all tabs are 100px wide and
30px tall:

TabPane tabPane = new TabPane();
tabPane.setTabMinHeight(30);
tabPane.setTabMaxHeight(30);
tabPane.setTabMinWidth(100);
tabPane.setTabMaxWidth(100);

Using Recessed and Floating TabPanes
A TabPane can be in recessed or floating mode. The default mode is recessed mode. In the recessed mode,
it appears to be fixed. In floating mode, it appearance is changed to make it look like it is floating. In the
floating mode, the background color of the header area is removed and a border around the content area is
added. Here is a rule of thumb in deciding which mode to use:

If you are using a •	 TabPane along with other controls in a window, use floating mode.

If the •	 TabPane is the only one control on the window, use recessed mode.

Figure 12-74 shows two windows with the same TabPane: one in the recessed mode and one in the
floating mode.

Chapter 12 ■ Understanding Controls

603

The floating mode of a TabPane is specified by a style class. The TabPane class contains a STYLE_CLASS_
FLOATING constant. If you add this style class to a TabPane, it is in the floating mode. Otherwise, it is in the
recessed mode. The following snippet of code shows how to turn the floating mode for a TabPane on and off:

TabPane tabPane = new TabPane();

// Turn on the floating mode
tabPane.getStyleClass().add(TabPane.STYLE_CLASS_FLOATING);
...
// Turn off the floating mode
tabPane.getStyleClass().remove(TabPane.STYLE_CLASS_FLOATING);

Styling Tab and TabPane with CSS
The default CSS style-class name for a tab and for a TabPane is tab-pane. You can style Tabs directly using
the tab style class or using the substructure of TabPane. The later approach is commonly used.

TabPane supports four CSS pseudo-classes, which correspond to the four values for its side property:

•	 top

•	 right

•	 bottom

•	 left

You can set the minimum and maximum sizes of the tab titles in a TabPane using the following CSS
properties. They correspond to the four properties in the TabPane class. Please refer to the “Sizing Tabs in a
TabPane” section for a detailed discussion of these properties.

•	 -fx-tab-min-width

•	 -fx-tab-max-width

•	 -fx-tab-min-height

•	 -fx-tab-max-height

Figure 12-74. A TabPane in recessed and floating modes

Chapter 12 ■ Understanding Controls

604

A TabPane divides its layout bounds into two areas: header area and content area. Please refer to
Figure 12-72 for the different subparts in the header area. The header area is called the tab-header-area
substructure, which contains the following substructures:

•	 headers-region

•	 tab-header-background

•	 control-buttons-tab

•	 tab

The control-buttons-tab substructure contains a tab-down-button substructure, which contains
an arrow substructure. The tab substructure contains tab-label and tab-close-button substructures.
The tab-content-area substructure represents the content area of the TabPane. Substructures let you style
different parts of TabPane.

The following code removes the background color for the header area as is done when the TabPane is in
the floating mode:

.tab-pane > .tab-header-area > .tab-header-background {
 -fx-background-color: null;
}

The following code shows the text of the selected tab in boldface. Notice the use of the selected pseudo-
class for the tab in the selector .tab:selected:

.tab-pane > .tab-header-area > .headers-region > .tab:selected > .tab-container > ,tab-label
{
 -fx-font-weight: bold;
}

The following code shows Tabs in a TabPane in blue background with 10pt white title text:

.tab-pane > .tab-header-area > .headers-region > .tab {
 -fx-background-color: blue;
}

.tab-pane > .tab-header-area > .headers-region > .tab > .tab-container > .tab-label {
 -fx-text-fill: white;
 -fx-font-size: 10pt;
}

Use the floating style-class for the TabPane when styling it for the floating mode. The following style
sets the border color to blue in floating mode:

.tab-pane.floating > .tab-content-area {
 -fx-border-color: blue;
}

Please refer to the modena.css file for the complete list of styles used for TabPane.

Chapter 12 ■ Understanding Controls

605

Understanding the HTMLEditor Control
The HTMLEditor control provides a rich text editing capability to JavaFX application. It uses HTML as its data
model. That is, the formatted text in HTMLEditor is stored in HTML format. An HTMLEditor control can be
used for entering formatted text in a business application, for example, product description, or comments.
It can also be used to enter e-mail content in an e-mail client application. Figure 12-75 shows a window with
an HTMLEditor control.

Figure 12-75. An HTMLEditor control

An HTMLEditor displays formatting toolbars with it. You cannot hide the toolbars. They can be styled
using a CSS. Using the toolbars, you can:

Copy, cut, and paste text using the system clipboard•	

Apply text alignment•	

Indent text•	

Apply bulleted list and numbered list styles•	

Set foreground and background colors•	

Apply paragraph and heading styles with font family and font size•	

Apply formatting styles such as bold, italic, underline, and strikethrough•	

Add horizontal rulers•	

The control supports HTML5. Note that the toolbars do not allow you to apply all kinds of HTML.
However, if you load a document that uses those styles, it allows you to edit them. For example, you cannot
create an HTML table directly in the control. However, if you load HTML content having HTML tables into
the control, you will be able to edit the data in the tables.

The HTMLEditor does not provide API to load HTML content from a file to save its content to a file.
You will have to write your own code to accomplish this.

Chapter 12 ■ Understanding Controls

606

Creating an HTMLEditor
An instance of the HTMLEditor class represents an HTMLEditor control. The class is included in the javafx.
scene.web package. Use the default constructor, which is the only constructor provided, to create an HTMLEditor:

HTMLEditor editor = new HTMLEditor();

Using an HTMLEditor
The HTMLEditor class has a very simple API that consists of only three methods:

•	 getHtmlText()

•	 setHtmlText(String htmlText)

•	 print(PrinterJob job)

The getHTMLText() method returns the HTML content as a string. The setHTMLText() method sets the
content of the control to the specified HTML string. The print() method prints the content of the control.

The program in Listing 12-46 shows how to use an HTMLEditor. It displays an HTMLEditor, a TextArea,
and two Buttons. You can use the buttons to convert text in the HTMLEditor to HTML code and vice versa.

Listing 12-46. Using the HTMLEditor Control

// HTMLEditorTest.java
package com.jdojo.control;

import javafx.application.Application;
import javafx.scene.Scene;
import javafx.scene.control.Button;
import javafx.scene.control.TextArea;
import javafx.scene.layout.HBox;
import javafx.scene.layout.VBox;
import javafx.scene.web.HTMLEditor;
import javafx.stage.Stage;

public class HTMLEditorTest extends Application {
 public static void main(String[] args) {
 Application.launch(args);
 }

 @Override
 public void start(Stage stage) {
 HTMLEditor editor = new HTMLEditor();
 editor.setPrefSize(600, 300);

 TextArea html = new TextArea();
 html.setPrefSize(600, 300);
 html.setStyle("-fx-font-size:10pt; -fx-font-family: \"Courier New\";");

 Button htmlToText = new Button("Convert HTML to Text");
 Button textToHtml = new Button("Convert Text to HTML");
 htmlToText.setOnAction(e -> editor.setHtmlText(html.getText()));
 textToHtml.setOnAction(e -> html.setText(editor.getHtmlText()));

Chapter 12 ■ Understanding Controls

607

 HBox buttons = new HBox(htmlToText, textToHtml);
 buttons.setSpacing(10);

 VBox root = new VBox(editor, buttons, html);
 root.setSpacing(10);
 root.setStyle("-fx-padding: 10;" +
 "-fx-border-style: solid inside;" +
 "-fx-border-width: 2;" +
 "-fx-border-insets: 5;" +
 "-fx-border-radius: 5;" +
 "-fx-border-color: blue;");

 Scene scene = new Scene(root);
 stage.setScene(scene);
 stage.setTitle("Using an HTMLEditor");
 stage.show();
 }
}

Styling HTMLEditor with CSS
The default CSS style-class name for an HTMLEditor is html-editor. The HTMLEditor uses styles of a Control
such as padding, borders, and background color.

You can style each button in the toolbar separately. The following are the list of style-class names for
the toolbar buttons. The names are self-explanatory, for example, html-editor-align-right and
html-editor-hr are the style-class names for the toolbar buttons used to right align text and draw a
horizontal ruler, respectively.

•	 html-editor-cut

•	 html-editor-copy

•	 html-editor-paste

•	 html-editor-align-left

•	 html-editor-align-center

•	 html-editor-align-right

•	 html-editor-align-justify

•	 html-editor-outdent

•	 html-editor-indent

•	 html-editor-bullets

•	 html-editor-numbers

•	 html-editor-bold

•	 html-editor-italic

•	 html-editor-underline

•	 html-editor-strike

•	 html-editor-hr

Chapter 12 ■ Understanding Controls

608

The following code sets a custom image for the Cut button in the toolbar:

.html-editor-cut {
 -fx-graphic: url("my_html_editor_cut.jpg");
}

Use the button and toggle-button style-class names if you want to apply styles to all toolbar buttons
and toggle buttons:

/* Set the background colors for all buttons and toggle buttons */
.html-editor .button, .html-editor .toggle-button {
 -fx-background-color: lightblue;
}

The HTMLEditor shows two ColorPickers for users to select the background and foreground colors.
Their style-class names are html-editor-background and html-editor-foreground. The following code
shows the selected color labels in the ColorPickers:

.html-editor-background {
 -fx-color-label-visible: true;
}

.html-editor-foreground {
 -fx-color-label-visible: true;
}

Choosing Files and Directories
JavaFX provides the FileChooser and DirectoryChooser classes in the javafx.stage package that are used
to show file and directory dialogs. The dialogs have a platform dependent look and feel and cannot be styled
using JavaFX. They are not controls. I am discussing them in this chapter because they are typically used
along with controls. For example, a file or directory dialog is displayed when a button is clicked. On some
platforms, for example, some mobile and embedded devices, users may have access to the file systems.
Using these classes to access files and directories on such devices does nothing.

The FileChooser Dialog
A FileChooser is a standard file dialog. It is used to let the user select files to open or save. Some of its parts,
for example, the title, the initial directory, and the list of file extensions, can be specified before opening the
dialogs. There are three steps in using a file dialog:

 1. Create an object of the FileChooser class.

 2. Set the initial properties for the file dialog.

 3. Use one of the showXXXDialog() methods to show a specific type of file dialog.

Chapter 12 ■ Understanding Controls

609

Creating a File Dialog
An instance of the FileChooser class is used to open file dialogs. The class contains a no-args constructor to
create its objects:

// Create a file dialog
FileChooser fileDialog = new FileChooser();

Setting Initial Properties of the Dialog
You can set the following initial properties of the file dialog:

•	 Title

•	 initialDirectory

•	 initialFileName

Extension filters•	

The title property of the FileChooser class is a string, which represents the title of the file dialog:

// Set the file dialog title
fileDialog.setTitle("Open Resume");

The initialDirectory property of the FileChooser class is a File, which represents the initial
directory when the file dialog is shown:

// Set C:\ as initial directory (on Windows)
fileDialog.setInitialDirectory(new File("C:\\"));

The initialFileName property of the FileChooser class is a string that is the initial file name for the file
dialog. Typically, it is used for a file save dialog. Its effect depends on the platform if it is used for a file open
dialog. For example, it is ignored on Windows:

// Set the initial file name
fileDialog.setInitialFileName("untitled.htm");

You can set a list of extension filters for a file dialog. Filters are displayed as a drop-down box. One
filter is active at a time. The file dialog displays only those files that match the active extension filter. An
extension filter is represented by an instance of the ExtensionFilter class, which is an inner static class
of the FileChooser class. The getExtensionFilters() method of the FileChooser class returns an
ObservableList<FileChooser.ExtensionFilter>. You add the extension filters to the list. An extension
filter has two properties: a description and a list of file extension in the form *.<extension>:

import static javafx.stage.FileChooser.ExtensionFilter;
...
// Add three extension filters
fileDialog.getExtensionFilters().addAll(
 new ExtensionFilter("HTML Files", "*.htm", "*.html"),
 new ExtensionFilter("Text Files", "*.txt"),
 new ExtensionFilter("All Files", "*.*"));

Chapter 12 ■ Understanding Controls

610

By default, the first extension filter in the list is active when the file dialog is displayed. Use the
selectedExtensionFilter property to specify the initial active filter when the file dialog is opened:

// Continuing with the above snippet of code, select *.txt filter by default
fileDialog.setSelectedExtensionFilter(fileDialog.getExtensionFilters().get(1));

The same selectedExtensionFilter property contains the extension filter that is selected by the user
when the file dialog is closed.

Showing the Dialog
An instance of the FileChooser class can open three types of file dialogs:

A file open dialog to select only one file•	

A file open dialog to select multiple files•	

A file save dialog•	

The following three methods of the FileChooser class are used to open three types of file dialogs:

•	 showOpenDialog(Window ownerWindow)

•	 showOpenMultipleDialog(Window ownerWindow)

•	 showSaveDialog(Window ownerWindow)

The methods do not return until the file dialog is closed. You can specify null as the owner window. If
you specify an owner window, the input to the owner window is blocked when the file dialog is displayed.

The showOpenDialog() and showSaveDialog() methods return a File object, which is the selected file,
or null if no file is selected. The showOpenMultipleDialog() method returns a List<File>, which contains
all selected files, or null if no files are selected:

// Show a file open dialog to select multiple files
List<File> files = fileDialog.showOpenMultipleDialog(primaryStage);
if (files != null) {
 for(File f : files) {
 System.out.println("Selected file :" + f);
 }
} else {
 System.out.println("No files were selected.");
}

Use the selectedExtensionFilter property of the FileChooser class to get the selected extension filter
at the time the file dialog was closed:

import static javafx.stage.FileChooser.ExtensionFilter;
...
// Print the selected extension filter description
ExtensionFilter filter = fileDialog.getSelectedExtensionFilter();
if (filter != null) {
 System.out.println("Selected Filter: " + filter.getDescription());
} else {
 System.out.println("No extension filter selected.");
}

Chapter 12 ■ Understanding Controls

611

Using a File Dialog
The program in Listing 12-47 shows how to use open and save file dialogs. It displays a window with an
HTMLEditor and three buttons. Use the Open button to open an HTML file in the editor. Edit the content
in the editor. Use the Save button to save the content in the editor to a file. If you chose an existing file in
the Save Resume dialog, the content of the file will be overwritten. It is left to the reader as an exercise to
enhance the program, so it will prompt the user before overwriting an existing file.

Listing 12-47. Using Open and Save File Dialogs

// FileChooserTest.java
package com.jdojo.control;

import javafx.application.Application;
import java.io.File;
import java.io.IOException;
import java.nio.file.Files;
import javafx.geometry.Pos;
import javafx.scene.Scene;
import javafx.scene.control.Button;
import javafx.scene.layout.HBox;
import javafx.scene.layout.VBox;
import javafx.scene.web.HTMLEditor;
import javafx.stage.FileChooser;
import javafx.stage.Stage;
import static javafx.stage.FileChooser.ExtensionFilter;

public class FileChooserTest extends Application {
 private Stage primaryStage;
 private HTMLEditor resumeEditor;
 private final FileChooser fileDialog = new FileChooser();

 public static void main(String[] args) {
 Application.launch(args);
 }

 @Override
 public void start(Stage stage) {
 primaryStage = stage; // Used in file dialogs later
 resumeEditor = new HTMLEditor();
 resumeEditor.setPrefSize(600, 300);

 // Filter only HTML files
 fileDialog.getExtensionFilters()
 .add(new ExtensionFilter("HTML Files", "*.htm", "*.html"));

 Button openBtn = new Button("Open");
 Button saveBtn = new Button("Save");
 Button closeBtn = new Button("Close");
 openBtn.setOnAction(e -> openFile());
 saveBtn.setOnAction(e -> saveFile());
 closeBtn.setOnAction(e -> stage.close());

Chapter 12 ■ Understanding Controls

612

 HBox buttons = new HBox(20, openBtn, saveBtn, closeBtn);
 buttons.setAlignment(Pos.CENTER_RIGHT);
 VBox root = new VBox(resumeEditor, buttons);
 root.setSpacing(20);
 root.setStyle("-fx-padding: 10;" +
 "-fx-border-style: solid inside;" +
 "-fx-border-width: 2;" +
 "-fx-border-insets: 5;" +
 "-fx-border-radius: 5;" +
 "-fx-border-color: blue;");

 Scene scene = new Scene(root);
 stage.setScene(scene);
 stage.setTitle("Editing Resume in HTML Format");
 stage.show();
 }

 private void openFile() {
 fileDialog.setTitle("Open Resume");
 File file = fileDialog.showOpenDialog(primaryStage);
 if (file == null) {
 return;
 }

 try {
 // Read the file and populate the HTMLEditor
 byte[] resume = Files.readAllBytes(file.toPath());
 resumeEditor.setHtmlText(new String(resume));
 }
 catch(IOException e) {
 e.printStackTrace();
 }
 }

 private void saveFile() {
 fileDialog.setTitle("Save Resume");
 fileDialog.setInitialFileName("untitled.htm");
 File file = fileDialog.showSaveDialog(primaryStage);
 if (file == null) {
 return;
 }

 try {
 // Write the HTML contents to the file. Overwrite the existing file.
 String html = resumeEditor.getHtmlText();
 Files.write(file.toPath(), html.getBytes());
 }
 catch(IOException e) {
 e.printStackTrace();
 }
 }
}

Chapter 12 ■ Understanding Controls

613

The DirectoryChooser Dialog
Sometimes you may need to let the user browse a directory from the available file systems on the computer.
The DirectoryChooser class lets you display a platform-dependent directory dialog.

The DirectoryChooser class contains two properties:

•	 title

•	 initialDirectory

The title property is a string and it is the title of the directory dialog. The initialDirectory property
is a File and it is the initial directory selected in the dialog when the dialog is shown.

Use the showDialog(Window ownerWindow) method of the DirectoryChooser class to open the
directory dialog. When the dialog is opened, you can select at most one directory or close the dialog without
selecting a directory. The method returns a File, which is the selected directory or null if no directory
is selected. The method is blocked until the dialog is closed. If an owner window is specified, input to all
windows in the owner window chain is blocked when the dialog is shown. You can specify a null owner
window.

The following snippet of code shows how to create, configure, and display a directory dialog:

DirectoryChooser dirDialog = new DirectoryChooser();

// Configure the properties
dirDialog.setTitle("Select Destination Directory");
dirDialog.setInitialDirectory(new File("c:\\"));

// Show the directory dialog
File dir = dirDialog.showDialog(null);
if (dir != null) {
 System.out.println("Selected directory: " + dir);
} else {
 System.out.println("No directory was selected.");
}

Summary
A user interface is a means to exchange information in terms of input and output between an application
and its users. Entering text using a keyboard, selecting a menu item using a mouse, and clicking a button
are examples of providing input to a GUI application. The application displays output on a computer
monitor using text, charts, dialog boxes, among others. Users interact with a GUI application using graphical
elements called controls or widgets. Buttons, labels, text fields, text area, radio buttons, and check boxes are
a few examples of controls. JavaFX provides a rich set of easy-to-use controls. Controls are added to layout
panes that position and size them.

Each control in JavaFX is represented by an instance of a class. Control classes are included in
the javafx.scene.control package. A control class in JavaFX is a subclass, direct or indirect, of the
Control class, which in turn inherits from the Region class. Recall that the Region class inherits from the
Parent class. Therefore, technically, a Control is also a Parent. A Parent can have children. However,
control classes do not allow adding children. Typically, a control consists of multiple nodes that are
internally maintained. Control classes expose the list of their internal unmodifiable children through the
getChildrenUnmodifiable() method, which returns an ObservableList<Node>.

Chapter 12 ■ Understanding Controls

614

A labeled control contains a read-only textual content and optionally a graphic as part of its user
interface. Label, Button, CheckBox, RadioButton, and Hyperlink are some examples of labeled controls in
JavaFX. All labeled controls are inherited, directly or indirectly, from the Labeled class that, in turn, inherits
from the Control class. The Labeled class contains properties common to all labeled controls, such as
content alignment, positioning of text relative to the graphic, and text font.

JavaFX provides button controls that can be used to execute commands, make choices, or both. All
button control classes inherit from the ButtonBase class. All types of buttons support the ActionEvent.
Buttons trigger an ActionEvent when they are activated. A button can be activated in different ways,
for example, by using a mouse, a mnemonic, an accelerator key, or other key combinations. A button
that executes a command when activated is known as a command button. The Button, Hyperlink, and
MenuButton classes represent command buttons. A MenuButton lets the user execute a command from a
list of commands. Buttons used for presenting different choices to users are known as choice buttons. The
ToggleButton, CheckBox, and RadioButton classes represent choice buttons. The third kind of button is a
hybrid of the first two kinds. They let users execute a command or make choices. The SplitMenuButton class
represents a hybrid button.

JavaFX provides controls that let users select an item(s) from a list of items. They take less space
compared to buttons. Those controls are ChoiceBox, ComboBox, ListView, ColorPicker, and DatePicker.
ChoiceBox lets users select an item from a small list of predefined items. ComboBox is an advanced version
of ChoiceBox. It has many features, for example, an ability to be editable or changing the appearance of the
items in the list, which are not offered in ChoiceBox. ListView provides users an ability to select multiple
items from a list of items. Typically, all or more than one item in a ListView are visible to the user all of the
time. ColorPicker lets users select a color from a standard color palette or define a custom color graphically.
DatePicker lets users select a date from a calendar pop-up. Optionally, users can enter a date as text.
ComboBox, ColorPicker, and DatePicker have the same superclass that is the ComboBoxBase class.

Text input controls let users work with single line or multiple lines of plain text. All text input controls
are inherited from the TextInputControl class. There are three types of text input controls: TextField,
PasswordField, and TextArea. TextField lets the user enter a single line of plain text; newlines and tab
characters in the text are removed. PasswordField inherits from TextField. It works much the same as
TextField, except it masks its text. TextArea lets the user enter multiline plain text. A newline character
starts a new paragraph in a TextArea.

For a long running task, you need to provide visual feedback to the user indicating the progress of the
task for a better user experience. The ProgressIndicator and ProgressBar controls are used to show the
progress of a task. They differ in the ways they display the progress. The ProgressBar class inherits from
the ProgressIndicator class. ProgressIndicator displays the progress in a circular control, whereas
ProgressBar uses a horizontal bar.

TitledPane is a labeled control. It displays the text as its title. The graphic is shown in the title bar.
Besides text and a graphic, it has content, which is a node. Typically, a group of controls is placed in a
container and the container is added as the content for the TitledPane. TitledPane can be in a collapsed
or expanded state. In the collapsed state, it displays only the title bar and hides the content. In the expanded
state, it displays the title bar and the content.

Accordion is a control that displays a group of TitledPane controls where only one of them is in the
expanded state at a time.

Pagination is a control that is used to display a large single content by dividing it into smaller chunks
called pages, for example, the results of a search.

A tool tip is a pop-up control used to show additional information about a node. It is displayed when
a mouse pointer hovers over the node. There is a small delay between when the mouse pointer hovers over
a node and when the tool tip for the node is shown. The tool tip is hidden after a small period. It is also
hidden when the mouse pointer leaves the control. You should not design a GUI application where the user
depends on seeing tool tips for controls, as they may not be shown at all if the mouse pointer never hovers
over the controls.

Chapter 12 ■ Understanding Controls

615

The ScrollBar and ScrollPane controls provide scrolling features to other controls. These controls are
not used alone. They are always used to support scrolling in other controls.

Sometimes you want to place logically related controls side by side horizontally or vertically. For better
appearance, controls are grouped using different types of separators. The Separator and SplitPane controls
are used for visually separating two controls or two groups of controls.

The Slider control lets the user select a numeric value from a numeric range graphically by sliding a
thumb (or knob) along a track. A Slider can be horizontal or vertical.

A menu is used to provide a list of actionable items to the user in a compact form. A menu bar is a
horizontal bar that acts as a container for menus. An instance of the MenuBar class represents a menu bar.
A menu contains a list of actionable items, which are displayed on demand, for example, by clicking it. The
list of menu items is hidden when the user selects an item or moves the mouse pointer outside the list.
A menu is typically added to a menu bar or another menu as a submenu. An instance of the Menu class
represents a menu. A Menu displays text and a graphic. A menu item is an actionable item in a menu. The
action associated with a menu item is performed by mouse or keys. Menu items can be styled using CSS. An
instance of the MenuItem class represents a menu item. The MenuItem class is not a node. It is inherited from
the Object class and, therefore, cannot be added directly to a scene graph. You need to add it to a Menu.

ContextMenu is a pop-up control that displays a list of menu items on request. It is known as a context
or pop-up menu. By default, it is hidden. The user has to make a request, usually by right-clicking the mouse
button, to show it. It is hidden once a selection is made. The user can dismiss a context menu by pressing the
Esc key or clicking outside its bounds. An object of the ContextMenu class represents a context menu.

ToolBar is used to display a group of nodes, which provide the commonly used action items on a
screen. Typically, a ToolBar contains the commonly used items that are also available through a menu and
a context menu. A ToolBar can hold many types of nodes. The most commonly used nodes in a ToolBar
are buttons and toggle buttons. Separators are used to separate a group of buttons from others. Typically,
buttons are kept smaller by using small icons, preferably 16px by 16px in size.

A window may not have enough space to display all of the pieces of information in a one-page view.
TabPanes and Tabs let you present information in a page much better. A Tab represents a page and a TabPane
contains the tabs. A Tab is not a control. An instance of the Tab class represents a Tab. The Tab class inherits
from the Object class. However, a Tab supports some features as controls do, for example, they can be
disabled, styled using CSS, and have context menus and tool tips.

A Tab consists of a title and content. The title consists of text, an optional graphic, and an optional close
button to close the tab. The content consists of controls. Typically, the titles of tabs in a TabPane are visible.
The content area is shared by all tabs. Tabs in a TabPane may be positioned at the top, right, bottom, or left
side of the TabPane. By default, they are positioned at the top.

The HTMLEditor control provides a rich text editing capability to JavaFX application. It uses HTML as its
data model. That is, the formatted text in HTMLEditor is stored in HTML format.

JavaFX provides the FileChooser and DirectoryChooser classes in the javafx.stage package that are
used to show file and directory dialogs, respectively. The dialogs have a platform dependent look and feel
and cannot be styled using JavaFX. They are not controls. A FileChooser is a standard file dialog. It is used
to let the user select files to open or save. A DirectoryChooser lets the user browse a directory from the
available file systems on the machine.

The next chapter will discuss the TableView control that is used to display and edit data
in tabular format.

617

Chapter 13

Understanding TableView

In this chapter, you will learn:

What a •	 TableView is

How to create a •	 TableView

About adding columns to a •	 TableView

About populating a •	 TableView with data

About showing and hiding and reordering columns in a •	 TableView

About sorting and editing data in a •	 TableView

About adding and deleting rows in a •	 TableView

About resizing columns in a •	 TableView

About styling a •	 TableView with CSS

What Is a TableView ?
TableView is a powerful control to display and edit data in a tabular form from a data model. A TableView
consists of rows and columns. A cell is an intersection of a row and a column. Cells contain the data values.
Columns have headers that describe the type of data they contain. Columns can be nested. Resizing and
sorting of column data have built-in support. Figure 13-1 shows a TableView with four columns that have the
header text Id, First Name, Last Name, and Birth Date. It has five rows, with each row containing data for a
person. For example, the cell in the fourth row and third column contains the last name Boyd.

Figure 13-1. A TableView showing a list of persons

Chapter 13 ■ Understanding tableView

618

TableView is a powerful, but not simple, control. You need to write a few lines of code to use even the
simplest TableView that displays some meaningful data to users. There are several classes involved in working
with TableView. I will discuss these classes in detail when I discuss the different features of the TableView:

•	 TableView

•	 TableColumn

•	 TableRow

•	 TableCell

•	 TablePosition

•	 TableView.TableViewFocusModel

•	 TableView.TableViewSelectionModel

The TableView class represents a TableView control. The TableColumn class represents a column in a
TableView. Typically, a TableView contains multiple instances of TableColumn. A TableColumn consists of
cells, which are instances of the TableCell class. A TableColumn uses two properties to populate cells and
render values in them. It uses a cell value factory to extract the value for its cells from the list of items. It uses
a cell factory to render data in a cell. You must specify a cell value factory for a TableColumn to see some data
in it. A TableColumn uses a default cell factory that knows how to render text and a graphic node.

The TableRow class inherits from the IndexedCell class. An instance of TableRow represents a row in a
TableView. You would almost never use this class in an application unless you want to provide a customized
implementation for rows. Typically, you customize cells, not rows.

An instance of the TableCell class represents a cell in a TableView. Cells are highly customizable.
They display data from the underlying data model for the TableView. They are capable of displaying data as
well as graphics.

The TableColumn, TableRow, and TableCell classes contain a tableView property that holds
the reference of the TableView that contains them. The tableView property contains null when the
TableColumn does not belong to a TableView.

A TablePosition represents the position of a cell. Its getRow() and getColumn() methods return the
indices of the row and column, respectively, to which the cell belongs.

The TableViewFocusModel class is an inner static class of the TableView class. It represents the focus
model for the TableView to manage focus for rows and cells.

The TableViewSelectionModel class is an inner static class of the TableView class. It represents the
selection model for the TableView to manage selection for rows and cells.

Like ListView and TreeView controls, TableView is virtualized. It creates just enough cells to display
the visible content. As you scroll through the content, the cells are recycled. This helps keep the number of
nodes in the scene graph to a minimum. Suppose you have ten columns and 1,000 rows in a TableView and
only ten rows are visible at a time. An inefficient approach would be to create 10,000 cells, one cell for each
piece of data. The TableView creates only 100 cells, so it can display ten rows with ten columns. As you scroll
through the content, the same 100 cells will be recycled to show the other visible rows. Virtualization
makes it possible to use TableView with a large data model without performance penalty for viewing the
data in a chunk.

For examples in this chapter, I will use the Person class from Chapter 11 on MVC. The Person class is in
the com.jdojo.mvc.model package. Before I start discussing the TableView control in detail, I will introduce
a PersonTableUtil class, as shown in Listing 13-1. I will reuse it several times in the examples presented.
It has static methods to return an observable list of persona and instances of the TableColumn class to
represent columns in a TableView.

Chapter 13 ■ Understanding tableView

619

Listing 13-1. A PersonTableUtil Utility Class

// PersonTableUtil.java
package com.jdojo.control;

import com.jdojo.mvc.model.Person;
import java.time.LocalDate;
import javafx.collections.FXCollections;
import javafx.collections.ObservableList;
import javafx.scene.control.TableColumn;
import javafx.scene.control.cell.PropertyValueFactory;

public class PersonTableUtil {
 /* Returns an observable list of persons */
 public static ObservableList<Person> getPersonList() {
 Person p1 = new Person("Ashwin", "Sharan", LocalDate.of(2012, 10, 11));
 Person p2 = new Person("Advik", "Sharan", LocalDate.of(2012, 10, 11));
 Person p3 = new Person("Layne", "Estes", LocalDate.of(2011, 12, 16));
 Person p4 = new Person("Mason", "Boyd", LocalDate.of(2003, 4, 20));
 Person p5 = new Person("Babalu", "Sharan", LocalDate.of(1980, 1, 10));
 return FXCollections.<Person>observableArrayList(p1, p2, p3, p4, p5);
 }

 /* Returns Person Id TableColumn */
 public static TableColumn<Person, Integer> getIdColumn() {
 TableColumn<Person, Integer> personIdCol = new TableColumn<>("Id");
 personIdCol.setCellValueFactory(new PropertyValueFactory<>("personId"));
 return personIdCol;
 }

 /* Returns First Name TableColumn */
 public static TableColumn<Person, String> getFirstNameColumn() {
 TableColumn<Person, String> fNameCol = new TableColumn<>("First Name");
 fNameCol.setCellValueFactory(new PropertyValueFactory<>("firstName"));
 return fNameCol;
 }

 /* Returns Last Name TableColumn */
 public static TableColumn<Person, String> getLastNameColumn() {
 TableColumn<Person, String> lastNameCol = new TableColumn<>("Last Name");
 lastNameCol.setCellValueFactory(new PropertyValueFactory<>("lastName"));
 return lastNameCol;
 }

 /* Returns Birth Date TableColumn */
 public static TableColumn<Person, LocalDate> getBirthDateColumn() {
 TableColumn<Person, LocalDate> bDateCol =
 new TableColumn<>("Birth Date");
 bDateCol.setCellValueFactory(new PropertyValueFactory<>("birthDate"));
 return bDateCol;
 }
}

Subsequent sections will walk you through the steps to display and edit data in a TableView.

Chapter 13 ■ Understanding tableView

620

Creating a TableView
In the following example, you will use the TableView class to create a TableView control. TableView is a
parameterized class, which takes the type of items the TableView contains. Optionally, you can pass the
model into its constructor that supplies the data. The constructor creates a TableView without a model.
The following statement creates a TableView that will use objects of the Person class as its items:

TableView<Person> table = new TableView<>();

When you add the above TableView to a scene, it displays a placeholder, as shown in Figure 13-2. The
placeholder lets you know that you need to add columns to the TableView. There must be at least one visible
leaf column in the TableView data.

You would use another constructor of the TableView class to specify the model. It accepts an observable
list of items. The following statement passes an observable list of Person objects as the initial data for the
TableView:

TableView<Person> table = new TableView<>(PersonTableUtil.getPersonList());

Adding Columns to a TableView
An instance of the TableColumn class represents a column in a TableView. A TableColumn is responsible
for displaying and editing the data in its cells. A TableColumn has a header that can display header text,
a graphic, or both. You can have a context menu for a TableColumn, which is displayed when the user
right-clicks inside the column header. Use the contextMenu property to set a context menu.

The TableColumn<S, T> class is a generic class. The S parameter is the items type, which is of the same
type as the parameter of the TableView. The T parameter is the type of data in all cells of the column. For
example, an instance of the TableColumn<Person, Integer> may be used to represent a column to display
the ID of a Person, which is of int type; an instance of the TableColumn<Person, String> may be used to
represent a column to display the first name of a person, which is of String type. The following snippet of
code creates a TableColumn with First Name as its header text:

TableColumn<Person, String> fNameCol = new TableColumn<>("First Name");

A TableColumn needs to know how to get the value (or data) for its cells from the model. To populate the
cells, you need to set the cellValueFactory property of the TableColumn. If the model for a TableView contains
objects of a class that is based on JavaFX properties, you can use an object of the PropertyValueFactory class as

Figure 13-2. A TableView with no columns and data showing a placeholder

Chapter 13 ■ Understanding tableView

621

the cell value factory, which takes the property name. It reads the property value from the model and populates
all of the cells in the column, as in the following code:

// Use the firstName property of Person object to populate the column cells
PropertyValueFactory<Person, String> fNameCellValueFactory =
 new PropertyValueFactory<>("firstName");
fNameCol.setCellValueFactory(fNameCellValueFactory);

You need to create a TableColumn object for each column in the TableView and set its cell value factory
property. The next section will explain what to do if your item class is not based on JavaFX properties or you
want to populate the cells with computed values.

The last step in setting up a TableView is to add TableColumns to its list of columns. A TableView stores
references of its columns in an ObservableList<TableColumn> whose reference can be obtained using the
getColumns() method of the TableView:

// Add the First Name column to the TableView
table.getColumns().add(fNameCol);

That is all it takes to use a TableView in its simplest form, which is not so “simple” after all! The
program in Listing 13-2 shows how to create a TableView with a model and add columns to it. It uses the
PersonTableUtil class to get the list of persons and columns. The program displays a window as shown in
Figure 13-3.

Listing 13-2. Using TableView in Its Simplest Form

// SimplestTableView.java
package com.jdojo.control;

import com.jdojo.mvc.model.Person;
import javafx.application.Application;
import javafx.scene.Scene;
import javafx.scene.control.TableView;
import javafx.scene.layout.VBox;
import javafx.stage.Stage;

public class SimplestTableView extends Application {
 public static void main(String[] args) {
 Application.launch(args);
 }

 @Override
 public void start(Stage stage) {
 // Create a TableView with a list of persons
 TableView<Person> table = new TableView<>(PersonTableUtil.getPersonList());

 // Add columns to the TableView
 table.getColumns().addAll(PersonTableUtil.getIdColumn(),
 PersonTableUtil.getFirstNameColumn(),
 PersonTableUtil.getLastNameColumn(),
 PersonTableUtil.getBirthDateColumn());

Chapter 13 ■ Understanding tableView

622

 VBox root = new VBox(table);
 root.setStyle("-fx-padding: 10;" +
 "-fx-border-style: solid inside;" +
 "-fx-border-width: 2;" +
 "-fx-border-insets: 5;" +
 "-fx-border-radius: 5;" +
 "-fx-border-color: blue;");

 Scene scene = new Scene(root);
 stage.setScene(scene);
 stage.setTitle("Simplest TableView");
 stage.show();
 }
}

TableView supports nesting of columns. For example, you can have two columns, First and Last,
nested inside a Name column. A TableColumn stores the list of nested columns in an observable list whose
reference can be obtained using the getColumns() method of the TableColumn class. The innermost
nested columns are known as leaf columns. You need to add the cell value factories for the leaf columns.
Nested columns only provide visual effects. The following snippet of code creates a TableView and
adds an Id column and two leaf columns, First and Last, that are nested in the Name column. The resulting
TableView is shown in Figure 13-4. Note that you add the topmost columns to the TableView, not the nested
columns. TableView takes care of adding all nested columns for the topmost columns. There is no limit on
the level of column nesting.

// Create a TableView with data
TableView<Person> table = new TableView<>(PersonTableUtil.getPersonList());

// Create leaf columns - Id, First and Last
TableColumn<Person, String> idCol = new TableColumn<>("Id");
idCol.setCellValueFactory(new PropertyValueFactory<>("personId"));

TableColumn<Person, String> fNameCol = new TableColumn<>("First");
fNameCol.setCellValueFactory(new PropertyValueFactory<>("firstName"));

Figure 13-3. A window with a TableView that displays four columns and five rows

Chapter 13 ■ Understanding tableView

623

TableColumn<Person, String> lNameCol = new TableColumn<>("Last");
lNameCol.setCellValueFactory(new PropertyValueFactory<>("lastName"));

// Create Name column and nest First and Last columns in it
TableColumn<Person, String> nameCol = new TableColumn<>("Name");
nameCol.getColumns().addAll(fNameCol, lNameCol);

// Add columns to the TableView
table.getColumns().addAll(idCol, nameCol);

The following methods in the TableView class provide information about visible leaf columns:

TableColumn<S,?> getVisibleLeafColumn(int columnIndex)
ObservableList<TableColumn<S,?>> getVisibleLeafColumns()
int getVisibleLeafIndex(TableColumn<S,?> column)

The getVisibleLeafColumn() method returns the reference of the column for the specified
column index. The column index is counted only for visible leaf column and the index starts at zero.
The getVisibleLeafColumns() method returns an observable list of all visible leaf columns. The
getVisibleLeafIndex() method returns the column reference for the specified column index of a visible
leaf column.

Customizing TableView Placeholder
TableView displays a placeholder when it does not have any visible leaf columns or content. Consider the
following snippet of code that creates a TableView and adds columns to it:

TableView<Person> table = new TableView<>();
table.getColumns().addAll(PersonTableUtil.getIdColumn(),
 PersonTableUtil.getFirstNameColumn(),
 PersonTableUtil.getLastNameColumn(),
 PersonTableUtil.getBirthDateColumn());

Figure 13-5 shows the results of the above TableView. Columns and a placeholder are displayed,
indicating that the TableView does not have data.

Figure 13-4. A TableView with nested columns

Chapter 13 ■ Understanding tableView

624

You can replace the built-in placeholder using the placeholder property of the TableView. The value
for the property is an instance of the Node class. The following statement sets a Label with a generic
message as a placeholder:

table.setPlaceholder(new Label("No visible columns and/or data exist."));

You can set a custom placeholder to inform the user of the specific condition that resulted in showing
no data in the TableView. The following statement uses binding to change the placeholder as the
conditions change:

table.placeholderProperty().bind(
 new When(new SimpleIntegerProperty(0)
 .isEqualTo(table.getVisibleLeafColumns().size()))
 .then(new When(new SimpleIntegerProperty(0)
 .isEqualTo(table.getItems().size()))
 .then(new Label("No columns and data exist."))
 .otherwise(new Label("No columns exist.")))
 .otherwise(new When(new SimpleIntegerProperty(0)
 .isEqualTo(table.getItems().size()))
 .then(new Label("No data exist."))
 .otherwise((Label)null)));

Populating a TableColumn with Data
Cells in a row of a TableView contain data related to an item such as a person, a book, and so forth. Data for
some cells in a row may come directly from the attributes of the item or they may be computed.

TableView has an items property of the ObservableList<S> type. The generic type S is the same as
the generic type of the TableView. It is the data model for the TableView. Each element in the items list
represents a row in the TableView. Adding a new item to the items list adds a new row to the TableView.
Deleting an item from the items list deletes the corresponding row from the TableView.

Tip ■ whether updating an item in the items list updates the corresponding data in the TableView depends
on how the cell value factory for the column is set up. i will discuss examples of both kinds in this section.

The following snippet of code creates a TableView in which a row represents a Person object. It adds
data for two rows:

TableView<Person> table = new TableView<>();

Person p1 = new Person("John", "Jacobs", null);
Person p2 = new Person("Donna", "Duncan", null);
table.getItems().addAll(p1, p2);

Figure 13-5. A TableView control with columns and no data

Chapter 13 ■ Understanding tableView

625

Adding items to a TableView is useless unless you add columns to it. Among several other things,
a TableColumn object defines:

Header text and graphic for the column•	

A cell value factory to populate the cells in the column•	

The TableColumn class gives you full control over how cells in a column are populated. The
cellValueFactory property of the TableColumn class is responsible for populating cells of the column. A cell
value factory is an object of the Callback class, which receives a TableColumn.CellDataFeatures object and
returns an ObservableValue.

The CellDataFeatures class is a static inner class of the TableColumn class, which wraps the reference
of the TableView, TableColumn, and the item for the row for which the cells of the column are being
populated. Use the getTableView(), getTableColumn(), and getValue() methods of the CellDataFeatures
class to get the reference of the TableView, TableColumn, and the item for the row, respectively.

When the TableView needs the value for a cell, it calls the call() method of the cell value factory
object of the column to which the cell belongs. The call() method is supposed to return the reference of
an ObservableValue object, which is monitored for any changes. The return ObservableValue object may
contain any type of object. If it contains a node, the node is displayed as a graphic in the cell. Otherwise, the
toString() method of the object is called and the retuned string is displayed in the cell.

The following snippet of code creates a cell value factory using an anonymous class. The factory returns
the reference of the firstName property of the Person class. Note that a JavaFX property is an ObservableValue.

import static javafx.scene.control.TableColumn.CellDataFeatures;
...
// Create a String column with the header "First Name" for Person object
TableColumn<Person, String> fNameCol = new TableColumn<>("First Name");

// Create a cell value factory object
Callback<CellDataFeatures<Person, String>, ObservableValue<String>> fNameCellFactory =
new Callback<CellDataFeatures<Person, String>, ObservableValue<String>>() {
@Override
public ObservableValue<String> call(CellDataFeatures<Person, String> cellData) {
 Person p = cellData.getValue();
 return p.firstNameProperty();
}};

// Set the cell value factory
fNameCol.setCellValueFactory(fNameCellFactory);

Using a lambda expression to create and set a cell value factory comes in handy. The above snippet of
code can be written as follows:

TableColumn<Person, String> fNameCol = new TableColumn<>("First Name");
fNameCol.setCellValueFactory(cellData -> cellData.getValue().firstNameProperty());

When a JavaFX property supplies values for cells in a column, creating the cell value factory is easier if
you use an object of the PropertyValueFactory class. You need to pass the name of the JavaFX property
to its constructor. The following snippet of code does the same as the code shown above. You would take
this approach to create TableColumn objects inside the utility methods in the PersonTableUtil class.

TableColumn<Person, String> fNameCol = new TableColumn<>("First Name");
fNameCol.setCellValueFactory(new PropertyValueFactory<>("firstName"));

Chapter 13 ■ Understanding tableView

626

Tip ■ Using JavaFX properties as the value supplied for cells has a big advantage. the TableView keeps the
value in the property and the cell in sync. Changing the property value in the model automatically updates
the value in the cell.

TableColumn also supports POJO (Plain Old Java Object) as items in the TableView. The disadvantage
is that when the model is updated, the cell values are not automatically updated. You use the same
PropertyValueFactory class to create the cell value factory. The class will look for the public getter and setter
methods with the property name you pass. If only the getter method is found, the cell will be read-only. For an
xxx property, it tries looking for getXxx() and setXxx() methods using the JavaBeans naming conventions.
If the type of xxx is boolean, it also looks for the isXxx() method. If a getter or a setter method is not found,
a runtime exception is thrown. The following snippet of code creates a column with the header text Age
Category:

TableColumn<Person, Person.AgeCategory> ageCategoryCol =
 new TableColumn<>("Age Category");
ageCategoryCol.setCellValueFactory(new PropertyValueFactory<>("ageCategory"));

It indicates that the items type is Person and the column type is Person.AgeCategory. It passes
ageCategory as the property name into the constructor of the PropertyValueFactory class. First, the class
will look for an ageCategory property in the Person class. The Person class does not have this property.
Therefore, it will try using Person class as a POJO for this property. Then it will look for getAgeCategory()
and setAgeCategory() methods in the Person class. It finds only the getter method, getAgeCategory(), and
hence, it will make the column read-only.

The values in the cells of a column do not necessarily have to come from JavaFX or POJO properties.
They can be computed using some logic. In such cases, you need to create a custom cell value factory and
return a ReadOnlyXxxWrapper object that wraps the computed value. The following snippet of code creates
an Age column that displays a computed age in years:

TableColumn<Person, String> ageCol = new TableColumn<>("Age");
ageCol.setCellValueFactory(cellData -> {
 Person p = cellData.getValue();
 LocalDate dob = p.getBirthDate();
 String ageInYear = "Unknown";
 if (dob != null) {
 long years = YEARS.between(dob, LocalDate.now());
 if (years == 0) {
 ageInYear = "< 1 year";
 } else if (years == 1) {
 ageInYear = years + " year";
 } else {
 ageInYear = years + " years";
 }
 }
 return new ReadOnlyStringWrapper(ageInYear);
});

Chapter 13 ■ Understanding tableView

627

This completes the different ways of setting the cell value factory for cells of a column in a TableView.
The program in Listing 13-3 creates cell value factories for JavaFX properties, a POJO property, and a
computed value. It displays a window as shown in Figure 13-6.

Listing 13-3. Setting Cell Value Factories for Columns

// TableViewDataTest.java
package com.jdojo.control;

import com.jdojo.mvc.model.Person;
import javafx.application.Application;
import javafx.beans.property.ReadOnlyStringWrapper;
import javafx.scene.Scene;
import javafx.scene.control.TableColumn;
import javafx.scene.control.TableView;
import javafx.scene.control.cell.PropertyValueFactory;
import java.time.LocalDate;
import javafx.scene.layout.HBox;
import javafx.stage.Stage;
import static java.time.temporal.ChronoUnit.YEARS;

public class TableViewDataTest extends Application {
 public static void main(String[] args) {
 Application.launch(args);
 }

 @Override
 @SuppressWarnings("unchecked")
 public void start(Stage stage) {
 // Create a TableView with data
 TableView<Person> table =
 new TableView<>(PersonTableUtil.getPersonList());

 // Create an "Age" computed column
 TableColumn<Person, String> ageCol = new TableColumn<>("Age");
 ageCol.setCellValueFactory(cellData -> {
 Person p = cellData.getValue();
 LocalDate dob = p.getBirthDate();
 String ageInYear = "Unknown";

 if (dob != null) {
 long years = YEARS.between(dob, LocalDate.now());
 if (years == 0) {
 ageInYear = "< 1 year";
 } else if (years == 1) {
 ageInYear = years + " year";
 } else {
 ageInYear = years + " years";
 }
 }
 return new ReadOnlyStringWrapper(ageInYear);
 });

Chapter 13 ■ Understanding tableView

628

 // Create an "Age Cotegory" column
 TableColumn<Person, Person.AgeCategory> ageCategoryCol =
 new TableColumn<>("Age Category");
 ageCategoryCol.setCellValueFactory(
 new PropertyValueFactory<>("ageCategory"));

 // Add columns to the TableView
 table.getColumns().addAll(PersonTableUtil.getIdColumn(),
 PersonTableUtil.getFirstNameColumn(),
 PersonTableUtil.getLastNameColumn(),
 PersonTableUtil.getBirthDateColumn(),
 ageCol,
 ageCategoryCol);

 HBox root = new HBox(table);
 root.setStyle("-fx-padding: 10;" +
 "-fx-border-style: solid inside;" +
 "-fx-border-width: 2;" +
 "-fx-border-insets: 5;" +
 "-fx-border-radius: 5;" +
 "-fx-border-color: blue;");

 Scene scene = new Scene(root);
 stage.setScene(scene);
 stage.setTitle("Populating TableViews");
 stage.show();
 }
}

Figure 13-6. A TableView having columns for JavaFX properties, POJO properties, and computed values

Cells in a TableView can display text and graphics. If the cell value factory returns an instance of the
Node class, which could be an ImageView, the cell displays it as graphic. Otherwise, it displays the string
returned from the toString() method of the object. It is possible to display other controls and containers in
cells. However, a TableView is not meant for that and such uses are discouraged. Sometimes using a specific
type of control in a cell, for example, a check box, to show or edit a boolean value provides a better user
experience. I will cover such customization of cells shortly.

Chapter 13 ■ Understanding tableView

629

Using a Map as Items in a TableView
Sometimes data in a row for a TableView may not map to a domain object, for example, you may want to
display the result set of a dynamic query in a TableView. The items list consists of an observable list of Map.
A Map in the list contains values for all columns in the row. You can define a custom cell value factory to
extract the data from the Map. The MapValueFactory class is especially designed for this purpose. It is an
implementation of the cell value factory, which reads data from a Map for a specified key.

The following snippet of code creates a TableView of Map. It creates an Id column and sets an instance
of the MapValueFactory class as its cell value factory specifying the idColumnKey as the key that contains the
value for the Id column. It creates a Map and populates the Id column using the idColumnKey. You need to
repeat these steps for all columns and rows.

TableView<Map> table = new TableView<>();

// Define the column, its cell value factory and add it to the TableView
String idColumnKey = "id";
TableColumn<Map, Integer> idCol = new TableColumn<>("Id");
idCol.setCellValueFactory(new MapValueFactory<>(idColumnKey));
table.getColumns().add(idCol);

// Create and populate a Map an item
Map row1 = new HashMap();
row1.put(idColumnKey, 1);

// Add the Map to the TableView items list
table.getItems().add(row1);

The program in Listing 13-4 shows how to use the MapValueFactory as the cell value factory for
columns in a TableView. It displays the person’s data returned by the getPersonList() method in the
PersonTableUtil class.

Listing 13-4. Using MapValueFactory as a Cell Value Factory for Cells in a TableView

// TableViewMapDataTest.java
package com.jdojo.control;

import com.jdojo.mvc.model.Person;
import javafx.application.Application;
import javafx.scene.Scene;
import javafx.scene.control.TableColumn;
import javafx.scene.control.TableView;
import java.time.LocalDate;
import java.util.HashMap;
import java.util.Map;
import javafx.collections.FXCollections;
import javafx.collections.ObservableList;
import javafx.scene.control.cell.MapValueFactory;
import javafx.scene.layout.HBox;
import javafx.stage.Stage;

Chapter 13 ■ Understanding tableView

630

public class TableViewMapDataTest extends Application {
 private final String idColumnKey = "id";
 private final String firstNameColumnKey = "firstName";
 private final String lastNameColumnKey = "lastName";
 private final String birthDateColumnKey = "birthDate";

 public static void main(String[] args) {
 Application.launch(args);
 }

 @Override
 public void start(Stage stage) {
 TableView<Map> table = new TableView<>();
 ObservableList<Map<String, Object>> items = this.getMapData();
 table.getItems().addAll(items);
 this.addColumns(table);

 HBox root = new HBox(table);
 root.setStyle("-fx-padding: 10;" +
 "-fx-border-style: solid inside;" +
 "-fx-border-width: 2;" +
 "-fx-border-insets: 5;" +
 "-fx-border-radius: 5;" +
 "-fx-border-color: blue;");

 Scene scene = new Scene(root);
 stage.setScene(scene);
 stage.setTitle("Using a Map as items in a TableView");
 stage.show();
 }

 public ObservableList<Map<String, Object>> getMapData() {
 ObservableList<Map<String, Object>> items =
 FXCollections.<Map<String, Object>>observableArrayList();

 // Extract the person data, add the data to a Map, and add the Map to
 // the items list
 ObservableList<Person> persons = PersonTableUtil.getPersonList();
 for(Person p : persons) {
 Map<String, Object> map = new HashMap<>();
 map.put(idColumnKey, p.getPersonId());
 map.put(firstNameColumnKey, p.getFirstName());
 map.put(lastNameColumnKey, p.getLastName());
 map.put(birthDateColumnKey, p.getBirthDate());
 items.add(map);
 }

 return items;
 }

Chapter 13 ■ Understanding tableView

631

 @SuppressWarnings("unchecked")
 public void addColumns(TableView table) {
 TableColumn<Map, Integer> idCol = new TableColumn<>("Id");
 idCol.setCellValueFactory(new MapValueFactory<>(idColumnKey));

 TableColumn<Map, String> firstNameCol = new TableColumn<>("First Name");
 firstNameCol.setCellValueFactory(new MapValueFactory<>(firstNameColumnKey));

 TableColumn<Map, String> lastNameCol = new TableColumn<>("Last Name");
 lastNameCol.setCellValueFactory(new MapValueFactory<>(lastNameColumnKey));

 TableColumn<Map, LocalDate> birthDateCol = new TableColumn<>("Birth Date");
 birthDateCol.setCellValueFactory(new MapValueFactory<>(birthDateColumnKey));

 table.getColumns().addAll(idCol, firstNameCol, lastNameCol, birthDateCol);
 }
}

Showing and Hiding Columns
By default, all columns in a TableView are visible. The TableColumn class has a visible property to set the
visibility of a column. If you turn off the visibility of a parent column, a column with nested columns, all of its
nested columns will also be invisible:

TableColumn<Person, String> idCol = new TableColumn<>("Id");

// Make the Id column invisible
idCol.setVisible(false);
...
// Make the Id column visible
idCol.setVisible(true);

Sometimes you may want to let the user control the visibility of columns. The TableView class has a
tableMenuButtonVisible property. If it is set to true, a menu button is displayed in the header area:

// Create a TableView
TableView<Person> table = create the TableView here...

// Make the table menu button visible
table.setTableMenuButtonVisible(true);

Clicking the menu button displays a list of all leaf columns. Columns are displayed as radio menu
items that can be used to toggle their visibility. Figure 13-7 shows a TableView with four columns. Its
tableMenuButtonVisible property is set to true. The figure shows a menu with all column names with a
check mark. The menu is displayed when the menu button is clicked. The check marks beside the column
names indicate that the columns are visible. Clicking the column name toggles its visibility.

Chapter 13 ■ Understanding tableView

632

Reordering Columns in a TableView
You can rearrange columns in a TableView two ways:

By dragging and dropping columns to a different position•	

By changing their positions in the observable list of returned by the •	 getColumns()
method of the TableView class

The first option is available by default. The user needs to drag and drop a column at the new position.
When a column is reordered, its position in the columns list is changed. The second option will reorder the
column directly in the columns list.

There is no easy way to disable the default column-reordering feature. If you want to disable the feature,
you would need to add a ChangeListener to the ObservableList returned by the getColumns() method of
the TableView. When a change is reported, reset the columns so they are in the original order again.

Sorting Data in a TableView
TableView has built-in support for sorting data in columns. By default, it allows users to sort data by clicking
column headers. It also supports sorting data programmatically. You can also disable sorting for a column or
all columns in a TableView.

Sorting Data by Users
By default, data in all columns in a TableView can be sorted. Users can sort data in columns by clicking
the column headers. The first click sorts the data in ascending order. The second click sorts the data in
descending order. The third click removes the column from the sort order list.

By default, single column sorting is enabled. That is, if you click a column, the records in the TableView
are sorted based on the data only in the clicked column. To enable multicolumn sorting, you need to press
the Shift key while clicking the headers of the columns to be sorted.

TableView displays visual clues in the headers of the sorted columns to indicate the sort type and the
sort order. By default, a triangle is displayed in the column header indicating the sort type. It points upward
for ascending sort type and downward for descending sort type. The sort order of a column is indicated by
dots or a number. Dots are used for the first three columns in the sort order list. A number is used for the
fourth column onward. For example, the first column in the sort order list displays one dot, the second two
dots, the third three dots, the fourth a number 4, the fifth a number 5, and so forth.

Figure 13-7. A TableView with menu button to toggle the visibility of columns

Chapter 13 ■ Understanding tableView

633

Figure 13-8 shows a TableView with four columns. The column headers are showing the sort type and
sort orders. The sort types are descending for Last Name and ascending for others. The sort orders are 1, 2, 3,
and 4 for Last Name, First Name, Birth Date, and Id, respectively. Notice that dots are used for the sort orders
in the first three columns and a number 4 is used for the Id column because it is fourth on the sort order list.
This sorting is achieved by clicking column headers in the following order: Last Name (twice), First Name,
Birth Date, and Id.

Sorting Data Programmatically
Data in columns can be sorted programmatically. The TableView and TableColumn classes provide a very
powerful API for sorting. The sorting API consists of several properties and methods in the two classes. Every
part and every stage of sorting are customizable. The following sections describe the API with examples.

Making a Column Sortable
The sortable property of a TableColumn determines whether the column is sortable. By default, it is set to
true. Set it to false to disable the sorting for a column:

// Disable sorting for fNameCol column
fNameCol.setSortable(false);

Specifying the Sort Type of a Column
A TableColumn has a sort type, which can be ascending or descending. It is specified through the sortType
property. The ASCENDING and DESCENDING constants of TableColumn.SortType enum represent the
ascending and descending, respectively, sort types for columns. The default value for the sortType property
is TableColumn.SortType.ASCENDING. The DESCENDING constant is set as follows:

// Set the sort type for fNameCol column to descending
fNameCol.setSortType(TableColumn.SortType.DESCENDING);

Figure 13-8. Column headers showing the sort type and sort order

Chapter 13 ■ Understanding tableView

634

Specifying the Comparator for a Column
A TableColumn uses a Comparator to sort its data. You can specify the Comparator for a TableColumn using its
comparator property. The comparator is passed in the objects in two cells being compared. A TableColumn
uses a default Comparator, which is represented by the constant TableColumn.DEFAULT_COMPARATOR.
The default comparator compares data in two cells using the following rules:

It checks for •	 null values. The null values are sorted first. If both cells have null,
they are considered equal.

If the first value being compared is an instance of the •	 Comparable interface, it calls
the compareTo() method of the first object passing the second object as an argument
to the method.

If neither of the above two conditions are true, it converts the two objects into •	
strings calling their toString() methods and uses a Collator to compare the two
String values.

In most cases, the default comparator is sufficient. The following snippet of code uses a custom
comparator for a String column that compares only the first characters of the cell data:

TableColumn<Person, String> fNameCol = new TableColumn<>("First Name");
...
// Set a custom comparator
fNameCol.setComparator((String n1, String n2) -> {
 if (n1 == null && n2 == null) {
 return 0;
 }

 if (n1 == null) {
 return -1;
 }

 if (n2 == null) {
 return 1;
 }

 String c1 = n1.isEmpty()? n1:String.valueOf(n1.charAt(0));
 String c2 = n2.isEmpty()? n2:String.valueOf(n2.charAt(0));
 return c1.compareTo(c2);
});

Specifying the Sort Node for a Column
The TableColumn class contains a sortNode property, which specifies a node to display a visual clue in the
column header about the current sort type and sort order for the column. The node is rotated by 180 degrees
when the sort type is ascending. The node is invisible when the column is not part of the sort. By default, it is
null and the TableColumn provides a triangle as the sort node.

Chapter 13 ■ Understanding tableView

635

Specifying the Sort Order of Columns
The TableView class contains several properties that are used in sorting. To sort columns, you need to
add them to sort order list of the TableView. The sortOrder property specifies the sort order. It is an
ObservableList of TableColumn. The order of a TableColumn in the list specifies the order of the column in
the sort. Rows are sorted based on the first column in the list. If values in two rows in the column are equal,
the second column in the sort order list is used to determine the sort order of the two rows and so on.

The following snippet of code adds two columns to a TableView and specifies their sort order. Notice
that both columns will be sorted in ascending order, which is the default sort type. If you want to sort them
in descending order, set their sortType property as follows:

// Create a TableView with data
TableView<Person> table = new TableView<>(PersonTableUtil.getPersonList());

TableColumn<Person, String> lNameCol = PersonTableUtil.getLastNameColumn();
TableColumn<Person, String> fNameCol = PersonTableUtil.getFirstNameColumn();

// Add columns to the TableView
table.getColumns().addAll(lNameCol, fNameCol);

// Add columns to the sort order to sort by last name followed by first name
table.getSortOrder().addAll(lNameCol, fNameCol);

The sortOrder property of the TableView is monitored for changes. If it is modified, the TableView is
sorted immediately based on the new sort order. Adding a column to a sort order list does not guarantee
inclusion of the column in sorting. The column must also be sortable to be included in sorting. The
sortType property of the TableColumn is also monitored for changes. Changing the sort type of a column,
which are in the sort order list, resorts the TableView data immediately.

Getting the Comparator for a TableView
TableView contains a read-only comparator property, which is a Comparator based on the current sort order
list. You rarely need to use this Comparator in your code. If you pass two TableView items to the compare()
method of the Comparator, it will return a negative integer, zero, or a positive integer indicating that the first
item is less than, equal to, or greater than the second item, respectively.

Recall that TableColumn also has a comparator property, which is used to specify how to determine the
order of values in the cells of the TableColumn. The comparator property of the TableView combines the
comparator properties of all TableColumns in its sort order list.

Specifying the Sort Policy
A TableView has a sort policy to specify how the sorting is performed. It is a Callback object. The TableView
is passed in as an argument to the call() method. The method returns true if the sorting successes.
It returns false or null if the sorting fails.

The TableView class contains a DEFAULT_SORT_POLICY constant, which is used as a default sort policy
for a TableView. It sorts the items list of the TableView using its comparator property. Specify a sort policy to
take full charge of the sorting algorithm. The call() method of the sort policy Callback object will perform
the sorting of the items of the TableView.

Chapter 13 ■ Understanding tableView

636

As a trivial example, setting the sort policy to null will disable the sorting, as no sorting will be
performed when sorting is requested by the user or program:

TableView<Person> table = ...

// Disable sorting for the TableView
table.setSortPolicy(null);

Sometimes it is useful to disable sorting temporarily for performance reasons. Suppose you have a
sorted TableView with a large number of items and you want to make several changes to the sort order list.
Every change in the sort order list will trigger a sort on the items. In this case, you may disable the sorting by
setting the sort policy to null, make all your changes, and enable the sorting by restoring the original sort
policy. A change in the sort policy triggers an immediate sort. This technique will sort the items only once:

TableView<Person> table = ...
...
// Store the current sort policy
Callback<TableView<Person>, Boolean> currentSortPolicy = table.getSortPolicy();

// Disble the sorting
table.setSortPolicy(null)

// Make all changes that might need or trigger sorting
...

// Restore the sort policy that will sort the data once immediately
table.setSortPolicy(currentSortPolicy);

Sorting Data Manually
TableView contains a sort() method that sorts the items in the TableView using the current sort order
list. You may call this method to sort items after adding a number of items to a TableView. This method is
automatically called when the sort type of a column, the sort order, or sort policy changes.

Handling Sorting Event
TableView fires a SortEvent when it receives a request for sorting and just before it applies the sorting
algorithm to its items. Add a SortEvent listener to perform any action before the actual sorting is performed:

TableView<Person> table = ...
table.setOnSort(e -> {/* Code to handle the sort event */});

If the SortEvent is consumed, the sorting is aborted. If you want to disable sorting for a TableView,
consume the SortEvent as follows:

// Disable sorting for the TableView
table.setOnSort(e -> e.consume());

Chapter 13 ■ Understanding tableView

637

Disabling Sorting for a TableView
There are several ways you can disable sorting for a TableView.

Setting the •	 sortable property for a TableColumn disables sorting only for that
column. If you set the sortable property to false for all columns in a TableView,
the sorting for the TableView is disabled.

You can set the sort policy for the •	 TableView to null.

You can consume the •	 SortEvent for the TableView.

Technically, it is possible, though not recommended, to override the •	 sort() method
of the TableView class and provide an empty body for the method.

The best way to disable sorting partially or completely for a TableView is to disable sorting for some or
all of its columns.

Customizing Data Rendering in Cells
A cell in a TableColumn is an instance of the TableCell class, which displays the data in the cell. A TableCell
is a Labeled control, which is capable of displaying text, a graphic, or both.

You can specify a cell factory for a TableColumn. The job of a cell factory is to render the data in the cell.
The TableColumn class contains a cellFactory property, which is a Callback object. Its call() method is
passed in the reference of the TableColumn to which the cell belongs. The method returns an instance of
TableCell. The updateItem() method of the TableCell is overridden to provide the custom rendering of
the cell data.

TableColumn uses a default cell factory if its cellFactory property is not specified. The default cell
factory displays the cell data depending on the type of the data. If the cell data comprise a node, the data are
displayed in the graphic property of the cell. Otherwise, the toString() method of the cell data is called and
the retuned string is displayed in the text property of the cell.

Up to this point, you have been using a list of Person objects as the data model in the examples for
displaying data in a TableView. The Birth Date column is formatted as yyyy-mm-dd, which is the default
ISO date format return by the toString() method of the LocalDate class. If you would like to format
birth dates in the mm/dd/yyyy format, you can achieve this by setting a custom cell factory for the Birth
Date column:

TableColumn<Person, LocalDate> birthDateCol = ...;
birthDateCol.setCellFactory (col -> {
 TableCell<Person, LocalDate> cell = new TableCell<Person, LocalDate>() {
 @Override
 public void updateItem(LocalDate item, boolean empty) {
 super.updateItem(item, empty);

 // Cleanup the cell before populating it
 this.setText(null);
 this.setGraphic(null);

Chapter 13 ■ Understanding tableView

638

 if (!empty) {
 // Format the birth date in mm/dd/yyyy format
 String formattedDob =
 DateTimeFormatter.ofPattern("MM/dd/yyyy").format(item);
 this.setText(formattedDob);
 }
 }
 };
 return cell;
});

You can also use the above technique to display images in cells. In the updateItem() method, create an
ImageView object for the image and display it using the setGraphic() method of the TableCell. TableCell
contains tableColumn, tableRow, and tableView properties that store the references of its TableColumn,
TableRow, and TableView, respectively. These properties are useful to access the item in the data model that
represents the row for the cell.

If you replace the if statement in the above snippet of code with the following code, the Birth Date
column displays the birth date and age category, for example, 10/11/2012 (BABY):

if (!empty) {
 String formattedDob = DateTimeFormatter.ofPattern("MM/dd/yyyy").format(item);

 if (this.getTableRow() != null) {
 // Get the Person item for this cell
 int rowIndex = this.getTableRow().getIndex();
 Person p = this.getTableView().getItems().get(rowIndex);
 String ageCategory = p.getAgeCategory().toString();

 // Display birth date and age category together
 this.setText(formattedDob + " (" + ageCategory + ")");
 }
}

The following are subclasses of TableCell that render cell data in different ways. For example, a
CheckBoxTableCell renders cell data in a check box and a ProgressBarTableCell renders a number using
a progress bar:

•	 CheckBoxTableCell

•	 ChoiceBoxTableCell

•	 ComboBoxTableCell

•	 ProgressBarTableCell

•	 TextFieldTableCell

Chapter 13 ■ Understanding tableView

639

The following snippet of code creates a column labeled Baby? and sets a cell factory to display the
value in a CheckBoxTableCell. The forTableColumn(TableColumn<S, Boolean> col) method of the
CheckBoxTableCell class returns a Callback object that is used as a cell factory:

// Create a "Baby?" column
TableColumn<Person, Boolean> babyCol = new TableColumn<>("Baby?");
babyCol.setCellValueFactory(cellData -> {
 Person p = cellData.getValue();
 Boolean v = (p.getAgeCategory() == Person.AgeCategory.BABY);
 return new ReadOnlyBooleanWrapper(v);
});

// Set a cell factory that will use a CheckBox to render the value
babyCol.setCellFactory(CheckBoxTableCell.<Person>forTableColumn(babyCol));

Please explore the API documentation for other subclasses of the TableCell and how to use them.
For example, you can display a combo box with a list of choices in the cells of a column. Users can select
one of the choices as the cell data.

Listing 13-5 has a complete program to show how to use custom cell factories. It displays a window as
shown in Figure 13-9. The program uses a cell factory to format the birth date in mm/dd/yyyy format and a
cell factory to display whether a person is a baby using a check box.

Listing 13-5. Using a Custom Cell Factory for a TableColumn

// TableViewCellFactoryTest.java
package com.jdojo.control;

import com.jdojo.mvc.model.Person;
import javafx.application.Application;
import java.time.LocalDate;
import javafx.scene.Scene;
import javafx.scene.control.TableCell;
import javafx.scene.control.TableColumn;
import javafx.scene.control.TableView;
import javafx.scene.layout.HBox;
import javafx.stage.Stage;
import java.time.format.DateTimeFormatter;
import javafx.beans.property.ReadOnlyBooleanWrapper;
import javafx.scene.control.cell.CheckBoxTableCell;

public class TableViewCellFactoryTest extends Application {
 public static void main(String[] args) {
 Application.launch(args);
 }

 @Override
 @SuppressWarnings("unchecked")
 public void start(Stage stage) {
 TableView<Person> table = new TableView<>(PersonTableUtil.getPersonList());

Chapter 13 ■ Understanding tableView

640

 // Create the birth date column
 TableColumn<Person, LocalDate> birthDateCol =
 PersonTableUtil.getBirthDateColumn();

 // Set a custom cell factory for Birth Date column
 birthDateCol.setCellFactory(col -> {
 TableCell<Person, LocalDate> cell = new TableCell<Person, LocalDate>() {
 @Override
 public void updateItem(LocalDate item, boolean empty) {
 super.updateItem(item, empty);

 // Cleanup the cell before populating it
 this.setText(null);
 this.setGraphic(null);

 if (!empty) {
 String formattedDob =
 DateTimeFormatter.ofPattern("MM/dd/yyyy")
 .format(item);
 this.setText(formattedDob);
 }
 }
 };
 return cell;
 });

 // Create and configure the baby column
 TableColumn<Person, Boolean> babyCol = new TableColumn<>("Baby?");
 babyCol.setCellValueFactory(
 cellData -> {
 Person p = cellData.getValue();
 Boolean v =
 (p.getAgeCategory() == Person.AgeCategory.BABY);
 return new ReadOnlyBooleanWrapper(v);
 });

 // Set a custom cell factory for the baby column
 babyCol.setCellFactory(
 CheckBoxTableCell.<Person>forTableColumn(babyCol));

 // Add columns to the table
 table.getColumns().addAll(PersonTableUtil.getIdColumn(),
 PersonTableUtil.getFirstNameColumn(),
 PersonTableUtil.getLastNameColumn(),
 birthDateCol,
 babyCol);

 HBox root = new HBox(table);
 root.setStyle("-fx-padding: 10;" +
 "-fx-border-style: solid inside;" +
 "-fx-border-width: 2;" +

Chapter 13 ■ Understanding tableView

641

 "-fx-border-insets: 5;" +
 "-fx-border-radius: 5;" +
 "-fx-border-color: blue;");

 Scene scene = new Scene(root);
 stage.setScene(scene);
 stage.setTitle("Using a Custom Cell Factory for a TableColumn");
 stage.show();
 }
}

Selecting Cells and Rows in a TableView
TableView has a selection model represented by its property selectionModel. A selection model is an
instance of the TableViewSelectionModel class, which is an inner static class of the TableView class. The
selection model supports cell-level and row-level selection. It also supports two selection modes: single
and multiple. In the single-selection mode, only one cell or row can be selected at a time. In the multiple-
selection mode, multiple cells or rows can be selected. By default, single-row selection is enabled. You can
enable multirow selection, as follows:

TableView<Person> table = ...

// Turn on multiple-selection mode for the TableView
TableViewSelectionModel<Person> tsm = table.getSelectionModel();
tsm.setSelectionMode(SelectionMode.MULTIPLE);

The cell-level selection can be enabled by setting the cellSelectionEnabled property of the selection
model to true, as in the following snippet of code. When the property is set to true, the TableView is put in
cell-level selection mode and you cannot select an entire row. If multiple-selection mode is enabled, you

Figure 13-9. Using custom cell factories to format data in cells and display cell data in check boxes

Chapter 13 ■ Understanding tableView

642

can still select all cells in a row. However, the row itself is not reported as selected as the TableView is in
the cell-level selection mode. By default, cell-level selection mode is false.

// Enable cell-level selection
tsm.setCellSelectionEnabled(true);

The selection model provides information about the selected cells and rows. The isSelected(int
rowIndex) method returns true if the row at the specified rowIndex is selected. Use the isSelected(int
rowIndex, TableColumn<S,?> column) method to know if a cell at the specified rowIndex and column
is selected. The selection model provides several methods to select cells and rows and get the report of
selected cells and rows:

The •	 selectAll() method selects all cells or rows.

The •	 select() method is overloaded. It selects a row, a row for an item, and a cell.

The •	 isEmpty() method returns true if there is no selection. Otherwise, it returns
false.

The •	 getSelectedCells() method returns a read-only
ObservableList<TablePosition> that is the list of currently selected cells. The list
changes as the selection in the TableView changes.

The •	 getSelectedIndices() method returns a read-only ObservableList<Integer>
that is the list of currently selected indices. The list changes as the selection in the
TableView changes. If row-level selection is enabled, an item in the list is the row
index of the selected row. If cell-level selection is enabled, an item in the list is the
row index of the row in which one or more cells are selected.

The •	 getSelectedItems() method returns a read-only ObservableList<S> where
S is the generic type of the TableView. The list contains all items for which the
corresponding row or cells have been selected.

The •	 clearAndSelect() method is overloaded. It lets you clear all selections before
selecting a row or a cell.

The •	 clearSelection() method is overloaded. It lets you clear selections for a row, a
cell, or the entire TableView.

It is often a requirement to make some changes or take an action when a cell or row selection changes
in a TableView. For example, a TableView may act as a master list in a master-detail data view. When the
user selects a row in the master list, you want to refresh the data in the detail view. If you are interested in
handling the selection change event, you need to add a ListChangeListener to one of the ObservableLists
returned by the above listed methods that reports on the selected cells or rows. The following snippet of
code adds a ListChangeListener to the ObservableList returned by the getSelectedIndices() method to
track the row selection change in a TableView:

TableView<Person> table = ...
TableViewSelectionModel<Person> tsm = table.getSelectionModel();
ObservableList<Integer> list = tsm.getSelectedIndices();

// Add a ListChangeListener
list.addListener((ListChangeListener.Change<? extends Integer> change) -> {
 System.out.println("Row selection has changed");
});

Chapter 13 ■ Understanding tableView

643

Editing Data in a TableView
A cell in a TableView can be edited. An editable cell switches between editing and nonediting modes.
In editing mode, cell data can be modified by the user. For a cell to enter editing mode, the TableView,
TableColumn, and TableCell must be editable. All three of them have an editable property, which can be
set to true using the setEditable(true) method. By default, TableColumn and TableCell are editable.
To make cells editable in a TableView, you need make the TableView editable:

TableView<Person> table = ...
table.setEditable(true);

The TableColumn class supports three types of events:

•	 onEditStart

•	 onEditCommit

•	 onEditCancel

The onStartEdit event is fired when a cell in the column enters editing mode. The onEditCommit
event is fired when the user successfully commits the editing, for example, by pressing the Enter key in a
TextField. The onEditCancel event is fired when the user cancels the editing, for example, by pressing the
Esc key in a TextField.

The events are represented by an object of the TableColumn.CellEditEvent class. The event object
encapsulates the old and new values in the cell, the row object from the items list of the TableView,
TableColumn, TablePosition indicating the cell position where the editing is happening, and the reference
of the TableView. Use the methods of the CellEditEvent class to get these values.

Making a TableView editable does not let you edit its cell data. You need to do a little more plumbing
before you can edit data in cells. Cell-editing capability is provided through specialized implementation of
the TableCell class. the JavaFX library provides a few of these implementations. Set the cell factory for a
column to use one of the following implementations of the TableCell to edit cell data:

•	 CheckBoxTableCell

•	 ChoiceBoxTableCell

•	 ComboBoxTableCell

•	 TextFieldTableCell

Editing Data Using a Check Box
A CheckBoxTableCell renders a check box inside the cell. Typically it is used to represent a boolean value in
a column. The class provides a way to map other types of values to a boolean value using a Callback object.
The check box is selected if the value is true. Otherwise, it is unselected. Bidirectional binding is used to
bind the selected property of the check box and the underlying ObservableValue. If the user changes the
selection, the underlying data are updated and vice versa.

You do not have a boolean property in the Person class. You must create a boolean column by providing
a cell value factory, as shown in the following code. If a Person is a baby, the cell value factory returns true.
Otherwise, it returns false.

Chapter 13 ■ Understanding tableView

644

TableColumn<Person, Boolean> babyCol = new TableColumn<>("Baby?");
babyCol.setCellValueFactory(cellData -> {
 Person p = cellData.getValue();
 Boolean v = (p.getAgeCategory() == Person.AgeCategory.BABY);
 return new ReadOnlyBooleanWrapper(v);
});

Getting a cell factory to use CheckBoxTableCell is easy. Use the forTableColumn()static method to get
a cell factory for the column:

// Set a CheckBoxTableCell to display the value
babyCol.setCellFactory(CheckBoxTableCell.<Person>forTableColumn(babyCol));

A CheckBoxTableCell does not fire the cell-editing events. The selected property of the check box is
bound to the ObservableValue representing the data in the cell. If you are interested in tracking the selection
change event, you need to add a ChangeListener to the data for the cell.

Editing Data Using a Choice Box
A ChoiceBoxTableCell renders a choice box with a specified list of values inside the cell. The type of values
in the list must match the type of the TableColumn. The data in a ChoiceBoxTableCell are displayed in a
Label when the cell is not being edited. A ChoiceBox is used when the cell is being edited.

The Person class does not have a gender property. You want to add a Gender column to a
TableView<Person>, which can be edited using a choice box. The following snippet of code creates the
TableColumn and sets a cell value factory, which sets all cells to an empty string. You would set the cell
value factory to use the gender property of the Person class if you had one.

// Gender is a String, editable, ComboBox column
TableColumn<Person, String> genderCol = new TableColumn<>("Gender");

// Use an appropriate cell value factory.
// For now, set all cells to an empty string
genderCol.setCellValueFactory(cellData -> new ReadOnlyStringWrapper(""));

You can create a cell factory that uses a choice box for editing data in cells using the forTableColumn()
static method of the ChoiceBoxTableCell class. You need to specify the list of items to be displayed in the
choice box.

// Set a cell factory, so it can be edited using a ChoiceBox
genderCol.setCellFactory(
 ChoiceBoxBoxTableCell.<Person, String>forTableColumn("Male", "Female"));

When an item is selected in the choice box, the item is set to the underlying data model. For example, if
a column is based on a property in the domain object, the selected item will be set to the property. You can
set an onEditCommit event handler that is fired when the user selects an item. The following snippet of code
adds such a handler for the Gender column that prints a message on the standard output:

// Add an onEditCommit handler
genderCol.setOnEditCommit(e -> {
 int row = e.getTablePosition().getRow();
 Person person = e.getRowValue();

Chapter 13 ■ Understanding tableView

645

 System.out.println("Gender changed (" + person.getFirstName() + " " +
 person.getLastName() + ")" + " at row " + (row + 1) +
 ". New value = " + e.getNewValue());
});

Clicking a selected cell puts the cell into editing mode. Double-clicking an unselected cell puts the cell
into editing mode. Changing the focus to another cell or selecting an item from the list puts the editing
cell into nonediting mode and the current value is displayed in a Label.

Editing Data Using a Combo Box
A ComboBoxTableCell renders a combo box with a specified list of values inside the cells. It works similar to a
ChoiceBoxTableCell. Please refer to the section “Editing Data Using a Choice Box” for more details.

Editing Data Using a TextField
A TextFieldTableCell renders a TextField inside the cell when the cell is being edited where the user can
modify the data. It renders the cell data in a Label when the cell is not being edited.

Clicking a selected cell or double-clicking an unselected cell puts the cell into editing mode, which
displays the cell data in a TextField. Once the cell is in editing mode, you need to click in the TextField
(one more click!) to put the caret in the TextField so you can make changes. Notice that you need a
minimum of three clicks to edit a cell, which is a pain for those users who have to edit a lot of data. Let’s hope
that the designers of the TableView API will make data editing less cumbersome in future releases.

If you are in the middle of editing a cell data, press the Esc key to cancel editing, which will return the
cell to nonediting mode and reverts to the old data in the cell. Pressing the Enter key commits the data to the
underlying data model if the TableColumn is based on a Writable ObservableValue.

If you are editing a cell using a TextFieldTableCell, moving the focus to another cell, for example,
by clicking another cell, cancels the editing and puts the old value back in the cell. This is not what a user
expects. At present, there is no easy solution for this problem. You will have to create a subclass of TableCell
and add a focus change listener, so you can commit the data when the TextField loses focus.

Use the forTableColumn() static method of the TextFieldTableCell class to get a cell factory that
uses a TextField to edit cell data. The following snippet of code shows how to do it for a First Name String
column:

TableColumn<Person, String> fNameCol = new TableColumn<>("First Name");
fNameCol.setCellFactory(TextFieldTableCell.<Person>forTableColumn());

Sometimes you need to edit nonstring data using a TextField, for example, for a date. The date may be
represented as an object of the LocalDate class in the model. You may want to display it in a TextField as
a formatted string. When the user edits the date, you want to commit the data to the model as a LocalDate.
The TextFieldTableCell class supports this kind of object-to-string and vice versa conversion through
a StringConverter. The following snippet of code sets a cell factory for a Birth Date column with a
StringConverter, which converts a string to a LocalDate and vice versa. The column type is LocalDate.
By default, the LocalDateStringConverter assumes a date format of mm/dd/yyyy.

TableColumn<Person, LocalDate> birthDateCol = new TableColumn<>("Birth Date");
LocalDateStringConverter converter = new LocalDateStringConverter();
birthDateCol.setCellFactory(TextFieldTableCell.<Person, LocalDate>forTableColumn(converter));

Chapter 13 ■ Understanding tableView

646

The program in Listing 13-6 shows how to edit data in a TableView using different types of controls.
The TableView contains Id, First Name, Last Name, Birth Date, Baby, and Gender columns. The Id column
is noneditable. The First Name, Last Name, and Birth Date columns use TextFieldTableCell, so they can
be edited using a TextField. The Baby column is a noneditable computed field and is not backed by the
data model. It uses CheckBoxTableCell to render its values. The Gender column is an editable computed
field. It is not backed by the data model. It uses a ComboBoxTableCell that presents the user a list of values
(Male and Female) in editing model. When the user selects a value, the value is not saved to the data model.
It stays in the cell. An onEditCommit event handler is added that prints the gender selection on the standard
output. The program displays a window as shown in Figure 13-10, where it can be seen that you have already
selected a gender value for all persons. The Birth Date value for the fifth row is being edited.

Listing 13-6. Editing Data in a TableView

// TableViewEditing.java
package com.jdojo.control;

import com.jdojo.mvc.model.Person;
import javafx.application.Application;
import javafx.beans.property.ReadOnlyBooleanWrapper;
import javafx.scene.Scene;
import javafx.scene.control.TableColumn;
import javafx.scene.control.TableView;
import javafx.scene.control.cell.TextFieldTableCell;
import javafx.scene.layout.HBox;
import javafx.stage.Stage;
import java.time.LocalDate;
import javafx.beans.property.ReadOnlyStringWrapper;
import javafx.scene.control.cell.CheckBoxTableCell;
import javafx.scene.control.cell.ComboBoxTableCell;

public class TableViewEditing extends Application {
 public static void main(String[] args) {
 Application.launch(args);
 }

 @Override
 public void start(Stage stage) {
 TableView<Person> table = new TableView<>(PersonTableUtil.getPersonList());

 // Make the TableView editable
 table.setEditable(true);

 // Add columns with appropriate editing features
 addIdColumn(table);
 addFirstNameColumn(table);
 addLastNameColumn(table);
 addBirthDateColumn(table);
 addBabyColumn(table);
 addGenderColumn(table);

Chapter 13 ■ Understanding tableView

647

 HBox root = new HBox(table);
 root.setStyle("-fx-padding: 10;" +
 "-fx-border-style: solid inside;" +
 "-fx-border-width: 2;" +
 "-fx-border-insets: 5;" +
 "-fx-border-radius: 5;" +
 "-fx-border-color: blue;");

 Scene scene = new Scene(root);
 stage.setScene(scene);
 stage.setTitle("Editing Data in a TableView");
 stage.show();
 }

 public void addIdColumn(TableView<Person> table) {
 // Id column is non-editable
 table.getColumns().add(PersonTableUtil.getIdColumn());
 }

 public void addFirstNameColumn(TableView<Person> table) {
 // First Name is a String, editable column
 TableColumn<Person, String> fNameCol = PersonTableUtil.getFirstNameColumn();

 // Use a TextFieldTableCell, so it can be edited
 fNameCol.setCellFactory(TextFieldTableCell.<Person>forTableColumn());

 table.getColumns().add(fNameCol);
 }

 public void addLastNameColumn(TableView<Person> table) {
 // Last Name is a String, editable column
 TableColumn<Person, String> lNameCol = PersonTableUtil.getLastNameColumn();

 // Use a TextFieldTableCell, so it can be edited
 lNameCol.setCellFactory(TextFieldTableCell.<Person>forTableColumn());

 table.getColumns().add(lNameCol);
 }

 public void addBirthDateColumn(TableView<Person> table) {
 // Birth Date is a LocalDate, editable column
 TableColumn<Person, LocalDate> birthDateCol =
 PersonTableUtil.getBirthDateColumn();

 // Use a TextFieldTableCell, so it can be edited
 LocalDateStringConverter converter = new LocalDateStringConverter();
 birthDateCol.setCellFactory(
 TextFieldTableCell.<Person, LocalDate>forTableColumn(converter));

 table.getColumns().add(birthDateCol);
 }

Chapter 13 ■ Understanding tableView

648

 public void addBabyColumn(TableView<Person> table) {
 // Baby? is a Boolean, non-editable column
 TableColumn<Person, Boolean> babyCol = new TableColumn<>("Baby?");
 babyCol.setEditable(false);

 // Set a cell value factory
 babyCol.setCellValueFactory(cellData -> {
 Person p = cellData.getValue();
 Boolean v = (p.getAgeCategory() == Person.AgeCategory.BABY);
 return new ReadOnlyBooleanWrapper(v);
 });

 // Use a CheckBoxTableCell to display the boolean value
 babyCol.setCellFactory(
 CheckBoxTableCell.<Person>forTableColumn(babyCol));

 table.getColumns().add(babyCol);
 }

 public void addGenderColumn(TableView<Person> table) {
 // Gender is a String, editable, ComboBox column
 TableColumn<Person, String> genderCol = new TableColumn<>("Gender");
 genderCol.setMinWidth(80);

 // By default, all cells are have null values
 genderCol.setCellValueFactory(
 cellData -> new ReadOnlyStringWrapper(null));

 // Set a ComboBoxTableCell, so you can selects a value from a list
 genderCol.setCellFactory(
 ComboBoxTableCell.<Person, String>forTableColumn("Male", "Female"));

 // Add an event handler to handle the edit commit event.
 // It displays the selected value on the standard output
 genderCol.setOnEditCommit(e -> {
 int row = e.getTablePosition().getRow();
 Person person = e.getRowValue();
 System.out.println("Gender changed for " +
 person.getFirstName() + " " + person.getLastName() +
 " at row " + (row + 1) + " to " + e.getNewValue());
 });

 table.getColumns().add(genderCol);
 }
}

Chapter 13 ■ Understanding tableView

649

Editing Data in TableCell Using any Control
In the previous section, I discussed editing data in cells of a TableView using different controls, for example,
TextField, CheckBox, and ChoiceBox. You can subclass TableCell to use any control to edit cell data. For
example, you may want to use a DatePicker to select a date in cells of a date column or RadioButtons to
select from multiple options. The possibilities are endless.

You need to override four methods of the TableCell class:

•	 startEdit()

•	 commitEdit()

•	 cancelEdit()

•	 updateItem()

The startEdit() method for the cell transitions from nonediting mode to editing mode. Typically, you
set the control of your choice in the graphic property of the cell with the current data.

The commitEdit() method is called when the user action, for example, pressing the Enter key in a
TextField, indicates that the user is done modifying the cell data and the data need to be saved in the
underlying data model. Typically, you do not need to override this method as the modified data are
committed to the data model if the TableColumn is based on a Writable ObservableValue.

The cancelEdit() method is called when the user action, for example, pressing the Esc key in a
TextField, indicates that the user wants to cancel the editing process. When the editing process is canceled,
the cell returns to nonediting mode. You need to override this method and revert the cell data to their old
values.

The updateItem() method is called when the cell needs to be rendered again. Depending on the editing
mode, you need to set the text and graphic properties of the cell appropriately.

Now let’s develop a DatePickerTableCell class that inherits from the TableCell class. You can use
instances of DatePickerTableCell when you want to edit cells of a TableColumn using a DatePicker control.
The TableColumn must be of LocalDate. Listing 13-7 has the complete code for the DatePickerTableCell class.

Figure 13-10. A TableView with a cell in editing mode

Abed Murrar
mohem

Chapter 13 ■ Understanding tableView

650

Listing 13-7. The DatePickerTableCell Class to Allows Editing Table Cells Using a DatePicker Control

// DatePickerTableCell.java
package com.jdojo.control;

import javafx.beans.value.ObservableValue;
import javafx.scene.control.DatePicker;
import javafx.scene.control.TableCell;
import javafx.beans.value.ChangeListener;
import javafx.scene.control.TableColumn;
import javafx.util.Callback;
import javafx.util.StringConverter;

@SuppressWarnings("unchecked")
public class DatePickerTableCell<S, T> extends TableCell<S, java.time.LocalDate> {
 private DatePicker datePicker;
 private StringConverter converter = null;
 private boolean datePickerEditable = true;

 public DatePickerTableCell() {
 this.converter = new LocalDateStringConverter();
 }

 public DatePickerTableCell(boolean datePickerEditable) {
 this.converter = new LocalDateStringConverter();
 this.datePickerEditable = datePickerEditable;
 }

 public DatePickerTableCell(StringConverter<java.time.LocalDate> converter) {
 this.converter = converter;
 }

 public DatePickerTableCell(StringConverter<java.time.LocalDate> converter,
 boolean datePickerEditable) {
 this.converter = converter;
 this.datePickerEditable = datePickerEditable;
 }

 @Override
 public void startEdit() {
 // Make sure the cell is editable
 if (!isEditable() ||
 !getTableView().isEditable() || !getTableColumn().isEditable()) {
 return;
 }

 // Let the ancestor do the plumbing job
 super.startEdit();

Chapter 13 ■ Understanding tableView

651

 // Create a DatePicker, if needed, and set it as the graphic for the cell
 if (datePicker == null) {
 this.createDatePicker();
 }

 this.setGraphic(datePicker);
 }

 @Override
 public void cancelEdit() {
 super.cancelEdit();
 this.setText(converter.toString(this.getItem()));
 this.setGraphic(null);
 }

 @Override
 public void updateItem(java.time.LocalDate item, boolean empty) {
 super.updateItem(item, empty);

 // Take actions based on whether the cell is being edited or not
 if (empty) {
 this.setText(null);
 this.setGraphic(null);
 } else {
 if (this.isEditing()) {
 if (datePicker != null) {
 datePicker.setValue((java.time.LocalDate)item);
 }
 this.setText(null);
 this.setGraphic(datePicker);
 } else {
 this.setText(converter.toString(item));
 this.setGraphic(null);
 }
 }
 }

 private void createDatePicker() {
 datePicker = new DatePicker();
 datePicker.setConverter(converter);

 // Set the current value in the cell to the DatePicker
 datePicker.setValue((java.time.LocalDate)this.getItem());

 // Configure the DatePicker properties
 datePicker.setPrefWidth(this.getWidth() - this.getGraphicTextGap() * 2);
 datePicker.setEditable(this.datePickerEditable);

Chapter 13 ■ Understanding tableView

652

 // Commit the new value when the user selects or enters a date
 datePicker.valueProperty().addListener(new ChangeListener() {
 @Override
 public void changed(ObservableValue prop,
 Object oldValue,
 Object newValue) {
 if (DatePickerTableCell.this.isEditing()) {
 DatePickerTableCell.this.commitEdit(
 (java.time.LocalDate)newValue);
 }
 }
 });
 }

 public static <S> Callback<TableColumn<S, java.time.LocalDate>,
 TableCell<S, java.time.LocalDate>> forTableColumn() {
 return forTableColumn(true);
 }

 public static <S> Callback<TableColumn<S, java.time.LocalDate>,
 TableCell<S, java.time.LocalDate>> forTableColumn(boolean

datePickerEditable) {
 return (col -> new DatePickerTableCell<>(datePickerEditable));
 }

 public static <S> Callback<TableColumn<S, java.time.LocalDate>, TableCell<S,

java.time.LocalDate>> forTableColumn(StringConverter<java.time.LocalDate> converter) {
 return forTableColumn(converter, true);
 }

 public static <S> Callback<TableColumn<S, java.time.LocalDate>, TableCell<S,

java.time.LocalDate>> forTableColumn(StringConverter<java.time.LocalDate> converter,
boolean datePickerEditable) {

 return (col -> new DatePickerTableCell<>(converter, datePickerEditable));
 }
}

The DatePickerTableCell class supports a StringConverter and the editable property value for
the DatePicker. You can pass them to the constructors or the forTableColumn() methods. It creates a
DatePicker control when the startEdit() method is called for the first time. A ChangeListener is added
that commits the data when a new date is entered or selected. Several versions of the forTableColumn()
static methods are provided that return cell factories. The following snippet of code shows how to use the
DatePickerTableCell class:

TableColumn<Person, LocalDate> birthDateCol = ...

// Set a cell factory for birthDateCol. The date format is mm/dd/yyyy
// and the DatePicker is editable.
birthDateCol.setCellFactory(DatePickerTableCell.<Person>forTableColumn());

Chapter 13 ■ Understanding tableView

653

// Set a cell factory for birthDateCol. The date format is "Month day, year"
// and and the DatePicker is non-editable
StringConverter converter = new LocalDateStringConverter("MMMM dd, yyyy");
birthDateCol.setCellFactory(DatePickerTableCell.<Person>forTableColumn(converter, false));

The program in Listing 13-8 uses DatePickerTableCell to edit data in the cells of a Birth Date column.
Run the application and then double-click a cell in the Birth Date column. The cell will display a DatePicker
control. You cannot edit the date in the DatePicker, as it is noneditable. You will need to select a date from
the pop-up calendar.

Listing 13-8. Using DatePickerTableCell to Edit a Dates in Cells

// CustomTableCellTest.java
package com.jdojo.control;

import com.jdojo.mvc.model.Person;
import javafx.application.Application;
import javafx.scene.Scene;
import javafx.scene.control.TableColumn;
import javafx.scene.control.TableView;
import javafx.scene.layout.HBox;
import java.time.LocalDate;
import javafx.stage.Stage;
import javafx.util.StringConverter;

public class CustomTableCellTest extends Application {
 public static void main(String[] args) {
 Application.launch(args);
 }

 @Override
 @SuppressWarnings("unchecked")
 public void start(Stage stage) {
 TableView<Person> table = new TableView<>(PersonTableUtil.getPersonList());

 // Make sure teh TableView is editable
 table.setEditable(true);

 // Set up teh Birth Date column to use DatePickerTableCell
 TableColumn<Person, LocalDate> birthDateCol =
 PersonTableUtil.getBirthDateColumn();
 StringConverter converter = new LocalDateStringConverter("MMMM dd, yyyy");
 birthDateCol.setCellFactory(
 DatePickerTableCell.<Person>forTableColumn(converter, false));

 table.getColumns().addAll(PersonTableUtil.getIdColumn(),
 PersonTableUtil.getFirstNameColumn(),
 PersonTableUtil.getLastNameColumn(),
 birthDateCol);

Chapter 13 ■ Understanding tableView

654

 HBox root = new HBox(table);
 root.setStyle("-fx-padding: 10;" +
 "-fx-border-style: solid inside;" +
 "-fx-border-width: 2;" +
 "-fx-border-insets: 5;" +
 "-fx-border-radius: 5;" +
 "-fx-border-color: blue;");

 Scene scene = new Scene(root);
 stage.setScene(scene);
 stage.setTitle("Using a Custom TableCell");
 stage.show();
 }
}

Adding and Deleting Rows in a TableView
Adding and deleting rows in a TableView are easy. Note that each row in a TableView is backed by an item
in the items list. Adding a row is as simple as adding an item in the items list. When you add an item to the
items list, a new row appears in the TableView at the same index as the index of the added item in the items
list. If the TableView is sorted, it may need to be resorted after adding a new row. Call the sort() method of
the TableView to resort the rows after adding a new row.

You can delete a row by removing its item from the items list. An application provides a way for the
user to indicate the rows that should be deleted. Typically, the user selects one or more rows to delete.
Other options are to add a Delete button to each row or to provide a Delete check box to each row. Clicking
the Delete button should delete the row. Selecting the Delete check box for a row indicates that the row is
marked for deletion.

The program in Listing 13-9 shows how to add and delete rows to a TableView. It displays a window
with three sections:

The •	 Add Person form at the top has three fields to add person details and an Add
button. Enter the details for a person and click the Add button to add a record to the
TableView. Error checking is skipped in the code.

In the middle, you have two buttons. One button is used to restore the default rows in •	
the TableView. Another button deletes the selected rows.

At the bottom, a •	 TableView is displayed with some rows. The multirow selection is
enabled. Use the Ctrl or Shift key with the mouse to select multiple rows.

Listing 13-9. Adding and Deleting Rows in a TableView

// TableViewAddDeleteRows.java
package com.jdojo.control;

import com.jdojo.mvc.model.Person;
import javafx.application.Application;
import javafx.collections.ObservableList;
import javafx.scene.Scene;
import javafx.scene.control.Button;
import javafx.scene.control.DatePicker;
import javafx.scene.control.Label;

Chapter 13 ■ Understanding tableView

655

import javafx.scene.control.TableView;
import javafx.scene.control.TextField;
import javafx.scene.layout.GridPane;
import javafx.scene.layout.VBox;
import javafx.stage.Stage;
import java.util.Arrays;
import javafx.scene.control.SelectionMode;
import javafx.scene.layout.HBox;
import static javafx.scene.control.TableView.TableViewSelectionModel;

public class TableViewAddDeleteRows extends Application {
 // Fields to add Person details
 private final TextField fNameField = new TextField();
 private final TextField lNameField = new TextField();
 private final DatePicker dobField = new DatePicker();

 // The TableView
 TableView<Person> table = new TableView<>(PersonTableUtil.getPersonList());

 public static void main(String[] args) {
 Application.launch(args);
 }

 @Override
 @SuppressWarnings("unchecked")
 public void start(Stage stage) {
 // Turn on multi-row selection for the TableView
 TableViewSelectionModel<Person> tsm = table.getSelectionModel();
 tsm.setSelectionMode(SelectionMode.MULTIPLE);

 // Add columns to the TableView
 table.getColumns().addAll(PersonTableUtil.getIdColumn(),
 PersonTableUtil.getFirstNameColumn(),
 PersonTableUtil.getLastNameColumn(),
 PersonTableUtil.getBirthDateColumn());

 GridPane newDataPane = this.getNewPersonDataPane();

 Button restoreBtn = new Button("Restore Rows");
 restoreBtn.setOnAction(e -> restoreRows());

 Button deleteBtn = new Button("Delete Selected Rows");
 deleteBtn.setOnAction(e -> deleteSelectedRows());

 VBox root = new VBox(newDataPane, new HBox(restoreBtn, deleteBtn), table);
 root.setSpacing(5);
 root.setStyle("-fx-padding: 10;" +
 "-fx-border-style: solid inside;" +
 "-fx-border-width: 2;" +
 "-fx-border-insets: 5;" +
 "-fx-border-radius: 5;" +
 "-fx-border-color: blue;");

Chapter 13 ■ Understanding tableView

656

 Scene scene = new Scene(root);
 stage.setScene(scene);
 stage.setTitle("Adding/Deleting Rows in a TableViews");
 stage.show();
 }

 public GridPane getNewPersonDataPane() {
 GridPane pane = new GridPane();
 pane.setHgap(10);
 pane.setVgap(5);
 pane.addRow(0, new Label("First Name:"), fNameField);
 pane.addRow(1, new Label("Last Name:"), lNameField);
 pane.addRow(2, new Label("Birth Date:"), dobField);

 Button addBtn = new Button("Add");
 addBtn.setOnAction(e -> addPerson());

 // Add the "Add" button
 pane.add(addBtn, 2, 0);

 return pane;
 }

 public void deleteSelectedRows() {
 TableViewSelectionModel<Person> tsm = table.getSelectionModel();
 if (tsm.isEmpty()) {
 System.out.println("Please select a row to delete.");
 return;
 }

 // Get all selected row indices in an array
 ObservableList<Integer> list = tsm.getSelectedIndices();
 Integer[] selectedIndices = new Integer[list.size()];
 selectedIndices = list.toArray(selectedIndices);

 // Sort the array
 Arrays.sort(selectedIndices);

 // Delete rows (last to first)
 for(int i = selectedIndices.length - 1; i >= 0; i--) {
 tsm.clearSelection(selectedIndices[i].intValue());
 table.getItems().remove(selectedIndices[i].intValue());
 }
 }

 public void restoreRows() {
 table.getItems().clear();
 table.getItems().addAll(PersonTableUtil.getPersonList());
 }

Chapter 13 ■ Understanding tableView

657

 public Person getPerson() {
 return new Person(fNameField.getText(),
 lNameField.getText(),
 dobField.getValue());
 }

 public void addPerson() {
 Person p = getPerson();
 table.getItems().add(p);
 clearFields();
 }

 public void clearFields() {
 fNameField.setText(null);
 lNameField.setText(null);
 dobField.setValue(null);
 }
}

Most of the logic in the code is simple. The deleteSelectedRows() method implements the logic to
delete the selected rows. When you remove an item from the items list, the selection model does not remove
its index. Suppose the first row is selected. If you remove the first item from the items list, the second row,
which becomes the first row, is selected. To make sure that this does not happen, you clear the selection
for the row before you remove it from the items list. You delete rows from last to first (higher index to lower
index) because when you delete an item from the list, all of the items after the deleted items will have
different indices. Suppose you have selected rows at indices 1 and 2. Deleting a row at index 1 first changes
the index of the index 2 to 1. Performing deletion from last to first takes care of this issue.

Scrolling in a TableView
TableView automatically provides vertical and horizontal scrollbars when rows or columns fall beyond
the available space. Users can use the scrollbars to scroll to a specific row or column. Sometimes you need
programmatic support for scrolling. For example, when you append a row to a TableView, you may want the
row visible to the user by scrolling it to the view. The TableView class contains four methods that can be used
to scroll to a specific row or column:

•	 scrollTo(int rowIndex)

•	 scrollTo(S item)

•	 scrollToColumn(TableColumn<S,?> column)

•	 scrollToColumnIndex(int columnIndex)

The scrollTo() method scrolls the row with the specified index or item to the view. The
scrollToColumn() and scrollToColumnIndex() methods scroll to the specified column and columnIndex,
respectively.

Chapter 13 ■ Understanding tableView

658

TableView fires a ScrollToEvent when there is a request to scroll to a row or column using one of the
above-mentioned scrolling methods. The ScrollToEvent class contains a getScrollTarget() method that
returns the row index or the column reference depending on the scroll type:

TableView<Person> table = ...

// Add a ScrollToEvent for row scrolling
table.setOnScrollTo(e -> {
 int rowIndex = e.getScrollTarget();
 System.out.println("Scrolled to row " + rowIndex);
});

// Add a ScrollToEvent for column scrolling
table.setOnScrollToColumn(e -> {
 TableColumn<Person, ?> column = e.getScrollTarget();
 System.out.println("Scrolled to column " + column.getText());
});

Tip ■ the ScrollToEvent is not fired when the user scrolls through the rows and columns. it is fired when
you call one of the four scrolling-related methods of the TableView class.

Resizing a TableColumn
Whether a TableColumn is resizable by the user is specified by its resizable property. By default,
a TableColumn is resizable. How a column in a TableView is resized is specified by the columnResizePolicy
property of the TableView. The property is a Callback object. Its call() method takes an object of the
ResizeFeatures class, which is a static inner class of the TableView class. The ResizeFeatures object
encapsulates the delta by which the column is resized, the TableColumn being resized, and the TableView.
The call() method returns true if the column was resized by the delta amount successfully. Otherwise,
it returns false.

The TableView class provides two built-in resize policies as constants:

•	 CONSTRAINED_RESIZE_POLICY

•	 UNCONSTRAINED_RESIZE_POLICY

CONSTRAINED_RESIZE_POLICY ensures that the sum of the width of all visible leaf columns is equal to
the width of the TableView. Resizing a column adjusts the width of all columns to the right of the resized
column. When the column width is increased, the width of the rightmost column is decreased up to its
minimum width. If the increased width is still not compensated, the width of the second rightmost column
is decreased up to its minimum width and so on. When all columns to the right have their minimum widths,
the column width cannot be increased any more. The same rule applies in the opposite direction when a
column is resized to decrease its width.

When the width of a column is increased, UNCONSTRAINED_RESIZE_POLICY shifts all columns to its right
by the amount the width is increased. When the width is decreased, columns to the right are shifted to the

Chapter 13 ■ Understanding tableView

659

left by the same amount. If a column has nested columns, resizing the column evenly distributes the delta
among the immediate children columns. This is the default column-resize policy for a TableView:

TableView<Person> table = ...;

// Set the column resize policy to constrained resize policy
table.setColumnResizePolicy(TableView.CONSTRAINED_RESIZE_POLICY);

You can also create a custom column resize policy. The following snippet of code will serve as a
template. You will need to write the logic to consume the delta, which is the difference between the new and
old width of the column:

TableView<Person> table = new TableView<>(PersonTableUtil.getPersonList());
table.setColumnResizePolicy(resizeFeatures -> {
 boolean consumedDelta = false; double delta = resizeFeatures.getDelta();
 TableColumn<Person, ?> column = resizeFeatures.getColumn();
 TableView<Person> tableView = resizeFeatures.getTable();

 // Adjust the delta here...

 return consumedDelta;
});

You can disable column resizing by setting a trivial callback that does nothing. Its call() simply returns
true indicating that it has consumed the delta:

// Disable column resizing
table.setColumnResizePolicy(resizeFeatures -> true);

Styling a TableView with CSS
You can style a TableView and all its parts, for example, column headers, cells, placeholder, and so forth.
Applying a CSS to TableView is very complex and broad in scope. This section covers a brief overview of
CSS styling for TableView. The default CSS style-class name for a TableView is table-view. The default CSS
style-classes for a cell, a row, and a column header are table-cell, table-row-cell, and column-header,
respectively:

/* Set the font for the cells */
.table-row-cell {
 -fx-font-size: 10pt;
 -fx-font-family: Arial;
}

/* Set the font size and text color for column headers */
.table-view .column-header .label{
 -fx-font-size: 10pt;
 -fx-text-fill: blue;
}

Chapter 13 ■ Understanding tableView

660

TableView supports the following CSS pseudo-classes:

•	 cell-selection

•	 row-selection

•	 constrained-resize

The cell-selection pseudo-class is applied when the cell-level selection is enabled, whereas the
row-selection pseudo-class is applied for row-level selection. The constrained-resize pseudo-class is
applied when the column resize policy is CONSTRAINED_RESIZE_POLICY.

Alternate rows in a TableView are highlighted by default. The following code removes the alternate row
highlighting. It sets the white background color for all rows:

.table-row-cell {
 -fx-background-color: white;
}

.table-row-cell .table-cell {
 -fx-border-width: 0.25px;
 -fx-border-color: transparent gray gray transparent;
}

TableView shows empty rows to fill its available height. The following code removes the empty rows. In
fact, it makes them appear as removed:

.table-row-cell:empty {
 -fx-background-color: transparent;
}

.table-row-cell:empty .table-cell {
 -fx-border-width: 0px;
}

TableView contains several substructures that can be styled separately:

•	 column-resize-line

•	 column-overlay

•	 placeholder

•	 column-header-background

The column-resize-line substructure is a Region and is shown when the user tries to resize a
column. The column-overlay substructure is a Region and is shown as an overlay for the column being
moved. The placeholder substructure is a StackPane and is shown when the TableView does not have
columns or data, as in the following code:

/* Make the text in the placeholder red and bold */
.table-view .placeholder .label {
 -fx-text-fill: red;
 -fx-font-weight: bold;
}

Chapter 13 ■ Understanding tableView

661

The column-header-background substructure is a StackPane, and it is the area behind the column
headers. It contains several substructures. Its filler substructure, which is a Region, is the area between the
rightmost column and the right edge of the TableView in the header area. Its show-hide-columns-button
substructure, which is a StackPane, is the area that shows the menu button to display the list of columns to
show and hide. Please refer to the modena.css file and the JavaFX CSS Reference Guide for a complete list of
properties of TableView that can be styled. The following code sets the filler background to white:

/* Set the filler background to white*/
.table-view .column-header-background .filler {
 -fx-background-color: white;
}

Summary
TableView is a control that is used to display and edit data in a tabular form. A TableView consists of
rows and columns. The intersection of a row and a column is called a cell. Cells contain the data values.
Columns have headers that describe the type of data they contain. Columns can be nested. Resizing and
sorting of column data have built-in support. The following classes are used to work with a TableView
control: TableView, TableColumn, TableRow, TableCell, TablePosition, TableView.TableViewFocusModel,
and TableView.TableViewSelectionModel. The TableView class represents a TableView control. The
TableColumn class represents a column in a TableView. Typically, a TableView contains multiple instances
of TableColumn. A TableColumn consists of cells, which are instances of the TableCell class. A TableColumn
is responsible for displaying and editing the data in its cells. A TableColumn has a header that can display
header text, a graphic, or both. You can have a context menu for a TableColumn, which is displayed when the
user right-clicks inside the column header. Use the contextMenu property to set a context menu.

The TableRow class inherits from the IndexedCell class. An instance of TableRow represents a row in
a TableView. You almost never use this class in your application unless you want to provide a customized
implementation for rows. Typically, you customize cells, not rows.

An instance of the TableCell class represents a cell in a TableView. Cells are highly customizable.
They display data from the underlying data model for the TableView. They are capable of displaying data
as well as graphics. Cells in a row of a TableView contain data related to an item such as a person, a book,
and so forth. Data for some cells in a row may come directly from the attributes of the item or they may be
computed.

TableView has an items property of the ObservableList<S> type. The generic type S is the same as
the generic type of the TableView. It is the data model for the TableView. Each element in the items list
represents a row in the TableView. Adding a new item to the items list adds a new row to the TableView.
Deleting an item from the items list deletes the corresponding row from the TableView.

The TableColumn, TableRow, and TableCell classes contain a tableView property that holds
the reference of the TableView that contains them. The tableView property contains null when the
TableColumn does not belong to a TableView.

A TablePosition represents the position of a cell. Its getRow() and getColumn() methods return the
indices of rows and columns, respectively, to which the cell belongs.

The TableViewFocusModel class is an inner static class of the TableView class. It represents the focus
model for the TableView to manage focus for rows and cells.

The TableViewSelectionModel class is an inner static class of the TableView class. It represents the
selection model for the TableView to manage selection for rows and cells.

By default, all columns in a TableView are visible. The TableColumn class has a visible property to set
the visibility of a column. If you turn off the visibility of a parent column, a column with nested columns, all
of its nested columns will be invisible.

Chapter 13 ■ Understanding tableView

662

You can rearrange columns in a TableView in two ways: by dragging and dropping columns to a
different position or by changing their positions in the observable list of returned by the getColumns()
method of the TableView class. The first option is available by default.

TableView has built-in support for sorting data in columns. By default, it allows users to sort data by
clicking column headers. It also supports sorting data programmatically. You can also disable sorting for a
column or all columns in a TableView.

TableView supports customization at several levels. It lets you customize the rendering of columns, for
example, you can display data in a column using a check box, a combo box, or a TextField. You can also
style a TableView using CSS.

The next chapter will discuss the tree view control that is used to work with data representing a tree-like
hierarchical structure.

663

Chapter 14

Understanding TreeView

In this chapter, you will learn:

What a •	 TreeView is

How to create a •	 TreeView

How to hide the root node of a •	 TreeView

What a •	 TreeItem is and how to handle TreeItem events in a TreeView

How to customize cells in a •	 TreeView

How to edit data in a •	 TreeView

How to load a •	 TreeItem in a TreeView on demand

About the selection model of the •	 TreeView

How to style a •	 TreeView using CSS

What Is a TreeView ?
A TreeView is a control that displays hierarchical data in a tree-like structure, as shown in Figure 14-1.
You can think of a TreeView as displaying a tree upside down—the root of the tree being at the top. Each item
in a TreeView is an instance of the TreeItem class. TreeItems form parent-child relationships. In Figure 14-1,
Departments, IS, and Doug Dyer are instances of a TreeItem.

Chapter 14 ■ Understanding treeView

664

A TreeItem is also referred to as a node. The TreeItem class does not inherit from the Node class.
Therefore, a TreeItem is not a JavaFX Node and it cannot be added to a scene graph.

A TreeItem is categorized as a branch or leaf node. If a TreeItem contains other instances of TreeItem,
which are called its children, it is called a branch node. Otherwise, it is called a leaf node. In Figure 14-1,
Departments, IS, and Claims are examples of branch nodes, whereas Doug Dyer and Lael Boyd are examples
of leaf nodes. Notice that leaf nodes are those that occur at the tips of the tree hierarchy. A leaf node has
a parent but no children. A branch node has a parent as well as children, except a special branch node,
which is called the root node. The root node has no parent, but children only, and it is the first node in the
TreeView. Departments is the root node in Figure 14-1.

A branch node can be in an expanded or collapsed state. In Figure 14-1, the Departments, IS, and Claims
nodes are in the expanded state, whereas the Underwriting node is in the collapsed state. A triangle, which is
called a disclosure node, is used to show the expanded and collapsed state of a branch node.

A TreeItem serves as the data model in a TreeView. Each TreeItem uses an instance of the TreeCell
class to render its value. A TreeCell in a TreeView can be customized using a cell factory. By default, a
TreeCell is not editable.

TreeView is a virtualized control. It creates only as many instances of TreeCell as needed to display the
items for its current height. Cells are recycled as you scroll through items. Virtualization makes it possible
to use TreeView for viewing very large number of items without using a large amount of memory. Note,
however, that loading TreeItems always takes memory. Virtualization helps only in viewing the items by
recycling the cells used in viewing them.

Creating a TreeView
An instance of the TreeView<T> class represents a TreeView control. The TreeView class takes a generic
type, which is the type of the value contained in its TreeItems. The default constructor creates an empty
TreeView:

// Create an empty TreeView whose TreeItems value type is String
TreeView<String> treeView = new TreeView<>();

Figure 14-1. A window with a TreeView control

Chapter 14 ■ Understanding treeView

665

Another constructor creates a TreeView with the root node:

// Create the root TreeItem
TreeItem<String> depts = new TreeItem<String>("Departments");

// Create a TreeView with depts as its root item
TreeView<String> treeView = new TreeView<>(depts);

The TreeView class contains a root property. Its type is TreeItem<T> and it represents the root node.
You can create an empty TreeView and set its root node later using the setRoot() method:

// Create an empty TreeView whose TreeItems value is String
TreeView<String> treeView = new TreeView<>();
...
// Set the root node
treeView.setRoot(depts);

A TreeItem stores all its children in an ObservableList. The getChildren() method returns the
reference of the list. The following snippet of code adds three children TreeItems to the root:

// Create children TreeItemsfor the root
TreeItem<String> isDept = new TreeItem<String>("IS");
TreeItem<String> claimsDept = new TreeItem<String>("Claims");
TreeItem<String> underwritingDept = new TreeItem<String>("Underwriting");

// Add children to the root
depts.getChildren().addAll(isDept, claimsDept, underwritingDept);

You can use the above logic to build a TreeView and add as many instances of TreeItem as you like. Notice
that you add only the root node to the TreeView. All other nodes are added to the root node and its children.

You can use a TreeView with the same TreeItems several times. Let’s look at the code to build a
TreeView once and then reuse it. Listing 14-1 is a utility class. Its getTreeView() method shows how to
create and populate a TreeView. It returns the reference of the TreeView. When you need a TreeView in an
example, you will use this method.

Listing 14-1. A TreeView Utility Class that Builds a TreeView

// TreeViewUtil.java
package com.jdojo.control;

import javafx.scene.control.TreeItem;
import javafx.scene.control.TreeView;

public class TreeViewUtil {
 public static TreeView<String> getTreeView() {
 TreeItem<String> depts = new TreeItem<>("Departments");

 // Add items to depts
 TreeItem<String> isDept = new TreeItem<String>("IS");
 TreeItem<String> claimsDept = new TreeItem<String>("Claims");
 TreeItem<String> underwritingDept = new TreeItem<String>("Underwriting");
 depts.getChildren().addAll(isDept, claimsDept, underwritingDept);

Chapter 14 ■ Understanding treeView

666

 // Add employees for each dept
 isDept.getChildren().addAll(new TreeItem<String>("Doug Dyer"),
 new TreeItem<String>("Jim Beeson"),
 new TreeItem<String>("Simon Ng"));

 claimsDept.getChildren().addAll(new TreeItem<String>("Lael Boyd"),
 new TreeItem<String>("Janet Biddle"));

 underwritingDept.getChildren().addAll(new TreeItem<String>("Ken McEwen"),
 new TreeItem<String>("Ken Mann"),
 new TreeItem<String>("Lola Ng"));

 // Create a TreeView with depts as its root item
 TreeView<String> treeView = new TreeView<>(depts);

 return treeView;
 }
}

The program Listing 14-2 shows a TreeView control in a window. When you run the program, all
nodes are collapsed, which is the default behavior for a TreeView. You will need to click the disclosure node
(the triangle) for the root node to expand it and view its children. Repeat this to expand other nodes. Clicking
the disclosure node for an expanded node hides its children.

Tip ■ By default, a node is in the collapsed state. Call the setExpanded(true) method of a TreeItem to
expand a node.

Listing 14-2. Creating a TreeView Control

// TreeViewTest.java
package com.jdojo.control;

import javafx.application.Application;
import javafx.scene.Scene;
import javafx.scene.control.TreeView;
import javafx.scene.layout.HBox;
import javafx.stage.Stage;

public class TreeViewTest extends Application {
 public static void main(String[] args) {
 Application.launch(args);
 }

 @Override
 public void start(Stage stage) {
 TreeView<String> treeView = TreeViewUtil.getTreeView();
 HBox root = new HBox(treeView);

Chapter 14 ■ Understanding treeView

667

 root.setStyle("-fx-padding: 10;" +
 "-fx-border-style: solid inside;" +
 "-fx-border-width: 2;" +
 "-fx-border-insets: 5;" +
 "-fx-border-radius: 5;" +
 "-fx-border-color: blue;");

 Scene scene = new Scene(root);
 stage.setScene(scene);
 stage.setTitle("Creating a TreeView");
 stage.show();
 }
}

Hiding the Root Node
In a TreeView, you can hide the root node by setting the value for its showRoot property to false. By default,
the root node is visible. Call setShowRoot(false) of the TreeView to hide the root node. Hiding root node
makes traversing the TreeView a little easier as the user has one less level of indentation to traverse. Hiding
the root node shows its child nodes at the first level. The following snippet of code will display a TreeView,
as shown in Figure 14-2.

TreeView<String> treeView = TreeViewUtil.getTreeView();

// Hide the root node
treeView.setShowRoot(false);

Understanding the TreeItem
A TreeItem supplies the data for a node. It has the following properties:

•	 expanded

•	 graphic

•	 leaf

•	 parent

•	 value

Figure 14-2. A TreeView with with its root node hidden

Chapter 14 ■ Understanding treeView

668

The expanded property indicates whether a TreeItem is expanded. It is true if the TreeItem is in the
expanded state. Otherwise, it is false. You can expand a node using the setExpanded(true) method.

A TreeItem may optionally contain an icon represented by its graphic property. The type of the
graphic property is Node, and therefore, you can use any node for the graphic property. Typically,
a 16-by-16 image is used.

The leaf property indicates whether a TreeItem has children. It is true if the TreeItem has no children.
Otherwise, it is false. It is a read-only property.

Every TreeItem in a TreeView, except the root TreeItem, has a parent TreeItem. The parent property is
a read-only property that contains the parent of the TreeItem.

The value property stores the application-specific data for a TreeItem. Its type is the same as the
generic type of the TreeItem class.

You can get the ObservableList of children of a TreeItem using the getChildren() method. You can
traverse the tree up or down from a TreeItem using the getParent() and getChildren() methods recursively.

The TreeItem class provides several constructors to create an empty TreeItem, a TreeItem with a value,
and a TreeItem with a value and graphic:

// Create an empty TreeItem and set the value
TreeItem<String> emptyItem = new TreeItem<>();
emptyItem.setValue("Departments");

// A TreeItem with a value
TreeItem<String> item2 = new TreeItem<>("Departments");

// A TreeItem with a value and an icon
ImageView icon = ...
TreeItem<String> item3 = new TreeItem<>("Departments", icon);

Handling TreeItem Events
A TreeItem fires events as it is modified, for example, by adding or removing children or expanding or
collapsing. An instance of the TreeModificationEvent class, which is a static inner class of the TreeItem
class, represents all kinds of modification events. Different types of events are represented by different event
types. It is a little strange that the TreeItem class does not contain constants for those event types. Rather, it
contains static methods that return those event types. For example, the TreeItem.branchCollapsedEvent()
static method returns the event type of the event that is fired when a TreeItem is collapsed.

Event types are arranged in a hierarchy. The TreeNotification event type is at the top of the hierarchy.
It is the parent of all event types for TreeItem. You can add an event handler for this event type to a TreeItem
and it will listen for all event types for a TreeItem. The following three event types are the direct subtypes of
the TreeNotification event type:

•	 ValueChanged

•	 GraphicChanged

•	 TreeItemCountChange

The ValueChanged and GraphicChanged event types are fired when the value and graphic properties,
respectively, of the TreeItem change. The TreeItemCountChange event type is fired when the TreeItem is
expanded, collapsed, or its children list is changed. It has three subtypes to handle the specific events:

•	 BranchExpanded

•	 BranchCollapsed

•	 ChildrenModification

Chapter 14 ■ Understanding treeView

669

You should add event handlers for specific type of events for better performance. When an event occurs
on a TreeItem, all the registered listeners are called. The event bubbles up the TreeItem chain following the
parent of the TreeItem until the root TreeItem is reached. Therefore, if you want to handle a specific event
on all TreeItems, add an event handler only to the root TreeItem. The following snippet of code creates a
TreeView with a root node. It adds BranchExpanded and BranchCollapsed event handlers to the root node.
These event handlers will be called whenever any branch in the TreeView is expanded or collapsed. The
handlers print a message on the standard output about the node being expanded or collapsed.

TreeItem<String> depts = new TreeItem<>("Departments");
TreeView<String> treeView = new TreeView<>(depts);

// Add BranchExpended event handler
depts.addEventHandler(TreeItem.<String>branchExpandedEvent(),
 e -> System.out.println("Node expanded: " + e.getSource().getValue()));

// Add BranchCollapsed event handler
depts.addEventHandler(TreeItem.<String>branchCollapsedEvent(),
 e -> System.out.println("Node collapsed: " + e.getSource().getValue()));

Adding and Removing Nodes
Adding and removing TreeItems is as easy as adding or removing them in the children list of their parents.
Notice that the root node does not have a parent. To delete the root node, you need to set the root property of
the TreeView to null.

The program in Listing 14-3 shows how to add and remove nodes in a TreeView. A TreeView with a
root node is displayed in the left side of the window. The right side displays a TextField and an Add button.
Enter a text and click the Add button; a new node will be added under the selected node. Click the Remove
Selected Item button to remove the selected node from the TreeView. At the bottom of the window,
a detailed message log is displayed in a TextArea. The program also shows how to handle TreeItem events.

Listing 14-3. Adding and Deleting Nodes in a TreeView

// TreeItemAddDeleteTest.java
package com.jdojo.control;

import javafx.application.Application;
import javafx.scene.Scene;
import javafx.scene.control.Button;
import javafx.scene.control.Label;
import javafx.scene.control.TreeItem;
import javafx.scene.control.TreeView;
import javafx.scene.layout.HBox;
import javafx.stage.Stage;
import javafx.scene.control.TextArea;
import javafx.scene.control.TextField;
import javafx.scene.layout.VBox;

Chapter 14 ■ Understanding treeView

670

public class TreeItemAddDeleteTest extends Application {
 private final TreeView<String> treeView = new TreeView<>();
 private final TextArea msgLogFld = new TextArea();

 public static void main(String[] args) {
 Application.launch(args);
 }

 @Override
 public void start(Stage stage) {
 // Select the root node
 treeView.getSelectionModel().selectFirst();

 // Create the root node and adds event handler to it
 TreeItem<String> depts = new TreeItem<>("Departments");
 depts.addEventHandler(TreeItem.<String>branchExpandedEvent(),
 this::branchExpended);
 depts.addEventHandler(TreeItem.<String>branchCollapsedEvent(),
 this::branchCollapsed);
 depts.addEventHandler(TreeItem.<String>childrenModificationEvent(),
 this::childrenModification);

 // Set the root node for the TreeViww
 treeView.setRoot(depts);

 VBox rightPane = getRightPane();

 HBox root = new HBox(treeView, rightPane);
 root.setSpacing(20);
 root.setStyle("-fx-padding: 10;" +
 "-fx-border-style: solid inside;" +
 "-fx-border-width: 2;" +
 "-fx-border-insets: 5;" +
 "-fx-border-radius: 5;" +
 "-fx-border-color: blue;");

 Scene scene = new Scene(root);
 stage.setScene(scene);
 stage.setTitle("Creating a TreeView");
 stage.show();
 }

 public VBox getRightPane() {
 TextField itemFld = new TextField();

 Button addItemBtn = new Button("Add");
 addItemBtn.setOnAction(e -> this.addItem(itemFld.getText()));

 Button removeItemBtn = new Button("Remove Selected Item");
 removeItemBtn.setOnAction(e -> this.removeItem());

Chapter 14 ■ Understanding treeView

671

 msgLogFld.setPrefRowCount(15);
 msgLogFld.setPrefColumnCount(25);
 VBox box = new VBox(new Label("Select an item to add to or remove."),
 new HBox(new Label("Item:"), itemFld, addItemBtn),
 removeItemBtn,
 new Label("Message Log:"),
 msgLogFld);
 box.setSpacing(10);
 return box;
 }

 public void addItem(String value) {
 if (value == null || value.trim().equals("")) {
 this.logMsg("Item cannot be empty.");
 return;
 }

 TreeItem<String> parent = treeView.getSelectionModel().getSelectedItem();
 if (parent == null) {
 this.logMsg("Select a node to add this item to.");
 return;
 }

 // Check for duplicate
 for(TreeItem<String> child : parent.getChildren()) {
 if (child.getValue().equals(value)) {
 this.logMsg(value + " already exists under " + parent.getValue());
 return;
 }
 }

 TreeItem<String> newItem = new TreeItem<String>(value);
 parent.getChildren().add(newItem);
 if (!parent.isExpanded()) {
 parent.setExpanded(true);
 }
 }

 public void removeItem() {
 TreeItem<String> item = treeView.getSelectionModel().getSelectedItem();
 if (item == null) {
 this.logMsg("Select a node to remove.");
 return;
 }

 TreeItem<String> parent = item.getParent();
 if (parent == null) {
 this.logMsg("Cannot remove the root node.");
 } else {
 parent.getChildren().remove(item);
 }

 }

Chapter 14 ■ Understanding treeView

672

 public void branchExpended(TreeItem.TreeModificationEvent<String> e) {
 String nodeValue = e.getSource().getValue();
 this.logMsg("Event: " + nodeValue + " expanded.");
 }

 public void branchCollapsed(TreeItem.TreeModificationEvent<String> e) {
 String nodeValue = e.getSource().getValue();
 this.logMsg("Event: " + nodeValue + " collapsed.");
 }

 public void childrenModification(TreeItem.TreeModificationEvent<String> e) {
 if (e.wasAdded()) {
 for(TreeItem<String> item : e.getAddedChildren()) {
 this.logMsg("Event: " + item.getValue() + " has been added.");
 }
 }

 if (e.wasRemoved()) {
 for(TreeItem<String> item : e.getRemovedChildren()) {
 this.logMsg("Event: " + item.getValue() + " has been removed.");
 }
 }
 }

 public void logMsg(String msg) {
 this.msgLogFld.appendText(msg + "\n");
 }
}

Customizing Cells in a TreeView
TreeView uses a TreeCell to render a TreeItem. A TreeCell is an IndexedCell. You can visualize items in
a TreeView from top to bottom arranged in rows. Each row has exactly one item. Each item is given a row
index. The first item, which is the root item, has the index of zero. The row indices are given only to the
visible items. TreeView contains a read-only expandedItemCount property that is the number of visible
items. Use the getExpandedItemCount() method to get the number of visible items. If a node above an item
is expanded or collapsed, the index of the item changes to reflect new visible items. The index of a TreeCell
in a TreeView and the row index of an item are the same. Use the getIndex() method of the TreeCell or the
getRow(TreeItem<T> item) method of the TreeView to get the row index of an item.

A TreeCell is a Labeled control. By default, it uses the following rules to render its TreeItem: If the
value in the TreeItem is an instance of the Node class, the value is displayed using the graphic property of
the cell. Otherwise, the toString() method of the value is called and the returned string is displayed using
the text property of the cell.

Chapter 14 ■ Understanding treeView

673

You can take full control of how a TreeCell renders its TreeItem by providing a cell factory for the
TreeView. The cellFactory property is a Callback instance, which takes the TreeView as an argument and
returns a TreeCell. The following snippet of code shows how to sets a cell factory to a TreeView:

TreeView<String> treeView = new TreeView<>();
...
// Set a cell factory to prepend the row index to the TreeItem value
treeView.setCellFactory((TreeView<String> tv) -> {
 TreeCell<String> cell = new TreeCell<String>() {
 @Override
 public void updateItem(String item, boolean empty) {
 super.updateItem(item, empty);
 /* Logic to render the cell goes here */
 }};
 return cell;
});

Listing 14-4 has a complete program that uses a cell factory for a TreeView. The cell displays the index of
the cell followed with the value of the TreeItem. The program displays a window as shown in Figure 14-3.

Listing 14-4. Using a Cell Factory for a TreeView

// TreeViewCellFactory.java
package com.jdojo.control;

import javafx.application.Application;
import javafx.scene.Scene;
import javafx.scene.control.TreeCell;
import javafx.scene.control.TreeView;
import javafx.scene.layout.HBox;
import javafx.stage.Stage;

public class TreeViewCellFactory extends Application {
 public static void main(String[] args) {
 Application.launch(args);
 }

 @Override
 public void start(Stage stage) {
 TreeView<String> treeView = TreeViewUtil.getTreeView();

 // Set a cell factory to prepend the row index to the TreeItem value
 treeView.setCellFactory((TreeView<String> tv) -> {
 TreeCell<String> cell = new TreeCell<String>() {
 @Override
 public void updateItem(String item, boolean empty) {
 super.updateItem(item, empty);
 if (empty) {
 this.setText(null);
 this.setGraphic(null);
 }

Chapter 14 ■ Understanding treeView

674

 else {
 String value =
 this.getTreeItem().getValue();
 this.setText(
 this.getIndex() + ". " + value);
 }
 }};
 return cell;
 });

 HBox root = new HBox(treeView);
 root.setSpacing(20);
 root.setStyle("-fx-padding: 10;" +
 "-fx-border-style: solid inside;" +
 "-fx-border-width: 2;" +
 "-fx-border-insets: 5;" +
 "-fx-border-radius: 5;" +
 "-fx-border-color: blue;");

 Scene scene = new Scene(root);
 stage.setScene(scene);
 stage.setTitle("Using a Cell Factory in a TreeView");
 stage.show();
 }
}

Editing Data in a TreeView
A cell in a TreeView can be editable. An editable cell may switch between editing and nonediting mode.
In editing mode, cell data can be modified by the user. For a cell to enter editing mode, the TreeView must be
editable. TreeView has an editable property, which can be set to true using the setEditable(true) method,
as shown in the following code. By default, TreeView is not editable.

Figure 14-3. A TreeView showing the row index of its TreeItems

Chapter 14 ■ Understanding treeView

675

TreeView<Stirng> treeView = ...
treeView.setEditable(true);

TreeView supports three types of events:

•	 onEditStart

•	 onEditCommit

•	 onEditCancel

The onEditStart event is fired when a cell enters editing mode. The onEditCommit event is fired
when the user successfully commits the editing, for example, by pressing the Enter key in a TextField.
The onEditCancel event is fired when the user cancels the editing, for example, by pressing the Esc key
in a TextField. The events are represented by an object of the TreeView.EditEvent class. The event
object encapsulates the old and new values in the cell, the TreeItem being edited, and the reference of the
TreeView. Use one of the methods of the EditEvent class to get these values.

Creating a TreeView does not let you edit its cells. Cell-editing capability is provided through specialized
implementations of the TreeCell class. The JavaFX library provides some of these implementations. Set the
cell factory for a TreeView, which is a Callback object, to use one of the following implementations of the
TreeCell to make cells in a TreeView editable:

•	 CheckBoxTreeCell

•	 ChoiceBoxTreeCell

•	 ComboBoxTreeCell

•	 TextFieldTreeCell

TreeView has a read-only editingItem property that contains the reference of the TreeItem being
edited. It is null when no TreeItem is being edited.

Editing Data using a Check Box
A CheckBoxTreeCell renders a check box in the cell. The following snippet of code sets the cell factory for a
TreeView to use CheckBoxTreeCell:

TreeView<String> treeView = new TreeView<>();;

// Set a cell factory to use TextFieldTreeCell
treeView.setCellFactory(CheckBoxTreeCell.<String>forTreeView());

The above code will draw a check box in each cell of the TreeView, which can be selected and
unselected. However, there is no way to know whether the check box for a TreeItem is selected or unselected
because the TreeItem class does not provide access to the CheckBox state. CheckBoxTreeItem is a specialized
implementation of TreeItem that should be used when you want to use CheckBoxTreeCell. It provides
access to the selected state of the check box. It contains three boolean properties:

•	 independent

•	 indeterminate

•	 selected

Chapter 14 ■ Understanding treeView

676

The independent property represents the independent state of the CheckBoxTreeItem. By default,
it is false. When a CheckBoxTreeItem is dependent, selecting or unselecting it affects the selected state
of its children and its parent. For example, selecting or unselecting a dependent parent node selects or
unselects all its children. If some, but not all, children are selected, a dependent parent node will be in an
indeterminate state. If all children are selected, a dependent parent node will be selected. If all children
are unselected, a dependent parent node will be unselected. The selected state of an independent
CheckBoxTreeItem does not affect its parent and children.

Tip ■ the selection of an independent CheckBoxTreeItem does not affect is parent and children. however,
the reverse is not true. that is, if a dependent parent is selected or unselected, all its children, dependent as
well as independent, are selected or unselected.

The indeterminate property specifies the indeterminate state of the check box for the item. The
selected property specifies the selected property of the check box for the item. Use the isIndeterminate()
and isSelected() methods to determine the state of the check box of a CheckBoxTreeItem.

The program in Listing 14-5 shows how to use a cell factory to render a check box in each cell with
a CheckBoxTreeItem. The initial part of the program is very similar to the first example you had for the
TreeView. The only difference is that, this time, you have used CheckBoxTreeItem instead of a TreeItem. You
have made the Claims item independent. That is, selecting and unselecting the Claims item does not affect
the state of its parent and children. Select and unselect different items to see this effect.

Listing 14-5. Using CheckBoxTreeItem with a Check Box in a TreeCell

// TreeViewCheckBoxTest.java
package com.jdojo.control;

import javafx.application.Application;
import javafx.scene.Scene;
import javafx.scene.control.CheckBoxTreeItem;
import javafx.scene.control.TreeView;
import javafx.scene.control.cell.CheckBoxTreeCell;
import javafx.scene.layout.HBox;
import javafx.stage.Stage;

public class TreeViewCheckBoxTest extends Application {
 public static void main(String[] args) {
 Application.launch(args);
 }

 @Override
 @SuppressWarnings("unchecked")
 public void start(Stage stage) {
 CheckBoxTreeItem<String> depts =
 new CheckBoxTreeItem<>("Departments");

 // Add items to depts
 CheckBoxTreeItem<String> isDept = new CheckBoxTreeItem<>("IS");
 CheckBoxTreeItem<String> claimsDept =
 new CheckBoxTreeItem<>("Claims");

Chapter 14 ■ Understanding treeView

677

 CheckBoxTreeItem<String> underwritingDept =
 new CheckBoxTreeItem<>("Underwriting");
 depts.getChildren().addAll(isDept, claimsDept, underwritingDept);

 // Add employees for each dept
 isDept.getChildren().addAll(new CheckBoxTreeItem<String>("Doug Dyer"),
 new CheckBoxTreeItem<String>("Jim Beeson"),
 new CheckBoxTreeItem<String>("Simon Ng"));

 claimsDept.getChildren().addAll(
 new CheckBoxTreeItem<String>("Lael Boyd"),
 new CheckBoxTreeItem<String>("Janet Biddle"));

 underwritingDept.getChildren().addAll(
 new CheckBoxTreeItem<String>("Ken McEwen"),
 new CheckBoxTreeItem<String>("Ken Mann"),
 new CheckBoxTreeItem<String>("Lola Ng"));

 // Make the claimsDept item independent
 claimsDept.setIndependent(true);

 // Create a TreeView with depts as its root item
 TreeView<String> treeView = new TreeView<>(depts);

 // Set the cell factory to draw a CheckBox in cells
 treeView.setCellFactory(CheckBoxTreeCell.<String>forTreeView());

 HBox root = new HBox(treeView);
 root.setSpacing(20);
 root.setStyle("-fx-padding: 10;" +
 "-fx-border-style: solid inside;" +
 "-fx-border-width: 2;" +
 "-fx-border-insets: 5;" +
 "-fx-border-radius: 5;" +
 "-fx-border-color: blue;");

 Scene scene = new Scene(root);
 stage.setScene(scene);
 stage.setTitle("Using CheckBoxTreeItem");
 stage.show();
 }
}

Editing Data Using a Choice Box
A ChoiceBoxTreeCell is rendered as a Label in nonediting mode and as a choice box in editing mode. Its
forTreeView() static method returns a cell factory. The method is overloaded. You need to pass the list of
items to be shown in the choice box. If the toString() method of the item does not return a user-friendly
string for the user, use a string converter. The following snippet of code sets a cell factory for a TreeView that
will use instances of ChoiceBoxTreeCell to render TreeItems. In editing mode, the choice box will display
three items: Item-1, Item-2, and Item-3.

Chapter 14 ■ Understanding treeView

678

TreeView<String> treeView = new TreeView<>();
treeView.setCellFactory(ChoiceBoxTreeCell.<String>forTreeView("Item-1", "Item-2", "Item-3"));

When an item is selected in the choice box, the item is set to the TreeItem of the cell. You can set an
onEditCommit event handler that is fired when the user selects an item. The following snippet of code adds
such a handler for the TreeView that prints a message on the standard output:

// Add an onEditCommit handler
treeView.setOnEditCommit(e -> {
 System.out.println(e.getTreeItem() + " changed." +
 " old = " + e.getOldValue() +
 ", new = " + e.getNewValue());
});

Clicking a selected cell puts the cell into editing mode. Double-clicking an unselected cell puts the cell
into editing mode. Changing the focus to another cell or selecting an item from the list puts the editing cell
into nonediting mode and the current value is displayed in a Label.

Editing Data Using a Combo Box
Editing data using a combo box works similar to the method used for a ChoiceBoxTreeCell. Please refer to
the section “Editing Data Using a Choice Box” for more details.

A ComboBoxTreeCell is rendered as a Label in nonediting mode and as a combo box in editing mode.
Its forTreeView() static method returns a cell factory. The method is overloaded. You need to pass the list
of items to be shown in the combo box. If the toString() method of the item does not return a user-friendly
string for the user, use a string converter. The following snippet of code sets a cell factory for a TreeView that
will use instances of ComboBoxTreeCell to render TreeItems. In editing mode, the combo box will display
three items: Item-1, Item-2, and Item-3.

TreeView<String> treeView = new TreeView<>();
treeView.setCellFactory(ComboBoxTreeCell.<String>forTreeView("Item-1", "Item-2", "Item-3"));

Editing Data Using a TextField
A TextFieldTreeCell is rendered as a Label in nonediting mode and as a TextField in editing mode. Its
forTreeView() static method returns a cell factory. The method is overloaded. Use a string converter if the
item type is not String. The following snippet of code sets a cell factory for a TreeView that will use instances
of TextFieldTreeCell to render TreeItems. In editing mode, the TextField will display the item value.

TreeView<String> treeView = new TreeView<>();
treeView.setCellFactory(TextFieldTreeCell.forTreeView());

Clicking a selected cell or double-clicking an unselected cell puts the cell into editing mode, which
displays the cell data in a TextField. Once the cell is in editing mode, you need to click in the TextField
(one more click!) to put the caret in the TextField so you can make changes.

Tip ■ double-clicking a cell representing a branch node will not put the cell in editing mode. rather, the cell
is expanded or collapsed. the trick is to use two single clicks instead of a double-click on a branch node.
Both a double-click and two single clicks put a cell of a leaf node in editing mode.

Chapter 14 ■ Understanding treeView

679

If you are in the middle of editing a cell data, press the Esc key to cancel editing, which will return the
cell to nonediting mode and reverts to the old data in the cell. Pressing the Enter key commits the data to the
TreeItem for the cell.

If you are editing a cell using a TextFieldTreeCell, moving the focus to another cell, for example,
by clicking another cell, cancels the editing and puts the old value back in the cell. This is not what a user
expects. At present, there is no easy solution to this problem. You will have to create a subclass of TreeCell
and add a focus change listener so you can commit the data when the TextField loses focus.

The program in Listing 14-6 shows how to use TextFieldTreeCell to edit cell data in a TreeView. Run
the application and click a cell two times to put the cell in editing mode. A TextField will display the cell
data. Change the data and press the Enter key to commit the changes. The program adds edit-related event
handlers to the TreeView that prints a message on the standard output when the events occur. Figure 14-4
shows the cell data being edited in a TextFieldTreeCell.

Listing 14-6. Using TextFieldTreeCell to Edit Cell Data in a TreeView

// TreeViewEditingData.java
package com.jdojo.control;

import javafx.application.Application;
import javafx.scene.Scene;
import javafx.scene.control.TreeView;
import javafx.scene.control.cell.TextFieldTreeCell;
import javafx.scene.layout.HBox;
import javafx.stage.Stage;

public class TreeViewEditingData extends Application {
 public static void main(String[] args) {
 Application.launch(args);
 }

 @Override
 public void start(Stage stage) {
 TreeView<String> treeView = TreeViewUtil.getTreeView();

 // Make the TreeView editable
 treeView.setEditable(true);

 // Set a cell factory to use TextFieldTreeCell
 treeView.setCellFactory(TextFieldTreeCell.forTreeView());

 // Set editing related event handlers
 treeView.setOnEditStart(this::editStart);
 treeView.setOnEditCommit(this::editCommit);
 treeView.setOnEditCancel(this::editCancel);

 HBox root = new HBox(treeView);
 root.setStyle("-fx-padding: 10;" +
 "-fx-border-style: solid inside;" +
 "-fx-border-width: 2;" +
 "-fx-border-insets: 5;" +
 "-fx-border-radius: 5;" +
 "-fx-border-color: blue;");

Chapter 14 ■ Understanding treeView

680

 Scene scene = new Scene(root);
 stage.setScene(scene);
 stage.setTitle("A Editing Cells in a TreeView");
 stage.show();
 }

 public void editStart(TreeView.EditEvent<String> e) {
 System.out.println("Started editng: " + e.getTreeItem());
 }

 public void editCommit(TreeView.EditEvent<String> e) {
 System.out.println(e.getTreeItem() + " changed." +
 " old = " + e.getOldValue() +
 ", new = " + e.getNewValue());
 }

 public void editCancel(TreeView.EditEvent<String> e) {
 System.out.println("Cancelled editng: " + e.getTreeItem());
 }
}

Loading TreeItems on Demand
So far in the examples, you have been loading all items in a TreeView at once. Sometimes the number of
items is too big or unknown. In those cases, you would need to load the items when the user expands a node
to make efficient use of memory. However, this approach is a little complex to implement. In this section,
you will develop a file system browser that will create nodes on demand.

First, you need to create a class inheriting from the TreeItem class. Listing 14-7 has the code for this new
class PathTreeItem, which inherits from TreeItem<Path>. The class needs to override the getChildren()
and isLeaf() methods of the TreeItem class. The three instance variables are used to cache the results of
the isLeaf() method call and flags indicating that the methods were called once. The constructor calls
the constructor of the TreeItem class and sets an icon for the node depending on whether it is a file or
a directory. The populateChildren() method contains the main logic for populating a node. The root
directories for the default file system are added as children for the root node. A nonroot node is populated
with its subdirectories and subfiles.

Figure 14-4. A cell data being edited in a TextFieldTreeCell

Chapter 14 ■ Understanding treeView

681

Note ■ this program will not refresh the items if they change in the file system after it loads them because
you load children for a node only once. this task is left to you. as an exercise, you will need to modify the
PathTreeItem class to implement the refresh functionality using the watch-service for root directories, which
was introduced in Java 7. a trivial, inefficient implementation would be to load children every time the
getChildren() method is called.

Listing 14-7. The PathTreeItem Class, as an Implementation of the TreeItem<Path> Class

// PathTreeItem.java
package com.jdojo.control;

import java.io.IOException;
import java.nio.file.FileSystems;
import java.nio.file.Files;
import java.nio.file.Path;
import javafx.collections.ObservableList;
import javafx.scene.control.TreeItem;
import javafx.scene.image.Image;
import javafx.scene.image.ImageView;

public class PathTreeItem extends TreeItem<Path>{
 private boolean childrenLoaded = false;
 private boolean leafPropertyComputed = false;
 private boolean leafNode = false;

 public PathTreeItem(Path path) {
 super(path);
 ImageView icon = null;
 if (Files.isDirectory(path)) {
 icon = getFolderIcon("folder.jpg");
 } else {
 icon = getFolderIcon("file.jpg");
 }
 this.setGraphic(icon);
 }

 @Override
 public ObservableList<TreeItem<Path>> getChildren() {
 if (!childrenLoaded) {
 childrenLoaded = true;
 populateChildren(this);
 }
 return super.getChildren();
 }

Chapter 14 ■ Understanding treeView

682

 @Override
 public boolean isLeaf() {
 if (!leafPropertyComputed) {
 leafPropertyComputed = true;
 Path path = this.getValue();
 leafNode = !Files.isDirectory(path);
 }
 return leafNode;
 }

 private void populateChildren(TreeItem<Path> item) {
 item.getChildren().clear();
 if (item.getParent() == null) {
 // Add root directories
 for (Path p : FileSystems.getDefault().getRootDirectories()) {
 item.getChildren().add(new PathTreeItem(p));
 }
 } else {
 Path path = item.getValue();
 // Populate sub-directories and files
 if (Files.isDirectory(path)) {
 try {
 Files.list(path).forEach(
 p -> item.getChildren().add(new PathTreeItem(p)));
 }
 catch(IOException e) {
 e.printStackTrace();
 }
 }
 }
 }

 private ImageView getFolderIcon(String fileName) {
 ImageView imgView = null;
 try {
 String imagePath = "resources/picture/" + fileName;
 Image img = new Image(imagePath);
 imgView = new ImageView(img);
 }
 catch (Exception e) {
 e.printStackTrace();
 }
 return imgView;
 }
}

Chapter 14 ■ Understanding treeView

683

Once you have the PathTreeItem class, building a file system browser is easy. The program in Listing 14-8
creates a TreeView that lets you browse the default file system on your machine. It creates a root node with
the current directory. You can create the root node for any directory, because you do not show the root node.
The following snippet of code creates a TreeView with the current directory as its root node:

PathTreeItem rootNode = new PathTreeItem(Paths.get("."));
TreeView<Path> treeView = new TreeView<>(rootNode);

You would then hide the root node, so the user can start browsing the file system:

treeView.setShowRoot(false);

Then set a cell factory that displays only the name of the file instead of its path. If you want to see the
path of all the files, you may comment the statement setting the cell factory:

// Set a cell factory to display only file name
treeView.setCellFactory(...);

Listing 14-8. A File System Browser

// FileSystemBrowser.java
package com.jdojo.control;

import java.nio.file.Path;
import java.nio.file.Paths;
import javafx.application.Application;
import javafx.scene.Scene;
import javafx.scene.control.TreeCell;
import javafx.scene.control.TreeView;
import javafx.scene.layout.HBox;
import javafx.stage.Stage;

public class FileSystemBrowser extends Application {
 public static void main(String[] args) {
 Application.launch(args);
 }

 @Override
 public void start(Stage stage) {
 // Create a root node using the current directory.
 PathTreeItem rootNode = new PathTreeItem(Paths.get("."));
 TreeView<Path> treeView = new TreeView<>(rootNode);
 treeView.setShowRoot(false);

 // Set a cell factory to display only file name
 treeView.setCellFactory((TreeView<Path> tv) -> {
 TreeCell<Path> cell = new TreeCell<Path>() {
 @Override
 public void updateItem(Path item, boolean empty) {
 super.updateItem(item, empty);
 if (item != null && !empty) {
 Path fileName = item.getFileName();

Chapter 14 ■ Understanding treeView

684

 if (fileName == null) {
 this.setText(item.toString());
 } else {
 this.setText(fileName.toString());
 }
 this.setGraphic(
 this.getTreeItem().getGraphic());
 } else {
 this.setText(null);
 this.setGraphic(null);
 }
 }
 };
 return cell;
 });

 HBox root = new HBox(treeView);
 root.setStyle("-fx-padding: 10;" +
 "-fx-border-style: solid inside;" +
 "-fx-border-width: 2;" +
 "-fx-border-insets: 5;" +
 "-fx-border-radius: 5;" +
 "-fx-border-color: blue;");

 Scene scene = new Scene(root);
 stage.setScene(scene);
 stage.setTitle("File System Browser");
 stage.show();
 }
}

Scrolling to a TreeItem
TreeView automatically provides vertical and horizontal scrollbars when needed. Users can use the
scrollbars to scroll to a specific item. Sometimes you may need programmatic support for scrolling. For
example, when you add a TreeItem to a TreeView, you may want the TreeItem visible to the user by scrolling
it to the view. Use the scrollTo(int rowIndex) method of the TreeView class to scroll the TreeItem at the
specified rowIndex to the view. You can get the row index of a TreeItem using the getRow(TreeItem<T>
item) method.

TreeView fires a ScrollToEvent when there is a request to scroll to a row index using the scrollTo()
method. The ScrollToEvent class contains a getScrollTarget() method that returns the row index that
was passed to the scrollTo() method.

Tip ■ the ScrollToEvent is not fired when the user scrolls using the vertical scrollbar. it is fired when the
scrollTo() method is used to scroll.

Chapter 14 ■ Understanding treeView

685

The following snippet of code sets a ScrollToEvent handler for a TreeView that prints the TreeItem and
its row index to which the scrolling was requested:

TreeView<String> treeView = new TreeView<String>();
...
treeView.setOnScrollTo(e -> {
 int rowIndex = e.getScrollTarget();
 TreeItem<String> item = treeView.getTreeItem(rowIndex);
 System.out.println("Scrolled to: " + item.getValue() + at " + rowIndex);
});

TreeView Selection Model
TreeView uses a selection model to select one or multiple TreeItems. The selectionModel property
represents the selection model. The default selection model is an instance of the abstract class
MultipleSelectionModel. The following snippet of code enables multiple selection. Press the Ctrl or Shift
key while clicking a node to select multiple nodes.

TreeView<String> treeView = new TreeView<>();;

// Enable mutiple selection for the TreeView
treeView.getSelectionModel().setSelectionMode(SelectionMode.MULTIPLE);

Please refer to the API documentation of the MultipleSelectionModel class for more details on how to
select TreeItems and how to get the selected TreeItems.

Styling TreeView with CSS
The default CSS style-class name for a TreeView is tree-view. TreeView does not add any CSS pseudo-classes
or properties. It inherits them from the Control.

A TreeView uses instances of TreeCell to display the TreeItems. Mostly you style the TreeCells in the
TreeView. The default CSS style-class for TreeCell is tree-cell.

TreeCell contains an -fx-indent property, which is the amount of space to multiply by the level of
the cell to get its left margin. The default value is 10px.

TreeCell supports two CSS pseudo-classes:

•	 expanded

•	 collapsed

The expanded pseudo-class is applied when the cell is expanded. The collapsed pseudo-class applies
when the cell is not expanded.

The following style sets the text color to blue and font size to 10pt for a TreeCell:

.tree-cell {
 -fx-text-fill: blue;
 -fx-font-size: 10pt;
}

Chapter 14 ■ Understanding treeView

686

The style-class name for the disclosure node in a cell is tree-disclosure-node. It has a substructure
named arrow, which is the triangle showing the expanded state of the node. You can change the triangle to
a plus or minus sign icon using the following styles. The code assumes that the image files are in the same
directory as the CSS file containing the styles:

.tree-cell .tree-disclosure-node .arrow {
 -fx-shape: null;
 -fx-background-color: null;
 -fx-background-image: url("plus_sign.jpg");
}

.tree-cell:expanded .tree-disclosure-node .arrow {
 -fx-shape: null;
 -fx-background-color: null;
 -fx-background-image: url("minus_sign.jpg");
}

You can also set the shape of the disclosure node in CSS using the SVG path. The following code sets
plus and minus signs as the disclosure nodes for expanded and collapsed nodes, respectively. Figure 14-5
shows a TreeView using these styles.

.tree-cell .tree-disclosure-node .arrow {
 -fx-shape: "M0 -0.5 h2 v2 h1 v-2 h2 v-1 h-2 v-2 h-1 v2 h-2 v1z";
}

.tree-cell:expanded .tree-disclosure-node .arrow {
 -fx-shape: "M0 -0.5 h5 v-1 h-5 v1z";
 -fx-padding: 4 0.25 4 0.25;
}

Figure 14-5. A TreeView using plus and minus signs for expanded and collapsed disclosure nodes

Chapter 14 ■ Understanding treeView

687

Summary
A TreeView is a control that displays hierarchical data in a tree-like structure. You can think of a TreeView as
displaying a tree upside down—the root of the tree being at the top. Each item in a TreeView is an instance of
the TreeItem class. TreeItems form parent-child relationships. A TreeItem is also referred to as a node. The
TreeItem class does not inherit from the Node class. Therefore, a TreeItem is not a JavaFX Node and it cannot
be added to a scene graph. A TreeItem is categorized as a branch or leaf node. If a TreeItem contains other
instances of TreeItem, which are called its children, it is called a branch node. Otherwise, it is called a leaf
node. A branch node can be in an expanded or collapsed state.

A TreeItem serves as the data model in a TreeView. Each TreeItem uses an instance of the TreeCell
class to render its value. TreeCells in a TreeView can be customized using a cell factory. By default, a
TreeCell is not editable.

TreeView is a virtualized control. It creates only as many instances of TreeCell as needed to display the
items for its current height. Cells are recycled as you scroll through items. Virtualization makes it possible
to use TreeView for viewing very large number of items without using a large amount of memory. Note,
however, that loading TreeItems always takes memory. Virtualization helps only in viewing the items by
recycling the cells used in viewing them.

The first item in a TreeView that does not have a parent is known as the root node. By default, the root
node is visible. Calling the setShowRoot(false) method of the TreeView hides the root node. Hiding the
root node makes traversing the TreeView a little easier because the user has one less level of indentation to
traverse. Hiding the root node shows its child nodes at the first level.

A TreeItem fires events as it is modified, for example, by adding or removing children or expanding or
collapsing. An instance of the TreeModificationEvent class, which is a static inner class of the TreeItem
class, represents all kinds of modification events.

Adding and removing TreeItems is as easy as adding or removing them in the children list of their
parents. The root node does not have a parent. To delete the root node, you need to set the root property of
the TreeView to null.

TreeView uses a TreeCell to render a TreeItem. A TreeCell is an IndexedCell. You can visualize
items in a TreeView from top to bottom arranged in rows. Each row has exactly one item. Each item is given
a row index. The first item, which is the root item, has an index of zero. The row indices are given only to
the visible items. TreeView contains a read-only expandedItemCount property that is the number of visible
items. Use the getExpandedItemCount() method to get the number of visible items. If a node above an item
is expanded or collapsed, the index of the item changes to reflect new visible items. The index of a TreeCell
in a TreeView and the row index of an item are the same. Use the getIndex() method of the TreeCell or the
getRow(TreeItem<T> item) method of the TreeView to get the row index of an item. A TreeCell is a Labeled
control. By default, it uses the following rules to render its TreeItem: If the value in the TreeItem is an instance
of the Node class, the value is displayed using the graphic property of the cell. Otherwise, the toString()
method of the value is called and the returned string is displayed using the text property of the cell.

A cell in a TreeView can be editable. An editable cell may switch between editing and nonediting mode.
In editing mode, cell data can be modified by the user. For a cell to enter editing mode, the TreeView must be
editable. TreeView has an editable property, which can be set to true using the setEditable(true) method.
By default, TreeView is not editable. Creating a TreeView does not let you edit its cells. Cell-editing capability
is provided through specialized implementations of the TreeCell class. The JavaFX library provides some
of these implementations. Set the cell factory for a TreeView, which is a Callback object, to use one of
the following implementations of the TreeCell to make cells in a TreeView editable: CheckBoxTreeCell,
ChoiceBoxTreeCell, ComboBoxTreeCell, or TextFieldTreeCell.

TreeView lets you load all items at once or items on demand. TreeView automatically provides vertical
and horizontal scrollbars when needed. TreeView uses a selection model to select one or multiple TreeItems.
The selectionModel property represents the selection model. TreeView supports styling using CSS.

The next chapter will discuss the control called TreeTableView.

689

Chapter 15

Understanding TreeTableView

In this chapter, you will learn:

What a •	 TreeTableView is

How to set up the model for a •	 TreeTableView

How to create a •	 TreeTableView, add columns to it, and populate it with data

How to sort data in a •	 TreeTableView

How to show and hide columns in a •	 TreeTableView

How to customize cells in a •	 TreeTableView

How to use the selection model of a •	 TreeTableView

How to edit data and add or delete rows in a •	 TreeTableView

If you are not already familiar with TableView and TreeView controls, I suggest you review that before
proceeding with this chapter.

What Is a TreeTableView ?
The TreeTableView control combines the features of the TableView and TreeView controls. It displays a
TreeView inside a TableView. A TreeView is used to view hierarchical data; a TableView is used to view
tabular data. A TreeTableView is used to view hierarchical data in a tabular form, as shown in Figure 15-1.

Chapter 15 ■ Understanding treetableView

690

TreeTableView inherits from Control, not from TreeView or TableView. TreeTableView reuses most
of the code used for TreeView and TableView. Most of the classes in the API are inherited from a common
abstract base class for all three controls. For example, the TableColumn and TreeTableColumn classes are
used to define columns in TableView and TreeTableView, respectively, and both are inherited from the
TableColumnBase class.

TreeTableView API looks huge as it combines the APIs for both TreeView and TableView. However, if
you are familiar with TreeView and TableView APIs, the TreeTableView API will look familiar to you. I will
not discuss all features of TreeTableView, as they will be a repetition of what I have already discussed for
TreeView and TableView. TreeTableView supports the following features:

You can add multiple columns.•	

You can have nested columns.•	

You can resize columns at runtime.•	

You can reorder columns at runtime.•	

You can sort data on a single or multiple columns.•	

You can add a context menu for columns.•	

You can set a •	 cell value factory for a column to populate its cells.

You can set a •	 cell factory for a column to customize its cells rendering.

You can edit data in cells.•	

Model for TreeTableView
TreeItems provide the model in a TreeView. Each node in the TreeView derives its data from the
corresponding TreeItem. Recall that you can visualize each node (or TreeItem) in a TreeView as a row with
only one column.

An ObservableList provides the model in a TableView. Each item in the observable list provides data
for a row in the TableView. A TableView can have multiple columns.

Figure 15-1. A TreeTableView showing family hierarchy with details

Chapter 15 ■ Understanding treetableView

691

TreeTableView also uses a model for its data. Because it is a combination of TreeView and TableView,
it has to decide which type of model it uses. It uses the model based on TreeView. That is, each row in a
TreeTableView is defined by a TreeItem in a TreeView. TreeTableView supports multiple columns. Data
for columns in a row are derived from the TreeItem for that row. Table 15-1 compares the model support for
the three controls.

Creating a TreeTableView
An instance of the TreeTableView represents a TreeTableView control. The class takes a generic type
argument, which is the type of the item contained in the TreeItems. Recall that TreeItems provide a model
for a TreeTableView. The generic type of the controls and its TreeItems are the same.

The TreeTableView class provides two constructors. The default constructor creates a TreeTableView
with no data. The following statement creates a TreeTableView of Person, which is shown in Figure 15-2.
The control displays a placeholder, similar to the one shown by TableView. Like a TableView, TreeTableView
contains a placeholder property, which is Node, and if you need to, you can supply your own placeholder:

// Create a TableView
TreeTableView<Person> treeTable = new TreeTableView<>();

An instance of the TreeTableColumn class represents a column in a TreeTableView. The getColumns()
method of the TreeTableView class returns an ObservableList of TreeTableColumns, which are columns
that are added to the TreeTableView. You need to add columns to this columns list. The following snippet of
code creates three columns and adds them to the TreeTableView. The resulting TreeTableView is shown in
Figure 15-3, which shows a placeholder stating that the content (or data/model) is missing.

// Create three columns
TreeTableColumn<Person, String> fNameCol = new TreeTableColumn<>("First Name");
TreeTableColumn<Person, String> lNameCol = new TreeTableColumn<>("Last Name");
TreeTableColumn<Person, String> bDateCol = new TreeTableColumn<>("Birth Date");

// Add columns to the TreeTableView
treeTable.getColumns().addAll(fNameCol, lNameCol, bDateCol);

Table 15-1. Comparing the Model Support for TreeView, TableView, and TreeTableView

TreeView TableView TreeTableView

Model TreeItems An ObservableList TreeItems

Row A TreeItem An item from the ObservableList A TreeItem

Column Only one column Multiple columns Multiple columns

Figure 15-2. A TreeTableView without a column and data

Chapter 15 ■ Understanding treetableView

692

Now you need to supply data for the control. TreeTableView displays hierarchical data in tabular form.
It requires you to construct a hierarchical model using TreeItems. You need to pass the root TreeItem to the
TreeTableView. Like a TreeView, a TreeTableView contains a root property, which is the root TreeItem for
the TreeView. The root property acts as a model for the TreeTableView to supply it data.

The following snippet of code creates a tree of some persons. The root TreeItem is set as the root of the
TreeTableView. The resulting TreeTableView is shown in Figure 15-4.

// Create TreeItems
Person ram = new Person("Ram", "Singh", LocalDate.of(1930, 1, 1));
Person janki = new Person("Janki", "Sharan", LocalDate.of(1956, 12, 17));
Person sita = new Person("Sita", "Sharan", LocalDate.of(1961, 3, 1));
TreeItem<Person> rootNode = new TreeItem<>(ram);
TreeItem<Person> jankiNode = new TreeItem<>(janki);
TreeItem<Person> sitaNode = new TreeItem<>(sita);

// Add children to the root node
rootNode.getChildren().addAll(jankiNode, sitaNode);

// Set the model for the TreeTableView
treeTable.setRoot(rootNode);

You have made progress! The placeholder has disappeared and you now see a disclosure node
(a triangle) in the first column. However, you still do not see any data. You have columns and model
(TreeItems). There is a missing link and the columns do not know how to extract data from the TreeItems.
This is accomplished by setting the cell value factory for each column. Setting the cell value factory for a

Figure 15-4. A TreeTableView with columns, root node, but without cell value factory

Figure 15-3. A TreeTableView with three columns, but no content

Chapter 15 ■ Understanding treetableView

693

TreeTableColumn is very similar to of the way you would for TableColumn. The following snippet of code sets
the cell value factory for columns:

// Set the cell value factory for columns
fNameCol.setCellValueFactory(new TreeItemPropertyValueFactory<>("firstName"));
lNameCol.setCellValueFactory(new TreeItemPropertyValueFactory<>("lastName"));
bDateCol.setCellValueFactory(new TreeItemPropertyValueFactory<>("birthDate"));

A TreeItemPropertyValueFactory reads the specified property of the object stored in the value
property of a TreeItem to populate the cells of the column. In the example, each TreeItem contains a Person
object. The resulting TreeTableView is shown in Figure 15-5, after you expand the root node in the first
column. The TreeTableView shows one row corresponding to each expanded TreeItem. If you collapse a
node, the rows for its children nodes are hidden.

Figure 15-5. A TreeTableView with data

Figure 15-6. A column other than the first column showing the disclosure node

If you ignore the disclosure node and indentations in the first column, this is exactly how a TableView
shows the data. The disclosure node and the indentations are features of the TreeView.

By default, a TreeTableView shows the disclosure node in the first column. You can show it in any other
column using the treeColumn property. The following snippet of code shows the disclosure node in the Last
Name column. The following snippet sets the treeColumn property to lNameCol, so the disclosure node is
shown in the Last Name column, as shown in Figure 15-6.

// Show the disclosure node in the Last Name column
treeTable.setTreeColumn(lNameCol);

Chapter 15 ■ Understanding treetableView

694

Another constructor of the TreeTableView class takes the value for its root property as an argument.
You can use it as follows:

TreeTableView<Person> treeTable = new TreeTableView<Person>(rootNode);

You will be using data for a family tree as the model for most of the examples in this chapter. Let’s use
the reusable code for creating the mode and columns in a TreeTableUtil class as shown in Listing 15-1.The
class consists of all static methods. The getModel() method constructs the family tree and returns the root
node of the tree. All other methods create a column, set the cell value factory for the column, and return the
column reference.

Listing 15-1. A Utility Class to Supply Model and Columns for a TreeTableView of Persons

// TreeTableUtil.java
package com.jdojo.control;

import com.jdojo.mvc.model.Person;
import java.time.LocalDate;
import javafx.scene.control.TreeTableColumn;
import javafx.scene.control.TreeItem;
import javafx.scene.control.cell.TreeItemPropertyValueFactory;

public class TreeTableUtil {
 /* Returns a root TreeItem for a family members */
 @SuppressWarnings("unchecked")
 public static TreeItem<Person> getModel() {
 /* Create all persons */
 // First level
 Person ram = new Person("Ram", "Singh", LocalDate.of(1930, 1, 1));

 // Second level
 Person janki = new Person("Janki", "Sharan", LocalDate.of(1956, 12, 17));
 Person sita = new Person("Sita", "Sharan", LocalDate.of(1961, 3, 1));
 Person kishori = new Person("Kishori", "Sharan", LocalDate.of(1968, 1, 12));
 Person ratna = new Person("Ratna", "Sharan", LocalDate.of(1978, 4, 14));

 // Third level
 Person navin = new Person("Navin", "Sharan", LocalDate.of(1980, 5, 10));
 Person vandana = new Person("Vandana", "Sharan", LocalDate.of(1981, 3, 20));
 Person neeraj = new Person("Neeraj", "Sharan", LocalDate.of(1982, 6, 3));

 Person gaurav = new Person("Gaurav", "Sharan", LocalDate.of(1990, 8, 27));
 Person saurav = new Person("Saurav", "Sharan", LocalDate.of(1994, 5, 15));

 // Fourth level
 Person palak = new Person("Palak", "Sharan", LocalDate.of(2010, 6, 3));
 Person ashwin = new Person("Ashwin", "Sharan", LocalDate.of(2012, 10, 11));
 Person advik = new Person("Advik", "Sharan", LocalDate.of(2012, 10, 11));

Chapter 15 ■ Understanding treetableView

695

 // Build nodes
 TreeItem<Person> navinNode = new TreeItem<>(navin);
 navinNode.getChildren().addAll(new TreeItem<>(ashwin), new TreeItem<>(advik));
 TreeItem<Person> vandanaNode = new TreeItem<>(vandana);
 vandanaNode.getChildren().addAll(new TreeItem<>(palak));

 TreeItem<Person> jankiNode = new TreeItem<>(janki);
 jankiNode.getChildren().addAll(navinNode, new TreeItem<>(neeraj),vandanaNode);

 TreeItem<Person> sitaNode = new TreeItem<>(sita);
 sitaNode.getChildren().addAll(new TreeItem<>(gaurav), new TreeItem<>(saurav));

 TreeItem<Person> kishoriNode = new TreeItem<>(kishori);
 TreeItem<Person> ratnaNode = new TreeItem<>(ratna);

 // Create the root node and add children
 TreeItem<Person> rootNode = new TreeItem<>(ram);
 rootNode.getChildren().addAll(jankiNode, sitaNode, kishoriNode, ratnaNode);
 return rootNode;
 }

 /* Returns Person Id TreeTableColumn */
 public static TreeTableColumn<Person, Integer> getIdColumn() {
 TreeTableColumn<Person, Integer> idCol = new TreeTableColumn<>("Id");
 idCol.setCellValueFactory(new TreeItemPropertyValueFactory<>("personId"));
 return idCol;
 }

 /* Returns First Name TreeTableColumn */
 public static TreeTableColumn<Person, String> getFirstNameColumn() {
 TreeTableColumn<Person, String> fNameCol = new TreeTableColumn<>("First Name");
 fNameCol.setCellValueFactory(new TreeItemPropertyValueFactory<>("firstName"));
 return fNameCol;
 }

 /* Returns Last Name TreeTableColumn */
 public static TreeTableColumn<Person, String> getLastNameColumn() {
 TreeTableColumn<Person, String> lNameCol = new TreeTableColumn<>("Last Name");
 lNameCol.setCellValueFactory(new TreeItemPropertyValueFactory<>("lastName"));
 return lNameCol;
 }

 /* Returns Birth Date TreeTableColumn */
 public static TreeTableColumn<Person, LocalDate> getBirthDateColumn() {
 TreeTableColumn<Person, LocalDate> bDateCol =
 new TreeTableColumn<>("Birth Date");
 bDateCol.setCellValueFactory(new TreeItemPropertyValueFactory<>("birthDate"));
 return bDateCol;
 }

Chapter 15 ■ Understanding treetableView

696

 /* Returns Age Category TreeTableColumn */
 public static TreeTableColumn<Person, Person.AgeCategory> getAgeCategoryColumn() {
 TreeTableColumn<Person, Person.AgeCategory> bDateCol =
 new TreeTableColumn<>("Age Category");
 bDateCol.setCellValueFactory(new TreeItemPropertyValueFactory<>("ageCategory"));
 return bDateCol;
 }
}

Listing 15-2 contains a complete program that shows how to create a TreeTableView. It uses the
TreeTableUtil class to get the model and columns. Run the program and play with sorting, reordering, and
resizing of the columns. Running the program results in a window as shown in Figure 15-7.

Listing 15-2. Using a TreeTableView

// TreeTableViewTest.java
package com.jdojo.control;

import com.jdojo.mvc.model.Person;
import javafx.application.Application;
import javafx.scene.Scene;
import javafx.scene.control.TreeItem;
import javafx.scene.control.TreeTableView;
import javafx.scene.layout.HBox;
import javafx.stage.Stage;

public class TreeTableViewTest extends Application {
 public static void main(String[] args) {
 Application.launch(args);
 }

 @Override
 @SuppressWarnings("unchecked")
 public void start(Stage stage) {
 TreeItem<Person> rootNode = TreeTableUtil.getModel();
 rootNode.setExpanded(true);

 // Create a TreeTableView with model
 TreeTableView<Person> treeTable = new TreeTableView<>(rootNode);
 treeTable.setPrefWidth(400);

 // Add columns
 treeTable.getColumns().addAll(TreeTableUtil.getFirstNameColumn(),
 TreeTableUtil.getLastNameColumn(),
 TreeTableUtil.getBirthDateColumn(),
 TreeTableUtil.getAgeCategoryColumn());

 HBox root = new HBox(treeTable);
 root.setStyle("-fx-padding: 10;" +
 "-fx-border-style: solid inside;" +
 "-fx-border-width: 2;" +

Chapter 15 ■ Understanding treetableView

697

 "-fx-border-insets: 5;" +
 "-fx-border-radius: 5;" +
 "-fx-border-color: blue;");

 Scene scene = new Scene(root);
 stage.setScene(scene);
 stage.setTitle("Using a TreeTableView");
 stage.show();
 }
}

Sorting Data in a TreeTableView
TreeTableView supports sorting the same way TableView supports sorting. Please refer to the sorting
section of Chapter 14 for more in-depth discussion on sorting data. Note that the model for a TreeTableView
is hierarchical. The hierarchy is always maintained whether or not the model is sorted. For example, the
root node is always sorted at the top, irrespective of the sorting criteria used. Sorting in a TreeTableView is
applied only to the immediate children of each branch node, thus maintaining the hierarchy.

Populating a TreeTableColumn with Data
The cellValueFactory property of the TreeTableColumn is responsible for populating cells in the column.
It is a Callback object. The call() method receives an object of the CellDataFeatures class, which is an inner
static class of the TreeTableColumn class, and returns an ObservableValue. The getValue() method of the
CellDataFeatures class returns the reference of the TreeItem for the row. The following snippet of code creates
an Age column and sets its cell value factory to compute the age in years of a Person using the birth date:

TreeTableColumn<Person, String> ageCol = new TreeTableColumn<>("Age");
ageCol.setCellValueFactory(cellData -> {
 Person p = cellData.getValue().getValue();
 LocalDate dob = p.getBirthDate();
 String ageInYear = "Unknown";

Figure 15-7. A TreeTableView with its root node expanded

Chapter 15 ■ Understanding treetableView

698

 if (dob != null) {
 long years = YEARS.between(dob, LocalDate.now());
 if (years == 0) {
 ageInYear = "< 1 year";
 } else if (years == 1) {
 ageInYear = years + " year";
 } else {
 ageInYear = years + " years";
 }
 }
 return new ReadOnlyStringWrapper(ageInYear);
});

In Listing 15-1, you learned how to use a TreeItemPropertyValueFactory object to set a cell value
factory if the values for a column come directly from a property of the TreeItem value. For an in-depth
discussion of setting the cell value factory, please refer to Chapter 13, which discusses the TableView control.

Showing and Hiding Columns
Showing and hiding columns in a TreeTableView work the same way they do for TableView. By default,
all columns in a TreeTableView are visible. The TreeTableColumn class has a visible property to set the
visibility of a column. If you turn off the visibility of a parent column, a column with nested columns, all its
nested columns will become invisible. The following code shows this:

TreeTableColumn<Person, String> idCol = new TreeTableColumn<>("Id");

// Make the Id column invisible
idCol.setVisible(false);
...
// Make the Id column visible
idCol.setVisible(true);

Sometimes you may want to let the user control the visibility of columns. The TreeTableView class has a
tableMenuButtonVisible property. If it is set to true, a menu button is displayed in the header area. Clicking
the Menu button displays a list of all leaf columns. Columns are displayed as radio menu items that can be
used to toggle their visibility.

Customizing Data Rendering in Cells
A cell in a TreeTableColumn is an instance of the TreeTableCell class, which displays the data in the cell.
A TreeTableCell is a Labeled control, which is capable of displaying text, a graphic, or both.

You can specify a cell factory for a TreeTableColumn. The job of a cell factory is to render the data in the
cell. The TreeTableColumn class contains a cellFactory property, which is a Callback object. Its call()
method is passed in the reference of the TreeTableColumn to which the cell belongs. The method returns an
instance of TreeTableCell. The updateItem() method of the TreeTableCell is overridden to provide the
custom rendering of the cell data.

TreeTableColumn uses a default cell factory if its cellFactory property is not specified. The default
cell factory displays the cell data depending on the type of the data. If the cell data is a Node, the data are
displayed in the graphic property of the cell. Otherwise, the toString() method of the cell data is called and
the retuned string is displayed in the text property of the cell.

Chapter 15 ■ Understanding treetableView

699

You can display formatted birth dates in the Birth Date column in the previous example. The Birth
Date column is formatted as yyyy-mm-dd, which is the default ISO date format returned by the toString()
method of the LocalDate class. You may want to format birth dates in the mm/dd/yyyy format. You can
achieve this by setting a custom cell factory for the column, as shown in the following code:

TreeTableColumn<Person, LocalDate> birthDateCol = TreeTableUtil.getBirthDateColumn();
birthDateCol.setCellFactory (col -> {
 TreeTableCell<Person, LocalDate> cell = new TreeTableCell<Person, LocalDate>() {
 @Override
 public void updateItem(LocalDate item, boolean empty) {
 super.updateItem(item, empty);

 // Cleanup the cell before populating it
 this.setText(null);
 this.setGraphic(null);

 if (!empty) {
 // Format the birth date in mm/dd/yyyy format
 String formattedDob =
 DateTimeFormatter.ofPattern("MM/dd/yyyy").format(item);
 this.setText(formattedDob);
 }
 }
 };
 return cell;
});

You can use the above technique to display images in cells. In the updateItem() method, create an
ImageView object for the image and display it using the setGraphic() method of the TreeTableCell.

TableCell contains tableColumn, tableRow, and tableView properties that store the references of its
TableColumn, TableRow, and TableView, respectively. These properties are useful to access the item in the
data model that represents the row for the TableCell.

TreeTableCell contains tableColumn, tableRow, and treeTableView properties that store the
references of its TreeTableColumn, TreeTableRow, and TreeTableView, respectively. These properties are
useful to access the item in the model that represents the row for the cell.

The following subclasses of TreeTableCell render cell data in different ways. For example, a
CheckBoxTreeTableCell renders cell data in a CheckBox and a ProgressBarTreeTableCell renders a
number using a ProgressBar:

•	 CheckBoxTreeTableCell

•	 ChoiceBoxTreeTableCell

•	 ComboBoxTreeTableCell

•	 ProgressBarTreeTableCell

•	 TextFieldTreeTableCell

The CheckBox, ChoiceBox, ComboBox, and TextField versions of the XxxTreeTableCell are used to edit
data in cells. I will discuss how to edit data in a TreeTableCell shortly.

Chapter 15 ■ Understanding treetableView

700

The following snippet of code creates a computed column. It sets the cell factory for the column to
display a CheckBox. If the Person falls in the baby age category, the CheckBox is selected.

// Create a "Baby?" column
TreeTableColumn<Person, Boolean> babyCol = new TreeTableColumn<>("Baby?");
babyCol.setCellValueFactory(cellData -> {
 Person p = cellData.getValue().getValue();
 Boolean v = (p.getAgeCategory() == Person.AgeCategory.BABY);
 return new ReadOnlyBooleanWrapper(v);
});

// Set a cell factory that will use a CheckBox to render the value
babyCol.setCellFactory(CheckBoxTreeTableCell.<Person>forTreeTableColumn(babyCol));

Selecting Cells and Rows in a TreeTableView
TreeTableView has a selection model represented by its property called selectionModel. A selection
model is an instance of the TreeTableViewSelectionModel class, which is an inner static class of the
TreeTableView class. The selection model supports cell-level and row-level selection. It also supports two
selection modes: single and multiple. In the single selection mode, only one cell or row can be selected at a
time. In the multiple-selection mode, multiple cells or rows can be selected. By default, single row selection
is enabled. You can enable multirow selection using the following code:

TreeTableView<Person> treeTable = ...

// Turn on multiple-selection mode for the TreeTableView
TreeTableViewSelectionModel<Person> tsm = treeTable.getSelectionModel();
tsm.setSelectionMode(SelectionMode.MULTIPLE);

The cell-level selection can be enabled by setting the cellSelectionEnabled property of the selection
model to true, as shown in the following snippet of code. When the property is set to true, the TreeTableView
is put in cell-level selection mode and you cannot select an entire row. If multiple-selection mode is
enabled, you can still select all cells in a row. However, the row itself is not reported as selected because the
TreeTableView is in the cell-level selection mode. By default, cell-level selection mode is false.

// Enable cell-level selection
tsm.setCellSelectionEnabled(true);

The selection model provides information about the selected cells and rows. The isSelected(int
rowIndex) method returns true if the row at the specified rowIndex is selected. Use the isSelected(int
rowIndex, TableColumn<S,?> column) method to determine if a cell at the specified rowIndex and column
is selected. The getModelItem(int rowIndex) method returns the TreeItem for the specified rowIndex.

The selection model provides several methods to select cells and rows and get the report of selected
cells and rows. Please refer to the API documentation for the TreeTableViewSelectionModel class for
more details.

It is often a requirement to make some changes or take an action when a cell or row selection changes
in a TreeTableView. For example, a TreeTableView may act as a master list in a master-detail data view.
When the user selects a row in the master list, you want the data in the detail view to refresh. Several
methods of the TreeTableViewSelectionModel class return an ObservableList of selected indices and
items. If you are interested in handling the selection change event, you need to add a ListChangeListener

Chapter 15 ■ Understanding treetableView

701

to one of those ObservableLists. The following snippet of code adds a ListChangeListener to the
ObservableList returned by the getSelectedIndices() method to track the row selection change in a
TreeTableView:

TreeTableViewSelectionModel<Person> tsm = treeTable.getSelectionModel();
ObservableList<Integer> list = tsm.getSelectedIndices();

// Add a ListChangeListener
list.addListener((ListChangeListener.Change<? extends Integer> change) -> {
 System.out.println("Row selection has changed");
});

Editing Data in a TableView
A cell in a TreeTableView can be editable. An editable cell switches between editing and nonediting
modes. In editing mode, cell data can be modified by the user. In order for a cell to enter editing mode, the
TreeTableView, TreeTableColumn, and TreeTableCell must be editable. All three of them have an editable
property, which can be set to true using the setEditable(true) method. By default, TreeTableColumn
and TreeTableCell are editable. To make cells editable in a TreeTableView, you need to make the
TreeTableView editable, as shown in the following code:

TreeTableView<Person> treeTable = ...
treeTable.setEditable(true);

The TreeTableColumn class supports three types of events:

•	 onEditStart

•	 onEditCommit

•	 onEditCancel

The onEditStart event is fired when a cell in the column enters editing mode. The onEditCommit
event is fired when the user successfully commits the editing, for example, by pressing the Enter key in a
TextField. The onEditCancel event is fired when the user cancels the editing, for example, by pressing the
Esc key in a TextField. The events are represented by an object of the TreeTableColumn.CellEditEvent
class. The event object encapsulates the old and new values in the cell, the TreeItem of the model being
edited, TreeTableColumn, the TreeTablePosition indicating the cell position where the editing is
happening, and the reference of the TreeTableView. Use the methods of the CellEditEvent class to get
these values.

Making a TreeTableView editable does not let you edit its cell data. You need to do a little more of
a plumbing job before you can edit data in cells. Cell editing capability is provided through specialized
implementations of the TreeTableCell class. JavaFX library provides a few of these implementations. Set the
cell factory for a column to use one of the following implementations of the TreeTableCell to edit cell data:

•	 CheckBoxTreeTableCell

•	 ChoiceBoxTreeTableCell

•	 ComboBoxTreeTableCell

•	 TextFieldTreeTableCell

Chapter 15 ■ Understanding treetableView

702

Now let’s look at an example of editing data using a TextField. Please refer to the corresponding
section for the TableView control for an in-depth discussion of editing data using various controls and
handling editing related events. The only difference between editing cells in TableView and TreeTableView
is the cell classes you will need to use: TableView uses subclasses of TableCell that are named as
XxxTableCell; TreeTableView uses subclasses of TreeTableCell that are named as XxxTreeTableCell.

The following snippet of code sets the cell factory for the First Name column to use a TextField to edit
data in its cells:

TreeTableColumn<Person, String> fNameCol = TreeTableUtil.getFirstNameColumn();
fNameCol.setCellFactory(TextFieldTreeTableCell.<Person>forTreeTableColumn());

When editing nonstring data in cell, you need to provide a StringConverter. The following snippet
of code sets a cell factory for a Birth Date column with a StringConverter, which converts a String to
a LocalDate and vice versa. The column type is LocalDate. By default, the LocalDateStringConverter
assumes a date format of mm/dd/yyyy:

TreeTableColumn<Person, LocalDate> birthDateCol = TreeTableUtil.getBirthDateColumn();
LocalDateStringConverter converter = new LocalDateStringConverter();
birthDateCol.setCellFactory(
 TextFieldTreeTableCell.<Person, LocalDate>forTreeTableColumn(converter));

The program in Listing 15-3 shows how to make cells in a TreeTableView editable. Run the program
and click a cell twice (using two single clicks) to start editing data. Figure 15-8 shows the First Name cell in
the third row in edit mode. When you are done editing, press the Enter key to commit the changes or press
the Esc key to cancel editing.

Listing 15-3. Editing Data in a TreeTableView

// TreeTableViewEditing.java
package com.jdojo.control;

import com.jdojo.mvc.model.Person;
import java.time.LocalDate;
import javafx.application.Application;
import javafx.scene.Scene;
import javafx.scene.control.TreeItem;
import javafx.scene.control.TreeTableColumn;
import javafx.scene.control.TreeTableView;
import javafx.scene.control.cell.TextFieldTreeTableCell;
import javafx.scene.layout.HBox;
import javafx.stage.Stage;

public class TreeTableViewEditing extends Application {
 public static void main(String[] args) {
 Application.launch(args);
 }

Chapter 15 ■ Understanding treetableView

703

 @Override
 @SuppressWarnings("unchecked")
 public void start(Stage stage) {
 // Create the model
 TreeItem<Person> rootNode = TreeTableUtil.getModel();
 rootNode.setExpanded(true);

 // Create a TreeTableView with a model
 TreeTableView<Person> treeTable = new TreeTableView<Person>(rootNode);
 treeTable.setPrefWidth(400);

 // Must make the TreeTableView editable
 treeTable.setEditable(true);

 // Set appropariate cell factories for
 TreeTableColumn<Person, String> fNameCol = TreeTableUtil.

getFirstNameColumn();
 fNameCol.setCellFactory(TextFieldTreeTableCell.<Person>forTreeTableColumn());

 TreeTableColumn<Person, String> lNameCol =
 TreeTableUtil.getLastNameColumn();
 lNameCol.setCellFactory(TextFieldTreeTableCell.<Person>forTreeTableColumn());

 TreeTableColumn<Person, LocalDate> birthDateCol =
 TreeTableUtil.getBirthDateColumn();
 LocalDateStringConverter converter = new LocalDateStringConverter();
 birthDateCol.setCellFactory(
 TextFieldTreeTableCell.<Person, LocalDate>forTreeTableColumn(converter));

 // Add Columns
 treeTable.getColumns().addAll(fNameCol, lNameCol, birthDateCol);

 HBox root = new HBox(treeTable);
 root.setStyle("-fx-padding: 10;" +
 "-fx-border-style: solid inside;" +
 "-fx-border-width: 2;" +
 "-fx-border-insets: 5;" +
 "-fx-border-radius: 5;" +
 "-fx-border-color: blue;");

 Scene scene = new Scene(root);
 stage.setScene(scene);
 stage.setTitle("Editing Data in a TreeTableView");
 stage.show();
 }
}

Chapter 15 ■ Understanding treetableView

704

Adding and Deleting Rows in a TableView
Each row in a TreeTableView is represented by a TreeItem in its model. Adding and deleting a row in a
TreeTableView is as simple as adding and deleting TreeItems in the model.

The program in Listing 15-4 shows how to add and delete rows. It displays a prebuilt family hierarchy
in a TreeTableView along with Add and Delete buttons, as shown in Figure 15-9. Clicking the Add button
adds a new row as a child row for the selected row. If there is no row, a new root item is added to the tree.
The new row is selected, scrolled to the view, and put in editing mode. The addRow() method contains the
logic for adding a row. The Delete button deletes the selected row. Notice that all child rows of the selected
row are deleted.

Listing 15-4. Adding and Deleting Rows in a TreeTableView

// TreeTableViewAddDeleteRows.java
package com.jdojo.control;

import com.jdojo.mvc.model.Person;
import javafx.application.Application;
import javafx.scene.Scene;
import javafx.scene.control.Button;
import javafx.scene.control.TreeItem;
import javafx.scene.control.TreeTableColumn;
import javafx.scene.control.TreeTableView;
import javafx.scene.control.cell.TextFieldTreeTableCell;
import javafx.scene.layout.HBox;
import javafx.scene.layout.VBox;
import java.time.LocalDate;
import static javafx.scene.control.TreeTableView.TreeTableViewSelectionModel;
import javafx.scene.control.Label;
import javafx.stage.Stage;

Figure 15-8. A cell in a TreeTableView in edit mode

Chapter 15 ■ Understanding treetableView

705

public class TreeTableViewAddDeleteRows extends Application {
 private final TreeTableView<Person> treeTable = new TreeTableView<>();

 public static void main(String[] args) {
 Application.launch(args);
 }

 @Override
 @SuppressWarnings("unchecked")
 public void start(Stage stage) {
 // Create the model
 TreeItem<Person> rootNode = TreeTableUtil.getModel();
 rootNode.setExpanded(true);
 treeTable.setRoot(rootNode);
 treeTable.setPrefWidth(400);
 treeTable.setEditable(true);
 treeTable.getSelectionModel().selectFirst();

 // Set appropariate cell factories for columns
 TreeTableColumn<Person, String> fNameCol = TreeTableUtil.getFirstNameColumn();
 fNameCol.setCellFactory(TextFieldTreeTableCell.<Person>forTreeTableColumn());

 TreeTableColumn<Person, String> lNameCol =
 TreeTableUtil.getLastNameColumn();
 lNameCol.setCellFactory(TextFieldTreeTableCell.<Person>forTreeTableColumn());

 TreeTableColumn<Person, LocalDate> birthDateCol =
 TreeTableUtil.getBirthDateColumn();
 LocalDateStringConverter converter = new LocalDateStringConverter();
 birthDateCol.setCellFactory(
 TextFieldTreeTableCell.<Person, LocalDate>forTreeTableColumn(converter));

 // Add Columns
 treeTable.getColumns().addAll(fNameCol, lNameCol, birthDateCol);

 // Add a placeholder to the TreeTableView.
 // It is displayed when the root node is deleted.
 treeTable.setPlaceholder(new Label("Click the Add button to add a row."));

 Label msgLbl = new Label("Please select a row to add/delete.");
 HBox buttons = this.getButtons();
 VBox root = new VBox(msgLbl, buttons, treeTable);
 root.setSpacing(10);
 root.setStyle("-fx-padding: 10;" +
 "-fx-border-style: solid inside;" +
 "-fx-border-width: 2;" +
 "-fx-border-insets: 5;" +
 "-fx-border-radius: 5;" +
 "-fx-border-color: blue;");

Chapter 15 ■ Understanding treetableView

706

 Scene scene = new Scene(root);
 stage.setScene(scene);
 stage.setTitle("Adding/Deleting Rows in a TreeTableView");
 stage.show();
 }

 private HBox getButtons() {
 Button addBtn = new Button("Add");
 addBtn.setOnAction(e -> addRow());

 Button deleteBtn = new Button("Delete");
 deleteBtn.setOnAction(e -> deleteRow());

 return new HBox(20, addBtn, deleteBtn);
 }

 private void addRow() {
 if (treeTable.getExpandedItemCount() == 0) {
 // There is no row in teh TreeTableView
 addNewRootItem();
 } else if (treeTable.getSelectionModel().isEmpty()) {
 System.out.println("Select a row to add.");
 return;
 } else {
 addNewChildItem();
 }
 }

 private void addNewRootItem() {
 // Add a root Item
 TreeItem<Person> item = new TreeItem<>(new Person("New", "New", null));
 treeTable.setRoot(item);

 // Edit the item
 this.editItem(item);
 }

 private void addNewChildItem() {
 // Prepare a new TreeItem with a new Person object
 TreeItem<Person> item = new TreeItem<>(new Person("New", "New", null));

 // Get the selection model
 TreeTableViewSelectionModel<Person> sm = treeTable.getSelectionModel();

 // Get the selected row index
 int rowIndex = sm.getSelectedIndex();

 // Get the selected TreeItem
 TreeItem<Person> selectedItem = sm.getModelItem(rowIndex);

Chapter 15 ■ Understanding treetableView

707

 // Add the new item as children to the selected item
 selectedItem.getChildren().add(item);

 // Make sure the new item is visible
 selectedItem.setExpanded(true);

 // Edit the item
 this.editItem(item);
 }

 private void editItem(TreeItem<Person> item) {
 // Scroll to the new item
 int newRowIndex = treeTable.getRow(item);
 treeTable.scrollTo(newRowIndex);

 // Put the first column in editing mode
 TreeTableColumn<Person, ?> firstCol = treeTable.getColumns().get(0);
 treeTable.getSelectionModel().select(item);
 treeTable.getFocusModel().focus(newRowIndex, firstCol);
 treeTable.edit(newRowIndex, firstCol);
 }

 private void deleteRow() {
 // Get the selection model
 TreeTableViewSelectionModel<Person> sm = treeTable.getSelectionModel();
 if (sm.isEmpty()) {
 System.out.println("Select a row to delete.");
 return;
 }

 int rowIndex = sm.getSelectedIndex();
 TreeItem<Person> selectedItem = sm.getModelItem(rowIndex);

 TreeItem<Person> parent = selectedItem.getParent();
 if (parent != null) {
 parent.getChildren().remove(selectedItem);
 } else {
 // Must be deleting the root item
 treeTable.setRoot(null);
 }
 }
}

Chapter 15 ■ Understanding treetableView

708

Scrolling in a TreeTableView
TreeTableView automatically provides vertical and horizontal scrollbars when rows or columns fall beyond
the available space. Users can use the scrollbars to scroll to a specific row or column. Sometimes you may
need to add programmatic support for scrolling. For example, when you append a row to a TreeTableView,
you may want to scroll the new row to the view. The TreeTableView class contains three methods that can be
used to scroll to a specific row or column:

•	 scrollTo(int rowIndex)

•	 scrollToColumn(TreeTableColumn<S,?> column)

•	 scrollToColumnIndex(int columnIndex)

The scrollTo() method scrolls the row with the specified rowIndex to the view. The scrollToColumn()
and scrollToColumnIndex() methods scroll to the specified column and columnIndex, respectively.

TreeTableView fires a ScrollToEvent when there is a request to scroll to a row or column using one
of the above-mentioned scrolling methods. The ScrollToEvent class contains a getScrollTarget()
method that returns the row index or the column reference, depending on the scroll type, as shown in the
following code:

TreeTableView<Person> treeTable = ...

// Add a ScrollToEvent for row scrolling
treeTable.setOnScrollTo(e -> {
 int rowIndex = e.getScrollTarget();
 System.out.println("Scrolled to row " + rowIndex);
});

Figure 15-9. A TreeTableView allowing users to add or delete rows

Chapter 15 ■ Understanding treetableView

709

// Add a ScrollToEvent for column scrolling
treeTable.setOnScrollToColumn(e -> {
 TreeTableColumn<Person, ?> column = e.getScrollTarget();
 System.out.println("Scrolled to column " + column.getText());
});

Tip ■ the ScrollToEvent is not fired when the user scrolls through the rows and columns. it is fired when
you call one of the scrolling-related methods of the TreeTableView class.

Styling TreeTableView with CSS
You can style a TreeTableView and all its parts, for example, column headers, cells, and placeholders.
Applying the CSS to TreeTableView is very complex and broad in scope. This section covers a brief overview
of CSS styling for TreeTableView. The default CSS style-class name for a TreeTableView is tree-table-view.
The default CSS style-class names for a cell, a row, and a column header are tree-table-cell, tree-table-row-cell,
and column-header, respectively. The following code shows how to set the font for cells and set the font size
and text color for column headers in a TreeTableView:

/* Set the font for the cells */
.tree-table-row-cell {
 -fx-font-size: 10pt;
 -fx-font-family: Arial;
}

/* Set the font size and text color for column headers */
.tree-table-view .column-header .label {
 -fx-font-size: 10pt;
 -fx-text-fill: blue;
}

TreeTableView supports the following CSS pseudo-classes:

•	 cell-selection

•	 row-selection

•	 constrained-resize

The cell-selection pseudo-class is applied when the cell-level selection is enabled, whereas the
row-selection pseudo-class is applied for row-level selection. The constrained-resize pseudo-class is
applied when the column resize policy is CONSTRAINED_RESIZE_POLICY.

Chapter 15 ■ Understanding treetableView

710

You can also set the shape of the disclosure node in CSS using the SVG path. The following styles set
plus and minus signs as the disclosure nodes for expanded and collapsed nodes, respectively:

tree-table-row-cell .tree-disclosure-node .arrow {
 -fx-shape: "M0 -0.5 h2 v2 h1 v-2 h2 v-1 h-2 v-2 h-1 v2 h-2 v1z";
}

.tree-table-row-cell:expanded .tree-disclosure-node .arrow {
 -fx-shape: "M0 -0.5 h5 v-1 h-5 v1z";
 -fx-padding: 4 0.25 4 0.25;
}

A TreeTableView contains all substructures of a TableView. Please refer to the discussion on styling a
TableView with CSS and Modena.css for more details.

Summary
The TreeTableView control combines the features of the TableView and TreeView controls. It displays a
TreeView inside a TableView. A TreeView is used to view hierarchical data. A TableView is used to view
tabular data. A TreeTableView is used to view hierarchical data in a tabular form. TreeTableView can be
thought of as a nested table or a drill-down table.

An instance of the TreeTableColumn class represents a column in a TreeTableView. The getColumns()
method of the TreeTableView class returns an ObservableList of TreeTableColumns, which are the
columns added to the TreeTableView. You need to add columns to this columns list.

TreeItems act as models in a TreeView. Each node in the TreeView derives its data from the
corresponding TreeItem. Recall that you can visualize each node (or TreeItem) in a TreeView as a row with
only one column. An ObservableList provides the model in a TableView. Each item in the observable list
provides data for a row in the TableView. A TableView can have multiple columns. TreeTableView also uses
models for its data. Because it is a combination of TreeView and TableView, it has to decide which type of
model it uses. It uses the model based on TreeView. That is, each row in a TreeTableView is defined by a
TreeItem in a TreeView. TreeTableView supports multiple columns. Data for columns in a row are derived
from the TreeItem for that row.

An instance of the TreeTableView represents a TreeTableView control. The class takes a generic type
argument, which is the type of the item contained in the TreeItems. Recall that TreeItems provide the model
for a TreeTableView. The generic type of the controls and its TreeItems are the same.

The TreeTableView class provides two constructors. The default constructor creates a TreeTableView
with no data. The control displays a placeholder, similar to the one shown by TableView. Like a TableView,
TreeTableView contains a placeholder property, which is Node, and if you need to, you can supply your own
placeholder. You can add columns and data to a TreeTableView. TreeTableView supports sorting the same
way TableView supports sorting.

Showing and hiding columns in a TreeTableView work the same way they do for TableView. By default,
all columns in a TreeTableView are visible. The TreeTableColumn class has a visible property to set the
visibility of a column. If you turn off the visibility of a parent column, a column with nested columns, all its
nested columns will be invisible.

TreeTableView lets you customize rendering of its cells, using different selection models for its cells and
rows. It also allows editing data in its cells and adding and deleting rows. You can also style TreeTableView
using CSS.

The next chapter will discuss how to use the WebView node to browse web pages.

711

Chapter 16

Browsing Web Pages

In this chapter, you will learn:

What •	 WebView is

What components are used with •	 WebView

How to create a web browser•	

How to access the browsing history•	

How to execute JavaScript code from JavaFX and vice versa•	

How to access the web page DOM•	

How to set User-Agent HTTP headers•	

How to set a user style for the web page and how to style •	 WebView with CSS

What Is a WebView ?
JavaFX provides a web component that can be used as an embedded web browser in a JavaFX application.
It is based on WebKit, which is an open source web browser engine. It supports:

Viewing HTML5 content with CSS and JavaScript•	

Access to the DOM of the HTML content•	

Browsing history maintenance•	

Executing JavaScript code from JavaFX and vice versa•	

The component handles most of the work of web browsing, for example, rendering the HTML content,
maintaining a history of the visited web pages, navigating to a URL when links are clicked, displaying pop-up
contents, among others. You would need to write code to handle other web-related features, for example,
displaying an alert, prompt, or confirmation dialog using JavaScript. I will discuss all of the features of this
component in this chapter.

The web browser component comprises a simple API consisting of a few classes in the javafx.scene.web
package:

•	 WebView

•	 WebEngine

•	 WebHistory

Chapter 16 ■ Browsing weB pages

712

•	 WebHistory.Entry

•	 WebEvent

•	 PopupFeatures

•	 PromptData

The WebView class inherits from the Parent class. It is a node, not a control. It is added to a scene graph
for viewing web pages using local or remote URLs. A WebView displays one web page at a time and it can be
styled using a CSS.

A WebView uses a WebEngine for the core processing of its content. A WebEngine manages one web page
at a time. The WebView handles user input events such as mouse and keyboard events and other tasks, for
example, loading the web page content, applying a CSS, and creating a DOM, that are performed by the
WebEngine. When using a WebView component, you will be working with its WebEngine most of the time.

A WebEngine maintains the browsing history of all visited web pages for a session in an instance of the
WebHistory class. An instance of the inner class WebHistory.Entry represents an entry in the browsing
history. An instance of the WebEvent class represents an event generated by a WebEngine while it processes
a web page. Examples of such events are a resized event that occurs when JavaScript running on a web page
resizes or moves the window, an alert event that occurs when JavaScript running on the web page calls the
window.alert() function, among others.

When JavaScript running on a web page opens a pop-up window, an instance of the PopupFeatures
class encapsulates the details of the pop-up window The WebEngine lets you register a pop-up handler to
handle the displaying of the pop-up window.

An instance of the PromptData class encapsulates the details of a prompt window (a message and an
initial value) displayed by JavaScript code using the window.prompt() function. The WebEngine lets you
register a prompt handler to handle the prompt. In the prompt handler, you can display a JavaFX dialog
window to prompt the user for input. Figure 16-1 shows the architecture of the web browser component.

Creating a Web Browser Component
An instance of the WebView class represents a web browser. The class contains only one constructor, which is
a no-args constructor:

WebView webView = new WebView();

Scene Graph

WebView
WebEngine

WebHistory

WebEvent

PromptData

WebHistory.Entry

PopupFeatures

Figure 16-1. Architecture of the web browser component

Chapter 16 ■ Browsing weB pages

713

The constructor of the WebView class creates a WebEngine automatically and you cannot change it.
The getEngine() method of the WebView class returns the reference of the WebEngine:

WebEngine webEngine = webView.getEngine();

A WebEngine can load content from a URL or a string in memory. You would use the load() method of
the WebEngine class to load content from a URL. The URL is specified as a String. It can be a local or remote
URL. You would use the reload() method of the WebEngine to reload the current page, as shown in the
following code:

// Load the Google web page
webEngine.load("http://www.google.com");

You would use one of the loadContent() methods to load the content from a String:

•	 loadContent(String content)

•	 loadContent(String content, String contentType)

Typically, this method is used when the content is retrieved from a database or the content is
constructed in memory. The first version assumes that the content type is “text/html”.

// Load HTML Content
String html = "<html><head><title>Test</title></head>" +
 "<body><h1>Hello from WebView</h1></body></html>";
webEngine.loadContent(html);

// Load text content
String text = "WebView can display text content!";
webEngine.loadContent(text, "text/plain");

Tip ■ the WebView component must be created in the JavaFX application thread. the load() and
loadContent() methods of the WebEngine must also be called on the JavaFX application thread. otherwise,
a runtime exception is thrown.

WebEngine loads a web page asynchronously in the background threads using a Worker object.
Submitting a request to load a web page before the previous request is fulfilled cancels the previous request.
You can find the reference of the Worker object loading the web page using the getLoadWorker() method.
You can observe the change in the state of the Worker by adding ChangeListener to its state property. The
following snippet of code sets the title of a successfully loaded web page as the title of the stage showing the
WebView:

import static javafx.concurrent.Worker.State;
...
Stage stage = ...
WebView webView = new WebView();
WebEngine webEngine = webView.getEngine();

Chapter 16 ■ Browsing weB pages

714

// Set the title of the stage the same as the title of the loaded web page
webEngine.getLoadWorker().stateProperty().addListener(
 (ObservableValue<? extends State> p, State oldState, State newState) -> {
 if (newState == State.SUCCEEDED) {
 stage.setTitle(webView.getEngine().getTitle());
 }
});

The WebEngine class contains a title property, which is updated at some point while a web page is
being loaded. You can achieve the same effect as above by listening to the change in the title property of
the WebEngine:

webEngine.titleProperty().addListener(
 (ObservableValue<? extends String> p, String oldTitle, String newTitle) -> {
 stage.setTitle(newTitle);
});

The program in Listing 16-1 shows how to use a WebView component. The program is simple and
uses the code that I have discussed so far. When you run the program, it opens the web page at
http://www.google.com. Search for a keyword and click the links in the search result to navigate to different
web pages. Notice that the title of the window changes as you navigate to different web pages. Navigating to
other web pages by clicking links is a built-in feature of WebView.

Listing 16-1. Using a WebView to Display a Web Page

// WebViewTest.java
package com.jdojo.web;

import javafx.application.Application;
import javafx.beans.value.ObservableValue;
import javafx.scene.Scene;
import javafx.scene.layout.VBox;
import javafx.scene.web.WebView;
import javafx.stage.Stage;
import javafx.scene.web.WebEngine;

public class WebViewTest extends Application {
 public static void main(String[] args) {
 Application.launch(args);
 }

 @Override
 public void start(Stage stage) {
 WebView webView = new WebView();
 WebEngine webEngine = webView.getEngine();

 // Update the stage title when a new web page title is available
 webEngine.titleProperty().addListener((ObservableValue<? extends String> p,
 String oldTitle, String newTitle) -> {
 stage.setTitle(newTitle);
 });

http://www.google.com/

Chapter 16 ■ Browsing weB pages

715

 // Load the Google web page
 webEngine.load("http://www.google.com");

 VBox root = new VBox(webView);
 Scene scene = new Scene(root);
 stage.setScene(scene);
 stage.show();
 }
}

Setting Properties for a WebView
The WebView component comes with some built-in features. By default, it displays a context menu. The
menu items in the context menu depend on the state of the component. For example, it shows a Go Back
menu item when you have navigated to pages other than the first page and shows a Stop Loading menu item
when the page is still being loaded. The standard text editing menu items (Cut, Copy, and Paste) are shown
when text is selected or focus is in a text-editing field. You can set the contextMenuEnabled property to false
to disable the context menu:

// Disable the context menu
webView.setContextMenuEnabled(false);

You can apply a scale factor for text using the fontScale property. It uses a double value number.
For example, to make the text font 10% larger, set it to 1.10, and to make the text font 40% smaller, set it to 0.60.
The default value is 1.0. Changing this property affects only the text in the web page, not images and other
fixed-size elements. The following code would increase the font by 20%:

// Increase the text font size by 20%
webView.setFontScale(1.20);

You can apply a zoom factor to the content in the WebView using the zoom property. It also uses a double
value number, as explained above. The default value is 1.0. Changing this property affects the entire content
in WebView. The following code would change the zoom by 20%:

// Zoom 20%
webView.setZoom(1.20);

You can specify font smoothing of GRAY or LCD for onscreen text. The default value is LCD. The GRAY
smoothing is suitable for graphics and animation. The LCD smoothing is suitable for small-sized text where
legibility is important. A request for LCD text is treated as a hint, which may be ignored. The fontSmoothingType
property specifies the font smoothing type. The property value is one of the constants (GRAY and LCD) of
the FontSmoothingType enum, which is in the javafx.scene.text package. The following code sets font
smoothing:

// Set font smoothing type to GRAY
webView.setFontSmoothingType(FontSmoothingType.GRAY);

The WebView class contains several other properties, which are related to setting its minimum,
preferred, and maximum width and height.

Chapter 16 ■ Browsing weB pages

716

Enhancing the Web Browser Application
In Listing 16-1, you had a very basic web browser. Let's enhance that browser to allow users to specify a URL
and set options at runtime. The program in Listing 16-2 creates a WebOptionsMenu class for setting options
for a WebView. It inherits from the MenuButton class. The constructor takes a WebView as an argument.
Figure 16-2 shows an instance of the Options button showing the menu for the options. The class is simple to
use; first create an instance for a WebView and add it to a layout pane:

WebView WebView = ...
MenuButton options = new WebOptionsMenu(webView);

Listing 16-2. Adding a MenuButton Containing Options for a WebView

// WebOptionsMenu.java
package com.jdojo.web;

import javafx.beans.property.SimpleStringProperty;
import javafx.scene.control.CheckMenuItem;
import javafx.scene.control.Menu;
import javafx.scene.control.MenuButton;
import javafx.scene.control.MenuItem;
import javafx.scene.control.RadioMenuItem;
import javafx.scene.control.SeparatorMenuItem;
import javafx.scene.control.ToggleGroup;
import javafx.scene.web.WebView;
import static javafx.scene.text.FontSmoothingType.GRAY;
import static javafx.scene.text.FontSmoothingType.LCD;

public class WebOptionsMenu extends MenuButton {
 public WebOptionsMenu(WebView webView) {
 this.setText("Options");

 // Enabled Context Menu option
 CheckMenuItem ctxMenu = new CheckMenuItem("Enable Context Menu");
 ctxMenu.setSelected(true);
 webView.contextMenuEnabledProperty().bind(ctxMenu.selectedProperty());

 // Font Scale options
 Menu scalingMenu = new Menu("Font Scale");
 scalingMenu.textProperty().bind(
 new SimpleStringProperty("Font Scale ")
 .concat(webView.fontScaleProperty().multiply(100.0))
 .concat("%"));
 MenuItem normalFontMenu = new MenuItem("Normal");
 MenuItem biggerFontMenu = new MenuItem("10% Bigger");
 MenuItem smallerFontMenu = new MenuItem("10% Smaller");
 normalFontMenu.setOnAction(e -> webView.setFontScale(1.0));
 biggerFontMenu.setOnAction(
 e -> webView.setFontScale(webView.getFontScale() + 0.10));

Chapter 16 ■ Browsing weB pages

717

 smallerFontMenu.setOnAction(
 e -> webView.setFontScale(webView.getFontScale() - 0.10));
 scalingMenu.getItems().addAll(normalFontMenu, biggerFontMenu, smallerFontMenu);

 // Font Smoothing options
 Menu smoothingMenu = new Menu("Font Smoothing");
 RadioMenuItem grayMenu = new RadioMenuItem("GRAY");
 grayMenu.setSelected(true);
 RadioMenuItem lcdMenu = new RadioMenuItem("LCD");
 grayMenu.setOnAction(e -> webView.setFontSmoothingType(GRAY));
 lcdMenu.setOnAction(e -> webView.setFontSmoothingType(LCD));
 new ToggleGroup().getToggles().addAll(lcdMenu, grayMenu);
 smoothingMenu.getItems().addAll(grayMenu, lcdMenu);

 // Zooming options
 Menu zoomMenu = new Menu("Zoom");
 zoomMenu.textProperty().bind(
 new SimpleStringProperty("Zoom ")
 .concat(webView.zoomProperty().multiply(100.0))
 .concat("%"));
 MenuItem normalZoomMenu = new MenuItem("Normal");
 MenuItem biggerZoomMenu = new MenuItem("10% Bigger");
 MenuItem smallerZoomMenu = new MenuItem("10% Smaller");
 normalZoomMenu.setOnAction(e -> webView.setZoom(1.0));
 biggerZoomMenu.setOnAction(e -> webView.setZoom(webView.getZoom() + 0.10));
 smallerZoomMenu.setOnAction(e -> webView.setZoom(webView.getZoom() - 0.10));
 zoomMenu.getItems().addAll(normalZoomMenu, biggerZoomMenu, smallerZoomMenu);

 // Enabled JavaScript option
 CheckMenuItem scriptMenu = new CheckMenuItem("Enable JavaScript");
 scriptMenu.setSelected(true);
 webView.getEngine().javaScriptEnabledProperty()
 .bind(scriptMenu.selectedProperty());

 // Add menus to the menu button
 this.getItems().addAll(ctxMenu, scalingMenu,
 smoothingMenu, zoomMenu, new SeparatorMenuItem(), scriptMenu);
 }
}

Chapter 16 ■ Browsing weB pages

718

Now let's create a reusable component for entering the URL of a new page. The code in Listing 16-3
creates a navigation bar, as shown in Figure 16-3. It boxes all the controls in an HBox. You need to pass the
WebView for which the navigation will work, a home page URL, and a flag to indicate whether you want to
navigate to the home page.

Listing 16-3. Adding a Navigation Bar with Navigation Options for a WebView

// NavigationBar.java
package com.jdojo.web;

import java.io.File;
import java.net.MalformedURLException;
import javafx.beans.value.ObservableValue;
import javafx.scene.control.Button;
import javafx.scene.control.Label;
import javafx.scene.control.TextField;
import javafx.scene.layout.Priority;
import javafx.scene.layout.HBox;
import javafx.scene.web.WebEngine;
import javafx.scene.web.WebView;

import javafx.stage.FileChooser;
import javafx.stage.FileChooser.ExtensionFilter;

public class NavigationBar extends HBox {
 private FileChooser fileChooser = new FileChooser();

 public NavigationBar(WebView webView, String homePageUrl, boolean goToHomePage) {
 this.setSpacing(4);
 this.setStyle("-fx-background-color: lightblue;-fx-padding: 5;");

 WebEngine webEngine = webView.getEngine();

Figure 16-2. A menu button showing options for a WebView

Chapter 16 ■ Browsing weB pages

719

 TextField pageUrl = new TextField();
 Button refreshBtn = new Button("Refresh");
 Button goBtn = new Button("Go");
 Button homeBtn = new Button("Home");
 Button openBtn = new Button("Open");

 // Let the TextField grow horizontallly
 HBox.setHgrow(pageUrl, Priority.ALWAYS);

 // Add an ActionListener to navigate to the entered URL
 pageUrl.setOnAction(e -> webEngine.load(pageUrl.getText()));

 // Update the URL in the TextField when user navigates to another page.
 // for example, by clicking a link on the page
 webEngine.locationProperty().addListener(
 (ObservableValue<? extends String> prop,
 String oldValue, String newValue) -> pageUrl.setText(newValue));

 // Add an ActionListener for the Refresh button
 refreshBtn.setOnAction(e -> webEngine.reload());

 // Add an ActionListener for the Go Button
 goBtn.setOnAction(e -> webEngine.load(pageUrl.getText()));

 // Add an ActionListener for the Home Button
 homeBtn.setOnAction(e -> webEngine.load(homePageUrl));

 // Configure the FileChooser
 fileChooser.setTitle("Open Web Content");
 fileChooser.getExtensionFilters()
 .addAll(new ExtensionFilter("HTML Files", "*.html", "*.htm"));

 // Add an ActionListener for the Open Button
 openBtn.setOnAction(e -> {
 File selectedFile = fileChooser.showOpenDialog(webView.getScene().

getWindow());
 if (selectedFile != null) {
 try {
 webEngine.load(
 selectedFile.toURI().toURL().toExternalForm());
 }
 catch(MalformedURLException e2) {
 e2.printStackTrace();
 }
 }
 });

Chapter 16 ■ Browsing weB pages

720

 this.getChildren().addAll(new Label("URL:"), pageUrl,
 goBtn, refreshBtn, homeBtn, openBtn);
 if (goToHomePage) {
 webEngine.load(homePageUrl);
 }
 }
}

The buttons on the navigation bar have the following functions:

Enter a URL and press the Enter key to open the page or enter a URL and click the Go •	
button to go to the page.

Click the Refresh button to reload the current page.•	

Click the Home button to go to the home page.•	

Click the Open button to open an HTML file from the local file system.•	

With the NavigationBar and WebOptionsMenu classes, you can develop a basic web browser writing a
few lines of code. The program in Listing 16-4 assembles the web browser components to build a basic web
browser. It displays a window, as shown in Figure 16-4, with a navigation bar, options, and a WebView. You
would use the navigation bar to open any local or remote web page. Later you will enhance this program to
show the browsing history and add Back and Forward buttons.

Listing 16-4. Developing a Basic Web Browser with a Navigation Bar and an Options Menu

// BasicWebBrowser.java
package com.jdojo.web;

import javafx.application.Application;
import javafx.beans.value.ObservableValue;
import javafx.scene.Scene;
import javafx.scene.control.MenuButton;
import javafx.scene.layout.VBox;
import javafx.scene.web.WebView;
import javafx.stage.Stage;

public class BasicWebBrowser extends Application {
 public static void main(String[] args) {
 Application.launch(args);
 }

 @Override
 public void start(Stage stage) {
 WebView webView = new WebView();

Figure 16-3. A web browser navigation bar

Chapter 16 ■ Browsing weB pages

721

 // Update the stage title when a new web page title is available
 webView.getEngine().titleProperty().addListener(
 (ObservableValue<? extends String> p, String oldTitle,
 String newTitle) -> stage.setTitle(newTitle));

 // Load the Google web page
 String homePageUrl = "http://www.google.com";

 MenuButton options = new WebOptionsMenu(webView);
 NavigationBar navBar = new NavigationBar(webView, homePageUrl, true);
 navBar.getChildren().add(options);

 VBox root = new VBox(navBar, webView);
 Scene scene = new Scene(root);
 stage.setScene(scene);
 stage.show();
 }
}

Figure 16-4. The window showing the basic web browser

Chapter 16 ■ Browsing weB pages

722

Accessing Browsing History
The WebEngine maintains the browsing history for a session. An instance of the WebHistory class represents
the browsing history, which maintains an observable list of visited web pages as instances of the inner class
WebHistory.Entry. You would use the getHistory() method of the WebEngine class to get its history object.
The getEntries() method of a WebHistory returns an ObservableList<Entry>. The entries in the list are
arranged from oldest to newest, that is, the first entry in the list is the page visited first.

An Entry provides the title, URL, and the last visited date of the visited page through its getTitle(),
getUrl(), and getLastVisitedDate() methods, respectively. The following snippet of code prints the
details of the browsing history of a WebEngine:

import javafx.scene.web.WebHistory;
import javafx.scene.web.WebHistory.Entry;
...
WebHistory history = webView.getEngine().getHistory();
ObservableList<Entry> entries = history.getEntries();
for(Entry entry : entries) {
 System.out.println("Title: " + entry.getTitle() +
 ", URL: " + entry.getUrl() +
 ", Last Visited: " + entry.getLastVisitedDate());
}

WebHistory has two properties:

•	 currentIndex

•	 maxSize

The currentIndex is a read-only int property that specifies the index of the current page in the list of
visited pages. It changes as you visit different pages. The maxSize property specifies how many visited pages
to keep in the history. The default is 100.

Tip ■ Browsing history is maintained only for the current session. when you exit the JavaFX application, you
lose the history. if you want to keep the history, you need to write code to save it to a file system or database.

The go(int offset) method of the WebHistory class navigates the WebEngine to the Entry object at
the (currentIndex + offset) location in the list of visited web pages. For example, go(-1) and go(1) have
the same effect as clicking the Back and Forward buttons, respectively, in a web browser. The go(0) call is
ignored. The offset value must be between zero and (size - 1), which is the size of the number of entries
in the WebHistory; otherwise, an IndexOutOfBoundsException is thrown. For example, if the currentIndex
property is zero, you should not call go(-1) because the current web page is the last one visited.

The program in Listing 16-5 creates a component that can be used to browse the browsing history of a
WebView. It creates a Back button, a Forward button, and a ComboBox to show the list of the titles of the visited
pages. Figure 16-5 shows the added component. You can add this component to the navigation bar you
developed in the previous section and you will then have a full browsing component for a WebView.
The following snippet of code shows how to add the history-related controls to the navigation bar.

Chapter 16 ■ Browsing weB pages

723

MenuButton options = new WebOptionsMenu(webView);
BrowserHistory historyComponent = new BrowserHistory(webView);
NavigationBar navBar = new NavigationBar(webView, homePageUrl, true);
navBar.getChildren().addAll(options, historyComponent);

Listing 16-5. Creating a Browsing History Navigation Component

// BrowserHistory.java
package com.jdojo.web;

import javafx.scene.control.Button;
import javafx.scene.control.ComboBox;
import javafx.scene.control.Label;
import javafx.scene.control.ListCell;
import javafx.scene.layout.HBox;
import javafx.scene.web.WebHistory;
import javafx.scene.web.WebHistory.Entry;
import javafx.scene.web.WebView;

public class BrowserHistory extends HBox {
 public BrowserHistory(WebView webView) {
 this.setSpacing(4);
 WebHistory history = webView.getEngine().getHistory();
 Button backBtn = new Button("Back");
 Button forwardBtn = new Button("Forward");
 backBtn.setDisable(true);
 forwardBtn.setDisable(true);

 // Add an ActionListener to the Back and Forward butons
 backBtn.setOnAction(e -> history.go(-1));
 forwardBtn.setOnAction(e -> history.go(1));

 // Add an ChangeListener to the currentIndex property
 // to enable/disable Back and Forard buttons
 history.currentIndexProperty().addListener((p, oldValue, newValue) -> {
 int currentIndex = newValue.intValue();
 if (currentIndex <= 0) {
 backBtn.setDisable(true);
 } else {
 backBtn.setDisable(false);
 }

 if (currentIndex >= history.getEntries().size()) {
 forwardBtn.setDisable(true);
 } else {
 forwardBtn.setDisable(false);
 }
 });

Chapter 16 ■ Browsing weB pages

724

 // Create the history list dropdown
 ComboBox<Entry> historyList = new ComboBox<>();
 historyList.setPrefWidth(150);
 historyList.setItems(history.getEntries());

 // Set a cell factory to to show only the page title in the history list
 historyList.setCellFactory(entry -> {
 ListCell<Entry> cell = new ListCell<Entry>() {
 @Override
 public void updateItem(Entry item, boolean empty) {
 super.updateItem(item, empty);
 if (empty) {
 this.setText(null);
 this.setGraphic(null);
 } else {
 String pageTitle = item.getTitle();
 this.setText(pageTitle);
 }
 }
 };
 return cell;
 });

 // Let the user navigate to a page using the history list
 historyList.setOnAction(e -> {
 int currentIndex = history.getCurrentIndex();
 Entry selectedEntry = historyList.getValue();
 int selectedIndex = historyList.getItems().indexOf(selectedEntry);
 int offset = selectedIndex - currentIndex;
 history.go(offset);
 });

 this.getChildren().addAll(backBtn, forwardBtn, new Label("History:"),

historyList);
 }
}

Figure 16-5. The added browsing history component

Chapter 16 ■ Browsing weB pages

725

Handling JavaScript UI Requests
JavaScript running on a web page may request user interface operations, for example, open a pop-up
window, change the status message, show an alert dialog, among others. For most of the requests, a
WebEngine does not perform any action. You need to add a Callback or an event handler to the WebEngine
for handling such operations. Table 16-1 shows the list of methods and properties of the window object in
JavaScript and the corresponding properties of the WebEngine.

Table 16-1. The JavaScript Operations on the window Object and the Corresponding WebEngine Handlers

JavaScript window Object
Method/Property

WebEngine Property Comments

alert() onAlert Use a WebEvent<String> handler to show the alert.

confirm() onConfirm Use a Callback to show the confirmation dialog.

open() createPopupHandler Shows the pop-up web page in the same
WebEngine. Use a Callback to show the pop-up
window in a different WebEngine or block the
pop-up.

open() and close() onVisibilityChanged Use a WebEvent<Boolean> handler to handle the
visibility change of the JavaScript window.

prompt() promptHandler Use a Callback to show the prompt dialog.

status onStatusChanged Use a WebEvent<String> handler to handle the
change in the status property.

innerWidth, innerHeight,

outerWidth, outerHeight,

screenX, screenY,

screenLeft, screenTop

onResized Use a WebEvent<Rectangle2D> handler to handle
the change in the any of these properties.

When a method of the JavaScript window object is called, the WebEngine does nothing, except when a
pop-up is shown using the window.open() method. The pop-up is displayed by the same WebEngine.
If the WebEngine is associated with a WebView, the same WebView will display the pop-up content. You can
set a Callback<PopupFeatures, WebEngine> object to the createPopupHandler property of the WebEngine
to handle the pop-up. The returned WebEngine loads the pop-up. Return null to block the pop-up. The
PopupFeatures object contains the details of the pop-up, for example, whether the pop-up has a menu, a
toolbar, or a status bar and whether it is resizable. You can use its hadMenu(), hasToolbar(), hasStatus(),
and isResizable() to display the details of the pop-up window. The following snippet of code sets a pop-up
handler to a WebEngine to display the pop-up in a new window. It ignores the pop-up properties:

WebView webView = ...

// Create a popup handler
Callback<PopupFeatures, WebEngine> popupHandler = pFeatures -> {
 // Show a popup in a new window
 Stage stage = new Stage();
 stage.setTitle("Popup");
 WebView poupView = new WebView();

Chapter 16 ■ Browsing weB pages

726

 VBox root = new VBox(poupView);
 Scene scene = new Scene(root);
 stage.setScene(scene);
 stage.show();
 return poupView.getEngine();
};

// Set the popup handler
webView.getEngine().setCreatePopupHandler(popupHandler);

The following snippet of code sets a pop-up handler that blocks all pop-ups:

webView.getEngine().setCreatePopupHandler(pFeatures -> null);

The following snippet of code adds an alert handler to show the alert in a dialog when the
window.alert(msg) JavaScript function is called. The getData() method of the WebEvent returns the
message passed to the window.alert(msg) function:

webView.getEngine().setOnAlert((WebEvent<String> e) -> {
 String alertMessage = e.getData();
 // Display a modal dialog to show the alertMessage ...
});

Listing 16-6 creates reusable JavaScript command handlers that you will use in developing the
advanced web browser.

Listing 16-6. A Factory to Create JavaScript Command Handlers

// JSHandlers.java
package com.jdojo.web;

import javafx.geometry.Pos;
import javafx.scene.Scene;
import javafx.scene.control.Button;
import javafx.scene.control.Label;
import javafx.scene.control.TextField;
import javafx.scene.layout.HBox;
import javafx.scene.layout.VBox;
import javafx.scene.web.PopupFeatures;
import javafx.scene.web.PromptData;
import javafx.scene.web.WebEngine;
import javafx.scene.web.WebEvent;
import javafx.scene.web.WebView;

import javafx.stage.Stage;
import javafx.util.Callback;

Chapter 16 ■ Browsing weB pages

727

public class JSHandlers {
 // Handles window.alert() call by displaying a dialog
 public static void alertHandler(WebEvent<String> e) {
 // Show an alert in a new window
 Stage stage = new Stage();
 stage.setTitle("Alert");

 Label msg = new Label(e.getData());
 Button okBtn = new Button("OK");
 okBtn.setOnAction(e2 -> stage.close());

 VBox root = new VBox(20, msg, okBtn);
 root.setAlignment(Pos.CENTER);
 Scene scene = new Scene(root);
 stage.setScene(scene);
 stage.showAndWait();
 }

 // Returns a Callback to handle window.prompt() call by displaying a dialog
 public static Callback<PromptData, String> getPromptHandler() {
 Callback<PromptData, String> handler = pData -> {
 // Show a window to accept the user input
 Stage stage = new Stage();
 stage.setTitle("Prompt");

 Label msgLbl = new Label(pData.getMessage());
 TextField dataFld = new TextField();
 dataFld.setText(pData.getDefaultValue());
 Button okBtn = new Button("OK");
 okBtn.setOnAction(e -> stage.close());

 VBox root = new VBox(20, msgLbl, dataFld, okBtn);
 root.setAlignment(Pos.CENTER);
 Scene scene = new Scene(root);
 stage.setScene(scene);
 stage.showAndWait();

 String userData = dataFld.getText();
 return userData;
 };

 return handler;
 }

 // Returns a Callback to handle window.open() call by displaying the popup
 // in a separate window using a separate WebEngine
 public static Callback<PopupFeatures, WebEngine> getPopupHandler() {
 Callback<PopupFeatures, WebEngine> handler = pFeatures -> {
 // Show a popup in a new window
 Stage stage = new Stage();
 stage.setTitle("Popup");

Chapter 16 ■ Browsing weB pages

728

 WebView poupView = new WebView();
 VBox root = new VBox(poupView);
 Scene scene = new Scene(root);
 stage.setScene(scene);
 stage.show();
 return poupView.getEngine();
 };

 return handler;
 }

 // Returns a Callback to handle window.confirm() call by displaying a dialog
 public static Callback<String, Boolean> getConfirmHandler() {
 Callback<String, Boolean> handler = msg -> {
 // Show a popup in a new window
 Stage stage = new Stage();
 stage.setTitle("Confirm");

 Label msgLbl = new Label(msg);
 Button okBtn = new Button("OK");
 okBtn.setOnAction(e -> {
 okBtn.getProperties().put("userPressed", true);
 stage.close();
 });

 Button cancelBtn = new Button("Cancel");
 cancelBtn.setOnAction(e -> stage.close());

 HBox buttons = new HBox(20, okBtn, cancelBtn);
 buttons.setAlignment(Pos.CENTER);

 VBox root = new VBox(20, msgLbl, buttons);
 Scene scene = new Scene(root);
 stage.setScene(scene);
 stage.showAndWait();

 Boolean userSelection = (Boolean)okBtn.getProperties()
 .get("userPressed");
 userSelection = (userSelection == null? false: true);
 return userSelection;
 };

 return handler;
 }
}

Now you can create a reusable complete web browser component using the code in Listing 16-7.
The class name is BrowserPane, which inherits from the BorderPane class. It adds a WebView in the center
region, a navigation bar in the top region, and a status bar in the bottom region. It also adds commonly used
JavaScript command handlers to the WebEngine associated with the WebView. Constructors allow you to
customize the component.

Chapter 16 ■ Browsing weB pages

729

Listing 16-7. A Web Browser Component

// BrowserPane.java
package com.jdojo.web;

import javafx.scene.control.Label;
import javafx.scene.control.MenuButton;
import javafx.scene.layout.BorderPane;
import javafx.scene.web.WebView;
import javafx.stage.Stage;
import javafx.stage.Window;

public class BrowserPane extends BorderPane {
 private static String DEFAULT_HOME_PAGE = "http://www.google.com";
 private WebView webView;

 public BrowserPane(Window ownerWindow) {
 this(null, ownerWindow);
 }

 public BrowserPane(String homePageUrl, Window ownerWindow) {
 this(homePageUrl, true, true, true, ownerWindow);
 }

 public BrowserPane(String homePageUrl,
 boolean enableNavigationBar,
 boolean enableStatusBar,
 boolean enableJSHandlers,
 Window ownerWindow) {

 // Create the WebView
 webView = new WebView();
 this.setCenter(webView);

 if (homePageUrl == null) {
 homePageUrl = DEFAULT_HOME_PAGE;
 }

 if (enableNavigationBar) {
 this.addNavigationBar(homePageUrl);
 }

 if (enableStatusBar) {
 this.addStatusBar();
 }

 if (enableJSHandlers) {
 this.addJSHandlers(ownerWindow);
 }
 }

Chapter 16 ■ Browsing weB pages

730

 private void addNavigationBar(String homePageUrl) {
 MenuButton options = new WebOptionsMenu(webView);
 BrowserHistory historyComponent = new BrowserHistory(webView);
 NavigationBar navBar = new NavigationBar(webView, homePageUrl, true);
 navBar.getChildren().addAll(options, historyComponent);
 this.setTop(navBar);
 }

 private void addStatusBar() {
 Label statusLbl = new Label();

 // Configure the status bar
 statusLbl.setStyle("-fx-background-color: lightgray;");
 statusLbl.prefWidthProperty().bind(webView.widthProperty());

 // If the Worker object reports a message, display it in the status bar
 webView.getEngine().getLoadWorker().messageProperty().addListener(
 (prop, oldMsg, newMsg) -> statusLbl.setText(newMsg));

 // Update the status bar when window.status proeprty changes
 webView.getEngine().setOnStatusChanged(
 e -> statusLbl.setText(e.getData()));

 this.setBottom(statusLbl);
 }

 private void addJSHandlers(Window ownerWindow) {
 webView.getEngine().setPromptHandler(JSHandlers.getPromptHandler());
 webView.getEngine().setCreatePopupHandler(JSHandlers.getPopupHandler());
 webView.getEngine().setOnAlert(JSHandlers::alertHandler);
 webView.getEngine().setConfirmHandler(JSHandlers.getConfirmHandler());
 if (ownerWindow instanceof Stage) {
 Stage stage = (Stage) ownerWindow;

 // Sync the title of the stage with the title of the loaded web page
 webView.getEngine().titleProperty().addListener(
 (prop, oldTitle, newTitle) -> stage.setTitle(newTitle));
 }
 }

 public WebView getWebView() {
 return webView;
 }
}

You will need an HTML page with some JavaScript code to test what you have covered in this section.
Listing 16-8 shows the HTML content of a jshandlers.html file. It displays an HTML page with some
buttons. Clicking the buttons executes the JavaScript commands.

Chapter 16 ■ Browsing weB pages

731

Listing 16-8. An HTML Page to Test JavaScript Command Handlers of the WebEngine

<!-- jshandlers.html -->
<html>
<head>
<title>Browsing Web Pages Using Jqva FX WebView</title>
<script type="text/javascript">
 function promptUser() {
 var userMsg = window.prompt("Please enter a message:","Your message");
 document.getElementById("prompt_msg").innerHTML= userMsg;
 }

 function showPopup() {
 window.open("http://www.oracle.com");
 }

 function showAlert() {
 window.alert("This is an alert!");
 }

 function showConfirm() {
 var userResponse = window.confirm("Are you sure you want to learn FX?");
 if (userResponse == true) {
 document.getElementById("confirm_msg").innerHTML = "You pressed OK.";
 }
 else {
 document.getElementById("confirm_msg").innerHTML =
 "You pressed Cancel.";
 }
 }
 </script>
</head>
<body>
 <h1>Using a WebView node to view webpages in JavaFX</h1>

 <p>Go to: Yahoo!
 Google
 Oracle

 Your message:
 <input type="button" name="prompt_btn" value="Enter a Message" onclick="promptUser()"/>

 <p>Let us try showing a confirmation window. <span id="confirm_msg"

style="color:red;">
 <input type="button" name="confirm_btn" value="Show a Confirmation Dialog"

onclick="showConfirm()"/>
 </p>

 <p>Let us try using a popup window.
 <input type="button" name="popup_btn" value="Show a Popup" onclick="showPopup()"/>
 </p>

Chapter 16 ■ Browsing weB pages

732

 <p>Let us try showing an alert.
 <input type="button" name="popup_btn" value="Show an Alert"

onclick="showAlert()"/>
 </p>

 <p>Let us try showing current date in the status bar
 <input type="button" name="status_btn" value="Show Current Date"

onclick="window.status=new Date()"/>
 </p>
</body>
</html>

You will need one more program to test what you have covered in this section. The program in Listing 16-9
shows how to open the jshandlers.html page in a WebView. If this page is not displayed, use the Open
button in the navigation bar to open the file, which is located in resources\html directory in the source
directory. Click each button on the page to test the JavaScript command handlers in JavaFX.

Listing 16-9. Testing JavaScript Command Handlers in the WebEngine

// JSCommandTest.java
package com.jdojo.web;

import java.net.URL;
import javafx.application.Application;
import javafx.scene.Scene;
import javafx.stage.Stage;

public class JSCommandTest extends Application {
 private final String DEFAULT_HOME_PAGE = "resources\\html\\jshandlers.html";
 public static void main(String[] args) {
 Application.launch(args);
 }

 @Override
 public void start(Stage stage) {
 String homePageUrl = getDefaultHomePageUrl();
 BrowserPane root = new BrowserPane(homePageUrl, stage);
 Scene scene = new Scene(root);
 stage.setScene(scene);
 stage.show();
 }

 public String getDefaultHomePageUrl() {
 String pageUrl = "http://www.google.com";
 URL url = this.getClass().getClassLoader()
 .getResource(DEFAULT_HOME_PAGE);
 if (url == null) {
 System.out.println(
 "Could not find " + DEFAULT_HOME_PAGE + " in CLASSPATH. " +
 "Using " + pageUrl + " as the default home page.");
 }

Chapter 16 ■ Browsing weB pages

733

 else {
 pageUrl = url.toExternalForm();
 }
 return pageUrl;
 }
}

Executing JavaScript Code from JavaFX
A WebEngine lets you execute JavaScript code from JavaFX using the executeScript() method. The method
takes the JavaScript code in a string as an argument and returns the results in an object. The method uses the
following rules to convert the results, which is a JavaScript value, to a Java object:

JavaScript •	 null is returned as Java null.

JavaScript •	 boolean is returned as Java Boolean.

JavaScript •	 Int32 is returned as Java Integer.

JavaScript numbers are returned as Java •	 Double.

JavaScript •	 string is returned as Java String.

JavaScript objects are returned as Java •	 netscape.javascript.JSObject.

JavaScript •	 JSNode objects are mapped to instances of the Java netscape.javascript.
JSObject class that implement the org.w3c.dom.Node interface. If the JavaScript result is
a JavaRuntimeObject, the original Java value is returned.

Listing 16-10 shows the content of an HTML page, which contains three JavaScript functions:

The •	 showTime() function displays the current local time.

The •	 startShowingTIme() function starts a timer to update the displayed time
every second.

The •	 stopShowingTime() function stops the timer and clears the displayed time.

The two functions to start and stop the timer will be called from JavaFX code.

Listing 16-10. The Contents of of an HTML Page with JavaScript Code

<!-- javafx_to_javascript.html -->
<html>
<head>
<title>JavaFX to JavaSCript</title>
 <script type="text/javascript">
 function showTime() {
 var currDt = new Date();
 var localTime = currDt.toLocaleTimeString();
 document.getElementById("current_time").innerHTML = localTime;
 }

Chapter 16 ■ Browsing weB pages

734

 function startShowingTime() {
 // Update the time every second
 var timerId = window.setInterval(showTime, 1000);
 return timerId;
 }

 function stopShowingTime(timerId) {
 window.clearInterval(timerId);
 document.getElementById("current_time").innerHTML = "";
 }
 </script>
</head>
<body>
 <h1>Executing JavaScript Code from JavaFX</h1>

 <p>Current Time: </p>
</body>
</html>

The program in Listing 16-11 shows how to execute JavaScript code from JavaFX. It displays a
window with two buttons and a web browser. The web browser should display the content of the
javafx_to_javascript.html file. If it does not, you need to open this file using the Open button. Clicking
the Start Showing Time button executes the startShowingTime() JavaScript function, which starts a timer
and shows the current time in the web page. The function returned a timer ID, which is an Integer. You
save the timer ID in an instance variable, so you can use it to stop the timer later. Clicking the Stop Showing
Time button executes the stopShowingTime() JavaScript function, which stops the timer and clears the
current time in the web page. If the web browser is not showing the correct HTML content, which has these
JavaScript functions, clicking the buttons logs an error message on the standard output.

Listing 16-11. A JavaFX Program Executing JavaScript Code

// JavaFXToJavaScript.java
package com.jdojo.web;

import java.net.URL;
import javafx.application.Application;
import javafx.scene.Scene;
import javafx.scene.control.Button;
import javafx.scene.layout.HBox;
import javafx.scene.layout.VBox;
import javafx.scene.web.WebEngine;
import javafx.stage.Stage;

public class JavaFXToJavaScript extends Application {
 private final String HOME_PAGE = "resources\\html\\javafx_to_javascript.html";
 private Integer jsTimerId = null;
 private WebEngine webEngine;

 public static void main(String[] args) {
 Application.launch(args);
 }

Chapter 16 ■ Browsing weB pages

735

 @Override
 public void start(Stage stage) {
 String homePageUrl = getHomePageUrl();
 BrowserPane browser = new BrowserPane(homePageUrl, stage);

 // Save the web engine reference to call JavaScript code later
 webEngine = browser.getWebView().getEngine();

 Button startTimeBtn = new Button("Start Showing Time");
 startTimeBtn.setOnAction(e -> startJSTimer());

 Button stopTimeBtn = new Button("Stop Showing Time");
 stopTimeBtn.setOnAction(e -> stopJSTimer());

 HBox buttons = new HBox(10, startTimeBtn, stopTimeBtn);
 VBox root = new VBox(10, buttons, browser);
 Scene scene = new Scene(root);
 stage.setScene(scene);
 stage.show();
 }

 public void startJSTimer() {
 try {
 jsTimerId = (Integer)webEngine.executeScript("startShowingTime()");
 }
 catch(Exception e) {
 System.out.println(e.getMessage());
 }
 }

 public void stopJSTimer() {
 if (jsTimerId != null) {
 String script = "stopShowingTime(" + jsTimerId + ")";
 webEngine.executeScript(script);
 jsTimerId = null;
 }
 }

 public String getHomePageUrl() {
 String pageUrl = null;
 URL url = this.getClass().getClassLoader().getResource(HOME_PAGE);
 if (url == null) {
 System.out.println("Could not find " + HOME_PAGE + " in CLASSPATH." +
 " Use the OPen button in the navigation bar to open it.");
 }
 else {
 pageUrl = url.toExternalForm();
 }
 return pageUrl;
 }
}

Chapter 16 ■ Browsing weB pages

736

The following snippet of code does the same job as the Back and Forward buttons in the browsing
history bar examples:

// Go back
webEngine.executeScript("history.back()");

// Go forward
webEngine.executeScript("history.forward()");

The following snippet of code calls the window.eval() JavaScript function to add two numbers:

Object sum = webEngine.executeScript("window.eval(10 + 20)");

Executing JavaFX Code from JavaScript
A WebEngine lets you execute JavaFX code from JavaScript. First, you need to make the JavaScript aware of
the JavaFX object whose public methods and properties need to be accessed from JavaScript. The following
snippet of code is an FXAdder class, which has an add() method to add two numbers:

public class FXAdder {
 public double add(double n1, double n2) {
 return n1 + n2;
 }
 }

The following snippet of code accesses the window JavaScript object. It sets a member named fxAdder
in the window object. The fxAdder object is an instance of the FXAdder class:

JSObject jsWindow = (JSObject)webEngine.executeScript("window");
jsWindow.setMember("fxAdder", new FXAdder());

Now, JavaScript can use window.fxAdder.add(n1, n2) to add two numbers. The call will execute the
add() method of the FXAdder class and return the sum of two numbers.

JavaFX has a bug that loses the members set in a JavaScript object if the member is set before the
document is loaded. To avoid that, you can replace the above code with the following code, which does the
same thing, but sets the member after the document has been loaded:

webEngine.getLoadWorker().stateProperty().addListener(
 (prop, oldState, newState) -> {
 if (newState == Worker.State.SUCCEEDED) {
 JSObject jsWindow = (JSObject)webEngine.executeScript("window");
 jsWindow.setMember("fxAdder", new FXAdder());
 }
});

Listing 16-12 has the web content that displays an HTML form to enter two numbers. When the Add
button is clicked, the addNumbers() JavaScript function is called, which in turn calls a JavaFX method to add
two numbers. The value returned from JavaFX is displayed in the Sum field:

Chapter 16 ■ Browsing weB pages

737

Listing 16-12. The Contents of a Web Page that Executes JavaFX Code

<!-- javascript_to_javafx.html -->
<html>
<head>
<title>JavaScript to JavaFX</title>
 <script type="text/javascript">
 function addNumbers() {
 var n1 = Number(document.adder_form.num1.value);
 var n2 = Number(document.adder_form.num2.value);

 // Call the JavaFX method to add two numbers
 var n3 = window.fxAdder.add(n1, n2);
 document.adder_form.sum.value = n3;
 }
 </script>
</head>
<body>
 <h1>Executing JavaScript Code from JavaFX</h1>
 Enter two numbers and click the Add button to add them.
 <form name="adder_form">
 Number-1: <input type="number" name="num1" value="20" />

 Number-2: <input type="number" name="num2" value="80" />

 Sum from JavaFX: <input type="number" name="sum" disabled />
 <input type="button" name="add_btn" value="Add" onClick="addNumbers();"/>
 </form>
</body>
</html>

The program in Listing 16-13 shows how to set up a Java object to the JavaScript window object as a
member, so its method can be called from JavaScript. It is set up to open the javascript_to_javafx.html
file, which is located in the resources\html directory. If this file is not loaded automatically, use the Open
button to load it. Add two numbers in the number fields and click the Add button. The JavaScript will call the
add() method of the FXAdder class and display the results.

The JSObject class is in the netscape.javascript package, which is not part of the standard Java
development library. It is part of the plugin.jar file, which is located in the JRE_HOME\lib directory. You
need to add the plugin.jar file to the CLASSPATH if you are compiling the program in Listing 16-13.

Listing 16-13. Executing JavaFX Code from JavaScript

// JavaScriptToJavaFX.java
package com.jdojo.web;

import java.net.URL;
import javafx.application.Application;
import javafx.concurrent.Worker;
import javafx.scene.Scene;
import javafx.scene.layout.VBox;
import javafx.scene.web.WebEngine;
import javafx.stage.Stage;
import netscape.javascript.JSObject; // Add plugin.jar to CLASSPATH

Chapter 16 ■ Browsing weB pages

738

public class JavaScriptToJavaFX extends Application {
 // An inner class
 public class FXAdder {
 public double add(double n1, double n2) {
 return n1 + n2;
 }
 }

 private String HOME_PAGE = "resources\\html\\javascript_to_javafx.html";

 public static void main(String[] args) {
 Application.launch(args);
 }

 @Override
 public void start(Stage stage) {
 String homePageUrl = getHomePageUrl();
 BrowserPane browser = new BrowserPane(homePageUrl, stage);

 VBox root = new VBox(browser);
 Scene scene = new Scene(root);
 stage.setScene(scene);
 stage.show();

 // Let JavaScript know about the FXAdder object
 WebEngine webEngine = browser.getWebView().getEngine();

 // Set the member for the window object after the document loads
 webEngine.getLoadWorker().stateProperty().addListener(
 (prop, oldState, newState) -> {
 if (newState == Worker.State.SUCCEEDED) {
 JSObject jsWindow =
 (JSObject)webEngine.executeScript("window");
 jsWindow.setMember("fxAdder", new FXAdder());
 }
 });
 }

 public String getHomePageUrl() {
 String pageUrl = null;
 URL url = this.getClass().getClassLoader().getResource(HOME_PAGE);
 if (url == null) {
 System.out.println("Could not find " + HOME_PAGE + " in CLASSPATH." +
 "Use the Open button in the navigation bar to open it.");
 }
 else {
 pageUrl = url.toExternalForm();
 }
 return pageUrl;
 }
}

Chapter 16 ■ Browsing weB pages

739

Accessing the DOM
The WebEngine creates a DOM of the web pages it loads. You can access the DOM through the read-only
document property of the WebEngine class. The property is an object of the class org.w3c.dom.Document or
null if the page fails to load. You can access and modify the DOM using the Java DOM API in the org.w3c.dom
package. The following snippet of code accesses the body element of the HTML page and sets its style to
change the background color of the page to light gray:

import org.w3c.dom.Document;
import org.w3c.dom.Element;
...
Document doc = webEngine.getDocument();
Element bodyElement = (Element)doc.getElementsByTagName("body").item(0);
bodyElement.setAttribute("style", "background-color: lightgray;");

Setting the User-Agent HTTP Header
An HTTP request identifies the client software making the request using a User-Agent header. All browsers
use a different User-Agent header to identify themselves uniquely. Sometimes you will generate specific
HTML content on the server depending on which browser has requested the content.

The WebEngine class contains a userAgent property, which defaults to a system-dependent value.
For example, the value of the userAgent property on Windows is:

Mozilla/5.0 (Windows NT 5.1) AppleWebKit/537.44 (KHTML, like Gecko) JavaFX/8.0 Safari/537.44

Typically, you will not need to change the User-Agent property for your browser. However, if you want to
identify your web browser differently, you can do so using the following code:

webEngine.setUserAgent("Who knows!!!");

Setting a User Style Sheet
A web browser can have style sheets defined at three levels:

Web browser•	

User•	

Author•	

The web content is styled using the styles specified by the author of the content. If the author does not
provide styles for some elements, the user-specified style sheets are looked up. If user style sheets are not
provided or they do not contain styles for the elements, the default styles are always provided by the web
browser. Therefore, the priorities of style sheets, from lowest to highest, are web browser, user, and author.

You can specify the location of a user style sheet using the userStyleSheetLocation property of the
WebEngine class. The location is specified in a String URL. The URL must be local using a file, data, or jar
protocol. The following snippet of code sets the location of the user style sheet on Windows using the file
protocol:

webEngine.setUserStyleSheetLocation("file://C:/mystyles.css");

Chapter 16 ■ Browsing weB pages

740

Styling a WebView with CSS
The default CSS style-class name for a WebView is web-view. Apart from size-related CSS properties, it has
three properties that can be set in CSS:

•	 -fx-context-menu-enabled

•	 -fx-font-smoothing-type

•	 -fx-font-scale

The -fx-context-menu-enabled property specifies whether the context menu is enabled. It is true by
default. The -fx-font-smoothing-type property specifies the font smoothing type, which could be gray or
lcd. The default is lcd. The -fx-font-scale property specifies the font scale, which is 1.0 by default.

The following style disables the context menu, sets the font smoothing type to gray, and sets the font
scale to 110%:

.web-view {
 -fx-context-menu-enabled: false;
 -fx-font-smoothing-type: gray;
 -fx-font-scale: 1.1;
}

Summary
JavaFX provides a web component that can be used as an embedded web browser in a JavaFX application.
It is based on WebKit, which is an open source web browser engine. The component handles most of the work
of web browsing, for example, rendering the HTML content, maintaining a history of the visited web pages,
navigating to a URL when links are clicked, displaying pop-up contents, among others. Code is written to handle
other web-related features, for example, displaying an alert, prompt, or confirmation dialog using JavaScript.

The web browser component comprises a simple API consisting of the following classes in the
javafx.scene.web package: WebView, WebEngine, WebHistory, WebHistory.Entry, WebEvent,
PopupFeatures, and PromptData.

The WebView class inherits from the Parent class. It is a node, not a control. It is added to a scene graph
for viewing web pages using local or remote URLs. A WebView displays one web page at a time and can be
styled using a CSS.

A WebView uses a WebEngine for core processing of its content. A WebEngine manages one web page at
a time. The WebView handles user input events such as mouse and keyboard events and other functions, for
example, loading the web page content, applying the CSS, and creating DOM, which are performed by the
WebEngine. When using a WebView component, you will be working with its WebEngine most of the time.

A WebEngine maintains the browsing history of all visited web pages for a session in an instance of the
WebHistory class. An instance of the inner class WebHistory.Entry represents an entry in the browsing
history. An instance of the WebEvent class represents an event generated by a WebEngine while it processes
a web page. Examples of such events are a resized event that occurs when JavaScript running on a web page
resizes or moves the window, an alert event that occurs when JavaScript running on the web page calls the
window.alert() function, among others.

When JavaScript running on a webpage opens a pop-up window, an instance of the PopupFeatures
class encapsulates the details of the pop-up window. The WebEngine lets you register a pop-up handler to
handle the displaying of the pop-up window.

An instance of the PromptData class encapsulates the details of a prompt window (a message and an
initial value) displayed by JavaScript code using the window.prompt() function. The WebEngine lets you
register a prompt handler to handle the prompt. In the prompt handler, you can display a JavaFX dialog
window to prompt the user for input.

The next chapter will discuss how to draw and style 2D shapes.

741

Chapter 17

Understanding 2D Shapes

In this chapter, you will learn:

What 2D shapes are and how they are represented in JavaFX•	

How to draw 2D shapes•	

How to draw complex shapes using the •	 Path class

How to draw shapes using the Scalable Vector Graphics (SVG)•	

How to combine shapes to build another shape•	

How to use strokes for a shape•	

How to style shapes using Cascading Style Sheets (CSS)•	

What Are 2D Shapes?
Any shape that can be drawn in a two-dimensional plane is called a 2D shape. JavaFX offers variety nodes to
draw different types of shapes (lines, circles, rectangles, etc.). You can add shapes to a scene graph.

Shapes can be two-dimensional or three-dimensional. In this chapter, I will discuss 2D shapes.
Chapter 19 discusses 3D shapes.

All shape classes are in the javafx.scene.shape package. Classes representing 2D shapes are inherited
from the abstract Shape class as shown in Figure 17-1.

Figure 17-1. A class diagram for classes representing 2D shapes

Chapter 17 ■ Understanding 2d shapes

742

A shape has a size and a position, which are defined by their properties. For example, the width and
height properties define the size of a rectangle; the radius property defines the size of a circle, the x and y
properties define the position of the upper-left corner of a rectangle, the centerX and centerY properties
define the center of a circle, etc.

Shapes are not resized by their parents during layout. The size of a shape changes only when its
size-related properties are changed. You may find a phrase like “JavaFX shapes are non-resizable.”
It means shapes are non-resizable by their parent during layout. They can be resized only by changing
their properties.

Shapes have an interior and a stroke. The properties for defining the interior and stroke of a shape are
declared in the Shape class. The fill property specifies the color to fill the interior of the shape. The default
fill is Color.BLACK. The stroke property specifies the color for the outline stroke, which is null by default,
except for Line, Polyline, and Path, which have Color.BLACK as the default stroke. The strokeWidth
property specifies the width of the outline, which is 1.0px by default. The Shape class contains other
stroke-related properties that I will discuss in the section “Understanding the Stroke of a Shape”.

The Shape class contains a smooth property, which is true by default. Its true value indicates that an
antialiasing hint should be used to render the shape. If it is set to false, the antialiasing hint will not be used,
which may result in the edges of shapes being not crisp.

The program in Listing 17-1 creates two circles. The first circle has a light gray fill and no stroke, which is
the default. The second circle has a yellow fill and a 2.0px wide black stroke. Figure 17-2 shows the two circles.

Listing 17-1. Using fill and stroke Properties of the Shape Class

// ShapeTest.java
package com.jdojo.shape;

import javafx.application.Application;
import javafx.scene.Scene;
import javafx.scene.layout.HBox;
import javafx.scene.paint.Color;
import javafx.scene.shape.Circle;
import javafx.stage.Stage;

public class ShapeTest extends Application {
 public static void main(String[] args) {
 Application.launch(args);
 }

 @Override
 public void start(Stage stage) {
 // Create a circle with a light gray fill and no stroke
 Circle c1 = new Circle(40, 40, 40);
 c1.setFill(Color.LIGHTGRAY);

 // Create a circle with an yellow fill and a black stroke of 2.0px
 Circle c2 = new Circle(40, 40, 40);
 c2.setFill(Color.YELLOW);
 c2.setStroke(Color.BLACK);
 c2.setStrokeWidth(2.0);

 HBox root = new HBox(c1, c2);
 root.setSpacing(10);
 root.setStyle("-fx-padding: 10;" +

Chapter 17 ■ Understanding 2d shapes

743

Figure 17-2. Two circles with different fills and strokes

 "-fx-border-style: solid inside;" +
 "-fx-border-width: 2;" +
 "-fx-border-insets: 5;" +
 "-fx-border-radius: 5;" +
 "-fx-border-color: blue;");

 Scene scene = new Scene(root);
 stage.setScene(scene);
 stage.setTitle("Using Shapes");
 stage.show();
 }
}

Drawing 2D Shapes
The following sections describe in detail how to use the JavaFX classes representing 2D shapes to draw
those shapes.

Drawing Lines
An instance of the Line class represents a line node. A Line has no interior. By default, its fill property is set
to null. Setting fill has no effects. The default stroke is Color.BLACK and the default strokeWidth is 1.0.
The Line class contains four double properties.

•	 startX

•	 startY

•	 endX

•	 endY

The Line represents a line segment between (startX, startY) and (endX, endY) points. The Line
class has a no-args constructor, which defaults all its four properties to zero resulting in a line from (0, 0) to
(0, 0), which represents a point. Another constructor takes values for startX, startY, endX, and endY. After
you create a Line, you can change its location and length by changing any of the four properties.

Chapter 17 ■ Understanding 2d shapes

744

The program in Listing 17-2 creates some Lines and sets their stroke and strokeWidth properties.
The first Line will appear as a point. Figure 17-3 shows the line.

Listing 17-2. Using the Line Class to Create Line Nodes

// LineTest.java
package com.jdojo.shape;

import javafx.application.Application;
import javafx.scene.Scene;
import javafx.scene.layout.HBox;
import javafx.scene.paint.Color;
import javafx.scene.shape.Line;
import javafx.stage.Stage;

public class LineTest extends Application {
 public static void main(String[] args) {
 Application.launch(args);
 }

 @Override
 public void start(Stage stage) {
 // It will be just a point at (0, 0)
 Line line1 = new Line();

 Line line2 = new Line(0, 0, 50, 0);
 line2.setStrokeWidth(1.0);

 Line line3 = new Line(0, 50, 50, 0);
 line3.setStrokeWidth(2.0);
 line3.setStroke(Color.RED);

 Line line4 = new Line(0, 0, 50, 50);
 line4.setStrokeWidth(5.0);
 line4.setStroke(Color.BLUE);

 HBox root = new HBox(line1, line2, line3, line4);
 root.setSpacing(10);
 root.setStyle("-fx-padding: 10;" +
 "-fx-border-style: solid inside;" +
 "-fx-border-width: 2;" +
 "-fx-border-insets: 5;" +
 "-fx-border-radius: 5;" +
 "-fx-border-color: blue;");

 Scene scene = new Scene(root);
 stage.setScene(scene);
 stage.setTitle("Using Lines");
 stage.show();
 }
}

Chapter 17 ■ Understanding 2d shapes

745

Figure 17-3. Using line nodes

Drawing Rectangles
An instance of the Rectangle class represents a rectangle node. The class uses six properties to define
the rectangle.

•	 x

•	 y

•	 width

•	 height

•	 arcWidth

•	 arcHeight

The x and y properties are the x and y coordinates of the upper-left corner of the rectangle in the local
coordinate system of the node. The width and height properties are the width and height of the rectangle,
respectively. Specify the same width and height to draw a square.

By default, the corners of a rectangle are sharp. A rectangle can have rounded corners by specifying
the arcWidth and arcHeight properties. You can think of one of the quadrants of an ellipse positioned
at the four corners to make them round. The arcWidth and arcHeight properties are the horizontal and
vertical diameters of the ellipse. By default, their values are zero, which makes a rectangle have sharp
corners. Figure 17-4 shows two rectangles—one with sharp corners and one with rounded corners.
The ellipse is shown to illustrate the relationship between the arcWidth and arcHeight properties for a
rounded rectangle.

arcHeight

A rectangle with
sharp corners

arcWidth

A rounded rectangle

Figure 17-4. Rectangles with sharp and rounded corners

Chapter 17 ■ Understanding 2d shapes

746

The Rectangle class contains several constructors. They take various properties as arguments. The
default values for x, y, width, height, arcWidth, and arcHeight properties are zero. The constructors are

•	 Rectangle()

•	 Rectangle(double width, double height)

•	 Rectangle(double x, double y, double width, double height)

•	 Rectangle(double width, double height, Paint fill)

You will not see effects of specifying the values for the x and y properties for a Rectangle when you add
it to most of the layout panes as they place their children at (0, 0). A Pane uses these properties. The program
in Listing 17-3 adds two rectangles to a Pane. The first rectangle uses the default values of zero for the x and y
properties. The second rectangle specifies 120 for the x property and 20 for the y property. Figure 17-5 shows
the positions of the two rectangles inside the Pane. Notice that the upper-left corner of the second rectangle
(on the right) is at (120, 20).

Listing 17-3. Using the Rectangle Class to Create Rectangle Nodes

// RectangleTest.java
package com.jdojo.shape;

import javafx.application.Application;
import javafx.scene.Scene;
import javafx.scene.layout.Pane;
import javafx.scene.paint.Color;
import javafx.scene.shape.Rectangle;
import javafx.stage.Stage;

public class RectangleTest extends Application {
 public static void main(String[] args) {
 Application.launch(args);
 }

 @Override
 public void start(Stage stage) {
 // x=0, y=0, width=100, height=50, fill=LIGHTGRAY, stroke=null
 Rectangle rect1 = new Rectangle(100, 50, Color.LIGHTGRAY);

 // x=120, y=20, width=100, height=50, fill=WHITE, stroke=BLACK
 Rectangle rect2 = new Rectangle(120, 20, 100, 50);
 rect2.setFill(Color.WHITE);
 rect2.setStroke(Color.BLACK);
 rect2.setArcWidth(10);
 rect2.setArcHeight(10);

 Pane root = new Pane();
 root.getChildren().addAll(rect1, rect2);
 Scene scene = new Scene(root);
 stage.setScene(scene);
 stage.setTitle("Using Rectangles");
 stage.show();
 }
}

Chapter 17 ■ Understanding 2d shapes

747

Figure 17-5. Rectangles inside a Pane, which uses the x and y properties to posiiton them

Drawing Circles
An instance of the Circle class represents a circle node. The class uses three properties to define the circle.

•	 centerX

•	 centerY

•	 radius

The centerX and centerY properties are the x and y coordinates of the center of the circle in the local
coordinate system of the node. The radius property is the radius of the circle. The default values for these
properties are zero.

The Circle class contains several constructors.

•	 Circle()

•	 Circle(double radius)

•	 Circle(double centerX, double centerY, double radius)

•	 Circle(double centerX, double centerY, double radius, Paint fill)

•	 Circle(double radius, Paint fill)

The program in Listing 17-4 adds two circles to an HBox. Notice that the HBox does not use centerX and
centerY properties of the circles. Add them to a Pane to see the effects. Figure 17-6 shows the two circles.

Listing 17-4. Using the Circle Class to Create Circle Nodes

// CircleTest.java
package com.jdojo.shape;

import javafx.application.Application;
import javafx.scene.Scene;
import javafx.scene.layout.HBox;
import javafx.scene.paint.Color;
import javafx.scene.shape.Circle;
import javafx.stage.Stage;

public class CircleTest extends Application {
 public static void main(String[] args) {
 Application.launch(args);
 }

Chapter 17 ■ Understanding 2d shapes

748

 @Override
 public void start(Stage stage) {
 // centerX=0, centerY=0, radius=40, fill=LIGHTGRAY, stroke=null
 Circle c1 = new Circle(0, 0, 40);
 c1.setFill(Color.LIGHTGRAY);

 // centerX=10, centerY=10, radius=40. fill=YELLOW, stroke=BLACK
 Circle c2 = new Circle(10, 10, 40, Color.YELLOW);
 c2.setStroke(Color.BLACK);
 c2.setStrokeWidth(2.0);

 HBox root = new HBox(c1, c2);
 root.setSpacing(10);
 root.setStyle("-fx-padding: 10;" +
 "-fx-border-style: solid inside;" +
 "-fx-border-width: 2;" +
 "-fx-border-insets: 5;" +
 "-fx-border-radius: 5;" +
 "-fx-border-color: blue;");

 Scene scene = new Scene(root);
 stage.setScene(scene);
 stage.setTitle("Using Circle");
 stage.show();
 }
}

Figure 17-6. Using circle nodes

Drawing Ellipses
An instance of the Ellipse class represents an ellipse node. The class uses four properties to define the ellipse.

•	 centerX

•	 centerY

•	 radiusX

•	 radiusY

Chapter 17 ■ Understanding 2d shapes

749

The centerX and centerY properties are the x and y coordinates of the center of the circle in the local
coordinate system of the node. The radiusX and radiusY are the radii of the ellipse in the horizontal and
vertical directions. The default values for these properties are zero. A circle is a special case of an ellipse
when radiusX and radiusY are the same.

The Ellipse class contains several constructors.

•	 Ellipse()

•	 Ellipse(double radiusX, double radiusY)

•	 Ellipse(double centerX, double centerY, double radiusX, double radiusY)

The program in Listing 17-5 creates three instances of the Ellipse class. The third instance draws a
circle as the program sets the same value for the radiusX and radiusY properties. Figure 17-7 shows the
three ellipses.

Listing 17-5. Using the Ellipse Class to Create Ellipse Nodes

// EllipseTest.java
package com.jdojo.shape;

import javafx.application.Application;
import javafx.scene.Scene;
import javafx.scene.layout.HBox;
import javafx.scene.paint.Color;
import javafx.scene.shape.Ellipse;
import javafx.stage.Stage;

public class EllipseTest extends Application {
 public static void main(String[] args) {
 Application.launch(args);
 }

 @Override
 public void start(Stage stage) {
 Ellipse e1 = new Ellipse(50, 30);
 e1.setFill(Color.LIGHTGRAY);

 Ellipse e2 = new Ellipse(60, 30);
 e2.setFill(Color.YELLOW);
 e2.setStroke(Color.BLACK);
 e2.setStrokeWidth(2.0);

 // Draw a circle using the Ellipse class (radiusX=radiusY=30)
 Ellipse e3 = new Ellipse(30, 30);
 e3.setFill(Color.YELLOW);
 e3.setStroke(Color.BLACK);
 e3.setStrokeWidth(2.0);

Chapter 17 ■ Understanding 2d shapes

750

 HBox root = new HBox(e1, e2, e3);
 root.setSpacing(10);
 root.setStyle("-fx-padding: 10;" +
 "-fx-border-style: solid inside;" +
 "-fx-border-width: 2;" +
 "-fx-border-insets: 5;" +
 "-fx-border-radius: 5;" +
 "-fx-border-color: blue;");

 Scene scene = new Scene(root);
 stage.setScene(scene);
 stage.setTitle("Using Ellipses");
 stage.show();
 }
}

Figure 17-7. Using ellipse nodes

Drawing Polygons
An instance of the Polygon class represents a polygon node. The class does not define any public properties.
It lets you draw a polygon using an array of (x, y) coordinates defining the vertices of the polygon. Using the
Polygon class, you can draw any type of geometric shape that is created using connected lines
(triangles, pentagons, hexagons, parallelograms, etc.).

The Polygon class contains two constructors.

•	 Polygon()

•	 Polygon(double... points)

The no-args constructor creates an empty polygon. You need add the (x, y) coordinates of the vertices
of the shape. The polygon will draw a line from the first vertex to the second vertex, from the second to the
third, and so on. Finally, the shape is closed by drawing a line from the last vertex to the first vertex.

The Polygon class stores the coordinates of the vertices in an ObservableList<Double>. You can get the
reference of the observable list using the getPoints() method. Notice that it stores the coordinates in a list
of Double, which is simply a number. It is your job to pass the numbers in pairs, so they can be used as (x, y)
coordinates of vertices. If you pass an odd number of numbers, no shape is created. The following snippet of
code creates two triangles—one passes the coordinates of the vertices in the constructor and another adds
them to the observable list later. Both triangles are geometrically the same.

Chapter 17 ■ Understanding 2d shapes

751

// Create an empty triangle and add vertices later
Polygon triangle1 = new Polygon();
triangle1.getPoints().addAll(50.0, 0.0,
 0.0, 100.0,
 100.0, 100.0);

// Create a triangle with vertices
Polygon triangle2 = new Polygon(50.0, 0.0,
 0.0, 100.0,
 100.0, 100.0);

The program in Listing 17-6 creates a triangle, a parallelogram, and a hexagon using the Polygon class
as shown in Figure 17-8.

Listing 17-6. Using the Polygon Class to Create a Triangle, a Parallelogram, and a Hexagon

// PolygonTest.java
package com.jdojo.shape;

import javafx.application.Application;
import javafx.scene.Scene;
import javafx.scene.layout.HBox;
import javafx.scene.paint.Color;
import javafx.scene.shape.Polygon;
import javafx.stage.Stage;

public class PolygonTest extends Application {
 public static void main(String[] args) {
 Application.launch(args);
 }

 @Override
 public void start(Stage stage) {
 Polygon triangle1 = new Polygon();
 triangle1.getPoints().addAll(50.0, 0.0,
 0.0, 50.0,
 100.0, 50.0);
 triangle1.setFill(Color.WHITE);
 triangle1.setStroke(Color.RED);

 Polygon parallelogram = new Polygon();
 parallelogram.getPoints().addAll(30.0, 0.0,
 130.0, 0.0,
 100.00, 50.0,
 0.0, 50.0);
 parallelogram.setFill(Color.YELLOW);
 parallelogram.setStroke(Color.BLACK);

Chapter 17 ■ Understanding 2d shapes

752

 Polygon hexagon = new Polygon(100.0, 0.0,
 120.0, 20.0,
 120.0, 40.0,
 100.0, 60.0,
 80.0, 40.0,
 80.0, 20.0);
 hexagon.setFill(Color.WHITE);
 hexagon.setStroke(Color.BLACK);

 HBox root = new HBox(triangle1, parallelogram, hexagon);
 root.setSpacing(10);
 root.setStyle("-fx-padding: 10;" +
 "-fx-border-style: solid inside;" +
 "-fx-border-width: 2;" +
 "-fx-border-insets: 5;" +
 "-fx-border-radius: 5;" +
 "-fx-border-color: blue;");

 Scene scene = new Scene(root);
 stage.setScene(scene);
 stage.setTitle("Using Polygons");
 stage.show();
 }
}

Figure 17-8. Using polygon nodes

Drawing Polylines
A polyline is similar to a polygon, except that it does not draw a line between the last and first points.
That is, a polyline is an open polygon. However, the fill color is used to fill the entire shape as if the shape
was closed.

An instance of the Polyline class represents a polyline node. The class does not define any public
properties. It lets you draw a polyline using an array of (x, y) coordinates defining the vertices of the polyline.
Using the Polyline class, you can draw any type of geometric shape that is created using connected lines
(triangles, pentagons, hexagons, parallelograms, etc.).

The Polyline class contains two constructors.

•	 Polyline()

•	 Polyline(double... points)

Chapter 17 ■ Understanding 2d shapes

753

The no-args constructor creates an empty polyline. You need add (x, y) coordinates of the vertices of the
shape. The polygon will draw a line from the first vertex to the second vertex, from the second to the third,
and so on. Unlike a Polygon, the shape is not closed automatically. If you want to close the shape, you need
to add the coordinates of the first vertex as the last pair of numbers.

If you want to add coordinates of vertices later, add them to the ObservableList<Double> returned by
the getPoints() method of the Polyline class. The following snippet of code creates two triangles with the
same geometrical properties using different methods. Notice that the first and the last pairs of numbers
are the same in order to close the triangle.

// Create an empty triangle and add vertices later
Polygon triangle1 = new Polygon();
triangle1.getPoints().addAll(50.0, 0.0,
 0.0, 100.0,
 100.0, 100.0,
 50.0, 0.0);

// Create a triangle with vertices
Polygon triangle2 = new Polygon(50.0, 0.0,
 0.0, 100.0,
 100.0, 100.0,
 50.0, 0.0);

The program in Listing 17-7 creates a triangle, an open parallelogram, and a hexagon using the
Polyline class as shown in Figure 17-9.

Listing 17-7. Using the Polyline Class to Create a Triangle, an Open Parallelogram, and a Hexagon

// PolylineTest.java
package com.jdojo.shape;

import javafx.application.Application;
import javafx.scene.Scene;
import javafx.scene.layout.HBox;
import javafx.scene.paint.Color;
import javafx.scene.shape.Polyline;
import javafx.stage.Stage;

public class PolylineTest extends Application {
 public static void main(String[] args) {
 Application.launch(args);
 }

 @Override
 public void start(Stage stage) {
 Polyline triangle1 = new Polyline();
 triangle1.getPoints().addAll(50.0, 0.0,
 0.0, 50.0,
 100.0, 50.0,
 50.0, 0.0);
 triangle1.setFill(Color.WHITE);
 triangle1.setStroke(Color.RED);

Chapter 17 ■ Understanding 2d shapes

754

 // Create an open parallelogram
 Polyline parallelogram = new Polyline();
 parallelogram.getPoints().addAll(30.0, 0.0,
 130.0, 0.0,
 100.00, 50.0,
 0.0, 50.0);
 parallelogram.setFill(Color.YELLOW);
 parallelogram.setStroke(Color.BLACK);

 Polyline hexagon = new Polyline(100.0, 0.0,
 120.0, 20.0,
 120.0, 40.0,
 100.0, 60.0,
 80.0, 40.0,
 80.0, 20.0,
 100.0, 0.0);
 hexagon.setFill(Color.WHITE);
 hexagon.setStroke(Color.BLACK);

 HBox root = new HBox(triangle1, parallelogram, hexagon);
 root.setSpacing(10);
 root.setStyle("-fx-padding: 10;" +
 "-fx-border-style: solid inside;" +
 "-fx-border-width: 2;" +
 "-fx-border-insets: 5;" +
 "-fx-border-radius: 5;" +
 "-fx-border-color: blue;");

 Scene scene = new Scene(root);
 stage.setScene(scene);
 stage.setTitle("Using Polylines");
 stage.show();
 }
}

Figure 17-9. Using polyline nodes

Chapter 17 ■ Understanding 2d shapes

755

The type property specifies the way the Arc is closed. It is one of the constants, OPEN, CHORD, and ROUND,
defined in the ArcType enum.

The •	 ArcType.OPEN does not close the arc.

The •	 ArcType.CHORD closes the arc by joining the starting and ending points by a
straight line.

The •	 ArcType.ROUND closes the arc by joining the starting and ending point to the
center of the ellipse.

Figure 17-11 shows the three closure types for an arc. The default type for an Arc is ArcType.OPEN. If you
do not apply a stroke to an Arc, both ArcType.OPEN and ArcType.CHORD look the same.

Drawing Arcs
An instance of the Arc class represents a sector of an ellipse. The class uses seven properties to define
the ellipse.

•	 centerX

•	 centerY

•	 radiusX

•	 radiusY

•	 startAngle

•	 length

•	 type

The first four properties define an ellipse. Please refer to the section “Drawing Ellipses” for how to
define an ellipse. The last three properties define a sector of the ellipse that is the Arc node. The startAngle
property specifies the start angle of the section in degrees measured counterclockwise from the positive
x-axis. It defines the beginning of the arc. The length is an angle in degrees measured counterclockwise
from the start angle to define the end of the sector. If the length property is set to 360, the Arc is a full ellipse.
Figure 17-10 illustrates the properties.

(centerX, centerY)

radiusY

startAngle

length

Arc stroke

radiusX

Figure 17-10. Properties defining an Arc

Chapter 17 ■ Understanding 2d shapes

756

The Arc class contains two constructors:

•	 Arc()

•	 Arc(double centerX, double centerY, double radiusX, double radiusY,
double startAngle, double length)

The program in Listing 17-8 shows how to create Arc nodes. The resulting window is shown in
Figure 17-12.

Listing 17-8. Using the Arc Class to Create Arcs, Which Are Sectors of Ellipses

// ArcTest.java
package com.jdojo.shape;

import javafx.application.Application;
import javafx.scene.Scene;
import javafx.scene.layout.HBox;
import javafx.scene.paint.Color;
import javafx.scene.shape.Arc;
import javafx.scene.shape.ArcType;
import javafx.stage.Stage;

public class ArcTest extends Application {
 public static void main(String[] args) {
 Application.launch(args);
 }

 @Override
 public void start(Stage stage) {
 // An OPEN arc with a fill
 Arc arc1 = new Arc(0, 0, 50, 100, 0, 90);
 arc1.setFill(Color.LIGHTGRAY);

 // An OPEN arc with no fill and a stroke
 Arc arc2 = new Arc(0, 0, 50, 100, 0, 90);
 arc2.setFill(Color.TRANSPARENT);
 arc2.setStroke(Color.BLACK);

 // A CHORD arc with no fill and a stroke
 Arc arc3 = new Arc(0, 0, 50, 100, 0, 90);
 arc3.setFill(Color.TRANSPARENT);
 arc3.setStroke(Color.BLACK);
 arc3.setType(ArcType.CHORD);

 OPEN CHORD ROUND

Figure 17-11. Closure types of an arc

Chapter 17 ■ Understanding 2d shapes

757

 // A ROUND arc with no fill and a stroke
 Arc arc4 = new Arc(0, 0, 50, 100, 0, 90);
 arc4.setFill(Color.TRANSPARENT);
 arc4.setStroke(Color.BLACK);
 arc4.setType(ArcType.ROUND);

 // A ROUND arc with a gray fill and a stroke
 Arc arc5 = new Arc(0, 0, 50, 100, 0, 90);
 arc5.setFill(Color.GRAY);
 arc5.setStroke(Color.BLACK);
 arc5.setType(ArcType.ROUND);

 HBox root = new HBox(arc1, arc2, arc3, arc4, arc5);
 root.setSpacing(10);
 root.setStyle("-fx-padding: 10;" +
 "-fx-border-style: solid inside;" +
 "-fx-border-width: 2;" +
 "-fx-border-insets: 5;" +
 "-fx-border-radius: 5;" +
 "-fx-border-color: blue;");

 Scene scene = new Scene(root);
 stage.setScene(scene);
 stage.setTitle("Using Arcs");
 stage.show();
 }
}

Figure 17-12. Using Arc nodes

Drawing Quadratic Curves
Bezier curves are used in computer graphics to draw smooth curves. An instance of the QuadCurve class
represents a quadratic Bezier curve segment intersecting two specified points using a specified Bezier
control point. The QuadCurve class contains six properties to specify the three points.

•	 startX

•	 startY

•	 controlX

Chapter 17 ■ Understanding 2d shapes

758

•	 controlY

•	 endX

•	 endY

The QuadCurve class contains two constructors.

•	 QuadCurve()

•	 QuadCurve(double startX, double startY, double controlX, double
controlY, double endX, double endY)

The program in Listing 17-9 draws the same quadratic Bezier curve twice—once with a stroke and a
transparent fill and once with no stroke and a light gray fill. Figure 17-13 shows the two curves.

Listing 17-9. Using the QuadCurve Class to Draw Quadratic BezierCurve

// QuadCurveTest.java
package com.jdojo.shape;

import javafx.application.Application;
import javafx.scene.Scene;
import javafx.scene.layout.HBox;
import javafx.scene.paint.Color;
import javafx.scene.shape.QuadCurve;
import javafx.stage.Stage;

public class QuadCurveTest extends Application {
 public static void main(String[] args) {
 Application.launch(args);
 }

 @Override
 public void start(Stage stage) {
 QuadCurve qc1 = new QuadCurve(0, 100, 20, 0, 150, 100);
 qc1.setFill(Color.TRANSPARENT);
 qc1.setStroke(Color.BLACK);

 QuadCurve qc2 = new QuadCurve(0, 100, 20, 0, 150, 100);
 qc2.setFill(Color.LIGHTGRAY);

 HBox root = new HBox(qc1, qc2);
 root.setSpacing(10);
 root.setStyle("-fx-padding: 10;" +
 "-fx-border-style: solid inside;" +
 "-fx-border-width: 2;" +
 "-fx-border-insets: 5;" +
 "-fx-border-radius: 5;" +
 "-fx-border-color: blue;");

Chapter 17 ■ Understanding 2d shapes

759

 Scene scene = new Scene(root);
 stage.setScene(scene);
 stage.setTitle("Using QuadCurves");
 stage.show();
 }
}

Figure 17-13. Using quadratic Bezier curves

Drawing Cubic Curves
An instance of the CubicCurve class represents a cubic Bezier curve segment intersecting two
specified points using two specified Bezier control points. Please refer to the Wikipedia article at
http://en.wikipedia.org/wiki/Bezier_curves for a detailed explanation and demonstration of Bezier
curves. The CubicCurve class contains eight properties to specify the four points.

•	 startX

•	 startY

•	 controlX1

•	 controlY1

•	 controlX2

•	 controlY2

•	 endX

•	 endY

The CubicCurve class contains two constructors.

•	 CubicCurve()

•	 CubicCurve(double startX, double startY, double controlX1, double
controlY1, double controlX2, double controlY2, double endX, double endY)

The program in Listing 17-10 draws the same cubic Bezier curve twice—once with a stroke and a
transparent fill and once with no stroke and a light gray fill. Figure 17-14 shows the two curves.

http://en.wikipedia.org/wiki/Bezier_curves
http://en.wikipedia.org/wiki/Bezier_curves

Chapter 17 ■ Understanding 2d shapes

760

Listing 17-10. Using the CubicCurve Class to Draw Cubic Bezier Curve

// CubicCurveTest.java
package com.jdojo.shape;

import javafx.application.Application;
import javafx.scene.Scene;
import javafx.scene.layout.HBox;
import javafx.scene.paint.Color;
import javafx.scene.shape.CubicCurve;
import javafx.stage.Stage;

public class CubicCurveTest extends Application {
 public static void main(String[] args) {
 Application.launch(args);
 }

 @Override
 public void start(Stage stage) {
 CubicCurve cc1 = new CubicCurve(0, 50, 20, 0, 50, 80, 50, 0);
 cc1.setFill(Color.TRANSPARENT);
 cc1.setStroke(Color.BLACK);

 CubicCurve cc2 = new CubicCurve(0, 50, 20, 0, 50, 80, 50, 0);
 cc2.setFill(Color.LIGHTGRAY);

 HBox root = new HBox(cc1, cc2);
 root.setSpacing(10);
 root.setStyle("-fx-padding: 10;" +
 "-fx-border-style: solid inside;" +
 "-fx-border-width: 2;" +
 "-fx-border-insets: 5;" +
 "-fx-border-radius: 5;" +
 "-fx-border-color: blue;");

 Scene scene = new Scene(root);
 stage.setScene(scene);
 stage.setTitle("Using CubicCurves");
 stage.show();
 }
}

Figure 17-14. Using cubic Bezier curves

Chapter 17 ■ Understanding 2d shapes

761

Building Complex Shapes Using the Path Class
I discussed several shape classes in the previous sections. They are used to draw simple shapes. It is not
convenient to use them for complex shapes. You can draw complex shapes using the Path class. An instance
of the Path class defines the path (outline) of a shape. A path consists of one or more subpaths. A subpath
consists of one or more path elements. Each subpath has a starting point and an ending point.

A path element is an instance of the PathElement abstract class. The following subclasses of the
PathElement class exist to represent specific type of path elements:

•	 MoveTo

•	 LineTo

•	 HLineTo

•	 VLineTo

•	 ArcTo

•	 QuadCurveTo

•	 CubicCurveTo

•	 ClosePath

Before you see an example, let us outline the process of creating a shape using the Path class. The
process is similar to drawing a shape on a paper with a pencil. First, you place the pencil on the paper. You
can restate it, “You move the pencil to a point on the paper.” Regardless of what shape you want to draw,
moving the pencil to a point must be the first step. Now, you start moving your pencil to draw a path element
(e.g., a horizontal line). The starting point of the current path element is the same as the ending point of the
previous path element. Keep drawing as many path elements as needed (e.g., a vertical line, an arc, and a
quadratic Bezier curve). At the end, you can end the last path element at the same point where you started or
somewhere else.

The coordinates defining a PathElement can be absolute or relative. By default, coordinates are
absolute. It is specified by the absolute property of the PathElement class. If it is true, which is the default,
the coordinates are absolute. If it is false, the coordinates are relative. The absolute coordinates are
measured relative to the local coordinate system of the node. Relative coordinates are measured treating the
ending point of the previous PathElement as the origin.

The Path class contains three constructors.

•	 Path()

•	 Path(Collection<? extends PathElement> elements)

•	 Path(PathElement... elements)

The no-args constructor creates an empty shape. The other two constructors take a list of path elements
as arguments. A Path stores path elements in an ObservableList<PathElement>. You can get the reference
of the list using the getElements() method. You can modify the list of path elements to modify the shape.
The following snippet of code shows two ways of creating shapes using the Path class:

// Pass the path elements to the constructor
Path shape1 = new Path(pathElement1, pathElement2, pathElement3);

// Create an empty path and add path elements to the elements list
Path shape2 = new Path();
shape2.getElements().addAll(pathElement1, pathElement2, pathElement3);

Chapter 17 ■ Understanding 2d shapes

762

Tip ■ an instance of the PathElement may be added as a path element to Path objects simultaneously.
a Path uses the same fill and stroke for all its path elements.

The MoveTo Path Element
A MoveTo path element is used to make the specified x and y coordinates as the current point. It has the effect
of lifting and placing the pencil at the specified point on the paper. The first path element of a Path object
must be a MoveTo element and it must not use relative coordinates. The MoveTo class defines two double
properties that are the x and y coordinates of the point.

•	 x

•	 y

The MoveTo class contains two constructors. The no-args constructor sets the current point to (0.0, 0.0).
The other constructor takes the x and y coordinates of the current point as arguments.

// Create a MoveTo path element to move the current point to (0.0, 0.0)
MoveTo mt1 = new MoveTo();

// Create a MoveTo path element to move the current point to (10.0, 10.0)
MoveTo mt2 = new MoveTo(10.0, 10.0);

Tip ■ a path must start with a MoveTo path element. You can have multiple MoveTo path elements in a path.
a subsequent MoveTo element denotes the starting point of a new subpath.

The LineTo Path Element
A LineTo path element draws a straight line from the current point to the specified point. It contains two
double properties that are the x and y coordinates of the end of the line:

•	 x

•	 y

The LineTo class contains two constructors. The no-args constructor sets the end of the line to (0.0, 0.0).
The other constructor takes the x and y coordinates of the end of the line as arguments.

// Create a LineTo path element with its end at (0.0, 0.0)
LineTo lt1 = new LineTo();

// Create a LineTo path element with its end at (10.0, 10.0)
LineTo lt2 = new LineTo(10.0, 10.0);

Chapter 17 ■ Understanding 2d shapes

763

With the knowledge of the MoveTo and LineTo path elements, you can construct shapes that are made
of lines only. The following snippet of code creates a triangle as shown in Figure 17-15. The figure shows the
triangle and its path elements. The arrows show the flow of the drawing. Notice that the drawing starts at
(0.0) using the first MoveTo path element.

Path triangle = new Path(new MoveTo(0, 0),
 new LineTo(0, 50),
 new LineTo(50, 50),
 new LineTo(0, 0));

MoveTo(0,0)

LineTo(0,50)
LineTo(0,0)

LineTo(50,50)

The triangle The path elements of the triangle

Figure 17-15. Creating a triangle using the MoveTo and LineTo path elements

The ClosePath path element closes a path by drawing a straight line from the current point to the
starting point of the path. If multiple MoveTo path elements exist in a path, a ClosePath draws a straight line
from the current point to the point identified by the last MoveTo. You can rewrite the path for the previous
triangle example using a ClosePath.

Path triangle = new Path(new MoveTo(0, 0),
 new LineTo(0, 50),
 new LineTo(50, 50),
 new ClosePath());

The program in Listing 17-11 creates two Path nodes: one triangle and one with two inverted triangles
to give it a look of a star as shown in Figure 17-16. In the second shape, each triangle is created as a
subpath—each subpath starting with a MoveTo element. Notice the two uses of the ClosePath elements. Each
ClosePath closes its subpath.

Chapter 17 ■ Understanding 2d shapes

764

Listing 17-11. Using the Path Class to Create a Triangle and a Star

// PathTest.java
package com.jdojo.shape;

import javafx.application.Application;
import javafx.scene.Scene;
import javafx.scene.layout.HBox;
import javafx.scene.shape.ClosePath;
import javafx.scene.shape.LineTo;
import javafx.scene.shape.MoveTo;
import javafx.scene.shape.Path;
import javafx.stage.Stage;

public class PathTest extends Application {
 public static void main(String[] args) {
 Application.launch(args);
 }

 @Override
 public void start(Stage stage) {
 Path triangle = new Path(new MoveTo(0, 0),
 new LineTo(0, 50),
 new LineTo(50, 50),
 new ClosePath());

 Path star = new Path();
 star.getElements().addAll(new MoveTo(30, 0),
 new LineTo(0, 30),
 new LineTo(60, 30),
 new ClosePath(),/* new LineTo(30, 0), */
 new MoveTo(0, 10),
 new LineTo(60, 10),
 new LineTo(30, 40),
 new ClosePath() /*new LineTo(0, 10)*/);

 HBox root = new HBox(triangle, star);
 root.setSpacing(10);
 root.setStyle("-fx-padding: 10;" +
 "-fx-border-style: solid inside;" +
 "-fx-border-width: 2;" +
 "-fx-border-insets: 5;" +
 "-fx-border-radius: 5;" +
 "-fx-border-color: blue;");

 Scene scene = new Scene(root);
 stage.setScene(scene);
 stage.setTitle("Using Paths");
 stage.show();
 }
}

Chapter 17 ■ Understanding 2d shapes

765

The HLineTo and VLineTo Path Elements
The HLineTo path element draws a horizontal line from the current point to the specified x coordinate.
The y coordinate of the ending point of the line is the same as the y coordinate of the current point. The x
property of the HLineTo class specifies the x coordinate of the ending point.

// Create an horizontal line from the current point (x, y) to (50, y)
HLineTo hlt = new HLineTo(50);

The VLineTo path element draws a vertical line from the current point to the specified y coordinate.
The x coordinate of the ending point of the line is the same as the x coordinate of the current point.
The y property of the VLineTo class specifies the y coordinate of the ending point.

// Create a vertical line from the current point (x, y) to (x, 50)
VLineTo vlt = new VLineTo(50);

Tip ■ the LineTo path element is the generic version of HLineTo and VLineTo.

The following snippet of code creates the same triangle as discussed in the previous section. This time,
you use HLineTo and VLineTo path elements to draw the base and height sides of the triangle instead of the
LineTo path elements.

Path triangle = new Path(new MoveTo(0, 0),
 new VLineTo(50),
 new HLineTo(50),
 new ClosePath());

The ArcTo Path Element
An ArcTo path element defines a segment of ellipse connecting the current point and the specified point.
It contains the following properties:

•	 radiusX

•	 radiusY

•	 x

•	 y

Figure 17-16. Shapes based on path elements

Chapter 17 ■ Understanding 2d shapes

766

•	 XAxisRotation

•	 largeArcFlag

•	 sweepFlag

The radiusX and radiusY properties specify the horizontal and vertical radii of the ellipse. The x and y
properties specify the x and y coordinates of the ending point of the arc. Note that the starting point of the
arc is the current point of the path.

The XAxisRotation property specifies the rotation of the x-axis of the ellipse in degrees. Note that the
rotation is for the x-axis of the ellipse from which the arc is obtained, not the x-axis of the coordinate system
of the node. A positive value rotates the x-axis counterclockwise.

The largeArcFlag and sweepFlag properties are Boolean type, and by default, they are set to false.
Their uses need a detailed explanation. Two ellipses can pass through two given points as shown in
Figure 17-17 giving us four arcs to connect the two points.

End

End

Start

Start

Ellipse-1 Ellipse-2

Figure 17-17. Effects of the largeArcFlag and sweepFlag properties on an ArcTo path element

Figure 17-17 shows starting and ending points labeled Start and End, respectively. Two points on an
ellipse can be traversed through the larger arc or smaller arc. If the largeArcFlag is true, the larger arc is
used. Otherwise, the smaller arc is used.

When it is decided that the larger or smaller arc is used, you still have two choices: which ellipse of the
two possible ellipses will be used? This is determined by the sweepFlag property. Try drawing the arc from
the starting point to the point ending point using two selected arcs—the two larger arcs or the two smaller
arcs. For one arc, the traversal will be clockwise and for the other counterclockwise. If the sweepFlag is true,
the ellipse with the clockwise traversal is used. If the sweepFlag is false, the ellipse with the counterclockwise
traversal is used. Table 17-1 shows which type of arc from which ellipse will be used based on the two
properties.

Table 17-1. Choosing the Arc Segment and the Ellipse Based on the largeArcFlag and sweepFlag Properties

largeArcFlag sweepFlag Arc Type Ellipse

true true Larger Ellipse-2

true false Larger Ellipse-1

false true Smaller Ellipse-1

false false Smaller Ellipse-2

Chapter 17 ■ Understanding 2d shapes

767

The program in Listing 17-12 uses an ArcTo path element to build a Path object. The program lets the
user change properties of the ArcTo path element. Run the program and change largeArcFlag, sweepFlag,
and other properties to see how they affect the ArcTo path element.

Listing 17-12. Using ArcTo Path Elements

// ArcToTest.java
package com.jdojo.shape;

import javafx.application.Application;
import javafx.scene.Scene;
import javafx.scene.control.CheckBox;
import javafx.scene.control.Label;
import javafx.scene.control.Slider;
import javafx.scene.layout.BorderPane;
import javafx.scene.layout.GridPane;
import javafx.scene.shape.ArcTo;
import javafx.scene.shape.HLineTo;
import javafx.scene.shape.MoveTo;
import javafx.scene.shape.Path;
import javafx.scene.shape.VLineTo;
import javafx.stage.Stage;

public class ArcToTest extends Application {
 private ArcTo arcTo;

 public static void main(String[] args) {
 Application.launch(args);
 }

 @Override
 public void start(Stage stage) {
 // Create the ArcTo path element
 arcTo = new ArcTo();

 // Use the arcTo element to build a Path
 Path path = new Path(new MoveTo(0, 0),
 new VLineTo(100),
 new HLineTo(100),
 new VLineTo(50),
 arcTo);

 BorderPane root = new BorderPane();
 root.setTop(this.getTopPane());
 root.setCenter(path);
 root.setStyle("-fx-padding: 10;" +
 "-fx-border-style: solid inside;" +
 "-fx-border-width: 2;" +
 "-fx-border-insets: 5;" +
 "-fx-border-radius: 5;" +
 "-fx-border-color: blue;");

Chapter 17 ■ Understanding 2d shapes

768

 Scene scene = new Scene(root);
 stage.setScene(scene);
 stage.setTitle("Using ArcTo Path Elements");
 stage.show();
 }

 private GridPane getTopPane() {
 CheckBox largeArcFlagCbx = new CheckBox("largeArcFlag");
 CheckBox sweepFlagCbx = new CheckBox("sweepFlag");
 Slider xRotationSlider = new Slider(0, 360, 0);
 xRotationSlider.setPrefWidth(300);
 xRotationSlider.setBlockIncrement(30);
 xRotationSlider.setShowTickMarks(true);
 xRotationSlider.setShowTickLabels(true);

 Slider radiusXSlider = new Slider(100, 300, 100);
 radiusXSlider.setBlockIncrement(10);
 radiusXSlider.setShowTickMarks(true);
 radiusXSlider.setShowTickLabels(true);

 Slider radiusYSlider = new Slider(100, 300, 100);
 radiusYSlider.setBlockIncrement(10);
 radiusYSlider.setShowTickMarks(true);
 radiusYSlider.setShowTickLabels(true);

 // Bind ArcTo properties to the control data
 arcTo.largeArcFlagProperty().bind(largeArcFlagCbx.selectedProperty());
 arcTo.sweepFlagProperty().bind(sweepFlagCbx.selectedProperty());
 arcTo.XAxisRotationProperty().bind(xRotationSlider.valueProperty());
 arcTo.radiusXProperty().bind(radiusXSlider.valueProperty());
 arcTo.radiusYProperty().bind(radiusYSlider.valueProperty());

 GridPane pane = new GridPane();
 pane.setHgap(5);
 pane.setVgap(10);
 pane.addRow(0, largeArcFlagCbx, sweepFlagCbx);
 pane.addRow(1, new Label("XAxisRotation"), xRotationSlider);
 pane.addRow(2, new Label("radiusX"), radiusXSlider);
 pane.addRow(3, new Label("radiusY"), radiusYSlider);

 return pane;
 }
}

Chapter 17 ■ Understanding 2d shapes

769

The QuadCurveTo Path Element
An instance of the QuadCurveTo class draws a quadratic Bezier curve from the current point to the specified
ending point (x, y) using the specified control point (controlX, controlY). It contains four properties to
specify the ending and control points.

•	 x

•	 y

•	 controlX

•	 controlY

The x and y properties specify the x and y coordinates of the ending point. The controlX and controlY
properties specify the x and y coordinates of the control point.

The QuadCurveTo class contains two constructors.

•	 QuadCurveTo()

•	 QuadCurveTo(double controlX, double controlY, double x, double y)

The following snippet of code uses a QuadCurveTo with the (10, 100) control point and (0, 0) ending
point. Figure 17-18 shows the resulting path.

Path path = new Path(new MoveTo(0, 0),
 new VLineTo(100),
 new HLineTo(100),
 new VLineTo(50),
 new QuadCurveTo(10, 100, 0, 0));

Figure 17-18. Using a QuadCurveTo path element

The CubicCurveTo Path Element
An instance of the CubicCurveTo class draws a cubic Bezier curve from the current point to the specified
ending point (x, y) using the specified control points (controlX1, controlY1) and (controlX2, controlY2).
It contains six properties to specify the ending and control points:

•	 x

•	 y

•	 controlX1

•	 controlY1

•	 controlX2

•	 controlY2

Chapter 17 ■ Understanding 2d shapes

770

The ClosePath Path Element
The ClosePath path element closes the current subpath. Note that a Path may consist of multiple subpaths,
and, therefore, it is possible to have multiple ClosePath elements in a Path. A ClosePath element draws a
straight line from the current point to the initial point of the current subpath and ends the subpath.
A ClosePath element may be followed by a MoveTo element, and in that case, the MoveTo element is the
starting point of the next subpath. If a ClosePath element is followed by a path element other than a
MoveTo element, the next subpath starts at the starting point of the subpath that was closed by the
ClosePath element.

The following snippet of code creates a Path object, which uses two subpaths. Each subpath draws a
rectangle. The subpaths are closed using ClosePath elements. Figure 17-20 shows the resulting shape.

Path p1 = new Path(new MoveTo(50, 0),
 new LineTo(0, 50),
 new LineTo(100, 50),
 new ClosePath(),
 new MoveTo(90, 15),
 new LineTo(40, 65),
 new LineTo(140, 65),
 new ClosePath());
p1.setFill(Color.LIGHTGRAY);

The x and y properties specify the x and y coordinates of the ending point. The controlX1 and
controlY1 properties specify the x and y coordinates of the first control point. The controlX2 and controlY2
properties specify the x and y coordinates of the second control point.

The CubicCurveTo class contains two constructors:

•	 CubicCurveTo()

•	 CubicCurveTo(double controlX1, double controlY1, double controlX2,
double controlY2, double x, double y)

The following snippet of code uses a CubicCurveTo with the (10, 100) and (40, 80) as control points, and
(0, 0) as the ending point. Figure 17-19 shows the resulting path.

Path path = new Path(new MoveTo(0, 0),
 new VLineTo(100),
 new HLineTo(100),
 new VLineTo(50),
 new CubicCurveTo(10, 100, 40, 80, 0, 0));

Figure 17-19. Using a QuadCurveTo path element

Chapter 17 ■ Understanding 2d shapes

771

Figure 17-20. A shape using two subpaths and ClosePath element

The Fill Rule for a Path
A Path can be used to draw very complex shapes. Sometimes, it is hard to determine whether a point
is inside or outside the shape. The Path class contains a fillRule property that is used to determine
whether a point is inside a shape. Its value could be one of the constants of the FillRule enum: NON_ZERO
and EVEN_ODD. If a point is inside the shape, it will be rendered using the fill color. Figure 17-21 shows two
triangles created by a Path and a point in area common to both triangles. I will discuss whether the point is
considered inside the shape.

Figure 17-21. A shape made of two triangular subpaths

The direction of the stroke is the vital factor in determining whether a point is inside a shape. The
shape in Figure 17-21 can be drawn using strokes in different directions. Figure 17-22 shows two of them.
In Shape-1, both triangles use counterclockwise strokes. In Shape-2, one triangle uses a counterclockwise
stroke and another uses a clockwise stroke.

Figure 17-22. A shape made of two triangular subpaths using different stroke directions

The fill rule of a Path draws rays from the point to infinity, so they can intersect all path segments.
In the NON_ZERO fill rule, if the number of path segments intersected by rays is equal in counterclockwise
and clockwise directions, the point is outside the shape. Otherwise, the point is inside the shape. You
can understand this rule by using a counter, which starts with zero. Add one to the counter for every ray
intersecting a path segment in the counterclockwise direction. Subtract one from the counter for every
ray intersecting a path segment in the clockwise direction. At the end, if the counter is non-zero, the point
is inside; otherwise, the point is outside. Figure 17-23 shows the same two paths made of two triangular

Chapter 17 ■ Understanding 2d shapes

772

subpaths with their counter values when the NON_ZERO fill rule is applied. The rays drawn from the point are
shown in dashed lines. The point in the first shape scores six (a non-zero value) and it is inside the path.
The point in the second shape scores zero and it is outside the path.

Like the NON_ZERO fill rule, the EVEN_ODD fill rule also draws rays from a point in all directions extending
to infinity, so all path segments are intersected. It counts the number of intersections between the rays and
the path segments. If the number is odd, the point is inside the path. Otherwise, the point is outside the path.
If you set the fillRule property to EVEN_ODD for the two shapes shown in Figure 17-23, the point is outside
the path for both shapes because the number of intersections between rays and path segments is six (an even
number) in both cases. The default value for the fillRule property of a Path is FillRule.NON_ZERO.

2 (+1,+1) 2 (+1,+1)

2 (+1,+1)

Shape-1
Counter =6

Shape-2
Counter =0

0 (-1,+1)

0 (+1,-1)

0 (+1,-1)

Figure 17-23. Applying the NON_ZERO fill rule to two triangular subpaths

The program in Listing 17-13 is an implementation of the examples discussed in this section. It draws
four paths: the first two (counting from the left) with NON_ZERO fill rules and the last two with EVEN_ODD fill
rules. Figure 17-24 shows the paths. The first and third paths use a counterclockwise stroke for drawing both
triangular subpaths. The second and fourth paths are drawn using a counterclockwise stroke for one triangle
and a clockwise stroke for another.

Listing 17-13. Using Fill Rules for Paths

// PathFillRule.java
package com.jdojo.shape;

import javafx.application.Application;
import javafx.scene.Scene;
import javafx.scene.layout.HBox;
import javafx.scene.paint.Color;
import javafx.scene.shape.FillRule;
import javafx.scene.shape.LineTo;
import javafx.scene.shape.MoveTo;
import javafx.scene.shape.Path;
import javafx.scene.shape.PathElement;
import javafx.stage.Stage;

public class PathFillRule extends Application {
 public static void main(String[] args) {
 Application.launch(args);
 }

Chapter 17 ■ Understanding 2d shapes

773

 @Override
 public void start(Stage stage) {
 // Both triangles use a couterclockwise stroke
 PathElement[] pathEleemnts1 = {new MoveTo(50, 0),
 new LineTo(0, 50),
 new LineTo(100, 50),
 new LineTo(50, 0),
 new MoveTo(90, 15),
 new LineTo(40, 65),
 new LineTo(140, 65),
 new LineTo(90, 15)};

 // One traingle uses a clockwise stroke and
 // another uses a couterclockwise stroke
 PathElement[] pathEleemnts2 = {new MoveTo(50, 0),
 new LineTo(0, 50),
 new LineTo(100, 50),
 new LineTo(50, 0),
 new MoveTo(90, 15),
 new LineTo(140, 65),
 new LineTo(40, 65),
 new LineTo(90, 15)};

 /* Using the NON-ZERO fill rule by default */
 Path p1 = new Path(pathEleemnts1);
 p1.setFill(Color.LIGHTGRAY);

 Path p2 = new Path(pathEleemnts2);
 p2.setFill(Color.LIGHTGRAY);

 /* Using the EVEN_ODD fill rule */
 Path p3 = new Path(pathEleemnts1);
 p3.setFill(Color.LIGHTGRAY);
 p3.setFillRule(FillRule.EVEN_ODD);

 Path p4 = new Path(pathEleemnts2);
 p4.setFill(Color.LIGHTGRAY);
 p4.setFillRule(FillRule.EVEN_ODD);

 HBox root = new HBox(p1, p2, p3, p4);
 root.setSpacing(10);
 root.setStyle("-fx-padding: 10;" +
 "-fx-border-style: solid inside;" +
 "-fx-border-width: 2;" +
 "-fx-border-insets: 5;" +
 "-fx-border-radius: 5;" +
 "-fx-border-color: blue;");

 Scene scene = new Scene(root);
 stage.setScene(scene);
 stage.setTitle("Using Fill Rules for Paths");
 stage.show();
 }
}

Chapter 17 ■ Understanding 2d shapes

774

Figure 17-25. A triangle using a SVGPath

Figure 17-24. Paths using different fill rules

Drawing Scalable Vector Graphics
An instance of the SVGPath class draws a shape from path data in an encoded string. You can find the SVG
specification at http://www.w3.org/TR/SVG. You can find the detailed rules of constructing the path data in
string format at http://www.w3.org/TR/SVG/paths.html. JavaFX partially supports SVG specification.

The SVGPath class contains a no-args constructor to create its object.

// Create a SVGPath object
SVGPath sp = new SVGPath();

The SVGPath class contains two properties.

•	 content

•	 fillRule

The content property defines the encoded string for the SVG path. The fillRule property specifies
the fill rule for the interior of the shape, which could be FillRule.NON_ZERO or FilleRule.EVEN_ODD. The
default value for the fillRule property is FillRule.NON_ZERO. Please refer to the section “The Fill Rule for a
Path” for more details on fill rules. Fill rule for a Path and a SVGPath work the same.

The following snippet of code sets “M50, 0 L0, 50 L100, 50 Z” encoded string as the content for a
SVGPath object to draw a triangle as shown in Figure 17-25:

SVGPath sp2 = new SVGPath();
sp2.setContent("M50, 0 L0, 50 L100, 50 Z");
sp2.setFill(Color.LIGHTGRAY);
sp2.setStroke(Color.BLACK);

http://www.w3.org/TR/SVG
http://www.w3.org/TR/SVG/paths.html

Chapter 17 ■ Understanding 2d shapes

775

The content of a SVGPath is an encoded string following some rules:

The string consists of a series of commands.•	

Each command name is exactly one-letter long.•	

A command is followed by its parameters.•	

Parameter values for a command are separated by a comma or a space. For example, •	
“M50, 0 L0, 50 L100, 50 Z” and “M50 0 L0 50 L100 50 Z” represent the same path.
For readability, you will use a comma to separate two values.

You do not need to add spaces before or after the command character. For example, •	
“M50 0 L0 50 L100 50 Z” can be rewritten as “M50 0L0 50L100 50Z”.

Let us consider the SVG content used in the previous example.

M50, 0 L0, 50 L100, 50 Z

The content consists of four commands.

•	 M50, 0

•	 L0, 50

•	 L100, 50

•	 Z

Comparing the SVG path commands with the Path API, the first command is “MoveTo (50, 0)”; the second
command is “LineTo(0, 50)”; the third command is “LineTo(100, 50)” and the fourth command is “ClosePath”.

Tip ■ the command name in SVGPath content is the first letter of the classes representing path elements
in a Path object. For example, an absolute MoveTo in the Path api becomes M in SVGPath content, an absolute
LineTo becomes L, and so on.

The parameters for the commands are coordinates, which can be absolute or relative. When the
command name is in uppercase (e.g., M), its parameters are considered absolute. When the command name is
in lowercase (e.g., m), its parameters are considered relative. The “closepath” command is Z or z. Because the
“closepath” command does take any parameters, both uppercase and lowercase versions behave the same.

Consider the content of two SVG paths:

•	 M50, 0 L0, 50 L100, 50 Z

•	 M50, 0 l0, 50 l100, 50 Z

The first path uses absolute coordinates. The second path uses absolute and relative coordinates. Like
a Path, a SVGPath must start with a “moveTo” command, which must use absolute coordinates. If a SVGPath
starts with a relative “moveTo” command (e.g., "m 50, 0"), its parameters are treated as absolute coordinates.
In the foregoing SVG paths, you can start the string with "m50, 0" and the result will be the same.

Chapter 17 ■ Understanding 2d shapes

776

The previous two SVG paths will draw two different triangles, as shown in Figure 17-26, even though
both use the same parameters. The first path draws the triangle on the left and the second one draws the
triangle on the right. The commands in the second path are interpreted as follows:

Move to (50, 0)•	

Draw a line from the current point (50, 0) to (50, 50). The ending point (50, 50) is •	
derived by adding the x and y coordinates of the current point to the relative “lineto”
command (l) parameters. The ending point becomes (50, 50).

Draw a line from the current point (50, 50) to (150, 100). Again, the coordinates of •	
the ending point are derived by adding the x and y coordinates of the current point
(50, 50) to the command parameter “l100, 50” (The first character in “l100, 50” is the
lowercase L. not the digit 1).

The close the path (Z)•	

Figure 17-26. Using absolute and relative coordinates in SVG paths

Table 17-2 lists the commands used in the content of the SVGPath objects. It also lists the equivalent
classes used in the Path API. The table lists the command, which uses absolute coordinates. The relative
versions of the commands use lowercase letters. The plus sign (+) in the parameter column indicates that
multiple parameters may be used.

Table 17-2. List of SVG Path Commands

Command Parameter Command Name Path API Class

M (x, y)+ moveto MoveTo

L (x, y)+ lineto LineTo

H x+ lineto HLineTo

V y+ lineto VLineTo

A (rx, ry, x-axis-rotation,
large-arc-flag, sweep-flag, x, y)+

arcto ArcTo

Q (x1, y1, x, y)+ Quadratic Bezier curveto QuadCurveTo

T (x, y)+ Shorthand/smooth quadratic
Bezier curveto

QuadCurveTo

C (x1, y1, x2, y2, x, y)+ curveto CubicCurveTo

S (x2, y2, x, y)+ Shorthand/smooth curveto CubicCurveTo

Z None closePath ClosePath

Chapter 17 ■ Understanding 2d shapes

777

The “moveTo” Command
The “moveTo” command M starts a new subpath at the specified (x, y) coordinates. It may be followed by
one or multiple pairs of coordinates. The first pair of coordinates is considered the x and y coordinates of
the point, which the command will make the current point. Each additional pair is treated as a parameter
for a “lineto” command. If the “moveTo” command is relative, the “lineto” command will be relative. If the
“moveTo” command is absolute, the “lineto” command will be absolute. For example, the following two SVG
paths are the same:

M50, 0 L0, 50 L100, 50 Z
M50, 0, 0, 50, 100, 50 Z

The “lineto” Commands
There are three “lineto” commands: L, H, and V. They are used to draw straight lines.

The command L is used to draw a straight line from the current point to the specified (x, y) point.
If you specify multiple pairs of (x, y) coordinates, it draws a polyline. The final pair of the (x, y) coordinate
becomes the new current point. The following SVG paths will draw the same triangle. The first one uses two
L commands and the second one uses only one.

•	 M50, 0 L0, 50 L100, 50 L50, 0

•	 M50, 0 L0, 50, 100, 50, 50, 0

The H and V commands are used to draw horizontal and vertical lines from the current point. The
command H draws a horizontal line from the current point (cx, cy) to (x, cy). The command V draws a vertical
line from the current point (cx, cy) to (cx, y). You can pass multiple parameters to them. The final parameter
value defines the current point. For example, “M0, 0H200, 100 V50Z” will draw a line from (0, 0) to (200, 0),
from (200, 0) to (100, 0). The second command will make (100, 0) as the current point. The third command
will draw a vertical line from (100, 0) to (100, 50). The z command will draw a line from (100, 50) to (0, 0).
The following snippet of code draws a SVG path as shown in Figure 17-27:

SVGPath p1 = new SVGPath();
p1.setContent("M0, 0H-50, 50, 0 V-50, 50, 0, -25 L25, 0");
p1.setFill(Color.LIGHTGRAY);
p1.setStroke(Color.BLACK);

Figure 17-27. Using multiple parameters to “lineto” commands

Chapter 17 ■ Understanding 2d shapes

778

The “arcto” Command
The “arcto” command A draws an elliptical arc from the current point to the specified (x, y) point. It uses rx
and ry as the radii along x-axis and y-axis. The x-axis-rotation is a rotation angle in degrees for the x-axis of
the ellipse. The large-arc-flag and sweep-flag are the flags used to select one arc out of four possible arcs. Use
0 and 1 for flag values, where 1 means true and 0 means false. Please refer to the section “The ArcTo Path
Element” for a detailed explanation of all its parameters. You can pass multiple arcs parameters, and in that
case, the ending point of an arc becomes the current point for the subsequent arc. The following snippet of
code draws two SVG paths with arcs. The first path uses one parameter for the “arcTo” command and the
second path uses two parameters. Figure 17-28 shows the paths.

SVGPath p1 = new SVGPath();

// rx=150, ry=50, x-axis-rotation=0, large-arc-flag=0,
// sweep-flag 0, x=-50, y=50
p1.setContent("M0, 0 A150, 50, 0, 0, 0, -50, 50 Z");
p1.setFill(Color.LIGHTGRAY);
p1.setStroke(Color.BLACK);

// Use multiple arcs in one "arcTo" command
SVGPath p2 = new SVGPath();

// rx1=150, ry1=50, x-axis-rotation1=0, large-arc-flag1=0,
// sweep-flag1=0, x1=-50, y1=50
// rx2=150, ry2=10, x-axis-rotation2=0, large-arc-flag2=0,
// sweep-flag2=0, x2=10, y2=10
p2.setContent("M0, 0 A150 50 0 0 0 -50 50, 150 10 0 0 0 10 10 Z");
p2.setFill(Color.LIGHTGRAY);
p2.setStroke(Color.BLACK);

Figure 17-28. Using “arcTo” commands to draw elliptical arc paths

The “Quadratic Bezier curveto” Command
Both commands Q and T are used to draw quadratic Bezier curve.

The command Q draws a quadratic Bezier curve from the current point to the specified (x, y) point using
the specified (x1, y1) as the control point.

The command T draws a quadratic Bezier curve from the current point to the specified (x, y) point using
a control point that is the reflection of the control point on the previous command. The current point is used
as the control point if there was no previous command or the previous command was not Q, q, T, or t.

Chapter 17 ■ Understanding 2d shapes

779

The command Q takes the control point as parameters whereas the command T assumes the control
point. The following snippet of code uses the commands Q and T to draw quadratic Bezier curves as shown
in Figure 17-29:

SVGPath p1 = new SVGPath();
p1.setContent("M0, 50 Q50, 0, 100, 50");
p1.setFill(Color.LIGHTGRAY);
p1.setStroke(Color.BLACK);

SVGPath p2 = new SVGPath();
p2.setContent("M0, 50 Q50, 0, 100, 50 T200, 50");
p2.setFill(Color.LIGHTGRAY);
p2.setStroke(Color.BLACK);

Figure 17-29. Using Q and T commands to draw quadratic Bezier curves

The “Cubic Bezier curveto” Command
The commands C and S are used to draw cubic Bezier curves.

The command C draws a cubic Bezier curve from the current point to the specified point (x, y) using the
specified controls points (x1, y1) and (x2, y2).

The command S draws a cubic Bezier curve from the current point to the specified point (x, y).
It assumes the first control point to be the reflection of the second control point on the previous command.
The current point is used as the first control point if there was no previous command or the previous
command was not C, c, S, or s. The specified point (x2, y2) is the second control point. Multiple sets of
coordinates draw a polybezier.

The following snippet of code uses the commands C and S to draw cubic Bezier curves as shown in
Figure 17-30. The second path uses the command S to use the reflection of the second control point of the
previous command C as its first control point.

SVGPath p1 = new SVGPath();
p1.setContent("M0, 0 C0, -100, 100, 100, 100, 0");
p1.setFill(Color.LIGHTGRAY);
p1.setStroke(Color.BLACK);

SVGPath p2 = new SVGPath();
p2.setContent("M0, 0 C0, -100, 100, 100, 100, 0 S200 100 200, 0");
p2.setFill(Color.LIGHTGRAY);
p2.setStroke(Color.BLACK);

Chapter 17 ■ Understanding 2d shapes

780

The “closepath” Command
The “closepath” commands Z and z draw a straight line from the current point to the starting point of the
current subpath and ends the subpath. Both uppercase and lowercase versions of the command work
the same.

Combining Shapes
The Shape class provides three static methods that let you perform union, intersection and subtraction
of shapes.

•	 union(Shape shape1, Shape shape2)

•	 intersect(Shape shape1, Shape shape2)

•	 subtract(Shape shape1, Shape shape2)

The methods return a new Shape instance. They operate on the areas of the input shapes. If a shape
does not have a fill and a stroke, its area is zero. The new shape has a stroke and a fill. The union() method
combines the areas of two shapes. The intersect() method uses the common areas between the shapes
to create the new shape. The subtract() method creates a new shape by subtracting the specified second
shape from the first shape.

The program in Listing 17-14 combines two circles using the union, intersection, and subtraction
operations. Figure 17-31 shows the resulting shapes.

Listing 17-14. Combining Shapes to Create New Shapes

// CombiningShapesTest.java
package com.jdojo.shape;

import javafx.application.Application;
import javafx.scene.Scene;
import javafx.scene.layout.HBox;
import javafx.scene.paint.Color;
import javafx.scene.shape.Circle;
import javafx.scene.shape.Shape;
import javafx.stage.Stage;

public class CombiningShapesTest extends Application {
 public static void main(String[] args) {
 Application.launch(args);
 }

Figure 17-30. Using C and S commands to draw cubic Bezier curves

Chapter 17 ■ Understanding 2d shapes

781

 @Override
 public void start(Stage stage) {
 Circle c1 = new Circle (0, 0, 20);
 Circle c2 = new Circle (15, 0, 20);

 Shape union = Shape.union(c1, c2);
 union.setStroke(Color.BLACK);
 union.setFill(Color.LIGHTGRAY);

 Shape intersection = Shape.intersect(c1, c2);
 intersection.setStroke(Color.BLACK);
 intersection.setFill(Color.LIGHTGRAY);

 Shape subtraction = Shape.subtract(c1, c2);
 subtraction.setStroke(Color.BLACK);
 subtraction.setFill(Color.LIGHTGRAY);

 HBox root = new HBox(union, intersection, subtraction);
 root.setSpacing(20);
 root.setStyle("-fx-padding: 10;" +
 "-fx-border-style: solid inside;" +
 "-fx-border-width: 2;" +
 "-fx-border-insets: 5;" +
 "-fx-border-radius: 5;" +
 "-fx-border-color: blue;");

 Scene scene = new Scene(root);
 stage.setScene(scene);
 stage.setTitle("Combining Shapes");
 stage.show();
 }
}

Figure 17-31. Shapes created by combining two circles

Chapter 17 ■ Understanding 2d shapes

782

Understanding the Stroke of a Shape
Stroking is the process of painting the outline of a shape. Sometimes, the outline of a shape is also known as
stroke. The Shape class contains several properties to define the appearance of the stroke of a shape.

•	 stroke

•	 strokeWidth

•	 strokeType

•	 strokeLineCap

•	 strokeLineJoin

•	 strokeMiterLimit

•	 strokeDashOffset

The stroke property specifies the color of the stroke. The default stroke is set to null for all shapes
except Line, Path and Polyline, which have Color.BLACK as their default stroke.

The strokeWidth property specifies the width of the stroke. It is 1.0px by default.
The stroke is painted along the boundary of a shape. The strokeType property specifies the distribution

of the width of the stroke on the boundary. Its value is one of the three constants, CENTERED, INSIDE, and
OUTSIDE, the StrokeType enum. The default value is CENTERED. The CENTERED stroke type draws a half of
the stroke width outside and half inside the boundary. The INSIDE stroke type draws the stroke inside
the boundary. The OUTSIDE stroke draws the stroke outside the boundary. The stroke width of a shape is
included in its layout bounds.

The program in Listing 17-15 creates four rectangles as shown in Figure 17-32. All rectangles have the
same width and height (50px and 50px). The first rectangle, counting from the left, has no stroke and it has
layout bounds of 50px X 50px. The second rectangle uses a stroke of width 4px and an INSIDE stroke type.
The INSIDE stroke type is drawn inside the width and height boundary, the rectangle has the layout bounds
of 50px X 50px. The third rectangle uses a stroke width 4px and a CENTERED stroke type, which is the default.
The stroke is drawn 2px inside the boundary and 2px outside the boundary. The 2px outside stroke is added
to the dimensions of all four making the layout bounds to 54px X 54px. The fourth rectangle uses a 4px stroke
width and an OUTSIDE stroke type. The entire stroke width falls outside the width and height of the rectangle
making the layouts to 58px X 58px.

Listing 17-15. Effects of Applying Different Stroke Types on a Rectangle

// StrokeTypeTest.java
package com.jdojo.shape;

import javafx.application.Application;
import javafx.geometry.Pos;
import javafx.scene.Scene;
import javafx.scene.layout.HBox;
import javafx.scene.paint.Color;
import javafx.scene.shape.Rectangle;
import javafx.scene.shape.StrokeType;
import javafx.stage.Stage;

public class StrokeTypeTest extends Application {
 public static void main(String[] args) {
 Application.launch(args);
 }

Chapter 17 ■ Understanding 2d shapes

783

 @Override
 public void start(Stage stage) {
 Rectangle r1 = new Rectangle(50, 50);
 r1.setFill(Color.LIGHTGRAY);

 Rectangle r2 = new Rectangle(50, 50);
 r2.setFill(Color.LIGHTGRAY);
 r2.setStroke(Color.BLACK);
 r2.setStrokeWidth(4);
 r2.setStrokeType(StrokeType.INSIDE);

 Rectangle r3 = new Rectangle(50, 50);
 r3.setFill(Color.LIGHTGRAY);
 r3.setStroke(Color.BLACK);
 r3.setStrokeWidth(4);

 Rectangle r4 = new Rectangle(50, 50);
 r4.setFill(Color.LIGHTGRAY);
 r4.setStroke(Color.BLACK);
 r4.setStrokeWidth(4);
 r4.setStrokeType(StrokeType.OUTSIDE);

 HBox root = new HBox(r1, r2, r3, r4);
 root.setAlignment(Pos.CENTER);
 root.setSpacing(10);
 root.setStyle("-fx-padding: 10;" +
 "-fx-border-style: solid inside;" +
 "-fx-border-width: 2;" +
 "-fx-border-insets: 5;" +
 "-fx-border-radius: 5;" +
 "-fx-border-color: blue;");

 Scene scene = new Scene(root);
 stage.setScene(scene);
 stage.setTitle("Using Different Stroke Types for Shapes");
 stage.show();
 }
}

Figure 17-32. Rectangles using different types of strokes

Chapter 17 ■ Understanding 2d shapes

784

The strokeLineCap property specifies the ending decoration of a stroke for unclosed subpaths and dash
segments. Its value is one of the constants of the StrokeLineCap enum: BUTT, SQUARE, and ROUND. The default
is BUTT. The BUTT line cap adds no decoration to the end of a subpath; the stroke starts and ends exactly at
the starting and ending points. The SQUARE line cap extends the end by half the stroke width. The ROUND line
cap adds a round cap to the end. The round cap uses a radius equal to half the stroke width. Figure 17-33 shows
three lines, which are unclosed subpaths. All lines are 100px wide using 10px stroke width. The figure shows
the strokeLineCap they use. The width of the layout bounds of the line using the BUTT line cap remains
100px. However, for other two lines, the width of the layout bounds increases to 110px—increasing by 10px
at both ends.

BEVEL MITER ROUND

Figure 17-35. Triangles using different stroke line join types

BUTT

SQUARE

ROUND

Figure 17-33. Different line cap style for strokes

Note that the strokeLineCap properties are applied to the ends of a line segment of unclosed subpaths.
Figure 17-34 shows three triangles created by unclosed subpaths. They use different stroke line caps. The
SVG path data “M50, 0L0, 50 M0, 50 L100, 50 M100, 50 L50, 0” was used to draw the triangles. The fill was set
to null and the stroke width to 10px.

BUTT SQUARE ROUND

Figure 17-34. Triangles using unclosed subpaths using different stroke line caps

The strokeLineJoin property specifies how two successive path elements of a subpath are joined.
Its value is one of the constants of the StrokeLineJoin enum: BEVEL, MITER, and ROUND. The default is
MITER. The BEVEL line join connects the outer corners of path elements by a straight line. The MITER line
join extends the outer edges of two path elements until they meet. The ROUND line join connects two path
elements by rounding their corners by half the stroke width. Figure 17-35 shows three triangles created with
the SVG path data “M50, 0L0, 50 L100, 50 Z”. The fill color is null and the stroke width is 10px. The triangles
use different line joins as shown in the figure.

Chapter 17 ■ Understanding 2d shapes

785

A MITER line join joins two path elements by extending their outer edges. If the path elements meet at
a smaller angle, the length of the join may become very big. You can limit the length of the join using the
strokeMiterLimit property. It specifies the ratio of the miter length and the stroke width. The miter length
is the distance between the most inside point and the most outside point of the join. If the two path elements
cannot meet by extending their outer edges within this limit, a BEVEL join is used instead. The default value
is 10.0. That is, by default, the miter length may be up to ten times the stroke width.

The following snippet of code creates two triangles as shown in Figure 17-36. Both use MITER line join by
default. The first triangle uses 2.0 as the miter limit. The second triangle uses the default miter limit, which
is 10.0. The stroke width is 10px. The first triangle tries to join the corners by extending two lines up to 20px,
which is computed by multiplying the 10px stroke width by the miter limit of 2.0. The corners cannot be
joined using the MITER join within 20px, so a BEVEL join is used.

SVGPath t1 = new SVGPath();
t1.setContent("M50, 0L0, 50 L100, 50 Z");
t1.setStrokeWidth(10);
t1.setFill(null);
t1.setStroke(Color.BLACK);
t1.setStrokeMiterLimit(2.0);

SVGPath t2 = new SVGPath();
t2.setContent("M50, 0L0, 50 L100, 50 Z");
t2.setStrokeWidth(10);
t2.setFill(null);
t2.setStroke(Color.BLACK);

Figure 17-36. Triangles using different stroke miter limits

By default, the stroke draws a solid outline. You can also have a dashed outline. You need to provide
a dashing pattern and a dash offset. The dashing pattern is an array of double that is stored in an
ObservableList<Double>. You can get the reference of the list using the getStrokeDashArray() method of
the Shape class. The elements of the list specify a pattern of dashes and gaps. The first element is the dash
length, the second gap, the third dash length, the fourth gap, and so on. The dashing pattern is repeated to
draw the outline. The strokeDashOffset property specifies the offset in the dashing pattern where the
stroke begins.

The following snippet of code creates two instances of Polygon as shown in Figure 17-37. Both use
the same dashing patterns but a different dash offset. The first one uses the dash offset of 0.0, which is the
default. The stroke of the first rectangle starts with a 15.0px dash, which is the first element of the dashing
pattern, which can be seen in the dashed line drawn from the (0, 0) to (100, 0). The second Polygon uses
a dash offset of 20.0, which means the stroke will start 20.0px inside the dashing pattern. The first two
elements 15.0 and 3.0 are inside the dash offset 20.0. Therefore, the stroke for the second Polygon starts at
the third element, which is a 5.0px dash.

Polygon p1 = new Polygon(0, 0, 100, 0, 100, 50, 0, 50, 0, 0);
p1.setFill(null);
p1.setStroke(Color.BLACK);
p1.getStrokeDashArray().addAll(15.0, 5.0, 5.0, 5.0);

Chapter 17 ■ Understanding 2d shapes

786

Polygon p2 = new Polygon(0, 0, 100, 0, 100, 50, 0, 50, 0, 0);
p2.setFill(null);
p2.setStroke(Color.BLACK);
p2.getStrokeDashArray().addAll(15.0, 5.0, 5.0, 5.0);
p2.setStrokeDashOffset(20.0);

Figure 17-37. Two polygons using dashing patterns for their outline

Styling Shapes with CSS
All shapes do not have a default style-class name. If you want to apply styles to shapes using CSS, you need
to add style-class names to them. All shapes can use the following CSS properties:

•	 -fx-fill

•	 -fx-smooth

•	 -fx-stroke

•	 -fx-stroke-type

•	 -fx-stroke-dash-array

•	 -fx-stroke-dash-offset

•	 -fx-stroke-line-cap

•	 -fx-stroke-line-join

•	 -fx-stroke-miter-limit

•	 -fx-stroke-width

All CSS properties correspond to the properties in the Shape class, which I have discussed at length in
the previous section. Rectangle supports two additional CSS properties to specify arc width and height for
rounded rectangles:

•	 -fx-arc-height

•	 -fx-arc-width

The following snippet of code creates a Rectangle and adds rectangle as its style-class name:

Rectangle r1 = new Rectangle(200, 50);
r1.getStyleClass().add("rectangle");

The following style will produce a rectangle as shown in Figure 17-38:

.rectangle {
 -fx-fill: lightgray;
 -fx-stroke: black;
 -fx-stroke-width: 4;

Chapter 17 ■ Understanding 2d shapes

787

Summary
Any shape that can be drawn in a two-dimensional plane is called a 2D shape. JavaFX offers various nodes to
draw different types of shapes (lines, circles, rectangles, etc.). You can add shapes to a scene graph. All shape
classes are in the javafx.scene.shape package. Classes representing 2D shapes are inherited from the
abstract Shape class. A shape can have a stroke that defines the outline of the shape. A shape may have a fill.

An instance of the Line class represents a line node. A Line has no interior. By default, its fill property is
set to null. Setting fill has no effect. The default stroke is Color.BLACK and the default strokeWidth is 1.0.

An instance of the Rectangle class represents a rectangle node. The class uses six properties to
define the rectangle: x, y, width, height, arcWidth, and arcHeight. The x and y properties are the x and y
coordinates of the upper-left corner of the rectangle in the local coordinate system of the node. The width
and height properties are the width and height of the rectangle, respectively. Specify the same width and
height to draw a square. By default, the corners of a rectangle are sharp. A rectangle can have rounded
corners by specifying the arcWidth and arcHeight properties.

An instance of the Circle class represents a circle node. The class uses three properties to define the
circle: centerX, centerY, and radius. The centerX and centerY properties are the x and y coordinates of the
center of the circle in the local coordinate system of the node. The radius property is the radius of the circle.
The default values for these properties are zero.

An instance of the Ellipse class represents an ellipse node. The class uses four properties to define
the ellipse: centerX, centerY, radiusX, radiusY. The centerX and centerY properties are the x and y
coordinates of the center of the circle in the local coordinate system of the node. The radiusX and radiusY
are the radii of the ellipse in the horizontal and vertical directions. The default values for these properties are
zero. A circle is a special case of an ellipse when radiusX and radiusY are the same.

An instance of the Polygon class represents a polygon node. The class does not define any public
properties. It lets you draw a polygon using an array of (x, y) coordinates defining the vertices of the polygon.
Using the Polygon class, you can draw any type of geometric shape that is created using connected lines
(triangles, pentagon, hexagon, parallelogram, etc.).

A polyline is similar to a polygon, except that it does not draw a line between the last and first points.
That is, a polyline is an open polygon. However, the fill color is used to fill the entire shape as if the shape
was closed. An instance of the Polyline class represents a polyline node.

An instance of the Arc class represents a sector of an ellipse. The class uses seven properties to define
the ellipse: centerX, centerY, radiusX, radiusY, startAngle, length, and type. The first four properties
define an ellipse. The last three properties define a sector of the ellipse that is the Arc node. The startAngle
property specifies the start angle of the section in degrees measured counterclockwise from the positive
x-axis. It defines the beginning of the arc. The length is an angle in degrees measured counterclockwise
from the start angle to define the end of the sector. If the length property is set to 360, the Arc is a full ellipse.

 -fx-stroke-dash-array: 15 5 5 10;
 -fx-stroke-dash-offset: 20;
 -fx-stroke-line-cap: round;
 -fx-stroke-line-join: bevel;
}

Figure 17-38. Applying CSS styles to a rectangle

Chapter 17 ■ Understanding 2d shapes

788

Bezier curves are used in computer graphics to draw smooth curves. An instance of the QuadCurve
class represents a quadratic Bezier curve segment intersecting two specified points using a specified Bezier
control point.

An instance of the CubicCurve class represents a cubic Bezier curve segment intersecting two specified
points using two specified Bezier control points.

You can draw complex shapes using the Path class. An instance of the Path class defines the path
(outline) of a shape. A path consists of one or more subpaths. A subpath consists of one or more path
elements. Each subpath has a starting point and an ending point. A path element is an instance of the
PathElement abstract class. Several subclasses of the PathElement class exist to represent specific type of
path elements; those classes are MoveTo, LineTo, HLineTo, VLineTo, ArcTo, QuadCurveTo, CubicCurveTo, and
ClosePath.

JavaFX partially supports SVG specification. An instance of the SVGPath class draws a shape from path
data in an encoded string.

JavaFX lets you create a shape by combining multiple shapes. The Shape class provides three static
methods named union(), intersect(), and subtract() that let you perform union, intersection, and
subtraction of two shapes that are passed as the arguments to these methods. The methods return a new
Shape instance. They operate on the areas of the input shapes. If a shape does not have a fill and a stroke, its
area is zero. The new shape has a stroke and a fill. The union() method combines the areas of two shapes.
The intersect() method uses the common areas between the shapes to create the new shape.
The subtract() method creates a new shape by subtracting the specified second shape from the first shape.

Stroking is the process of painting the outline of a shape. Sometimes, the outline of a shape is also
known as stroke. The Shape class contains several properties such as stroke, strokeWidth, and so on to
define the appearance of the stroke of a shape.

JavaFX lets you style 2D shapes with CSS.

789

Chapter 18

Understanding Text Nodes

In this chapter, you will learn:

What a •	 Text node is and how to create it

The coordinate system used for drawing •	 Text nodes

How to display multiline text in a •	 Text node

How to set fonts for a •	 Text node

How to access installed fonts and how to install custom fonts•	

How to set the fill and stroke for •	 Text nodes

How to apply decoration such as underline and strikethrough to •	 Text nodes

How to apply font smoothing•	

How to style Text nodes using CSS•	

What Is a Text Node?
A text node is an instance of the Text class that is used to render text. The Text class contains several
properties to customize the appearance of text. The Text class and all its related classes – for example, the
Font class, the TextAlignment enum, the FontWeight enum, etc. – are in the javafx.scene.text package.

The Text class inherits from the Shape class. That is, a Text is a Shape, which allows you to use all
properties and methods of the Shape class on a Text node. For example, you can apply a fill color and a
stroke to a Text node. Because Text is a node, you can use features of the Node class: for example, applying
effects and transformations. You can also set text alignment, font family, font size, text wrapping style, etc.,
on a Text node.

Figure 18-1 shows three text nodes. The first one (from the left) is a simple text node. The second one
uses bold text in a bigger font size. The third one uses the Reflection effect, a bigger font size, a stroke,
and a fill.

Figure 18-1. A window showing three Text nodes

Chapter 18 ■ Understanding text nodes

790

Creating a Text Node
An instance of the Text class represents a Text node. A Text node contains text and properties to render the
text. You can create a Text node using one of the constructors of the Text class:

•	 Text()

•	 Text(String text)

•	 Text(double x, double y, String text)

The no-args constructor creates a Text node with an empty string as its text. Other constructors let you
specify the text and position the node.

The text property of the Text class specifies the text (or content) of the Text node. The x and y
properties specify the x and y coordinates of the text origin, which are described in the next section.

// Create an empty Text Node and later set its text
Text t1 = new Text();
t1.setText("Hello from the Text node!");

// Create a Text Node with initial text
Text t2 = new Text("Hello from the Text node!");

// Create a Text Node with initial text and position
Text t3 = new Text(50, 50, "Hello from the Text node!");

Tip ■ the width and height of a text node are automatically determined by its font. By default, a Text node
uses a system default font to render its text.

The program in Listing 18-1 creates three Text nodes, sets their different properties, and adds them to
an HBox. The Text nodes are displayed as shown in Figure 18-1.

Listing 18-1. Creating Text Nodes

// TextTest.java
package com.jdojo.shape;

import javafx.application.Application;
import javafx.scene.Scene;
import javafx.scene.effect.Reflection;
import javafx.scene.layout.HBox;
import javafx.scene.paint.Color;
import javafx.scene.text.Font;
import javafx.scene.text.FontWeight;
import javafx.scene.text.Text;
import javafx.stage.Stage;

public class TextTest extends Application {
 public static void main(String[] args) {
 Application.launch(args);
 }

Chapter 18 ■ Understanding text nodes

791

 @Override
 public void start(Stage stage) {
 Text t1 = new Text("Hello Text Node!");

 Text t2 = new Text("Bold and Big");
 t2.setFont(Font.font("Tahoma", FontWeight.BOLD, 16));

 Text t3 = new Text("Reflection");
 t3.setEffect(new Reflection());
 t3.setStroke(Color.BLACK);
 t3.setFill(Color.WHITE);
 t3.setFont(Font.font("Arial", FontWeight.BOLD, 20));

 HBox root = new HBox(t1, t2, t3);
 root.setSpacing(20);
 root.setStyle("-fx-padding: 10;" +
 "-fx-border-style: solid inside;" +
 "-fx-border-width: 2;" +
 "-fx-border-insets: 5;" +
 "-fx-border-radius: 5;" +
 "-fx-border-color: blue;");

 Scene scene = new Scene(root);
 stage.setScene(scene);
 stage.setTitle("Using Text Nodes");
 stage.show();
 }
}

Understanding the Text Origin
Apart from the local and parent coordinate system, a Text node has an additional coordinate system.
It is the coordinate system used for drawing the text. Three properties of the Text class define the text
coordinate system:

•	 x

•	 y

•	 textOrigin

The x and y properties define the x and y coordinates of the text origin. The textOrigin property is of
type VPos. Its value could be VPos.BASELINE, VPos.TOP, VPos.CENTER, and VPos.BOTTOM. The default is
VPos.BASELINE. It defines where the x-axis of the text coordinate system lies within the text height. Figure 18-2
shows the local and text coordinate systems of a text node. The local coordinate axes are in solid lines. The
text coordinate axes are in dashed lines.

Chapter 18 ■ Understanding text nodes

792

When the textOrigin is VPos.TOP, the x-axis of the text coordinate system is aligned with the top of the
text. That is, the y property of the Text node is the distance between the x-axis of the local coordinate system
and the top of the displayed text. A font places its characters on a line called the baseline. The VPos.BASELINE
aligns the x-axis of the text coordinate system with the baseline of the font. Note that some characters
(e.g., g, y, j, p, etc.) are extended below the baseline. The VPos.BOTTOM aligns the x-axis of the text coordinate
system with the bottom of the displayed text accounting for the descent for the font. The VPos.CENTER
(not shown in the figure) aligns the x-axis of the text coordinate system in the middle of the displayed text,
accounting for the ascent and descent for the font.

Tip ■ the Text class contains a read-only baselineOffset property. its value is the vertical distance
between the top and baseline of the text. it is equal to the max ascent of the font.

Most of the time, you need not worry about the textOrigin property of the Text node, except when you
need to align it vertically relative to another node. Listing 18-2 shows how to center a Text node horizontally
and vertically in a scene. To center the node vertically, you must set the textOrigin property to VPos.TOP.
The text is displayed as shown in Figure 18-3. If you do not set the textOrigin property, its y-axis is aligned
with its baseline and it appears above the centerline of the scene.

Listing 18-2. Centering a Text Node in a Scene

// TextCentering.java
package com.jdojo.shape;

import javafx.application.Application;
import javafx.geometry.VPos;
import javafx.scene.Group;
import javafx.scene.Scene;
import javafx.scene.text.Text;
import javafx.stage.Stage;

public class TextCentering extends Application {
 public static void main(String[] args) {
 Application.launch(args);
 }

Beyond
(x, y)

Beyond
(x, y)

Beyond
(x, y)

textOrigin = VPos.BASELINEtextOrigin = VPos.TOP textOrigin = VPos.BOTTOM

Figure 18-2. Effects of the textOrigin property on the vertical location of text drawing

Chapter 18 ■ Understanding text nodes

793

 @Override
 public void start(Stage stage) {
 Text msg = new Text("A Centered Text Node");

 // Must set the textOrigian to VPos.TOP to center
 // the text node vertcially within the scene
 msg.setTextOrigin(VPos.TOP);

 Group root = new Group();
 root.getChildren().addAll(msg);
 Scene scene = new Scene(root, 200, 50);
 msg.layoutXProperty().bind(scene.widthProperty().subtract(
 msg.layoutBoundsProperty().get().getWidth()).divide(2));
 msg.layoutYProperty().bind(scene.heightProperty().subtract(
 msg.layoutBoundsProperty().get().getHeight()).divide(2));

 stage.setTitle("Centering a Text Node in a Scene");
 stage.setScene(scene);
 stage.sizeToScene();
 stage.show();
 }
}

Displaying Multiline Text
A Text node is capable of displaying multiple lines of text. It creates a new line in two cases:

A newline character ‘•	 \n ’ in the text creates a new line causing the characters
following the newline to wrap to the next line.

The •	 Text class contains a wrappingWidth property, which is 0.0 by default. Its value
is specified in pixels, not characters. If it is greater than zero, the text in each line is
wrapped to at the specified value.

The lineSpacing property specifies the vertical spacing in pixels between two lines. It is 0.0 by default.
The textAlignment property specifies the horizontal alignment of the text lines in the bounding box. The

widest line defines the width of the bounding box. Its value has no effect in a single line Text node. Its value
can be one of the constants of the TextAlignment enum: LEFT, RIGHT< CENTER, and JUSTIFY. The default is
TextAlignment.LEFT.

Figure 18-3. A Text node centered in a scene

Chapter 18 ■ Understanding text nodes

794

The program in Listing 18-3 creates three multiline Text nodes as shown in Figure 18-4. The text
for all nodes is the same. The text contains three newline characters. The first node uses the default LEFT
text alignment and a line spacing of 5px. The second node uses RIGHT text alignment with the default line
spacing of 0px. The third node uses a wrappingWidth of 100px. A new line is created at 100px as well as a
newline character ‘\n’.

Listing 18-3. Using Multiline Text Nodes

// MultilineText.java
package com.jdojo.shape;

import javafx.application.Application;
import javafx.scene.Scene;
import javafx.scene.layout.HBox;
import javafx.scene.text.Text;
import javafx.scene.text.TextAlignment;
import javafx.stage.Stage;

public class MultilineText extends Application {
 public static void main(String[] args) {
 Application.launch(args);
 }

 @Override
 public void start(Stage stage) {
 String text = "Strange fits of passion have I known: \n" +
 "And I will dare to tell, \n" +
 "But in the lover's ear alone, \n" +
 "What once to me befell.";

 Text t1 = new Text(text);
 t1.setLineSpacing(5);

 Text t2 = new Text(text);
 t2.setTextAlignment(TextAlignment.RIGHT);

 Text t3 = new Text(text);
 t3.setWrappingWidth(100);

 HBox root = new HBox(t1, t2, t3);
 root.setSpacing(20);
 root.setStyle("-fx-padding: 10;" +
 "-fx-border-style: solid inside;" +
 "-fx-border-width: 2;" +
 "-fx-border-insets: 5;" +
 "-fx-border-radius: 5;" +
 "-fx-border-color: blue;");

 Scene scene = new Scene(root);
 stage.setScene(scene);
 stage.setTitle("Using Multiline Text Nodes");
 stage.show();
 }
}

Chapter 18 ■ Understanding text nodes

795

Setting Text Fonts
The font property of the Text class defines the font for the text. The default font used is from “System” font
family with the “Regular” style. The size of the default font is dependent on the platform and the desktop
settings of the user.

A font has a family and a family name. A font family is also known as a typeface. A font family defines
shapes (or glyphs) for characters. The same characters appear differently when displayed using fonts
belonging to different font families. Variants of a font are created by applying styles. Each variant of the font
has a name that consists of the family name and the style names. For example, “Arial” is a family name of a
font whereas “Arial Regular,” “Arial Bold,” and “Arial Bold Italic” are names of the variants of the “Arial” font.

Creating Fonts
An instance of the Font class represents a font. The Font class provides two constructors:

•	 Font(double size)

•	 Font(String name, double size)

The first constructor creates a Font object of the specified size that belongs to the “System” font family.
The second one creates a Font object of the specified full name of the font and the specified size. The size of
the font is specified in points. The following snippet of code creates some font objects of the “Arial” family.
The getFamily(), getName(), and getSize() methods of the Font class return the family name, full name,
and size of the font, respectively.

// Arial Plain
Font f1 = new Font("Arial", 10);

// Arial Italic
Font f2 = new Font("Arial Italic", 10);

// Arial Bold Itailc
Font f3 = new Font("Arial Bold Italic", 10);

// Arial Narrow Bold
Font f4 = new Font("Arial Narrow Bold", 30);

Figure 18-4. Multiline Text nodes

Chapter 18 ■ Understanding text nodes

796

If the full font name is not found, the default “System” font will be created. It is hard to remember or
know the full names for all variants of a font. To address this, the Font class provides factory methods to
create fonts using a font family name, styles, and size:

•	 font(double size)

•	 font(String family)

•	 font(String family, double size)

•	 font(String family, FontPosture posture, double size)

•	 font(String family, FontWeight weight, double size)

•	 font(String family, FontWeight weight, FontPosture posture, double size)

The font()methods let you specify the family name, font weight, font posture, and font size. If only
the family name is provided, the default font size is used, which depends on the platform and the desktop
setting of the user.

The font weight specifies how bold the font is. Its value is one of the constants of the FontWeight
enum: THIN, EXTRA_LIGHT, LIGHT, NORMAL, MEDIUM, SEMI_BOLD, BOLD, EXTRA_BOLD, BLACK. The constant THIN
represents the thinnest font and the constant BLOCK the thickest font.

The posture of a font specifies whether it is italicized. It is represented by one of the two constants of the
FontPosture enum: REGULAR and ITALIC.

The following snippet of code creates fonts using the factory methods of the Font class.

// Arial Regular
Font f1 = Font.font("Arial", 10);

// Arial Bold
Font f2 = Font.font("Arial", FontWeight.BOLD, 10);

// Arial Bold Italic
Font f3 = Font.font("Arial", FontWeight.BOLD, FontPosture.ITALIC, 10);

// Arial THIN
Font f4 = Font.font("Arial", FontWeight.THIN, 30);

Tip ■ Use the getDefault() static method of the Font class to get the system default font.

The program in Listing 18-4 creates Text nodes and sets their font property. The first Text node uses
the default font. Figure 18-5 shows the Text nodes. The text for the Text nodes is the String returned from
the toString() method of their Font objects.

Listing 18-4. Setting Fonts for Text Nodes

// TextFontTest.java
package com.jdojo.shape;

import javafx.application.Application;
import javafx.scene.Scene;
import javafx.scene.layout.VBox;
import javafx.scene.text.Font;
import javafx.scene.text.FontPosture;

Chapter 18 ■ Understanding text nodes

797

import javafx.scene.text.FontWeight;
import javafx.scene.text.Text;
import javafx.stage.Stage;

public class TextFontTest extends Application {
 public static void main(String[] args) {
 Application.launch(args);
 }

 @Override
 public void start(Stage stage) {
 Text t1 = new Text();
 t1.setText(t1.getFont().toString());

 Text t2 = new Text();
 t2.setFont(Font.font("Arial", 12));
 t2.setText(t2.getFont().toString());

 Text t3 = new Text();
 t3.setFont(Font.font("Arial", FontWeight.BLACK, 12));
 t3.setText(t2.getFont().toString());

 Text t4 = new Text();
 t4.setFont(Font.font("Arial", FontWeight.THIN, FontPosture.ITALIC, 12));
 t4.setText(t2.getFont().toString());

 VBox root = new VBox(t1, t2, t3, t4);
 root.setSpacing(10);
 root.setStyle("-fx-padding: 10;" +
 "-fx-border-style: solid inside;" +
 "-fx-border-width: 2;" +
 "-fx-border-insets: 5;" +
 "-fx-border-radius: 5;" +
 "-fx-border-color: blue;");

 Scene scene = new Scene(root);
 stage.setScene(scene);
 stage.setTitle("Setting Fonts for Text Nodes");
 stage.show();
 }
}

Figure 18-5. Text nodes using variants of the “Arial” font family

Chapter 18 ■ Understanding text nodes

798

Accessing Installed Fonts
You can get the list of installed fonts on your machine. You can get the list of font family names, full font
names, and full font names for a specified family name for all installed fonts. The following static methods in
the Font class provide these lists.

•	 List<String> getFamilies()

•	 List<String> getFontNames()

•	 List<String> getFontNames(String family)

The following snippet of code prints the family names of all installed fonts on a machine. The output
was generated on Windows. A partial output is shown:

// Print the family names of all installed fonts
for(String familyName: Font.getFamilies()) {
 System.out.println(familyName);
}

Agency FB
Algerian
Arial
Arial Black
Arial Narrow
Arial Rounded MT Bold
...

The following snippet of code prints the full names of all installed fonts on a machine. The output was
generated on Windows. A partial output is shown:

// Print the full names of all installed fonts
for(String fullName: Font.getFontNames()) {
 System.out.println(fullName);
}

Agency FB
Agency FB Bold
Algerian
Arial
Arial Black
Arial Bold
Arial Bold Italic
Arial Italic
Arial Narrow
Arial Narrow Bold
Arial Narrow Bold Italic
More output goes here...

Chapter 18 ■ Understanding text nodes

799

The following snippet of code prints the full names of all installed fonts for the “Times New Roman”
family:

// Print the full names of “Times New Roman” family
for(String fullName: Font.getFontNames("Times New Roman")) {
 System.out.println(fullName);
}

Times New Roman
Times New Roman Bold
Times New Roman Bold Italic
Times New Roman Italic

Using Custom Fonts
You can load custom fonts from external sources: for example, from a file from the local file system or from
a URL. The loadFont() static method in the Font class loads a custom font.

•	 loadFont(InputStream in, double size)

•	 loadFont(String urlStr, double size)

Upon successfully loading of the custom font, the loadFont() method registers font with JavaFX
graphics engine, so a font can be created using the constructors and factory methods of the Font class. The
method also creates a Font object of the specified size and returns it. Therefore, the size parameter exists
for loading the font and creating its object in the same method call. If the method cannot load the font, it
returns null.

The program in Listing 18-5 shows how to load a custom font from a local file system. The font file name
is 4starfac.ttf. The file was downloaded free from http://www.fontfile.com. The file is assumed to be in
the CLASSPATH under resources\font directory. After the font is loaded successfully, it is set for the first Text
node. A new Font object is created for its family name and set for the second Text node. If the font file does
not exist or the font cannot be loaded, an appropriate error message is displayed in the window. Figure 18-6
shows the window when the font is loaded successfully.

Listing 18-5. Loading and Using Custom Fonts Using the Font Class

// TextCustomFont.java
package com.jdojo.shape;

import java.net.URL;
import javafx.application.Application;
import javafx.scene.Scene;
import javafx.scene.layout.HBox;
import javafx.scene.text.Font;
import javafx.scene.text.FontPosture;
import javafx.scene.text.FontWeight;
import javafx.scene.text.Text;
import javafx.stage.Stage;

http://www.fontfile.com/

Chapter 18 ■ Understanding text nodes

800

public class TextCustomFont extends Application {
 public static void main(String[] args) {
 Application.launch(args);
 }

 @Override
 public void start(Stage stage) {
 Text t1 = new Text();
 t1.setLineSpacing(10);

 Text t2 = new Text("Another Text node");

 // Load the custom font
 String fontFile = "resources/font/4starfac.ttf";
 URL url = this.getClass().getClassLoader().getResource(fontFile);
 if (url != null) {
 String urlStr = url.toExternalForm();
 Font customFont = Font.loadFont(urlStr, 16);
 if (customFont != null) {
 // Set the custom font for the first Text node
 t1.setFont(customFont);

 // Set the text and line spacing
 t1.setText("Hello from the custom font!!! \nFont Family: " +
 customFont.getFamily());

 // Create an object of the custom font and use it
 Font font2 = Font.font(customFont.getFamily(), FontWeight.BOLD,
 FontPosture.ITALIC, 24);

 // Set the custom font for the second Text node
 t2.setFont(font2);
 } else {
 t1.setText("Could not load the custom font from " + urlStr);
 }
 } else {
 t1.setText("Could not find the custom font file " +
 fontFile + " in CLASSPATH. Used the default font.");
 }

 HBox root = new HBox(t1, t2);
 root.setSpacing(20);
 root.setStyle("-fx-padding: 10;" +
 "-fx-border-style: solid inside;" +
 "-fx-border-width: 2;" +
 "-fx-border-insets: 5;" +
 "-fx-border-radius: 5;" +
 "-fx-border-color: blue;");

Chapter 18 ■ Understanding text nodes

801

 Scene scene = new Scene(root);
 stage.setScene(scene);
 stage.setTitle("Loading and Using Custom Font");
 stage.show();
 }
}

Setting Text Fill and Stroke
A Text node is a shape. Like a shape, it can have a fill and a stroke. By default, a Text node has null stroke
and Color.BLACK fill. The Text class inherits properties and methods for setting its stroke and fill from the
Shape class. I have discussed them at length in Chapter 17.

The Program in Listing 18-6 shows how to set stroke and fill for Text nodes. Figure 18-7 shows two Text
nodes. The first one uses a red stroke and a white fill. The second one uses a black stroke and white fill.
The stroke style for the second one uses a dashed line.

Listing 18-6. Using Stroke and Fill for Text Nodes

// TextFillAndStroke.java
package com.jdojo.shape;

import javafx.application.Application;
import javafx.scene.Scene;
import javafx.scene.layout.HBox;
import javafx.scene.paint.Color;
import javafx.scene.text.Font;
import javafx.scene.text.Text;
import javafx.stage.Stage;

public class TextFillAndStroke extends Application {
 public static void main(String[] args) {
 Application.launch(args);
 }

 @Override
 public void start(Stage stage) {
 Text t1 = new Text("Stroke and fill!");
 t1.setStroke(Color.RED);
 t1.setFill(Color.WHITE);
 t1.setFont(new Font(36));

Figure 18-6. Text nodes using custom fonts

Chapter 18 ■ Understanding text nodes

802

 Text t2 = new Text("Dashed Stroke!");
 t2.setStroke(Color.BLACK);
 t2.setFill(Color.WHITE);
 t2.setFont(new Font(36));
 t2.getStrokeDashArray().addAll(5.0, 5.0);

 HBox root = new HBox(t1, t2);
 root.setSpacing(20);
 root.setStyle("-fx-padding: 10;" +
 "-fx-border-style: solid inside;" +
 "-fx-border-width: 2;" +
 "-fx-border-insets: 5;" +
 "-fx-border-radius: 5;" +
 "-fx-border-color: blue;");

 Scene scene = new Scene(root);
 stage.setScene(scene);
 stage.setTitle("Using Stroke and Fill for Text Nodes");
 stage.show();
 }
}

Applying Text Decorations
The Text class contains two boolean properties to apply text decorations to its text:

•	 strikethrough

•	 underline

By default, both properties are set to false. If the strikethrough is set to true, a line is drawn through
each line of text. If the underline is set to true, a line is drawn below each line of text. The following snippet
of code uses the decorations for Text nodes. The nodes are shown in Figure 18-8.

Text t1 = new Text("It uses the \nunderline decoaration.");
t1.setUnderline(true);

Text t2 = new Text("It uses the \nstrikethrough decoration.");
t2.setStrikethrough(true);

Figure 18-7. Text nodes using strokes and fills

Chapter 18 ■ Understanding text nodes

803

Applying Font Smoothing
The Text class contains a fontSmoothingType property, which can be used to apply a gray or LCD font smoothing.
Its value is one of the constants of the FontSmoothingType enum: GRAY and LCD. The default-smoothing type is
fontSmoothingType.GRAY. The LCD smoothing type is used as a hint. The following snippet of code creates two
Text nodes: one uses LCD and one GRAY font-smoothing type. The Text nodes have been shown in Figure 18-9.

Text t1 = new Text("Hello world in LCD.");
t1.setFontSmoothingType(FontSmoothingType.LCD);

Text t2 = new Text("Hello world in GRAY.");
t2.setFontSmoothingType(FontSmoothingType.GRAY);

Styling a Text Node with CSS
A Text node does not have a default CSS style-class name. In addition to all CSS properties of the Shape,
a Text node supports the following CSS properties:

•	 -fx-font

•	 -fx-font-smoothing-type

•	 -fx-text-origin

•	 -fx-text-alignment

•	 -fx-strikethrough

•	 -fx-underline

I have discussed all properties in the previous sections. The -fx-font property is inherited from the
parent. If the parent does not set the property, the default system font is used. The valid values for the
-fx-font-smoothing-type property are lcd and gray. The valid values for the -fx-text-origin property are
baseline, top, and bottom. Let us create a style named my-text as follows. It sets a font and a linear gradient
fill. The fill starts as a light gray color and ends as black.

.my-text {
 -fx-font: 36 Arial;
 -fx-fill: linear-gradient(from 0% 0% to 100% 0%, lightgray 0%, black 100%);
 -fx-font-smoothing-type: lcd;
 -fx-underline: true;
}

Figure 18-9. Text nodes using LCD and GRAY font-smoothing types

Figure 18-8. Text nodes using the underline and strikethrough decorations

Chapter 18 ■ Understanding text nodes

804

The following snippet of code creates a Text node and sets it style-class name to my-text. Figure 18-10
shows the Text node with its styled applied to it.

Text t1 = new Text("Styling Text Nodes!");
t1.getStyleClass().add("my-text");

Summary
A text node is an instance of the Text class that is used to render text. The Text class contains several
properties to customize the appearance of text. The Text class and all its related classes are in the
javafx.scene.text package. The Text class inherits from the Shape class. That is, a Text is a Shape, which
allows you to use all properties and methods of the Shape class on a Text node. A Text node is capable of
displaying multiple lines of text.

A Text node contains text and properties to render the text. You can create a Text node using one of the
three constructors of the Text class. You can specify the text or text and position of the text while creating the
node. The no-args constructor creates a text node with an empty text and is located at (0, 0).

The no-args constructor creates a Text node with an empty string as its text. Other constructors let you
specify the text and position the node. The width and height of a text node are automatically determined by
its font. By default, a Text node uses a system default font to render its text.

Apart from the local and parent coordinate system, a Text node has an additional coordinate system.
It is the coordinate system used for drawing the text. The x, y, and textOrigin properties of the Text class
define the text coordinate system: The x and y properties define the x and y coordinates of the text origin.
The textOrigin property is of type VPos. Its value could be VPos.BASELINE, VPos.TOP, VPos.CENTER, and
VPos.BOTTOM. The default is VPos.BASELINE. It defines where the x-axis of the text coordinate system lies
within the text height.

The font property of the Text class defines the font for the text. The default font used is from “System”
font family with the “Regular” style. The size of the default font is dependent on the platform and the
desktop settings of the user. An instance of the Font class represents a font. The Font class contains several
static methods that let you access the installed fonts on your computer and load custom fonts from font files.

A Text node is a shape. Like a shape, it can have a fill and a stroke. By default, a Text node has null
stroke and Color.BLACK fill.

The strikethrough and underline properties of the Text class lets you text decorations to the text.
By default, both properties are set to false.

The Text class contains a fontSmoothingType property, which can be used to apply a gray or LCD font
smoothing. Its value is one of the constants of the FontSmoothingType enum: GRAY and LCD. The default-
smoothing type is fontSmoothingType.GRAY. The LCD-smoothing type is used as a hint.

You can style Text nodes using CSS. Setting font, text alignment, font smoothing, and decorations are
supported through CSS.

The next chapter will discuss how to draw 3D shapes in JavaFX.

Figure 18-10. A Text node using CSS styles

805

Chapter 19

Understanding 3D Shapes

In this chapter, you will learn:

About 3D shapes and the classes representing 3D shapes in JavaFX•	

How to check whether your machine supports 3D•	

About the 3D coordinate system used in JavaFX•	

About the rendering order of nodes•	

How to draw predefined 3D shapes•	

About the different types of cameras and how to use them to render scenes•	

How to use light sources to view 3D objects in scenes•	

How to create and use subscenes•	

How to draw user-defined 3D shapes in JavaFX•	

What Are 3D Shapes?
Any shape, drawn in a three-dimensional space, having three dimensions (length, width, and depth) is
known as a 3D shape. Cubes, spheres, and pyramids are examples.

Although it was possible to have 2D nodes with 3D effects before, JavaFX 8 offers real 3D shapes as
nodes. Before Java FX 8, the 3D effects were achieved using transformations in 3D space. JavaFX 8 offers two
types of 3D shapes.

Predefined shapes•	

User-defined shapes•	

Box, sphere, and cylinder are three predefined 3D shapes that you can readily use in your JavaFX
applications. You can also create any type of 3D shapes using a triangle mesh.

Figure 19-1 shows a class diagram of classes representing JavaFX 3D shapes. The 3D-shape classes are
in the javafx.scene.shape package. The Box, Sphere, and Cylinder classes represent the three predefined
shapes. The MeshView class represents a user-defined 3D shape in a scene.

Chapter 19 ■ Understanding 3d shapes

806

The 3D visualization in JavaFX is accomplished using lights and cameras. Lights and cameras are also
nodes, which are added to the scene. You add 3D nodes to a scene, light it with lights, and view it using a
camera. The positions of lights and cameras in the space determine the lighted and viewable areas of the
scene. Figure 19-2 shows a 3D box, which is created using an instance of the Box class.

Checking Support for 3D
JavaFX 3D support is a conditional feature. If it is not supported on your platform, you get a warning message
on the console when you run a program that attempts to use 3D features. Run the program in Listing 19-1 to
check if your machine supports JavaFX 3D. The program will print a message stating whether the 3D support
is available.

Listing 19-1. Checking JavaFX 3D Support on Your Machine

// Check3DSupport.java
package com.jdojo.shape3d;

import javafx.application.ConditionalFeature;
import javafx.application.Platform;

public class Check3DSupport {
 public static void main(String[] args) {
 boolean supported = Platform.isSupported(ConditionalFeature.SCENE3D);

Figure 19-1. A class diagram for classes representing 3D shapes

Figure 19-2. An example of a 3D box shape

Chapter 19 ■ Understanding 3d shapes

807

 if (supported) {
 System.out.println("3D is supported on your machine.");
 } else {
 System.out.println("3D is not supported on your machine.");
 }
 }
}

The 3D Coordinate System
A point in the 3D space is represented by (x, y, z) coordinates. A 3D object has three dimensions: x, y, and z.
Figure 19-3 shows the 3D coordinate system used in JavaFX.

The positive direction of the x-axis points to the right from the origin; the positive direction of the y-axis
points down; the positive direction of the z-axis points into the screen (away from the viewer). The negative
directions on the axes, which are not shown, extend in the opposite directions at the origin.

Rendering Order of Nodes
Suppose you are looking at two overlapping objects at a distance. The object closer to you always overlaps
the object farther from you, irrespective of the sequence in which they appeared in the view. When dealing
with 3D objects in JavaFX, you would like them to appear the same way.

In JavaFX, by default, nodes are rendered in the order they are added to the scene graph. Consider the
following snippet of code:

Rectangle r1 = new Rectangle(0, 0, 100, 100);
Rectangle r2 = new Rectangle(50, 50, 100, 100);
Group group = new Group(r1, r2);

(0, 0, 0)

z axis

x axis

y axis

Figure 19-3. The 3D coordinate system used in JavaFX

Chapter 19 ■ Understanding 3d shapes

808

Two rectangles are added to a group. The rectangle r1 is rendered first followed by rectangle r2.
The overlapping area will show only the area of r2, not r1. If the group was created as new Group(r2, r1),
the rectangle r2 will be rendered first followed with rectangle r1. The overlapping area will show the area
of r1, not r2. Let us add the z coordinates for the two rectangles as follows:

Rectangle r1 = new Rectangle(0, 0, 100, 100);
r1.setTranslateZ(10);

Rectangle r2 = new Rectangle(50, 50, 100, 100);
r2.setTranslateZ(50);

Group group = new Group(r1, r2);

The foregoing snippet of code will produce the same effect as before. The rectangle r1 will be rendered
first followed by the rectangle r2. The z values for the rectangles are ignored. In this case, you would like to
render the rectangle r1 last as it is closer to the viewer (z=10 is closer than z=50).

The previous rendering behavior is not desirable in a 3D space. You expect the 3D objects to appear the
same way as they would appear in a real world. You need to do two things two achieve this.

When creating a •	 Scene object, specify that it needs to have a depth buffer.

Specify in the nodes that their z coordinate values should be used during •	
rendering. That is, they need to be rendered according to their depth (the distance
from the viewer).

When you create a Scene object, you need to specify the depthBuffer flag, which is set to false by default.

// Create a Scene object with depthBuffer set to true
double width = 300;
double height = 200;
boolean depthBuffer = true;
Scene scene = new Scene(root, width, height, depthBuffer);

The depthBuffer flag for a scene cannot be changed after the scene is created. You can check whether a
scene has a depthBuffer using the isDepthBuffer() method of the Scene object.

The Node class contains a depthTest property, which is available for all nodes in JavaFX. Its value is one
of the constants of the javafx.scene.DepthTest enum:

•	 ENABLE

•	 DISABLE

•	 INHERIT

The ENABLE value for the depthTest indicates that the z coordinate values should be taken into account
when the node is rendered. When the depth testing is enabled for a node, its z coordinate is compared with
all other nodes with depth testing enabled, before rendering.

The DISABLE value indicates that the nodes are rendered in the order they are added to the scene graph.
The INHERIT value indicates that the depthTest property for a node is inherited from its parent. If a

node has null parent, it is the same as ENABLE.
The program in Listing 19-2 demonstrates the concepts of using the depth buffer for a scene and the

depth test for nodes. It adds two rectangles to a group. The rectangles are filled with red and green colors.
The z coordinates for the red and green rectangles are 400px and 300px, respectively. The green rectangle is
added to the group first. However, it is rendered first as it is closer to the viewer. You have added a camera to
the scene, which is needed to view objects having depth (the z coordinate). The CheckBox is used to enable

Chapter 19 ■ Understanding 3d shapes

809

and disable the depth test for the rectangles. When the depth test is disabled, the rectangles are rendered in
the order they are added to the group: the green rectangle followed with the red rectangle. Figure 19-4 shows
rectangles in both states.

Listing 19-2. Enabling/Disabling DepthTest Property for Nodes

// DepthTestCheck.java
package com.jdojo.shape3d;

import javafx.application.Application;
import javafx.scene.Group;
import javafx.scene.PerspectiveCamera;
import javafx.scene.Scene;
import javafx.scene.control.CheckBox;
import javafx.scene.layout.BorderPane;
import javafx.scene.paint.Color;
import javafx.scene.shape.Rectangle;
import javafx.scene.DepthTest;
import javafx.stage.Stage;

public class DepthTestCheck extends Application {
 public static void main(String[] args) {
 Application.launch(args);
 }

 @Override
 public void start(Stage stage) {
 // Create two rectangles and add then to a Group
 Rectangle red = new Rectangle(100, 100);
 red.setFill(Color.RED);
 red.setTranslateX(100);
 red.setTranslateY(100);
 red.setTranslateZ(400);

 Rectangle green = new Rectangle(100, 100);
 green.setFill(Color.GREEN);
 green.setTranslateX(150);
 green.setTranslateY(150);
 green.setTranslateZ(300);

 Group center = new Group(green, red);

 CheckBox depthTestCbx = new CheckBox("DepthTest for Rectangles");
 depthTestCbx.setSelected(true);
 depthTestCbx.selectedProperty().addListener(
 (prop, oldValue, newValue) -> {
 if (newValue) {
 red.setDepthTest(DepthTest.ENABLE);
 green.setDepthTest(DepthTest.ENABLE);
 }

Chapter 19 ■ Understanding 3d shapes

810

 else {
 red.setDepthTest(DepthTest.DISABLE);
 green.setDepthTest(DepthTest.DISABLE);
 }
 });

 // Create a BorderPane as the root node for the scene. Need to
 // set the background transparent, so the cemera can view the
 // rectangles behind the surface of the BorderPane
 BorderPane root = new BorderPane();
 root.setStyle("-fx-background-color: transparent;");
 root.setTop(depthTestCbx);
 root.setCenter(center);

 // Create a scene with depthBuffer enabled
 Scene scene = new Scene(root, 200, 200, true);

 // Need to set a camera to look into the 3D space of the scene
 scene.setCamera(new PerspectiveCamera());

 stage.setScene(scene);
 stage.setTitle("Depth Test");
 stage.show();
 }
}

Figure 19-4. Effects of depthTest property on rendering nodes

Using Predefined 3D Shapes
JavaFX 8 provides the following three built-in 3D geometric shapes:

•	 Box

•	 Sphere

•	 Cylinder

Chapter 19 ■ Understanding 3d shapes

811

The shapes are represented by instances of the Box, Sphere, and Cylinder classes. The classes inherit
from the Shape3D class, which contains three properties that are common to all types of 3D shapes.

Material•	

Draw mode•	

Cull face•	

I will discuss these properties in detail in subsequent sections. If you do not specify these properties for
a shape, reasonable defaults are provided.

The properties specific to a shape type are defined in the specific class defining the shape. For
example, properties for a box are defined in the Box class. All shapes are nodes. Therefore, you can apply
transformations to them. You can position them at any point in the 3D space using the translateX,
translateY, and translateZ transformations

Tip ■ the center of a 3d shape is located at the origin of the local coordinate system of the shape.

A Box is defined by the following three properties:

•	 width

•	 height

•	 depth

The Box class contains two constructors:

•	 Box()

•	 Box(double width, double height, double depth)

The no-args constructor creates a Box with width, height, and depth of 2.0 each. The other constructor
lets you specify the dimensions of the Box. The center of the Box is located at the origin of its local coordinate
system.

// Create a Box with width=10, height=20, and depth=50
Box box = new Box(10, 20, 50);

A Sphere is defined by only one property named radius. The Sphere class contains three constructors:

•	 Sphere()

•	 Sphere(double radius)

•	 Sphere(double radius, int divisions)

The no-args constructor creates a sphere of radius 1.0.
The second constructor lets you specify the radius of the sphere.
The third constructor lets you specify the radius and divisions. A 3D sphere is made up of many

divisions, which are constructed from connected triangles. The value of the number of divisions defines the
resolution of the sphere. The higher the number of divisions, the smoother the sphere looks. By default, a
value of 64 is used for the divisions. The value of divisions cannot be less than 1.

// Create a Sphere with radius =50
Sphere sphere = new Sphere(50);

Chapter 19 ■ Understanding 3d shapes

812

A Cylinder is defined by two properties:

•	 radius

•	 height

The radius of the cylinder is measured on the XZ plane. The axis of the cylinder is measured along the
y-axis. The height of the cylinder is measured along its axis. The Cylinder class contains three constructors:

•	 Cylinder()

•	 Cylinder(double radius, double height)

•	 Cylinder(double radius, double height, int divisions)

The no-args constructor creates a Cylinder with a 1.0 radius and a 2.0 height.
The second constructor lets you specify the radius and height properties.
The third constructor lets you specify the number of divisions, which defines the resolution of the

cylinder. The higher the number of divisions, the smoother the cylinder looks. Its default value is 15 along the
x-axis and z-axis each. Its value cannot be less than 3. If a value less than 3 is specified, a value of 3 is used. Note
that the number of divisions does not apply along the y-axis. Suppose the number of divisions is 10. It means
that the vertical surface of the cylinder is created using 10 triangles. The height of the triangle will extend the
entire height of the cylinder. The base of the cylinder will be created using 10 triangles.

// Create a cylinder with radius=40 and height=120
Cylinder cylinder = new Cylinder(40, 120);

The program in Listing 19-3 shows how to create 3D shapes. Figure 19-5 shows the shapes.

Listing 19-3. Creating 3D Primitive Shapes: Box, Sphere, and Cylinder

// PreDefinedShapes.java
package com.jdojo.shape3d;

import javafx.application.Application;
import javafx.scene.Group;
import javafx.scene.PerspectiveCamera;
import javafx.scene.PointLight;
import javafx.scene.Scene;
import javafx.scene.shape.Box;
import javafx.scene.shape.Cylinder;
import javafx.scene.shape.Sphere;
import javafx.stage.Stage;

public class PreDefinedShapes extends Application {
 public static void main(String[] args) {
 Application.launch(args);
 }

 @Override
 public void start(Stage stage) {
 // Create a Box
 Box box = new Box(100, 100, 100);
 box.setTranslateX(150);
 box.setTranslateY(0);
 box.setTranslateZ(400);

Chapter 19 ■ Understanding 3d shapes

813

 // Create a Sphere
 Sphere sphere = new Sphere(50);
 sphere.setTranslateX(300);
 sphere.setTranslateY(-5);
 sphere.setTranslateZ(400);

 // Create a cylinder
 Cylinder cylinder = new Cylinder(40, 120);
 cylinder.setTranslateX(500);
 cylinder.setTranslateY(-25);
 cylinder.setTranslateZ(600);

 // Create a light
 PointLight light = new PointLight();
 light.setTranslateX(350);
 light.setTranslateY(100);
 light.setTranslateZ(300);

 // Add shapes and a light to the group
 Group root = new Group(box, sphere, cylinder, light);

 // Create a Scene with depth buffer enabled
 Scene scene = new Scene(root, 300, 100, true);

 // Set a camera to view the 3D shapes
 PerspectiveCamera camera = new PerspectiveCamera(false);
 camera.setTranslateX(100);
 camera.setTranslateY(-50);
 camera.setTranslateZ(300);
 scene.setCamera(camera);

 stage.setScene(scene);
 stage.setTitle("Using 3D Shapes: Box, Sphere and Cylinder");
 stage.show();
 }
}

Figure 19-5. Primitive 3D shapes: a box, a sphere, and a cylinder

Chapter 19 ■ Understanding 3d shapes

814

The program creates the three shapes and positions them in the space. It creates a light, which is an
instance of the PointLight, and positions it in the space. Note that a light is also a Node. The light is used to
light the 3D shapes. All shapes and the light are added to a group, which is added to the scene.

To view the shapes, you need to add a camera to the scene. The program adds a PerspectiveCamera to
the scene. Note that you need to position the camera as its position and orientation in the space determine
what you see. The origin of the local coordinate system of the camera is located at the center of the scene.
Try resizing the window after you run the program. You will notice that the view of the shapes changes as
you resize the window. It happens because the center of the scene is changing when you resize the window,
which in turn repositions the camera, resulting in the change in the view.

Specifying the Shape Material
A material is used for rendering the surface of shapes. You can specify the material for the surface of 3D
objects using the material property, which is defined in the Shape3D class. The material property is an
instance of the abstract class Material. JavaFX provides the PhongMaterial class as the only concrete
implementation of Material. Both classes are in the javafx.scene.paint package. An instance of the
PhongMaterial class represents Phong shaded material. Phong shaded material is based on Phong shading
and the Phong reflection model (also known as Phong illumination and Phong lighting), which were
developed at the University of Utah by Bui Tuong Phong as part of his Ph.D. dissertation in 1973. A complete
discussion of the Phong model is beyond the scope of this book. The model provides an empirical formula
to compute the color of a pixel on the geometric surface in terms of the following properties defined in the
PhongMaterial class:

•	 diffuseColor

•	 diffuseMap

•	 specularColor

•	 specularMap

•	 selfIlluminationMap

•	 specularPower

•	 bumpMap

The PhongMaterial class contains three constructors:

•	 PhongMaterial()

•	 PhongMaterial(Color diffuseColor)

•	 PhongMaterial(Color diffuseColor, Image diffuseMap, Image specularMap,
Image bumpMap, Image selfIlluminationMap)

The no-args constructor creates a PhongMaterial with the diffuse color as Color.WHITE. The other
two constructors are used to create a PhongMaterial with the specified properties.

When you do not provide a material for a 3D shape, a default material with a diffuse color of
Color.LIGHTGRAY is used for rendering the shape. All shapes in our previous example in Listing 19-3 used
the default material.

Chapter 19 ■ Understanding 3d shapes

815

The following snippet of code creates a Box, creates a PhongMaterial with tan diffuse color, and sets the
material to the box:

Box box = new Box(100, 100, 100);
PhongMaterial material = new PhongMaterial();
material.setDiffuseColor(Color.TAN);
box.setMaterial(material);

You can use an Image as the diffuse map to have texture for the material, as shown in the following code:

Box boxWithTexture = new Box(100, 100, 100);
PhongMaterial textureMaterial = new PhongMaterial();
Image randomness = new Image("resources/picture/randomness.jpg");
textureMaterial.setDiffuseMap(randomness);
boxWithTexture.setMaterial(textureMaterial);

The program in Listing 19-4 shows how to create and set material for shapes. It creates two boxes. It sets
the diffuse color for one box and the diffuse map for other. The image used for the diffuse map provides the
texture for the surface of the second box. The two boxes look as shown in Figure 19-6.

Listing 19-4. Using the Diffuse Color and Diffuse Map to Create PhongMaterial

// MaterialTest.java
package com.jdojo.shape3d;

import javafx.application.Application;
import javafx.scene.Group;
import javafx.scene.PerspectiveCamera;
import javafx.scene.PointLight;
import javafx.scene.Scene;
import javafx.scene.image.Image;
import javafx.scene.paint.Color;
import javafx.scene.paint.PhongMaterial;
import javafx.scene.shape.Box;
import javafx.stage.Stage;

public class MaterialTest extends Application {
 public static void main(String[] args) {
 Application.launch(args);
 }

 @Override
 public void start(Stage stage) {
 // Create a Box
 Box box = new Box(100, 100, 100);

 // Set the material for the box
 PhongMaterial material = new PhongMaterial();
 material.setDiffuseColor(Color.TAN);
 box.setMaterial(material);

Chapter 19 ■ Understanding 3d shapes

816

 // Place the box in the space
 box.setTranslateX(250);
 box.setTranslateY(0);
 box.setTranslateZ(400);

 // Create a Box with texture
 Box boxWithTexture = new Box(100, 100, 100);
 PhongMaterial textureMaterial = new PhongMaterial();
 Image randomness = new Image("resources/picture/randomness.jpg");
 textureMaterial.setDiffuseMap(randomness);
 boxWithTexture.setMaterial(textureMaterial);

 // Place the box in the space
 boxWithTexture.setTranslateX(450);
 boxWithTexture.setTranslateY(-5);
 boxWithTexture.setTranslateZ(400);

 PointLight light = new PointLight();
 light.setTranslateX(250);
 light.setTranslateY(100);
 light.setTranslateZ(300);

 Group root = new Group(box, boxWithTexture);

 // Create a Scene with depth buffer enabled
 Scene scene = new Scene(root, 300, 100, true);

 // Set a camera to view the 3D shapes
 PerspectiveCamera camera = new PerspectiveCamera(false);
 camera.setTranslateX(200);
 camera.setTranslateY(-50);
 camera.setTranslateZ(325);
 scene.setCamera(camera);

 stage.setScene(scene);
 stage.setTitle("Using Material Color and Texture for 3D Surface");
 stage.show();
 }
}

Figure 19-6. Two boxes: one with a tan diffuse color and one with texture using a diffuse map

Chapter 19 ■ Understanding 3d shapes

817

Specifying the Draw Mode of Shapes
A 3D shape surface consists of many connected polygons made up of triangles. For example, a Box is made
up of 12 triangles—each side of the Box using two triangles. The drawMode property in the Shape3D class
specifies how the surface of 3D shapes is rendered. Its value is one of the constants of the DrawMode enum.

•	 DrawMode.FILL

•	 DrawMode.LINE

The DrawMode.FILL is the default and it fills the interior of the triangles. The DrawMode.LINE draws only
the outline of the triangles. That is, it draws only lines connecting the vertices of the consecutive triangles.

// Create a Box with outline only
Box box = new Box(100, 100, 100);
box.setDrawMode(DrawMode.LINE);

The program in Listing 19-5 shows how to draw only the outline of 3D shapes. Figure 19-7 shows the
shapes. The program is similar to the one shown in Listing 19-3. The program sets the drawMode property
of all shapes to DrawMode.LINE. The program specifies the divisions of creating the Sphere and Cylinder.
Change the value for divisions to a lesser value. You will notice that the number of triangles used to create
the shapes decreases, making the shape less smooth.

Listing 19-5. Drawing Only Lines for 3D Shapes

// DrawModeTest.java
package com.jdojo.shape3d;

import javafx.application.Application;
import javafx.scene.Group;
import javafx.scene.PerspectiveCamera;
import javafx.scene.PointLight;
import javafx.scene.Scene;
import javafx.scene.shape.Box;
import javafx.scene.shape.Cylinder;
import javafx.scene.shape.DrawMode;
import javafx.scene.shape.Sphere;
import javafx.stage.Stage;

public class DrawModeTest extends Application {
 public static void main(String[] args) {
 Application.launch(args);
 }

 @Override
 public void start(Stage stage) {
 // Create a Box
 Box box = new Box(100, 100, 100);
 box.setDrawMode(DrawMode.LINE);
 box.setTranslateX(150);
 box.setTranslateY(0);
 box.setTranslateZ(400);

Chapter 19 ■ Understanding 3d shapes

818

 // Create a Sphere: radius = 50, divisions=20
 Sphere sphere = new Sphere(50, 20);
 sphere.setDrawMode(DrawMode.LINE);
 sphere.setTranslateX(300);
 sphere.setTranslateY(-5);
 sphere.setTranslateZ(400);

 // Create a cylinder: radius=40, height=120, divisions=5
 Cylinder cylinder = new Cylinder(40, 120, 5);
 cylinder.setDrawMode(DrawMode.LINE);
 cylinder.setTranslateX(500);
 cylinder.setTranslateY(-25);
 cylinder.setTranslateZ(600);

 PointLight light = new PointLight();
 light.setTranslateX(350);
 light.setTranslateY(100);
 light.setTranslateZ(300);

 Group root = new Group(box, sphere, cylinder, light);

 // Create a Scene with depth buffer enabled
 Scene scene = new Scene(root, 300, 100, true);

 // Set a camera to view the 3D shapes
 PerspectiveCamera camera = new PerspectiveCamera(false);
 camera.setTranslateX(100);
 camera.setTranslateY(-50);
 camera.setTranslateZ(300);
 scene.setCamera(camera);

 stage.setScene(scene);
 stage.setTitle("Drawing Only Lines");
 stage.show();
 }
}

Figure 19-7. Drawing the outline of 3D shapes

Chapter 19 ■ Understanding 3d shapes

819

Specifying the Face Culling for Shapes
A 3D object is never visible entirely. For example, you can never see an entire building at once. When you
change the viewing angle, you see different parts of the building. If you face the front of the building, you see
only the front part of the building. Standing in front, if you move to the right, you see the front and right sides
of the building.

The surface of 3D objects is made of connected triangles. Each triangle has two faces: the exterior
face and the interior face. You see the exterior face of the triangles when you look at the 3D objects. Not all
triangles are visible all the time. Whether a triangle is visible depends on the position of the camera. There is
a simple rule to determine the visibility of triangles making up the surface of a 3D object. Draw a line coming
out from the plane of the triangle and the line is perpendicular to the plane of a triangle. Draw another line
from the point where the first line intersects the plane of the triangle to the viewer. If the angle between two
lines is greater than 90 degrees, the face of the triangle is not visible to the view. Otherwise, the face of the
triangle is visible to the viewer. Note that not both faces of a triangle are visible at the same time.

Face culling is a technique of rendering 3D geometry based on the principle that the nonvisible parts of
an object should not be rendered. For example, if you are facing a building from the front, there is no need to
render the sides, top, and bottom of the building, as you cannot see them.

Tip ■ Face culling is used in 3d rendering to enhance performance.

The Shape3D class contains a cullFace property that specifies the type of culling applied in rendering
the shape. Its value is one of the constants of the CullFace enum:

•	 BACK

•	 FRONT

•	 NONE

The CullFace.BACK specifies that all triangles that cannot be seen through the camera in its current
position should be culled (i.e., not rendered). That is, all triangles whose exterior faces are not facing the
camera should be culled. If you are facing the front of a building, this setting will render only the front part of
the building. This is the default.

The CullFace.FRONT specifies that the all triangles whose exterior faces are facing the camera should
be culled. If you are facing the front of a building, this setting will render all parts of the building, except the
front part.

The CullFace.NONE specifies that no face culling should be applied. That is, all triangles making up the
shape should be rendered.

// Create a Box with no face culling
Box box = new Box(100, 100, 100);
Box.setCullFace(CullFace.NONE);

It is easy to see the effect of face culling when you draw the shape using the drawMode as DrawMode.LINE.
I will draw only nonculled triangles. Figure 19-8 shows the same Box using three different face cullings. The
first Box (from left) uses the back-face culling, the second front-face culling, and the third one uses no culling.
Notice that the first picture of the Box shows the front, right, and top faces whereas these faces are culled in the
second Box. In the second picture, you see the back, left, and bottom faces. Note that when you use front-face
culling, you see the interior faces of the triangles as the exterior faces are hidden from the view.

Chapter 19 ■ Understanding 3d shapes

820

Using Cameras
Cameras are used to render the scene. Two types of cameras are available.

Perspective camera•	

Parallel camera•	

The names of the cameras suggest the projection type they use to render the scene. Cameras in JavaFX
are nodes. They can be added to the scene graph and positioned like other nodes.

The abstract base class Camera represents a camera. Two concrete subclasses of the Camera class exist:
PerspectiveCamera and ParallelCamera. The three classes are in the javafx.scene package.

Tip ■ Before Java 8, camera classes were inherited from the Object class and they were not nodes.
in JavaFX 8, they inherit from the Node class.

A PerspectiveCamera defines the viewing volume for a perspective projection, which is a truncated
right pyramid as shown in Figure 19-9. The camera projects the objects contained within the near and far
clipping planes onto the projection plane. Therefore, any objects outside the clipping planes are not visible.

CullFace.BACK CullFace.FRONT CullFace.NONE

Figure 19-8. A box using different cullFace properties

Camera

Near clipping
plane

Far clipping
plane

Figure 19-9. The viewing volume of a perspective camera defined by the near clip and far clip planes

Chapter 19 ■ Understanding 3d shapes

821

The content that the camera will project onto the projection plane is defined by two properties in the
Camera class.

•	 nearClip

•	 farClip

The nearClip is the distance between the camera and the near clipping plane. Objects closer to the
camera than the nearClip are not rendered. The default value is 0.1.

The farClip is the distance between the camera and the far clipping plane. Objects farther from the
camera than the farClip are not rendered. The default value is 100.

The PerspectiveCamera class contains two constructors.

•	 PerspectiveCamera()

•	 PerspectiveCamera(boolean fixedEyeAtCameraZero)

The no-args constructor creates a PerspectiveCamera with the fixedEyeAtCameraZero flag set to false,
which makes it behave more or less like a parallel camera where the objects in the scene at Z=0 stay the
same size when the scene is resized. The second constructor lets you specify this flag. If you want to view 3D
objects with real 3D effects, you need to set this flag to true. Setting this flag to true will adjust the size of the
projected images of the 3D objects as the scene is resized. Making the scene smaller will make the objects
look smaller as well.

// Create a perspective camera for viewing 3D objects
PerspectiveCamera camera = new PerspectiveCamera(true);

The PerspectiveCamera class declares two additional properties.

•	 fieldOfView

•	 verticalFieldOfView

The fieldOfView is measured in degrees and it is the view angle of the camera. Its default value is
30 degrees.

The verticalFieldOfView property specifies whether the fieldOfView property applies to the vertical
dimension of the projection plane. By default, its value is true. Figure 19-10 depicts the camera, its view
angle, and field of view.

View angle Field of view

Camera

Figure 19-10. The view angle and field of view for a perspective camera

An instance of the ParallelCamera specifies the viewing volume for a parallel projection, which is a
rectangular box. The ParallelCamera class does not declare any additional properties. It contains a no-args
constructor.

ParallelCamera camera = new ParallelCamera();

Chapter 19 ■ Understanding 3d shapes

822

You can set a camera for a scene using the setCamera() method of the Scene class.

Scene scene = create a scene....
PerspectiveCamera camera = new PerspectiveCamera(true);
scene.setCamera(camera);

Because a camera is a node, you can add it to the scene graph.

PerspectiveCamera camera = new PerspectiveCamera(true);
Group group = new Group(camera);

You can move and rotate the camera as you move and rotate nodes. To move it to a different position,
use the translateX, translateY, and translateZ properties. To rotate, use the Rotate transformation.

The program in Listing 19-6 uses a PerspectiveCamera to view a Box. You have used two lights: one
to light the front and the top faces and one to light the bottom face of the box. The camera is animated by
rotating it indefinitely along the x-axis. As the camera rotates, it brings different parts of the box into the view.
You can see the effect of the two lights when the bottom of the box comes into the view. The bottom is shown
in green whereas the top and front are in red.

Listing 19-6. Using a PerspectiveCamera as a Node

// CameraTest.java
package com.jdojo.shape3d;

import javafx.animation.Animation;
import javafx.animation.RotateTransition;
import javafx.application.Application;
import javafx.scene.Group;
import javafx.scene.PerspectiveCamera;
import javafx.scene.PointLight;
import javafx.scene.Scene;
import javafx.scene.paint.Color;
import javafx.scene.shape.Box;
import javafx.scene.shape.CullFace;
import javafx.scene.transform.Rotate;
import javafx.stage.Stage;
import javafx.util.Duration;

public class CameraTest extends Application {
 public static void main(String[] args) {
 Application.launch(args);
 }

 @Override
 public void start(Stage stage) {
 Box box = new Box(100, 100, 100);
 box.setCullFace(CullFace.NONE);
 box.setTranslateX(250);
 box.setTranslateY(100);
 box.setTranslateZ(400);

Chapter 19 ■ Understanding 3d shapes

823

 PerspectiveCamera camera = new PerspectiveCamera(false);
 camera.setTranslateX(100);
 camera.setTranslateY(-50);
 camera.setTranslateZ(300);

 // Add a Rotation animation to the camera
 RotateTransition rt = new RotateTransition(Duration.seconds(2), camera);
 rt.setCycleCount(Animation.INDEFINITE);
 rt.setFromAngle(0);
 rt.setToAngle(90);
 rt.setAutoReverse(true);
 rt.setAxis(Rotate.X_AXIS);
 rt.play();

 PointLight redLight = new PointLight();
 redLight.setColor(Color.RED);
 redLight.setTranslateX(250);
 redLight.setTranslateY(-100);
 redLight.setTranslateZ(250);

 PointLight greenLight = new PointLight();
 greenLight.setColor(Color.GREEN);
 greenLight.setTranslateX(250);
 greenLight.setTranslateY(300);
 greenLight.setTranslateZ(300);

 Group root = new Group(box, redLight, greenLight);
 root.setRotationAxis(Rotate.X_AXIS);
 root.setRotate(30);

 Scene scene = new Scene(root, 500, 300, true);
 scene.setCamera(camera);
 stage.setScene(scene);
 stage.setTitle("Using camaras");
 stage.show();
 }
}

Using Light Sources
Similar to the real world, you need a light source to view the 3D objects in a scene. An instance of the
abstract base class LightBase represents a light source. Its two concrete subclasses, AmbientLight and
PointLight, represent an ambient light and a point light. Light source classes are in the javafx.scene
package. The LightBase class inherits from the Node class. Therefore, a light source is a node and it can be
added to the scene graph as any other nodes.

A light source has three properties: light color, on/off switch, and a list of affected nodes. The LightBase
class contains the following two properties:

•	 color

•	 lightOn

Chapter 19 ■ Understanding 3d shapes

824

The color specifies the color of the light. The lightOn specifies whether the light is on. The getScope()
method of the LightBase class returns an ObservableList<Node>, which is the hierarchical list of nodes
affected by this light source. If the list is empty, the scope of the light source is universe, which means that it
affects all nodes in the scene.

An instance of the AmbientLight class represents an ambient light source. An ambient light is a
nondirectional light that seems to come from all directions. Its intensity is constant on the surface of the
affected shapes.

// Create a red ambient light
AmbientLight redLight = new AmbientLight(Color.RED);

An instance of the PointLight class represents a point light source. A point light source is a fixed point
in space and radiates lights equally in all directions. The intensity of a point light decreases as the distance of
the of the lighted point increases from the light source.

// Create a Add the point light to a group
PointLight redLight = new PointLight(Color.RED);
redLight.setTranslateX(250);
redLight.setTranslateY(-100);
redLight.setTranslateZ(290);
Group group = new Group(node1, node2, redLight);

Creating Subscenes
A scene can use only one camera. Sometimes, you may want to view different parts of a scene using multiple
cameras. JavaFX 8 introduces the concept as subscenes. A subscene is a container for a scene graph. It can
have its own width, height, fill color, depth buffer, antialiasing flag, and camera. An instance of the SubScene
class represents a subscene. The SubScene inherits from the Node class. Therefore, a subscene can be used
wherever a node can be used. A subscene can be used to separate 2D and 3D nodes in an application. You
can use a camera for the subscene to view 3D objects that will not affect the 2D nodes in the other part of the
main scene. The following snippet of code creates a SubScene and sets a camera to it:

SubScene ss = new SubScene(root, 200, 200, true, SceneAntialiasing.BALANCED);
PerspectiveCamera camera = new PerspectiveCamera(false);
ss.setCamera(camera);

Tip ■ if a SubScene contains Shape3D nodes having a light node, a head light with a PointLight with
Color.WHITE light source is provided. the head light is positioned at the camera position.

The program in Listing 19-7 shows how to use subscenes. The getSubScene() method creates a SubScene
with a Box, a PerspectiveCamera, and a PointLight. An animation is set up to rotate the camera along the
specified axis. The start() method creates two subscenes and adds them to an HBox. One subscene swings the
camera along the y-axis and another along the x-axis. The HBox is added to the main scene.

Chapter 19 ■ Understanding 3d shapes

825

Listing 19-7. Using Subscenes

// SubSceneTest.java
package com.jdojo.shape3d;

import javafx.animation.Animation;
import javafx.animation.RotateTransition;
import javafx.application.Application;
import javafx.geometry.Point3D;
import javafx.scene.Group;
import javafx.scene.PerspectiveCamera;
import javafx.scene.PointLight;
import javafx.scene.Scene;
import javafx.scene.SceneAntialiasing;
import javafx.scene.SubScene;
import javafx.scene.layout.HBox;
import javafx.scene.paint.Color;
import javafx.scene.shape.Box;
import javafx.scene.shape.CullFace;
import javafx.scene.transform.Rotate;
import javafx.stage.Stage;
import javafx.util.Duration;

public class SubSceneTest extends Application {
 public static void main(String[] args) {
 Application.launch(args);
 }

 @Override
 public void start(Stage stage) {
 SubScene ySwing = getSubScene(Rotate.Y_AXIS);
 SubScene xSwing = getSubScene(Rotate.X_AXIS);
 HBox root = new HBox(20, ySwing, xSwing);
 Scene scene = new Scene(root, 500, 300, true);
 stage.setScene(scene);
 stage.setTitle("Using Sub-Scenes");
 stage.show();
 }

 private SubScene getSubScene(Point3D rotationAxis) {
 Box box = new Box(100, 100, 100);
 box.setCullFace(CullFace.NONE);
 box.setTranslateX(250);
 box.setTranslateY(100);
 box.setTranslateZ(400);

 PerspectiveCamera camera = new PerspectiveCamera(false);
 camera.setTranslateX(100);
 camera.setTranslateY(-50);
 camera.setTranslateZ(300);

Chapter 19 ■ Understanding 3d shapes

826

 // Add a Rotation animation to the camera
 RotateTransition rt = new RotateTransition(Duration.seconds(2), camera);
 rt.setCycleCount(Animation.INDEFINITE);
 rt.setFromAngle(-10);
 rt.setToAngle(10);
 rt.setAutoReverse(true);
 rt.setAxis(rotationAxis);
 rt.play();

 PointLight redLight = new PointLight(Color.RED);
 redLight.setTranslateX(250);
 redLight.setTranslateY(-100);
 redLight.setTranslateZ(290);

 // If you remove the redLight from the following group,
 // a default head light will be provided by the SubScene.
 Group root = new Group(box, redLight);
 root.setRotationAxis(Rotate.X_AXIS);
 root.setRotate(30);

 SubScene ss = new SubScene(root, 200, 200, true, SceneAntialiasing.BALANCED);
 ss.setCamera(camera);
 return ss;
 }
}

Creating User-Defined Shapes
JavaFX lets you define a 3D shape using a mesh of polygons. An instance of the abstract Mesh class represents
the mesh data. The TriangleMesh class is concrete subclass of the Mesh class. A TriangleMesh represents a
3D surface consisting of a mesh of triangles.

Tip ■ in 3d modeling, a mesh of different types of polygons can be used to construct a 3d object. JavaFX
supports only a mesh of triangles.

An instance of the MeshView class represents a 3D surface. The data for constructing a MeshView is
specified as an instance of the Mesh.

Supplying the mesh data by hand is not an easy task. The problem is complicated by the way you need
to specify the data. I will make it easier by demonstrating the mesh usage from a very simple user case to a
more complex one.

A TriangleMesh needs to supply data for three aspects of a 3D object.

Points•	

Texture coordinates•	

Faces•	

Chapter 19 ■ Understanding 3d shapes

827

Note ■ if you have not worked with 3d objects using a mesh of triangles before, the explanation may seem
a little complex. You need to be patient and learn a step at a time to understand the process of creating a 3d
object using a mesh of triangles.

Points are the vertices of the triangles in the mesh. You need to specify the (x, y, z) coordinates of
vertices in an array. Suppose v0, v1, v2, v3, v4, and so on are the points in 3D space that represent the
vertices of the triangles in a mesh. Points in a TriangleMesh are specified as an array of floats.

The texture of a 3D surface is provided as an image that is a 2D object. Texture coordinates are points
in a 2D plane, which are mapped to the vertices of triangles. You need to think of the triangles in a mesh
unwrapped and placed onto a 2D plane. Overlay the image that supplies the surface texture for the 3D shape
onto the same 2D plane. Map the vertices of the triangles to the 2D coordinates of the image to get a pair of
(u, v) coordinates for each vertex in the mesh. The array of such (u, v) coordinates is the texture coordinate.
Suppose t0, t1, t2, t3, t4, and so on are the texture coordinates.

Faces are the planes created by joining the three edges of the triangles. Each triangle has two faces: a
front face and a back face. A face is specified in terms of indices in the points and texture coordinates
arrays. A face is specified as v0, t0, v1, t1, v2, t2, and so on, where v1 is the index of the vertex in the points
array and t1 is the index of the vertex in the texture coordinates array.

Consider the box shown in Figure 19-11.

v6 v5

v2
v3

v4

v1

f0

f1

v0

f5f4
f3

f2

Figure 19-11. A box made of 12 triangles

A box consists of six sides. Each side is a rectangle. Each rectangle consists of two triangles. Each
triangle has two faces: a front face and a back face. A box has eight vertices. You have named vertices as
v0, v1, v2, and so on, and the faces as f0, f1, f2, and so on in the figure. You do not see the numberings for
the vertices and faces that are not visible in the current orientation of the box. Each vertex is defined by a
triple (x, y, z), which is the coordinate of the vertex in the 3D space. When you use the term vertex v1, you,
technically, mean its coordinates (x1, y1, z1) for the vertex.

To create a mesh of triangles, you need to specify all vertices making up the 3D object. In the case of a
box, you need to specify the eight vertices. In the TriangleMesh class, the vertices are known as points and
they are specified as an observable array of float. The following pseudo-code creates the array of vertices.
The first array is for understanding purpose only. The actual array specifies the coordinates of the vertices.

// For understanding purpose only
float[] points = {v0,
 v1,
 v2,
 ...
 v7};

Chapter 19 ■ Understanding 3d shapes

828

// The actual array contain (x, y, z) coordinates of all vertices
float[] points = {x0, y0, z0, // v0
 x1, y1, z1, // v1
 x2, y2, z2, // v2
 ...
 x7, y7, z7 // v7
 };

In the points array, the indices 0 to 2 contain coordinates of the first vertex, indices 3 to 5 contain the
coordinates of the second vertex, and so on. How do you number the vertices? That is, which vertex is #1
and which one is #2, and so on? There is no rule to specify the order to vertices. It is all up to you how you
number them. JavaFX cares about only one thing: you must include all vertices making up the shape in the
points array. You are done with generating the points array. You will use it later.

Now, you need to create an array containing coordinates of 2D points. Creating this array is a little
tricky. Beginners have hard time understanding this. Consider the figure shown in Figure 19-12.

(1, 1)

(1, 0)

v4v7

v6

v7

v6

v0 v1

v2v3

v5v6

v4

v5

v7

f0

f1 f2

f3

f4

f5

f6

f7f8

f9

f10

f11

The texture
map of 1 X 1
dimension

(0, 0)

(0, 1)

Unwrapped
faces of the box

Figure 19-12. Surface of a box mapped onto a 2D plane

Figure 19-11 and Figure 19-12 are two views of the surface of the same box. Figure 19-12 mapped the
surface from the 3D space to a 2D plane. Think of the box as a 3D object made of 12 triangular pieces of
paper. Figure 19-11 shows those 12 pieces of paper put together as a 3D box whereas Figure 19-12 shows the
same pieces of paper put side by side on the floor (a 2D plane).

Tip ■ it is up to you to decide how you want to map the surface of a 3d object into a 2d plane. For example,
in Figure 19-12, you could have also mapped the bottom side of the box into the lower, left, or top of the unit
square.

Think of an image that you want to use as the texture for your box. The image will not have the third
dimension (z dimension). The image needs to be applied on the surface of the box. JavaFX needs to know
how the vertices on the box are mapped to the points on the image. You provide this information in terms of
mapping of box vertices to the points on the image.

Chapter 19 ■ Understanding 3d shapes

829

Now, think of a unit square (a 1 x 1 square) that represents the texture image. Overlay the unit square on
the unwrapped faces of the box. The unit square is shown in dotted outline in Figure 19-12. The upper-left
corner of the square has the coordinates (0, 0); the lower-left corner has the coordinates (0, 1); the upper-
right corner has the coordinates (1, 0); the lower-left corner has the coordinates (1, 1).

In Figure 19-12, when you opened the surface of the box to put it onto a 2D plane, some of the vertices
had to be split into multiple vertices. The box has eight vertices. The mapped box into the 2D plane has 14
vertices. The figure shows some of the vertices having the same number as those vertices representing the
same vertex in the 3D box. Each vertex mapped into 2D plane (in Figure 19-12) becomes an element in the
texture coordinates array. Figure 19-13 shows those 14 texture points; they are numbered as t0, t1, t2,
and so on. You can number the vertices of the box onto the 2D plane in any order you want. The x and y
coordinates of a texture point will be between 0 and 1. The actual mapping of these coordinates to the actual
image size is performed by JavaFX. For example, (0.25, 0.) may be used for the coordinates of the vertex t9
and (0.25, 0.25) for the vertex t10.

(1, 1)

(1, 0)

t1 3t1 2

t5

t4

t11

t1 t2

t7t10

t8t9

t3

t6

f0

f1 f2

f3

f4

f5

f6

f7f8

f9

f10

f11

The texture
map of 1 X 1
dimension

(0, 0)

(0, 1)

Unwrapped
faces of the box

t0

Figure 19-13. A box surface mapped onto a 2D plane with texture coordinates

You can create the texture coordinates array as shown in the following code. Like the points array,
following is the pseudo-code. The first array is for understanding the concept and the second array is the
actual one that is used in code.

// For understanding purpose-only
float[] texCoords = {t0,
 t1,
 t2,
 ...
 t14};

// The actual texture coordinates of vertices
float[] texCoords = {x0, y0, // t0
 x1, y1, // t1
 x2, y2, // t2
 ...
 x13, y13 // t13
 };

Chapter 19 ■ Understanding 3d shapes

830

The third piece of information that you need to specify is an array of faces. Note that each triangle has two
faces. In our figures, you have shown only the front faces of the triangles. Specifying faces is the most confusing
step in creating a TriangleMesh object. A face is specified using the points array and texture coordinates
array. You use the indices of the vertices in the point array and the indices of the texture points in the texture
coordinates array to specify a face. A face is specified in using six integers in the following formats:

iv0, it0, iv1, it1, iv2, it2

Here,

•	 iv0 is the index of the vertex v0 in the points array and it0 is the index of the point
t0 in the texture coordinates array

•	 iv1 and it1 are the indices of the vertex v1 and point t1 in the points and texture
coordinates arrays

•	 iv2 and it2 are the indices of the vertex v2 and point t2 in the points and texture
coordinates arrays

Figure 19-14 shows only two triangles, which make up the front side of the box.

v0, t1 v1, t2

v2, t7v3, t10

f0

f1

Figure 19-14. Two triangles of the box with their vertices in points and texture coordinates arrays

Figure 19-14 is the superimposition of the figures shown in Figure 19-12 and Figure 19-13. The figure
shows the vertex number and their corresponding texture coordinate point number. To specify the f0 in the
faces array, you can specify the vertices of the triangle in two ways: counterclockwise and clockwise.

ivo, it1, iv2, it7, iv3, it10 (Counterclockwise)
ivo, it1, iv3, it10, iv2, it7 (Clockwise)

The starting vertex does not matter in specifying a face. You can start with any vertex and go in a
clockwise or a counterclockwise direction. When the vertices for a face are specified in the counterclockwise
direction, it is considered the front face. Otherwise, it is considered the back face. The following series of
numbers will specify the face f1 in our figure:

ivo, it1, iv1, it2, iv2, it7 (Counterclockwise: front-face)
ivo, it1, iv2, it7, iv1, it2 (Clockwise: back-face)

Chapter 19 ■ Understanding 3d shapes

831

To determine whether you are specifying front face or back face, apply the following rules as illustrated
in Figure 19-15:

Draw a line perpendicular to the surface of the triangle going outward.•	

Imagine you are looking into the surface by aligning your view along the line.•	

Try traversing the vertices in counterclockwise. The sequence of vertices will •	
give you front face. If you traverse the vertices clockwise, the sequence will give you
back face.

v0

v1 v2

front
back

Figure 19-15. Winding order of vertices of a triangle

The following pseudo-code illustrates how to create an int array for specifying faces. The int values are
the array indices from the points and texture coordinates arrays.

int[] faces = new int[] {
ivo, it1, iv2, it7, iv3, it10, // f0: front-face
ivo, it1, iv3, it10, iv2, it7, // f0: back-face
ivo, it1, iv1, it2, iv2, it7, // f1: front-face
ivo, it1, iv2, it7, iv1, it2 // f1: back-face
...
};

Once you have the points, texture coordinates, and faces arrays, you can construct a TriangleMesh
object as follows:

TriangleMesh mesh = new TriangleMesh();
mesh.getPoints().addAll(points);
mesh.getTexCoords().addAll(texCoords);
mesh.getFaces().addAll(faces);

A TriangleMesh provides the data for constructing a user-defined 3D object. A MeshView object creates
the surface for the object with a specified TriangleMesh.

// Create a MeshView
MeshView meshView = new MeshView();
meshView.setMesh(mesh);

Once you have a MeshView object, you need to add it to a scene graph to view it. You can view it the
same you have been viewing the predefined 3D shapes Boxes, Spheres, and Cylinders.

In the next few sections, you will create 3D objects using a TriangleMesh. You will start with the
simplest 3D object, which is a triangle.

Chapter 19 ■ Understanding 3d shapes

832

Creating a 3D Triangle
You may argue that a triangle is a 2D shape, not a 3D shape. It is agreed that a triangle is a 2D shape.
You will create a triangle in a 3D space using a TriangleMesh. The triangle will have two faces. This example
is chosen because it is the simplest shape you can create with a mesh of triangles. In case of a triangle, the
mesh consists of only one triangle. Figure 19-16 shows a triangle in the 3D space and its vertices mapped
into a 2D plane.

The triangle can be created using a mesh of one triangle. Let us create the points array for the
TriangleMesh object.

float[] points = {50, 0, 0, // v0 (iv0 = 0)
 45, 10, 0, // v1 (iv1 = 1)
 55, 10, 0 // v2 (iv2 = 2)
 };

The second part of the figure, shown on the right, maps the vertices of the triangle to a unit square. You
can create the texture coordinates array as follows:

float[] texCoords = {0.5f, 0.5f, // t0 (it0 = 0)
 0.0f, 1.0f, // t1 (it1 = 1)
 1.0f, 1.0f // t2 (it2 = 2)
 };

Using the points and texture coordinates arrays, you can specify the faces array as follows:

int[] faces = { 0, 0, 2, 2, 1, 1, // iv0, it0, iv2, it2, iv1, it1 (front face)
 0, 0, 1, 1, 2, 2 // iv0, it0, iv1, it1, iv2, it2 back face
 };

Listing 19-8 contains the complete program to create a triangle using a TriangleMesh. It adds two
different lights to light the two faces of the triangle. An animation rotates the camera, so you can view both
sides of the triangle in different colors. The createMeshView() method has the coordinate values and logic
to create the MeshView.

t2(1, 1)

(0,0)

v2(55, 10, 0)

v0(50, 0, 0)

v1(45, 10, 0)

z axis

x axis

y axis

t1(0, 1)

(1, 0)

t0(0.5, 0.0)

Vertices of the triangle
Vertices of the triangle mapped to

texture coordinates

Figure 19-16. Vertices of a triangle in the 3D space and mapped onto a 2D plane

Chapter 19 ■ Understanding 3d shapes

833

Listing 19-8. Creating a Triangle Using a TriangleMesh

// TriangleWithAMesh.java
package com.jdojo.shape3d;

import javafx.animation.Animation;
import javafx.animation.RotateTransition;
import javafx.application.Application;
import javafx.scene.Group;
import javafx.scene.PerspectiveCamera;
import javafx.scene.PointLight;
import javafx.scene.Scene;
import javafx.scene.paint.Color;
import javafx.scene.shape.MeshView;
import javafx.scene.shape.TriangleMesh;
import javafx.scene.transform.Rotate;
import javafx.stage.Stage;
import javafx.util.Duration;

public class TriangleWithAMesh extends Application {
 public static void main(String[] args) {
 Application.launch(args);
 }

 @Override
 public void start(Stage stage) {
 // Create a MeshView and position ity in the space
 MeshView meshView = this.createMeshView();
 meshView.setTranslateX(250);
 meshView.setTranslateY(100);
 meshView.setTranslateZ(400);

 // Scale the Meshview to make it look bigger
 meshView.setScaleX(10.0);
 meshView.setScaleY(10.0);
 meshView.setScaleZ(10.0);

 PerspectiveCamera camera = new PerspectiveCamera(false);
 camera.setTranslateX(100);
 camera.setTranslateY(-50);
 camera.setTranslateZ(300);

 // Add a Rotation animation to the camera
 RotateTransition rt = new RotateTransition(Duration.seconds(2), camera);
 rt.setCycleCount(Animation.INDEFINITE);
 rt.setFromAngle(-30);
 rt.setToAngle(30);
 rt.setAutoReverse(true);
 rt.setAxis(Rotate.Y_AXIS);
 rt.play();

Chapter 19 ■ Understanding 3d shapes

834

 // Front light is red
 PointLight redLight = new PointLight();
 redLight.setColor(Color.RED);
 redLight.setTranslateX(250);
 redLight.setTranslateY(150);
 redLight.setTranslateZ(300);

 // Back light is green
 PointLight greenLight = new PointLight();
 greenLight.setColor(Color.GREEN);
 greenLight.setTranslateX(200);
 greenLight.setTranslateY(150);
 greenLight.setTranslateZ(450);

 Group root = new Group(meshView, redLight, greenLight);

 // Rotate the triangle with its lights to 90 degrees
 root.setRotationAxis(Rotate.Y_AXIS);
 root.setRotate(90);

 Scene scene = new Scene(root, 400, 300, true);
 scene.setCamera(camera);
 stage.setScene(scene);
 stage.setTitle("Creating a Triangle using a TriangleMesh");
 stage.show();
 }

 public MeshView createMeshView() {
 float[] points = {50, 0, 0, // v0 (iv0 = 0)
 45, 10, 0, // v1 (iv1 = 1)
 55, 10, 0 // v2 (iv2 = 2)
 };

 float[] texCoords = { 0.5f, 0.5f, // t0 (it0 = 0)
 0.0f, 1.0f, // t1 (it1 = 1)
 1.0f, 1.0f // t2 (it2 = 2)
 };

 int[] faces = {
 0, 0, 2, 2, 1, 1, // iv0, it0, iv2, it2, iv1, it1 (front face)
 0, 0, 1, 1, 2, 2 // iv0, it0, iv1, it1, iv2, it2 (back face)
 };

 // Create a TriangleMesh
 TriangleMesh mesh = new TriangleMesh();
 mesh.getPoints().addAll(points);
 mesh.getTexCoords().addAll(texCoords);
 mesh.getFaces().addAll(faces);

Chapter 19 ■ Understanding 3d shapes

835

 // Create a NeshView
 MeshView meshView = new MeshView();
 meshView.setMesh(mesh);

 return meshView;
 }
}

Creating a 3D Rectangle
In this section, you will create a rectangle using a mesh of two triangles. This will give us an opportunity to
use what you have learned so far. Figure 19-17 shows a rectangle in the 3D space and its vertices mapped
into a 2D plane.

The rectangle consists of two triangles. Both triangles have two faces. In the figure, I have shown only
two faces f0 and f1. The following is the points array for the four vertices of the rectangle.

float[] points = {50, 0, 0, // v0 (iv0 = 0)
 50, 10, 0, // v1 (iv1 = 1)
 60, 10, 0, // v2 (iv2 = 2)
 60, 0, 0 // v3 (iv3 = 3)
 };

The texture coordinate array can be constructed as follows:

float[] texCoords = {0.0f, 0.0f, // t0 (it0 = 0)
 0.0f, 1.0f, // t1 (it1 = 1)
 1.0f, 1.0f, // t2 (it2 = 2)
 1.0f, 0.0f // t3 (it3 = 3)
 };

You will specify the four faces as follows:

int[] faces =
 { 0, 0, 3, 3, 1, 1, // iv0, it0, iv3, it3, iv1, it1 (f0 front face)
 0, 0, 1, 1, 3, 3, // iv0, it0, iv1, it1, iv3, it3 (f0 back face)
 1, 1, 3, 3, 2, 2, // iv1, it1, iv3, it3, iv2, it2 (f1 front face)
 1, 1, 2, 2, 3, 3 // iv1, it1, iv2, it2, iv3, it3 (f1 back face)
 };

v3(60, 0, 0)

t2(1, 1)

t0(0, 0)

v2(60, 10, 0)

v0(50, 0, 0)

v1(50, 10, 0) t1(0, 1)

t3(1, 0)

Vertices of the rectangle Vertices of the rectangle mapped to
texture coordinates

f0
f1

f0
f1

Figure 19-17. Vertices of a rectangle in the 3D space and mapped into a 2D plane

Chapter 19 ■ Understanding 3d shapes

836

If you plug the aforementioned three arrays into the createMeshView() method in Listing 19-8, you will
get a rotating rectangle.

Creating a Tetrahedron
Now, you are prepared to create a little complex 3D object. You will create a tetrahedron. Figure 19-18 shows
the top view of a tetrahedron.

A tetrahedron consists of four triangles. It has four vertices. Three triangles meet at a point. Figure 19-19
shows the two views of the tetrahedron. On the left, you have numbered the four vertices as v0, v1, v2, and
v3 and four faces as f0m f1, f2, and f3. Note that the face f3 is the face of the triangle at the base and it is not
visible from the top view. The second view has unwrapped the four triangles giving rise to eight vertices on
the 2D plane. The dotted rectangle is the unit square into which the eight vertices will be mapped.

You can create the points, faces, and texture coordinates arrays as follows:

float[] points = {10, 10, 10, // v0 (iv0 = 0)
 20, 20, 0, // v1 (iv1 = 1)
 0, 20, 0, // v2 (iv2 = 2)
 10, 20, 20 // v3 (iv3 = 3)
 };

float[] texCoords = {
 0.50f, 0.33f, // t0 (it0 = 0)
 0.25f, 0.75f, // t1 (it1 = 1)
 0.50f, 1.00f, // t2 (it2 = 2)
 0.66f, 0.66f, // t3 (it3 = 3)

Figure 19-18. A tetrahedron

t6

t7

t5

t1

t0

v3

v0

f3

f1

Vertices of the tetrahedron Vertices of the tetrahedron mapped
to texture coordinates

f0

f2

v1
v2

t2

t3
f3

f0

f1f2
t4

Figure 19-19. Vertices of a tetrahedron in the 3D space and mapped into a 2D plane

Chapter 19 ■ Understanding 3d shapes

837

 1.00f, 0.35f, // t4 (it4 = 4)
 0.90f, 0.00f, // t5 (it5 = 5)
 0.10f, 0.00f, // t6 (it6 = 6)
 0.00f, 0.35f // t7 (it7 = 7)
};

int[] faces = {
 0, 0, 2, 1, 1, 3, // f0 front-face
 0, 0, 1, 3, 2, 1, // f0 back-face
 0, 0, 1, 4, 3, 5, // f1 front-face
 0, 0, 3, 5, 1, 4, // f1 back-face
 0, 0, 3, 6, 2, 7, // f2 front-face
 0, 0, 2, 7, 3, 6, // f2 back-face
 1, 3, 3, 2, 2, 1, // f3 front-face
 1, 3, 2, 1, 3, 2 // f3 back-face
};

Listing 19-9 contains a complete program to show how to construct a tetrahedron using a
TriangleMesh. The tetrahedron is rotated along y-axis, so you can view two of its vertical faces. Figure 19-20
shows the window with the tetrahedron.

Listing 19-9. Creating a Tetrahedron Using a TriangleMesh

// Tetrahedron.java
package com.jdojo.shape3d;

import javafx.application.Application;
import javafx.scene.Group;
import javafx.scene.PerspectiveCamera;
import javafx.scene.PointLight;
import javafx.scene.Scene;
import javafx.scene.paint.Color;
import javafx.scene.shape.MeshView;
import javafx.scene.shape.TriangleMesh;
import javafx.scene.transform.Rotate;
import javafx.stage.Stage;

public class Tetrahedron extends Application {
 public static void main(String[] args) {
 Application.launch(args);
 }

 @Override
 public void start(Stage stage) {
 MeshView meshView = this.createMeshView();
 meshView.setTranslateX(250);
 meshView.setTranslateY(50);
 meshView.setTranslateZ(400);

 meshView.setScaleX(10.0);
 meshView.setScaleY(20.0);
 meshView.setScaleZ(10.0);

Chapter 19 ■ Understanding 3d shapes

838

 PerspectiveCamera camera = new PerspectiveCamera(false);
 camera.setTranslateX(100);
 camera.setTranslateY(0);
 camera.setTranslateZ(100);

 PointLight redLight = new PointLight();
 redLight.setColor(Color.RED);
 redLight.setTranslateX(250);
 redLight.setTranslateY(-100);
 redLight.setTranslateZ(250);

 Group root = new Group(meshView, redLight);
 root.setRotationAxis(Rotate.Y_AXIS);
 root.setRotate(45);

 Scene scene = new Scene(root, 200, 150, true);
 scene.setCamera(camera);
 stage.setScene(scene);
 stage.setTitle("A Tetrahedron using a TriangleMesh");
 stage.show();
 }

 public MeshView createMeshView() {
 float[] points = {10, 10, 10, // v0 (iv0 = 0)
 20, 20, 0, // v1 (iv1 = 1)
 0, 20, 0, // v2 (iv2 = 2)
 10, 20, 20 // v3 (iv3 = 3)
 };

 float[] texCoords = {
 0.50f, 0.33f, // t0 (it0 = 0)
 0.25f, 0.75f, // t1 (it1 = 1)
 0.50f, 1.00f, // t2 (it2 = 2)
 0.66f, 0.66f, // t3 (it3 = 3)
 1.00f, 0.35f, // t4 (it4 = 4)
 0.90f, 0.00f, // t5 (it5 = 5)
 0.10f, 0.00f, // t6 (it6 = 6)
 0.00f, 0.35f // t7 (it7 = 7)
 };

 int[] faces = {
 0, 0, 2, 1, 1, 3, // f0 front-face
 0, 0, 1, 3, 2, 1, // f0 back-face
 0, 0, 1, 4, 3, 5, // f1 front-face
 0, 0, 3, 5, 1, 4, // f1 back-face
 0, 0, 3, 6, 2, 7, // f2 front-face
 0, 0, 2, 7, 3, 6, // f2 back-face
 1, 3, 3, 2, 2, 1, // f3 front-face
 1, 3, 2, 1, 3, 2, // f3 back-face
 };

Chapter 19 ■ Understanding 3d shapes

839

 TriangleMesh mesh = new TriangleMesh();
 mesh.getPoints().addAll(points);
 mesh.getTexCoords().addAll(texCoords);
 mesh.getFaces().addAll(faces);

 MeshView meshView = new MeshView();
 meshView.setMesh(mesh);

 return meshView;
 }
}

Summary
Any shape, drawn in a three-dimensional space, having three dimensions (length, width, and depth), is
known as a 3D shape such as cubes, spheres, pyramids, and so on. JavaFX 8 provides 3D shapes as nodes.
JavaFX 8 offers two types of 3D shapes: predefined shapes and user-defined shapes.

Box, sphere, and cylinder are three predefined 3D shapes that you can readily use in your JavaFX
applications. You can create any type of 3D shapes using a triangle mesh. The Box, Sphere, and Cylinder
classes represent the three predefined shapes. The MeshView class represents a user-defined 3D shape in a
scene. The 3D shape classes are in the javafx.scene.shape package.

JavaFX 3D support is a conditional feature. If it is not supported on your platform, you get a
warning message on the console when you run a program that attempts to use 3D features. The method
Platform.isSupported(ConditionalFeature.SCENE3D) returns true if 3D is supported on your platform.

When dealing with 3D objects in JavaFX, you would like the object closer to you to overlap the object
farther from you. In JavaFX, by default, nodes are rendered in the order they are added to the scene graph.
In order for 3D shapes to appear as they would appear in the real world, you need to specify two things. First,
when you create a Scene object, specify that it needs to have a depth buffer, and second, specify that the
nodes’ z coordinate values should be used when they are rendered.

Cameras are used to render the scene. Cameras in JavaFX are nodes. They can be added to the scene
graph and positioned like other nodes. Perspective camera and parallel camera are two types of cameras used
in JavaFX and they are represented by the PerspectiveCamera and ParallelCamera classes. A perspective
camera defines the viewing volume for a perspective projection, which is a truncated right pyramid. The
camera projects the objects contained within the near and far clipping planes onto the projection plane.
Therefore, any objects outside the clipping planes are not visible. A parallel camera specifies the viewing
volume for a parallel projection, which is a rectangular box.

Figure 19-20. A tetrahedron using a TriangleMesh

Chapter 19 ■ Understanding 3d shapes

840

Similar to the real world, you need a light source to view the 3D objects in a scene. An instance of the
abstract base class LightBase represents a light source. Its two concrete subclasses, AmbientLight and
PointLight represent an ambient light and a point light.

A scene can use only one camera. Sometimes, you may want to view different parts of a scene using
multiple cameras. JavaFX 8 introduces the concept as subscenes. A subscene is a container for a scene
graph. It can have its own width, height, fill color, depth buffer, antialiasing flag, and camera. An instance of
the SubScene class represents a subscene. The SubScene inherits from the Node class.

The next chapter will discuss how to apply different types of effects to nodes in a scene graph.

841

Chapter 20

Applying Effects

In this chapter, you will learn:

What an effect is•	

How to chain effects•	

What different types of effects are•	

How to use perspective transformation effect•	

What Is an Effect?
An effect is a filter that accepts one or more graphical inputs, applies an algorithm on the inputs, and
produces an output. Typically, effects are applied to nodes to create visually appealing user interfaces.
Examples of effects are shadow, blur, warp, glow, reflection, blending, different types of lighting, among
others. The JavaFX library provides several effect-related classes. Effects are conditional features. They are
applied to nodes and will be ignored if they are not available on a platform. Figure 20-1 shows four Text
nodes using the drop shadow, blur, glow, and bloom effects.

The Node class contains an effect property that specifies the effect applied to the node. By default, it is
null. The following snippet of code applies a drop shadow effect to a Text node:

Text t1 = new Text("Drop Shadow");
t1.setFont(Font.font(24));
t1.setEffect(new DropShadow());

Figure 20-1. Text nodes with different effects

Chapter 20 ■ applying effeCts

842

An instance of the Effect class represents an effect. The Effect class is the abstract base for all effect
classes. All effect classes are included in the javafx.scene.effect package.

The program in Listing 20-1 creates Text nodes and applies effects to them. These nodes are the ones
shown in Figure 20-1. I will explain the different types of effects and their usages in subsequent sections.

Listing 20-1. Applying Effects to Nodes

// EffectTest.java
package com.jdojo.effect;

import javafx.application.Application;
import javafx.scene.Scene;
import javafx.scene.effect.Bloom;
import javafx.scene.effect.BoxBlur;
import javafx.scene.effect.DropShadow;
import javafx.scene.effect.Glow;
import javafx.scene.layout.HBox;
import javafx.scene.layout.StackPane;
import javafx.scene.paint.Color;
import javafx.scene.shape.Rectangle;
import javafx.scene.text.Font;
import javafx.scene.text.FontWeight;
import javafx.scene.text.Text;
import javafx.stage.Stage;

public class EffectTest extends Application {
 public static void main(String[] args) {
 Application.launch(args);
 }

 @Override
 public void start(Stage stage) {
 Text t1 = new Text("Drop Shadow!");
 t1.setFont(Font.font(24));
 t1.setEffect(new DropShadow());

 Text t2 = new Text("Blur!");
 t2.setFont(Font.font(24));
 t2.setEffect(new BoxBlur());

 Text t3 = new Text("Glow!");
 t3.setFont(Font.font(24));
 t3.setEffect(new Glow());

 Text t4 = new Text("Bloom!");
 t4.setFont(Font.font("Arial", FontWeight.BOLD, 24));
 t4.setFill(Color.WHITE);
 t4.setEffect(new Bloom(0.10));

 // Stack the Text node with bloom effect over a Reactangle
 Rectangle rect = new Rectangle(100, 30, Color.GREEN);
 StackPane spane = new StackPane(rect, t4);

Chapter 20 ■ applying effeCts

843

 HBox root = new HBox(t1, t2, t3, spane);
 root.setSpacing(20);
 root.setStyle("-fx-padding: 10;" +
 "-fx-border-style: solid inside;" +
 "-fx-border-width: 2;" +
 "-fx-border-insets: 5;" +
 "-fx-border-radius: 5;" +
 "-fx-border-color: blue;");

 Scene scene = new Scene(root);
 stage.setScene(scene);
 stage.setTitle("Applying Effects");
 stage.show();
 }
}

Tip ■ an effect applied to a Group is applied to all its children. it is also possible to chain multiple effects
where the output of one effect becomes the input for the next effect in the chain. the layout bounds of a node
are not affected by the effects applied to it. however, the local bounds and bounds in parent are affected by
the effects.

Chaining Effects
Some effects can be chained with other effects when they are applied in sequence. The output of the first
effect becomes the input for the second effect and so on, as shown in Figure 20-2.

Effect classes that allow chaining contain an input property to specify the effect that precedes it. If
the input is null, the effect is applied to the node on which this effect is set instead of being applied to the
preceding input effect. By default, the input is null. The following snippet of code creates two chains of
effects on Text nodes, as shown in Figure 20-3:

// Effect Chain: Text >> Reflection >> Shadow
DropShadow dsEffect = new DropShadow();
dsEffect.setInput(new Reflection());
Text t1 = new Text("Reflection and Shadow");
t1.setEffect(dsEffect);

// Effect Chain: Text >> Shadow >> Reflection
Reflection reflection = new Reflection();
reflection.setInput(new DropShadow());
Text t2 = new Text("Shadow and Reflection");
t2.setEffect(reflection);

Node Effect 1 Effect 2 Effect 3 Output

Figure 20-2. A chain of effects applied on a node

Chapter 20 ■ applying effeCts

844

In Figure 20-3, a Reflection effect followed by a DropShadow is applied to the text on the left; a
DropShadow followed by a Reflection effect is applied to the text on the right. Notice the sequence of effects
makes a difference in the output. The second chain of effects produces a taller output as the reflection also
includes the shadow.

If an effect allows chaining, it will have an input property. In subsequent sections, I will list the input
property for the effect classes, but not discuss it.

Shadowing Effects
A shadowing effect draws a shadow and applies it to an input. JavaFX supports three types of
shadowing effects:

•	 DropShadow

•	 InnerShadow

•	 Shadow

The DropShadow Effect
The DropShadow effect draws a shadow (a blurred image) behind the input, so the input seems to be raised. It
gives the input a 3D look. The input can be a node or an effect in a chain of effects.

An instance of the DropShadow class represents a DropShadow effect. The size, location, color, and quality
of the effect are controlled by several properties of the DropShadow class:

•	 offsetX

•	 offsetY

•	 color

•	 blurType

•	 radius

•	 spread

•	 width

•	 height

•	 input

Figure 20-3. Chaining a DropShadow effect with a Reflection effect

Chapter 20 ■ applying effeCts

845

The DropShadow class contains several constructors that let you specify the initial values for the
properties:

•	 DropShadow()

•	 DropShadow(BlurType blurType, Color color, double radius, double spread,
double offsetX, double offsetY)

•	 DropShadow(double radius, Color color)

•	 DropShadow(double radius, double offsetX, double offsetY, Color color)

The offsetX and offsetY properties control the position of the shadow in pixels relative to the input.
By default, their values are zero. The positive values of offsetX and offsetY move the shadow in the positive
x axis and y axis directions, respectively. The negative values move the shadow in the reverse directions.

The following snippet of code creates a DropShadow object with the offsetX and offsetY of 10px. The
third rectangle from the left in Figure 20-4 shows the rectangle with the effect using the same rectangle
with a DropShadow effect and different x and y offsets. For the fourth from the left rectangle, the shadow is
positioned at the lower right corner of the rectangle as the rectangle size (50, 25) matches the offsets (50, 25).

DropShadow dsEffect = new DropShadow();
dsEffect.setOffsetX(10);
dsEffect.setOffsetY(10);

Rectangle rect = new Rectangle(50, 25, Color.LIGHTGRAY);
rect.setEffect(dsEffect);

The color property specifies the color of the shadow. By default, it is Color.BLACK. The following code
would set the color to red:

DropShadow dsEffect = new DropShadow();
dsEffect.setColor(Color.RED);

The blurring in the shadow can be achieved using different algorithms. The blurType property
specifies the type of blurring algorithm for the shadow. Its value is one of the following constants of the
BlurType enum:

•	 ONE_PASS_BOX

•	 TWO_PASS_BOX

•	 THREE_PASS_BOX

•	 GAUSSIAN

OffsetX=0.0
OffsetY=0.0

OffsetX=-10.0
OffsetY=-10.0

OffsetX=10.0
OffsetY=10.0

OffsetX=50.0
OffsetY=25.0

Figure 20-4. Effects of the offsetX and offsetY properties on a DropShadow effect

Chapter 20 ■ applying effeCts

846

The ONE_PASS_BOX uses a single pass of the box filter to blur the shadow. The TWO_PASS_BOX uses two
passes of the box filter to blur the shadow. The THREE_PASS_BOX uses three passes of the box filter to blur
the shadow. The GAUSSIAN uses a Gaussian blur kernel to blur the shadow. The blur quality of the shadow
is the least in ONE_PASS_BOX and the best in GAUSSIAN. The default is THREE_PASS_BOX, which is very close to
GAUSSIAN in quality. The following snippet of code sets the GAUSSIAN blur type:

DropShadow dsEffect = new DropShadow();
dsEffect.setBlurType(BlurType.GAUSSIAN);

The radius property specifies the distance the shadow is spread on each side of the source pixel. If the
radius is zero, the shadow has sharp edges. Its value can be between 0 and 127. The default value is 10. The
blurring outside the shadow region is achieved by blending the shadow color and the background color. The
blur color fades out over the radius distance from the edges.

Figure 20-5 shows a rectangle twice with a DropShadow effect. The one on the left uses the radius of 0.0,
which results in sharp edges of the shadow. The one on the right uses the default radius of 10.0 that spreads
the shadow 10px around the edges. The following snippet of code produces the first rectangle in the figure
that has sharp edges of the shadow:

DropShadow dsEffect = new DropShadow();
dsEffect.setOffsetX(10);
dsEffect.setOffsetY(10);
dsEffect.setRadius(0);

Rectangle rect = new Rectangle(50, 25, Color.LIGHTGRAY);
rect.setEffect(dsEffect);

The spread property specifies the portion of the radius, which has the same color as the shadow.
The color for the remaining portion of the radius is determined by the blur algorithm. Its value is
between 0.0 and 1.0. The default is 0.0.

Suppose you have a DropShadow with a radius 10.0 and a spread value of 0.60 and the shadow color is
black. In this case, the blur color will be black up to 6px around the source pixel. It will start fading out from
the seventh pixel to the tenth pixel. If you specify the spread value as 1.0, there would be no blurring of the
shadow. Figure 20-6 shows three rectangles with a DropShadow using a radius of 10.0. The three DropShadow
effects use different spread values. The spread of 0.0 blurs fully along the radius. The spread of 0.50 spreads
the shadow color in the first half of the radius and blurs the second half. The spread of 1.0 spreads the
shadow color fully along the radius and there is no blurring. The following snippet of code produces the
middle rectangle in Figure 20-6:

DropShadow dsEfefct = new DropShadow();
dsEfefct.setOffsetX(10);
dsEfefct.setOffsetY(10);
dsEfefct.setRadius(10);
dsEfefct.setSpread(.50);

Figure 20-5. Effects of the radius property of a DropShadow effect

Chapter 20 ■ applying effeCts

847

Rectangle rect = new Rectangle(50, 25, Color.LIGHTGRAY);
rect.setEffect(dsEfefct);

The width and height properties specify the horizontal and vertical distances, respectively, from the
source pixel up to where the shadow color is spread. Their values are between 0 and 255. Setting their values
is equivalent to setting the radius property, so they are equal to (2 * radius + 1). Their default value is 21.0.
When you change the radius, the width and height properties are adjusted using the formula if they are
not bound. However, setting the width and height changes the radius value, so the average of the width
and height is equal to (2 * radius + 1). Figure 20-7 shows four rectangles with a DropShadow effects. Their
width and height properties were set as shown under each rectangle. Their radius properties were adjusted
automatically. The fourth from the left rectangle was produced using the following snippet of code:

DropShadow dsEffect = new DropShadow();
dsEffect.setOffsetX(10);
dsEffect.setOffsetY(10);
dsEffect.setWidth(20);
dsEffect.setHeight(20);

Rectangle rect = new Rectangle(50, 25, Color.LIGHTGRAY);
rect.setEffect(dsEffect);

The program in Listing 20-2 lets you experiment with properties of the DropShadow effect. It displays a
window as shown in Figure 20-8. Change the properties to see their effects in action.

Listing 20-2. Experimenting with DropShadow Properties

// DropShadowTest.java
package com.jdojo.effect;

import javafx.application.Application;
import javafx.scene.Scene;
import javafx.scene.control.ColorPicker;
import javafx.scene.control.ComboBox;
import javafx.scene.control.Label;

Figure 20-6. Effects of the spread property of a DropShadow effect

Figure 20-7. Effects of setting width and height of a DropShadow

Chapter 20 ■ applying effeCts

848

import javafx.scene.control.Slider;
import javafx.scene.effect.BlurType;
import javafx.scene.effect.DropShadow;
import javafx.scene.layout.BorderPane;
import javafx.scene.layout.GridPane;
import javafx.scene.paint.Color;
import javafx.scene.shape.Rectangle;
import javafx.stage.Stage;

public class DropShadowTest extends Application {
 public static void main(String[] args) {
 Application.launch(args);
 }

 @Override
 public void start(Stage stage) {
 Rectangle rect = new Rectangle(100, 50, Color.GRAY);
 DropShadow dsEffect = new DropShadow();
 rect.setEffect(dsEffect);

 GridPane controllsrPane = this.getControllerPane(dsEffect);
 BorderPane root = new BorderPane();
 root.setCenter(rect);
 root.setBottom(controllsrPane);
 root.setStyle("-fx-padding: 10;" +
 "-fx-border-style: solid inside;" +
 "-fx-border-width: 2;" +
 "-fx-border-insets: 5;" +
 "-fx-border-radius: 5;" +
 "-fx-border-color: blue;");

 Scene scene = new Scene(root);
 stage.setScene(scene);
 stage.setTitle("Experimenting with DropShadow Effect");
 stage.show();
 }

 private GridPane getControllerPane(final DropShadow dsEffect) {
 Slider offsetXSlider = new Slider(-200, 200, 0);
 dsEffect.offsetXProperty().bind(offsetXSlider.valueProperty());

 Slider offsetYSlider = new Slider(-200, 200, 0);
 dsEffect.offsetYProperty().bind(offsetYSlider.valueProperty());

 Slider radiusSlider = new Slider(0, 127, 10);
 dsEffect.radiusProperty().bind(radiusSlider.valueProperty());

 Slider spreadSlider = new Slider(0.0, 1.0, 0);
 dsEffect.spreadProperty().bind(spreadSlider.valueProperty());

Chapter 20 ■ applying effeCts

849

 ColorPicker colorPicker = new ColorPicker(Color.BLACK);
 dsEffect.colorProperty().bind(colorPicker.valueProperty());

 ComboBox<BlurType> blurTypeList = new ComboBox<>();
 blurTypeList.setValue(dsEffect.getBlurType());
 blurTypeList.getItems().addAll(BlurType.ONE_PASS_BOX,
 BlurType.TWO_PASS_BOX,
 BlurType.THREE_PASS_BOX,
 BlurType.GAUSSIAN);
 dsEffect.blurTypeProperty().bind(blurTypeList.valueProperty());

 GridPane pane = new GridPane();
 pane.setHgap(5);
 pane.setVgap(10);
 pane.addRow(0, new Label("OffsetX:"), offsetXSlider);
 pane.addRow(1, new Label("OffsetY:"), offsetYSlider);
 pane.addRow(2, new Label("Radius:"), radiusSlider,
 new Label("Spread:"), spreadSlider);
 pane.addRow(3, new Label("Color:"), colorPicker,
 new Label("Blur Type:"), blurTypeList);

 return pane;
 }
}

The InnerShadow Effect
The InnerShadow effect works very similar to the DropShadow effect. It draws a shadow (a blurred image)
of an input inside the edges of the input, so the input seems to have depth or a 3D look. The input can be a
node or an effect in a chain of effects.

Figure 20-8. A window that allows you to change the properties of a DropShadow effect at runtime

Chapter 20 ■ applying effeCts

850

An instance of the InnerShadow class represents an InnerShadow effect. The size, location, color, and
quality of the effect are controlled by several properties of the InnerShadow class:

•	 offsetX

•	 offsetY

•	 color

•	 blurType

•	 radius

•	 choke

•	 width

•	 height

•	 input

The number of properties of the InnerShadow class is equal to that for the DropShadow class. The
spread property in the DropShadow class is replaced by the choke property in the InnerShadow class, which
works similar to the spread property in the DropShadow class. Please refer to the previous section “The
DropShadow Effect” for a detailed description and examples of these properties.

The DropShadow class contains several constructors that let you specify the initial values for the
properties:

•	 InnerShadow()

•	 InnerShadow(BlurType blurType, Color color, double radius, double choke,
double offsetX, double offsetY)

•	 InnerShadow(double radius, Color color)

•	 InnerShadow(double radius, double offsetX, double offsetY, Color color)

The program in Listing 20-3 creates a Text node and two Rectangle nodes. An InnerShadow is applied
to all three nodes. Figure 20-9 shows the results for these nodes. Notice that the shadow is not spread outside
the edges of the nodes. You need to set the offsetX and offsetY properties to see a noticeable effect.

Listing 20-3. Using InnerShadow Class

// InnerShadowTest.java
package com.jdojo.effect;

import javafx.application.Application;
import javafx.geometry.Pos;
import javafx.scene.Scene;
import javafx.scene.effect.InnerShadow;
import javafx.scene.layout.HBox;
import javafx.scene.layout.VBox;
import javafx.scene.paint.Color;
import javafx.scene.shape.Rectangle;
import javafx.scene.shape.Shape;
import javafx.scene.text.Font;
import javafx.scene.text.FontWeight;
import javafx.scene.text.Text;
import javafx.stage.Stage;

Chapter 20 ■ applying effeCts

851

public class InnerShadowTest extends Application {
 public static void main(String[] args) {
 Application.launch(args);
 }

 @Override
 public void start(Stage stage) {
 InnerShadow is1 = new InnerShadow();
 is1.setOffsetX(3);
 is1.setOffsetY(6);

 Text t1 = new Text("Inner Shadow");
 t1.setEffect(is1);
 t1.setFill(Color.RED);
 t1.setFont(Font.font(null, FontWeight.BOLD, 36));

 InnerShadow is2 = new InnerShadow();
 is2.setOffsetX(3);
 is2.setOffsetY(3);
 is2.setColor(Color.GRAY);
 Rectangle rect1 = new Rectangle(100, 50, Color.LIGHTGRAY);
 rect1.setEffect(is2);

 InnerShadow is3 = new InnerShadow();
 is3.setOffsetX(-3);
 is3.setOffsetY(-3);
 is3.setColor(Color.GRAY);
 Rectangle rect2 = new Rectangle(100, 50, Color.LIGHTGRAY);
 rect2.setEffect(is3);

 HBox root = new HBox(wrap(t1, is1), wrap(rect1, is2), wrap(rect2, is3));
 root.setSpacing(10);
 root.setStyle("-fx-padding: 10;" +
 "-fx-border-style: solid inside;" +
 "-fx-border-width: 2;" +
 "-fx-border-insets: 5;" +
 "-fx-border-radius: 5;" +
 "-fx-border-color: blue;");

 Scene scene = new Scene(root);
 stage.setScene(scene);
 stage.setTitle("Applying InnerShadow Effect");
 stage.show();
 }

Chapter 20 ■ applying effeCts

852

 private VBox wrap(Shape s, InnerShadow in) {
 Text t = new Text ("offsetX=" + in.getOffsetX() + "\n" +
 "offsetY=" + in.getOffsetY());
 t.setFont(Font.font(10));

 VBox box = new VBox(10, s, t);
 box.setAlignment(Pos.CENTER);
 return box;
 }
}

The Shadow Effect
The Shadow effect creates a shadow with blurry edges of its input. Unlike DropShadow and InnerShadow,
it modifies the original input itself to convert it into a shadow. Typically, a Shadow effect is combined with the
original input to create a higher-level shadowing effect:

You can apply a •	 Shadow effect with a light color to a node and superimpose it on a
duplicate of the original node to create a glow effect.

You can create a •	 Shadow effect with a dark color and place it behind the original node
to create a DropShadow effect.

An instance of the Shadow class represents a Shadow effect. The size, color, and quality of the effect are
controlled by several properties of the Shadow class:

•	 color

•	 blurType

•	 radius

•	 width

•	 height

•	 input

These properties work the same way they work in the DropShadow. Please refer to the section “The
DropShadow Effect” for a detailed description and examples of these properties.

Figure 20-9. A Text and two Rectangle nodes using InnerShadow effects

Chapter 20 ■ applying effeCts

853

The Shadow class contains several constructors that let you specify the initial values for the properties:

•	 Shadow()

•	 Shadow(BlurType blurType, Color color, double radius)

•	 Shadow(double radius, Color color)

The program in Listing 20-4 demonstrates how to use the Shadow effect. It creates three Text nodes.
A shadow is applied to all three nodes. The output of the first shadow is displayed. The output of the second
shadow is superimposed on the original node to achieve a glow effect. The output of the third shadow is
placed behind its original node to achieve a DropShadow effect. Figure 20-10 shows these three nodes.

Listing 20-4. Using a Shadow Effect and Creating High-Level Effects

// ShadowTest.java
package com.jdojo.effect;

import javafx.application.Application;

import javafx.scene.Scene;
import javafx.scene.effect.Shadow;
import javafx.scene.layout.HBox;
import javafx.scene.layout.StackPane;
import javafx.scene.paint.Color;
import javafx.scene.text.Font;
import javafx.scene.text.Text;
import javafx.stage.Stage;

public class ShadowTest extends Application {
 public static void main(String[] args) {
 Application.launch(args);
 }

 @Override
 public void start(Stage stage) {
 // Create a Shadow of a Text node
 Text t1 = new Text("Shadow");
 t1.setFont(Font.font(36));
 t1.setEffect(new Shadow());

 // Create a Glow effect using a Shadow
 Text t2Original = new Text("Glow");
 t2Original.setFont(Font.font(36));
 Text t2 = new Text("Glow");
 t2.setFont(Font.font(36));
 Shadow s2 = new Shadow();
 s2.setColor(Color.YELLOW);
 t2.setEffect(s2);
 StackPane glow = new StackPane(t2Original, t2);

Chapter 20 ■ applying effeCts

854

 // Create a DropShadow effect using a Shadow
 Text t3Original = new Text("DropShadow");
 t3Original.setFont(Font.font(36));
 Text t3 = new Text("DropShadow");
 t3.setFont(Font.font(36));
 Shadow s3 = new Shadow();
 t3.setEffect(s3);
 StackPane dropShadow = new StackPane(t3, t3Original);

 HBox root = new HBox(t1, glow, dropShadow);
 root.setSpacing(20);
 root.setStyle("-fx-padding: 10;" +
 "-fx-border-style: solid inside;" +
 "-fx-border-width: 2;" +
 "-fx-border-insets: 5;" +
 "-fx-border-radius: 5;" +
 "-fx-border-color: blue;");

 Scene scene = new Scene(root);
 stage.setScene(scene);
 stage.setTitle("Using Shadow Effect");
 stage.show();
 }
}

Blurring Effects
A blurring effect produces a blurred version of an input. JavaFX lets you apply different types of blurring
effects, which differ in the algorithms used to create these effect.

The BoxBlur Effect
The BoxBlur effect uses a box filter kernel to produce a blurring effect. An instance of the BoxBlur class
represents a BoxBlur effect. The size and quality of the effect can be configured using these properties of
the class:

•	 width

•	 height

•	 iterations

•	 input

Figure 20-10. Applying a shadow to a Text node and creating Glow and DropShadow effects

Chapter 20 ■ applying effeCts

855

The width and height properties specify the horizontal and vertical size of the effect, respectively.
Imagine a box defined by the width and height centered on a pixel of the input. The color information of the
pixel is spread within the box during the blurring process. The values of these properties are between 5.0 and
255.0. The default values are 5.0. A value of less than or equal to 1.0 does not produce the blurring effect in
the corresponding direction.

The iterations property specifies the number of times the blurring effect is applied. A higher value
produces a better quality blur. Its value can be between 0 and 3. The default is 1. The value of 3 produces the
blur quality comparable to the Gaussian blur, discussed in the next section. The value of zero produces no
blur at all.

The BoxBlur class contains two constructors:

•	 BoxBlur()

•	 BoxBlur(double width, double height, int iterations)

The no-args constructor creates a BoxBlur object with the width and height of 5.0 pixels and
iterations of 1. The other constructor lets you specify the initial value for the width, height, and
iterations properties, as in the following section of code:

// Create a BoxBlur with defaults: width=5.0, height=5.0, iterations=1
BoxBlur bb1 = new BoxBlur();

// Create a BoxBlur with width=10.0, height=10.0, iterations=3
BoxBlur bb2 = new BoxBlur(10, 10, 3);

The following snippet of code creates four Text nodes and applies BoxBlur effects of various qualities.
Figure 20-11 show the results of these Text nodes. Notice that the last Text node does not have any blur
effect as the iterations property is set to zero.

Text t1 = new Text("Box Blur");
t1.setFont(Font.font(24));
t1.setEffect(new BoxBlur(5, 10, 1));

Text t2 = new Text("Box Blur");
t2.setFont(Font.font(24));
t2.setEffect(new BoxBlur(10, 5, 2));

Text t3 = new Text("Box Blur");
t3.setFont(Font.font(24));
t3.setEffect(new BoxBlur(5, 5, 3));

Text t4 = new Text("Box Blur");
t4.setFont(Font.font(24));
t4.setEffect(new BoxBlur(5, 5, 0)); // Zero iterations = No blurring

width=5.0
height=10.0
iterations=1

width=10.0
height=5.0
iterations=2

width=5.0
height=5.0
iterations=3

width=5.0
height=5.0
iterations=0

Figure 20-11. Text nodes with BoxBlur effects of varying qualities

Chapter 20 ■ applying effeCts

856

The GaussianBlur Effect
The GaussianBlur effect uses a Gaussian convolution kernel to produce a blurring effect. An instance of the
GaussianBlur class represents a GaussianBlur effect. The effect can be configured using two properties of
the class:

•	 radius

•	 input

The radius property controls the distribution of the blur in pixels from the source pixel. The greater this
value, the more the blur effect. Its value can be between 0.0 and 63.0. The default value is 10.0. A radius of
zero pixels produces no blur effect.

The GaussianBlur class contains two constructors:

•	 GaussianBlur()

•	 GaussianBlur(double radius)

The no-args constructor creates a GaussianBlur object with a default radius of 10.0px. The other
constructor lets you specify the initial value for the radius, as in the following code:

// Create a GaussianBlur with a 10.0 pixels radius
GaussianBlur gb1 = new GaussianBlur();

// Create a GaussianBlur with a 20.0 pixels radius
GaussianBlur gb2 = new GaussianBlur(20);

The following snippet of code creates four Text nodes and applies GaussianBlur effects of different
radius values. Figure 20-12 show the results of these Text nodes. Notice that the last Text node does not have
any blur effect as the radius property is set to zero.

Text t1 = new Text("Gaussian Blur");
t1.setFont(Font.font(24));
t1.setEffect(new GaussianBlur(5));

Text t2 = new Text("Gaussian Blur");
t2.setFont(Font.font(24));
t2.setEffect(new GaussianBlur(10));

Text t3 = new Text("Gaussian Blur");
t3.setFont(Font.font(24));
t3.setEffect(new GaussianBlur(15));

Text t4 = new Text("Gaussian Blur");
t4.setFont(Font.font(24));
t4.setEffect(new GaussianBlur(0)); // radius = 0 means no blur

Chapter 20 ■ applying effeCts

857

The MotionBlur Effect
The MotionBlur effect produces a blurring effect by motion. The input looks as if you are seeing it while it is
moving. A Gaussian convolution kernel is used with a specified angle to produce the effect. An instance of
the MotionBlur class represents a MotionBlur effect. The effect can be configured using the three properties
of the class:

•	 radius

•	 angle

•	 input

The radius and input properties work the same as respective properties for the GaussianBlur class,
as described in the previous section. The angle property specifies the angle of the motion in degrees. By
default, the angle is zero.

The MotionBlur class contains two constructors:

•	 MotionBlur()

•	 MotionBlur(double angle, double radius)

The no-args constructor creates a MotionBlur object with a default radius of 10.0px and an angle of
0.0 degrees. The other constructor lets you specify the initial value for the angle and radius, as shown in the
following code:

// Create a MotionBlur with a 0.0 degrees angle and a 10.0 pixels radius
MotionBlur mb1 = new MotionBlur();

// Create a MotionBlur with a 30.0 degrees angle and a 20.0 pixels radius
MotionBlur mb1 = new MotionBlur(30.0, 20.0);

The program in Listing 20-5 shows how to use the MotionBlur effect on a Text node, with the results
shown in Figure 20-13. The two sliders let you change the radius and angle properties.

radius=5.0 radius=10.0 radius=15.0 radius=0.0

Figure 20-12. Text nodes with GaussianBlur effects of varying sizes

Chapter 20 ■ applying effeCts

858

Listing 20-5. Using the MotionBlur Effect on a Text Node

// MotionBlurTest.java
package com.jdojo.effect;

import javafx.application.Application;
import javafx.scene.Scene;
import javafx.scene.control.Label;
import javafx.scene.control.Slider;
import javafx.scene.effect.MotionBlur;
import javafx.scene.layout.BorderPane;
import javafx.scene.layout.HBox;
import javafx.scene.text.Font;
import javafx.scene.text.FontWeight;
import javafx.scene.text.Text;
import javafx.stage.Stage;

public class MotionBlurTest extends Application {
 public static void main(String[] args) {
 Application.launch(args);
 }

 @Override
 public void start(Stage stage) {
 Text t1 = new Text("Motion Blur");
 t1.setFont(Font.font(null, FontWeight.BOLD, 36));
 MotionBlur mbEffect = new MotionBlur();
 t1.setEffect(mbEffect);

 Slider radiusSlider = new Slider(0.0, 63.0, 10.0);
 radiusSlider.setMajorTickUnit(10);
 radiusSlider.setShowTickLabels(true);
 mbEffect.radiusProperty().bind(radiusSlider.valueProperty());

 Slider angleSlider = new Slider(0.0, 360.0, 0);
 angleSlider.setMajorTickUnit(10);
 angleSlider.setShowTickLabels(true);
 mbEffect.angleProperty().bind(angleSlider.valueProperty());

 HBox pane = new HBox(10, new Label("Radius:"), radiusSlider,
 new Label("Angle:"), angleSlider);

 BorderPane root = new BorderPane();
 root.setCenter(t1);
 root.setBottom(pane);
 root.setStyle("-fx-padding: 10;" +
 "-fx-border-style: solid inside;" +
 "-fx-border-width: 2;" +
 "-fx-border-insets: 5;" +
 "-fx-border-radius: 5;" +
 "-fx-border-color: blue;");

Chapter 20 ■ applying effeCts

859

 Scene scene = new Scene(root);
 stage.setScene(scene);
 stage.setTitle("Using the MotionBlur Effect");
 stage.show();
 }
}

The Bloom Effect
The Bloom effect adds a glow to the pixels of its input that have a luminosity greater than or equal to a
specified limit. Note that not all pixels in a Bloom effect are made to glow.

An instance of the Bloom class represents a Bloom effect. It contains two properties:

•	 threshold

•	 input

The threshold property is a number between 0.0 and 1.0. Its default value is 0.30. All pixels in the
input having a luminosity greater than or equal to the threshold property are made to glow. The brightness
of a pixel is determined by its luminosity. A pixel with a luminosity of 0.0 is not bright at all. A pixel with a
luminosity of 1.0 is 100% bright. By default, all pixels having a luminosity greater than or equal to 0.3 are
made to glow. A threshold of 0.0 makes all of the pixels glow. A threshold of 1.0 makes almost no pixels glow.

The Bloom class contains two constructors:

•	 Bloom()

•	 Bloom(double threshold)

The no-args constructor creates a Bloom object with a default threshold of 0.30. The other constructor
lets you specify the threshold value, as shown in the following code:

// Create a Bloom with threshold 0.30
Bloom b1 = new Bloom();

// Create a Bloom with threshold 0.10 - more pixels will glow.
Bloom b2 = new Bloom(0.10);

Figure 20-13. Text nodes with GaussianBlur effects of varying sizes

Chapter 20 ■ applying effeCts

860

Figure 20-14 shows four Text nodes with Bloom effects that have different threshold values. A Text
node is laid over a rectangle using a StackPane. Notice that the lower the threshold value, the higher the
blooming effect. The following snippet of code created the first Text node and Rectangle pair from the left
in Figure 20-14:

Text t1 = new Text("Bloom");
t1.setFill(Color.YELLOW);
t1.setFont(Font.font(null, FontWeight.BOLD, 24));
t1.setEffect(new Bloom(0.10));
Rectangle r1 = new Rectangle(100, 50, Color.GREEN);
StackPane sp1 = new StackPane(r1, t1);

The Glow Effect
The Glow effect makes the bright pixels of the input brighter. An instance of the Glow class represents a Glow
effect. It contains two properties:

•	 level

•	 input

The level property specifies the intensity of the Glow effect. It is a number between 0.0 and 1.0, and its
default value is 0.30. A level of 0.0 adds no glow and a level of 1.0 adds the maximum glow.

The Glow class contains two constructors:

•	 Glow()

•	 Glow(double level)

The no-args constructor creates a Glow object with a default level of 0.30. The other constructor lets you
specify the level value, as shown in the following code:

// Create a Glow with level 0.30
Glow g1 = new Glow();

// Create a Glow with level 0.90 - more glow.
Glow g2 = new Glow(0.90);

threshold=0.1 threshold=0.3 threshold=0.7 threshold=1.0

Figure 20-14. Text nodes with Bloom effects

Chapter 20 ■ applying effeCts

861

Figure 20-15 shows four Text nodes with Glow effects with different level values. A Text node is laid
over a rectangle using a StackPane. Notice that the higher the level value, the higher the glowing effect. The
following snippet of code created the first Text node and Rectangle pair from the left in Figure 20-15:

Text t1 = new Text("Glow");
t1.setFill(Color.YELLOW);
t1.setFont(Font.font(null, FontWeight.BOLD, 24));
t1.setEffect(new Glow(0.10));
Rectangle r1 = new Rectangle(100, 50, Color.GREEN);
StackPane sp1 = new StackPane(r1, t1);

The Reflection Effect
The Reflection effect adds a reflection of the input below the input. An instance of the Reflection class
represents a reflection effect. The position, size, and opacity of the reflection are controlled by various
properties:

•	 topOffset

•	 fraction

•	 topOpacity

•	 bottomOpacity

•	 input

The topOffset specifies the distance in pixels between the bottom of the input and the top of the
reflection. By default, it is 0.0. The fraction property specifies the faction of the input height that is visible
in the reflection. It is measured from the bottom. Its value can be between 0.0 and 1.0. A value of 0.0 means
no reflection. A value of 1.0 means the entire input is visible in the reflection. A value of 0.25 means 25%
of the input from the bottom is visible in the reflection. The default value is 0.75. The topOpacity and
bottomOpacity properties specify the opacity of the reflection at its top and bottom extremes. Their values
can be between 0.0 and 1.0. The default value is 0.50 for the topOpacity and 0.0 for the bottomOpacity.

The Reflection class contains two constructors:

•	 Reflection()

•	 Reflection(double topOffset, double fraction, double topOpacity,
double bottomOpacity)

level=0.1 level=0.3 level=0.7 level=1.0

Figure 20-15. Text nodes with Glow effects

Chapter 20 ■ applying effeCts

862

The no-args constructor creates a Reflection object with the default initial values for its properties.
The other constructor lets you specify the initial values for the properties, as shown in the following code:

// Create a Reflection with default values
Reflection g1 = new Reflection();

// Create a Reflection with topOffset=2.0, fraction=0.90,
// topOpacity=1.0, and bottomOpacity=1.0
Reflection g2 = new Reflection(2.0, 0.90, 1.0, 1.0);

Figure 20-16 shows four Text nodes with Reflection effects configured differently. The following
snippet of code creates the second Text node from the left, which shows the full input as the reflection:

Text t2 = new Text("Chatar");
t2.setFont(Font.font(null, FontWeight.BOLD, 24));
t2.setEffect(new Reflection(0.0, 1.0, 1.0, 1.0));

The SepiaTone Effect
Sepia is a reddish-brown color. Sepia toning is performed on black-and-white photographic prints to give
them a warmer tone. An instance of the SepiaTone class represents a SepiaTone effect. It contains two
properties:

•	 level

•	 input

The level property specifies the intensity of the SepiaTone effect. It is a number between 0.0 and 1.0. Its
defaults value is 1.0. A level of 0.0 adds no sepia toning and a level of 1.0 adds the maximum sepia toning.

The SepiaTone class contains two constructors:

•	 SepiaTone ()

•	 SepiaTone (double level)

The no-args constructor creates a SepiaTone object with a default level of 1.0. The other constructor
lets you specify the level value, as shown in the following code:

// Create a SepiaTone with level 1.0
SepiaTone g1 = new SepiaTone ();

Figure 20-16. Text nodes with Reflection effects

Chapter 20 ■ applying effeCts

863

// Create a SepiaTone with level 0.50
SepiaTone g2 = new SepiaTone(0.50);

The following snippet of code creates two Text nodes with the results shown in Figure 20-17. Notice that
the higher the level value, the higher the sepia toning effect:

Text t1 = new Text("SepiaTone");
t1.setFill(Color.WHITE);
t1.setFont(Font.font(null, FontWeight.BOLD, 24));
1.setEffect(new SepiaTone(0.50));
Rectangle r1 = new Rectangle(150, 50, Color.BLACK);
r1.setOpacity(0.50);
StackPane sp1 = new StackPane(r1, t1);

Text t2 = new Text("SepiaTone");
t2.setFill(Color.WHITE);
t2.setFont(Font.font(null, FontWeight.BOLD, 24));
t2.setEffect(new SepiaTone(1.0));
Rectangle r2 = new Rectangle(150, 50, Color.BLACK);
r2.setOpacity(0.50);
StackPane sp2 = new StackPane(r2, t2);

The DisplacementMap Effect
The DisplacementMap effect shifts each pixel in the input to produce an output. The name has two parts:
“Displacement” and “Map.” The first part implies that the effect displaces the pixels in the input. The second
part implies that the displacement is based on a map that provides a displacement factor for each pixel in
the output.

An instance of the DisplacementMap class represents a DisplacementMap. The class contains several
properties to configure the effect:

•	 mapData

•	 scaleX

•	 scaleY

•	 offsetX

•	 offsetY

•	 wrap

•	 input

level=0.5 level=1.0

Figure 20-17. Text nodes with SepiaTone effect

Chapter 20 ■ applying effeCts

864

The mapData property is an instance of the FloatMap class. A FloatMap is a data structure that stores
up to four values for each point in a rectangular area represented by its width and height properties. For
example, you can use a FloatMap to store four components of the color (red, green, blue, and alpha) for
each pixel in a two-dimensional rectangle. Each of the four values associated with a pair of numbers in the
FloatMap are said to be in a band numbered 0, 1, 2, and 3. The actual meaning of the values in each band is
context dependent. The following code provides an example of setting the FloatMap width and height:

// Create a FloatMap (width = 100, height = 50)
FloatMap map = new FloatMap(100, 50);

Now you need to populate the FloatMap with band values for each pair of numbers. You can use one of
the following methods of the FloatMap class to populate it with the data:

•	 setSample(int x, int y, int band, float value)

•	 setSamples(int x, int y, float s0)

•	 setSamples(int x, int y, float s0, float s1)

•	 setSamples(int x, int y, float s0, float s1, float s2)

•	 setSamples(int x, int y, float s0, float s1, float s2, float s3)

The setSample() method sets the specified value in the specified band for the specified (x, y) location.
The setSamples() methods sets the specified values in the bands determined by the positions of the values
in the method call. That is, the first value is set for band 0, the second value for band 1, and so forth:

// Set 0,50f for band 0 and band 1 for each point in the map
for (int i = 0; i < 100; i++) {
 for (int j = 0; j < 50; j++) {
 map.setSamples(i, j, 0.50f, 0.50f);
 }
}

The DisplacementMap class requires that you set the mapData property to a FloatMap that contains
values for band 0 and band 1 for each pixel in the output.

The scaleX, scaleY, offsetX, and offsetY are double properties. They are used in the equation
(described shortly) to compute the displacement of the pixels. The scaleX and scaleY properties have 1.0 as
their default values. The offsetX and offsetY properties have 0.0 as their default values.

The following equation is used to compute the pixel at (x, y) coordinates in the output. The
abbreviations dst and src in the equation represent the destination and source, respectively:

dst[x,y] = src[x + (offsetX + scaleX * mapData[x,y][0]) * srcWidth,
 y + (offsetY + scaleY * mapData[x,y][1]) * srcHeight]

If the above equation looks very complex, don’t be intimidated. In fact, the equation is very simple once
you read the explanation that follows. The mapData[x,y][0] and mapData[x,y][1] parts in the equation
refer to the values at band 0 and band 1, respectively, in the FloatMap for the location at (x, y).

Suppose you want to get the pixel for the (x, y) coordinates in the output, that is, you want to know
which pixel from the input will be moved to (x, y) in the output. First, make sure you get the starting point
right. To repeat, the equation starts with a point (x, y) in the output and finds the pixel at (x1, y1) in the input
that will move to (x, y) in the output.

Chapter 20 ■ applying effeCts

865

Tip ■ Many will get the equation wrong by thinking that you start with a pixel in the input and then find its
location in the output. this is not true. the equation works the other way around. it picks a point (x, y) in the
output and then finds which pixel in the input will move to this point.

Below are the steps to fully explain the equation:

You want to find the pixel in the input that will be moved to the point (x, y) in the •	
output.

Get the values (band 0 and band 1) from the •	 mapData for (x, y).

Multiply the •	 mapData values by the scale (scaleX for x coordinate and scaleY for y
coordinate).

Add the corresponding offset values to the values computed in the previous step.•	

Multiply the previous step values with the corresponding dimensions of the input. •	
This gives you the offset values along the x and y coordinate axes from the output
(x, y) from where the pixels in the input will be moving to the (x, y) in the output.

Add the values in the previous step to the x and y coordinates of the point in the •	
output. Suppose these values are (x1, y1). The pixel at (x1, y1) in the input moves to
the point (x, y) in the output.

If you still have problem understanding the pixel-shifting logic, you can break the above equation into
two parts:

x1 = x + (offsetX + scaleX * mapData[x,y][0]) * srcWidth
y1 = y + (offsetY + scaleY * mapData[x,y][1]) * srcHeight

You can read these equations as “The pixel at (x, y) in the output is obtained by moving the pixel at
(x1, y1) in the input to (x, y).”

If you leave the scale and offset values to their default:

Use a positive value in band 0 to move the input pixels to the left.•	

Use a negative value in band 0 to move the input pixels to the right.•	

Use a positive value in band 1 to move the input pixels up.•	

Use a negative value in band 1 to move the input pixels down.•	

The program in Listing 20-6 creates a Text node and adds a DisplacementMap effect to the node. In the
mapData, it sets values, so all pixels in the top half of the input are moved to the right by 1 pixel, and all pixels
in the bottom half of the input are moved to the left by 1 pixel. The Text node will look like the one shown in
Figure 20-18.

Chapter 20 ■ applying effeCts

866

Listing 20-6. Using the DisplacementMap Effect

// DisplacementmapTest.java
package com.jdojo.effect;

import javafx.application.Application;
import javafx.scene.Scene;
import javafx.scene.effect.DisplacementMap;
import javafx.scene.effect.FloatMap;
import javafx.scene.layout.HBox;
import javafx.scene.text.Font;
import javafx.scene.text.Text;
import javafx.stage.Stage;

public class DisplacementmapTest extends Application {
 public static void main(String[] args) {
 Application.launch(args);
 }

 @Override
 public void start(Stage stage) {
 // Create a FloatMap
 int width = 250;
 int height = 50;
 FloatMap map = new FloatMap(width, height);

 double xDisplacement = 1.0;
 for (int i = 0; i < width; i++) {
 for (int j = 0; j < height; j++) {
 double u = xDisplacement;
 if (j < height / 2) {
 // Move the top-half pixels to the right

// (a nagative value)
 u = -1.0 * (u * xDisplacement / width);
 } else {
 // Move the bottom-half pixels to the

left.(a positive value)
 u = u * xDisplacement / width;
 }

 // Set values for band 0 and 1 (x and y axes

// displacements factors).
 // Always use 0.0f for y-axis displacement factor.
 // map.setSamples(i, j, (float)u, 0.0f);
 }
 }

 Text t1 = new Text("Displaced Text");
 t1.setFont(Font.font(36));

Chapter 20 ■ applying effeCts

867

 DisplacementMap effect1 = new DisplacementMap();
 effect1.setMapData(map);
 t1.setEffect(effect1);

 HBox root = new HBox(t1);
 root.setStyle("-fx-padding: 10;" +
 "-fx-border-style: solid inside;" +
 "-fx-border-width: 2;" +
 "-fx-border-insets: 5;" +
 "-fx-border-radius: 5;" +
 "-fx-border-color: blue;");

 Scene scene = new Scene(root);
 stage.setScene(scene);
 stage.setTitle("Applying the DisplacementMap Effect");
 stage.show();
 }
}

The DisplacementMap class contains a wrap property, which is set to false by default. A pixel in the
output is a pixel in the input that is moved to a new location. The location of the pixel in the input that needs
to move to a new location is computed by the equation. It is possible that for some locations in the output,
you do not have available pixels in the input. Suppose you have a 100px wide by 50px tall rectangle and you
apply a DisplacementMap effect to move all pixels to the left by 50px. The points at x = 75 in the output will
get the pixel at x = 125 in the input. The input is only 100px wide. Therefore, for all points x > 50 in the output,
you will not have available pixels in the input. If the wrap property is set to true, when the locations of the
pixels in the input to be moved are outside the input bounds, the locations are computed by taking their
modulus with the corresponding dimension (width along the x axis and height for along the y axis) of the
input. In the example, x = 125 will be reduced to 125 % 100, which is 25 and the pixels at x = 25 in the input
will be moved to x = 75 in the output. If the wrap property is false, the pixels in the output are left transparent.

Figure 20-19 shows two Text nodes with DisplacementMap effects. Pixels in both nodes are moved
100px to the left. The Text node at the top has the wrap property set to false, whereas the Text node at the
bottom has the wrap property set to true. Notice that output for the bottom node is filled by wrapping the
input. The program in Listing 20-7 is used to apply the wrapping effects.

Figure 20-18. A Text node with DisplacementMap effect

Chapter 20 ■ applying effeCts

868

Listing 20-7. Using the wrap Property in DisplacementMap Effect

// DisplacementMapWrap.java
package com.jdojo.effect;

import javafx.application.Application;
import javafx.scene.Scene;
import javafx.scene.effect.DisplacementMap;
import javafx.scene.effect.FloatMap;
import javafx.scene.layout.VBox;
import javafx.scene.text.Font;
import javafx.scene.text.Text;
import javafx.stage.Stage;

public class DisplacementMapWrap extends Application {
 public static void main(String[] args) {
 Application.launch(args);
 }

 @Override
 public void start(Stage stage) {
 // Create a FloatMap
 int width = 200;
 int height = 25;

 FloatMap map = new FloatMap(width, height);
 for (int i = 0; i < width; i++) {
 for (int j = 0; j < height; j++) {
 // Move all pixels 100 pixels to the left
 double u = 100.0/width;
 map.setSamples(i, j, (float)u, 0.0f);
 }
 }

 Text t1 = new Text("Displaced Text");
 t1.setFont(Font.font(24));
 DisplacementMap effect1 = new DisplacementMap();
 effect1.setMapData(map);
 t1.setEffect(effect1);

Figure 20-19. Effects of using the wrap property in DisplacementMap

Chapter 20 ■ applying effeCts

869

 Text t2 = new Text("Displaced Text");
 t2.setFont(Font.font(24));
 DisplacementMap effect2 = new DisplacementMap();
 effect2.setWrap(true);
 effect2.setMapData(map);
 t2.setEffect(effect2);

 VBox root = new VBox(t1, t2);
 root.setSpacing(5);
 root.setStyle("-fx-padding: 10;" +
 "-fx-border-style: solid inside;" +
 "-fx-border-width: 2;" +
 "-fx-border-insets: 5;" +
 "-fx-border-radius: 5;" +
 "-fx-border-color: blue;");

 Scene scene = new Scene(root);
 stage.setScene(scene);
 stage.setTitle("Using the warps proeprty in DisplacementMap");
 stage.show();
 }
}

The ColorInput Effect
The ColorInput effect is a simple effect that fills (floods) a rectangular region with a specified paint.
Typically, it is used as an input to another effect.

An instance of the ColorInput class represents the ColorInput effect. The class contains five properties
that define the location, size, and the paint for the rectangular region:

•	 x

•	 y

•	 width

•	 height

•	 paint

Creating a ColorInput object is similar to creating a rectangle filled with the paint of the ColorInput.
The x and y properties specify the location of the upper left corner of the rectangular region in the local
coordinate system. The width and height properties specify the size of the rectangular region. The default
value for x, y, width, and height is 0.0. The paint property specifies the fill paint. The default value for paint
is Color.RED.

You can use the following constructors to create an object of the ColorInput class:

•	 ColorInput()

•	 ColorInput(double x, double y, double width, double height, Paint paint)

The following snippet of code creates a ColorInput effect and applies it to a rectangle. The rectangle
with the effect applied is shown in Figure 20-20. Note that when you apply the ColorInput effect to a node,
all you see is the rectangular area generated by the ColorInput effect. As stated earlier, the ColorInput effect
is not applied directly on nodes. Rather it is used as an input to another effect.

Chapter 20 ■ applying effeCts

870

ColorInput effect = new ColorInput();
effect.setWidth(100);
effect.setHeight(50);
effect.setPaint(Color.LIGHTGRAY);

// Size of the Rectangle does not matter to the rectangular area
// of the ColorInput
Rectangle r1 = new Rectangle(100, 50);
r1.setEffect(effect);

The ColorAdjust Effect
The ColorAdjust effect adjusts the hue, saturation, brightness, and contrast of pixels by the specified delta
amount. Typically, the effect is used on an ImageView node to adjust the color of an image.

An instance of the ColorAdjust class represents the ColorAdjust effect. The class contains five
properties that define the location, size, and the paint for the rectangular region:

•	 hue

•	 saturation

•	 brightness

•	 contrast

•	 input

The hue, saturation, brightness, and contrast properties specify the delta amount by which these
components are adjusted for all pixels. They range from -1.0 to 1.0. Their default values are 0.0.

The program in Listing 20-8 shows how to use the ColorAdjust effect on an image. It displays an image
and four sliders to change the properties of the ColorAdjust effect. Adjust their values using the sliders
to see the effects. If the program does not find the image, it prints a message and displays a Text node
overlaying a rectangle in a StackPane and the effect is applied to the StackPane.

Listing 20-8. Using the ColorAdjust Effect to Adjust the Color of Pixels in an Image

// ColorAdjustTest.java
package com.jdojo.effect;

import java.net.URL;
import javafx.application.Application;
import javafx.scene.Node;
import javafx.scene.Scene;
import javafx.scene.control.Label;
import javafx.scene.control.Slider;
import javafx.scene.effect.ColorAdjust;

Figure 20-20. A ColorInput effect applied to a rectangle

Chapter 20 ■ applying effeCts

871

import javafx.scene.image.ImageView;
import javafx.scene.layout.BorderPane;
import javafx.scene.layout.GridPane;
import javafx.scene.layout.StackPane;
import javafx.scene.paint.Color;
import javafx.scene.shape.Rectangle;
import javafx.scene.text.Text;
import javafx.stage.Stage;

public class ColorAdjustTest extends Application {
 public static void main(String[] args) {
 Application.launch(args);
 }

 @Override
 public void start(Stage stage) {
 ColorAdjust effect = new ColorAdjust();

 Node node = getImageNode();
 node.setEffect(effect);

 GridPane controller = getController(effect);

 BorderPane root = new BorderPane();
 root.setCenter(node);
 root.setBottom(controller);
 root.setStyle("-fx-padding: 10;" +
 "-fx-border-style: solid inside;" +
 "-fx-border-width: 2;" +
 "-fx-border-insets: 5;" +
 "-fx-border-radius: 5;" +
 "-fx-border-color: blue;");

 Scene scene = new Scene(root);
 stage.setScene(scene);
 stage.setTitle("Applying the ColorAdjust Effect");
 stage.show();
 }

 private Node getImageNode() {
 Node node = null;
 String path = "\\resources\\picture\\randomness.jpg";
 URL url = getClass().getClassLoader().getResource(path);

 if (url != null) {
 node = new ImageView(url.toExternalForm());
 } else {
 System.out.println("Missing image file " + path);
 node = new StackPane(new Rectangle(100, 50, Color.LIGHTGRAY),
 new Text("Color Adjust"));
 }
 return node;
 }

Chapter 20 ■ applying effeCts

872

 private GridPane getController(ColorAdjust effect) {
 Slider hueSlider = new Slider(-1.0, 1.0, 0.0);
 effect.hueProperty().bind(hueSlider.valueProperty());

 Slider saturationSlider = new Slider(-1.0, 1.0, 0.0);
 effect.saturationProperty().bind(saturationSlider.valueProperty());

 Slider brightnessSlider = new Slider(-1.0, 1.0, 0.0);
 effect.brightnessProperty().bind(brightnessSlider.valueProperty());

 Slider contrastSlider = new Slider(-1.0, 1.0, 0.0);
 effect.contrastProperty().bind(contrastSlider.valueProperty());

 Slider[] sliders = new Slider[] {hueSlider, saturationSlider,
 brightnessSlider, contrastSlider};
 for (Slider s : sliders) {
 s.setPrefWidth(300);
 s.setMajorTickUnit(0.10);
 s.setShowTickMarks(true);
 s.setShowTickLabels(true);
 }

 GridPane pane = new GridPane();
 pane.setHgap(5);
 pane.setVgap(10);
 pane.addRow(0, new Label("Hue:"), hueSlider);
 pane.addRow(1, new Label("Saturation:"), saturationSlider);
 pane.addRow(2, new Label("Brightness:"), brightnessSlider);
 pane.addRow(3, new Label("Contrast:"), contrastSlider);

 return pane;
 }
}

The ImageInput Effect
The ImageInput effect works like the ColorInput effect. It passes the given image as an input to another
effect. The given image is not modified by this effect. Typically, it is used as an input to another effect, not as
an effect directly applied to a node.

An instance of the ImageInput class represents the ImageInput effect. The class contains three
properties that define the location and the source of the image:

•	 x

•	 y

•	 source

The x and y properties specify the location of the upper left corner of the image in the local coordinate
system of the content node on which the effect is finally applied. Their default values are 0.0. The source
property specifies the Image object to be used.

Chapter 20 ■ applying effeCts

873

You can use the following constructors to create an object of the ColorInput class:

•	 ImageInput()

•	 ImageInput(Image source)

•	 ImageInput(Image source, double x, double y)

The program in Listing 20-9 shows how to use the ImageInput effect. It passes an ImageInput as an
input to a DropShadow effect, which is applied on a rectangle, as shown in Figure 20-21.

Listing 20-9. Using an ImageInput Effect as an Input to a DropShadow Effect

// ImageInputTest.java
package com.jdojo.effect;

import java.net.URL;
import javafx.application.Application;
import javafx.scene.Node;
import javafx.scene.Scene;
import javafx.scene.effect.GaussianBlur;
import javafx.scene.effect.ImageInput;
import javafx.scene.image.Image;
import javafx.scene.layout.HBox;
import javafx.scene.shape.Rectangle;
import javafx.scene.text.Text;
import javafx.stage.Stage;

public class ImageInputTest extends Application {
 public static void main(String[] args) {
 Application.launch(args);
 }

 @Override
 public void start(Stage stage) {
 String path = "\\resources\\picture\\randomness.jpg";
 URL url = getClass().getClassLoader().getResource(path);

 Node node = null;
 if (url == null) {
 node = new Text("Missing image file " + path + " in classpath.");
 }
 else {
 ImageInput imageInputEffect = new ImageInput();
 double requestedWidth = 100;
 double requestedHeight = 50;
 boolean preserveRation = false;
 boolean smooth = true;
 Image image = new Image(url.toExternalForm(),
 requestedWidth,
 requestedHeight,
 preserveRation,
 smooth);
 imageInputEffect.setSource(image);

Chapter 20 ■ applying effeCts

874

 node = new Rectangle(100, 50);
 GaussianBlur dsEffect = new GaussianBlur();
 dsEffect.setInput(imageInputEffect);
 node.setEffect(dsEffect);
 }

 HBox root = new HBox(node);
 root.setStyle("-fx-padding: 10;" +
 "-fx-border-style: solid inside;" +
 "-fx-border-width: 2;" +
 "-fx-border-insets: 5;" +
 "-fx-border-radius: 5;" +
 "-fx-border-color: blue;");

 Scene scene = new Scene(root);
 stage.setScene(scene);
 stage.setTitle("Applying the ImageInput Effect");
 stage.show();
 }
}

The Blend Effect
Blending combines two pixels at the same location from two inputs to produce one composite pixel in the
output. The Blend effect takes two input effects and blends the overlapping pixels of the inputs to produce
an output. The blending of two inputs is controlled by a blending mode.

An instance of the Blend class represents the Blend effect. The class contains properties to specify the:

•	 topInput

•	 bottomInput

•	 mode

•	 opacity

Figure 20-21. An ImageInput effect with a DropShadow effect applied to a rectangle

Chapter 20 ■ applying effeCts

875

The topInput and bottomInput properties specify the top and bottom effects, respectively. They are
null by default. The mode property specifies the blending mode, which is one of the constants defined in
the BlendMode enum. The default is BlendMode.SRC_OVER. JavaFX provides 17 predefined blending modes.
Table 20-1 lists all of the constants in the BlendMode enum with a brief description of each. All blending
modes use the SRC_OVER rules to blend the alpha components. The opacity property specifies the opacity to
be applied to the top input before the blending is applied. The opacity is 1.0 by default.

Table 20-1. The Constants in the BlendMode Enum with Their Descriptions

BlendMode Enum Constant Description

ADD It adds the color (red, green, and blue) and alpha values for the pixels in the
top and bottom inputs to get the new component value.

MULTIPLY It multiplies the color components from two inputs.

DIFFERENCE It subtracts the darker color components from any inputs from the lighter
color components of the other input to get the resulting color components.

RED It replaces the red component of the bottom input with the red component
of the top input, leaving all other color components unaffected.

BLUE It replaces the blue component of the bottom input with the blue
component of the top input, leaving all other color components unaffected.

GREEN It replaces the green component of the bottom input with the green
component of the top input, leaving all other color components unaffected.

EXCLUSION It multiplies the color components of the two inputs and doubles the
result. The value thus obtained is subtracted from the sum of the color
components of the bottom input to get the resulting color component.

COLOR_BURN It divides the inverse of the bottom input color components by the top
input color components and inverts the result.

COLOR_DODGE It divides the bottom input color components by the inverse of the top
input color.

LIGHTEN It uses the lighter of the color components from the two inputs.

DARKEN It uses the darker of the color components from the two inputs.

SCREEN It inverts the color components from both inputs, multiplies them, and
inverts the result.

OVERLAY Depending on the bottom input color, it multiplies or screens the input
color components.

HARD_LIGHT Depending on the top input color, it multiplies or screens the input color
components.

SOFT_LIGHT Depending on the top input color, it darkens or lightens the input color
components.

SRC_ATOP It keeps the bottom input for the nonoverlapping area and the top input for
the overlapping area.

SRC_OVER The top input is drawn over the bottom input. Therefore, the overlapping
area shows the top input.

Chapter 20 ■ applying effeCts

876

The program in Listing 20-10 creates two ColorInput effects of the same size. Their x and y properties
are set in such a way that they overlap. These two effects are used as top and bottom inputs to the Blend
effect. A combo box and a slider are provided to select the blending mode and the opacity of the top input.
Figure 20-22 shows the window that results from running this code. Run the program and try selecting
different blending modes to see the Blend effect in action.

Listing 20-10. Using the Blend Effect

// BlendTest.java
package com.jdojo.effect;

import javafx.application.Application;
import javafx.scene.Scene;
import javafx.scene.control.ComboBox;
import javafx.scene.control.Label;
import javafx.scene.control.Slider;
import javafx.scene.effect.Blend;
import javafx.scene.effect.BlendMode;
import javafx.scene.effect.ColorInput;
import javafx.scene.layout.GridPane;
import javafx.scene.layout.HBox;
import javafx.scene.paint.Color;
import javafx.scene.shape.Rectangle;
import javafx.stage.Stage;

public class BlendTest extends Application {
 public static void main(String[] args) {
 Application.launch(args);
 }

 @Override
 public void start(Stage stage) {
 ColorInput topInput = new ColorInput(0, 0, 100, 50, Color.LIGHTGREEN);
 ColorInput bottomInput = new ColorInput(50, 25, 100, 50, Color.PURPLE);

 // Create the Blend effect
 Blend effect = new Blend();
 effect.setTopInput(topInput);
 effect.setBottomInput(bottomInput);

 Rectangle rect = new Rectangle(150, 75);
 rect.setEffect(effect);

 GridPane controller = this.getController(effect);

 HBox root = new HBox(rect, controller);
 root.setSpacing(30);
 root.setStyle("-fx-padding: 10;" +
 "-fx-border-style: solid inside;" +
 "-fx-border-width: 2;" +
 "-fx-border-insets: 5;" +
 "-fx-border-radius: 5;" +
 "-fx-border-color: blue;");

Chapter 20 ■ applying effeCts

877

 Scene scene = new Scene(root);
 stage.setScene(scene);
 stage.setTitle("Applying the Blend Effect");
 stage.show();
 }

 private GridPane getController(Blend effect) {
 ComboBox<BlendMode> blendModeList = new ComboBox<>();
 blendModeList.setValue(effect.getMode());
 blendModeList.getItems().addAll(BlendMode.values());
 effect.modeProperty().bind(blendModeList.valueProperty());

 Slider opacitySlider = new Slider (0, 1.0, 1.0);
 opacitySlider.setMajorTickUnit(0.10);
 opacitySlider.setShowTickMarks(true);
 opacitySlider.setShowTickLabels(true);
 effect.opacityProperty().bind(opacitySlider.valueProperty());

 GridPane pane = new GridPane();
 pane.setHgap(5);
 pane.setVgap(10);
 pane.addRow(0, new Label("Blend Mode:"), blendModeList);
 pane.addRow(1, new Label("Opacity:"), opacitySlider);

 return pane;
 }
}

The Lighting Effect
The Lighting effect, as the name suggests, simulates a light source shining on a specified node in a scene
to give the node a 3D look. A Lighting effect uses a light source, which is an instance of the Light class, to
produce the effect. Different types of configurable lights are available. If you do not specify a light source, the
effect uses a default light source.

Figure 20-22. The Blend effect

Chapter 20 ■ applying effeCts

878

An instance of the Lighting class represents a Lighting effect. The class contains two constructors:

•	 Lighting()

•	 Lighting(Light light)

The no-args constructor uses a default light source. The other constructor lets you specify a light source.
Applying a Lighting effect to a node may be a simple or complex task depending on the type of effect

you want to achieve. Let’s look at a simple example. The following snippet of code applies a Lighting effect
to a Text node to give it a 3D look, as shown in Figure 20-23:

// Create a Text Node
Text text = new Text("Chatar");
text.setFill(Color.RED);
text.setFont(Font.font(null, FontWeight.BOLD, 72));
HBox.setMargin(text, new Insets(10));

// Set a Lighting effect to the Text node
text.setEffect(new Lighting());

In the above example, adding the Lighting effect is as simple as creating an object of the Lighting
class and setting it as the effect for the Text node. I will discuss some complex Lighting effects later. The
Lighting class contains several properties to configure the effect:

•	 contentInput

•	 surfaceScale

•	 bumpInput

•	 diffuseConstant

•	 specularConstant

•	 specularExponent

•	 light

If you use a chain of effects, the contentInput property specifies the input effect to the Lighting effect.
This property is named as input in all other effects discussed earlier. I will not discuss this property further in
this section. Please refer to the section “Chaining Effects” for more details on how to use this property.

Customizing the Surface Texture
The surfaceScale and bumpInput properties are used to provide texture to a 2D surface to make it look like
a 3D surface. Pixels, based on their opacity, look high or low to give the surface a texture. Transparent pixels
appear low and opaque pixels appear raised.

Figure 20-23. A Text node with a Lighting effect using the default for the light source

Chapter 20 ■ applying effeCts

879

The surfaceScale property lets you control the surface roughness. Its value ranges from 0.0 to 10.0. The
default is 1.5. For a higher surfaceScale, the surface appears rougher, giving it a more 3D look.

You can pass an Effect as an input to the Lighting effect using its bumpInput property. The opacity
of the pixels in the bumpInput is used to obtain the height of the pixels of the lighted surface, and then the
surfaceScale is applied to increase the roughness. If bumpInput is null, the opacity of the pixels from the
node on which the effect is applied is used to generate the roughness of the surface. By default, a Shadow
effect with a radius of 10 is used as the bumpInput. You can use an ImageInput, a blur effect, or any other
effect as the bumpInput for a Lighting effect.

The program in Listing 20-11 displays a Text node with a Lighting effect. The bumpInput is set to null.
It provides a check box to set a GaussianBlur effect as the bumpInput and a slider to adjust the surfaceScale
value. Figure 20-24 shows two screenshots: one without a bump input and another with a bump input.
Notice the difference in the surface texture.

Listing 20-11. Using the surfaceScale and bumpInput Properties

// SurfaceTexture.java
package com.jdojo.effect;

import javafx.application.Application;
import javafx.scene.Scene;
import javafx.scene.control.CheckBox;
import javafx.scene.control.Slider;
import javafx.scene.effect.GaussianBlur;
import javafx.scene.effect.Lighting;
import javafx.scene.layout.VBox;
import javafx.scene.paint.Color;
import javafx.scene.text.Font;
import javafx.scene.text.FontWeight;
import javafx.scene.text.Text;
import javafx.scene.text.TextBoundsType;

import javafx.stage.Stage;

public class SurfaceTexture extends Application {
 public static void main(String[] args) {
 Application.launch(args);
 }

 @Override
 public void start(Stage stage) {
 Text text = new Text();
 text.setText("Texture");
 text.setFill(Color.RED);
 text.setFont(Font.font(null, FontWeight.BOLD, 72));
 text.setBoundsType(TextBoundsType.VISUAL);

 Lighting effect = new Lighting();
 effect.setBumpInput(null); // Remove the default bumpInput
 text.setEffect(effect);

Chapter 20 ■ applying effeCts

880

 // Let the user choose to use a bumpInput
 CheckBox bumpCbx = new CheckBox("Use a GaussianBlur Bump Input?");
 bumpCbx.selectedProperty().addListener((prop, oldValue,newValue) -> {
 if (newValue) {
 effect.setBumpInput(new GaussianBlur(20));
 } else {
 effect.setBumpInput(null);
 }
 });

 // Let the user select a surfaceScale
 Slider scaleSlider = new Slider(0.0, 10.0, 1.5);
 effect.surfaceScaleProperty().bind(scaleSlider.valueProperty());
 scaleSlider.setShowTickLabels(true);
 scaleSlider.setMajorTickUnit(2.0);
 scaleSlider.setShowTickMarks(true);

 VBox root = new VBox(10, text, bumpCbx, scaleSlider);
 root.setStyle("-fx-padding: 10;" +
 "-fx-border-style: solid inside;" +
 "-fx-border-width: 2;" +
 "-fx-border-insets: 5;" +
 "-fx-border-radius: 5;" +
 "-fx-border-color: blue;");
 Scene scene = new Scene(root);
 stage.setScene(scene);
 stage.setTitle("Using Surface Scale and Bump Input");
 stage.show();
 }
}

Figure 20-24. The effects of surfaceScale and bumpInput on a Lighting effect on a Text node

Chapter 20 ■ applying effeCts

881

Understanding Reflection Types
When light falls on an opaque surface, part of light is absorbed, part is transmitted, and some is reflected.
A 3D look is achieved by showing part of the surface brighter and part shadowy. You see the reflected light
from the surface. The 3D look varies depending on the light source and the way the node surface reflects
the light. The structure of the surface at the microscopic level defines the details of the reflection, such as
the intensity and directions. Among several reflection types, two types are worth mentioning at this point:
diffuse reflection and specular reflection.

In a diffuse reflection, the surface reflects an incident ray of light at many angles. That is, a diffuse
reflection scatters a ray of light by reflecting it in all directions. A perfect diffuse reflection reflects light
equally in all directions. The surface using a diffuse reflection appears to be equally bright from all
directions. This does not mean that the entire diffuse surface is visible. The visibility of an area on a diffuse
surface depends on the direction of the light and the orientation of the surface. The brightness of the surface
depends on the surface type itself and the intensity of the light. Typically, a rough surface, for example,
clothing, paper, or plastered walls, reflects light using a diffuse reflection. Surfaces may appear smooth to
the eyes, for example, paper or clothing, but they are rough at the microscopic level, and they reflect light
diffusively.

In a specular reflection, the surface reflects a ray of light in exactly one direction. That is, there is a single
reflected ray for one incident ray. A smooth surface at the microscopic level, for example, mirrors or polished
marbles, produces a specular reflection. Some smooth surfaces may not be 100% smooth at the microscopic
level, and they may reflect part of the light diffusively as well. Specular reflection produces a brighter surface
compared to diffuse reflection. Figure 20-25 depicts the ways light is reflected in diffuse and specular
reflections.

Three properties of the Lighting class are used to control the size and intensity of the reflection:

•	 diffuseConstant

•	 specularConstant

•	 specularExponent

The properties are of the double type. The diffuseConstant is used for diffuse reflection. The
specularConstant and specularExponent are used for specular reflection. The diffuseConstant property
specifies a multiplier for the diffuse reflection intensity. Its value ranges from 0.0 to 2.0 with a default of 1.0.
A higher value makes the surface brighter. The specularConstant property specifies the fraction of the light
to which the specular reflection applies. Its value ranges from 0.0 to 2.0 with a default value of 0.30. A higher
value means a bigger-sized specular highlight. The specularExponent specifies the shininess of the surface.
A higher value means a more intense reflection and the surface looks shinier. The specularExponent ranges
from 0.0 to 40.0 with a default value of 20.0.

Listing 20-12 contains the code for a utility class that binds the properties of the Lighting class to some
controls that will be used to control the properties in the examples discussed later.

Specular reflectionDiffuse reflection

Incident ray

Incident ray

Reflected ray

Reflected ray

Figure 20-25. Diffuse and specular reflection type

Chapter 20 ■ applying effeCts

882

Listing 20-12. A Utility Class that Creates a Set of Controls Bound to the Properties of a Lighting Instance

// LightingUtil.java
package com.jdojo.effect;

import javafx.beans.property.DoubleProperty;
import javafx.scene.control.Label;
import javafx.scene.control.Slider;
import javafx.scene.effect.Lighting;
import javafx.scene.layout.GridPane;

public class LightingUtil {
 public static GridPane getPropertyControllers(Lighting effect) {
 Slider surfaceScaleSlider = getSlider(0.0, 10.0,
 effect.getSurfaceScale(), effect.surfaceScaleProperty());
 Slider diffuseConstantSlider = getSlider(0.0, 2.0,
 effect.getDiffuseConstant(), effect.diffuseConstantProperty());
 Slider specularConstantSlider = getSlider(0.0, 2.0,
 effect.getSpecularConstant(), effect.specularConstantProperty());
 Slider specularExponentSlider = getSlider(0.0, 40.0,
 effect.getSpecularExponent(), effect.specularExponentProperty());

 GridPane pane = new GridPane();
 pane.setHgap(5);
 pane.setVgap(5);
 pane.addRow(0, new Label("Surface Scale:"), surfaceScaleSlider);
 pane.addRow(1, new Label("Diffuse Constant:"), diffuseConstantSlider);
 pane.addRow(2, new Label("Specular Constant:"), specularConstantSlider);
 pane.addRow(3, new Label("Specular Exponent:"), specularExponentSlider);

 return pane;
 }

 public static Slider getSlider(double min, double max, double value,
 DoubleProperty prop) {
 Slider slider = new Slider(min, max, value);
 slider.setShowTickMarks(true);
 slider.setShowTickLabels(true);
 slider.setMajorTickUnit(max / 4.0);
 prop.bind(slider.valueProperty());
 return slider;
 }
}

The program in Listing 20-13 uses the utility class to bind the properties of a Lighting effect to UI
controls. It displays a window as shown in Figure 20-26. Change the reflection properties using the sliders to
see their effects.

Chapter 20 ■ applying effeCts

883

Listing 20-13. Controlling Reflection’s Details

// ReflectionTypeTest.java
package com.jdojo.effect;

import javafx.application.Application;
import javafx.scene.Scene;
import javafx.scene.effect.Lighting;
import javafx.scene.layout.BorderPane;
import javafx.scene.layout.GridPane;
import javafx.scene.layout.StackPane;
import javafx.scene.paint.Color;
import javafx.scene.shape.Rectangle;
import javafx.scene.text.Font;
import javafx.scene.text.FontWeight;
import javafx.scene.text.Text;
import javafx.scene.text.TextBoundsType;
import javafx.stage.Stage;

public class ReflectionTypeTest extends Application {
 public static void main(String[] args) {
 Application.launch(args);
 }

 @Override
 public void start(Stage stage) {
 Text text = new Text();
 text.setText("Chatar");
 text.setFill(Color.RED);
 text.setFont(Font.font("null", FontWeight.BOLD, 72));
 text.setBoundsType(TextBoundsType.VISUAL);

 Rectangle rect = new Rectangle(300, 100);
 rect.setFill(Color.LIGHTGRAY);

 // Set the same Lighting effect to both Rectangle and Text nodes
 Lighting effect = new Lighting();
 text.setEffect(effect);
 rect.setEffect(effect);

 StackPane sp = new StackPane(rect, text);

 GridPane controllsrPane = LightingUtil.getPropertyControllers(effect);
 BorderPane root = new BorderPane();
 root.setCenter(sp);
 root.setRight(controllsrPane);
 root.setStyle("-fx-padding: 10;" +
 "-fx-border-style: solid inside;" +
 "-fx-border-width: 2;" +
 "-fx-border-insets: 5;" +
 "-fx-border-radius: 5;" +
 "-fx-border-color: blue;");

Chapter 20 ■ applying effeCts

884

 Scene scene = new Scene(root);
 stage.setScene(scene);
 stage.setTitle("Controlling Reflection Details");
 stage.show();
 }
}

Understanding the Light Source
JavaFX provides three built-in light sources: distant light, point light, and spot light. A distant light is also
known as a directional or linear light. A distant light source emanates parallel rays of light in a specific
direction on the entire surface uniformly. The sun is a perfect example of a distant light source for the lighted
surface of an object on the earth. The light source is so distant from the lighted object that the rays are
almost parallel. A distant light source lights a surface uniformly, irrespective of its distance from the surface.
This does not mean that the entire object is lighted. For example, when you stand in sunlight, not all parts of
your body are lighted. However, the lighted part of your body has uniform light. The lighted part of an object
depends on the direction of the light. Figure 20-27 shows a distant light hitting some part of the surface of an
object. Notice that the rays of light are seen, not the light source itself, because, for a distant light, only the
direction of the light is important, not the distance of the light source from the lighted object.

Figure 20-26. Effects of reflection properties on lighting nodes

Figure 20-27. A distant light hitting the surface of an object

Chapter 20 ■ applying effeCts

885

A point light source emanates rays of light in all directions from an infinitesimally small point in a
3D space. Theoretically, the light source has no dimension. It emanates light uniformly in all directions.
Therefore, unlike the distant light, the direction of the point light source relative to the lighted object is
immaterial. Bare light bulbs, stars (excluding the sun, which serves like a distant light), and candlelight are
examples of point light sources. The intensity of a point light hitting a surface decreases with the square
of the distance between the surface and the point light source. If a point light is very close to the surface,
it creates a hotspot, which is a very bright point on the surface. To avoid hotspots, you need to move the
light source a little away from the surface. A point light source is defined at a specific point in a 3D space,
for example, using x, y, and z coordinates of the point. Figure 20-28 shows a point light radiating rays in all
directions. The point on the object surface closest to the light will be illuminated the most.

A spot light is a special type of a point light. Like a point light, it emanates rays of light radially from an
infinitesimally small point in a 3D space. Unlike a point light, the radiation of light rays is confined to an
area defined by a cone—the light source being at the vertex of the cone emanating light toward its base, as
shown in Figure 20-29. Examples of spot lights are car headlights, flashlights, spotlights, and desk lights with
lampshades. A spot light is aimed at a point on the surface, which is the point on the surface where the cone
axis is located. The cone axis is the line joining the vertex of the cone to the center of the base of the cone. In
Figure 20-29, the cone axis is shown with a dashed arrow. The effect of a spot light is defined by the position
of the vertex of the cone, the cone angle, and the rotation of the cone. The rotation of the cone determines
the point on the surface that is intersected by the cone axis. The angle of the cone controls the area of the
lighted area. The intensity of a spot light is highest along the cone axis. You can simulate a distant light using
a spot light if you pull the spot light “far” back, so the rays of light reaching the surface are parallel.

A light source is an instance of the abstract Light class. A light has a color, which is specified by using
the color property of the Light class. For example, using a red color Light will make a Text node with a
white fill look red.

Figure 20-28. A point light hitting the surface of an object

Figure 20-29. A spot light hitting the surface of an object

Chapter 20 ■ applying effeCts

886

There are three subclasses of the Light class to represent specific types of light source. The subclasses
are static inner classes of the Light class:

•	 Light.Distant

•	 Light.Point

•	 Light.Spot

A class diagram for classes representing light sources is shown in Figure 20-30. The Light.Spot class
inherits from the Light.Point class. Classes define properties to configure the specific type of light sources.

Tip ■ When you do not provide a light source for a lighting effect, a distant light is used, which is an instance
of the Light.Distant class.

Using a Distant Light Source
An instance of the Light.Distant class represents a distant light source. The class contains two properties to
specify the direction of the light source:

•	 azimuth

•	 elevation

Both properties are of the double type. Their values are specified in degrees. Both properties are
used together to position the light source in a 3D space in a specific direction. By default, their values are
45 degrees. They do not have maximum and minimum values. Their values are computed using modulo 360.
For example, an azimuth value of 400 is effectively 40 (400 modulo 360 = 40).

The azimuth property specifies the direction angle in the XY plane. A positive value is measured
clockwise and a negative value is measured counterclockwise. A 0 value for the azimuth is located at the
3 o’clock position, 90 at 6 o’clock, 180 at 9 o’clock, 270 at 12 o’clock, and 360 at 3 o’clock. An azimuth of -90
will be located at 12 o’clock. Figure 20-31 shows the location of the distant light in the XY plane for different
azimuth values.

PointDistant

Light

Spot

Figure 20-30. A class diagram for classes representing a light source

Chapter 20 ■ applying effeCts

887

The elevation property specifies the direction angle of the light source in the YZ plane. The elevation
property values of 0 and 180 make the light source stay on the XY plane. An elevation of 90 puts the light
source in front of the scene and the entire scene is lighted. An elevation greater than 180 and less than 360
puts the light source behind the scene making it appear dark (without light).

The Light.Distant class contains two constructers:

•	 Light.Distant()

•	 Light.Distant(double azimuth, double elevation, Color color)

The no-args constructor uses 45.0 degrees for azimuth and elevation and Color.WHITE as the light
color. The other constructor lets you specify these properties.

The program in Listing 20-14 shows how to use a Light.Distant light. It displays a window that lets you
set the direction for a distant light shining on a rectangle and a Text node. Figure 20-32 shows an example of
a text and rectangle with a distant light.

Listing 20-14. Using a Distant Light Source

// DistantLightTest.java
package com.jdojo.effect;

import javafx.application.Application;
import javafx.geometry.Insets;
import javafx.scene.Scene;
import javafx.scene.control.Label;
import javafx.scene.control.Slider;
import javafx.scene.effect.Light;
import javafx.scene.effect.Lighting;
import javafx.scene.layout.BorderPane;
import javafx.scene.layout.GridPane;
import javafx.scene.layout.StackPane;
import javafx.scene.paint.Color;
import javafx.scene.shape.Rectangle;
import javafx.scene.text.Font;
import javafx.scene.text.FontWeight;
import javafx.scene.text.Text;
import javafx.scene.text.TextBoundsType;
import javafx.stage.Stage;

azimuth = 90

azimuth = 270

azimuth = 180
Scene

azimuth = 0

Figure 20-31. Determining the direction of the distant light in the XY plane using the azimuth value

Chapter 20 ■ applying effeCts

888

public class DistantLightTest extends Application {
 public static void main(String[] args) {
 Application.launch(args);
 }

 @Override
 public void start(Stage stage) {
 // Create a light source and position it in the space
 Light.Distant light = new Light.Distant(45.0, 60.0, Color.WHITE);

 // Create a Lighting effect with the light source
 Lighting effect = new Lighting();
 effect.setLight(light);
 effect.setSurfaceScale(8.0);

 Text text = new Text();
 text.setText("Distant");
 text.setFill(Color.RED);
 text.setFont(Font.font("null", FontWeight.BOLD, 72));
 text.setBoundsType(TextBoundsType.VISUAL);

 Rectangle rect = new Rectangle(300, 100);
 rect.setFill(Color.LIGHTGRAY);

 // Set the same Lighting effect to both Rectangle and Text nodes
 text.setEffect(effect);
 rect.setEffect(effect);

 StackPane sp = new StackPane(rect, text);
 BorderPane.setMargin(sp, new Insets(5));
 GridPane lightDirectionController = this.getDistantLightUI(light);
 GridPane controllsrPane = LightingUtil.getPropertyControllers(effect);

 BorderPane root = new BorderPane();
 root.setCenter(sp);
 root.setRight(controllsrPane);
 root.setBottom(lightDirectionController);
 root.setStyle("-fx-padding: 10;" +
 "-fx-border-style: solid inside;" +
 "-fx-border-width: 2;" +
 "-fx-border-insets: 5;" +
 "-fx-border-radius: 5;" +
 "-fx-border-color: blue;");

 Scene scene = new Scene(root);
 stage.setScene(scene);
 stage.setTitle("Configuring a Distant Light");
 stage.show();
 }

Chapter 20 ■ applying effeCts

889

 private GridPane getDistantLightUI(Light.Distant light) {
 Slider azimuthSlider = LightingUtil.getSlider(0.0, 360.0,
 light.getAzimuth(), light.azimuthProperty());
 Slider elevationSlider = LightingUtil.getSlider(0.0, 360.0,
 light.getElevation(), light.elevationProperty());

 GridPane pane = new GridPane();
 pane.setHgap(5);
 pane.setVgap(5);
 pane.addRow(0, new Label("Azimuth:"), azimuthSlider);
 pane.addRow(1, new Label("Elevation:"), elevationSlider);

 return pane;
 }
}

Using a Point Light Source
An instance of the Light.Point class represents a point light source. The class contains three properties
to specify the position of the light source in space: x, y, and z. The x, y, and z properties are the x, y, and z
coordinates of point where the point light is located in the space. If you set the z property to 0.0, the light
source will be in the plane of the scene showing as a very tiny bright point lighting a very small area. As the z
value increases, the light source moves away from the scene plane, lighting more area on the scene.
A negative value of z will move the light source behind the scene, leaving it with no light, and the scene will
look completely dark.

The Light.Point class contains two constructers:

•	 Light.Point()

•	 Light.Point(double x, double y, double z, Color color)

The no-args constructor places the point light at (0, 0, 0) and uses a Color.WHITE color for the light.
The other constructor lets you specify the location and the color of the light source.

The program in Listing 20-15 shows how to use a Light.Point light. It displays a window with sliders
at the bottom to change the location of the point light source. As the point light source moves away from the
scene, some area on the scene will be brighter than the other area. Figure 20-33 shows an example of a Text
node overlaid on a rectangle being lighted by a point light.

Figure 20-32. A distant light lighting a Text node and a rectangle

Chapter 20 ■ applying effeCts

890

Listing 20-15. Using a Point Light Source

// PointLightTest.java
package com.jdojo.effect;

import javafx.application.Application;
import javafx.geometry.Insets;
import javafx.scene.Scene;
import javafx.scene.control.Label;
import javafx.scene.control.Slider;
import javafx.scene.effect.Light;
import javafx.scene.effect.Lighting;
import javafx.scene.layout.BorderPane;
import javafx.scene.layout.GridPane;
import javafx.scene.layout.StackPane;
import javafx.scene.paint.Color;
import javafx.scene.shape.Rectangle;
import javafx.scene.text.Font;
import javafx.scene.text.FontWeight;
import javafx.scene.text.Text;
import javafx.scene.text.TextBoundsType;
import javafx.stage.Stage;

public class PointLightTest extends Application {
 public static void main(String[] args) {
 Application.launch(args);
 }

 @Override
 public void start(Stage stage) {
 // Create a light source and position it in the space
 Light.Point light = new Light.Point(150.0, 50.0, 50.0, Color.WHITE);

 // Create a Lighting effect with the light source
 Lighting effect = new Lighting();
 effect.setLight(light);
 effect.setSurfaceScale(8.0);

 Text text = new Text();
 text.setText("Point");
 text.setFill(Color.RED);
 text.setFont(Font.font("null", FontWeight.BOLD, 72));
 text.setBoundsType(TextBoundsType.VISUAL);

 Rectangle rect = new Rectangle(300, 100);
 rect.setFill(Color.LIGHTGRAY);

 // Set the same Lighting effect to both Rectangle and Text nodes
 text.setEffect(effect);
 rect.setEffect(effect);

Chapter 20 ■ applying effeCts

891

 StackPane sp = new StackPane(rect, text);
 BorderPane.setMargin(sp, new Insets(5));
 GridPane lightDirectionController = this.getPointLightUI(light);
 GridPane controllsrPane = LightingUtil.getPropertyControllers(effect);

 BorderPane root = new BorderPane();
 root.setCenter(sp);
 root.setRight(controllsrPane);
 root.setBottom(lightDirectionController);
 root.setStyle("-fx-padding: 10;" +
 "-fx-border-style: solid inside;" +
 "-fx-border-width: 2;" +
 "-fx-border-insets: 5;" +
 "-fx-border-radius: 5;" +
 "-fx-border-color: blue;");

 Scene scene = new Scene(root);
 stage.setScene(scene);
 stage.setTitle("Configuring a Point Light");
 stage.show();
 }

 private GridPane getPointLightUI(Light.Point light) {
 Slider xSlider = LightingUtil.getSlider(-200.0, 200.0,
 light.getX(), light.xProperty());
 Slider ySlider = LightingUtil.getSlider(-200.0, 200.0,
 light.getY(), light.yProperty());
 Slider zSlider = LightingUtil.getSlider(-200.0, 200.0,
 light.getZ(), light.zProperty());

 GridPane pane = new GridPane();
 pane.setHgap(5);
 pane.setVgap(5);
 pane.addRow(0, new Label("x:"), xSlider);
 pane.addRow(1, new Label("y:"), ySlider);
 pane.addRow(2, new Label("z:"), zSlider);

 return pane;
 }
}

Figure 20-33. A point light lighting a Text node and a rectangle

Chapter 20 ■ applying effeCts

892

Using a Spot Light Source
An instance of the Light.Spot class represents a spot light source. The class inherits from the Light.Point
class. The inherited properties (x, y, and z) from the Light.Point class specify the location of the light
source, which coincides with the vertex of the cone. The Light.Spot class contains four properties to specify
the position of the light source in space:

•	 pointsAtX

•	 pointsAtY

•	 pointsAtZ

•	 specularExponent

The pointsAtX, pointsAtY, and pointsAtY properties specify a point in the space to set the direction of
the light. A line starting from (x, y, z) and going toward (pointsAtX, pointsAtY, pointsAtZ) is the cone axis,
which is also the direction of the light. By default, they are set to 0.0. The specularExponent property defines
the focus of the light (the width of the cone), which ranges from 0.0 to 4.0. The default is 1.0. The higher the
value for the specularExponent, the narrower the cone is and the more focused light will be on the scene.

The Light.Spot class contains two constructers:

•	 Light.Spot()

•	 Light.Spot(double x, double y, double z, double specularExponent,
Color color)

The no-args constructor places the light at (0, 0, 0) and uses a Color.WHITE color for the light. Because
the default values for pointsAtX, pointsAtY, and pointsAtZ are 0.0, the light does not have a direction. The
other constructor lets you specify the location and the color of the light source. The cone axis will pass from
the specified (x, y, x) to (0, 0, 0).

The program in Listing 20-16 shows how to use a Light.Spot light. It displays a window that lets you
configure the location, direction, and focus of the light using sliders at the bottom. Figure 20-34 shows an
example of a Light.Spot light focused almost in the middle of the rectangle.

Listing 20-16. Using a Spot Light Source

// SpotLightTest.java
package com.jdojo.effect;

import javafx.application.Application;
import javafx.geometry.Insets;
import javafx.scene.Scene;
import javafx.scene.control.Label;
import javafx.scene.control.Slider;
import javafx.scene.effect.Light;
import javafx.scene.effect.Lighting;
import javafx.scene.layout.BorderPane;
import javafx.scene.layout.GridPane;
import javafx.scene.layout.StackPane;
import javafx.scene.paint.Color;
import javafx.scene.shape.Rectangle;
import javafx.scene.text.Font;

Chapter 20 ■ applying effeCts

893

import javafx.scene.text.FontWeight;
import javafx.scene.text.Text;
import javafx.scene.text.TextBoundsType;
import javafx.stage.Stage;

public class SpotLightTest extends Application {
 public static void main(String[] args) {
 Application.launch(args);
 }

 @Override
 public void start(Stage stage) {
 // Create a light source and position it in the space
 Light.Spot light = new Light.Spot(150.0, 50.0, 50.0, 1.0, Color.WHITE);

 // Create a Lighting effect with the light source
 Lighting effect = new Lighting();
 effect.setLight(light);
 effect.setSurfaceScale(8.0);

 Text text = new Text();
 text.setText("Spot");
 text.setFill(Color.RED);
 text.setFont(Font.font("null", FontWeight.BOLD, 72));
 text.setBoundsType(TextBoundsType.VISUAL);

 Rectangle rect = new Rectangle(300, 100);
 rect.setFill(Color.LIGHTGRAY);

 // Set the same Lighting effect to both Rectangle and Text nodes
 text.setEffect(effect);
 rect.setEffect(effect);

 StackPane sp = new StackPane(rect, text);
 BorderPane.setMargin(sp, new Insets(5));
 GridPane lightDirectionController = this.getPointLightUI(light);
 GridPane controllsrPane = LightingUtil.getPropertyControllers(effect);

 BorderPane root = new BorderPane();
 root.setCenter(sp);
 root.setRight(controllsrPane);
 root.setBottom(lightDirectionController);
 root.setStyle("-fx-padding: 10;" +
 "-fx-border-style: solid inside;" +
 "-fx-border-width: 2;" +
 "-fx-border-insets: 5;" +
 "-fx-border-radius: 5;" +
 "-fx-border-color: blue;");

Chapter 20 ■ applying effeCts

894

 Scene scene = new Scene(root);
 stage.setScene(scene);
 stage.setTitle("Configuring a Spot Light");
 stage.show();
 }

 private GridPane getPointLightUI(Light.Spot light) {
 Slider xSlider = LightingUtil.getSlider(-200.0, 200.0,
 light.getX(), light.xProperty());
 Slider ySlider = LightingUtil.getSlider(-200.0, 200.0,
 light.getY(), light.yProperty());
 Slider zSlider = LightingUtil.getSlider(-200.0, 200.0,
 light.getZ(), light.zProperty());

 Slider pointsAtXSlider = LightingUtil.getSlider(-200.0, 200.0,
 light.getPointsAtX(), light.pointsAtXProperty());
 Slider pointsAtYSlider = LightingUtil.getSlider(-200.0, 200.0,
 light.getPointsAtY(), light.pointsAtYProperty());
 Slider pointsAtZSlider = LightingUtil.getSlider(-200.0, 200.0,
 light.getPointsAtZ(), light.pointsAtZProperty());

 Slider focusSlider = LightingUtil.getSlider(0.0, 4.0,
 light.getSpecularExponent(), light.specularExponentProperty());

 GridPane pane = new GridPane();
 pane.setHgap(5);
 pane.setVgap(5);
 pane.addRow(0, new Label("x:"), xSlider);
 pane.addRow(1, new Label("y:"), ySlider);
 pane.addRow(2, new Label("z:"), zSlider);
 pane.addRow(3, new Label("PointsAtX:"), pointsAtXSlider);
 pane.addRow(4, new Label("PointsAtY:"), pointsAtYSlider);
 pane.addRow(5, new Label("PointsAtZ:"), pointsAtZSlider);
 pane.addRow(6, new Label("Focus:"), focusSlider);

 return pane;
 }
}

Figure 20-34. A spot light lighting a Text node and a rectangle

Chapter 20 ■ applying effeCts

895

The PerspectiveTransform Effect
A PerspectiveTransform effect gives a 2D node a 3D look by mapping the corners to different locations.
The straight lines in the original nodes remain straight. However, parallel lines in the original nodes may not
necessarily remain parallel.

An instance of the PerspectiveTransform class represents a PerspectiveTransform effect. The class
contains eight properties to specify the x and y coordinates of four corners:

•	 ulx

•	 uly

•	 urx

•	 ury

•	 lrx

•	 lry

•	 llx

•	 lly

The first letter in the property names (u or l) indicates upper and lower. The second letter in the
property names (l or r) indicates left and right. The last letter in the property names (x or y) indicates the
x or y coordinate of a corner. For example, urx indicates the x coordinate of the upper right corner.

Tip ■ the PerspectiveTransform class also contains an input property to specify the input effect to it in a
chain of effects.

The PerspectiveTransform class contains two constructors:

•	 PerspectiveTransform()

•	 PerspectiveTransform(double ulx, double uly, double urx, double ury,
double lrx, double lry, double llx, double lly)

The no-args constructor creates a PerspectiveTransform object with all new corners at (0, 0). If you set
the object as an effect to a node, the node will be reduced to a point, and you will not be able to see the node.
The other constructor lets you specify the new coordinates for the four corners of the node.

The program in Listing 20-17 creates two sets of a Text node and a rectangle. It adds two sets to two
different groups. It applies a PerspectiveTransform effect on the second group. Both groups are shown in
Figure 20-35. The group on the left shows the original nodes; the group on the right has the effect applied to it.

Chapter 20 ■ applying effeCts

896

Listing 20-17. Using the PerspectiveTransform Effect

// PerspectiveTransformTest.java
package com.jdojo.effect;

import javafx.application.Application;
import javafx.scene.Group;
import javafx.scene.Scene;
import javafx.scene.effect.PerspectiveTransform;
import javafx.scene.layout.HBox;
import javafx.scene.paint.Color;
import javafx.scene.shape.Rectangle;
import javafx.scene.text.Font;
import javafx.scene.text.FontWeight;
import javafx.scene.text.Text;
import javafx.stage.Stage;

public class PerspectiveTransformTest extends Application {
 public static void main(String[] args) {
 Application.launch(args);
 }

 @Override
 public void start(Stage stage) {
 // Create the efefct and set the mapping for the corners
 PerspectiveTransform effect = new PerspectiveTransform();
 effect.setUlx(0.0);
 effect.setUly(0.0);
 effect.setUrx(250.0);
 effect.setUry(20.0);
 effect.setLrx(310.0);
 effect.setLry(60.0);
 effect.setLlx(20.0);
 effect.setLly(60.0);

 // Create two rectangles and two Text nodes. Apply effects
 // to one set and show another set without effect
 Rectangle rect1 = new Rectangle(200, 60, Color.LIGHTGRAY);
 Rectangle rect2 = new Rectangle(200, 60, Color.LIGHTGRAY);

 Text text1 = new Text();
 text1.setX(20);
 text1.setY(40);
 text1.setText("Welcome");
 text1.setFill(Color.RED);
 text1.setFont(Font.font(null, FontWeight.BOLD, 36));

 System.out.println(text1.getLayoutBounds());

Chapter 20 ■ applying effeCts

897

 Text text2 = new Text();
 text2.setX(20);
 text2.setY(40);
 text2.setText("Welcome");
 text2.setFill(Color.RED);
 text2.setFont(Font.font(null, FontWeight.BOLD, 36));

 // Group the original nodes
 Group group1 = new Group(rect1, text1);

 // Group the nodes with the effect
 Group group2 = new Group(rect2, text2);
 group2.setEffect(effect);
 group2.setCache(true); // A hint to cache the bitmap for the group

 HBox root = new HBox(group1, group2);
 root.setSpacing(20);
 root.setStyle("-fx-padding: 10;" +
 "-fx-border-style: solid inside;" +
 "-fx-border-width: 2;" +
 "-fx-border-insets: 5;" +
 "-fx-border-radius: 5;" +
 "-fx-border-color: blue;");

 Scene scene = new Scene(root, 600, 100);
 stage.setScene(scene);
 stage.setTitle("Applying the PerspectiveTransform Effect");
 stage.show();
 }
}

Summary
An effect is a filter that accepts one or more graphical inputs, applies an algorithm on the inputs, and produces
an output. Typically, effects are applied to nodes to create visually appealing user interfaces. Examples of
effects are shadow, blur, warp, glow, reflection, blending, and different types of lighting. The JavaFX library
provides several effect-related classes. Effect is a conditional feature. Effects applied to nodes will be ignored
if it is not available on a platform. The Node class contains an effect property that specifies the effect applied
to the node. By default, it is null. An instance of the Effect class represents an effect. The Effect class is the
abstract base for all effect classes. All effect classes are included in the javafx.scene.effect package.

Figure 20-35. Text and Rectangle nodes with a PerspectiveTransform effect

Chapter 20 ■ applying effeCts

898

Some effects can be chained with other effects. The effects are applied in sequence. The output of the
first effect becomes the input for the second effect and so on. Effect classes that allow chaining contain an
input property to specify the effect that precedes it. If the input property is null, the effect is applied to the
node on which this effect is set. By default, the input property is null.

A shadowing effect draws a shadow and applies it to an input. JavaFX supports three types of shadowing
effects: DropShadow, InnerShadow, and Shadow.

A blurring effect produces a blurred version of an input. JavaFX lets you apply different types of blurring
effects, which differ in the algorithms they use to create the effect. Three types of blurring effects are
BoxBlur, GaussianBlur, and MotionBlur.

The Bloom effect adds glow to the pixels of its input that have a luminosity greater than or equal to a
specified limit. Note that not all pixels in a Bloom effect are made to glow. An instance of the Bloom class
represents a Bloom effect.

The Glow effect makes the bright pixels of the input brighter. An instance of the Glow class represents a
Glow effect.

The Reflection effect adds a reflection of the input below the input. An instance of the Reflection
class represents a reflection effect.

Sepia is a reddish-brown color. Sepia toning is performed on black-and-white photographic prints to
give them a warmer tone. An instance of the SepiaTone class represents a SepiaTone effect.

The DisplacementMap effect shifts each pixel in the input to produce an output. The name has two
parts: Displacement and Map. The first part implies that the effect displaces the pixels in the input. The
second part implies that the displacement is based on a map that provides a displacement factor for each
pixel in the output. An instance of the DisplacementMap class represents a DisplacementMap.

The ColorInput effect is a simple effect that fills (floods) a rectangular region with a specified paint.
Typically, it is used as an input to another effect. An instance of the ColorInput class represents the
ColorInput effect.

The ImageInput effect works like the ColorInput effect. It passes the given image as an input to another
effect. The given image is not modified by this effect. Typically, it is used as an input to another effect, not as
an effect directly applied to a node. An instance of the ImageInput class represents the ImageInput effect.

Blending combines two pixels at the same location from two inputs to produce one composite pixel
in the output. The Blend effect takes two input effects and blends the overlapping pixels of the inputs to
produce an output. The blending of two inputs is controlled by a blending mode. JavaFX provides
17 predefined blending modes. An instance of the Blend class represents the Blend effect.

The Lighting effect, as the name suggests, simulates a light source shining on a specified node in a
scene to give the node a 3D look. A Lighting effect uses a light source, which is an instance of the Light
class, to produce the effect.

A PerspectiveTransform effect gives a 2D node a 3D look by mapping the corners to different
locations. The straight lines in the original nodes remain straight. However, parallel lines in the original
nodes may not necessarily remain parallel. An instance of the PerspectiveTransform class represents a
PerspectiveTransform effect.

The next chapter will discuss how to apply different types of transformations to nodes.

899

Chapter 21

Understanding Transformations

In this chapter, you will learn:

What a transformation is•	

What are translation, rotation, scale, and shear transformations and how to apply •	
them to nodes

How to apply multiple transformations to a node•	

What Is a Transformation?
A transformation is a mapping of points in a coordinate space to themselves preserving distances and
directions between them. Several types of transformations can be applied to points in a coordinate space.
JavaFX supports the following types of transformation:

Translation•	

Rotation•	

Shear•	

Scale•	

Affine•	

An instance of the abstract Transform class represents a transformation in JavaFX. The Transform
class contains common methods and properties used by all types of transformations on nodes. It contains
factory methods to create specific types of transformations. Figure 21-1 shows a class diagram for the
classes representing different types of transformations. The name of the class matches with the type of
transformation the class provides. All classes are in the javafx.scene.transform package.

Affine Scale Rotate TranslateShear

Transform

Figure 21-1. A class diagram for transform-related classes

Chapter 21 ■ Understanding transformations

900

An affine transformation is the generalized transformation that preserves the points, straight lines, and
planes. The parallel lines remain parallel after the transformation. It may not preserve the angles between
lines or the distances between points. However, the ratios of distances between points on a straight line are
preserved. Translation, scale, homothetic transformation, similarity transformation, reflection, rotation,
shear, and so on are examples of the affine transformation.

An instance of the Affine class represents an affine transformation. The class is not easy to use for
beginners. Its use requires advanced knowledge of mathematics such as matrix. If you need a specific
type of transformation, use the specific subclasses such as Translate, Shear, and so on, rather than using
the generalized Affine class. You can also combine multiple individual transformations to create a more
complex one .We will not discuss this class in this book.

Using transformations is easy. However, sometimes it is confusing because there are multiple ways to
create and apply them.

There are two ways to create a Transform instance.

Use one of the factory methods of the •	 Transform class—for example, the translate()
method for creating a Translate object, the rotate() method to create a Rotate
object, etc.

Use the specific class to create a specific type of transform—for example, the •	
Translate class for a translation, the Rotate class for a rotation, etc.

Both of the following Translate objects represent the same translation:

double tx = 20.0;
double ty = 10.0;

// Using the factory method in the Transform class
Translate translate1 = Transform.translate(tx, ty);

// Using the Translate class constructor
Translate translate2 = new Translate(tx, ty);

There are two ways to apply a transformation to a node.

Use the specific properties in the •	 Node class. For example, use the translateX,
translateY, and translateZ properties of the Node class to apply a translation to a
node. Note that you cannot apply a shear transformation this way.

Use the •	 transforms sequence of a node. The getTransforms() method of the
Node class returns an ObservableList<Transform>. Populate this list with all the
Transform objects. The Transforms will be applied in sequence. You can apply a
shear transformation only using this method.

The two methods of applying Transforms work little differently. We will discuss the differences when we
discuss the specific types of transformation. Sometimes, it is possible to use both of the foregoing methods to
apply transformations, and in that case, the transformations in the transforms sequence are applied before
the transformation set on the properties of the node.

The following snippet of code applies three transformations to a rectangle: shear, scale, and translation:

Rectangle rect = new Rectangle(100, 50, Color.LIGHTGRAY);

// Apply transforms using the transforms sequence of the Rectangle
Transform shear = Transform.shear(2.0, 1.2);
Transform scale = Transform.scale(1.1, 1.2);
rect.getTransforms().addAll(shear, scale);

Chapter 21 ■ Understanding transformations

901

// Apply a translation using the translatex and translateY
// properties of the Node class
rect.setTranslateX(10);
rect.setTranslateY(10);

The shear and scale are applied using the transforms sequence. The translation is applied using the
translateX and translateY properties of the Node class. The transformations in the transforms sequence,
shear and scale, are applied in sequence followed by the translation.

The Translation Transformation
A translation moves every point of a node by a fixed distance in a specified direction relative to its parent
coordinate system. It is achieved by shifting the origin of the local coordinate system of the node to a new
location. Computing the new locations of points is easy—just add a triplet of numbers to the coordinates of
each point in a 3D space. In a 2D space, add a pair of numbers to the coordinates of each point.

Suppose you want to apply translation to a 3D coordinate space by (tx, ty, tz). If a point had coordinates
(x, y, z) before the translation, after the translation its coordinates would be (x + tx, y + ty, z + tz).

Figure 21-2 shows an example of a translation transformation. Axes before the transformations are
shown in solid lines. Axes after the transformations are shown in dashed lines. Note that the coordinates
of the point P remains the same (4, 3) in the translated coordinate spaces. However, the coordinates of the
point relative to the original coordinate space change after the transformation. The point in the original
coordinate space is shown in a solid black fill color, and in the transformed coordinate space, it is shown
without a fill color. The origin of the coordinate system (0, 0) has been shifted to (3, 2). The coordinates of the
point P (the shifted point) in the original coordinate space become (7, 5), which is computed as (4+3, 3+2).

P(4, 3)

x-axis

y-axis

(0, 0)

P(4, 3)

Translated x-axis

Translated y-axis

(3, 2)

Figure 21-2. An example of a translation transformation

An instance of the Translate class represents a translation. It contains three properties.

•	 x

•	 y

•	 z

Chapter 21 ■ Understanding transformations

902

The properties specify the x, y, and z coordinates of the new origin of the local coordinate system of the
node after translation. The default values for the properties are 0.0.

The Translate class provides three constructors.

•	 Translate()

•	 Translate(double x, double y)

•	 Translate(double x, double y, double z)

The no-args constructor creates a Translate object with the default values for the x, y, and z properties,
which, in essence, represents no translation. The other two constructors let you specify the translation
distance along the three axes. A transformation to a Group is applied to all the nodes in the Group.

Compare the use of the layoutX and layoutY properties of the Node class with the translateX and
translateY properties. The layoutX and layoutY properties position the node in its local coordinate system
without transforming the local coordinate system whereas the translateX and translateY properties
transform the local coordinate system of the node by shifting the origin. Typically, layoutX and layoutY are
used to place a node in a scene whereas translation is used for moving a node in an animation. If you set
both properties for a node, its local coordinate system will be transformed using the translation, and, then,
the node will be placed in the new coordinate system using its layoutX and layoutY properties.

The program in Listing 21-1 creates three rectangles. By default, they are placed at (0, 0). It applies a
translation to the second and third rectangles. Figure 21-3 shows the rectangles after the translation.

Listing 21-1. Applying Translations to Nodes

// TranslateTest.java
package com.jdojo.transform;

import javafx.application.Application;
import javafx.scene.Scene;
import javafx.scene.layout.Pane;
import javafx.scene.paint.Color;
import javafx.scene.shape.Rectangle;
import javafx.scene.transform.Translate;
import javafx.stage.Stage;

public class TranslateTest extends Application {
 public static void main(String[] args) {
 Application.launch(args);
 }

 @Override
 public void start(Stage stage) {
 Rectangle rect1 = new Rectangle(100, 50, Color.LIGHTGRAY);
 rect1.setStroke(Color.BLACK);

 Rectangle rect2 = new Rectangle(100, 50, Color.YELLOW);
 rect2.setStroke(Color.BLACK);

 Rectangle rect3 = new Rectangle(100, 50, Color.STEELBLUE);
 rect3.setStroke(Color.BLACK);

 // Apply a translation on rect2 using the transforms sequence
 Translate translate1 = new Translate(50, 10);
 rect2.getTransforms().addAll(translate1);

Chapter 21 ■ Understanding transformations

903

 // Apply a translation on rect3 using the translateX
 // and translateY proeprties
 rect3.setTranslateX(180);
 rect3.setTranslateY(20);

 Pane root = new Pane(rect1, rect2, rect3);
 root.setPrefSize(300, 80);
 Scene scene = new Scene(root);
 stage.setScene(scene);
 stage.setTitle("Applying the Translation Transformation");
 stage.show();
 }
}

Figure 21-3. Rectangles with translations

x-axis

y-axis

(0, 0)
30 deg

P(4, 3)

P(4, 3)

Rotated x-axis

Rotated y-axis

Figure 21-4. An example of a rotation transformation

The Rotation Transformation
In a rotation transformation, the axes are rotated around a pivot point in the coordinate space and the
coordinates of points are mapped to the new axes. Figure 21-4 shows the axes of a coordinate system in a 2D
plane rotated by an angle of 30 degrees. The axis of rotation is z-axis. The origin of the original coordinate
system is used as the pivot point of rotation. The original axes are shown in solid lines and the rotated axes
in dashed lines. The point P in the original coordinate system is shown in a black fill and in the rotated
coordinate system with no fill.

Chapter 21 ■ Understanding transformations

904

An instance of the Rotate class represents a rotation transformation. It contains five properties to
describe the rotation:

•	 angle

•	 axis

•	 pivotX

•	 pivotY

•	 pivotZ

The angle property specifies the angle of rotation in degrees. The default is 0.0 degrees. A positive value
for the angle is measured clockwise.

The axis property specifies the axis of rotation at the pivot point. Its value can be one of the constants,
X_AXIS, Y_AXIS, and Z_AXIS, defined in the Rotate class. The default axis of rotation is Rotate.Z_AXIS.

The pivotX, pivotY, and pivotZ properties are the x, y, and z coordinates of the pivot point. The default
values for the properties are 0.0.

The Rotate class contains several constructors:

•	 Rotate()

•	 Rotate(double angle)

•	 Rotate(double angle, double pivotX, double pivotY)

•	 Rotate(double angle, double pivotX, double pivotY, double pivotZ)

•	 Rotate(double angle, double pivotX, double pivotY, double pivotZ,
Point3D axis)

•	 Rotate(double angle, Point3D axis)

The no-args constructor creates an identity rotation, which does not have any effect on the transformed
node. The other constructors let you specify the details.

The program in Listing 21-2 creates two rectangles and places them at the same location. The opacity
of the second rectangle is set to 0.5, so we can see through it. The coordinate system of the second rectangle
is rotated by 30 degrees in the clockwise direction using the origin as the pivot point. Figure 21-5 shows the
rotated rectangle.

Listing 21-2. Using a Rotation Transformation

// RotateTest.java
package com.jdojo.transform;

import javafx.application.Application;
import javafx.scene.Scene;
import javafx.scene.layout.Pane;
import javafx.scene.paint.Color;
import javafx.scene.shape.Rectangle;
import javafx.scene.transform.Rotate;
import javafx.stage.Stage;

public class RotateTest extends Application {
 public static void main(String[] args) {
 Application.launch(args);
 }

Chapter 21 ■ Understanding transformations

905

 @Override
 public void start(Stage stage) {
 Rectangle rect1 = new Rectangle(100, 50, Color.LIGHTGRAY);
 rect1.setStroke(Color.BLACK);

 Rectangle rect2 = new Rectangle(100, 50, Color.LIGHTGRAY);
 rect2.setStroke(Color.BLACK);
 rect2.setOpacity(0.5);

 // Apply a rotation on rect2. The rotation angle is 30 degree clockwise
 // (0, 0) is the pivot point
 Rotate rotate = new Rotate(30, 0, 0);
 rect2.getTransforms().addAll(rotate);

 Pane root = new Pane(rect1, rect2);
 root.setPrefSize(300, 80);
 Scene scene = new Scene(root);
 stage.setScene(scene);
 stage.setTitle("Applying the Rotation Transformation");
 stage.show();
 }
}

Figure 21-5. A Rectangle using a rotation transformation

It is easy to visualize the effect of a rotation when the pivot point is the origin of the local coordinate
system of the node and the upper-left corner of a node is located at the origin as well. Let us consider the
following snippet of code that rotates a rectangle as shown in Figure 21-6.

Rectangle rect1 = new Rectangle(100, 50, Color.LIGHTGRAY);
rect1.setY(20);
rect1.setStroke(Color.BLACK);
Rectangle rect2 = new Rectangle(100, 50, Color.LIGHTGRAY);
rect2.setY(20);
rect2.setStroke(Color.BLACK);
rect2.setOpacity(0.5);
// Apply a rotation on rect2. The rotation angle is 30 degree anticlockwise
// (100, 0) is the pivot point.
Rotate rotate = new Rotate(-30, 100, 0);
rect2.getTransforms().addAll(rotate);

Chapter 21 ■ Understanding transformations

906

The coordinates of the upper-left of the rectangles are set to (0, 20). A point at (100, 0) is used as
the pivot point to rotate the second rectangle. The pivot point is located on the x-axis of the rectangle. The
coordinate system of the second rectangle is pinned at (100, 0), and then, rotated by 30 degree in the
anticlockwise direction. Notice that the second rectangle maintains its location (0, 20) in the rotated
coordinate space.

You can also apply a rotation to a node using the rotate and rotationAxis properties of the Node class.
The rotate property specifies the angle of rotation in degrees. The rotationAxis property specifies the axis
of rotation. The center of the untransformed layout bounds of the node is used as the pivot point.

Tip ■ the default pivot point used in a transforms sequence is the origin of the local coordinate system of
the node whereas the rotate property of the Node class uses the center of the untransformed layout bounds of
the node as the pivot point.

The program in Listing 21-3 creates two rectangles similar to the ones in Listing 21-2. It uses the rotate
property of the Node class to rotate the rectangle by 30 degrees. Figure 21-7 shows the rotated rectangle.
Compare the rotated rectangles in Figure 21-5 and Figure 21-7. The former uses the origin of the local
coordinate system as the pivot point and the latter uses the center of the rectangle as the pivot point.

Listing 21-3. Using the rotate Property of the Node Class to Rotate a Rectangle

// RotatePropertyTest.java
package com.jdojo.transform;

import javafx.application.Application;
import javafx.scene.Scene;
import javafx.scene.layout.Pane;
import javafx.scene.paint.Color;
import javafx.scene.shape.Rectangle;
import javafx.stage.Stage;

x-axis

y-axis

Rotated x-axis

Rotated y-axis

Pivot point (100, 0)

Figure 21-6. Rotating a Rectangle using a pivot point other than the origin of its local coordinate system

Chapter 21 ■ Understanding transformations

907

public class RotatePropertyTest extends Application {
 public static void main(String[] args) {
 Application.launch(args);
 }

 @Override
 public void start(Stage stage) {
 Rectangle rect1 = new Rectangle(100, 50, Color.LIGHTGRAY);
 rect1.setStroke(Color.BLACK);

 Rectangle rect2 = new Rectangle(100, 50, Color.LIGHTGRAY);
 rect2.setStroke(Color.BLACK);
 rect2.setOpacity(0.5);

 // Use the rotate proeprty of the node class
 rect2.setRotate(30);

 Pane root = new Pane(rect1, rect2);
 root.setPrefSize(300, 80);
 Scene scene = new Scene(root);
 stage.setScene(scene);
 stage.setTitle("Applying the Rotation Transformation");
 stage.show();
 }
}

Figure 21-7. A Rectangle rotated using the rotate property of the Node class

The Scale Transformation
A scale transformation scales the unit of measurement along axes of a coordinate system by a scale factor.
This causes the dimensions of a node to change (stretch or shrink) by the specified scale factors along axes.
The dimension along an axis is multiplied by the scale factor along that axis. The transformation is applied at
a pivot point whose coordinates remain the same after the transformation.

Chapter 21 ■ Understanding transformations

908

An instance of the Scale class represents a scale transformation. It contains the following six properties
to describe the transformation:

•	 x

•	 y

•	 z

•	 pivotX

•	 pivotY

•	 pivotZ

The x, y, and z properties specify the scale factors long the x-axis, y-axis, and z-axis. They are 1.0 by default.
The pivotX, pivotY, and pivotZ properties are the x, y, and z coordinates of the pivot point. The default

values for the properties are 0.0.
The Scale class contains several constructors.

•	 Scale()

•	 Scale(double x, double y)

•	 Scale(double x, double y, double z)

•	 Scale(double x, double y, double pivotX, double pivotY)

•	 Scale(double x, double y, double z, double pivotX, double pivotY,
double pivotZ)

The no-args constructor creates an identity scale transformation, which does not have any effect on the
transformed node. The other constructors let you specify the scale factors and the pivot point.

You can use an object of the Scale class or the scaleX, scaleY, and scaleX properties of the Node
class to apply a scale transformation. By default, the pivot point used by the Scale class is at (0, 0, 0). The
properties of the Node class use the center of the node as the pivot point.

The program in Listing 21-4 creates two rectangles. Both are placed at the same location. One of them
is scaled and the other not. The opacity of the not scaled rectangle is set to 0.5, so we can see through it.
Figure 21-8 shows the rectangles. The scaled rectangle is smaller. The coordinate system of the second
rectangle is scaled by 0.5 along the x-axis and 0.50 along the y-axis. The scaleX and scaleY properties are
used to apply the transformation, which uses the center of the rectangles as the pivot point making the
rectangles shrunk, but keeping it at the same location.

Listing 21-4. Using Scale Transformations

// ScaleTest.java
package com.jdojo.transform;

import javafx.application.Application;

import javafx.scene.Scene;
import javafx.scene.layout.Pane;
import javafx.scene.paint.Color;
import javafx.scene.shape.Rectangle;
import javafx.stage.Stage;

Chapter 21 ■ Understanding transformations

909

public class ScaleTest extends Application {
 public static void main(String[] args) {
 Application.launch(args);
 }

 @Override
 public void start(Stage stage) {
 Rectangle rect1 = new Rectangle(100, 50, Color.LIGHTGRAY);
 rect1.setStroke(Color.BLACK);
 rect1.setOpacity(0.5);

 Rectangle rect2 = new Rectangle(100, 50, Color.LIGHTGRAY);
 rect2.setStroke(Color.BLACK);

 // Apply a scale on rect2. Center of the Rectangle is the pivot point.
 rect2.setScaleX(0.5);
 rect2.setScaleY(0.5);

 Pane root = new Pane(rect1, rect2);
 root.setPrefSize(150, 60);
 Scene scene = new Scene(root);
 stage.setScene(scene);
 stage.setTitle("Applying the Scale Transformation");
 stage.show();
 }
}

Figure 21-8. Two Rectangles using scale transformations

If the pivot point is not the center of the node, the scale transformation may move the node. The
program in Listing 21-5 creates two rectangles. Both are placed at the same location. One of them is scaled
and the other not. The opacity of the not scaled rectangle is set to 0.5, so we can see through it. Figure 21-9
shows the rectangles. The scaled rectangle is smaller. A Scale object with the transforms sequence is used
to apply the transformation, which uses the upper-left corner of the rectangle as the pivot point making
 the rectangle shrink, but moving it to the left to keep the coordinates of its upper-left corner the same
(150, 0) in the transformed coordinate system. The scaled rectangles shrinks by half (scale factor = 0.50) in
both directions and moves half the distance to the left.

Chapter 21 ■ Understanding transformations

910

Listing 21-5. Using Scale Transformations

// ScalePivotPointTest.java
package com.jdojo.transform;
import javafx.application.Application;
import javafx.scene.Scene;
import javafx.scene.layout.Pane;
import javafx.scene.paint.Color;
import javafx.scene.shape.Rectangle;

import javafx.scene.transform.Scale;
import javafx.stage.Stage;

public class ScalePivotPointTest extends Application {
 public static void main(String[] args) {
 Application.launch(args);
 }

 @Override
 public void start(Stage stage) {
 Rectangle rect1 = new Rectangle(100, 50, Color.LIGHTGRAY);
 rect1.setX(150);
 rect1.setStroke(Color.BLACK);
 rect1.setOpacity(0.5);

 Rectangle rect2 = new Rectangle(100, 50, Color.LIGHTGRAY);
 rect2.setX(150);
 rect2.setStroke(Color.BLACK);

 // Apply a scale on rect2. The origin of the local coordinate system
 // of rect4 is the pivot point
 Scale scale = new Scale(0.5, 0.5);
 rect2.getTransforms().addAll(scale);

 Pane root = new Pane(rect1, rect2);
 root.setPrefSize(300, 60);
 Scene scene = new Scene(root);
 stage.setScene(scene);
 stage.setTitle("Applying the Scale Transformation");
 stage.show();
 }
}

Figure 21-9. Two Rectangles using scale transformations

Chapter 21 ■ Understanding transformations

911

The Shear Transformation
A shear transformation rotates axes of the local coordinate system of the node around a pivot point, so the
axes are no longer perpendicular. A rectangular node becomes a parallelogram after the transformation.

An instance of the Shear class represents a shear transformation. It contains four properties to describe
the transformation.

•	 x

•	 y

•	 pivotX

•	 pivotY

The x property specifies a multiplier by which the coordinates of points are shifted along the positive
x-axis by a factor of the y coordinate of the point. The default is 0.0.

The y property specifies a multiplier by which the coordinates of points are shifted along the positive
y-axis by a factor of the x coordinate of the point. The default is 0.0.

The pivotX, and pivotY properties are the x and y coordinates of the pivot point about which the shear
occurs. The default values for them are 0.0. The pivot point is not shifted by the shear. By default, the pivot
point is the origin of the untransformed coordinate system.

Suppose you have a point (x1, y1) inside a node, and by the shear transformation, the point is shifted to
(x2, y2). You can use the following formula to compute (x2, y2):

x2 = pivotX + (x1 - pivotX) + x * (y1 - pivotY)
y2 = pivotY + (y1 - pivotY) + y * (x1 - pivotX)

All coordinates (x1, y1, x2, and y2) in the previous formula are in the untransformed local coordinate
system of the node. Notice that if (x1, y1) is the pivot point, the foregoing formula computes the shifted point
(x2, y2), which is the same as (x1, y1). That is, the pivot point is not shifted.

The Shear class contains several constructors.

•	 Shear()

•	 Shear(double x, double y)

•	 Shear(double x, double y, double pivotX, double pivotY)

The no-args constructor creates an identity shear transformation, which does not have any effect on the
transformed node. The other constructors let you specify the shear multipliers and the pivot point.

Tip ■ You can apply a shear transformation to a node using only a Shear object in the transforms sequence.
Unlike for other types of transformations, the Node class does not contain a property allowing you to apply shear
transformation.

The program in Listing 21-6 applies a Shear to a rectangle as shown in Figure 21-10. The original
rectangle is also shown. A multiplier of 0.5 is used along both axes. Note that the pivot point is (0, 0), which is
the default.

Chapter 21 ■ Understanding transformations

912

Listing 21-6. Using the Shear Transformation

// ShearTest.java
package com.jdojo.transform;

import javafx.application.Application;
import javafx.scene.Group;
import javafx.scene.Scene;
import javafx.scene.paint.Color;
import javafx.scene.shape.Rectangle;
import javafx.scene.transform.Shear;
import javafx.stage.Stage;

public class ShearTest extends Application {
 public static void main(String[] args) {
 Application.launch(args);
 }

 @Override
 public void start(Stage stage) {
 Rectangle rect1 = new Rectangle(100, 50, Color.LIGHTGRAY);
 rect1.setStroke(Color.BLACK);

 Rectangle rect2 = new Rectangle(100, 50, Color.LIGHTGRAY);
 rect2.setStroke(Color.BLACK);
 rect2.setOpacity(0.5);

 // Apply a shear on rect2. The x and y multipliers are 0.5 and
 // (0, 0) is the pivot point.
 Shear shear = new Shear(0.5, 0.5);
 rect2.getTransforms().addAll(shear);

 Group root = new Group(rect1, rect2);
 Scene scene = new Scene(root);
 stage.setScene(scene);
 stage.setTitle("Applying the Shear Transformation");
 stage.show();
 }
}

Figure 21-10. A Rectangle with a shear transformation using (0, 0) as the pivot point

Chapter 21 ■ Understanding transformations

913

Let us use a pivot point other than (0, 0) for a Shear transformation. Consider the following snippet of code:

Rectangle rect1 = new Rectangle(100, 50, Color.LIGHTGRAY);
rect1.setX(100);
rect1.setStroke(Color.BLACK);
Rectangle rect2 = new Rectangle(100, 50, Color.LIGHTGRAY);
rect2.setX(100);
rect2.setStroke(Color.BLACK);
rect2.setOpacity(0.5);

// Apply a shear on rect2. The x and y multipliers are 0.5 and
// (100, 50) is the pivot point.
Shear shear = new Shear(0.5, 0.5, 100, 50);
rect2.getTransforms().addAll(shear);

The code is similar to the one shown in Listing 21-6. The upper-left corners of the rectangles are
placed at (100, 0), so we can see the sheared rectangle fully. We have used (100, 50), which is the lower-left
corner of the rectangle, as the pivot point. Figure 21-11 shows the transformed rectangle. Notice that the
transformation did not shift the pivot point.

Figure 21-11. A Rectangle with a shear transformation using (100, 50) as the pivot point

Let us apply our formula to validate the coordinates of the upper-right corner, which is originally at
(200, 0) relative to the untransformed coordinate system of the rectangle.

x1 = 200
y1 = 0
pivotX = 100
pivotY = 50
x = 0.5
y = 0.5

x2 = pivotX + (x1 - pivotX) + x * (y1 - pivotY)
 = 100 + (200 - 100) + 0.5 * (0 - 50)
 = 175

y2 = pivotY + (y1 - pivotY) + y * (x1 - pivotX)
 = 50 + (0 -50) + 0.5 * (200 - 100)
 = 50

Therefore, (175, 50) is the shifted location of the upper-right corner in the untransformed coordinate
system of the rectangle.

Chapter 21 ■ Understanding transformations

914

Applying Multiple Transformations
You can apply multiple transformations to a node. As mentioned previously, the transformations in the
transforms sequence are applied before the transformation set on the properties of the node. When
properties of the Node class are used, translation, rotation, and scale are applied in sequence. When the
transforms sequence is used, transformations are applied in the order they are stored in the sequence.

The program in Listing 21-7 creates three rectangles and positions them at the same location. It applies
multiple transformations to the second and third rectangles in different order. Figure 21-12 shows the result.
The first rectangle is shown at its original position, as we did not apply any transformation to it. Notice that
two rectangles ended up at different locations. If you change the order of the transformation for the third
rectangle as shown next, both rectangles will overlap.

rect3.getTransforms().addAll(new Translate(100, 0),
 new Rotate(30, 50, 25),
 new Scale(1.2, 1.2, 50, 25));

Listing 21-7. Using Multiple Transformations on a Node

// MultipleTransformations.java
package com.jdojo.transform;

import javafx.application.Application;
import javafx.scene.Group;
import javafx.scene.Scene;
import javafx.scene.layout.Pane;
import javafx.scene.paint.Color;
import javafx.scene.shape.Rectangle;
import javafx.scene.transform.Rotate;
import javafx.scene.transform.Scale;
import javafx.scene.transform.Translate;
import javafx.stage.Stage;

public class MultipleTransformations extends Application {
 public static void main(String[] args) {
 Application.launch(args);
 }

 @Override
 public void start(Stage stage) {
 Rectangle rect1 = new Rectangle(100, 50, Color.LIGHTGRAY);
 rect1.setStroke(Color.BLACK);

 Rectangle rect2 = new Rectangle(100, 50, Color.LIGHTGRAY);
 rect2.setStroke(Color.BLACK);
 rect2.setOpacity(0.5);

 Rectangle rect3 = new Rectangle(100, 50, Color.LIGHTCYAN);
 rect3.setStroke(Color.BLACK);
 rect3.setOpacity(0.5);

Chapter 21 ■ Understanding transformations

915

 // apply transformations to rect2
 rect2.setTranslateX(100);
 rect2.setTranslateY(0);
 rect2.setRotate(30);
 rect2.setScaleX(1.2);
 rect2.setScaleY(1.2);

 // Apply the same transformation as on rect2, but in a different order
 rect3.getTransforms().addAll(new Scale(1.2, 1.2, 50, 25),
 new Rotate(30, 50, 25),
 new Translate(100, 0));

 Group root = new Group(rect1, rect2, rect3);
 Scene scene = new Scene(root);
 stage.setScene(scene);
 stage.setTitle("Applying Multiple Transformations");
 stage.show();
 }
}

Figure 21-12. Rectangles with multiple transformations

Summary
A transformation is a mapping of points in a coordinate space to themselves preserving distances and
directions between them. Several types of transformations can be applied to points in a coordinate space.
JavaFX supports the following types of transformation: translation, rotation, shear, scale, and affine.

An instance of the abstract Transform class represents a transformation in JavaFX. The Transform
class contains common methods and properties used by all types of transformations on nodes. It contains
factory methods to create specific types of transformations. All transformation classes are in the
javafx.scene.transform package.

Chapter 21 ■ Understanding transformations

916

An affine transformation is the generalized transformation that preserves the points, lines, and planes.
The parallel lines remain parallel after the transformation. The affine transformation may not preserve the
angles between lines and the distances between points. However, the ratios of distances between points
on a straight line are preserved. Translation, scale, homothetic transformation, similarity transformation,
reflection, rotation, and shear are examples of the affine transformation. An instance of the Affine class
represents an affine transformation.

There are two ways to apply a transformation to a node: using the specific properties in the Node class
and using the transforms sequence of a node.

A translation moves every point of a node by a fixed distance in a specified direction relative to its
parent coordinate system. It is achieved by shifting the origin of the local coordinate system of the node to a
new location. An instance of the Translate class represents a translation.

In a rotation transformation, the axes are rotated around a pivot point in the coordinate space and the
coordinates of points are mapped to the new axes. An instance of the Rotate class represents a rotation
transformation.

A scale transformation scales the unit of measurement along axes of a coordinate system by a scale
factor. This causes the dimensions of a node to change (stretch or shrink) by the specified scale factors along
axes. The dimension along an axis is multiplied by the scale factor along that axis. The transformation is
applied at a pivot point whose coordinates remain the same after the transformation. An instance of the
Scale class represents a scale transformation.

A shear transformation rotates axes of the local coordinate system of the node around a pivot point, so
the axes are no longer perpendicular. A rectangular node becomes a parallelogram after the transformation.
An instance of the Shear class represents a shear transformation.

You can apply multiple transformations to a node. The transformations in the transforms sequence
are applied before the transformation set on the properties of the node. When properties of the Node class
are used, translation, rotation, and scale are applied in order. When the transforms sequence is used,
transformations are applied in the order they are stored in the sequence.

The next chapter will discuss how to apply animation to nodes.

917

Chapter 22

Understanding Animation

In this chapter, you will learn:

What animation is in JavaFX•	

About classes in JavaFX that are used in performing animation in JavaFX•	

How to perform a timeline animation and how to set up cue points on a timeline •	
animation

How to control animation such as playing, reversing, pausing, and stopping•	

How to perform animation using transitions•	

About different types of interpolators and their roles in animation•	

What Is Animation?
In real world, animation implies some kind of motion, which is generated by displaying images in quick
succession. For example, when you watch a movie, you are watching images, which change so quickly that
you get an illusion of motion.

In JavaFX, animation is defined as changing the property of a node over time. If the property that
changes determines the location of the node, the animation in JavaFX will produce an illusion of motion as
found in movies. Not all animations have to involve motion; for example, changing the fill property of a
shape over time is an animation in JavaFX that does not involve motion.

To understand how animation is performed, it is important to understand some key concepts.

Timeline•	

Key frame•	

Key value•	

Interpolator•	

Animation is performed over a period of time. A timeline denotes the progression of time during
animation with an associated key frame at a given instant. A key frame represents the state of the node being
animated at a specific instant on the timeline. A key frame has associated key values. A key value represents
the value of a property of the node along with an interpolator to be used.

Chapter 22 ■ Understanding animation

918

The developer provides timelines, key frames, and key values. In this example, there are five key
frames. If JavaFX shows only five key frames at the five respective instants, the animation will look jerky.
To provide a smooth animation, JavaFX needs to interpolate the position of the circle at any instant on the
timeline. That is, JavaFX needs to create intermediate key frames between two consecutive provided key
frames. JavaFX does this with the help of an interpolator. By default, it uses a linear interpolator, which
changes the property being animated linearly with time. That is, if the time on the timeline passes x%, the
value of the property will be x% between the initial and final target values. Circles with the dashed outline
are created by JavaFX using an interpolator.

Understating Animation Classes
Classes providing animation in JavaFX are in the javafx.animation package, except the Duration
class, which is in the javafx.util package. Figure 22-2 shows a class diagram for most of the
animation-related classes.

Timeline

5s0s 2.5s 7.5s 10s

tx=0 tx=250 tx=500 tx=750 tx=1000

Figure 22-1. Animating a circle along a horizontal line using a timeline

Figure 22-2. A class diagram for core classes used in animation

Suppose you want to move a circle in a scene from left to right horizontally in 10 seconds. Figure 22-1
shows the circle at some positions. . . . The thick horizontal line represents a timeline. Circles with a solid
outline represent the key frames at specific instants on the timeline. The key values associated with key
frames are shown at the top line. For example, the value for translateX property of the circle for the key
frame at the fifth second is 500, which is shown as tx=500 in the figure.

Chapter 22 ■ Understanding animation

919

The abstract Animation class represents an Animation. It contains common properties and methods
used by all types of animation.

JavaFX supports two types of animations.

Timeline animations•	

Transitions•	

In a timeline animation, you create a timeline and add key frames to it. JavaFX creates the intermediate
key frames using an interpolator. An instance of the Timeline class represents a timeline animation. This
type of animation requires a little more code, but it gives you more control.

Several types of animations are commonly performed (moving a node along a path, changing the
opacity of a node over time, etc.). These types of animations are known as transitions. They are performed
using an internal timeline. An instance of the Transition class represents a transition animation.
Several subclasses of the Transition class exist to support specific types of transitions. For example, the
FadeTransition class implements a fading effect animation by changing the opacity of a node over time.
You create an instance of the Transition class (typically, an instance of one of its subclasses), specify the
initial and final values for the property to be animated and the duration for the animation. JavaFX takes care
of creating the timeline and performing the animation. This type of animation is easier to use.

Sometimes, you may want to perform multiple transitions sequentially or simultaneously. The
SequentialTransition and ParallelTransition classes let you perform a set of transitions sequentially
and simultaneously, respectively.

Understanding Utility Classes
Before discussing the details of JavaFX animation, I will discuss a few utility classes that are used in
implementing animations. The following sections will discuss those classes.

Understanding the Duration Class
The Duration class is in the javafx.util package. It represents a duration of time in milliseconds, seconds,
minutes, and hours. It is an immutable class. A Duration represents the amount of time for each cycle of an
animation. A Duration can represent a positive or negative duration.

You can create a Duration object in three ways.

Using the constructor•	

Using factory methods•	

Using the •	 valueOf() method from a duration in String format

The constructor takes the amount of time in milliseconds.

Duration tenMillis = new Duration(10);

Factory methods create Duration objects for different units of time. They are millis(), seconds(),
minutes(), and hours().

Duration tenMillis = Duration.millis(10);
Duration tenSeconds = Duration.seconds(10);
Duration tenMinutes = Duration.minutes(10);
Duration tenHours = Duration.hours(10);

Chapter 22 ■ Understanding animation

920

The valueOf() static method takes a String argument containing the duration of time and returns a
Duration object. The format of the argument is “number[ms|s|m|h]”, where number is the amount of time,
and ms, s, m, and h denote milliseconds, seconds, minutes, and hours, respectively.

Duration tenMillis = Duration.valueOf("10.0ms");
Duration tenMililsNeg = Duration.valueOf("-10.0ms");

You can also represent a duration of an unknown amount of time and an indefinite time using the
UNKNOWN and INDEFINITE constants of the Duration class, respectively. You can use the isIndefinite()
and isUnknown() methods to check if a duration represents an indefinite or unknown amount of time. |
The class declares two more constants, ONE and ZERO, that represent durations of 1 millisecond
and 0 (no time), respectively.

The Duration class provides several methods to manipulate durations (adding a duration to another
duration, dividing and multiplying a duration by a number, comparing two durations, etc.). Listing 22-1
shows how to use the Duration class.

Listing 22-1. Using the Duration Class

// DurationTest.java
package com.jdojo.animation;

import javafx.util.Duration;

public class DurationTest {
 public static void main(String[] args) {
 Duration d1 = Duration.seconds(30.0);
 Duration d2 = Duration.minutes(1.5);
 Duration d3 = Duration.valueOf("35.25ms");
 System.out.println("d1 = " + d1);
 System.out.println("d2 = " + d2);
 System.out.println("d3 = " + d3);

 System.out.println("d1.toMillis() = " + d1.toMillis());
 System.out.println("d1.toSeconds() = " + d1.toSeconds());
 System.out.println("d1.toMinutes() = " + d1.toMinutes());
 System.out.println("d1.toHours() = " + d1.toHours());

 System.out.println("Negation of d1 = " + d1.negate());
 System.out.println("d1 + d2 = " + d1.add(d2));
 System.out.println("d1 / 2.0 = " + d1.divide(2.0));

 Duration inf = Duration.millis(1.0/0.0);
 Duration unknown = Duration.millis(0.0/0.0);
 System.out.println("inf.isIndefinite() = " + inf.isIndefinite());
 System.out.println("unknown.isUnknown() = " + unknown.isUnknown());
 }
}

Chapter 22 ■ Understanding animation

921

d1 = 30000.0 ms
d2 = 90000.0 ms
d3 = 35.25 ms
d1.toMillis() = 30000.0
d1.toSeconds() = 30.0
d1.toMinutes() = 0.5
d1.toHours() = 0.008333333333333333
Negation of d1 = -30000.0 ms
d1 + d2 = 120000.0 ms
d1 / 2.0 = 15000.0 ms
inf.isIndefinite() = true
unknown.isUnknown() = true

Understating the KeyValue Class
An instance of the KeyValue class represents a key value that is interpolated for a particular interval during
animation. It encapsulates three things.

A target•	

An end value for the target•	

An interpolator•	

The target is a WritableValue, which qualifies all JavaFX properties to be a target. The end value is
the value for the target at the end of the interval. The interpolator is used to compute the intermediate
key frames.

A key frame contains one or more key values and it defines a specific point on a timeline. Figure 22-3
shows an interval on a timeline. The interval is defined by two instants: instant1 and instant2. Both instants
have an associated key frame; each key frame contains a key value. An animation may progress forward or
backward on the timeline. When an interval starts, the end value of the target is taken from the key value
of the end key frame of the interval and its interpolator is used to compute the intermediate key frames.
Suppose, in the figure, the animation is progressing in the forward direction and instant1 occurs before
instant2. From instant1 to instant2, the interpolator of the key-value2 will be used to compute the key frames
for the interval. If the animation is progressing in the backward direction, the interpolator of the key-value1
will be used to compute the intermediate key frames from instant2 to instant1.

Timeline

Instant1 Instant2

Key frame1 Key frame2

key-value1 key-value2

Figure 22-3. Key frames at two instants on a timeline

Chapter 22 ■ Understanding animation

922

The KeyValue class is immutable. It provides two constructors.

•	 KeyValue(WritableValue<T> target, T endValue)

•	 KeyValue(WritableValue<T> target, T endValue, Interpolator interpolator)

The Interpolator.LINEAR is used as the default interpolator that interpolates the animated property
linearly with time. I will discuss different types of interpolators later.

The following snippet of code creates a Text object and two KeyValue objects. The translateX property
is the target. 0 and 100 are the end values for the target. The default interpolator is used.

Text msg = new Text("JavaFX animation is cool!");
KeyValue initKeyValue = new KeyValue(msg.translateXProperty(), 0.0);
KeyValue endKeyValue = new KeyValue(msg.translateXProperty(), 100.0);

The following snippet of code is similar to the one shown above. It uses the Interpolator.EASE_BOTH
interpolator, which slows down the animation in the start and toward the end.

Text msg = new Text("JavaFX animation is cool!");
KeyValue initKeyValue = new KeyValue(msg.translateXProperty(), 0.0, Interpolator.EASE_BOTH);
KeyValue endKeyValue = new KeyValue(msg.translateXProperty(), 100.0, Interpolator.EASE_BOTH);

Understanding the KeyFrame Class
A key frame defines the target state of a node at a specified point on the timeline. The target state is defined
by the key values associated with the key frame.

A key frame encapsulates four things.

An instant on the timeline•	

A set of •	 KeyValues

A name•	

An •	 ActionEvent handler

The instant on the timeline with which the key frame is associated is defined by a Duration, which is an
offset of the key frame on the timeline.

The set of •	 KeyValues defines the end value of the target for the key frame.

A key frame may optionally have a name that can be used as a cue point to jump to the instant
defined by it during an animation. The getCuePoints() method of the Animation class returns a Map of
cue points on the Timeline.

Optionally, you can attach an ActionEvent handler to a KeyFrame. The ActionEvent handler is called
when the time for the key frame arrives during animation.

An instance of the KeyFrame class represents a key frame. The class provides several constructors:

•	 KeyFrame(Duration time, EventHandler<ActionEvent> onFinished,
KeyValue... values)

•	 KeyFrame(Duration time, KeyValue... values)

•	 KeyFrame(Duration time, String name, EventHandler<ActionEvent>
onFinished, Collection<KeyValue> values)

Chapter 22 ■ Understanding animation

923

•	 KeyFrame(Duration time, String name, EventHandler<ActionEvent>
onFinished, KeyValue... values)

•	 KeyFrame(Duration time, String name, KeyValue... values)

The following snippet of code creates two instances of KeyFrame that specify the translateX property of
a Text node at 0 seconds and 3 seconds on a timeline:

Text msg = new Text("JavaFX animation is cool!");
KeyValue initKeyValue = new KeyValue(msg.translateXProperty(), 0.0);
KeyValue endKeyValue = new KeyValue(msg.translateXProperty(), 100.0);

KeyFrame initFrame = new KeyFrame(Duration.ZERO, initKeyValue);
KeyFrame endFrame = new KeyFrame(Duration.seconds(3), endKeyValue);

Understating the Timeline Animation
A timeline animation is used for animating any properties of a node. An instance of the Timeline class
represents a timeline animation. Using a timeline animation involves the following steps:

Construct key frames•	

Create a •	 Timeline object with key frames

Set the animation properties•	

Use the •	 play() method to run the animation

You can add key frames to a Timeline at the time of creating it or after. The Timeline instance keeps all
key frames in an ObservableList<KeyFrame> object. The getKeyFrames() method returns the list. You can
modify the list of key frames at any time. If the timeline animation is already running, you need to stop and
restart it to pick up the modified list of key frames.

The Timeline class contains several constructors.

•	 Timeline()

•	 Timeline(double targetFramerate)

•	 Timeline(double targetFramerate, KeyFrame... keyFrames)

•	 Timeline(KeyFrame... keyFrames)

The no-args constructor creates a Timeline with no key frames with animation running at the optimum
rate. Other constructors let you specify the target frame rate for the animation, which is the number of
frames per second, and the key frames.

Note that the order in which the key frames are added to a Timeline is not important. Timeline will
order them based on their time offset.

The program in Listing 22-2 starts a timeline animation that scrolls a text horizontally from right to left
across the scene forever. Figure 22-4 shows a screenshot of the animation.

Chapter 22 ■ Understanding animation

924

Listing 22-2. Scrolling Text Using a Timeline Animation

// ScrollingText.java
package com.jdojo.animation;

import javafx.animation.KeyFrame;
import javafx.animation.KeyValue;
import javafx.animation.Timeline;
import javafx.application.Application;
import javafx.geometry.VPos;
import javafx.scene.Scene;
import javafx.scene.layout.Pane;
import javafx.scene.text.Font;
import javafx.scene.text.Text;
import javafx.stage.Stage;
import javafx.util.Duration;

public class ScrollingText extends Application {
 public static void main(String[] args) {
 Application.launch(args);
 }

 @Override
 public void start(Stage stage) {
 Text msg = new Text("JavaFX animation is cool!");
 msg.setTextOrigin(VPos.TOP);
 msg.setFont(Font.font(24));

 Pane root = new Pane(msg);
 root.setPrefSize(500, 70);
 Scene scene = new Scene(root);

 stage.setScene(scene);
 stage.setTitle("Scrolling Text");
 stage.show();

 /* Set up a Timeline animation */
 // Get the scene width and the text width
 double sceneWidth = scene.getWidth();
 double msgWidth = msg.getLayoutBounds().getWidth();

 // Create the initial and final key frames
 KeyValue initKeyValue =
 new KeyValue(msg.translateXProperty(), sceneWidth);
 KeyFrame initFrame = new KeyFrame(Duration.ZERO, initKeyValue);

 KeyValue endKeyValue =
 new KeyValue(msg.translateXProperty(), -1.0 * msgWidth);
 KeyFrame endFrame = new KeyFrame(Duration.seconds(3), endKeyValue);

 // Create a Timeline object
 Timeline timeline = new Timeline(initFrame, endFrame);

Chapter 22 ■ Understanding animation

925

 // Let the animation run forever
 timeline.setCycleCount(Timeline.INDEFINITE);

 // Start the animation
 timeline.play();
 }
}

The logic to perform the animation is in the start() method. The method starts with creating a Text
object, a Pane with the Text object, and setting up a scene for the stage. After showing the stage, it sets up
an animation.

It gets the width of the scene and the Text object.

double sceneWidth = scene.getWidth();
double msgWidth = msg.getLayoutBounds().getWidth();

Two key frames are created: one for time = 0 seconds and one for time = 3 seconds. The animation uses
the translateX property of the Text object to change its horizontal position to make it scroll. At 0 seconds,
the Text is positioned at the scene width, so it is invisible. At 3 seconds, it is placed to the left of the scene at a
distance equal to its length, so again it is invisible.

KeyValue initKeyValue = new KeyValue(msg.translateXProperty(), sceneWidth);
KeyFrame initFrame = new KeyFrame(Duration.ZERO, initKeyValue);

KeyValue endKeyValue = new KeyValue(msg.translateXProperty(), -1.0 * msgWidth);
KeyFrame endFrame = new KeyFrame(Duration.seconds(3), endKeyValue);

A Timeline object is created with two key frames.

Timeline timeline = new Timeline(initFrame, endFrame);

By default, the animation will run only one time. That is, the Text will scroll from right to left once and
the animation will stop. You can set the cycle count for an animation, which is the number of times the
animation needs to run. You run the animation forever by setting the cycle count to Timeline.INDEFINITE.

timeline.setCycleCount(Timeline.INDEFINITE);

Finally, the animation is started by calling the play() method.

timeline.play();

Figure 22-4. Scrolling text using a timeline animation

Chapter 22 ■ Understanding animation

926

Our example has a flaw. The scrolling the text does not update its initial horizontal position when
the width of the scene changes. You can rectify this problem by updating the initial key frame whenever
the scene width changes. Append the following statement to the start() method of Listing 22-2. It adds a
ChangeListener for the scene width that updates key frames and restarts the animation.

scene.widthProperty().addListener((prop, oldValue , newValue) -> {
 KeyValue kv = new KeyValue(msg.translateXProperty(), scene.getWidth());
 KeyFrame kf = new KeyFrame(Duration.ZERO, kv);
 timeline.stop();
 timeline.getKeyFrames().clear();
 timeline.getKeyFrames().addAll(kf, endFrame);
 timeline.play();
});

It is possible to create a Timeline animation with only one key frame. The key frame is treated as the last
key frame. The Timeline synthesizes an initial key frame (for time = 0 seconds) using the current values for
the WritableValue being animated. To see the effect, let us replace the statement

Timeline timeline = new Timeline(initFrame, endFrame);

in Listing 22-2 with the following

Timeline timeline = new Timeline(endFrame);

The Timeline will create an initial key frame with the current value of translateX property of the Text
object, which is 0.0. This time, the Text scrolls differently. The scrolling starts by placing the Text at 0.0 and
scrolling it to the left, so it goes beyond the scene.

Controlling an Animation
The Animation class contains properties and methods that can be used to control animation in various
ways. The following sections will explain those properties and methods and how to use them to |
control animation.

Playing an Animation
The Animation class contains four methods to play an animation.

•	 play()

•	 playFrom(Duration time)

•	 playFrom(String cuePoint)

•	 playFromStart()

The play() method plays an animation from its current position. If the animation was never started or
stopped, it will play from the beginning. If the animation was paused, it will play from the position where it
was paused. You can use the jumpTo(Duration time) and jumpTo(String cuePoint) methods to set the
current position of the animation to a specific duration or a cue point, before calling the play() method.
Calling the play() method is asynchronous. The animation may not start immediately. Calling the play()
method while animation is running has no effect.

Chapter 22 ■ Understanding animation

927

The playFrom() method plays an animation from the specified duration or the specified cue point.
Calling this method is equivalent to setting the current position using the jumpTo() method and then calling
the play() method.

The playFromStart() method plays the animation from the beginning (duration = 0).

Delaying the Start of an Animation
You can specify a delay in starting the animation using the delay property. The value is specified in
Duration. By default, it is 0 milliseconds.

Timeline timeline = ...

// Deplay the start of the animation by 2 seconds
timeline.setDelay(Duration.seconds(2));

// Play the animation
timeline.play();

Stopping an Animation
Use the stop() method to stop a running animation. The method has no effect if the animation is not
running. The animation may not stop immediately when the method is called as the method executes
asynchronously. The method resets the current position to the beginning. That is, calling play() after
stop() will play the animation from the beginning.

Timeline timeline = ...
...
timeline.play();
...
timeline.stop();

Pausing an Animation
Use the pause() method to pause an animation. Calling this method when animation is not running
has no effect. This method executes asynchronously. Calling the play() method when the animation
is paused plays it from the current position. If you want to play the animation from the start, call the
playFromStart() method.

Knowing the State of an Animation
An animation can be one of the following three states:

Running•	

Paused•	

Stopped•	

Chapter 22 ■ Understanding animation

928

The three states are represented by RUNNING, STOPPED, and PAUSED constants of the Animation.Status
enum. You do not change the state of an animation directly. It is changed by calling one of the methods of
the Animation class. The class contains a read-only status property that can be used to know the state of the
animation at any time.

Timeline timeline = ...
...
Animation.Status status = timeline.getStatus();
switch(status) {
 case RUNNING:
 System.out.println("Running");
 break;
 case STOPPED:
 System.out.println("Stopped");
 break;
 case PAUSED:
 System.out.println("Paused");
 break;
}

Looping an Animation
An animation can cycle multiple times, even indefinitely. The cycleCount property specifies the number
of cycles in an animation, which defaults to 1. If you want to run the animation in an infinite loop, specify
Animation.INDEFINITE as the cycleCount. The cycleCount must be set to a value greater than zero. If the
cycleCount is changed while the animation is running, the animation must be stopped and restarted to pick
up the new value.

Timeline timeline1 = ...
Timeline1.setCycleCount(Timeline.INDEFINITE); // Run the animation forever

Timeline timeline2 = ...
Timeline2.setCycleCount(2); // Run the animation for two cycles

Auto Reversing an Animation
By default, an animation runs only in the forward direction. For example, our scrolling text animation
scrolled the text from right to left in one cycle. In the next cycle, the scrolling occurs again from right to left.

Using the autoReverse property, you can define whether the animation is performed in the reverse
direction for alternating cycles. By default, it is set to false. Set it to true to reverse the direction of the
animation.

Timeline timeline = ...
timeline.setAutoReverse(true); // Reverse direction on alternating cycles

If you change the autoReverse, you need to stop and restart the animation for the new value to
take effect.

Chapter 22 ■ Understanding animation

929

Attaching an onFinished Action
You can execute an ActionEvent handler when an animation finishes. Stopping the animation or
terminating the application while the animation is running will not execute the handler. You can specify
the handler in the onFinished property of the Animation class. The following snippet of code sets the
onFinished property to an ActionEvent handler that prints a message on the standard output:

Timeline timeline = ...
timeline.setOnFinished(e -> System.out.print("Animation finished."));

Note that an animation with an Animation.INDEFINITE cycle count will not finish and attaching such
an action to the animation will never execute.

Knowing the Duration of an Animation
An animation involves two types of durations.

Duration to play one cycle of the animation•	

Duration to play all cycles of the animation•	

These durations are not set directly. They are set using other properties of the animation (cycle count,
key frames, etc.).

The duration for one cycle is set using key frames. The key frame with the maximum duration
determines the duration for one cycle when the animation is played at the rate 1.0. The read-only
cycleDuration property of the Animation class reports the duration for one cycle.

The total duration for an animation is reported by the read-only totalDuration property. It is equal
to cycleCount * cycleDuration. If the cycleCount is set to Animation.INDEFINITE, the totalDuration is
reported as Duration.INDEFINITE.

Note that the actual duration for an animation depends on its play rate represented by the rate
property. Because the play rate can be changed while animation is running, there is no easy way to compute
the actual duration of an animation.

Adjusting the Speed of an Animation
The rate property of the Animation class specifies the direction and the speed for the animation. The sign of
its value indicates the direction. The magnitude of the value indicates the speed. A positive value indicates
the play in the forward direction. A negative value indicates the play in the backward direction. A value of 1.0
is considered the normal rate of play, a value of 2.0 double the normal rate, 0.50 half the normal rate, and so
on. A rate of 0.0 stops the play.

It is possible to invert the rate of a running animation. In that case, the animation is played in the
reverse direction from the current position for the duration that has already elapsed. Note that you cannot
start an animation using a negative rate. An animation with a negative rate will not start. You can change
the rate to be negative only when the animation has played for a while.

Timeline timeline = ...

// Play the animation at double the normal rate
Timeline.setRate(2.0);
...
timeline.play();
...

Chapter 22 ■ Understanding animation

930

// Invert the rate of the play
timeline.setRate(-1.0 * timeline.getRate());

The read-only currentRate property indicates the current rate (the direction and speed) at which
the animation is playing. The values for the rate and currentRate properties may not be equal. The rate
property indicates the rate at which the animation is expected to play when it runs, whereas the currentRate
indicates the rate at which the animation is being played. When the animation is stopped or paused, the
currentRate value is 0.0. If the animation reverses its direction automatically, the currentRate will report a
different direction during reversal; for example, if the rate is 1.0, the currentRate reports 1.0 for the forward
play cycle and -1.0 for the reverse play cycle.

Understanding Cue Points
You can set up cue points on a timeline. Cue points are named instants on the timeline. An animation
can jump to a cue point using the jumpTo(String cuePoint) method. An animation maintains an
ObservableMap<String,Duration> of cue points. The key in the map is the name of the cue points and the
values are the corresponding duration on the timeline. Use the getCuePoints() method to get the reference
of the cue points map.

There are two ways to add cue points to a timeline.

Giving a name to the •	 KeyFrame you add to a timeline that adds a cue point in the cue
point map

Adding name-duration pairs to the map returned by the •	 getCuePoints() method of
the Animation class

Tip ■ every animation has two predefined cue points: “start” and “end.” they are set at the start and end of
the animation. the two cue points do not appears in the map returned by the getCuePoints() method.

The following snippet of code creates a KeyFrame with a name “midway.” When it is added to a timeline,
a cue point named “midway” will added to the timeline automatically. You can jump to this KeyFrame using
jumpTo("midway").

// Create a KeyFrame with name “midway”
KeyValue midKeyValue = ...
KeyFrame midFrame = new KeyFrame(Duration.seconds(5), "midway", midKeyValue);

The following snippet of code adds two cue points directly to the cue point map of a timeline:

Timeline timeline = ...
timeline.getCuePoints().put("3 seconds", Duration.seconds(3));
timeline.getCuePoints().put("7 seconds", Duration.seconds(7));

The program in Listing 22-3 shows how to add and use cue points on a timeline. It adds a KeyFrame
with a “midway” name, which automatically becomes cue point. It adds two cue points, “3 seconds” and
“7 seconds,” directly to the cue point map. The list of available cue points is shown in a ListView on the left
side of the screen. A Text object scrolls with a cycle duration of 10 seconds. The program displays a window
as shown in Figure 22-5. Select a cue point from the list and the animation will start playing from that point.

Chapter 22 ■ Understanding animation

931

Listing 22-3. Using Cue Points in Animation

// CuePointTest.java
package com.jdojo.animation;

import java.util.Map;
import java.util.SortedMap;
import java.util.TreeMap;
import java.util.Comparator;
import javafx.animation.KeyFrame;
import javafx.animation.KeyValue;
import javafx.animation.Timeline;
import javafx.application.Application;
import javafx.geometry.VPos;
import javafx.scene.Scene;
import javafx.scene.control.ListView;
import javafx.scene.layout.BorderPane;
import javafx.scene.layout.Pane;
import javafx.scene.text.Font;
import javafx.scene.text.Text;
import javafx.stage.Stage;
import javafx.util.Duration;

public class CuePointTest extends Application {
 Text msg = new Text("JavaFX animation is cool!");
 Pane pane;
 ListView<String> cuePointsListView;
 Timeline timeline;

 public static void main(String[] args) {
 Application.launch(args);
 }

 @Override
 public void start(Stage stage) {
 msg.setTextOrigin(VPos.TOP);
 msg.setFont(Font.font(24));

 BorderPane root = new BorderPane();
 root.setPrefSize(600, 150);

 cuePointsListView = new ListView<>();
 cuePointsListView.setPrefSize(100, 150);
 pane = new Pane(msg);

 root.setCenter(pane);
 root.setLeft(cuePointsListView);

 Scene scene = new Scene(root);
 stage.setScene(scene);
 stage.setTitle("Cue Points");
 stage.show();

Chapter 22 ■ Understanding animation

932

 this.setupAnimation();
 this.addCuePoints();
 }

 private void setupAnimation() {
 double paneWidth = pane.getWidth();
 double msgWidth = msg.getLayoutBounds().getWidth();

 // Create the initial and final key frames
 KeyValue initKeyValue = new KeyValue(msg.translateXProperty(), paneWidth);
 KeyFrame initFrame = new KeyFrame(Duration.ZERO, initKeyValue);

 // A KeyFrame with a name "midway" that defines a cue point this name
 KeyValue midKeyValue = new KeyValue(msg.translateXProperty(), paneWidth / 2);
 KeyFrame midFrame = new KeyFrame(Duration.seconds(5), "midway", midKeyValue);

 KeyValue endKeyValue = new KeyValue(msg.translateXProperty(), -1.0 * msgWidth);
 KeyFrame endFrame = new KeyFrame(Duration.seconds(10), endKeyValue);

 timeline = new Timeline(initFrame, midFrame, endFrame);
 timeline.setCycleCount(Timeline.INDEFINITE);
 timeline.play();
 }

 private void addCuePoints() {
 // Add two cue points directly to the map
 timeline.getCuePoints().put("3 seconds", Duration.seconds(3));
 timeline.getCuePoints().put("7 seconds", Duration.seconds(7));

 // Add all cue points from the map to the ListView in the order
 // of their durations
 SortedMap<String, Duration> smap = getSortedCuePoints(timeline.getCuePoints());
 cuePointsListView.getItems().addAll(smap.keySet());

 // Add the special "start" and "end" cue points
 cuePointsListView.getItems().add(0, "Start");
 cuePointsListView.getItems().add("End");

 // Jusp to the cue point when the user selects it
 cuePointsListView.getSelectionModel().selectedItemProperty().addListener(
 (prop, oldValue, newValue) -> {
 timeline.jumpTo(newValue);
 });
 }

 // Sort the cue points based on their durations
 private SortedMap<String, Duration> getSortedCuePoints(
 Map<String, Duration> map) {
 Comparator<String> comparator = (e1, e2) -> map.get(e1).compareTo(map.get(e2));
 SortedMap<String, Duration> smap = new TreeMap<>(comparator);
 smap.putAll(map);
 return smap;
 }
}

Chapter 22 ■ Understanding animation

933

Understanding Transitions
In the previous sections, you saw animations using a timeline that involved setting up key frames on
the timeline. Using timeline animation is not easy in all cases. Consider moving a node in a circular
path. Creating key frames and setting up a timeline to move the node on the circular path are not easy.
JavaFX contains a number of classes (known as transitions) that let you animate nodes using predefined
properties.

All transition classes inherit from the Transition class, which, in turn, inherits from the Animation
class. All methods and properties in the Animation class are also available for use in creating transitions.
The transition classes take care of creating the key frames and setting up the timeline. You need to specify
the node, duration for the animation, and end values that are interpolated. Special transition classes are
available to combine multiple animations that may run sequentially or in parallel.

The Transition class contains an interpolator property that specifies the interpolator to be used
during animation. By default, it uses Interpolator.EASE_BOTH, which starts the animation slowly,
accelerates it, and slows it down toward the end.

Understanding the Fade Transition
An instance of the FadeTransition class represents a fade-in or fade-out effect for a node by gradually
increasing or decreasing the opacity of the node over the specified duration. The class defines the following
properties to specify the animation:

•	 duration

•	 node

•	 fromValue

•	 toValue

•	 byValue

The duration property specifies the duration for one cycle of the animation.
The node property specifies the node whose opacity property is changed.
The fromValue property specifies the initial value for the opacity. If it is not specified, the current

opacity of the node is used.
The toValue property specifies the opacity end value. The opacity of the node is updated between the

initial value and the toValue for one cycle of the animation.

Figure 22-5. Scrolling text with the list of cue points

Chapter 22 ■ Understanding animation

934

The byValue property lets you specify the opacity end value differently using the formula

opacity_end_value = opacity_initial_value + byValue

The byValue lets you set the opacity end value by incrementing or decrementing the initial value by an
offset. If both toValue and byValue are specified, the toValue is used.

Suppose you want to set the initial and end opacity of a node between 1.0 and 0.5 in an animation. You
can achieve it by setting the fromValue and toValue to 1.0 and 0.50 or by setting fromValue and byValue to
1.0 and -0.50.

The valid opacity value for a node is between 0.0 and 1.0. It is possible to set FadeTransition
properties to exceed the range. The transition takes care of clamping the actual value in the range.

The following snippet of code sets up a fade-out animation for a Rectangle by changing its opacity
from 1.0 to 0.20 in 2 seconds:

Rectangle rect = new Rectangle(200, 50, Color.RED);
FadeTransition fadeInOut = new FadeTransition(Duration.seconds(2), rect);
fadeInOut.setFromValue(1.0);
fadeInOut.setToValue(.20);
fadeInOut.play();

The program in Listing 22-4 creates a fade-out and fade-in effect in an infinite loop for a Rectangle.

Listing 22-4. Creating a Fading Effect Using the FadeTransition Class

// FadeTest.java
package com.jdojo.animation;

import javafx.animation.FadeTransition;
import javafx.application.Application;
import javafx.scene.Scene;
import javafx.scene.layout.HBox;
import javafx.scene.paint.Color;
import javafx.scene.shape.Rectangle;
import javafx.stage.Stage;
import javafx.util.Duration;

public class FadeTest extends Application {
 public static void main(String[] args) {
 Application.launch(args);
 }

 @Override
 public void start(Stage stage) {
 Rectangle rect = new Rectangle(200, 50, Color.RED);
 HBox root = new HBox(rect);
 Scene scene = new Scene(root);
 stage.setScene(scene);
 stage.setTitle("Fade-in and Fade-out");
 stage.show();

Chapter 22 ■ Understanding animation

935

 // Set up a fade-in and fade-out animation for the rectangle
 FadeTransition fadeInOut = new FadeTransition(Duration.seconds(2), rect);
 fadeInOut.setFromValue(1.0);
 fadeInOut.setToValue(.20);
 fadeInOut.setCycleCount(FadeTransition.INDEFINITE);
 fadeInOut.setAutoReverse(true);
 fadeInOut.play();
 }
}

Understanding the Fill Transition
An instance of the FillTransition class represents a fill transition for a shape by gradually transitioning
the fill property of the shape between the specified range and duration. The class defines the following
properties to specify the animation:

•	 duration

•	 shape

•	 fromValue

•	 toValue

The duration property specifies the duration for one cycle of the animation.
The shape property specifies the Shape whose fill property is changed.
The fromValue property specifies the initial fill color. If it is not specified, the current fill of the

shape is used.
The toValue property specifies the fill end value.
The fill of the shape is updated between the initial value and the toValue for one cycle of the

animation. The fill property in the Shape class is defined as a Paint. However, the fromValue and toValue
are of the type Color. That is, the fill transition works for two Colors, not two Paints.

The following snippet of code sets up a fill transition for a Rectangle by changing its fill from blue
violet to azure in 2 seconds:

FillTransition fillTransition = new FillTransition(Duration.seconds(2), rect);
fillTransition.setFromValue(Color.BLUEVIOLET);
fillTransition.setToValue(Color.AZURE);
fillTransition.play();

The program in Listing 22-5 creates a fill transition to change the fill color of a Rectangle from blue
violet to azure in 2 seconds in an infinite loop.

Listing 22-5. Creating a Fill Transition Using the FillTransition Class

// FillTest.java
package com.jdojo.animation;

import javafx.animation.FillTransition;
import javafx.application.Application;
import javafx.scene.Scene;
import javafx.scene.layout.HBox;

Chapter 22 ■ Understanding animation

936

import javafx.scene.paint.Color;
import javafx.scene.shape.Rectangle;
import javafx.stage.Stage;
import javafx.util.Duration;

public class FillTest extends Application {
 public static void main(String[] args) {
 Application.launch(args);
 }

 @Override
 public void start(Stage stage) {
 Rectangle rect = new Rectangle(200, 50, Color.RED);
 HBox root = new HBox(rect);
 Scene scene = new Scene(root);
 stage.setScene(scene);
 stage.setTitle("Fill Transition");
 stage.show();

 // Set up a fill transition for the rectangle
 FillTransition fillTransition = new FillTransition(Duration.seconds(2), rect);
 fillTransition.setFromValue(Color.BLUEVIOLET);
 fillTransition.setToValue(Color.AZURE);
 fillTransition.setCycleCount(FillTransition.INDEFINITE);
 fillTransition.setAutoReverse(true);
 fillTransition.play();
 }
}

Understanding the Stroke Transition
An instance of the StrokeTransition class represents a stroke transition for a shape by gradually
transitioning the stroke property of the shape between the specified range and duration. The stroke
transition works the same as the fill transition, except that it interpolates the stroke property of the
shape rather than the fill property. The StrokeTransition class contains the same properties as the
FillTransition class. Please refer to the section “Understanding the Fill Transition” for more details.
The following snippet of code starts animating the stroke of a Rectangle in an infinite loop. The stroke
changes from red to blue in a cycle duration of 2 seconds.

Rectangle rect = new Rectangle(200, 50, Color.WHITE);
StrokeTransition strokeTransition = new StrokeTransition(Duration.seconds(2), rect);
strokeTransition.setFromValue(Color.RED);
strokeTransition.setToValue(Color.BLUE);
strokeTransition.setCycleCount(StrokeTransition.INDEFINITE);
strokeTransition.setAutoReverse(true);
strokeTransition.play();

Chapter 22 ■ Understanding animation

937

Understanding the Translate Transition
An instance of the TranslateTransition class represents a translate transition for a node by gradually
changing the translateX, translateY, and translateZ properties of the node over the specified duration.
The class defines the following properties to specify the animation:

•	 duration

•	 node

•	 fromX

•	 fromY

•	 fromZ

•	 toX

•	 toY

•	 toZ

•	 byX

•	 byY

•	 byZ

The duration property specifies the duration for one cycle of the animation.
The node property specifies the node whose translateX, translateY, and translateZ properties

are changed.
The initial location of the node is defined by the (fromX, fromY, fromZ) value. If it is not specified, the

current (translateX, translateY, translateZ) value of the node is used as the initial location.
The (toX, toY, toZ) value specifies the end location.
The (byX, byY, byZ) value lets you specify the end location using the following formula:

translateX_end_value = translateX_initial_value + byX
translateY_end_value = translateY_initial_value + byY
translateZ_end_value = translateZ_initial_value + byZ

If both (toX, toY, toZ) and (byX, byY, byZ) values are specified, the former is used.
The program in Listing 22-6 creates a translate transition in an infinite loop for a Text object by scrolling

it across the width of the scene. The program in Listing 22-2 created the same animation using a Timeline
object with one difference. They use different interpolators. By default, timeline-based animations use the
Interpolator.LINEAR interpolator whereas transition-based animation uses the Interpolator.EASE_BOTH
interpolator. When you run the program in Listing 22-6, the text starts scrolling slow in the beginning and
end, whereas in Listing 22-2, the text scrolls with a uniform speed all the time.

Listing 22-6. Creating a Translate Transition Using the TranslateTransition Class

// TranslateTest.java
package com.jdojo.animation;

import javafx.animation.TranslateTransition;
import javafx.application.Application;
import javafx.geometry.VPos;
import javafx.scene.Scene;

Chapter 22 ■ Understanding animation

938

import javafx.scene.layout.Pane;
import javafx.scene.text.Font;
import javafx.scene.text.Text;
import javafx.stage.Stage;
import javafx.util.Duration;

public class TranslateTest extends Application {
 public static void main(String[] args) {
 Application.launch(args);
 }

 @Override
 public void start(Stage stage) {
 Text msg = new Text("JavaFX animation is cool!");
 msg.setTextOrigin(VPos.TOP);
 msg.setFont(Font.font(24));

 Pane root = new Pane(msg);
 root.setPrefSize(500, 70);
 Scene scene = new Scene(root);

 stage.setScene(scene);
 stage.setTitle("Scrolling Text using a Translate Transition");
 stage.show();

 // Set up a translate transition for the Text object
 TranslateTransition tt = new TranslateTransition(Duration.seconds(2), msg);
 tt.setFromX(scene.getWidth());
 tt.setToX(-1.0 * msg.getLayoutBounds().getWidth());
 tt.setCycleCount(TranslateTransition.INDEFINITE);
 tt.setAutoReverse(true);
 tt.play();
 }
}

Understanding the Rotate Transition
An instance of the RotateTransition class represents a rotation transition for a node by gradually changing
its rotate property over the specified duration. The rotation is performed around the center of the node
along the specified axis. The class defines the following properties to specify the animation:

•	 duration

•	 node

•	 axis

•	 fromAngle

•	 toAngle

•	 byAngle

Chapter 22 ■ Understanding animation

939

The duration property specifies the duration for one cycle of the animation.
The node property specifies the node whose rotate property is changed.
The axis property specifies the axis of rotation. If it is unspecified, the value for the rotationAxis

property, which defaults to Rotate.Z_AXIS, for the node is used. The possible values are Rotate.X_AXIS,
Rotate.Y_AXIS, and Rotate.Z_AXIS.

The initial angle for the rotation is specified by fromAngle property. If it is unspecified, the value for the
rotate property of the node is used as the initial angle.

The toAngle specifies the end rotation angle.
The byAngle lets you specify the end rotation angle using the following formula:

rotation_end_value = rotation_initial_value + byAngle

If both toAngle and byAngle values are specified, the former is used. All angles are specified in degrees.
Zero degrees correspond to the 3 o’clock position. Positive values for angles are measured clockwise.

The program in Listing 22-7 creates a rotate transition in an infinite loop for a Rectangle. It rotates the
Rectangle in clockwise and anticlockwise directions in alternate cycles.

Listing 22-7. Creating a Rotate Transition Using the RotateTransition Class

// RotateTest.java
package com.jdojo.animation;

import javafx.animation.RotateTransition;
import javafx.application.Application;
import javafx.geometry.Insets;
import javafx.scene.Scene;
import javafx.scene.layout.HBox;
import javafx.scene.paint.Color;
import javafx.scene.shape.Rectangle;
import javafx.stage.Stage;
import javafx.util.Duration;

public class RotateTest extends Application {
 public static void main(String[] args) {
 Application.launch(args);
 }

 @Override
 public void start(Stage stage) {
 Rectangle rect = new Rectangle(50, 50, Color.RED);
 HBox.setMargin(rect, new Insets(20));
 HBox root = new HBox(rect);
 Scene scene = new Scene(root);
 stage.setScene(scene);
 stage.setTitle("Rotate Transition");
 stage.show();

Chapter 22 ■ Understanding animation

940

 // Set up a rotate transition the rectangle
 RotateTransition rt = new RotateTransition(Duration.seconds(2), rect);
 rt.setFromAngle(0.0);
 rt.setToAngle(360.0);
 rt.setCycleCount(RotateTransition.INDEFINITE);
 rt.setAutoReverse(true);
 rt.play();
 }
}

Understanding the Scale Transition
An instance of the ScaleTransition class represents a scale transition for a node by gradually changing its
scaleX, scaleY, and scaleZ properties over the specified duration. The class defines the following properties
to specify the animation:

•	 duration

•	 node

•	 fromX

•	 fromY

•	 fromZ

•	 toX

•	 toY

•	 toZ

•	 byX

•	 byY

•	 byZ

The duration property specifies the duration for one cycle of the animation.
The node property specifies the node whose scaleX, scaleY, and scaleZ properties are changed.
The initial scale of the node is defined by the (fromX, fromY, fromZ) value. If it is not specified, the

current (scaleX, scaleY, scaleZ) value of the node is used as the initial scale.
The (toX, toY, toZ) value specifies the end scale.
The (byX, byY, byZ) value lets you specify the end scale using the following formula:

scaleX_end_value = scaleX_initial_value + byX
scaleY_end_value = scaleY_initial_value + byY
scaleZ_end_value = scaleZ_initial_value + byZ

If both (toX, toY, toZ) and (byX, byY, byZ) values are specified, the former is used.
The program in Listing 22-8 creates a scale transition in an infinite loop for a Rectangle by changing its

width and height between 100% and 20% of their original values in 2 seconds.

Chapter 22 ■ Understanding animation

941

Listing 22-8. Creating a Scale Transition Using the ScaleTransition Class

// ScaleTest.java
package com.jdojo.animation;

import javafx.animation.ScaleTransition;
import javafx.application.Application;
import javafx.scene.Scene;
import javafx.scene.layout.HBox;
import javafx.scene.paint.Color;
import javafx.scene.shape.Rectangle;
import javafx.stage.Stage;
import javafx.util.Duration;

public class ScaleTest extends Application {
 public static void main(String[] args) {
 Application.launch(args);
 }

 @Override
 public void start(Stage stage) {
 Rectangle rect = new Rectangle(200, 50, Color.RED);
 HBox root = new HBox(rect);
 Scene scene = new Scene(root);
 stage.setScene(scene);
 stage.setTitle("Scale Transition");
 stage.show();

 // Set up a scale transition for the rectangle
 ScaleTransition st = new ScaleTransition(Duration.seconds(2), rect);
 st.setFromX(1.0);
 st.setToX(0.20);
 st.setFromY(1.0);
 st.setToY(0.20);
 st.setCycleCount(ScaleTransition.INDEFINITE);
 st.setAutoReverse(true);
 st.play();
 }
}

Understanding the Path Transition
An instance of the PathTransition class represents a path transition for a node by gradually changing its
translateX and translateY properties to move it along a path over the specified duration. The path is
defined by the outline of a Shape. The class defines the following properties to specify the animation:

•	 duration

•	 node

•	 path

•	 orientation

Chapter 22 ■ Understanding animation

942

The duration property specifies the duration for one cycle of the animation.
The node property specifies the node whose rotate property is changed.
The path property defines the path along which the node is moved. It is a Shape. You can use an Arc, a

Circle, a Rectangle, an Ellipse, a Path, a SVGPath, and so on as the path.
The moving node may maintain the same upright position or it may be rotated to keep it perpendicular

to the tangent of the path at any point along the path. The orientation property specifies the upright position
of the node along the path. Its value is one of the constants (NONE and ORTHOGONAL_TO_TANGENT) of the
PathTransition.OrientationType enum. The default is NONE, which maintains the same upright position.
The ORTHOGONAL_TO_TANGENT value keeps the node perpendicular to the tangent of the path at any point.
Figure 22-6 shows the positions of a Rectangle moving along a Circle using a PathTransition. Notice the
way the Rectangle is rotated along the path when the ORTHPGONAL_TO_TANGENT orientation is used.

NONE ORTHOGONAL_TO_TANGENT

Figure 22-6. Effect of using the orientation property of the PathTransition class

You can specify the duration, path, and node for the path transition using the properties of the
PathTransition class or in the constructors. The class contains the following constructors:

•	 PathTransition()

•	 PathTransition(Duration duration, Shape path)

•	 PathTransition(Duration duration, Shape path, Node node)

The program in Listing 22-9 creates a path transition in an infinite loop for a Rectangle. It moves the
Rectangle along a circular path defined by the outline of a Circle.

Listing 22-9. Creating a Path Transition Using the PathTransition Class

// PathTest.java
package com.jdojo.animation;

import javafx.animation.PathTransition;
import javafx.application.Application;
import javafx.scene.Group;
import javafx.scene.Scene;
import javafx.scene.paint.Color;
import javafx.scene.shape.Circle;
import javafx.scene.shape.Rectangle;
import javafx.stage.Stage;
import javafx.util.Duration;

public class PathTest extends Application {
 public static void main(String[] args) {
 Application.launch(args);
 }

Chapter 22 ■ Understanding animation

943

 @Override
 public void start(Stage stage) {
 // Create the node
 Rectangle rect = new Rectangle(20, 10, Color.RED);

 // Create the path
 Circle path = new Circle(100, 100, 100);
 path.setFill(null);
 path.setStroke(Color.BLACK);

 Group root = new Group(rect, path);
 Scene scene = new Scene(root);
 stage.setScene(scene);
 stage.setTitle("Path Transition");
 stage.show();

 // Set up a path transition for the rectangle
 PathTransition pt = new PathTransition(Duration.seconds(2), path, rect);
 pt.setOrientation(PathTransition.OrientationType.ORTHOGONAL_TO_TANGENT);
 pt.setCycleCount(PathTransition.INDEFINITE);
 pt.setAutoReverse(true);
 pt.play();
 }
}

Understanding the Pause Transition
An instance of the PauseTransition class represents a pause transition. It causes a delay of the specified
duration. Its use is not obvious. It is not used alone. Typically, it is used in a sequential transition to insert a
pause between two transitions. It defines a duration property to specify the duration of the delay.

A pause transition is also useful if you want to execute an ActionEvent handler after a specified
duration when a transition is finished. You can achieve this by setting its onFinished property, which is
defined in the Animation class.

// Create a pause transition of 400 milliseconds that is the default duration
PauseTransition pt1 = new PauseTransition();

// Change the duration to 10 seconds
pt1.setDuration(Duration.seconds(10));

// Create a pause transition of 5 seconds
PauseTransition pt2 = new PauseTransition(Duration.seconds(5));

If you change the duration of a running pause transition, you need to stop and restart the transition to
pick up the new duration. You will have an example when I discuss the sequential transition.

Chapter 22 ■ Understanding animation

944

Understanding the Sequential Transition
An instance of the SequentialTransition class represents a sequential transition. It executes a list of animations
in sequential order. The list of animation may contain timeline-based animations, transition-based
animations, or both.

The SequentialTransition class contains a node property that is used as the node for animations in the
list if the animation does not specify a node. If all animations specify a node, this property is not used.

A SequentialTransition maintains the animations in an ObservableList<Animation>. The getChildren()
method returns the reference of the list.

The following snippet of code creates a fade transition, a pause transition, and a path transition.
Three transitions are added to a sequential transition. When the sequential transition is played, it will play
the fade transition, pause transition, and the path transition in sequence.

FadeTransition fadeTransition = ...
PauseTransition pauseTransition = ...
PathTransition pathTransition = ...

SequentialTransition st = new SequentialTransition();
st.getChildren().addAll(fadeTransition, pauseTransition, pathTransition);
st.play();

Tip ■ the SequentialTransition class contains constructors that let you specify the list of animations
and node.

The program in Listing 22-10 creates a scale transition, a fill transition, a pause transition, and a path
transition, which are added to a sequential transition. The sequential transition runs in an infinite loop.
When the program runs

It scales up the rectangle to double its size, and then down to the original size.•	

It changes the fill color of the rectangle from red to blue, and then, back to red.•	

It pauses for 200 milliseconds, and then, prints a message on the standard output.•	

It moves the rectangle along the outline of a circle.•	

The foregoing sequence of animations is repeated indefinitely.•	

Listing 22-10. Creating a Sequential Transition Using the SequentialTransition Class

// SequentialTest.java
package com.jdojo.animation;

import javafx.animation.FillTransition;
import javafx.animation.PathTransition;
import javafx.animation.PauseTransition;
import javafx.animation.ScaleTransition;
import javafx.animation.SequentialTransition;
import javafx.application.Application;
import javafx.scene.Scene;

Chapter 22 ■ Understanding animation

945

import javafx.scene.layout.Pane;
import javafx.scene.paint.Color;
import javafx.scene.shape.Circle;
import javafx.scene.shape.Rectangle;
import javafx.stage.Stage;
import javafx.util.Duration;
import static javafx.animation.PathTransition.OrientationType.ORTHOGONAL_TO_TANGENT;

public class SequentialTest extends Application {
 public static void main(String[] args) {
 Application.launch(args);
 }

 @Override
 public void start(Stage stage) {
 // Create the node to be animated
 Rectangle rect = new Rectangle(20, 10, Color.RED);

 // Create the path
 Circle path = new Circle(100, 100, 75);
 path.setFill(null);
 path.setStroke(Color.BLACK);

 Pane root = new Pane(rect, path);
 root.setPrefSize(200, 200);
 Scene scene = new Scene(root);
 stage.setScene(scene);
 stage.setTitle("Sequential Transition");
 stage.show();

 // Set up a scale transition
 ScaleTransition scaleTransition = new ScaleTransition(Duration.seconds(1));
 scaleTransition.setFromX(1.0);
 scaleTransition.setToX(2.0);
 scaleTransition.setFromY(1.0);
 scaleTransition.setToY(2.0);
 scaleTransition.setCycleCount(2);
 scaleTransition.setAutoReverse(true);

 // Set up a fill transition
 FillTransition fillTransition = new FillTransition(Duration.seconds(1));
 fillTransition.setFromValue(Color.RED);
 fillTransition.setToValue(Color.BLUE);
 fillTransition.setCycleCount(2);
 fillTransition.setAutoReverse(true);

 // Set up a pause transition
 PauseTransition pauseTransition = new PauseTransition(Duration.millis(200));
 pauseTransition.setOnFinished(e -> System.out.println("Ready to circle..."));

Chapter 22 ■ Understanding animation

946

 // Set up a path transition
 PathTransition pathTransition = new PathTransition(Duration.seconds(2), path);
 pathTransition.setOrientation(ORTHOGONAL_TO_TANGENT);

 // Create a sequential transition
 SequentialTransition st = new SequentialTransition();

 // Rectangle is the node for all animations
 st.setNode(rect);

 // Add animations to the list
 st.getChildren().addAll(scaleTransition,
 fillTransition,
 pauseTransition,
 pathTransition);
 st.setCycleCount(PathTransition.INDEFINITE);
 st.play();
 }
}

Understanding the Parallel Transition
An instance of the ParallelTransition class represents a parallel transition. It executes a list of animations
simultaneously. The list of animations may contain timeline-based animations, transition-based
animations, or both.

The ParallelTransition class contains a node property that is used as the node for animations in the
list if the animation does not specify a node. If all animations specify a node, this property is not used.

A ParallelTransition maintains the animations in an ObservableList<Animation>. The getChildren()
method returns the reference of the list.

The following snippet of code creates a fade transition and a path transition. They transitions are added
to a parallel transition. When the sequential transition is played, it will apply the fading effect and move the
node at the same time.

FadeTransition fadeTransition = ...
PathTransition pathTransition = ...

ParallelTransition pt = new ParallelTransition();
pt.getChildren().addAll(fadeTransition, pathTransition);
pt.play();

Tip ■ the ParallelTransition class contains constructors that let you specify the list of animations and node.

The program in Listing 22-11 creates a fade transition and a rotate transition. It adds them to a parallel
transition. When the program is run, the rectangle rotates and fades in/out at the same time.

Chapter 22 ■ Understanding animation

947

Listing 22-11. Creating a Parallel Transition Using the ParallelTransition Class

// ParallelTest.java
package com.jdojo.animation;

import javafx.animation.FadeTransition;
import javafx.animation.ParallelTransition;
import javafx.animation.PathTransition;
import javafx.animation.RotateTransition;
import javafx.application.Application;
import javafx.geometry.Insets;
import javafx.scene.Scene;
import javafx.scene.layout.HBox;
import javafx.scene.paint.Color;
import javafx.scene.shape.Rectangle;
import javafx.stage.Stage;
import javafx.util.Duration;

public class ParallelTest extends Application {
 public static void main(String[] args) {
 Application.launch(args);
 }

 @Override
 public void start(Stage stage) {
 Rectangle rect = new Rectangle(100, 100, Color.RED);
 HBox.setMargin(rect, new Insets(20));

 HBox root = new HBox(rect);
 Scene scene = new Scene(root);
 stage.setScene(scene);
 stage.setTitle("Parallel Transition");
 stage.show();

 // Set up a fade transition
 FadeTransition fadeTransition = new FadeTransition(Duration.seconds(1));
 fadeTransition.setFromValue(0.20);
 fadeTransition.setToValue(1.0);
 fadeTransition.setCycleCount(2);
 fadeTransition.setAutoReverse(true);

 // Set up a rotate transitione
 RotateTransition rotateTransition =
 new RotateTransition(Duration.seconds(2));
 rotateTransition.setFromAngle(0.0);
 rotateTransition.setToAngle(360.0);
 rotateTransition.setCycleCount(2);
 rotateTransition.setAutoReverse(true);

 // Create and start a sequential transition
 ParallelTransition pt = new ParallelTransition();

Chapter 22 ■ Understanding animation

948

 // Rectangle is the node for all animations
 pt.setNode(rect);
 pt.getChildren().addAll(fadeTransition, rotateTransition);
 pt.setCycleCount(PathTransition.INDEFINITE);
 pt.play();
 }
}

Understanding Interpolators
An interpolator is an instance of the abstract Interpolator class. An interpolator plays an important role
in an animation. Its job is to compute the key values for the intermediate key frames during animation.
Implementing a custom interpolator is easy. You need to subclass the Interpolator class and override
its curve() method. The curve() method is passed the time elapsed for the current interval. The
time is normalized between 0.0 and 1.0. The start and end of the interval have the value of 0.0 and 1.0,
respectively. The value passed to the method would be 0.50 when half of the interval time has elapsed.
The return value of the method indicates the fraction of change in the animated property.

The following interpolator is known as a linear interpolator whose curve() method returns the passed
in argument value:

Interpolator linearInterpolator = new Interpolator() {
 @Override
 protected double curve(double timeFraction) {
 return timeFraction;
 }
};

The linear interpolator mandates that the percentage of change in the animated property is the same
as the progression of the time for the interval.

Once you have a custom interpolator, you can use it in constructing key values for key frames in a
timeline-based animation. For a transition-based animation, you can use it as the interpolator property
of the transition classes.

The animation API calls the interpolate() method of the Interpolator. If the animated property is
an instance of Number, it returns

startValue + (endValue - startValue) * curve(timeFraction)

Otherwise, if the animated property is an instance of the Interpolatable, it delegates the
interpolation work to the interpolate() method of the Interpolatable. Otherwise, the interpolator
defaults to a discrete interpolator by returning 1.0 when the time fraction is 1.0, and 0.0 otherwise.

JavaFX provides some standard interpolators that are commonly used in animations. They are available
as constants in the Interpolator class or as its static methods.

Linear interpolator•	

Discrete interpolator•	

Ease-in interpolator•	

Ease-out interpolator•	

Chapter 22 ■ Understanding animation

949

Ease-both interpolator•	

Spline interpolator•	

Tangent interpolator•	

Understanding the Linear Interpolator
The Interpolator.LINEAR constant represents a linear interpolator. It interpolates the value of the animated
property of a node linearly with time. The percentage change in the property for an interval is the same as
the percentage of the time passed.

Understanding the Discrete Interpolator
The Interpolator.DISCRETE constant represents a discrete interpolator. A discrete interpolator jumps from
one key frame to the next, providing no intermediate key frame. The curve() method of the interpolator
returns 1.0 when the time fraction is 1.0, and 0.0 otherwise. That is, the animated property value stays at its
initial value for the entire duration of the interval. It jumps to the end value at the end of the interval. The
program in Listing 22-12 uses discrete interpolators for all key frames. When you run the program, it moves
text jumping from key frame to another. Compare this example with the scrolling text example, which used a
linear interpolator. The scrolling text example moved the text smoothly whereas this example created a jerk
in the movement.

Listing 22-12. Using a Discrete Interpolator to Animate Hopping Text

// HoppingText.java
package com.jdojo.animation;

import javafx.animation.Interpolator;
import javafx.animation.KeyFrame;
import javafx.animation.KeyValue;
import javafx.animation.Timeline;
import javafx.application.Application;
import javafx.geometry.VPos;
import javafx.scene.Scene;
import javafx.scene.layout.Pane;
import javafx.scene.text.Font;
import javafx.scene.text.Text;
import javafx.stage.Stage;
import javafx.util.Duration;

public class HoppingText extends Application {
 public static void main(String[] args) {
 Application.launch(args);
 }

 @Override
 public void start(Stage stage) {
 Text msg = new Text("Hopping text!");
 msg.setTextOrigin(VPos.TOP);
 msg.setFont(Font.font(24));

Chapter 22 ■ Understanding animation

950

 Pane root = new Pane(msg);
 root.setPrefSize(500, 70);
 Scene scene = new Scene(root);

 stage.setScene(scene);
 stage.setTitle("Hopping Text");
 stage.show();

 // Setup a Timeline animation
 double start = scene.getWidth();
 double end = -1.0 * msg.getLayoutBounds().getWidth();

 KeyFrame[] frame = new KeyFrame[11];
 for(int i = 0; i <= 10; i++) {
 double pos = start - (start - end) * i / 10.0;

 // Set 2.0 seconds as the cycle duration
 double duration = i/5.0;

 // Use a discrete interpolator
 KeyValue keyValue = new KeyValue(msg.translateXProperty(),
 pos ,
 Interpolator.DISCRETE);
 frame[i] = new KeyFrame(Duration.seconds(duration), keyValue);
 }

 Timeline timeline = new Timeline();
 timeline.getKeyFrames().addAll(frame);
 timeline.setCycleCount(Timeline.INDEFINITE);
 timeline.setAutoReverse(true);
 timeline.play();
 }
}

Understanding the Ease-In Interpolator
The Interpolator.EASE_IN constant represents an ease-in interpolator. It starts the animation slowly for the
first 20% of the time interval and accelerates afterward.

Understanding the Ease-Out Interpolator
The Interpolator.EASE_OUT constant represents an ease-out interpolator. It plays animation at a constant
speed up to 80% of the time interval and slows down afterwards.

Understanding the Ease-Both Interpolator
The Interpolator.EASE_BOTH constant represents an ease-both interpolator. Its plays the animation slower
in the first 20% and the last 20% of the time interval and maintains a constant speed otherwise.

Chapter 22 ■ Understanding animation

951

Understanding the Spline Interpolator
The Interpolator.SPLINE(double x1, double y1, double x2, double y2) static method returns a spline
interpolator. It uses a cubic spline shape to compute the speed of the animation at any point in the interval.
The parameters (x1, y1) and (x2, y2) define the control points of the cubic spline shape with (0, 0) and (1, 1)
as implicit anchor points. The values of the parameters are between 0.0 and 1.0.

The slope at a given point on the cubic spline shape defines the acceleration at that point. A slope
approaching the horizontal line indicates deceleration whereas a slope approaching the vertical line
indicates acceleration. For example, using (0, 0, 1, 1) as the parameters to the SPLINE method creates an
interpolator with a constant speed whereas the parameters (0.5, 0, 0.5, 1.0) will create an interpolator that
accelerates in the first half and decelerates in the second half. Please refer to http://www.w3.org/TR/SMIL/
smil-animation.html#animationNS-OverviewSpline for more details.

Understanding the Tangent Interpolator
The Interpolator.TANGENT static method returns a tangent interpolator, which defines the behavior of an
animation before and after a key frame. All other interpolators interpolate data between two key frames.
If you specify a tangent interpolator for a key frame, it is used to interpolate data before and after the key
frame. The animation curve is defined in terms of a tangent, which is known as in-tangent, at a specified
duration before the key frame and a tangent, which is called an out-tangent, at a specified duration after the
key frame. This interpolator is used only in timeline-based animations as it affects two intervals.

The TANGENT static method is overloaded.

•	 Interpolator TANGENT(Duration t1, double v1, Duration t2, double v2)

•	 Interpolator TANGENT(Duration t, double v)

In the first version, the parameters t1 and t2 are the duration before and after the key frame,
respectively. The parameters v1 and v2 are the in-tangent and out-tangent values. That is, v1 is the tangent
value at duration t1 and v2 is the tangent value at duration t2. The second version specifies the same value
for both pairs.

Summary
In JavaFX, animation is defined as changing the property of a node over time. If the property that changes
determines the location of the node, the animation in JavaFX will produce an illusion of motion. Not all
animations have to involve motion; for example, changing the fill property of a Shape over time is an
animation in JavaFX that does not involve motion.

Animation is performed over a period of time. A timeline denotes the progression of time during
animation with an associated key frame at a given instant. A key frame represents the state of the node being
animated at a specific instant on the timeline. A key frame has associated key values. A key value represents
the value of a property of the node along with an interpolator to be used.

A timeline animation is used for animating any properties of a node. An instance of the Timeline class
represents a timeline animation. Using a timeline animation involves the following steps: constructing key
frames, creating a Timeline object with key frames, setting the animation properties, and using the play()
method to run the animation. You can add key frames to a Timeline at the time of creating it or after. The
Timeline instance keeps all key frames in an ObservableList<KeyFrame> object. The getKeyFrames()
method returns the list. You can modify the list of key frames at any time. If the timeline animation is already
running, you need to stop and restart it to pick up the modified list of key frames.

The Animation class contains several properties and methods to control animation such as playing,
reversing, pausing, and stopping.

http://www.w3.org/TR/SMIL/smil-animation.html#animationNS-OverviewSpline
http://www.w3.org/TR/SMIL/smil-animation.html#animationNS-OverviewSpline

Chapter 22 ■ Understanding animation

952

You can set up cue points on a timeline. Cue points are named instants on the timeline. An animation
can jump to a cue point using the jumpTo(String cuePoint) method.

Using timeline animation is not easy in all cases. JavaFX contains a number of classes (known as
transitions) that let you animate nodes using predefined properties. All transition classes inherit from
the Transition class, which, in turn, inherits from the Animation class. The transition classes take care
of creating the key frames and setting up the timeline. You need to specify the node, duration for the
animation, and end values that are interpolated. Special transition classes are available to combine multiple
animations that may run sequentially or in parallel. The Transition class contains an interpolator
property that specifies the interpolator to be used during animation. By default, it uses Interpolator.EASE_BOTH,
which starts the animation slowly, accelerates it, and slows it down toward the end.

An interpolator is an instance of the abstract Interpolator class. Its job is to compute the key values
for the intermediate key frames during animation. JavaFX provides several built-in interpolators such as
linear, discrete, ease-in, and ease-out. You can also implement a custom interpolator easily. You need to
subclass the Interpolator class and override its curve() method. The curve() method is passed the time
elapsed for the current interval. The time is normalized between 0.0 and 1.0. The return value of the method
indicates the fraction of change in the animated property.

The next chapter will discuss how to incorporate different types of charts in a JavaFX application.

953

Chapter 23

Understanding Charts

In this chapter, you will learn

What a chart is•	

What the Chart API is in JavaFX•	

How to create different types of charts using the Chart API•	

How to style charts with CSS•	

What Is a Chart?
A chart is a graphical representation of data. Charts provide an easier way to analyze large volume of data
visually. Typically, they are used for reporting purposes. Different types of charts exist. They differ in the
way they represent the data. Not all types of charts are suitable for analyzing all types of data. For example,
a line chart is suitable for understanding the comparative trend in data whereas a bar chart is suitable for
comparing data in different categories.

JavaFX supports charts, which can be integrated in a Java application by writing few lines of code. It
contains a comprehensive, extensible Chart API that provides built-in support for several types of charts.

Understating the Chart API
The Chart API consists of a number of predefined classes in the javafx.scene.chart package. Figure 23-1
shows a class diagram for classes representing different types of charts.

StackedAreaChart<X, Y>

StackedBarChart<X, Y>

ScatterChart<X, Y>AreaChart<X, Y>BubbleChart<X, Y>

BarChart<X, Y>

PieChart

LineChart<X, Y>

XYChart<X, Y>

Chart

Figure 23-1. A class diagram for the classes representing charts in JavaFX

Chapter 23 ■ Understanding Charts

954

The abstract Chart is the base class for all charts. It inherits the Node class. Charts can be added to a scene
graph. They can also be styled with CSS as any other nodes. I will discuss styling charts in the sections that
discuss specific type of charts. The Chart class contains properties and methods common to all type of charts.

JavaFX divides charts into two categories:

Charts having no-axis•	

Charts having an x-axis and a y-axis•	

The PieChart class falls into the first category. It has no axis, and it is used to draw a pie chart.
The XYChart class falls into the second category. It is the abstract base class for all charts having two

axes. Its subclasses, for example, LineChart, BarChart, etc., represent specific type of charts.
Every chart in JavaFX has three parts:

A title•	

A legend•	

Content (or data)•	

Different types of charts define their data differently. The Chart class contains the following properties
that are common to all types of charts:

•	 title

•	 titleSide

•	 legend

•	 legendSide

•	 legendVisible

•	 animated

The title property specifies the title for a chart. The titleSide property specifies the location of the
title. By default, the title is placed above the chart content. Its value is one of the constants of the Side enum:
TOP (default), RIGHT, BOTTOM, and LEFT.

Typically, a chart uses different types of symbols to represent data in different categories. A legend
lists symbols with their descriptions. The legend property is a Node and it specifies the legend for the chart.
By default, a legend is placed below the chart content. The legendSide property specifies the location of
the legend, which is one of the constants of the Side enum: TOP, RIGHT, BOTTOPM (default), and LEFT. The
legendVisible property specifies whether the legend is visible. By default, it is visible.

The animated property specifies whether the change in the content of the chart is shown with some
type of animation. By default, it is true.

Styling Charts with CSS
You can style all types of charts. The Chart class defines properties common to all types of charts. The
default CSS style-class name for a chart is chart. You can specify the legendSide, legendVisible, and
titleSide properties for all charts in a CSS as shown:

.chart {
 -fx-legend-side: top;
 -fx-legend-visible: true;
 -fx-title-side: bottom;
}

Chapter 23 ■ Understanding Charts

955

Every chart defines two substructures:

•	 chart-title

•	 chart-content

The chart-title is a Label and the chart-content is a Pane. The following styles sets the background
color for all charts to yellow and the title font to Arial 16px bold.

.chart-content {
 -fx-background-color: yellow;
}

.chart-title {
 -fx-font-family: "Aeial";
 -fx-font-size: 16px;
 -fx-font-weight: bold;
}

The default style-class name for legends is chart-legend. The following style sets the legend background
color to light gray.

.chart-legend {
 -fx-background-color: lightgray;
}

Every legend has two substructures:

•	 chart-legend-item

•	 chart-legend-item-symbol

The chart-legend-item is a Label, and it represents the text in the legend. The chart-legend-item-
symbol is a Node, and it represents the symbol next to the label, which is a circle by default. The following
style sets the font size for the labels in legends to 10px and the legend symbols to an arrow.

.chart-legend-item {
 -fx-font-size: 16px;
}

.chart-legend-item-symbol {
 -fx-shape: "M0 -3.5 v7 l 4 -3.5z";
}

Note ■ Many examples in this chapter use external resources such as Css files. You will need to include the
resources directory and its contents in CLASSPATH for all programs to work correctly. the resources directory
is located under the src directory in the source code bundle that you can download from
www.apress.com/source-code.

http://www.apress.com/source-code

Chapter 23 ■ Understanding Charts

956

Data Used in Chart Examples
I will discuss different types of charts shortly. Charts will use data from Table 23-1, which has the actual and
estimated population of some countries in the world. The data has been taken from the report published
by the United Nations at http://www.un.org. The population values have been rounded.

Table 23-1. Current and Estimated Populations (in Millions) of Some Countries in the World

1950 2000 2050 2100 2150 2200 2250 2300

China 555 1275 1395 1182 1149 1201 1247 1285

India 358 1017 1531 1458 1308 1304 1342 1372

Brazil 54 172 233 212 202 208 216 223

UK 50 59 66 64 66 69 71 73

USA 158 285 409 437 453 470 483 493

Figure 23-2. A pie chart showing population of five countries in 2000

Understanding the PieChart
A pie chart consists of a circle divided into sectors of different central angles. Typically, a pie is circular.
The sectors are also known as pie pieces or pie slices. Each sector in the circle represents a quantity of some
kind. The central angle of the area of a sector is proportional to the quantity it represents. Figure 23-2 shows
a pie chart that displays the population of five countries in the year 2000.

http://www.un.org/

Chapter 23 ■ Understanding Charts

957

An instance of the PieChart class represents a pie chart. The class contains two constructors:

•	 PieChart()

•	 PieChart(ObservableList<PieChart.Data> data)

The no-args constructor creates a pie chart with no content. You can add the content later using its data
property. The second constructor creates a pie chart with the specified data as its content.

// Create an empty pie chart
PieChart chart = new PieChart();

A slice in a pie chart is specified as an instance of the PieChart.Data class. A slice has a name (or a label)
and a pie value represented by the name and pieValue properties of the PieChart.Data class, respectively.
The following statement creates a slice for a pie chart. The slice name is “China,” and the pie value is 1275.

PieChar.Data chinaSlice = new PieChart.Data("China", 1275);

The content of a pie chart (all slices) is specified in an ObservableList<PieChart.Data>. The following
snippet of code creates an ObservableList<PieChart.Data> and adds three pie slices to it.

ObservableList<PieChart.Data> chartData = FXCollections.observableArrayList();
chartData.add(new PieChart.Data("China", 1275));
chartData.add(new PieChart.Data("India", 1017));
chartData.add(new PieChart.Data("Brazil", 172));

Now, you can use the second constructor to create a pie chart by specifying the chart content:

// Create a pie chart with content
PieChart charts = new PieChart(chartData);

You will use populations of different countries in 2050 as the data for all our pie charts. Listing 23-1
contains a utility class. Its getChartData() method returns an ObservableList of PieChart.Data to be used
as data for a pie chart. You will use this class in our examples in this section.

Listing 23-1. A Utility Class to Generate Data for Pie Charts

// PieChartUtil.java
package com.jdojo.chart;

import javafx.collections.FXCollections;
import javafx.collections.ObservableList;
import javafx.scene.chart.PieChart;

public class PieChartUtil {
 public static ObservableList<PieChart.Data> getChartData() {
 ObservableList<PieChart.Data> data = FXCollections. observableArrayList();
 data.add(new PieChart.Data("China", 1275));
 data.add(new PieChart.Data("India", 1017));
 data.add(new PieChart.Data("Brazil", 172));
 data.add(new PieChart.Data("UK", 59));
 data.add(new PieChart.Data("USA", 285));
 return data;
 }
}

Chapter 23 ■ Understanding Charts

958

The PieChart class contains several properties:

•	 data

•	 startAngle

•	 clockwise

•	 labelsVisible

•	 labelLineLength

The data property specifies the content for the chart in an ObservableList<PieChart.Data>.
The startAngle property specifies the angle an degrees to start the first pie slice. By default, it is zero

degrees, which corresponds to three o’clock position. A positive startAngle is measured anticlockwise.
For example, a 90-degree startAngle will start at the 12 o’clock position.

The clockwise property specifies whether the slices are placed clockwise starting at the startAngle.
By default, it is true.

The labelsVisible property specifies whether the labels for slices are visible. Labels for slices are
displayed close to the slice and they are placed outside the slices. The label for a slice is specified using the
name property of the PieChart.Data class. In Figure 23-2, “China,” India,” Brazil,, etc., are labels for slices.

Labels and slices are connected through straight lines. The labelLineLength property specifies the
length of those lines. Its default value is 20.0 pixels.

The program in Listing 23-2 uses a pie chart to display the population for five countries in 2000.
The program creates an empty pie chart and sets its title. The legend is placed on the left side. Later,
it sets the data for the chart. The data is generated in the getChartData() method, which returns an
ObservableList<PieChart.Data> containing the name of the countries as the labels for pie slices and their
populations as pie values. The program displays a window as shown in Figure 23-2.

Listing 23-2. Using the PieChart Class to Create a Pie Chart

// PieChartTest.java
package com.jdojo.chart;

import javafx.application.Application;
import javafx.collections.ObservableList;
import javafx.geometry.Side;
import javafx.scene.Scene;
import javafx.scene.chart.PieChart;
import javafx.scene.layout.StackPane;
import javafx.stage.Stage;

public class PieChartTest extends Application {
 public static void main(String[] args) {
 Application.launch(args);
 }

 @Override
 public void start(Stage stage) {
 PieChart chart = new PieChart();
 chart.setTitle("Population in 2000");

 // Place the legend on the left side
 chart.setLegendSide(Side.LEFT);

Chapter 23 ■ Understanding Charts

959

 // Set the data for the chart
 ObservableList<PieChart.Data> chartData = PieChartUtil.getChartData();
 chart.setData(chartData);

 StackPane root = new StackPane(chart);
 Scene scene = new Scene(root);

 stage.setScene(scene);
 stage.setTitle("A Pie Chart");
 stage.show();
 }
}

Figure 23-3. A pie slice showing a tooltip with its pie value and percent of the total pie

Customizing Pie Slices
Each pie slice data is represented by a Node. The reference to the Node can be obtained using the getNode()
method of the PieChart.Data class. The Node is created when the slices are added to the pie chart.
Therefore, you must call the getNode() method on the PieChart.Data representing the slice after adding
it to the chart. Otherwise, it returns null. The program in Listing 23-3 customizes all pie slices of a pie
chart to add a tooltip to them. The tooltip shows the slice name, pie value, and percent pie value. The
addSliceTooltip() method contains the logic to accessing the slice Nodes and adding the tooltips. You can
customize pie slices to animate them, let the user drag them out from the pie using the mouse, etc.

Chapter 23 ■ Understanding Charts

960

Listing 23-3. Adding Tooltips to Pie Slices

// PieSliceTest.java
package com.jdojo.chart;

import javafx.application.Application;
import javafx.collections.ObservableList;
import javafx.geometry.Side;
import javafx.scene.Node;
import javafx.scene.Scene;
import javafx.scene.chart.PieChart;
import javafx.scene.control.Tooltip;
import javafx.scene.layout.StackPane;
import javafx.stage.Stage;

public class PieSliceTest extends Application {
 public static void main(String[] args) {
 Application.launch(args);
 }

 @Override
 public void start(Stage stage) {
 PieChart chart = new PieChart();
 chart.setTitle("Population in 2000");

 // Place the legend on the left side
 chart.setLegendSide(Side.LEFT);

 // Set the data for the chart
 ObservableList<PieChart.Data> chartData = PieChartUtil.getChartData();
 chart.setData(chartData);

 // Add a Tooltip to all pie slices
 this.addSliceTooltip(chart);

 StackPane root = new StackPane(chart);
 Scene scene = new Scene(root);
 stage.setScene(scene);
 stage.setTitle("Customizing Pie Slices");
 stage.show();
 }

 private void addSliceTooltip(PieChart chart) {
 // Compute the total pie value
 double totalPieValue = 0.0;
 for (PieChart.Data d : chart.getData()) {
 totalPieValue += d.getPieValue();
 }

Chapter 23 ■ Understanding Charts

961

 // Add a tooltip to all pie slices
 for (PieChart.Data d : chart.getData()) {
 Node sliceNode = d.getNode();
 double pieValue = d.getPieValue();
 double percentPieValue = (pieValue / totalPieValue) * 100;

 // Create and install a Tooltip for the slice
 String msg = d.getName() + "=" + pieValue +
 " (" + String.format("%.2f", percentPieValue) + "%)";
 Tooltip tt = new Tooltip(msg);
 tt.setStyle("-fx-background-color: yellow;" +
 "-fx-text-fill: black;");
 Tooltip.install(sliceNode, tt);
 }
 }
}

Styling the PieChart with CSS
All properties, except the data property, defined in the PieChart class, can be styled using CSS as shown below.

.chart {
 -fx-clockwise: false;
 -fx-pie-label-visible: true;
 -fx-label-line-length: 10;
 -fx-start-angle: 90;
}

Four style classes are added to each pie slice added to a pie chart:

•	 chart-pie

•	 data<i>

•	 default-color<j>

•	 negative

The <i> in the style-class name data<i> is the slice index. The first slice has the class data0, the second
data1, the third data2, etc.

The <j> in the style-class name default-color<j> is the color index of the series. In a pie chart, you can
think of each slice as a series. The default CSS (Modena.css) defines eight series colors. If your pie slice has
more than eight slices, the slice color will be repeated. The concept of series in a chart will be more evident
when I discuss two-axis charts in the next section.

The negative style-class is added only when the data for the slice is negative.
Define a style for chart-pie style-class-name if you want that style to apply to all pie slices. The following

style will set a white border with 2px of background insets for all pie slices. It will show a wider gap between
two slices as you have set 2px insets.

.chart-pie {
 -fx-border-color: white;
 -fx-background-insets: 2;
}

Chapter 23 ■ Understanding Charts

962

You can define colors for pie slices using the following styles. It defines colors for only five slices. Slices
beyond the sixth one will use default colors.

.chart-pie.default-color0 {-fx-pie-color: red;}
.chart-pie.default-color1 {-fx-pie-color: green;}
.chart-pie.default-color2 {-fx-pie-color: blue;}
.chart-pie.default-color3 {-fx-pie-color: yellow;}
.chart-pie.default-color4 {-fx-pie-color: tan;}

Using More Than Eight Series Colors
It is quite possible that you will have more than eight series (slices in a pie chart) in a chart and you do not
want to repeat the colors for the series. The technique is discussed for a pie chart. However, it can be used for
a 2-axis chart as well.

Suppose you want to use a pie that will display populations of ten countries. If you use the code for
this pie chart, the colors for the ninth and tenth slices will be the same as the colors for the first and second
slices, respectively. First, you need to define the colors for the ninth and tenth slices as shown in Listing 23-4.

Listing 23-4. Additional Series Colors

/* additional_series_colors.css */
.chart-pie.default-color8 {
 -fx-pie-color: gold;
}

.chart-pie.default-color9 {
 -fx-pie-color: khaki;
}

The pie slices and the legend symbols will be assigned style-class names such as default-color0,
default-color2… default-color7. You need to identify the nodes for the slices and legend symbols
associated with data items with index greater than 7 and replace their default-color <j> style-class name
with the new ones. For example, for the ninth and tenth slices, the style-class names are default-color0
and default-color1 as the color series number is assigned as (dataIndex % 8). You will replace them with
default-color9 and default-color10.

The program in Listing 23-5 shows how to change the colors for the slices and legend symbols. It adds
ten slices to a pie chart. The setSeriesColorStyles() method replaces the style-class names for the slice
nodes for the ninth and tenth slices and for their associated legend symbols. Figure 23-4 shows the pie chart.
Notice the colors for “Germany” and “Indonesia” are gold and khaki as set in the CSS. Comment the last
statement in the start() method, which is a call to the setSeriesColorStyles() and you will find that the
colors for “Germany” and “Indonesia” will be the same as the colors for “China” and “India.”

Listing 23-5. A Pie Chart Using Color Series up to Index 10

// PieChartExtraColor.java
package com.jdojo.chart;

import javafx.application.Application;
import javafx.collections.ObservableList;
import javafx.geometry.Side;
import javafx.scene.Node;

Chapter 23 ■ Understanding Charts

963

import javafx.scene.Scene;
import javafx.scene.chart.PieChart;
import javafx.scene.layout.StackPane;
import javafx.stage.Stage;

public class PieChartExtraColor extends Application {
 public static void main(String[] args) {
 Application.launch(args);
 }

 @Override
 public void start(Stage stage) {
 PieChart chart = new PieChart();
 chart.setTitle("Population in 2000");

 // Place the legend on the left side
 chart.setLegendSide(Side.LEFT);

 // Set the data for the chart
 ObservableList<PieChart.Data> chartData = PieChartUtil.getChartData();
 this.addData(chartData);
 chart.setData(chartData);

 StackPane root = new StackPane(chart);
 Scene scene = new Scene(root);
 scene.getStylesheets()
 .add("resources/css/additional_series_colors.css");
 stage.setScene(scene);
 stage.setTitle("A Pie Chart with over 8 Slices");
 stage.show();

 // Override the default series color style-class-name for slices over 8.
 // Works only when you set it after the scene is visible
 this.setSeriesColorStyles(chart);
 }

 private void addData(ObservableList<PieChart.Data> data) {
 data.add(new PieChart.Data("Bangladesh", 138));
 data.add(new PieChart.Data("Egypt", 68));
 data.add(new PieChart.Data("France", 59));
 data.add(new PieChart.Data("Germany", 82));
 data.add(new PieChart.Data("Indonesia", 212));
 }

 private void setSeriesColorStyles(PieChart chart) {
 ObservableList<PieChart.Data> chartData = chart.getData();
 int size = chartData.size();
 for (int i = 8; i < size; i++) {
 String removedStyle = "default-color" + (i % 8);
 String addedStyle = "default-color" + (i % size);

Chapter 23 ■ Understanding Charts

964

 // Reset the pie slice colors
 Node node = chartData.get(i).getNode();
 node.getStyleClass().remove(removedStyle);
 node.getStyleClass().add(addedStyle);

 // Reser the legend colors
 String styleClass = ".pie-legend-symbol.data" + i +
 ".default-color" + (i % 8);
 Node legendNode = chart.lookup(styleClass);
 if (legendNode != null) {
 legendNode.getStyleClass().remove(removedStyle);
 legendNode.getStyleClass().add(addedStyle);
 }
 }
 }
}

Figure 23-4. A pie chart using over 8 slice colors

Using Background Images for Pie Slices
You can also use a background image in a pie slice. The following style defines the background image for the
first pie slice.

.chart-pie.data0 {
 -fx-background-image: url("china_flag.jpg");
}

Listing 23-6 contains the content of a CSS file named pie_slice.css. It defines styles that specify the
background images used for pie slices, the preferred size of the legend symbols, and the length of the line
joining the pie slices and their labels.

Chapter 23 ■ Understanding Charts

965

Listing 23-6. A CSS for Customizing Pie Slices

// pie_slice.css
/* Set a background image for pie slices */
.chart-pie.data0 {-fx-background-image: url("china_flag.jpg");}
.chart-pie.data1 {-fx-background-image: url("india_flag.jpg");}
.chart-pie.data2 {-fx-background-image: url("brazil_flag.jpg");}
.chart-pie.data3 {-fx-background-image: url("uk_flag.jpg");}
.chart-pie.data4 {-fx-background-image: url("usa_flag.jpg");}

/* Set the preferred size for legend symbols */
.chart-legend-item-symbol {
 -fx-pref-width: 100;
 -fx-pref-height: 30;
}

.chart {
 -fx-label-line-length: 10;
}

The program in Listing 23-7 creates a pie chart. It uses the same data as you have been using in our
previous examples. The difference is that it sets a CSS defined in a pie_slice.css file.

// Set a CSS for the scene
scene.getStylesheets().addAll("resources/css/pie_slice.css");

The resulting window is shown in Figure 23-5. Notice that slices and legend symbols show the flags
of the countries. It is important to keep in mind that you have matched the index of the chart data and the
index in the CSS file to match countries and their flags.

Tip ■ it is also possible to style the shape of the line joining the pie slices and their labels, labels for the pie
slices, and the legend symbols in a pie chart.

Listing 23-7. Using Pie Slices with a Background Image

// PieChartCustomSlice.java
package com.jdojo.chart;

import javafx.application.Application;
import javafx.collections.ObservableList;
import javafx.geometry.Side;
import javafx.scene.Scene;
import javafx.scene.chart.PieChart;
import javafx.scene.layout.StackPane;
import javafx.stage.Stage;

public class PieChartCustomSlice extends Application {
 public static void main(String[] args) {
 Application.launch(args);
 }

Chapter 23 ■ Understanding Charts

966

 @Override
 public void start(Stage stage) {
 PieChart chart = new PieChart();
 chart.setTitle("Population in 2000");

 // Place the legend on the left side
 chart.setLegendSide(Side.LEFT);

 // Set the data for the chart
 ObservableList<PieChart.Data> chartData = PieChartUtil.getChartData();
 chart.setData(chartData);

 StackPane root = new StackPane(chart);
 Scene scene = new Scene(root);

 // Set a CSS for the scene
 scene.getStylesheets().addAll("resources/css/pie_slice.css");

 stage.setScene(scene);
 stage.setTitle("Custom Pie Slices");
 stage.show();
 }
}

Figure 23-5. A pie chart using a background image for its slices

Chapter 23 ■ Understanding Charts

967

Understating the XYChart
An instance of a concrete subclass of the abstract XYChart<X,Y> class defines a two-axis chart. The generic
type parameters X and Y are the data type of values plotted along x-axis and y-axis, respectively.

Representing Axes in an XYChart
An instance of a concrete subclass of the abstract Axis<T> class defines an axis in the XYChart. Figure 23-6
shows a class diagram for the classes representing axes.

Axis<T>

ValueAxis<T>CategoryAxis

NumberAxis

Figure 23-6. A class diagram for classes representing axes in an XYChart

The abstract Axis<T> class is the base class for all classes representing axes. The generic parameter T is
the type of the values plotted along the axis, for example, String, Number, etc. An axis displays ticks and tick
labels. The Axis<T> class contains properties to customize the ticks and tick labels. An axis can have a label,
which is specified in the label property.

The concrete subclasses CategoryAxis and NumberAxis are used for plotting String and Number
data values along an axis, respectively. They contain properties specific to the data values. For example,
NumberAxis inherits ValueAxis<T> ’s lowerBound and upperBound properties, which specify the lower and
upper bounds of the data plotted on the axis. By default, the range of the data on an axis is automatically
determined based on the data. You can turn off this feature by setting the autoRanging property in
the Axis<T> class to false. The following snippet of code creates an instance of the CategoryAxis and
NumberAxis and sets their labels.

CategoryAxis xAxis = new CategoryAxis();
xAxis.setLabel("Country");
NumberAxis yAxis = new NumberAxis();
yAxis.setLabel("Population (in millions)");

Tip ■ Use a CategoryAxis to plot String values along an axis, and use a NumberAxis to plot numeric values
along an axis.

Chapter 23 ■ Understanding Charts

968

Adding Data to an XYChart
Data in an XYChart represents points in the 2D plane defined by the x-axis and y-axis. A point in a 2D plane
is specified using the x and y coordinates, which are values along the x-axis and y-axis, respectively. The data
in an XYChart is specified as an ObservableList of named series. A series consists of multiple data items,
which are points in the 2D plane. How the points are rendered depends on the chart type. For example, a
scatter chart shows a symbol for a point whereas a bar chart shows a bar for a point.

An instance of the nested static XYChart.Data<X,Y> class represents a data item in a series. The class
defines the following properties:

•	 XValue

•	 YValue

•	 extraValue

•	 node

The •	 XValue and YValue are the values for the data item along the x-axis and y-axis,
respectively. Their data types need to match the data type of the x-axis and y-axis for
the chart. The extraValue is an Object, which can be used to store any additional
information for the data item. Its use depends of the chart type. If the chart does not
use this value, you can use it for any other purpose: for example, to store the tooltip
value for the data item. The node specifies the node to be rendered for the data item in
the chart. By default, the chart will create a suitable node depending on the chart type.

Suppose both axes of an XYChart plot numeric values. The following snippet of code creates some data
items for the chart. The data items are the population of China in 1950, 2000, and 2050.

XYChart.Data<Number, Number> data1 = new XYChart.Data<>(1950, 555);
XYChart.Data<Number, Number> data2 = new XYChart.Data<>(2000, 1275);
XYChart.Data<Number, Number> data3 = new XYChart.Data<>(2050, 1395);

An instance of the nested static XYChart.Series<X,Y> class represents a series of data items. The class
defines the following properties:

•	 name

•	 data

•	 chart

•	 node

The name is the name of the series. The data is an ObservableList of XYChart.Data<X,Y>. The chart is
a read-only reference to the chart to which the series belong. The node is a Node to display for this series. A
default node is automatically created based on the chart type. The following snippet of code creates a series,
sets its name, and adds data items to it.

XYChart.Series<Number, Number> seriesChina = new XYChart.Series<>();
seriesChina.setName("China");
seriesChina.getData().addAll(data1, data2, data3);

Chapter 23 ■ Understanding Charts

969

The data property of the XYChart class represents the data for the chart. It is an ObservableList
of XYChart.Series class. The following snippet of code creates and adds the data for an XYChart chart
assuming the data series seriesIndia and seriesUSA exists.

XYChart<Number, Number> chart = ...
chart.getData().addAll(seriesChina, seriesIndia, seriesUSA);

How the data items for a series are displayed depends on the specific chart type. Every chart type has a
way to distinguishes one series from another.

You will reuse the same series of data items representing the population of some counties in some years
several times. Listing 23-8 has code for a utility class. The class consists of two static methods that generate
and return XYChart data. The getCountrySeries() method returns the list of series that plots the years along
the x-axis and the corresponding populations along the y-axis. The getYearSeries() method returns a list of
series that plots the countries along the x-axis and the corresponding populations along the y-axis. You will
be calling these methods to get data for our XYCharts in subsequent sections.

Listing 23-8. A Utility Class to Generate Data Used in XYCharts

// XYChartDataUtil.java
package com.jdojo.chart;

import javafx.collections.FXCollections;
import javafx.collections.ObservableList;
import javafx.scene.chart.XYChart;

@SuppressWarnings("unchecked")
public class XYChartDataUtil {
 public static ObservableList<XYChart.Series<Number, Number>> getCountrySeries() {
 XYChart.Series<Number, Number> seriesChina = new XYChart.Series<>();
 seriesChina.setName("China");
 seriesChina.getData().addAll(new XYChart.Data<>(1950, 555),
 new XYChart.Data<>(2000, 1275),
 new XYChart.Data<>(2050, 1395),
 new XYChart.Data<>(2100, 1182),
 new XYChart.Data<>(2150, 1149));

 XYChart.Series<Number, Number> seriesIndia = new XYChart.Series<>();
 seriesIndia.setName("India");
 seriesIndia.getData().addAll(new XYChart.Data<>(1950, 358),
 new XYChart.Data<>(2000, 1017),
 new XYChart.Data<>(2050, 1531),
 new XYChart.Data<>(2100, 1458),
 new XYChart.Data<>(2150, 1308));

 XYChart.Series<Number, Number> seriesUSA = new XYChart.Series<>();
 seriesUSA.setName("USA");
 seriesUSA.getData().addAll(new XYChart.Data<>(1950, 158),
 new XYChart.Data<>(2000, 285),
 new XYChart.Data<>(2050, 409),
 new XYChart.Data<>(2100, 437),
 new XYChart.Data<>(2150, 453));

Chapter 23 ■ Understanding Charts

970

 ObservableList<XYChart.Series<Number, Number>> data =
 FXCollections.<XYChart.Series<Number, Number>>observableArrayList();
 data.addAll(seriesChina, seriesIndia, seriesUSA);
 return data;
 }

 public static ObservableList<XYChart.Series<String, Number>> getYearSeries() {
 XYChart.Series<String, Number> series1950 = new XYChart.Series<>();
 series1950.setName("1950");
 series1950.getData().addAll(new XYChart.Data<>("China", 555),
 new XYChart.Data<>("India", 358),
 new XYChart.Data<>("Brazil", 54),
 new XYChart.Data<>("UK", 50),
 new XYChart.Data<>("USA", 158));

 XYChart.Series<String, Number> series2000 = new XYChart.Series<>();
 series2000.setName("2000");
 series2000.getData().addAll(new XYChart.Data<>("China", 1275),
 new XYChart.Data<>("India",1017),
 new XYChart.Data<>("Brazil", 172),
 new XYChart.Data<>("UK", 59),
 new XYChart.Data<>("USA", 285));

 XYChart.Series<String, Number> series2050 = new XYChart.Series<>();
 series2050.setName("2050");
 series2050.getData().addAll(new XYChart.Data<>("China", 1395),
 new XYChart.Data<>("India",1531),
 new XYChart.Data<>("Brazil", 233),
 new XYChart.Data<>("UK", 66),
 new XYChart.Data<>("USA", 409));

 ObservableList<XYChart.Series<String, Number>> data =
 FXCollections.<XYChart.Series<String, Number>>observableArrayList();
 data.addAll(series1950, series2000, series2050);
 return data;
 }
}

Understating the BarChart
A bar chart renders the data items as horizontal or vertical rectangular bars. The lengths of the bars are
proportional to the value of the data items.

An instance of the BarChart class represents a bar chart. In a bar chart, one axis must be a
CategoryAxis and the other a ValueAxis/NumberAxis. The bars are drawn vertically or horizontally,
depending on whether the CategoryAxis is the x-axis or the y-axis.

The BarChart contain two properties to control the distance between two bars in a category and the
distance between two categories:

•	 barGap

•	 categoryGap

Chapter 23 ■ Understanding Charts

971

The default value is 4 pixels for the barGap and 10 pixels for the categoryGap.
The BarChart class contains three constructors to create bar charts by specifying axes, data, and gap

between two categories.

•	 BarChart(Axis<X> xAxis, Axis<Y> yAxis)

•	 BarChart(Axis<X> xAxis, Axis<Y> yAxis, ObservableList<XYChart.
Series<X,Y>> data)

•	 BarChart(Axis<X> xAxis, Axis<Y> yAxis, ObservableList<XYChart.
Series<X,Y>> data, double categoryGap)

Notice that you must specify at least the axes when you create a bar chart. The following snippet of code
creates two axes and a bar chart with those axes.

CategoryAxis xAxis = new CategoryAxis();
xAxis.setLabel("Country");

NumberAxis yAxis = new NumberAxis();
yAxis.setLabel("Population (in millions)");

// Create a bar chart
BarChart<String, Number> chart = new BarChart<>(xAxis, yAxis);

The bars in the chart will appear vertically as the category axis is added as the x-axis. You can populate
the chart with data using its setData() method.

// Set the data for the chart
chart.setData(XYChartDataUtil.getYearSeries());

The program in Listing 23-9 shows how to create and populate a vertical bar chart as shown in
Figure 23-7.

Listing 23-9. Creating a Vertical Bar Chart

// VerticalBarChart.java
package com.jdojo.chart;

import javafx.application.Application;
import javafx.collections.ObservableList;
import javafx.scene.Scene;
import javafx.scene.chart.BarChart;
import javafx.scene.chart.CategoryAxis;
import javafx.scene.chart.NumberAxis;
import javafx.scene.chart.XYChart;
import javafx.scene.layout.StackPane;
import javafx.stage.Stage;

public class VerticalBarChart extends Application {
 public static void main(String[] args) {
 Application.launch(args);
 }

Chapter 23 ■ Understanding Charts

972

 @Override
 public void start(Stage stage) {
 CategoryAxis xAxis = new CategoryAxis();
 xAxis.setLabel("Country");

 NumberAxis yAxis = new NumberAxis();
 yAxis.setLabel("Population (in millions)");

 BarChart<String, Number> chart = new BarChart<>(xAxis, yAxis);
 chart.setTitle("Population by Country and Year");

 // Set the data for the chart
 ObservableList<XYChart.Series<String,Number>> chartData =
 XYChartDataUtil.getYearSeries();
 chart.setData(chartData);

 StackPane root = new StackPane(chart);
 Scene scene = new Scene(root);
 stage.setScene(scene);
 stage.setTitle("A Vertical Bar Chart");
 stage.show();
 }
}

Figure 23-7. A vertical bar chart

The program in Listing 23-10 shows how to create and populate a horizontal bar chart as shown
in Figure 23-8. The program needs to supply data to the chart in an ObservableList of XYChart.
Series<Number,String>. The getYearSeries() method in the XYChartDataUtil class returns XYChart.
Series<String,Number>. The getChartData() method in the program converts the series data from
<String,Number> to <Number,String> format as needed to create a horizontal bar chart.

Chapter 23 ■ Understanding Charts

973

Listing 23-10. Creating a Horizontal Bar Chart

// HorizontalBarChart.java
package com.jdojo.chart;

import javafx.application.Application;
import javafx.collections.FXCollections;
import javafx.collections.ObservableList;
import javafx.scene.Scene;
import javafx.scene.chart.BarChart;
import javafx.scene.chart.CategoryAxis;
import javafx.scene.chart.NumberAxis;
import javafx.scene.chart.XYChart;
import javafx.scene.layout.StackPane;
import javafx.stage.Stage;

public class HorizontalBarChart extends Application {
 public static void main(String[] args) {
 Application.launch(args);
 }

 @Override
 public void start(Stage stage) {
 NumberAxis xAxis = new NumberAxis();
 xAxis.setLabel("Population (in millions)");

 CategoryAxis yAxis = new CategoryAxis();
 yAxis.setLabel("Country");

 // Use a category axis as the y-axis for a horizontal bar chart
 BarChart<Number, String> chart = new BarChart<>(xAxis, yAxis);
 chart.setTitle("Population by Country and Year");

 // Set the data for the chart
 ObservableList<XYChart.Series<Number,String>> chartData =
 this.getChartData(XYChartDataUtil.getYearSeries());
 chart.setData(chartData);

 StackPane root = new StackPane(chart);
 Scene scene = new Scene(root);
 stage.setScene(scene);
 stage.setTitle("A Horizontal Bar Chart");
 stage.show();
 }

 private ObservableList<XYChart.Series<Number,String>> getChartData(
 ObservableList<XYChart.Series<String,Number>> oldData) {
 ObservableList<XYChart.Series<Number, String>> newData =
 FXCollections.observableArrayList();

Chapter 23 ■ Understanding Charts

974

Tip ■ each bar in a bar chart is represented with a node. the user can interact with the bars in a bar chart,
by adding event handlers to the nodes representing the data items. please refer to the section on the pie chart
for an example in which you added tooltips for the pie slices.

 // Read (String, Number) from old data and convert it into
 // (Nubmer, String) in new data
 for(XYChart.Series<String, Number> oldSeries: oldData) {
 XYChart.Series<Number, String> newSeries = new XYChart.Series<>();
 newSeries.setName(oldSeries.getName());

 for(XYChart.Data<String, Number> oldItem: oldSeries.getData()) {
 XYChart.Data<Number, String> newItem =
 new XYChart.Data<>(oldItem.getYValue(),
 oldItem.getXValue());
 newSeries.getData().add(newItem);
 }
 newData.add(newSeries);
 }
 return newData;
 }
}

Figure 23-8. A horizontal bar chart

Chapter 23 ■ Understanding Charts

975

Styling the BarChart with CSS
By default, a BarChart is given style-class names: chart and bar-chart.

The following style sets the default values for the barGap and categoryGap properties for all bar charts
to 0px and 20px. The bars in the same category will be placed next to each other.

.bar-chart {
 -fx-bar-gap: 0;
 -fx-category-gap: 20;
}

You can customize the appearance of the bars for each series or each data item in a series. Each data
item in a BarChart is represented by a node. The node gets four default style-class names:

•	 chart-bar

•	 series<i>

•	 data<j>

•	 default-color<k>

•	 negative

In series<i>, <i> is the series index. For example, the first series is given the style-class name as
series0, the second as series1, etc.

In data<j>, <j> is the index of the data item within a series. For example, the first data item in each
series gets a style-class name as data0, the second as data1, etc.

In default-color<k>, <k> is the series color index. For example, each data item in the first series will
get a style-class name as default-color0, in the second series default-color1, etc. The default CS defines
only eight series colors. The value for <k> is equal to (i%8), where i is the series index. That is, series colors
will repeat if you have more than eight series in a bar chart. Please refer to the pie chart section on how to
use unique colors for series with index greater than eight. The logic will be similar to the one used for a pie
chart, with a difference that, this time, you will be looking up the bar-legend-symbol within a series instead
of a pie-legend-symbol.

The negative class is added if the data value is negative.
Each legend item in a bar chart is given the following style-class names:

•	 chart-bar

•	 series<i>

•	 bar-legend-symbol

•	 default-color<j>

In series<i>, <i> is the series index. In default-color<j>, <j> is the color index of the series.
The legend color will repeat, as the bar colors do, if the number of series exceeds 8.

The following style defines the color of the bars for the all data items in series with series index 0, 8,
16, 24, etc., as blue.

.chart-bar.default-color0 {
 -fx-bar-fill: blue;
}

Chapter 23 ■ Understanding Charts

976

Understating the StackedBarChart
A stacked bar chart is a variation of the bar chart. In a stacked bar chart, the bars in a category are stacked.
Except for the placement of the bars, it works the same way as the bar chart.

An instance of the StackedBarChart class represents a stacked bar chart. The bars can be placed
horizontally or vertically. If the x-axis is a CategoryAxis, the bars are placed vertically. Otherwise, they
are placed horizontally. Like the BarChart, one of the axes must be a CategoryAxis and the other a
ValueAxis/NumberAxis.

The StackedBarChart class contains a categoryGap property that defines the gap between bars in
adjacent categories. The default gap is 10px. Unlike the BarChart class, the StackedBarChart class does not
contain a barGap property, as the bars in one category are always stacked.

The constructors of the StackedBarChart class are similar to the ones for the BarChart class. They let
you specify the axes, chart data, and category gap.

There is one notable difference in a creating the CategoryAxis for the BarChart and the
StackedBarChart. The BarChart reads the categories values from the data whereas you must explicitly add
all category values to the CategoryAxis for a StackedBarChart.

CategoryAxis xAxis = new CategoryAxis();
xAxis.setLabel("Country");

// Must set the categories in a StackedBarChart explicitly. Otherwise,
// the chart will not show bars.
xAxis.getCategories().addAll("China," "India," "Brazil," "UK," "USA");

NumberAxis yAxis = new NumberAxis();
yAxis.setLabel("Population (in millions)");

StackedBarChart<String, Number> chart = new StackedBarChart<>(xAxis, yAxis);

The program in Listing 23-11 shows how to create a vertical stacked bar chart. The chart is shown in
Figure 23-9. To create a horizontal stacked bar chart, use a CategoryAxis as the y-axis.

Listing 23-11. Creating a Vertical Stacked Bar Chart

// VerticalStackedBarChart.java
package com.jdojo.chart;

import javafx.application.Application;
import javafx.collections.ObservableList;
import javafx.scene.Scene;
import javafx.scene.chart.CategoryAxis;
import javafx.scene.chart.NumberAxis;
import javafx.scene.chart.StackedBarChart;
import javafx.scene.chart.XYChart;
import javafx.scene.layout.StackPane;
import javafx.stage.Stage;

public class VerticalStackedBarChart extends Application {
 public static void main(String[] args) {
 Application.launch(args);
 }

Chapter 23 ■ Understanding Charts

977

 @Override
 public void start(Stage stage) {
 CategoryAxis xAxis = new CategoryAxis();
 xAxis.setLabel("Country");

 // Must set the categories in a StackedBarChart explicitly. Otherwise,
 // the chart will not show any bars.
 xAxis.getCategories().addAll("China," "India," "Brazil," "UK," "USA");

 NumberAxis yAxis = new NumberAxis();
 yAxis.setLabel("Population (in millions)");

 StackedBarChart<String, Number> chart =
 new StackedBarChart<>(xAxis, yAxis);
 chart.setTitle("Population by Country and Year");

 // Set the data for the chart
 ObservableList<XYChart.Series<String, Number>> chartData =
 XYChartDataUtil.getYearSeries();
 chart.setData(chartData);

 StackPane root = new StackPane(chart);
 Scene scene = new Scene(root);
 stage.setScene(scene);
 stage.setTitle("A Vertical Stacked Bar Chart");
 stage.show();
 }
}

Figure 23-9. A vertical stacked bar chart

Chapter 23 ■ Understanding Charts

978

Styling the StackedBarChart with CSS
By default, a StackedBarChart is given style-class names: chart and stacked-bar-chart.

The following style sets the default value for the categoryGap properties for all stacked bar charts to
20px. The bars in a category will be placed next to each other.

.stacked-bar-chart {
 -fx-category-gap: 20;
}

In a stacked bar chart, the style-class names assigned to the nodes representing bars and legend items
are the same as that of a bar chart. Please refer to the section Styling the BarChart with CSS for more details.

Understanding the ScatterChart
A bar chart renders the data items as symbols. All data items in a series use the same symbol. The location of
the symbol for a data item is determined by the values on the data item along the x-axis and y-axis.

An instance of the ScatterChart class represents a scatter chart. You can use any type of Axis for the
x-axis and y-axis. The class does not define any additional properties. It contains constructors that allow you
to a create scatter chart by specifying axes and data.

•	 ScatterChart(Axis<X> xAxis, Axis<Y> yAxis)

•	 ScatterChart(Axis<X> xAxis, Axis<Y> yAxis, ObservableList<XYChart.
Series<X,Y>> data)

Recall that the autoRanging for an Axis is set to true by default. If you are using numeric values in a
scatter chart, make sure to set the autoRanging to false. It is important to set the range of the numeric values
appropriately to get uniformly distributed points in the chart. Otherwise, the points may be located densely
in a small area and it will be hard to read the chart.

The program in Listing 23-12 shows how to create and populate a scatter chart as shown in Figure 23-10.
Both axes are numeric axes. The x-axis is customized. The autoRanging is set to false; reasonable lower and
upper bounds are set. The tick unit is set to 50. If you do not customize these properties, the ScatterChart
will automatically determine them and the chart data will be hard to read.

NumberAxis xAxis = new NumberAxis();
xAxis.setLabel("Year");
xAxis.setAutoRanging(false);
xAxis.setLowerBound(1900);
xAxis.setUpperBound(2300);
xAxis.setTickUnit(50);

Listing 23-12. Creating a Scatter Chart

// ScatterChartTest.java
package com.jdojo.chart;

import javafx.application.Application;
import javafx.collections.ObservableList;
import javafx.scene.Scene;
import javafx.scene.chart.NumberAxis;

Chapter 23 ■ Understanding Charts

979

import javafx.scene.chart.ScatterChart;
import javafx.scene.chart.XYChart;
import javafx.scene.layout.StackPane;
import javafx.stage.Stage;

public class ScatterChartTest extends Application {
 public static void main(String[] args) {
 Application.launch(args);
 }

 @Override
 public void start(Stage stage) {
 NumberAxis xAxis = new NumberAxis();
 xAxis.setLabel("Year");

 // Customize the x-axis, so points are scattred uniformly
 xAxis.setAutoRanging(false);
 xAxis.setLowerBound(1900);
 xAxis.setUpperBound(2300);
 xAxis.setTickUnit(50);

 NumberAxis yAxis = new NumberAxis();
 yAxis.setLabel("Population (in millions)");

 ScatterChart<Number,Number> chart = new ScatterChart<>(xAxis, yAxis);
 chart.setTitle("Population by Year and Country");

 // Set the data for the chart
 ObservableList<XYChart.Series<Number,Number>> chartData =
 XYChartDataUtil.getCountrySeries();
 chart.setData(chartData);

 StackPane root = new StackPane(chart);
 Scene scene = new Scene(root);
 stage.setScene(scene);
 stage.setTitle("A Scatter Chart");
 stage.show();
 }
}

Chapter 23 ■ Understanding Charts

980

Tip ■ You can use the node property for data items to specify symbols in a ScatterChart.

Styling the ScatterChart with CSS
The ScatterChart is not assigned any additional style-class name other than chart.

You can customize the appearance of the symbols for each series or each data item in a series. Each
data item in a ScatterChart is represented by a node. The node gets four default style-class names:

•	 chart-symbol

•	 series<i>

•	 data<j>

•	 default-color<k>

•	 negative

Please refer to the section Styling the BarChart with CSS for more details on the meanings of <i>, <j>,
and <k> in these style-class names.

Each legend item in a scatter chart is given the following style-class names:

•	 chart-symbol

•	 series<i>

•	 data<j>

•	 default-color<k>

Figure 23-10. A scatter chart

Chapter 23 ■ Understanding Charts

981

The following style will display the data items in the first series as triangles filled in blue. Note that
only eight color series are defined. After that, colors are repeated as discussed at length in the section on
the pie chart.

.chart-symbol.default-color0 {
 -fx-background-color: blue;
 -fx-shape: "M5, 0L10, 5L0, 5z";
}

Understanding the LineChart
A line chart displays the data items in a series by connecting them by line segments. Optionally, the data
points themselves may be represented by symbols. You can think of a line chart as a scatter chart with
symbols in a series connected by straight line segments. Typically, a line chart is used to view the trend in
data change over time or in a category.

An instance of the LineChart class represents a line chart. The class contains a createSymbols property,
which is set to true by default. It controls whether symbols are created for the data points. Set it to false to
show only straight lines connecting the data points in a series.

The LineChart class contains two constructors to create line charts by specifying axes and data.

•	 LineChart(Axis<X> xAxis, Axis<Y> yAxis)

•	 LineChart(Axis<X> xAxis, Axis<Y> yAxis, ObservableList<XYChart.
Series<X,Y>> data)

The program in Listing 23-13 shows how to create and populate a line chart as shown in Figure 23-11.
The program is the same as for using the scatter chart, except that it uses the LineChart class. The chart
displays circles as symbols for data items. You can remove the symbols by using the following statement,
after you create the line chart.

// Do not create the symbols for the data items
chart.setCreateSymbols(false);

Listing 23-13. Creating a Line Chart

// LineChartTest.java
package com.jdojo.chart;

import javafx.application.Application;
import javafx.collections.ObservableList;
import javafx.scene.Scene;
import javafx.scene.chart.LineChart;
import javafx.scene.chart.NumberAxis;
import javafx.scene.chart.XYChart;
import javafx.scene.layout.StackPane;
import javafx.stage.Stage;

public class LineChartTest extends Application {
 public static void main(String[] args) {
 Application.launch(args);
 }

Chapter 23 ■ Understanding Charts

982

 @Override
 public void start(Stage stage) {
 NumberAxis xAxis = new NumberAxis();
 xAxis.setLabel("Year");

 // Customize the x-axis, so points are scattred uniformly
 xAxis.setAutoRanging(false);
 xAxis.setLowerBound(1900);
 xAxis.setUpperBound(2300);
 xAxis.setTickUnit(50);

 NumberAxis yAxis = new NumberAxis();
 yAxis.setLabel("Population (in millions)");

 LineChart<Number,Number> chart = new LineChart<>(xAxis, yAxis);
 chart.setTitle("Population by Year and Country");

 // Set the data for the chart
 ObservableList<XYChart.Series<Number,Number>> chartData =
 XYChartDataUtil.getCountrySeries();
 chart.setData(chartData);

 StackPane root = new StackPane(chart);
 Scene scene = new Scene(root);
 stage.setScene(scene);
 stage.setTitle("A Line Chart");
 stage.show();
 }
}

Figure 23-11. A line chart

Chapter 23 ■ Understanding Charts

983

Styling the LineChart with CSS
The LineChart is not assigned any additional style-class name other than chart. The following style specifies
that the LineChart should not create symbols.

.chart {
 -fx-create-symbols: false;
}

The LineChart creates a Path node to show the lines connecting all data points for a series. A line for
a series is assigned the following style-class names:

•	 chart-series-line

•	 series<i>

•	 default-color<j>

Here, <i> is the series index and <j> is the color index of the series.
If the createSymbols property is set to true, a symbol is created for each data point. Each symbol node

is assigned the following style-class name:

•	 chart-line-symbol

•	 series<i>

•	 data<j>

•	 default-color<k>

Here, <i> is the series index, <j> is the data item index within a series, and <k> is the color index
of the series.

Each series is assigned a legend item, which gets the following style-class names:

•	 chart-line-symbol

•	 series<i>

•	 default-color<j>

The following styles set the line stroke for the color index 0 of series to blue. The symbol is for the series
is also shown in blue.

.chart-series-line.default-color0 {
 -fx-stroke: blue;
}

.chart-line-symbol.default-color0 {
 -fx-background-color: blue, white;
}

Understating the BubbleChart
A bubble chart is very similar to a scatter chart, except that it has the ability to represent three values for
a data point. A bubble is used to represent a data items in series. You can set the radius of the bubble to
represent the third value for the data point.

Chapter 23 ■ Understanding Charts

984

An instance of the BubbleChart class represents a bubble chart. The class does not define any new
properties. A bubble chart uses the extraValue property of the XYChart.Data class to get the radius of the
bubble. The bubble is an ellipse whose radii are scaled based on the scale used for the axes. Bubbles look
more like a circle (or less stretched on one direction) if the scales for x-axis and y-axis are almost equal.

Tip ■ the bubble radius is set by default, which is scaled using the scale factor of the axes. You may not see
the bubbles if the scale factor for axes are very small. to see the bubbles, set the extraValue in data items to a
high value or use a higher scale factors along the axes.

The BubbleChart class defines two constructors:

•	 BubbleChart(Axis<X> xAxis, Axis<Y> yAxis)

•	 BubbleChart(Axis<X> xAxis, Axis<Y> yAxis, ObservableList<XYChart.
Series<X,Y>> data)

The program in Listing 23-14 shows how to create a bubble chart as shown in Figure 23-12. The chart
data is passed to the setBubbleRadius() method, which explicitly sets the extraValue for all data points
to 20px. If you want to use the radii of bubbles to represent another dimension of data, you can set the
extraValue accordingly.

Listing 23-14. Creating a Bubble Chart

// BubbleChartTest.java
package com.jdojo.chart;

import javafx.application.Application;
import javafx.collections.ObservableList;
import javafx.scene.Scene;
import javafx.scene.chart.BubbleChart;
import javafx.scene.chart.NumberAxis;
import javafx.scene.chart.XYChart;
import javafx.scene.layout.StackPane;
import javafx.stage.Stage;

public class BubbleChartTest extends Application {
 public static void main(String[] args) {
 Application.launch(args);
 }

 @Override
 public void start(Stage stage) {
 NumberAxis xAxis = new NumberAxis();
 xAxis.setLabel("Year");

 // Customize the x-axis, so points are scattred uniformly
 xAxis.setAutoRanging(false);
 xAxis.setLowerBound(1900);
 xAxis.setUpperBound(2300);
 xAxis.setTickUnit(50);

 NumberAxis yAxis = new NumberAxis();
 yAxis.setLabel("Population (in millions)");

Chapter 23 ■ Understanding Charts

985

 BubbleChart<Number,Number> chart = new BubbleChart<>(xAxis, yAxis);
 chart.setTitle("Population by Year and Country");

 // Get the data for the chart
 ObservableList<XYChart.Series<Number,Number>> chartData =
 XYChartDataUtil.getCountrySeries();

 // Set the bubble radius
 setBubbleRadius(chartData);

 // Set the data for the chart
 chart.setData(chartData);

 StackPane root = new StackPane(chart);
 Scene scene = new Scene(root);
 stage.setScene(scene);
 stage.setTitle("A Bubble Chart");
 stage.show();
 }

 private void setBubbleRadius(ObservableList<XYChart.Series<Number,Number>>

chartData) {
 for(XYChart.Series<Number,Number> series: chartData) {
 for(XYChart.Data<Number,Number> data : series.getData()) {
 data.setExtraValue(20); // Bubble radius
 }
 }
 }
}

Figure 23-12. A bubble chart

Chapter 23 ■ Understanding Charts

986

Styling the BubbleChart with CSS
The BubbleChart is not assigned any additional style-class name other than chart.

You can customize the appearance of the bubbles for each series or each data item in a series. Each data
item in a BubbleChart is represented by a node. The node gets four default style-class names:

•	 chart-bubble

•	 series<i>

•	 data<j>

•	 default-color<k>

Here, <i> is the series index, <j> is the data item index within a series, and <k> is the color index of
the series.

Each series is assigned a legend item, which gets the following style-class names:

•	 chart-bubble

•	 series<i>

•	 bubble-legend-symbol

•	 default-color<k>

Here, <i> and <k> have the same meanings as described above.
The following style sets the fill color for the series color index 0 to blue. The bubbles and legend symbols

for the data items in the first series will be displayed in blue. The color will repeat for series index 8, 16, 24, etc.

.chart-bubble.default-color0 {
 -fx-bubble-fill: blue;
}

Understating the AreaChart
The area chart is a variation of the line chart. It draws lines connecting all data items in a series and,
additionally, fills the area between where the line and the x-axis is painted. Different colors are used to paint
areas for different series.

An instance of the AreaChart represents an area chart. Like the LineChart, class, the class contains a
createSymbols property to control whether symbols are drawn at the data points. By default, it is set to true.
The class contains two constructors:

•	 AreaChart(Axis<X> xAxis, Axis<Y> yAxis)

•	 AreaChart(Axis<X> xAxis, Axis<Y> yAxis, ObservableList<XYChart.
Series<X,Y>> data)

The program in Listing 23-15 shows how to create an area chart as shown in Figure 23-13. There is
nothing new in the program, except that you have used the AreaChart class to create the chart. Notice that
the area for a series overlays the area for the preceding series.

Chapter 23 ■ Understanding Charts

987

Listing 23-15. Creating an Area Chart

// AreaChartTest.java
package com.jdojo.chart;

import javafx.application.Application;
import javafx.collections.ObservableList;
import javafx.scene.Scene;
import javafx.scene.chart.AreaChart;
import javafx.scene.chart.NumberAxis;
import javafx.scene.chart.XYChart;
import javafx.scene.layout.StackPane;
import javafx.stage.Stage;

public class AreaChartTest extends Application {
 public static void main(String[] args) {
 Application.launch(args);
 }

 @Override
 public void start(Stage stage) {
 NumberAxis xAxis = new NumberAxis();
 xAxis.setLabel("Year");

 // Customize the x-axis, so points are scattred uniformly
 xAxis.setAutoRanging(false);
 xAxis.setLowerBound(1900);
 xAxis.setUpperBound(2300);
 xAxis.setTickUnit(50);

 NumberAxis yAxis = new NumberAxis();
 yAxis.setLabel("Population (in millions)");

 AreaChart<Number,Number> chart = new AreaChart<>(xAxis, yAxis);
 chart.setTitle("Population by Year and Country");

 // Set the data for the chart
 ObservableList<XYChart.Series<Number,Number>> chartData =
 XYChartDataUtil.getCountrySeries();
 chart.setData(chartData);

 StackPane root = new StackPane(chart);
 Scene scene = new Scene(root);
 stage.setScene(scene);
 stage.setTitle("An Area Chart");
 stage.show();
 }
}

Chapter 23 ■ Understanding Charts

988

Styling the AreaChart with CSS
The AreaChart is not assigned any additional style-class name other than chart. The following style specifies
that the AreaChart should not create symbols for representing the data points.

.chart {
 -fx-create-symbols: false;
}

Each series in an AreaChart is represented by a Group containing two Path nodes. One Path represents
the line segment connecting all data points in the series, and another Path represents the area covered by
the series. The Path node representing the line segment for a series is assigned the following style-class
names:

•	 chart-series-area-line

•	 series<i>

•	 default-color<j>

Here, <i> is the series index and <j> is the color index of the series.
The Path node representing the area for a series is assigned the following style-class names:

•	 chart-series-area-fill

•	 series<i>

•	 default-color<j>

Here, <i> is the series index and <j> is the color index of the series.

Figure 23-13. An area chart

Chapter 23 ■ Understanding Charts

989

If the createSymbols property is set to true, a symbol is created for each data point. Each symbol node
is assigned the following style-class name:

•	 chart-area-symbol

•	 series<i>

•	 data<j>

•	 default-color<k>

Here, <i> is the series index, <j> is the data item index within a series, and <k> is the color index
of the series.

Each series is assigned a legend item, which gets the following style-class names:

•	 chart-area-symbol

•	 series<i>

•	 area-legend-symbol

•	 default-color<j>

Here, <i> is the series index and <j> is the color index of the series.
The following style sets the area fill color for the color index 0 for the series to blue with 20% opacity.

Make sure to set transparent colors for the area fills as areas overlap in an AreaChart.

.chart-series-area-fill.default-color0 {
 -fx-fill: rgba(0, 0, 255, 0.20);
}

The following styles set the blue as the color for symbols, line segment, and legend symbol for the color
index 0 for the series.

/* Data point symbols color */
.chart-area-symbol.default-color0. {
 -fx-background-color: blue, white;
}

/* Series line segment color */
.chart-series-area-line.default-color0 {
 -fx-stroke: blue;
}

/* Series legend symbol color */
.area-legend-symbol.default-color0 {
 -fx-background-color: blue, white;
}

Chapter 23 ■ Understanding Charts

990

Understanding the StackedAreaChart
The stacked area chart is a variation of the area chart. It plots data items by painting an area for each series.
Unlike the area chart, areas for series do not overlap; they are stacked.

An instance of the StackedAreaChart represents a stacked area chart. Like the AreaChart class, the class
contains a createSymbols property. The class contains two constructors:

•	 StackedAreaChart(Axis<X> xAxis, Axis<Y> yAxis)

•	 StackedAreaChart(Axis<X> xAxis, Axis<Y> yAxis, ObservableList<XYChart.
Series<X,Y>> data)

The program in Listing 23-16 shows how to create a stacked area chart as shown in Figure 23-14. The
program is the same as the one that created an AreaChart, except that you have used the StackedAreaChart
class to create the chart.

Listing 23-16. Creating a Stacked Area Chart

// StackedAreaChartTest.java
package com.jdojo.chart;

import javafx.application.Application;
import javafx.collections.ObservableList;
import javafx.scene.Scene;
import javafx.scene.chart.StackedAreaChart;
import javafx.scene.chart.NumberAxis;
import javafx.scene.chart.XYChart;
import javafx.scene.layout.StackPane;
import javafx.stage.Stage;

public class StackedAreaChartTest extends Application {
 public static void main(String[] args) {
 Application.launch(args);
 }

 @Override
 public void start(Stage stage) {
 NumberAxis xAxis = new NumberAxis();
 xAxis.setLabel("Year");

 // Customize the x-axis, so points are scattred uniformly
 xAxis.setAutoRanging(false);
 xAxis.setLowerBound(1900);
 xAxis.setUpperBound(2300);
 xAxis.setTickUnit(50);

 NumberAxis yAxis = new NumberAxis();
 yAxis.setLabel("Population (in millions)");

 StackedAreaChart<Number,Number> chart = new StackedAreaChart<>(xAxis, yAxis);
 chart.setTitle("Population by Year and Country");

Chapter 23 ■ Understanding Charts

991

 // Set the data for the chart
 ObservableList<XYChart.Series<Number,Number>> chartData =
 XYChartDataUtil.getCountrySeries();
 chart.setData(chartData);

 StackPane root = new StackPane(chart);
 Scene scene = new Scene(root);
 stage.setScene(scene);
 stage.setTitle("A Stacked Area Chart");
 stage.show();
 }
}

Styling the StackedAreaChart with CSS
Styling a StackedAreaChart is the same as styling an AreaChart. Please refer to the section Styling the
AreaChart with CSS for more details.

Customizing XYChart Appearance
You have seen how to apply chart-specific CSS styles to customize the appearance of charts. In this section,
you will look at some more ways to customize XYChart plot and axes. The XYChart class contains several
boolean properties to change the chart plot appearance:

•	 alternativeColumnFillVisible

•	 alternativeRowFillVisible

•	 horizontalGridLinesVisible

Figure 23-14. A stacked area chart

Chapter 23 ■ Understanding Charts

992

•	 verticalGridLinesVisible

•	 horizontalZeroLineVisible

•	 verticalZeroLineVisible

The chart area is divided into a grid of columns and rows. Horizontal lines are drawn passing through
major ticks on the y-axis making up rows. Vertical lines are drawn passing through major ticks on the x-axis
making up columns.

Setting Alternate Row/Column Fill
The alternativeColumnFillVisible and alternativeRowFillVisible control whether alternate
columns and rows in the grid are filled. By default, alternativeColumnFillVisible is set to false and
alternativeRowFillVisible is set to true.

As of time of this writing, setting the alternativeColumnFillVisible and alternativeRowFillVisible
properties do not have any effects in JavaFX 8, which uses Modena CSS by default. There are two solutions.
You can use the Caspian CSS for your application using the following statement:

Application.setUserAgentStylesheet(Application.STYLESHEET_CASPIAN);

The other solution is to include the following styles in your application CSS.

.chart-alternative-column-fill {
 -fx-fill: #eeeeee;
 -fx-stroke: transparent;
 -fx-stroke-width: 0;
}

.chart-alternative-row-fill {
 -fx-fill: #eeeeee;
 -fx-stroke: transparent;
 -fx-stroke-width: 0;
}

These styles are taken from Caspian CSS. These styles set the fill and stroke properties to null in
Modena CSS.

Showing Zero Line Axes
The axes for a chart may not include zero lines. Whether zero lines are includes depends on the lower and
upper bounds represented by the axes. The horizontalZeroLineVisible and verticalZeroLineVisible
control whether zero lines should be visible. By default, they are visible. Note that the zero line for an axis
is visible only when the axis has both positive and negative data to plot. If you have negative and positive
values along the y-axis, an additional horizontal axis will appear indicating the zero value along the y-axis.
The same rule applies for values along the x-axis. If the range for an axis is set explicitly using its lower and
upper bounds, the visibility of the zero line depends on whether zero falls in the range.

Chapter 23 ■ Understanding Charts

993

Showing Grid Lines
The horizontalGridLinesVisible and verticalGridLinesVisible specify whether the horizontal and
vertical grid lines are visible. By default, both are set to true.

Formatting Numeric Tick Labels
Sometimes, you may want to format the values displayed on a numeric axis. You want to format the labels for
the numeric axis for different reasons:

You want to add prefixes or suffixes to the tick labels. For example, you may want to •	
display a number 100 as $100 or 100M.

You may be supplying the chart scaled data to get an appropriate scale value for the •	
axis. For example, for the actual value 100, you may be supplying 10 to the chart. In
this case, you would like to display the actual value 100 for the label.

The ValueAxis class contains a tickLabelFormatter property, which is a StringConverter and it is
used to format tick labels. By default, tick labels for a numeric axis are formatted using a default formatter.
The default formatter is an instance of the static inner class NumberAxis.DefaultFormatter.

In our examples of XYChart, you had set the label for the y-axis to “Population (in millions)” to indicate
that the tick values on the axis are in millions. You can use a label formatter to append “M” to the tick values
to indicate the same meaning. The following snippet of code will accomplish this.

NumberAxis yAxis = new NumberAxis();
yAxis.setLabel("Population");

// Use a formatter for tick labels on y-axis to apend
// M (for millioms) to the population value
yAxis.setTickLabelFormatter(new StringConverter<Number>() {
 @Override
 public String toString(Number value) {
 // Append M to the value
 return Math.round(value.doubleValue()) + "M";
 }

 @Override
 public Number fromString(String value) {
 // Strip M from the value
 value = value.replaceAll("M", "");
 return Double.parseDouble(value);
 }
});

The NumberAxis.DefaultFormatter works better for adding a prefix or suffix to tick labels. This
formatter is kept in sync with the autoRanging property for the axis. You can pass a prefix and a suffix to the
constructor. The following snippet of code accomplishes the same thing as the above snippet of code.

NumberAxis yAxis = new NumberAxis();
yAxis.setLabel("Population");
yAxis.setTickLabelFormatter(new NumberAxis.DefaultFormatter(yAxis, null, "M"));

Chapter 23 ■ Understanding Charts

994

You can customize several visual aspects of an Axis. Please refer to the API documentation for the Axis
class and its subclasses for more details.

The program in Listing 23-17 shows how to customize a line chart. The chart is shown in Figure 23-15.
It formats the tick labels on the y-axis to append “M” to the label value. It hides the grid lines and shows the
alternate column fills.

Listing 23-17. Formatting Tick Labels and Customizing Chart Plot

// CustomizingCharts.java
package com.jdojo.chart;

import javafx.application.Application;
import javafx.scene.Scene;
import javafx.scene.chart.LineChart;
import javafx.scene.chart.NumberAxis;
import javafx.scene.layout.StackPane;
import javafx.stage.Stage;

public class CustomizingCharts extends Application {
 public static void main(String[] args) {
 Application.launch(args);
 }

 @Override
 public void start(Stage stage) {
 // Set caspian CSS to get alternate column fills
 // until modena CSS is fixed
 Application.setUserAgentStylesheet(Application.STYLESHEET_CASPIAN);

 NumberAxis xAxis = new NumberAxis();
 xAxis.setLabel("Year");

 // CUstomize the x-axis, so points are scattred uniformly
 xAxis.setAutoRanging(false);
 xAxis.setLowerBound(1900);
 xAxis.setUpperBound(2300);
 xAxis.setTickUnit(50);

 NumberAxis yAxis = new NumberAxis();
 yAxis.setLabel("Population");

 // Use a formatter for tick labels on y-axis to append
 // M (for millioms) to the population value
 yAxis.setTickLabelFormatter(new NumberAxis.DefaultFormatter(yAxis, null, "M"));

 LineChart<Number, Number> chart = new LineChart<>(xAxis, yAxis);
 chart.setTitle("Population by Year and Country");

 // Set the data for the chart
 chart.setData(XYChartDataUtil.getCountrySeries());

Chapter 23 ■ Understanding Charts

995

 // Show alternate column fills
 chart.setAlternativeColumnFillVisible(true);
 chart.setAlternativeRowFillVisible(false);

 // Hide grid lines
 chart.setHorizontalGridLinesVisible(false);
 chart.setVerticalGridLinesVisible(false);

 StackPane root = new StackPane(chart);
 Scene scene = new Scene(root);
 stage.setScene(scene);
 stage.setTitle("Customizing Tick Labels and Chart Plot");
 stage.show();
 }
}

Figure 23-15. A line chart with formatted tick labels and customized plot

Summary
A chart is a graphical representation of data. Charts provide an easier way to analyze large volume of data
visually. Typically, they are used for reporting purposes. Different types of charts exist. They differ in the
way they represent the data. Not all types of charts are suitable for analyzing all types of data. For example,
a line chart is suitable for understanding the comparative trend in data whereas a bar chart is suitable for
comparing data in different categories.

JavaFX supports charts, which can be integrated in a Java application by writing few lines of code. It
contains a comprehensive, extensible Chart API that provides built-in support for several types of charts.
The Chart API consists of a number of predefined classes in the javafx.scene.chart package. Few of those
classes are Chart, XYChart, PieChart, BarChart and LineChart.

Chapter 23 ■ Understanding Charts

996

The abstract Chart is the base class for all charts. It inherits the Node class. Charts can be added to a
scene graph. They can also be styled with CSS as any other nodes. Every chart in JavaFX has three parts: a
title, a legend, and data. Different types of charts define their data differently. The Chart class contains the
properties to deal with the title and legend.

A chart can be animated. The animated property in the Chart class specifies whether the change in the
content of the chart is shown with some type of animation. By default, it is true.

A pie chart consists of a circle divided into sectors of different central angles. Typically, a pie is circular.
The sectors are also known as pie pieces or pie slices. Each sector in the circle represents a quantity of some
kind. The central angle of the area of a sector is proportional to the quantity it represents. An instance of the
PieChart class represents a pie chart.

A bar chart renders the data items as horizontal or vertical rectangular bars. The lengths of the bars are
proportional to the value of the data items. An instance of the BarChart class represents a bar chart.

A stacked bar chart is a variation of the bar chart. In a stacked bar chart, the bars in a category are
stacked. Except for the placement of the bars, it works the same way as the bar chart. An instance of the
StackedBarChart class represents a stacked bar chart.

A scatter chart renders the data items as symbols. All data items in a series use the same symbol. The
location of the symbol for a data item is determined by the values on the data item along the x-axis and
y-axis. An instance of the ScatterChart class represents a scatter chart.

A line chart displays the data items in a series by connecting them by line segments. Optionally, the
data points themselves may be represented by symbols. You can think of a line chart as a scatter chart with
symbols in a series connected by straight line segments. Typically, a line chart is used to view the trend in
data change over time or in a category. An instance of the LineChart class represents a line chart.

A bubble chart is very similar to a scatter chart, except that it has ability to represent three values for
a data point. A bubble is used to represent a data items in series. You can set the radius of the bubble to
represent the third value for the data point. An instance of the BubbleChart class represents a bubble chart.

The area chart is a variation of the line chart. It draws lines connecting all data items in a series and,
additionally, fills the area between where the line and the x-axis is painted. Different colors are used to paint
areas for different series. An instance of the AreaChart represents an area chart.

The stacked area chart is a variation of the area chart. It plots data items by painting an area for
each series. Unlike the area chart, areas for series do not overlap; they are stacked. An instance of the
StackedAreaChart represents a stacked area chart.

Besides using CSS to customize the appearance of charts, the Chart API provides several properties and
methods to customize charts’ appearance such as adding alternate row/column fills, showing zero line axes,
showing grid lines, and formatting numeric tick labels.

The next chapter will discuss how to work with images in JavaFX using the Image API.

997

Chapter 24

Understanding the Image API

In this chapter, you will learn:

What the Image API is•	

How to load an image•	

How to view an image in an •	 ImageView node

How to perform image operations such as reading/writing pixels, creating an image •	
from scratch, and saving the image to the file system

How to take the snapshot of nodes and scenes•	

What Is the Image API?
JavaFX provides the Image API that lets you load and display images, and read/write raw image pixels. A
class diagram for the classes in the image API is shown in Figure 24-1. All classes are in the javafx.scene.
image package. The API lets you

Load an image in memory•	

Display an image as a node in a scene graph•	

Read pixels from an image•	

Write pixels to an image•	

Convert a node in a scene graph to an image and save it to the local file system•	

Image

WritableImage ImageView WritablePixelFormat<T>

PixelFormat<T>Node

PixelReader

PixelWriter

Object

Figure 24-1. A class diagram for classes in the image API

Chapter 24 ■ Understanding the image api

998

An instance of the Image class represents an image in memory. You can construct an image in a JavaFX
application by supplying pixels to a WritableImage instance.

An ImageView is a Node. It is used to display an Image in a scene graph. If you want to display an image in
an application, you need to load the image in an Image and display the Image in an ImageView.

Images are constructed from pixels. Data for pixels in an image may be stored in different formats.
A PixelFormat defines how the data for a pixel for a given format is stored. A WritablePixelFormat
represents a destination format to write pixels with full pixel color information.

The PixelReader and PixelWriter interfaces define methods to read from an Image and write data to
a WritableImage. Besides an Image, you can read pixels from and write pixels to any surface that contain
pixels.

I will cover examples of using these classes in the sections to follow.

Loading an Image
An instance of the Image class is an in-memory representation of an image. The class supports BMP, PNG,
JPEG, and GIF image formats. It loads an image from a source, which can be specified as a string URL or an
InputStream. It can also scale the original image while loading.

The Image class contains several constructors that let you specify the properties for the loaded image:

•	 Image(InputStream is)

•	 Image(InputStream is, double requestedWidth, double requestedHeight,
boolean preserveRatio, boolean smooth)

•	 Image(String url)

•	 Image(String url, boolean backgroundLoading)

•	 Image(String url, double requestedWidth, double requestedHeight, boolean
preserveRatio, boolean smooth)

•	 Image(String url, double requestedWidth, double requestedHeight, boolean
preserveRatio, boolean smooth, boolean backgroundLoading)

There is no ambiguity of the source of the image if an InputStream is specified as the source. If a string
URL is specified as the source, it could be a valid URL or a valid path in the CLASSPATH. If the specified URL
is not a valid URL, it is used as a path and the image source will be searched on the path in the CLASSPATH.

// Load an image from local machine using an InputStream
String sourcePath = "C:\\mypicture.png";
Image img = new Image(new FileInputStream(sourcePath));

// Load an image from a URL
Image img = new Image("http://jdojo.com/wp-content/uploads/2013/03/randomness.jpg");

// Load an image from the CLASSPATH. The image is located in the resources.picture package
Image img = new Image("resources/picture/randomness.jpg");

In the above statement, the specified URL resources/picture/randomness.jpg is not a valid URL. The
Image class will treat it as a path expecting it to exist in the CLASSPATH. It treats the resource.picture as a
package and the randomness.jpg as a resource in that package.

Chapter 24 ■ Understanding the image api

999

Specifying the Image-Loading Properties
Some constructors let you specify some image-loading properties to controls the quality of the image and
the loading process:

•	 requestedWidth

•	 requestedHeight

•	 preserveRatio

•	 smooth

•	 backgroundLoading

The requestedWidth and requestedHeight properties specify the scaled width and height of the image.
By default, an image is loaded in its original size.

The preserveRatio property specifies whether to preserve the aspect ratio of the image while scaling.
By default, it is false.

The smooth property specifies the quality of the filtering algorithm to be used in scaling. By default, it is false.
If it is set to true, a better quality filtering algorithm is used, which slows down the image-loading process a bit.

The backgroundLoading property specifies whether to load the image asynchronously. By default, the
property is set to false and the image is loaded synchronously. The loading process starts when the Image
object is created. If this property is set to true, the image is loaded asynchronously in a background thread.

Reading the Loaded-Image Properties
The Image class contains the following read-only properties:

•	 width

•	 height

•	 progress

•	 error

•	 exception

The width and height properties are the width and height of the loaded image, respectively. They are
zero if the image failed to load.

The progress property indicates the progress in loading the image data. It is useful to know the progress
when the backgroundLoading property is set to true. Its value is between 0.0 and 1.0 where 0.0 indicates
zero percent loading and 1.0 indicates hundred percent loading. When the backgroundLoading property is
set to false (the default), its value is 1.0. You can add a ChangeListener to the progress property to know
the progress in image loading. You may display a text as a placeholder for an image while it is loading and
update the text with the current progress in the ChangeListener.

// Load an image in the background
String imagePath = "resources/picture/randomness.jpg";
Boolean backgroundLoading = true;
Image image = new Image(imagePath, backgroundLoading);

// Print the loading progress on the standard output
image.progressProperty().addListener((prop, oldValue, newValue) -> {
 System.out.println("Loading:" + Math.round(newValue.doubleValue() * 100.0) + "%");
});

Chapter 24 ■ Understanding the image api

1000

The error property indicates whether an error occurred while loading the image. If it is true, the
exception property specifies the Exception that caused the error. At the time of this writing, TIFF image
format is not supported on Windows. The following snippet of code attempts to load a TIFF image on
Windows XP and it produces an error. The code contains an error handling logic that adds a ChangeListener
to the error property if backgroundLoading is true. Otherwise, it checks for the value of the error property.

String imagePath = "resources/picture/test.tif";
Boolean backgroundLoading = false;
Image image = new Image(imagePath, backgroundLoading);

// Add a ChangeListener to the error property for background loading and
// check its value for non-backgroudn loading
if (image.isBackgroundLoading()) {
 image.errorProperty().addListener((prop, oldValue, newValue) -> {
 if (newValue) {
 System.out.println("An error occurred while loading the image.\n" +
 "Error message: " + image.getException().getMessage());
 }
 });
}
else if (image.isError()) {
 System.out.println("An error occurred while loading the image.\n" +
 "Error message: " + image.getException().getMessage());
}

An error occurred while loading the image.
Error message: No loader for image data

Viewing an Image
An instance of the ImageView class is used to display an image loaded in an Image object. The ImageView
class inherits from the Node class, which makes an ImageView suitable to be added to a scene graph. The
class contains several constructors:

•	 ImageView()

•	 ImageView(Image image)

•	 ImageView(String url)

The no-args constructor creates an ImageView without an image. Use the image property to set an
image. The second constructor accepts the reference of an Image. The third constructor lets you specify the
URL of the image source. Internally, it creates an Image using the specified URL.

// Create an empty ImageView and set an Image for it later
ImageView imageView = new ImageView();
imageView.setImage(new Image("resources/picture/randomness.jpg"));

Chapter 24 ■ Understanding the image api

1001

// Create an ImageView with an Image
ImageView imageView = new ImageView(new Image("resources/picture/randomness.jpg"));

// Create an ImageView with the URL of the image source
ImageView imageView = new ImageView("resources/picture/randomness.jpg");

The program in Listing 24-1 shows how to display an image in a scene. It loads an image in an Image
object. The image is scaled without preserving the aspect ratio. The Image object is added to an ImageView,
which is added to an HBox. Figure 24-2 shows the window.

Listing 24-1. Displaying an Image in an ImageView Node

// ImageTest.java
package com.jdojo.image;

import javafx.application.Application;
import javafx.scene.Scene;
import javafx.scene.image.Image;
import javafx.scene.image.ImageView;
import javafx.scene.layout.HBox;
import javafx.stage.Stage;

public class ImageTest extends Application {
 public static void main(String[] args) {
 Application.launch(args);
 }

 @Override
 public void start(Stage stage) {
 String imagePath = "resources/picture/randomness.jpg";

 // Scale the iamge to 200 X 100
 double requestedWidth = 200;
 double requestedHeight = 100;
 boolean preserveRatio = false;
 boolean smooth = true;
 Image image = new Image(imagePath,
 requestedWidth,
 requestedHeight,
 preserveRatio,
 smooth);
 ImageView imageView = new ImageView(image);

 HBox root = new HBox(imageView);
 Scene scene = new Scene(root);
 stage.setScene(scene);
 stage.setTitle("Displaying an Image");
 stage.show();
 }
}

Chapter 24 ■ Understanding the image api

1002

Multiple Views of an Image
An Image loads an image in memory from its source. You can have multiple views of the same Image. An
ImageView provides one of the views.

You have an option to resize the original image while loading, displaying, or at both times. Which option
you choose to resize an image depends on the requirement at hand.

Resizing an image in an •	 Image object resizes the image permanently in memory and
all views of the image will use the resized image. Once an Image is resized, its size
cannot be altered. You may want to reduce the size of an image in an Image object to
save memory.

Resizing an image in an •	 ImageView resizes the image only for this view. You can
resize the view of an image in an ImageView even after the image has been displayed.

We have already discussed how to resize an image in an Image object. In this section, we will discuss
resizing an image in an ImageView.

Similar to the Image class, the ImageView class contains the following four properties to control the
resizing of view of an image.

•	 fitWidth

•	 fitHeight

•	 preserveRatio

•	 smooth

The fitWidth and fitHeight properties specify the resized width and height of the image, respectively.
By default, they are zero, which means that the ImageView will use the width and height of the loaded image
in the Image.

The preserveRatio property specifies whether to preserve the aspect ratio of the image while resizing.
By default, it is false.

The smooth property specifies the quality of the filtering algorithm to be used in resizing. Its default
value is platform dependent. If it is set to true, a better quality filtering algorithm is used.

The program in Listing 24-2 loads an image in an Image object in original size. It creates three
ImageView objects of the Image specifying different sizes. Figure 24-3 shows the three images. The image
shows a junk school bus and a junk car. The image is used with a permission from Richard Castillo
(http://www.digitizedchaos.com).

Figure 24-2. A window with an image

http://www.digitizedchaos.com/

Chapter 24 ■ Understanding the image api

1003

Listing 24-2. Displaying the Same Image in Different ImageView in Different Sizes

// MultipleImageViews.java
package com.jdojo.image;

import javafx.application.Application;
import javafx.scene.Scene;
import javafx.scene.image.Image;
import javafx.scene.image.ImageView;
import javafx.scene.layout.HBox;
import javafx.stage.Stage;

public class MultipleImageViews extends Application {
 public static void main(String[] args) {
 Application.launch(args);
 }

 @Override
 public void start(Stage stage) {
 // Load an image in its original size
 String imagePath = "resources/picture/school_bus.jpg";
 Image image = new Image(imagePath);

 // Create three views of different sizes of the same image
 ImageView view1 = getImageView(image, 100, 50, false);
 ImageView view2 = getImageView(image, 100, 50, true);
 ImageView view3 = getImageView(image, 100, 100, true);

 HBox root = new HBox(10, view1, view2, view3);
 Scene scene = new Scene(root);
 stage.setScene(scene);
 stage.setTitle("Multiple Views of an Image");
 stage.show();
 }

 private ImageView getImageView(Image image,
 double fitWidth,
 double fitHeight,
 boolean preserveRation) {
 ImageView view = new ImageView(image);
 view.setFitWidth(fitWidth);
 view.setFitHeight(fitHeight);
 view.setPreserveRatio(preserveRation);
 view.setSmooth(true);
 return view;
 }
}

Chapter 24 ■ Understanding the image api

1004

Viewing an Image in a Viewport
A viewport is a rectangular region to view part of a graphics. It is common to use scrollbars in conjunction
with a viewport. As the scrollbars are scrolled, the viewport shows different part of the graphics.

An ImageView lets you define a viewport for an image. In JavaFX, a viewport is an instance of the
javafx.geometry.Rectangle2D object. A Rectangle2D is immutable. It is defined in terms of four properties:
minX, minY, width, and height. The (minX, minY) value defines the location of the upper-left corner of the
rectangle. The width and height properties specify its size. You must specify all properties in the constructor.

// Create a viewport located at (0, 0) and of isze 200 X 100
Rectangle2D viewport = new Rectangle2D(0, 0, 200,100);

The ImageView class contains a viewport property, which provides a viewport into the image displayed
in the ImageView. The viewport defines a rectangular region in the image. The ImageView shows only the
region of the image that falls inside the viewport. The location of the viewport is defined relative to the
image, not the ImageView. By default, the viewport of an ImageView is null and the ImageView shows the
whole image.

The following snippet of code loads an image in its original size in an Image. The Image is set as the
source for an ImageView. A viewport 200 X 100 in size is set for the ImageView. The viewport is located at
(0, 0). This shows in the ImageView the top-left 200 X 100 region of the image

String imagePath = "resources/picture/school_bus.jpg";
Image image = new Image(imagePath);
imageView = new ImageView(image);
Rectangle2D viewport = new Rectangle2D(0, 0, 200, 100);
imageView.setViewport(viewport);

The following snippet of code will change the view port to show the 200 X 100 lower-right region of the
image.

double minX = image.getWidth() - 200;
double minY = image.getHeight() - 100;
Rectangle2D viewport2 = new Rectangle2D(minX, minY, 200, 100);
imageView.setViewport(viewport2);

Tip ■ the Rectangle2D class is immutable. therefore, you need to create a new viewport every time you
want to move the viewport into the image.

Figure 24-3. Three views of the same image

Chapter 24 ■ Understanding the image api

1005

The program in Listing 24-3 loads an image into an ImageView. It sets a viewport for the ImageView.
You can drag the mouse, while pressing the left, right, or both buttons, to scroll to the different parts of the
image into the view.

Listing 24-3. Using a Viewport to View Part of an Image

// ImageViewPort.java
package com.jdojo.image;

import javafx.application.Application;
import javafx.geometry.Rectangle2D;
import javafx.scene.Scene;
import javafx.scene.image.Image;
import javafx.scene.image.ImageView;
import javafx.scene.input.MouseEvent;
import javafx.scene.layout.HBox;
import javafx.stage.Stage;

public class ImageViewPort extends Application {
 private static final double VIEWPORT_WIDTH = 300;
 private static final double VIEWPORT_HEIGHT = 200;
 private double startX;
 private double startY;
 private ImageView imageView;

 public static void main(String[] args) {
 Application.launch(args);
 }

 @Override
 public void start(Stage stage) {
 // Load an image in its original size
 String imagePath = "resources/picture/school_bus.jpg";
 Image image = new Image(imagePath);
 imageView = new ImageView(image);

 // Set a viewport for the ImageView
 Rectangle2D viewport = new Rectangle2D(0, 0, VIEWPORT_WIDTH, VIEWPORT_HEIGHT);
 imageView.setViewport(viewport);

 // Set the mouse pressed and mouse dragged event hanlders
 imageView.setOnMousePressed(this::handleMousePressed);
 imageView.setOnMouseDragged(this::handleMouseDragged);

 HBox root = new HBox(imageView);
 Scene scene = new Scene(root);
 stage.setScene(scene);
 stage.setTitle("Viewing an Image in a Viewport");
 stage.show();
 }

Chapter 24 ■ Understanding the image api

1006

 private void handleMousePressed(MouseEvent e) {
 startX = e.getX();
 startY = e.getY();
 }

 private void handleMouseDragged(MouseEvent e) {
 // How far the mouse was dragged
 double draggedDistanceX = e.getX() - startX;
 double draggedDistanceY = e.getY() - startY;

 // Reset the starting point for the next drag
 // if the user keeps the mouse pressed and drags again
 startX = e.getX();
 startY = e.getY();

 // Get the minX and minY of the current viewport
 double curMinX = imageView.getViewport().getMinX();
 double curMinY = imageView.getViewport().getMinY();

 // Move the new viewport by the dragged distance
 double newMinX = curMinX + draggedDistanceX;
 double newMinY = curMinY + draggedDistanceY;

 // Make sure the viewport does not fall outside the image area
 newMinX = clamp(newMinX, 0, imageView.getImage().getWidth() - VIEWPORT_WIDTH);
 newMinY = clamp(newMinY, 0, imageView.getImage().getHeight() - VIEWPORT_HEIGHT);

 // Set a new viewport
 imageView.setViewport(
 new Rectangle2D(newMinX, newMinY, VIEWPORT_WIDTH, VIEWPORT_HEIGHT));
 }

 private double clamp(double value, double min, double max) {
 if (value < min) {
 return min;
 } else if (value > max) {
 return max;
 }

 return value;
 }
}

The program declares a few class and instance variables. The VIEWPORT_WIDTH and VIEWPORT_HEIGHT
are constants holding the width and height of the viewport. The startX and startY instance variables will
hold the x and y coordinates of the mouse when the mouse is pressed or dragged. The ImageView instance
variable holds the reference of the ImageView. We need this reference in the mouse dragged event handler.

Chapter 24 ■ Understanding the image api

1007

The starting part of the start() method is simple. It creates an Image, an ImageView, and sets a
viewport for the ImageView. Then, it sets the mouse pressed and dragged event handlers to the ImageView.

// Set the mouse pressed and mouse dradded event hanlders
imageView.setOnMousePressed(this::handleMousePressed);
imageView.setOnMouseDragged(this::handleMouseDragged);

In the handleMousePressed() method, we store the coordinates of the mouse in the startX and startY
instance variables. The coordinates are relative to the ImageView.

startX = e.getX();
startY = e.getY();

The handleMousePressed() method computes the new location of the viewport inside the image
because of the mouse drag and sets a new viewport at the new location. First, it computes the dragged
distance for the mouse along the x-axis and y-axis.

// How far the mouse was dragged
double draggedDistanceX = e.getX() - startX;
double draggedDistanceY = e.getY() - startY;

You reset the startX and startY values to mouse location that triggered the current mouse dragged
event. This is important to get the correct dragged distance when the user keeps the mouse pressed, drags it,
stops without releasing the mouse, and drags it again.

// Reset the starting point for the next drag
// if the user keeps the mouse pressed and drags again
startX = e.getX();
startY = e.getY();

You compute the new location of the upper-left corner of the viewport. You always have a viewport in
the ImageView. The new viewport will be located at the dragged distance from the old location.

// Get the minX and minY of the current viewport
double curMinX = imageView.getViewport().getMinX();
double curMinY = imageView.getViewport().getMinY();

// Move the new viewport by the dragged distance
double newMinX = curMinX + draggedDistanceX;
double newMinY = curMinY + draggedDistanceY;

It is fine to place the viewport outside the region of the image. The viewport simply displays an empty
area when it falls outside the image area. To restrict the viewport inside the image area, we clamp the
location of the viewport.

// Make sure the viewport does not fall outside the image area
newMinX = clamp(newMinX, 0, imageView.getImage().getWidth() - VIEWPORT_WIDTH);
newMinY = clamp(newMinY, 0, imageView.getImage().getHeight() - VIEWPORT_HEIGHT);

Chapter 24 ■ Understanding the image api

1008

Finally, we set a new viewport using the new location.

// Set a new viewport
imageView.setViewport(new Rectangle2D(newMinX, newMinY, VIEWPORT_WIDTH, VIEWPORT_HEIGHT));

Tip ■ it is possible to scale or rotate the ImageView and set a viewport to view the region of the image
defined by the viewport.

Understanding Image Operations
JavaFX supports reading pixels from an image, writing pixels to an image, and creating a snapshot of the
scene. It supports creating an image from scratch. If an image is writable, you can also modify the mage in
memory and save it to the file system. The image API provides access to each pixel in the image. It supports
reading and writing one pixel or a chunk of pixel at a time. This section will discuss operations supported by
the image API with simple examples.

Pixel Formats
The image API in JavaFX gives you access to each pixel in an image. A pixel stores information about its color
(red, green, blue) and opacity (alpha). The pixel information can be stored in several formats.

An instance the PixelFormat<T extends Buffer> represents the layout of data for a pixel. You
need to know the pixel format when you read the pixels from an image. You need to specify the pixel
format when you write pixels to an image. The WritablePixelFormat class inherits from the PixelFormat
class and its instance represents a pixel format that can store full color information. An instance of the
WritablePixelFormat class is used when writing pixels to an image.

Both class PixelFormat and its subclass WritablePixelFormat are abstract. The PixelFormat class
provides several static methods to obtain instances to PixelFormat and WritablePixelFormat abstract
classes. Before we discuss how to get an instance of the PixelFormat, let us discuss types of storage formats
available for storing the pixel data.

A PixelFormat has a type that specifies the storage format for a single pixel. The constants of the
PixelFormat.Type enum represent different type of storage formats:

•	 BYTE_RGB

•	 BYTE_BGRA

•	 BYTE_BGRA_PRE

•	 BYTE_INDEXED

•	 INT_ARGB

•	 INT_ARGB_PRE

In the BYTE_RGB format, the pixels are assumed opaque. The pixels are stored in adjacent byes as red,
green, and blue, in order.

In the BYTE_BGRA format, pixels are stored in adjacent byes as blue, green, red, and alpha in order. The
color values (red, green, and blue) are not pre-multiplied with the alpha value.

The BYTE_BGRA_PRE type format is similar to BYTE_BGRA, except that in BYTE_BGRA_PRE the stored color
component values are pre-multiplied by the alpha value.

Chapter 24 ■ Understanding the image api

1009

In the BYTE_INDEXED format, a pixel is as a single byte. A separate lookup list of colors is provided. The
single byte value for the pixel is used as an index in the lookup list to get the color value for the pixel.

In the INT_ARGB format, each pixel is stored in a 32-bit integer. Bytes from the most significant byte
(MSB) to the least significant byte (LSB) store alpha, red, green, and blue values. The color values (red,
green, and blue) are not pre-multiplied with the alpha value. The following snippet of code shows how to
extract components from a pixel value in this format.

int pixelValue = get the value for a pixel...
int alpha = (pixelValue >> 24) & 0xff;
int red = (pixelValue >> 16) & 0xff;
int green = (pixelValue >> 8) & 0xff;
int blue = pixelValue & 0xff;

The INT_ARGB_PRE format is similar to the INT_ARGB format, except that INT_ARGB_PRE stores the color
values (red, green, and blue) pre-multiplied with the alpha value.

Typically, you need to create a WritablePixelFormat when you write pixels to create a new image.
When you read pixels from an image, the pixel reader will pride you a PixelFormat instance that will tell you
how the color information in the pixels are stored. The following snippet of code creates some instances of
WritablePixelFormat class:

import javafx.scene.image.PixelFormat;
import javafx.scene.image.WritablePixelFormat;
import java.nio.ByteBuffer;
import java.nio.IntBuffer;
...
// BYTE_BGRA Format type
WritablePixelFormat<ByteBuffer> format1 = PixelFormat.getByteBgraInstance();

// BYTE_BGRA_PRE Format type
WritablePixelFormat<ByteBuffer> format2 = PixelFormat.getByteBgraPreInstance();

// INT_ARGB Format type
WritablePixelFormat<IntBuffer> format3 = PixelFormat.getIntArgbInstance();

// INT_ARGB_PRE Format type
WritablePixelFormat<IntBuffer> format4 = PixelFormat.getIntArgbPreInstance();

Pixel format classes are not useful without pixel information. After all, they describes layout of
information in a pixel! We will use these classes when we read and write image pixels in the sections to
follow. Their use will be obvious in the examples.

Reading Pixels from an Image
An instance of the PixelReader interface is used to read pixels from an image. Use the getPixelReader()
method of the Image class to obtains a PixelReader. The PixelReader interface contains the following
methods:

•	 int getArgb(int x, int y)

•	 Color getColor(int x, int y)

Chapter 24 ■ Understanding the image api

1010

•	 Void getPixels(int x, int y, int w, int h,
WritablePixelFormat<ByteBuffer> pixelformat, byte[] buffer, int offset,
int scanlineStride)

•	 void getPixels(int x, int y, int w, int h,
WritablePixelFormat<IntBuffer> pixelformat, int[] buffer, int offset,
int scanlineStride)

•	 <T extends Buffer> void getPixels(int x, int y, int w, int h,
WritablePixelFormat<T> pixelformat, T buffer, int scanlineStride)

•	 PixelFormat getPixelFormat()

The PixelReader interface contains methods to read one pixel or multiple pixels at a time. Use the
getArgb() and getColor() methods to read the pixel at the specified (x, y) coordinate. Use the getPixels()
method to read pixels in bulk. Use the getPixelFormat() method to get the PixelFormat that best describes
the storage format for the pixels in the source.

The getPixelReader() method of the Image class returns a PixelReader only if the image is readable.
Otherwise, it returns null. Am image may not be readable if it is not fully loaded yet, it had an error during
loading, or its format does not support reading pixels.

Image image = new Image("resources/picture/ksharan.jpg");

// Get the pixel reader
PixelReader pixelReader = image.getPixelReader();
if (pixelReader == null) {
 System.out.println("Connot read pixels from the image");
} else {
 // Read image pixels
}

Once you have a PixelReader, you can read pixels invoking one of its methods. The program in
Listing 24-4 shows how to read pixels from an image. The code is self-explanatory.

The •	 start() method creates an Image. The Image is loaded synchronously.

The logic to read the pixels is in the •	 readPixelsInfo() method. The method receives
a fully loaded Image. It uses the getColor() method of the PixelReader to get the
pixel at a specified location. It prints the colors for all pixels. At the end, it prints the
pixel format, which is BYTE_RBG.

Listing 24-4. Reading Pixels from an Image

// ReadPixelInfo.java
package com.jdojo.image;

import javafx.application.Application;
import javafx.scene.Scene;
import javafx.scene.image.Image;
import javafx.scene.image.ImageView;
import javafx.scene.image.PixelFormat;
import javafx.scene.image.PixelReader;
import javafx.scene.layout.HBox;
import javafx.scene.paint.Color;
import javafx.stage.Stage;

Chapter 24 ■ Understanding the image api

1011

public class ReadPixelInfo extends Application {
 public static void main(String[] args) {
 Application.launch(args);
 }

 @Override
 public void start(Stage stage) {
 String imagePath = "resources/picture/ksharan.jpg";
 Image image = new Image(imagePath);
 ImageView imageView = new ImageView(image);
 HBox root = new HBox(imageView);
 Scene scene = new Scene(root);
 stage.setScene(scene);
 stage.setTitle("Reading Pixels from an Image");
 stage.show();

 // Read pixels from the image
 this.readPixelsInfo(image);
 }

 private void readPixelsInfo(Image image) {
 // Obtain the pixel reader from the image
 PixelReader pixelReader = image.getPixelReader();
 if (pixelReader == null) {
 System.out.println("Connot read pixels from the image");
 return;
 }

 // Get image width and height
 int width = (int)image.getWidth();
 int height = (int)image.getHeight();

 // Read all pixels
 for(int y = 0; y < height; y++) {
 for(int x = 0; x < width; x++) {
 Color color = pixelReader.getColor(x, y);
 System.out.println ("Color at (" + x + ", " + y + ") = " +

color);
 }
 }

 PixelFormat format = pixelReader.getPixelFormat();
 PixelFormat.Type formatType = format.getType();
 System.out.println("Pixel format type: " + formatType);
 }
}

Chapter 24 ■ Understanding the image api

1012

Color at (0, 0) = 0xb5bb41ff
Color at (1, 0) = 0xb0b53dff
...
Color at (233, 287) = 0x718806ff
Color at (234, 287) = 0x798e0bff
Pixel format type: BYTE_RGB

Reading pixels in bulk is little more difficult than reading one pixel at a time. The difficulty arises

from the setup information that you have to provide to the getPixels() method. We will repeat the above
example by reading all pixels in bulk using the following method of the PixelReader.

void getPixels(int x, int y,
 int width, int height,
 WritablePixelFormat<ByteBuffer> pixelformat,
 byte[] buffer,
 int offset,
 int scanlineStride)

The method reads the pixels from rows in order. The pixels in the first row are read, then the pixels from
the second row, and so on. It is important that you understand the meaning of all parameters to the method:

The method reads the pixels of a rectangular region in the source.
The x and y coordinates of the upper-left corner of the rectangular region are specified in the x and y

arguments.
The width and height arguments specify the width and height of the rectangular region.
The pixelformat specifies the format of the pixel that should be used to store the read pixels in the

specified buffer.
The buffer is a byte array in which the PixelReader will store the read pixels. The length of the array

must be big enough to store all read pixels.
The offset specifies the starting index in the buffer array to store the first pixel data. Its value of zero

indicates that the data for the first pixel will start at index 0 in the buffer.
The scanlineStride specify the distance between the start of one row of data In the buffer to the start

of the next row of data. Suppose you have two pixels in a row and you want to read in the BYTE_BGRA format
taking four bytes for a pixel. One row of data can be stored in eight bytes. If you specify 8 as the argument
value, the data for the next row will start in the buffer just after the data for the previous row data ends. If you
specify the argument value 10, last two bytes will be empty for each row of data. The first row pixels will be
stored from index 0 to 7. The indexes 8 and 9 will be empty (or not written). Indexes 10 to 17 will store pixel
data for the second row leaving indexes 19 and 19 empty. You may want to specify a bigger value for the
agrument than needed to store one row of pixel data if you want to fill the empty slots with yor won values
later. Specifying avlaue less than needed will overwrite part of the data in the previous row.

The following snippet of code shows hwo to real all pixels from am image in a byte array.in BYTE_BGRA
format.

Image image = ...
PixelReader pixelReader = image.getPixelReader();

int x = 0;
int y = 0;
int width = (int)image.getWidth();
int height = (int)image.getHeight();

Chapter 24 ■ Understanding the image api

1013

int offset = 0;
int scanlineStride = width * 4;
byte[] buffer = new byte[width * height * 4];

// Get a WritablePixelFormat for the BYTE_BGRA format type
WritablePixelFormat<ByteBuffer> pixelFormat = PixelFormat.getByteBgraInstance();

// Read all pixels at once
pixelReader.getPixels(x, y,
 width, height,
 pixelFormat,
 buffer,
 offset,
 scanlineStride);

The x and y coordinates of the upper-left corner of the rectangular region to be read are set to zero. The
width and height of the region are set to the width and height of the image. This sets up the arguments to
read the entire image.

You want to read the pixel data into the buffer starting at index 0, so you set the offset argument to 0.
You want to read the pixel data in BYTE_BGRA format type, which takes 4 bytes to store data for one pixel.

We have set the scanlineStride argument value, which is the length of a row data, to width * 4, so a row
data starts at the next index from where the previous row data ended.

You get an instance of the WritablePixelFormat to read the data in the BYTE_BGRA format type. Finally,
we call the getPixels() method of the PixelReader to read the pixel data. The buffer will be filled with the
pixel data when the getPixels() method returns.

Tip ■ setting the value for the scanlineStride argument and the length of the buffer array depends on
the pixelFormat argument. Other versions of the getPixels() method allows reading pixel data in different
formats.

The program in Listing 24-5 has the complete source code to read pixels in bulk. After reading all pixels,
it decodes the color components in the byte array for the pixel at (0, 0). It reads the pixel at (0, 0) using the
getColor() method. The pixel data at (0, 0) obtained through both methods are printed on the standard
output.

Listing 24-5. Reading Pixels from an Image in Bulk

// BulkPixelReading.java
package com.jdojo.image;

import java.nio.ByteBuffer;
import javafx.application.Application;
import javafx.scene.Scene;
import javafx.scene.image.Image;
import javafx.scene.image.ImageView;
import javafx.scene.image.PixelFormat;
import javafx.scene.image.PixelReader;
import javafx.scene.image.WritablePixelFormat;

Chapter 24 ■ Understanding the image api

1014

import javafx.scene.layout.HBox;
import javafx.scene.paint.Color;
import javafx.stage.Stage;

public class BulkPixelReading extends Application {
 public static void main(String[] args) {
 Application.launch(args);
 }

 @Override
 public void start(Stage stage) {
 String imagePath = "resources/picture/ksharan.jpg";
 Image image = new Image(imagePath);
 ImageView imageView = new ImageView(image);

 HBox root = new HBox(imageView);
 Scene scene = new Scene(root);
 stage.setScene(scene);
 stage.setTitle("Reading Pixels in Bulk");
 stage.show();

 // Read pixels in bulk from the image
 this.readPixelsInfo(image);
 }

 private void readPixelsInfo(Image image) {
 // Obtain the pixel reader from the image
 PixelReader pixelReader = image.getPixelReader();
 if (pixelReader == null) {
 System.out.println("Connot read pixels from the image");
 return;
 }

 // Read all pixels in a byte array in one go
 int x = 0;
 int y = 0;
 int width = (int)image.getWidth();
 int height = (int)image.getHeight();
 int offset = 0;
 int scanlineStride = width * 4;
 byte[] buffer = new byte[width * height * 4];

 // Get a WritablePixelFormat
 WritablePixelFormat<ByteBuffer> pixelFormat = PixelFormat.getByteBgraInstance();

 // Read all pixels at once
 pixelReader.getPixels(x, y,
 width, height,
 pixelFormat,
 buffer,
 offset,
 scanlineStride);

Chapter 24 ■ Understanding the image api

1015

 // Read the color of the pixel at (0, 0)
 int blue = (buffer[0] & 0xff);
 int green = (buffer[1] & 0xff);
 int red = (buffer[2] & 0xff);
 int alpha = (buffer[3] & 0xff);
 System.out.println("red=" + red + ", green=" + green +
 ", blue=" + blue + ", alpha=" + alpha);

 // Get the color of the pixel at (0, 0)
 Color c = pixelReader.getColor(0, 0);
 System.out.println("red=" + (int)(c.getRed() * 255) +
 ", green=" + (int)(c.getGreen() * 255) +
 ", blue=" + (int)(c.getBlue() * 255) +
 ", alpha=" + (int)(c.getOpacity() * 255));
 }
}

red=181, green=187, blue=65, alpha=255
red=181, green=187, blue=65, alpha=255

Writing Pixels to an Image
You can write pixels to an image or any surface that supports writing pixels. For example, you can write
pixels to a WritableImage and a Canvas.

Tip ■ an Image is a read-only pixel surface. You can read pixels from an Image. however, you cannot write
pixels to an Image. if you want to write to an image or create an image from scratch, use a WritableImage.

An instance of the PixelWriter interface is used to write pixels to a surface. A PixelWriter is provided
by the writable surface. For example, you can use the getPixelWriter() method of the Canvas and
WritableImage to obtain a PixelWriter for them.

The PixelWriter interface contains methods to write pixels to a surface and obtain the pixel format
supported by the surface:

•	 PixelFormat getPixelFormat()

•	 void setArgb(int x, int y, int argb)

•	 void setColor(int x, int y, Color c)

•	 void setPixels(int x, int y, int w, int h, PixelFormat<ByteBuffer>
pixelformat, byte[] buffer, int offset, int scanlineStride)

•	 void setPixels(int x, int y, int w, int h, PixelFormat<IntBuffer>
pixelformat, int[] buffer, int offset, int scanlineStride)

•	 <T extends Buffer> void setPixels(int x, int y, int w, int h,
PixelFormat<T> pixelformat, T buffer, int scanlineStride)

•	 void setPixels(int dstx, int dsty, int w, int h, PixelReader reader, int
srcx, int srcy)

Chapter 24 ■ Understanding the image api

1016

The getPixelFormat() method returns the pixel format in which the pixels can be written to the
surface. The setArgb() and setColor() methods allow for writing one pixel at the specified (x, y) location in
the destination surface. The setArgb() method accepts the pixel data in an integer in the INT_ARGB format
whereas the setColor() method accepts a Color object. The setPixels() methods allow for bulk pixel
writing.

You can use an instance of the WritableImage to create an image from scratch. The class contains three
constructors:

•	 WritableImage(int width, int height)

•	 WritableImage(PixelReader reader, int width, int height)

•	 WritableImage(PixelReader reader, int x, int y, int width, int height)

The first constructor creates an empty image of the specified width and height.

// Create a new empty image of 200 X 100
WritableImage newImage = new WritableImage(200, 100);

The second constructor creates an image of the specified width and height. The specified reader is
used to fill the image with pixels. An ArrayIndexOutOfBoundsException is thrown if the reader reads from
a surface that does not have the necessary number of rows and columns to fill the new image. Use this
constructor to copy the whole or part of an image. The following snippet of code creates a copy of an image.

String imagePath = "resources/picture/ksharan.jpg";
Image image = new Image(imagePath, 200, 100, true, true);

int width = (int)image.getWidth();
int height = (int)image.getHeight();

// Create a copy of the image
WritableImage newImage = new WritableImage(image.getPixelReader(), width, height);

The third constructor lets you copy a rectangular region from a surface. The (x, y) value is coordinates
of the upper-left corner of the rectangular region. The (width, height) value is the dimension of
the rectangular region to be read using the reader and the desired dimension of the new image. An
ArrayIndexOutOfBoundsException is thrown if the reader reads from a surface that does not have the
necessary number of rows and columns to fill the new image.

The WritableImage is a read-write image. Its getPixelWriter() method returns a PixelWriter to write
pixels to the image. It inherits the getPixelReader() method that returns a PixelReader to read data from
the image.

The following snippet of code creates an Image and an empty WritableImage. It reads one pixel at a
time from the Image, makes the pixel darker, and writes the same pixel to the new WritableImage. At the
end, we have created a darker copy of the original image.

Image image = new Image("resources/picture/ksharan.jpg";);
PixelReader pixelReader = image.getPixelReader();
int width = (int)image.getWidth();
int height = (int)image.getHeight();

// Create a new, empty WritableImage
WritableImage darkerImage = new WritableImage(width, height);
PixelWriter darkerWriter = darkerImage.getPixelWriter();

Chapter 24 ■ Understanding the image api

1017

// Read one pixel at a time from the source and
// write it to the destinations - one darker and one brighter
for(int y = 0; y < height; y++) {
 for(int x = 0; x < width; x++) {
 // Read the pixel from the source image
 Color color = pixelReader.getColor(x, y);

 // Write a darker pixel to the new image at the same location
 darkerWriter.setColor(x, y, color.darker());
 }
}

The program in Listing 24-6 creates an Image. It creates three instances of the WritableImage and
copies the pixels from the original image to them. The copied pixels are modified before they written to
the destination. For one destination, pixels are darkened: for one brightened, and for one, made
semi-transparent. All four images are displayed in ImageViews as shown in Figure 24-4.

Listing 24-6. Writing Pixels to an Image

// CopyingImage.java
package com.jdojo.image;

import javafx.application.Application;
import javafx.scene.Scene;
import javafx.scene.image.Image;
import javafx.scene.image.ImageView;
import javafx.scene.image.PixelReader;
import javafx.scene.image.PixelWriter;
import javafx.scene.image.WritableImage;
import javafx.scene.layout.HBox;
import javafx.scene.layout.VBox;
import javafx.scene.paint.Color;
import javafx.scene.text.Text;
import javafx.stage.Stage;

public class CopyingImage extends Application {
 public static void main(String[] args) {
 Application.launch(args);
 }

 @Override
 public void start(Stage stage) {
 String imagePath = "resources/picture/ksharan.jpg";
 Image image = new Image(imagePath, 200, 100, true, true);

 int width = (int)image.getWidth();
 int height = (int)image.getHeight();

 // Create three WritableImage instances
 // one will be a darker, one brighter, and one semi-transparent
 WritableImage darkerImage = new WritableImage(width, height);
 WritableImage brighterImage = new WritableImage(width, height);
 WritableImage semiTransparentImage = new WritableImage(width, height);

Chapter 24 ■ Understanding the image api

1018

 // Copy source pixels to the destinations
 this.createImages(image,
 darkerImage,
 brighterImage,
 semiTransparentImage,
 width,
 height);

 ImageView imageView = new ImageView(image);
 ImageView darkerView = new ImageView(darkerImage);
 ImageView brighterView = new ImageView(brighterImage);
 ImageView semiTransparentView = new ImageView(semiTransparentImage);

 HBox root = new HBox(10,
 new VBox(imageView, new Text("Original")),
 new VBox(darkerView, new Text("Darker")),
 new VBox(brighterView, new Text("Brighter")),
 new VBox(semiTransparentView, new Text("Semi-Transparent")));

 Scene scene = new Scene(root);
 stage.setScene(scene);
 stage.setTitle("Writing Pixels to an Image");
 stage.show();
 }

 private void createImages(Image image,
 WritableImage darkerImage,
 WritableImage brighterImage,
 WritableImage semiTransparentImage,
 int width, int height) {
 // Obtain the pixel reader from the image
 PixelReader pixelReader = image.getPixelReader();
 PixelWriter darkerWriter = darkerImage.getPixelWriter();
 PixelWriter brighterWriter = brighterImage.getPixelWriter();
 PixelWriter semiTransparentWriter = semiTransparentImage.getPixelWriter();

 // Read one pixel at a time from the source and
 // write it to the destinations
 for(int y = 0; y < height; y++) {
 for(int x = 0; x < width; x++) {
 Color color = pixelReader.getColor(x, y);

 // Write a darker pixel to the new image
 darkerWriter.setColor(x, y, color.darker());

 // Write a brighter pixel to the new image
 brighterWriter.setColor(x, y, color.brighter());

Chapter 24 ■ Understanding the image api

1019

 // Write a semi-transparent pixel to the new image
 semiTransparentWriter.setColor(x, y,
 Color.color(color.getRed(),
 color.getGreen(),
 color.getBlue(),
 0.50));
 }
 }
 }
}

Figure 24-4. Original image and modified images

Tip ■ it is easy to crop an image in JavaFX. Use one of the getPixels() methods of the PixelReader to
read the needed area of the image in a buffer and write the buffer to a new image. this gives you a new image
that is the cropped version of the original image.

Creating an Image from Scratch
In the previous section, we created new images by copying pixels from another image. We had altered the
color and opacity of the original pixels before writing them to the new image. That was easy because we were
working on one pixel at a time and we received a pixel as a Color object. It is also possible to create pixels
from scratch then use them to create a new image. Anyone would admit that creating a new, meaningful
image by defining its each pixel in code is not an easy task. However, JavaFX has made the process of doing
so easy.

In this section, we will create a new image with a pattern of rectangles placed in a grid-like fashion.
Each rectangle will be divided into two parts using the diagonal connecting the upper-left and lower-right
corners. The upper triangle is painted in painted in green and the lower in red. A new image will be created
and filled with the rectangles.

Creating an image from scratch involves three steps:

Create an instance of the •	 WritableImage.

Create buffer (a •	 byte array, an int array, etc.) and populate it with pixel data
depending on the pixel format you want to use for the pixels data.

Write the pixels in the buffer to the image.•	

Chapter 24 ■ Understanding the image api

1020

Let us write the code that creates the pixels for our rectangular region. Let us declare constants for the
width and height of the rectangle.

static final int RECT_WIDTH = 20;
static final int RECT_HEIGHT = 20;

We need to define a buffer (a byte array) big enough to hold data for all pixels. Each pixel in BYTE_RGB
format takes 2 bytes.

byte[] pixels = new byte[RECT_WIDTH * RECT_HEIGHT * 3];

If the region is rectangular, we need to know the height to width ration to divide the region into upper
and lower rectangles.

double ratio = 1.0 * RECT_HEIGHT/RECT_WIDTH;

The following snippet of code populates the buffer.

// Generate pixel data
for (int y = 0; y < RECT_HEIGHT; y++) {
 for (int x = 0; x < RECT_WIDTH; x++) {
 int i = y * RECT_WIDTH * 3 + x * 3;
 if (x <= y/ratio) {
 // Lower-half
 pixels[i] = -1; // red -1 means 255 (-1 & 0xff = 255)
 pixels[i+1] = 0; // green = 0
 pixels[i+2] = 0; // blue = 0
 } else {
 // Upper-half
 pixels[i] = 0; // red = 0
 pixels[i+1] = -1; // Green 255
 pixels[i+2] = 0; // blue = 0
 }
 }
}

Pixels are stored in the buffer in the row first order. The variable i inside the loop computes the position
in the buffer where the 3-byte data starts for a pixel. For example, the data for the pixel at (0, 0) starts at the
index 0; the data for the pixel at (0, 1) starts at index 3, etc. The 3 bytes for a pixel stores red, green, and blue
values in order of increasing index. Encoded values for the color components are stored in the buffer, so that
the expression “byteValue & 0xff” will produce the actual color component value between 0 and 255. If
you want a red pixel, you need to set -1 for the red component as “-1 & 0xff” produces 255. For a red color,
the green and blue components will be set to zero. A byte array initializes all elements to zero. However,
we have explicitly set them to zero in our code. For the lower-half triangle, we set the color to green. The
condition “x =<= y/ratio” is used to determine the position of a pixel whether it falls in the upper-half
triangle or the lower-half triangle. If the y/ratio is not an integer, the division of the rectangle into two
triangles may be a little off at the lower-right corner.

Chapter 24 ■ Understanding the image api

1021

Once we get the pixel data, we need to write them to a WritableImage. The following snippet of code
writes the pixels for the rectangle, once at the upper-left corner of the image.

WritableImage newImage = new WritableImage(350, 100);
PixelWriter pixelWriter = newImage.getPixelWriter();
byte[] pixels = generate pixel data...

// Our data is in BYTE_RGB format
PixelFormat<ByteBuffer> pixelFormat = PixelFormat.getByteRgbInstance();
Int xPos 0;
int yPos =0;
int offset = 0;
int scanlineStride = RECT_WIDTH * 3;
pixelWriter.setPixels(xPos, yPos,
 RECT_WIDTH, RECT_HEIGHT,
 pixelFormat,
 pixels, offset,
 scanlineStride);

The program in Listing 24-7 creates an image from scratch. It creates a pattern by writing row pixels for
the rectangular region to fill the image. Figure 24-5 shows the image.

Listing 24-7. Creating an Image from Scratch

// CreatingImage.java
package com.jdojo.image;

import java.nio.ByteBuffer;
import javafx.application.Application;
import javafx.scene.Scene;
import javafx.scene.image.ImageView;
import javafx.scene.image.PixelFormat;
import javafx.scene.image.PixelWriter;
import javafx.scene.image.WritableImage;
import javafx.scene.layout.HBox;
import javafx.stage.Stage;

public class CreatingImage extends Application {
 private static final int RECT_WIDTH = 20;
 private static final int RECT_HEIGHT = 20;

 public static void main(String[] args) {
 Application.launch(args);
 }

 @Override
 public void start(Stage stage) {
 WritableImage newImage = new WritableImage(350, 100);

 // Get the pixels data
 byte[] pixels = getPixelsData();

Chapter 24 ■ Understanding the image api

1022

 // Write pixels data to the image
 this.writePattern(newImage, pixels);

 // Display the new image in an ImageView
 ImageView newImageView = new ImageView(newImage);

 HBox root = new HBox(newImageView);
 Scene scene = new Scene(root);
 stage.setScene(scene);
 stage.setTitle("Creating an Image from Scratch");
 stage.show();
 }

 private byte[] getPixelsData() {
 // Each pixel takes 3 bytes
 byte[] pixels = new byte[RECT_WIDTH * RECT_HEIGHT * 3];

 // Height to width ratio
 double ratio = 1.0 * RECT_HEIGHT/RECT_WIDTH;

 // Generate pixels data
 for (int y = 0; y < RECT_HEIGHT; y++) {
 for (int x = 0; x < RECT_WIDTH; x++) {
 int i = y * RECT_WIDTH * 3 + x * 3;
 if (x <= y/ratio) {
 pixels[i] = -1; // red -1 means 255 (-1 & 0xff = 255)
 pixels[i+1] = 0; // green = 0
 pixels[i+2] = 0; // blue = 0
 } else {
 pixels[i] = 0; // red = 0
 pixels[i+1] = -1; // Green 255
 pixels[i+2] = 0; // blue = 0
 }
 }
 }

 return pixels;
 }

 private void writePattern(WritableImage newImage, byte[] pixels) {
 PixelWriter pixelWriter = newImage.getPixelWriter();

 // Our data is in BYTE_RGB format
 PixelFormat<ByteBuffer> pixelFormat = PixelFormat.getByteRgbInstance();

 int spacing = 5;
 int imageWidth = (int)newImage.getWidth();
 int imageHeight = (int)newImage.getHeight();

 // Roughly compute the number of rows and columns
 int rows = imageHeight/(RECT_HEIGHT + spacing);
 int columns = imageWidth/(RECT_WIDTH + spacing);

Chapter 24 ■ Understanding the image api

1023

 // Write the pixels to the image
 for (int y = 0; y < rows; y++) {
 for (int x = 0; x < columns; x++) {
 // Compute the current location inside the image where
 // the rectangular region to be written
 int xPos = x * (RECT_WIDTH + spacing);
 int yPos = y * (RECT_HEIGHT + spacing);

 // Write the pixels data at he current location
 // defined by xPos and yPos
 pixelWriter.setPixels(xPos, yPos,
 RECT_WIDTH, RECT_HEIGHT,
 pixelFormat,
 pixels, 0,
 RECT_WIDTH * 3);
 }
 }
 }
}

Figure 24-5. An image created from scratch

Saving a New Image to a FileSystem
Saving an Image to the file system is easy:

Convert the •	 Image to a BufferedImage using the fromFXImage() method of the
SwingFXUtils class.

Pass the •	 BufferedImage to the write() method of the ImageIO class.

Notice that we have to use two classes – BufferedImage and ImageIO – that are part of the standard Java
library, not the JavaFX library. The following snippet of code shows the outline of the steps involved in saving
an image to a file in the PNG format.

import java.awt.image.BufferedImage;
import java.io.File;
import java.io.IOException;
import javafx.embed.swing.SwingFXUtils;
import javafx.scene.image.Image;
import javax.imageio.ImageIO;
...

Chapter 24 ■ Understanding the image api

1024

Image image = create an image...
BufferedImage bImage = SwingFXUtils.fromFXImage(image, null);

// Save the image to the file
File fileToSave = ...
String imageFormat = "png";
try {
 ImageIO.write(bImage, imageFormat, fileToSave);
}
catch (IOException e) {
 throw new RuntimeException(e);
}

The program in Listing 24-8 has code for a utility class ImageUtil. Its static saveToFile(Image image)
method can be used to save an Image to a local file system. The method asks for a file name. The user can
select a PNG or a JPEG format for the image.

Listing 24-8. A Utility Class to Save an Image to a File

// ImageUtil.java
package com.jdojo.image;

import java.awt.image.BufferedImage;
import java.io.File;
import java.io.IOException;
import javafx.embed.swing.SwingFXUtils;
import javafx.scene.image.Image;
import javafx.stage.FileChooser;
import static javafx.stage.FileChooser.ExtensionFilter;
import javax.imageio.ImageIO;

public class ImageUtil {
 public static void saveToFile(Image image) {
 // Ask the user for the file name
 FileChooser fileChooser = new FileChooser();
 fileChooser.setTitle("Select an image file name");
 fileChooser.setInitialFileName("untitled");
 ExtensionFilter pngExt = new ExtensionFilter("PNG Files", "*.png");
 ExtensionFilter jpgExt =
 new ExtensionFilter("JPEG Files", "*.jpg", "*.jpeg");
 fileChooser.getExtensionFilters().addAll(pngExt, jpgExt);

 File outputFile = fileChooser.showSaveDialog(null);
 if (outputFile == null) {
 return;
 }

 ExtensionFilter selectedExt = fileChooser.getSelectedExtensionFilter();
 String imageFormat = "png";
 if (selectedExt == jpgExt) {
 imageFormat = "jpg";
 }

Chapter 24 ■ Understanding the image api

1025

 // Check for the file extension. Add oen, iff not specified
 String fileName = outputFile.getName().toLowerCase();
 switch (imageFormat) {
 case "jpg":
 if (!fileName.endsWith(".jpeg") && !fileName.endsWith(".jpg")) {
 outputFile = new File(outputFile.getParentFile(),
 outputFile.getName() + ".jpg");
 }
 break;
 case "png":
 if (!fileName.endsWith(".png")) {
 outputFile = new File(outputFile.getParentFile(),
 outputFile.getName() + ".png");
 }
 }

 // Convert the image to a buffered image
 BufferedImage bImage = SwingFXUtils.fromFXImage(image, null);

 // Save the image to the file
 try {
 ImageIO.write(bImage, imageFormat, outputFile);
 }
 catch (IOException e) {
 throw new RuntimeException(e);
 }
 }
}

The program in Listing 24-9 shows how to save an image to a file. Click the Save Image button to save
the picture to a file. It opens a file chooser dialog to let you select a file name. If you cancel the file chooser
dialog, the saving process is aborted.

Listing 24-9. Saving an Image to a File

// SaveImage.java
package com.jdojo.image;

import javafx.application.Application;
import javafx.scene.Scene;
import javafx.scene.control.Button;
import javafx.scene.image.Image;
import javafx.scene.image.ImageView;
import javafx.scene.layout.VBox;
import javafx.stage.Stage;

public class SaveImage extends Application {
 public static void main(String[] args) {
 Application.launch(args);
 }

Chapter 24 ■ Understanding the image api

1026

 @Override
 public void start(Stage stage) {
 String imagePath = "resources/picture/ksharan.jpg";
 Image image = new Image(imagePath);
 ImageView imageView = new ImageView(image);

 Button saveBtn = new Button("Save Image");
 saveBtn.setOnAction(e -> ImageUtil.saveToFile(image));

 VBox root = new VBox(10, imageView, saveBtn);
 Scene scene = new Scene(root);
 stage.setScene(scene);
 stage.setTitle("Saving an Image to a File");
 stage.show();
 }
}

Taking the Snapshot of a Node and a Scene
JavaFX allows you to take a snapshot of a Node and a Scene as they will appear in the next frame. You get the
snapshot in a WritableImage, which means you can perform all pixel-level operations after you take the
snapshot. The Node and Scene classes contain a snapshot() method to accomplish this.

Taking the Snapshot of a Node
The Node class contains an overloaded snapshot() method:

•	 WritableImage snapshot(SnapshotParameters params, WritableImage image)

•	 void snapshot(Callback<SnapshotResult,Void> callback, SnapshotParameters
params, WritableImage image)

The first version of the snapshot() method is synchronous whereas the second one is asynchronous.
The method lets you specify an instance of the SnapshotParameters class that contains the rendering
attributes for the snapshot. If this is null, default values will be used. You can set the following attributes for
the snapshot:

A fill color•	

A transform•	

A viewport•	

A camera•	

A depth buffer•	

By default, the fill color is white; no transform and viewport are used; a ParallelCamera is used; and,
the depth buffer is set to false. Note that these attributes are used on the node only while taking its snapshot.

You can specify a WritableImage in the snapshot() method that will hold the snapshot of the node. If
this is null, a new WritableImage is created. If the specified WritableImage is smaller than the node, the
node will be clipped to fit the image size.

The first version of the snapshot() method returns the snapshot in a WritableImage. The image is
either the one that is passed as the parameter or a new one created by the method.

Chapter 24 ■ Understanding the image api

1027

The second, asynchronous version of the snapshot() method accepts a Callback object whose call()
method is called. A SnapshotResult object is passed to the call() method, which can be used to obtain the
snapshot image, the source node, and the snapshot parameters using the following methods:

•	 WritableImage getImage()

•	 SnapshotParameters getSnapshotParameters()

•	 Object getSource()

Tip ■ the snapshot() method takes the snapshot of the node using the boundsInParent property of the
node. that is, the snapshot contains all effects and transformations applied to the node. if the node is being
animated, the snapshot will include the animated state of the node at the time it is taken.

The program in Listing 24-10 shows how to take a snapshot of a TextField node. It displays a Label,
a TextField, and two Buttons in a GridPane. Buttons are used to take the snapshot of the TextField
synchronously and asynchronously. Click one of the Buttons to take a snapshot. A file save dialog appears
for you to enter the file name for the saved snapshot. The syncSnapshot() and asyncSnapshot() methods
contain the logic to take the snapshot. For the snapshot, the fill is set to red, and a Scale and a Rotate
transforms are applied. Figure 24-6 shows the snapshot.

Listing 24-10. Taking a Snapshot of a Node

// NodeSnapshot.java
package com.jdojo.image;

import javafx.application.Application;
import javafx.scene.Node;
import javafx.scene.Scene;
import javafx.scene.SnapshotParameters;
import javafx.scene.SnapshotResult;
import javafx.scene.control.Button;
import javafx.scene.control.Label;
import javafx.scene.control.TextField;
import javafx.scene.image.WritableImage;
import javafx.scene.layout.GridPane;
import javafx.scene.paint.Color;
import javafx.scene.transform.Rotate;
import javafx.scene.transform.Scale;
import javafx.scene.transform.Transform;
import javafx.stage.Stage;
import javafx.util.Callback;

public class NodeSnapshot extends Application {
 public static void main(String[] args) {
 Application.launch(args);
 }

Chapter 24 ■ Understanding the image api

1028

 @Override
 public void start(Stage stage) {
 GridPane root = new GridPane();

 Label nameLbl = new Label("Name:");
 TextField nameField = new TextField("Prema");

 Button syncSnapshotBtn = new Button("Synchronous Snapshot");
 syncSnapshotBtn.setOnAction(e -> syncSnapshot(nameField));

 Button asyncSnapshotBtn = new Button("Asynchronous Snapshot");
 asyncSnapshotBtn.setOnAction(e -> asyncSnapshot(nameField));

 root.setHgap(10);
 root.addRow(0, nameLbl, nameField, syncSnapshotBtn);
 root.add(asyncSnapshotBtn, 2, 1);

 Scene scene = new Scene(root);
 stage.setScene(scene);
 stage.setTitle("Taking the Snapshot of a Node");
 stage.show();
 }

 private void syncSnapshot(Node node) {
 SnapshotParameters params = getParams();
 WritableImage image = node.snapshot(params, null);
 ImageUtil.saveToFile(image);
 }

 private void asyncSnapshot(Node node) {
 // Create a Callback. Its call() method is called when
 // the snapshot is ready. The getImage() method returns the snapshot
 Callback<SnapshotResult, Void> callback = (SnapshotResult result) -> {
 WritableImage image = result.getImage();
 ImageUtil.saveToFile(image);
 return null;
 };

 SnapshotParameters params = getParams();
 node.snapshot(callback, params, null);
 }

 private SnapshotParameters getParams() {
 // Set the fill to red and rotate the node by 30 degrees
 SnapshotParameters params = new SnapshotParameters();
 params.setFill(Color.RED);
 Transform tf = new Scale(0.8, 0.8);
 tf = tf.createConcatenation(new Rotate(10));
 params.setTransform(tf);
 return params;
 }
}

Chapter 24 ■ Understanding the image api

1029

Taking the Snapshot of a Scene
The Scene class contains an overloaded snapshot() method:

•	 WritableImage snapshot(WritableImage image)

•	 void snapshot(Callback<SnapshotResult,Void> callback,
WritableImage image)

Compare the snapshot() methods of the Scene class with that of the Node class. The only difference is
that the snapshot() method in the Scene class does not contain the SnapshotParameters argument. This
means that you cannot customize the scene snapshot. Except this, the method works the same way as it
works for the Node class, as discussed in the previous section.

The first version of the snapshot() method is synchronous whereas the second one is asynchronous.
You can specify a WritableImage to the method that will hold the snapshot of the node. If this is null, a new
WritableImage is created. If the specified WritableImage is smaller than the scene, the scene will be clipped
to fit the image size.

The program in Listing 24-11 shows how to take a snapshot of a scene. The main logic in the program
is essentially the same as that of the program in Listing 24-10, except that, this time, it takes a snapshot of a
scene. Figure 24-7 shows the snapshot.

Listing 24-11. Taking a Snapshot of a Scene

// SceneSnapshot.java
package com.jdojo.image;

import javafx.application.Application;
import javafx.scene.Scene;
import javafx.scene.control.Button;
import javafx.scene.control.Label;
import javafx.scene.control.TextField;
import javafx.scene.image.WritableImage;
import javafx.scene.layout.GridPane;;
import javafx.scene.SnapshotResult;
import javafx.util.Callback;
import javafx.stage.Stage;

public class SceneSnapshot extends Application {
 public static void main(String[] args) {
 Application.launch(args);
 }

Figure 24-6. The snapshot of a node

Chapter 24 ■ Understanding the image api

1030

 @Override
 public void start(Stage stage) {
 GridPane root = new GridPane();
 Scene scene = new Scene(root);

 Label nameLbl = new Label("Name:");
 TextField nameField = new TextField("Prema");

 Button syncSnapshotBtn = new Button("Synchronous Snapshot");
 syncSnapshotBtn.setOnAction(e -> syncSnapshot(scene));

 Button asyncSnapshotBtn = new Button("Asynchronous Snapshot");
 asyncSnapshotBtn.setOnAction(e -> asyncSnapshot(scene));

 root.setHgap(10);
 root.addRow(0, nameLbl, nameField, syncSnapshotBtn);
 root.add(asyncSnapshotBtn, 2, 1);

 stage.setScene(scene);
 stage.setTitle("Taking the Snapshot of a Scene");
 stage.show();
 }

 private void syncSnapshot(Scene scene) {
 WritableImage image = scene.snapshot(null);
 ImageUtil.saveToFile(image);
 }

 private void asyncSnapshot(Scene scene) {
 // Create a Callback. Its call() method is called when
 // the snapshot is ready. The getImage() method returns the snapshot
 Callback<SnapshotResult, Void> callback = (SnapshotResult result) -> {
 WritableImage image = result.getImage();
 ImageUtil.saveToFile(image);
 return null;
 };

 scene.snapshot(callback, null);
 }
}

Figure 24-7. The snapshot of a scene

Chapter 24 ■ Understanding the image api

1031

Summary
JavaFX provides the Image API that lets you load and display images, and read/write raw image pixels. All
classes in the API are in the javafx.scene.image package. The API lets you perform the following operations
on images: load an image in memory, display an image as a node in a scene graph, read pixels from an
image, write pixels to an image, and convert a node in a scene graph to an image and save it to the local file
system.

An instance of the Image class is an in-memory representation of an image. You can also construct an
image in a JavaFX application by supplying pixels to a WritableImage instance. The Image class supports
BMP, PNG, JPEG, and GIF image formats. It loads an image from a source, which can be specified as a string
URL or an InputStream. It can also scale the original image while loading.

An instance of the ImageView class is used to display an image loaded in an Image object. The ImageView
class inherits from the Node class, which makes an ImageView suitable to be added to a scene graph.

Images are constructed from pixels. JavaFX supports reading pixels from an image, writing pixels to
an image, and creating a snapshot of the scene. It supports creating an image from scratch. If an image is
writable, you can also modify the mage in memory and save it to the file system. The image API provides
access to each pixel in the image. It supports reading and writing one pixel or a chunk of pixel at a time.

Data for pixels in an image may be stored in different formats. A PixelFormat defines how the data for a
pixel for a given format is stored. A WritablePixelFormat represents a destination format to write pixels with
full pixel color information.

The PixelReader and PixelWriter interfaces define methods to read data from an Image and write data
to a WritableImage. Besides an Image, you can read pixels from and write pixels to any surface that contain
pixels.

JavaFX allows you to take a snapshot of a Node and a Scene as they will appear in the next frame. You get
the snapshot in a WritableImage, which means you can perform all pixel-level operations after you take the
snapshot. The Node and Scene classes contain a snapshot() method to accomplish this.

The next chapter will discuss how to draw on a canvas using the Canvas API.

1033

Chapter 25

Drawing on a Canvas

In this chapter, you will learn:

What the Canvas API is•	

How to create a canvas•	

How to draw on a canvas such as basic shapes, text, paths, and images•	

How to clear the canvas area•	

How to save and restore the drawing states in a •	 GraphicsContext

What Is the Canvas API?
Through the javafx.scene.canvas package, JavaFX provides the Canvas API that offers a drawing surface to
draw shapes, images, and text using drawing commands. The API also gives pixel-level access to the drawing
surface where you can write any pixels on the surface. The API consists of only two classes:

•	 Canvas

•	 GraphicsContext

A canvas is a bitmap image, which is used as a drawing surface. An instance of the Canvas class
represents a canvas. It inherits from the Node class. Therefore, a canvas is a node. It can be added to a scene
graph, and effects and transformations can be applied to it.

A canvas has a graphics context associated with it that is used to issue drawing commands to the
canvas. An instance of the GraphicsContext class represents a graphics context.

Creating a Canvas
The Canvas class has two constructors. The no-args constructor creates an empty canvas. Later, you can
set the size of the canvas using its width and height properties. The other constructor takes the width and
height of the canvas as parameters:

// Create a Canvas of zero width and height
Canvas canvas = new Canvas();

Chapter 25 ■ Drawing on a Canvas

1034

// Set the canvas size
canvas.setWidth(400);
canvas.setHeight(200);

// Create a 400X200 canvas
Canvas canvas = new Canvas(400, 200);

Drawing on the Canvas
Once you create a canvas, you need to get its graphics context using the getGraphicsContext2D() method,
as in the following snippet of code:

// Get the graphics context of the canvas
GraphicsContext gc = canvas.getGraphicsContext2D();

All drawing commands are provided in the GraphicsContext class as methods. Drawings that fall
outside the bounds of the canvas are clipped. The canvas uses a buffer. The drawing commands push
necessary parameters to the buffer. It is important to note that you should use the graphics context from
any one thread before adding the Canvas to the scene graph. Once the Canvas is added to the scene graph,
the graphics context should be used only on the JavaFX Application Thread. The GraphicsContext class
contains methods to draw the following types of objects:

Basic shapes•	

Text•	

Paths•	

Images•	

Pixels•	

Drawing Basic Shapes
The GraphicsContext class provides two types of methods to draw the basic shapes. The method fillXxx()
draws a shape Xxx and fills it with the current fill paint. The method strokeXxx() draws a shape Xxx with the
current stroke. Use the following methods for drawing shapes:

•	 fillArc()

•	 fillOval()

•	 fillPolygon()

•	 fillRect()

•	 fillRoundRect()

•	 strokeArc()

•	 strokeLine()

•	 strokeOval()

Chapter 25 ■ Drawing on a Canvas

1035

•	 strokePolygon()

•	 strokePolyline()

•	 strokeRect()

•	 strokeRoundRect()

The following snippet of code draws a rectangle. The stroke color is red and the stroke width is 2px. The
upper-left corner of the rectangle is at (0, 0). The rectangle is 100px wide and 50px high.

Canvas canvas = new Canvas(200, 100);
GraphicsContext gc = canvas.getGraphicsContext2D();
gc.setLineWidth(2.0);
gc.setStroke(Color.RED);
gc.strokeRect(0, 0, 100, 50);

Drawing Text
You can draw text using the fillText() and strokeText() methods of the GraphicsContext using the
following snippets of code:

•	 void strokeText(String text, double x, double y)

•	 void strokeText(String text, double x, double y, double maxWidth)

•	 void fillText(String text, double x, double y)

•	 void fillText(String text, double x, double y, double maxWidth)

Both methods are overloaded. One version lets you specify the text and its position. The other version
lets you specify the maximum width of the text as well. If the actual text width exceeds the specified
maximum width, the text is resized to fit the specified the maximum width. The following snippet of code
draws two strings. Figure 25-1 shows the two strings on the canvas.

Canvas canvas = new Canvas(200, 50);
GraphicsContext gc = canvas.getGraphicsContext2D();
gc.setLineWidth(1.0);
gc.setStroke(Color.BLACK);
gc.strokeText("Drawing Text", 10, 10);
gc.strokeText("Drawing Text", 100, 10, 40);

Figure 25-1. Drawing text on a canvas

Chapter 25 ■ Drawing on a Canvas

1036

Drawing Paths
Use can use path commands and SVG path strings to create a shape of your choice. A path consists of
multiple subpaths. The following methods are used to draw paths:

•	 beginPath()

•	 lineTo(double x1, double y1)

•	 moveTo(double x0, double y0)

•	 quadraticCurveTo(double xc, double yc, double x1, double y1)

•	 appendSVGPath(String svgpath)

•	 arc(double centerX, double centerY, double radiusX, double radiusY,
double startAngle, double length)

•	 arcTo(double x1, double y1, double x2, double y2, double radius)

•	 bezierCurveTo(double xc1, double yc1, double xc2, double yc2, double x1,
double y1)

•	 closePath()

•	 stroke()

•	 fill()

The beginPath() and closePath() methods start and close a path, respectively. Methods such as
arcTo() and lineTo() are the path commands to draw a specific type of subpath. Do not forget to call the
stroke() or fill() method at the end, which will draw an outline or fill the path. The following snippet of
code draws a triangle, as shown in Figure 25-2.

Canvas canvas = new Canvas(200, 50);
GraphicsContext gc = canvas.getGraphicsContext2D();
gc.setLineWidth(2.0);
gc.setStroke(Color.BLACK);

gc.beginPath();
gc.moveTo(25, 0);
gc.appendSVGPath("L50, 25L0, 25");
gc.closePath();
gc.stroke();

Figure 25-2. Drawing a triangle

Chapter 25 ■ Drawing on a Canvas

1037

Drawing Images
You can draw an image on the canvas using the drawImage() method. The method has three versions:

•	 void drawImage(Image img, double x, double y)

•	 void drawImage(Image img, double x, double y, double w, double h)

•	 void drawImage(Image img, double sx, double sy, double sw, double sh,
double dx, double dy, double dw, double dh)

You can draw the whole or part of the image. The drawn image can be stretched or shortened on the
canvas. The following snippet of code draws the whole image in its original size on the canvas at (10, 10):

Image image = new Image("your_image_URL");
Canvas canvas = new Canvas(400, 400);
GraphicsContext gc = canvas.getGraphicsContext2D();
gc.drawImage(image, 10, 10);

The following statement will draw the whole image on the canvas by resizing it to fit in a 100px wide by
150px high area. Whether the image is stretched or shortened depends on its original size.

// Draw the whole image in 100X150 area at (10, 10)
gc.drawImage(image, 10, 10, 100, 150);

The following statement will draw part of an image on the canvas. Here it is assumed that the source
image is bigger than 100px by 150px. The image part being drawn is 100px wide and 150px high and its
upper left corner is at (0, 0) in the source image. The part of the image is drawn on the canvas at (10, 10) and
it is stretched to fit 200px wide and 200px high area on the canvas.

// Draw part of the image in 200X200 area at (10, 10)
gc.drawImage(image, 0, 0, 100, 150, 10, 10, 200, 200);

Writing Pixels
You can also directly modify pixels on the canvas. The getPixelWriter() method of the GraphicsContext
object returns a PixelWriter that can be used to write pixels to the associated canvas:

Canvas canvas = new Canvas(200, 100);
GraphicsContext gc = canvas.getGraphicsContext2D();
PixelWriter pw = gc.getPixelWriter();

Once you get a PixelWriter, you can write pixels to the canvas. Chapter 24 presented more details on
how to write pixels using a PixelWriter.

Clearing the Canvas Area
The canvas is a transparent area. Pixels will have colors and opacity depending on what is drawn at those
pixels. Sometimes you may want to clear the whole or part of the canvas so the pixels are transparent again.
The clearRect() method of the GraphicsContext lets you clears a specified area on the canvas:

// Clear the top-left 100X100 rectangular area from the canvas
gc.clearRect(0, 0, 100, 100);

Chapter 25 ■ Drawing on a Canvas

1038

Saving and Restoring the Drawing States
The current settings for the GraphicsContext are used for all subsequent drawing. For example, if you set the
line width to 5px, all subsequent strokes will be 5px in width. Sometimes you may want to modify the state of
the graphics context temporarily, and after some time, restore the state that existed before the modification.

The save() and restore() methods of the GraphicsContext object let you save the current state and
restore it afterward, respectively. Before you use these methods, let’s discuss its need. Suppose you want to
issue the following commands to the GraphicsContext object in order:

Draw a rectangle without any effects•	

Draw a string with a reflection effect•	

Draw a rectangle without any effects•	

The following is the first (and incorrect) attempt of achieving this:

Canvas canvas = new Canvas(200, 120);
GraphicsContext gc = canvas.getGraphicsContext2D();
gc.strokeRect(10, 10, 50, 20);
gc.setEffect(new Reflection());
gc.strokeText("Chatar", 70, 20);
gc.strokeRect(120, 10, 50, 20);

Figure 25-3 shows the drawing of the canvas. Notice that the reflection effect was also applied to the
second rectangle, which was not wanted.

Figure 25-3. Drawing shapes and text

You can fix the problem by setting the Effect to null after you draw the text. You had modified several
properties for the GraphicsContext then had to restore them all manually. Sometimes a GraphicsContext
may be passed to your code but you do not want to modify its existing state.

The save() method stores the current state of the GraphicsContext on a stack. The restore() method
restores the state of the GraphicsContext to the last saved state. Figure 25-4 shows the results of this. You can
fix the problem using the following methods:

Canvas canvas = new Canvas(200, 120);
GraphicsContext gc = canvas.getGraphicsContext2D();

gc.strokeRect(10, 10, 50, 20);

// Save the current state
gc.save();

// Modify the current state to add an effect and darw the text
gc.setEffect(new Reflection());
gc.strokeText("Chatar", 70, 20);

Chapter 25 ■ Drawing on a Canvas

1039

// Restore the state what it was when the last save() was called and draw the second rectangle
gc.restore();
gc.strokeRect(120, 10, 50, 20);

Figure 25-4. Drawing shapes and text using save() and restore() methods

A Canvas Drawing Example
The program in Listing 25-1 shows how to draw basic shapes, text, images, and row pixels to a canvas.
Figure 25-5 shows the resulting canvas with all drawings.

Listing 25-1. Drawing on a Canvas

// CanvasTest.java
package com.jdojo.canvas;

import java.nio.ByteBuffer;
import javafx.application.Application;
import javafx.scene.Scene;
import javafx.scene.canvas.Canvas;
import javafx.scene.canvas.GraphicsContext;
import javafx.scene.image.Image;
import javafx.scene.image.PixelFormat;
import javafx.scene.image.PixelWriter;
import javafx.scene.layout.Pane;
import javafx.scene.paint.Color;
import javafx.stage.Stage;

public class CanvasTest extends Application {
 private static final int RECT_WIDTH = 20;
 private static final int RECT_HEIGHT = 20;

 public static void main(String[] args) {
 Application.launch(args);
 }

 @Override
 public void start(Stage stage) {
 Canvas canvas = new Canvas(400, 100);
 GraphicsContext gc = canvas.getGraphicsContext2D();

 // Set line width and fill color
 gc.setLineWidth(2.0);
 gc.setFill(Color.RED);

 // Draw a rounded rectangle
 gc.strokeRoundRect(10, 10, 50, 50, 10, 10);

Chapter 25 ■ Drawing on a Canvas

1040

 // Fill an oval
 gc.fillOval(70, 10, 50, 20);

 // Draw text
 gc.strokeText("Hello Canvas", 10, 85);

 // Draw an Image
 String imagePath = "resources/picture/ksharan.jpg";
 Image image = new Image(imagePath);
 gc.drawImage(image, 130, 10, 60, 80);

 // Write custom pixels to create a pattern
 writePixels(gc);

 Pane root = new Pane();
 root.getChildren().add(canvas);
 Scene scene = new Scene(root);
 stage.setScene(scene);
 stage.setTitle("Drawing on a Canvas");
 stage.show();
 }

 private void writePixels(GraphicsContext gc) {
 byte[] pixels = this.getPixelsData();
 PixelWriter pixelWriter = gc.getPixelWriter();

 // Our data is in BYTE_RGB format
 PixelFormat<ByteBuffer> pixelFormat = PixelFormat.getByteRgbInstance();

 int spacing = 5;
 int imageWidth = 200;
 int imageHeight = 100;

 // Roughly compute the number of rows and columns
 int rows = imageHeight/(RECT_HEIGHT + spacing);
 int columns = imageWidth/(RECT_WIDTH + spacing);

 // Write the pixels to the canvas
 for (int y = 0; y < rows; y++) {
 for (int x = 0; x < columns; x++) {
 int xPos = 200 + x * (RECT_WIDTH + spacing);
 int yPos = y * (RECT_HEIGHT + spacing);
 pixelWriter.setPixels(xPos, yPos,
 RECT_WIDTH, RECT_HEIGHT,
 pixelFormat,
 pixels, 0,
 RECT_WIDTH * 3);
 }
 }
 }

Chapter 25 ■ Drawing on a Canvas

1041

 private byte[] getPixelsData() {
 // Each pixel in the w X h region will take 3 bytes
 byte[] pixels = new byte[RECT_WIDTH * RECT_HEIGHT * 3];

 // Height to width ration
 double ratio = 1.0 * RECT_HEIGHT/RECT_WIDTH;

 // Generate pixel data
 for (int y = 0; y < RECT_HEIGHT; y++) {
 for (int x = 0; x < RECT_WIDTH; x++) {
 int i = y * RECT_WIDTH * 3 + x * 3;
 if (x <= y/ratio) {
 pixels[i] = -1; // red -1 means 255 (-1 & 0xff = 255)
 pixels[i+1] = 0; // green = 0
 pixels[i+2] = 0; // blue = 0
 } else {
 pixels[i] = 0; // red = 0
 pixels[i+1] = -1; // Green 255
 pixels[i+2] = 0; // blue = 0
 }
 }
 }
 return pixels;
 }
}

Figure 25-5. A canvas with shapes, text, images, and raw pixels on drawn on it

Summary
Through the javafx.scene.canvas package, JavaFX provides the Canvas API that offers a drawing surface to
draw shapes, images, and text using drawing commands. The API also gives pixel-level access to the drawing
surface where you can write any pixels on the surface. The API consists of only two classes: Canvas and
GraphicsContext. A canvas is a bitmap image, which is used as a drawing surface. An instance of the Canvas
class represents a canvas. It inherits from the Node class. Therefore, a canvas is a node. It can be added to a
scene graph, and effects and transformations can be applied to it. A canvas has a graphics context associated
with it that is used to issue drawing commands to the canvas. An instance of the GraphicsContext class
represents a graphics context.

Chapter 25 ■ Drawing on a Canvas

1042

The Canvas class contains a getGraphicsContext2D() method that returns an instance of the
GraphicsContext class. After obtaining the GraphicsContext of a canvas, you issue drawing commands to
the GraphicsContext that performs the drawing.

Drawings falling outside the bounds of the canvas are clipped. The canvas uses a buffer. The drawing
commands push necessary parameters to the buffer. The GraphicsContext of a canvas can be used from
any one thread before the canvas is added to the scene graph. Once the canvas is added to the scene graph,
the graphics context should be used only on the JavaFX Application Thread. The GraphicsContext class
contains methods to draw the following types of objects: basic shapes, text, paths, images, and pixels.

The next chapter will discuss how to use the drag-and-drop gesture to transfer data between nodes in
the same JavaFX application, between two different JavaFX applications, and between a JavaFX application
and a native application.

1043

Chapter 26

Understanding Drag and Drop

In this chapter, you will learn:

What a press-drag-release gesture is•	

How to use a dragboard to facilitate data transfers•	

How to initiate and detect a drag-and-drop gesture•	

How to transfer data from the source to the target using a drag-and-drop gesture•	

How to transfer images using a drag-and-drop gesture•	

How to transfer custom data between the source and the target using a drag-and-•	
drop gesture

What Is a Press-Drag-Release Gesture?
A press-drag-release gesture is a user action of pressing a mouse button, dragging the mouse with the pressed
button, and releasing the button. The gesture can be initiated on a scene or a node. Several nodes and scenes
may participate in a single press-drag-release gesture. The gesture is capable of generating different types of
events and delivering those events to different nodes. The type of generated events and nodes receiving the
events depends on the purpose of the gesture. A node can be dragged for different purposes:

You may want to change the shape of a node by dragging its boundaries or move it •	
by dragging it to a new location. In this case, the gesture involves only one node: the
node on which the gesture was initiated.

You may want to drag a node and drop it onto another node to connect them in •	
some fashion, for example, connecting two nodes with a symbol in a flow chart. In
this case, the drag gesture involves multiple nodes. When the source node is dropped
onto the target node, an action takes place.

You can drag a node and drop it onto another node to transfer data from the source •	
node to the target node. In this case, the drag gesture involves multiple nodes. A data
transfer occurs when the source node is dropped.

JavaFX supports three types of drag gestures:

A simple press-drag-release gesture•	

A full press-drag-release gesture•	

A drag-and-drop gesture•	

Chapter 26 ■ Understanding drag and drop

1044

This chapter will focus mainly on the third type of gesture: the drag-and-drop gesture. It is essential to
understand the first two types of gestures to gain full insight into the drag-and-drop gesture. I will discuss the
first two types of gestures briefly with a simple example of each type.

A Simple Press-Drag-Release Gesture
The simple press-drag-release gesture is the default drag gesture. It is used when the drag gesture involves
only one node—the node on which the gesture was initiated. During the drag gesture, all MouseDragEvent
types—mouse-drag entered, mouse-drag over, mouse-drag exited, mouse, and mouse-drag released—are
delivered only to the gesture source node. In this case, when the mouse button is pressed, the topmost node
is picked and all subsequent mouse events are delivered to that node until the mouse button is released.
When the mouse is dragged onto another node, the node on which the gesture was started is still under the
cursor and, therefore, no other nodes receive the events until the mouse button is released.

The program in Listing 26-1 demonstrates a case of the simple press-drag-release gesture. It adds two
TextFields to a scene: one is called the source node and the other the target node. Event handlers are added
to both nodes. The target node adds MouseDragEvent handlers to detect any mouse-drag event on it. Run
the program, press the mouse button on the source node, drag it onto the target node, and, finally, release
the mouse button. The output that follows shows that the source node receives all mouse-drag events. The
target node does not receive any mouse-drag events. This is the case of a simple press-drag-release gesture
where the node initiating the drag gesture receives all mouse-drag events.

Listing 26-1. Demonstrating a Simple Press-Drag-Release Gesture

// SimplePressDragRelease.java
package com.jdojo.dnd;

import javafx.application.Application;
import javafx.scene.Scene;
import javafx.scene.control.Label;
import javafx.scene.control.TextField;
import javafx.scene.layout.GridPane;
import javafx.stage.Stage;

public class SimplePressDragRelease extends Application {
 TextField sourceFld = new TextField("Source Node");
 TextField targetFld = new TextField("Target node");

 public static void main(String[] args) {
 Application.launch(args);
 }

 @Override
 public void start(Stage stage) {
 // Build the UI
 GridPane root = getUI();

 // Add event handlers
 this.addEventHanders();

Chapter 26 ■ Understanding drag and drop

1045

 Scene scene = new Scene(root);
 stage.setScene(scene);
 stage.setTitle("A simple press-drag-release gesture");
 stage.show();
 }

 private GridPane getUI() {
 GridPane pane = new GridPane();
 pane.setHgap(5);
 pane.setVgap(20);
 pane.addRow(0, new Label("Source Node:"), sourceFld);
 pane.addRow(1, new Label("Target Node:"), targetFld);
 return pane;
 }

 private void addEventHanders() {
 // Add mouse event handlers for the source
 sourceFld.setOnMousePressed(e -> print("Source: pressed"));
 sourceFld.setOnMouseDragged(e -> print("Source: dragged"));
 sourceFld.setOnDragDetected(e -> print("Source: dragged detected"));
 sourceFld.setOnMouseReleased(e -> print("Source: released"));

 // Add mouse event handlers for the target
 targetFld.setOnMouseDragEntered(e -> print("Target: drag entered"));
 targetFld.setOnMouseDragOver(e -> print("Target: drag over"));
 targetFld.setOnMouseDragReleased(e -> print("Target: drag released"));
 targetFld.setOnMouseDragExited(e -> print("Target: drag exited"));
 }

 private void print(String msg) {
 System.out.println(msg);
 }
}

Source: Mouse pressed
Source: Mouse dragged
Source: Mouse dragged detected
Source: Mouse dragged
Source: Mouse dragged
...
Source: Mouse released

Chapter 26 ■ Understanding drag and drop

1046

Note that the drag-detected event is generated once after the mouse is dragged. The MouseEvent object
has a dragDetect flag, which can be set in the mouse-pressed and mouse-dragged events. If it is set to true,
the subsequent event that is generated is the drag-detected event. The default is to generate it after the
mouse-dragged event. If you want to generate it after the mouse-pressed event, not the mouse-dragged
event, you need to modify the event handlers:

sourceFld.setOnMousePressed(e -> {
 print("Source: Mouse pressed");

 // Generate drag detect event after the current mouse pressed event
 e.setDragDetect(true);
});

sourceFld.setOnMouseDragged(e -> {
 print("Source: Mouse dragged");

 // Suppress the drag detected default event generation after mouse dragged
 e.setDragDetect(false);
});

A Full Press-Drag-Release Gesture
When the source node of a drag gesture receives the drag-detected event, you can start a full press-drag-
release gesture by calling the startFullDrag() method on the source node. The startFullDrag() method
exists in both Node and Scene classes, allowing you to start a full press-drag-release gesture for a node and a
scene. I will simply use only the term node during this discussion.

Tip ■ the startFullDrag() method can only be called from the drag-detected event handler. Calling this
method from any other place throws an IllegalStateException.

You need to do one more set up to see the full press-drag-release gesture in action. The source node of
the drag gesture will still receive all mouse-drag events as it is under the cursor when a drag is happening.
You need to set the mouseTransparent property of the gesture source to false so the node below it will be
picked and mouse-drag events will be delivered to that node. Set this property to true in the mouse-pressed
event and set it back to false in the mouse-released event.

The program in Listing 26-2 demonstrates a full press-drag-release gesture. The program is similar to
the one show in Listing 26-1, except for the following:

In the mouse-pressed event handler for the source node, the •	 mouseTransparent
property for the source node is set to false. It is set back to true in the mouse-released
event handler.

In the drag-detected event handler, the •	 startFullDrag() method is called on the
source node.

Run the program, press the mouse button on the source node, drag it onto the target node, and, finally,
release the mouse button. The output that follows shows that the target node receives mouse-drag events as
the mouse is dragged inside its bounds. This is the case of a full press-drag-release gesture where the node
over which the mouse drag takes place receives the mouse-drag events.

Chapter 26 ■ Understanding drag and drop

1047

Listing 26-2. Demonstrating a Full Press-Drag-Release Gesture

// FullPressDragRelease.java
package com.jdojo.dnd;

import javafx.application.Application;
import javafx.scene.Scene;
import javafx.scene.control.Label;
import javafx.scene.control.TextField;
import javafx.scene.layout.GridPane;
import javafx.stage.Stage;

public class FullPressDragRelease extends Application {
 TextField sourceFld = new TextField("Source Node");
 TextField targetFld = new TextField("Target node");

 public static void main(String[] args) {
 Application.launch(args);
 }

 @Override
 public void start(Stage stage) {
 // Build the UI
 GridPane root = getUI();

 // Add event handlers
 this.addEventHanders();

 Scene scene = new Scene(root);
 stage.setScene(scene);
 stage.setTitle("A full press-drag-release gesture");
 stage.show();
 }

 private GridPane getUI() {
 GridPane pane = new GridPane();
 pane.setHgap(5);
 pane.setVgap(20);
 pane.addRow(0, new Label("Source Node:"), sourceFld);
 pane.addRow(1, new Label("Target Node:"), targetFld);
 return pane;
 }

 private void addEventHanders() {
 // Add mouse event handlers for the source
 sourceFld.setOnMousePressed(e -> {
 // Make sure the node is not picked
 sourceFld.setMouseTransparent(true);
 print("Source: Mouse pressed");
 });

 sourceFld.setOnMouseDragged(e -> print("Source: Mouse dragged"));

Chapter 26 ■ Understanding drag and drop

1048

 sourceFld.setOnDragDetected(e -> {
 // Start a full press-drag-release gesture
 sourceFld.startFullDrag();
 print("Source: Mouse dragged detected");
 });

 sourceFld.setOnMouseReleased(e -> {
 // Make sure the node is picked
 sourceFld.setMouseTransparent(false);
 print("Source: Mouse released");
 });

 // Add mouse event handlers for the target
 targetFld.setOnMouseDragEntered(e -> print("Target: drag entered"));
 targetFld.setOnMouseDragOver(e -> print("Target: drag over"));
 targetFld.setOnMouseDragReleased(e -> print("Target: drag released"));
 targetFld.setOnMouseDragExited(e -> print("Target: drag exited"));
 }

 private void print(String msg) {
 System.out.println(msg);
 }
}

Source: Mouse pressed
Source: Mouse dragged
Source: Mouse dragged
Source: Mouse dragged detected
Source: Mouse dragged
Source: Mouse dragged
Target: drag entered
Target: drag over
Source: Mouse dragged
Target: drag over
Target: drag released
Source: Mouse released
Target: drag exited

A Drag-and-Drop Gesture
The third type of drag gesture is called a drag-and-drop gesture, which is a user action combining the mouse
movement with a pressed mouse button. It is used to transfer data from the gesture source to a gesture target.
A drag-and-drop gesture allows transferring data from:

One node to another node•	

A node to a scene•	

One scene to another scene•	

A scene to a node•	

Chapter 26 ■ Understanding drag and drop

1049

The source and target can be in the same Java or JavaFX application or two different Java or JavaFX
applications. A JavaFX application and a native application may also participate in the gesture, for example:

You can drag text from a Microsoft Word application to a JavaFX application to •	
populate a TextArea and vice versa.

You can drag an image file from Windows Explorer and drop it onto an •	 ImageView in
a JavaFX application. The ImageView can display the image.

You can drag a text file from Windows Explorer and drop it onto a •	 TextArea in a
JavaFX application. The TextArea will read the file and display its content.

Several steps are involved in performing a drag-and-drop gesture:

A mouse button is pressed on a node.•	

The mouse is dragged with the button pressed.•	

The node receives a drag-detected event.•	

A drag-and-drop gesture is started on the node by calling the •	 startDragAndDrop()
method, making the node a the gesture source. The data from the source node is
placed in a dragboard.

Once the system switches to a drag-and-drop gesture, it stops delivering •	 MousEvents
and starts delivering DragEvents.

The gesture source is dragged onto the potential gesture target. The potential gesture •	
target checks whether it accepts the data placed in the dragboard. If it accepts the
data, it may become the actual gesture target. The node indicates whether it accepts
the data in one of its DragEvent handlers.

The user releases the pressed button on the gesture target, sending it a drag-dropped •	
event.

The gesture target uses the data from the dragboard.•	

A drag-done event is sent to the gesture source indicating that the drag-and-drop •	
gesture is complete.

I will discuss all of these steps in detail in the sections that follow. The classes supporting the drag-and-
drop gesture are included in the javafx.scene.input package.

Understanding the Data Transfer Modes
In a drag-and-drop gesture, the data can be transferred in three modes:

Copy•	

Move•	

Link•	

The copy mode indicates that the data will be copied from the gesture source to the gesture target. You
may drag a TextField and drop it onto another TextField. The latter gets a copy of the text contained in
the former.

Chapter 26 ■ Understanding drag and drop

1050

The move mode indicates that the data will be moved from the gesture source to the gesture target. You
may drag a TextField and drop it onto another TextField. The text in the former is then moved to the latter.

The link mode indicates that the gesture target will create a link (or reference) to the data being
transferred. The actual meaning of “link” depends on the application. You may drag and drop a URL to a
WebView in the link mode. The WebView then loads the URL content.

The three data transfer modes are represented by the following three constants in the TransferMode
enum:

•	 TransferMode.COPY

•	 TransferMode.MOVE

•	 TransferMode.LINK

Sometimes you may need a combination of the three transfer modes. The TransferMode enum contains
three convenience static fields that are arrays of its enum constants:

•	 TransferMode[] ANY

•	 TransferMode[] COPY_OR_MOVE

•	 TransferMode[] NONE

The ANY field is an array of COPY, MOVE, and LINK enum constants. The COPY_OR_MOVE field is an array of
the COPY and MOVE enum constants. The NONE constant is an empty array.

Every drag-and-drop gesture includes the use of the TransferMode enum constants. The gesture source
specifies the transfer modes that it supports for the data transfer. The gesture target specifies the modes in
which it accepts the data transfer.

Understanding the Dragboard
In a drag-and-drop data transfer, the gesture source and the gesture target do not know each other. In fact,
they may belong to two different applications: two JavaFX applications, or one JavaFX and one native. How
does the data transfer take place between the gesture source and target if they do not know each other? In
the real world, an intermediary is needed to facilitate a transaction between two unknown parties. In a drag-
and-drop gesture, an intermediary is also used to facilitate the data transfer.

A dragboard acts as an intermediary between the gesture source and gesture target. A dragboard is the
storage device that holds the data being transferred. The gesture source places the data into a dragboard;
the dragboard is made available to the gesture target, so it can inspect the type of content that is available for
transfer. When the gesture target is ready to transfer the data, it gets the data from the dragboard. Figure 26-1
shows the roles played by a dragboard.

Gesture target

Uses the data

A Dragboard

Stores the data

Gesture Source

Data to be
transferred

Figure 26-1. Data transfer mechanism in a drag-and-drop gesture

Chapter 26 ■ Understanding drag and drop

1051

An instance of the Dragboard class represents a dragboard. The class is inherited from the Clipboard
class. An instance of the Clipboard class represents an operating system clipboard. Typically, an operating
system uses a clipboard to store data during cut, copy, and paste operations. You can get the reference
of the general clipboard of the operating system using the static getSystemClipboard() method of the
Clipboard class:

Clipboard systemClipboard = Clipboard.getSystemClipboard();

You can place data in the system clipboard that will be accessible to all applications in the system. You
can read the data placed in the system clipboard, which can be placed there by any application. A clipboard
can store different types of data, for example, rich text format (RTF) text, plain text, HTML, URL, images, or
files. The class contains several methods to check if data in a specific format are available in the clipboard.
These methods return true if the data in the specific format are available. For example, the hasString()
method returns true if the clipboard contains a plain string; the hasRtf() method returns true for text
in rich text format. The class contains methods to retrieve data in the specific format. For example, the
getString() method returns data in plain text format; the getHtml() returns HTML text; the getImage()
returns an image, and so forth. The clear() method clears the clipboard.

Tip ■ You cannot create an instance of the Clipboard class directly. the clipboard is meant to store one
conceptual item. the term conceptual means that the data in the clipboard may be stored in different formats
representing the same item. For example, you may store rtF text and its plain text version. in this case, the
clipboard has two copies of the same item in different formats.

The clipboard is not limited to store only a fixed number of data types. Any serializable data can be
stored on the clipboard. Data stored on the clipboard has an associated data format. An instance of the
DataFormat class represents a data format. The DataFormat class contains six static fields to represent the
commonly used data formats:

•	 FILES

•	 HTML

•	 IMAGE

•	 PLAIN_TEXT

•	 RTF

•	 URL

The FILES represents a list of java.io.File objects. The HTML represents an HTML-formatted string.
The IMAGE represents a platform-specific image type. The PLAIN_TEXT represents a plain text string. The RTF
represents an RTF-formatted string. The URL represents a URL encoded as a string.

You may want to store data in the clipboard in a format other than those listed above. You can create a
DataFormat object to represent any arbitrary format. You need to specify a list of mime types for your data
format. The following statement creates a DataFormat with jdojo/person and jdojo/personlist as the
mime types:

DataFormat myFormat = new DataFormat("jdojo/person", "jdojo/person");

Chapter 26 ■ Understanding drag and drop

1052

The Clipboard class provides the following methods to work with the data and its format:

•	 boolean setContent(Map<DataFormat,Object> content)

•	 Object getContent(DataFormat dataFormat)

The content of the clipboard is a map with the DataFormat as keys and data as values. The
getContent() method returns null if data in the specific data format are not available in the clipboard. The
following snippet of code stores HTML and plain text version of data, and later, retrieves the data in both
formats:

// Store text in HTML and plain-text formats in the system clipboard
Clipboard clipboard = Clipboard.getSystemClipboard();

Map<DataFormat,Object> data = new HashMap<>();
data.put(DataFormat.HTML, "Yahoo!");
data.put(DataFormat.PLAIN_TEXT, "Yahoo!");
clipboard.setContent(data);
...

// Try reading HTML text and plain text from the clipboard
If (clipboard.hasHtml()) {
 String htmlText = (String)clipboard.getContent(DataFormat.HTML);
 System.out.println(htmlText);
}

If (clipboard.hasString()) {
 String plainText = (String)clipboard.getContent(DataFormat.PLAIN_TEXT);
 System.out.println(plainText);
}

Preparing data to store in the clipboard requires writing a little bloated code. An instance of the
ClipboardContent class represents the content of the clipboard, and it makes working with the clipboard
data a little easier. The class inherits from the HashMap<DataFormat,Object> class. It provides convenience
methods in the form putXxx() and getXxx() for commonly used data types. The following snippet of code
rewrites the above logic to store data into the clipboard. The logic to retrieve the data remains the same.

Clipboard clipboard = Clipboard.getSystemClipboard();
ClipboardContent content = new ClipboardContent();
content.putHtml("Yahoo!");
content.putString("Yahoo!");
clipboard.setContent(content);

The Dragboard class contains all the methods available in the Clipboard class. It adds the following
methods:

•	 Set<TransferMode> getTransferModes()

•	 void setDragView(Image image)

•	 void setDragView(Image image, double offsetX, double offsetY)

•	 void setDragViewOffsetX(double offsetX)

•	 void setDragViewOffsetY(double offsetY)

Chapter 26 ■ Understanding drag and drop

1053

•	 Image getDragView()

•	 Double getDragViewOffsetX()

•	 double getDragViewOffsetY()

The getTransferModes() method returns the set of transfer modes supported by the gesture target.
The setDragView() method sets an image as the drag view. The image is shown when the gesture source is
dragged. The offsets are the x and y positions of the cursor over the image. Other methods involve getting the
drag-view image and the cursor offsets.

Tip ■ a dragboard is a special system clipboard used for the drag-and-drop gesture. You cannot create a
dragboard explicitly. Whenever it is necessary to work with the dragboard, its reference is made available as the
returned value from methods or the property of the event object. For example, the DragEvent class contains a
getDragboard() method that returns the reference of the Dragboard containing the data being transferred.

The Example Application
In the following sections I will discuss the steps in a drag-and-drop gesture in detail, and you will build an
example application. The application will have two TextFields displayed in a scene. One text field is called
the source node and the other the target node. The user can drag and drop the source node over to the target
node. Upon completion of the gesture, the text from source node is transferred (copied or moved) to the
target node. I will refer to those nodes in the discussion. They are declared as follows:

TextField sourceFld = new TextField("Source node");
TextField targetFld = new TextField("Target node");

Initiating the Drag-and-Drop Gesture
The first step in a drag-and-drop gesture is to convert a simple press-drag-release gesture into a drag-and-
drop gesture. This is accomplished in the mouse-drag detected event handler for the gesture source. Calling
the startDragAndDrop() method on the gesture source initiates a drag-and-drop gesture. The method is
available in the Node and Scene classes, so a node and a scene can be the gesture source of a drag-and-drop
gesture. The method signature is:

Dragboard startDragAndDrop(TransferMode... transferModes)

The method accepts the list of supported transfer modes by the gesture source and returns a dragboard.
The gesture source needs to populate the dragboard with the data it intends to transfer. The following
snippet of code initiates a drag-and-drop gesture, copies the source TextField text to the dragboard, and
consumes the event. The drag-and-drop gesture is initiated only when the TextField contains text.

sourceFld.setOnDragDetected((MouseEvent e) -> {
 // User can drag only when there is text in the source field
 String sourceText = sourceFld.getText();
 if (sourceText == null || sourceText.trim().equals("")) {
 e.consume();
 return;
 }

Chapter 26 ■ Understanding drag and drop

1054

 // Initiate a drag-and-drop gesture
 Dragboard dragboard = sourceFld.startDragAndDrop(TransferMode.COPY_OR_MOVE);

 // Add the source text to the Dragboard
 ClipboardContent content = new ClipboardContent();
 content.putString(sourceText);
 dragboard.setContent(content);

 e.consume();
});

Detecting a Drag Gesture
Once the drag-and-drop gesture has been initiated, you can drag the gesture source over to any other node.
The gesture source has already put the data in the dragboard declaring the transfer modes that it supports.
It is now time for the potential gesture targets to declare whether they accept the data transfer offered by
the gesture source. Note that there could be multiple potential gesture targets. One of them will become the
actual gesture target when the gesture source is dropped on it.

The potential gesture target receives several types of drag events:

It receives a drag-entered event when the gesture source enters its bounds.•	

It receives a drag-over event when the gesture source is dragged around within its •	
bounds.

It receives a drag-exited event when the gesture source exits its bounds.•	

It receives a drag-dropped event when the gesture source is dropped over it by •	
releasing the mouse button.

In a drag-over event handler, the potential gesture target needs to declare that it intends to participate
in the drag-and-drop gesture by calling the acceptTransferModes(TransferMode... modes) method of the
DragEvent. Typically, the potential target checks the content of the dragboard before declaring whether it
accepts the transfer modes. The following snippet of code accomplishes this. The target TextField checks
the dragboard for plain text. It contains plain text, so the target declares that it accepts COPY and MOVE
transfer modes.

targetFld.setOnDragOver((DragEvent e) -> {
 // If drag board has a string, let the event know that the target accepts
 // copy and move transfer modes
 Dragboard dragboard = e.getDragboard();

 if(dragboard.hasString()) {
 e.acceptTransferModes(TransferMode.COPY_OR_MOVE);
 }

 e.consume();
});

Chapter 26 ■ Understanding drag and drop

1055

Dropping the Source onto the Target
If the potential gesture target accepts the transfer mode supported by the gesture source, the gesture source
can be dropped on the target. The dropping is accomplished by releasing the mouse button while the
gesture source is still over the target. When the gesture source is dropped onto a target, the target becomes
the actual gesture target. The actual gesture target receives the drag-dropped event. You need to add a drag-
drop event handler for the gesture target in which it performs two tasks:

It accesses the data in the dragboard.•	

It calls the •	 setDropCompleted(boolean isTransferDone) method of the DragEvent
object.

Passing true to the method indicates that the data transfer was successful. Passing false indicates that
the data transfer was unsuccessful. The dragboard cannot be accessed after calling this method.

The following snippet of code performs the data transfer and sets the appropriate completion flag:

targetFld.setOnDragDropped((DragEvent e) -> {
 // Transfer the data to the target
 Dragboard dragboard = e.getDragboard();
 if(dragboard.hasString()) {
 String text = dragboard.getString();
 targetFld.setText(text);

 // Data transfer is successful
 e.setDropCompleted(true);
 } else {
 // Data transfer is not successful
 e.setDropCompleted(false);
 }

 e.consume();
});

Completing the Drag-and-Drop Gesture
After the gesture source has been dropped, it receives a drag-done event. The DragEvent object contains
a getTransferMode() method. When it is called from the drag-done event handler, it returns the transfer
mode used for the data transfer. Depending on the transfer mode, you can clear or keep the content of the
gesture source. For example, if the transfer mode is MOVE, it is better to clear the source content to give the
user a real feel of the data move.

You may wonder what determines the data transfer mode. In this example, both the gesture source
and the target support COPY and MOVE. When the target accessed the data from the dragboard in the drag-
dropped event, it did not set any transfer mode. The system determines the data transfer mode depending
on the state of certain keys and the source and target. For example, when you drag a TextField and drop it
onto another TextField, the default data transfer mode is MOVE. When the same drag and drop is performed
with the Ctrl key pressed, the COPY mode is used.

If the getTransferMode() method returns null or TransferMode.ONE, it indicates that no data transfer
happened. The following snippet of code handles the drag-done event for the source TextField. The source
text is cleared if the data transfer mode was MOVE.

Chapter 26 ■ Understanding drag and drop

1056

sourceFld.setOnDragDone((DragEvent e) -> {
 // Check how the data transfer happened. If it was moved, clear the text in the source.
 TransferMode modeUsed = e.getTransferMode();

 if (modeUsed == TransferMode.MOVE) {
 sourceFld.setText("");
 }

 e.consume();
});

This completes handling of a drag-and-drop gesture. If you need more information about the parties
participating in the drag-and-drop gesture, please refer to the API documentation for the DragEvent class.
For example, use the getGestureSource() and getGestureTarget() methods to get the reference of the
gesture source and target, respectively.

Providing Visual Clues
There are several ways to provide visual clues during a drag-and-drop gesture:

The system provides an icon under the cursor during the drag gesture. The icon •	
changes depending on the transfer mode determined by the system and whether the
drag target is a potential target for the drag-and-drop gesture.

You can write code for the drag-enter and drag-exited events for the potential targets •	
by changing its visual appearance. For example, in the drag-entered event handler,
you can change the background color of the potential target to green if it allows
the data transfer and to red if it does not. In the drag-exited event handler, you can
change the background color back to normal.

You can set a drag view in the dragboard in the drag-detected event handler for the •	
gesture. The drag view is an image. For example, you can take a snapshot of the node
or part of the node being dragged and set it as the drag view.

A Complete Drag-and-Drop Example
The program in Listing 26-3 has the complete source code for this example. It displays a window as shown in
Figure 26-2. You can drag the gesture source TextField and drop it onto the target TextField. The text from
the source will be copied or moved to the target. The transfer mode depends on the system. For example, on
Windows, pressing the Ctrl key while dropping will copy the text, and dropping without pressing the Ctrl key
will move the text. Notice that the drag icon is changed during the drag action. The icon gives you a clue as
to what kind of data transfer is going to happen when you drop the source. For example, when you drag the
source on a target that does not accept the data transfer offered by the source, a “not-allowed” icon, a circle
with a diagonal solid line, is displayed.

Chapter 26 ■ Understanding drag and drop

1057

Listing 26-3. Performing a Drag-and-Drop Gesture

// DragAndDropTest.java
package com.jdojo.dnd;

import javafx.application.Application;
import javafx.scene.Scene;
import javafx.scene.control.Label;
import javafx.scene.control.TextField;
import javafx.scene.input.ClipboardContent;
import javafx.scene.input.DragEvent;
import javafx.scene.input.Dragboard;
import javafx.scene.input.MouseEvent;
import javafx.scene.input.TransferMode;
import javafx.scene.layout.GridPane;
import javafx.stage.Stage;

public class DragAndDropTest extends Application {
 TextField sourceFld = new TextField("JavaFX");
 TextField targetFld = new TextField("Drag and drop the source text here");

 public static void main(String[] args) {
 Application.launch(args);
 }

 @Override
 public void start(Stage stage) {
 // Build UI
 GridPane root = getUIs();

 // Add event handlers for the source and target
 this.addDnDEventHanders();

 root.setStyle("-fx-padding: 10;" +
 "-fx-border-style: solid inside;" +
 "-fx-border-width: 2;" +
 "-fx-border-insets: 5;" +
 "-fx-border-radius: 5;" +
 "-fx-border-color: blue;");
 Scene scene = new Scene(root);
 stage.setScene(scene);
 stage.setTitle("Performing a Drag-and-Drop Gesture");
 stage.show();
 }

 private GridPane getUIs() {
 // Set prompt text
 sourceFld.setPromptText("Enter text to drag");
 targetFld.setPromptText("Drag the source text here");

Chapter 26 ■ Understanding drag and drop

1058

 GridPane pane = new GridPane();
 pane.setHgap(5);
 pane.setVgap(20);
 pane.add(new Label("Drag and drop the source text field" +
 " onto the target text field."), 0, 0, 2, 1);
 pane.addRow(1, new Label("DnD Gesture Source:"), sourceFld);
 pane.addRow(2, new Label("DnD Gesture Target:"), targetFld);
 return pane;
 }

 private void addDnDEventHanders() {
 sourceFld.setOnDragDetected(this::dragDetected);
 targetFld.setOnDragOver(this::dragOver);
 targetFld.setOnDragDropped(this::dragDropped);
 sourceFld.setOnDragDone(this::dragDone);
 }

 private void dragDetected(MouseEvent e) {
 // User can drag only when there is text in the source field
 String sourceText = sourceFld.getText();
 if (sourceText == null || sourceText.trim().equals("")) {
 e.consume();
 return;
 }

 // Initiate a drag-and-drop gesture
 Dragboard dragboard =
 sourceFld.startDragAndDrop(TransferMode.COPY_OR_MOVE);

 // Add the source text to the Dragboard
 ClipboardContent content = new ClipboardContent();
 content.putString(sourceText);
 dragboard.setContent(content);

 e.consume();
 }

 private void dragOver(DragEvent e) {
 // If drag board has a string, let the event know that
 // the target accepts copy and move transfer modes
 Dragboard dragboard = e.getDragboard();
 if (dragboard.hasString()) {
 e.acceptTransferModes(TransferMode.COPY_OR_MOVE);
 }

 e.consume();
 }

 private void dragDropped(DragEvent e) {
 // Transfer the data to the target
 Dragboard dragboard = e.getDragboard();

Chapter 26 ■ Understanding drag and drop

1059

 if (dragboard.hasString()) {
 String text = dragboard.getString();
 targetFld.setText(text);

 // Data transfer is successful
 e.setDropCompleted(true);
 } else {
 // Data transfer is not successful
 e.setDropCompleted(false);
 }

 e.consume();
 }

 private void dragDone(DragEvent e) {
 // Check how data was transfered to the target. If it was moved, clear the
 // text in the source.
 TransferMode modeUsed = e.getTransferMode();

 if (modeUsed == TransferMode.MOVE) {
 sourceFld.setText("");
 }

 e.consume();
 }
}

Figure 26-2. A scene letting transfer text from a TextField to another using a drag-and-drop gesture

Transferring an Image
The drag-and-drop gesture allows you to transfer an image. The image can be placed on the dragboard.
You can also place a URL or a file on the dragboard that refers to the image location. Let’s develop a simple
application to demonstrate an image data transfer. To transfer an image, the user can drag and drop the
following to a scene:

An image•	

An image file•	

A URL pointing to an image•	

Chapter 26 ■ Understanding drag and drop

1060

The program in Listing 26-4 opens a window with a text message, an empty ImageView, and a button.
The ImageView will display the dragged and dropped image. Use the button to clear the image.

The entire scene is a potential target for a drag-and-drop gesture. A drag-over event handler is set for
the scene. It checks whether the dragboard contains an image, a list of files, or a URL. If it finds one of these
data types in the dragboard, it reports that it will accept ANY data transfer mode. In the drag-dropped event
handler for the scene, the program attempts to read the image data, list of files, and the URL in order. If it is
a list of files, you look at the mime type of each file to see if the name starts with image/. You use the first file
with an image mime type and ignore the rest. If it is a URL, you simply try creating an Image object from it.
You can play with the application in different ways:

Run the program and open the HTML file •	 drag_and_drop.html in a browser. The file
is included in the src/resources\html directory. The HTML file contains two links:
one pointing to a local image file and the other to a remote image file. Drag and drop
the links onto the scene. The scene will show the images referred to by the links. Drag
and drop the image from the web page. The scene will display the image. (Dragging
and dropping of the image worked fine in Mozilla and Google Chrome browsers, but
not in Windows Explorer.)

Open a file explorer, for example, Windows Explorer on Windows. Select an image •	
file and drag and drop the file onto the scene. The scene will display the image from
the file. You can drop multiple files, but the scene will display only an image from
one of those files.

You can enhance the application by allowing the user to drag multiple files onto the scene and showing
them all in a TilePane. You can also add more error checks and feedbacks to the user about the drag-and-
drop gesture.

Listing 26-4. Transferring an Image Using a Drag-and-Drop Gesture

// ImageDragAndDrop.java
package com.jdojo.dnd;

import java.io.File;
import java.io.IOException;
import java.nio.file.Files;
import java.util.List;
import javafx.application.Application;
import javafx.scene.Scene;
import javafx.scene.control.Button;
import javafx.scene.control.Label;
import javafx.scene.image.Image;
import javafx.scene.image.ImageView;
import javafx.scene.input.DragEvent;
import javafx.scene.input.Dragboard;
import javafx.scene.input.TransferMode;
import javafx.scene.layout.VBox;
import javafx.stage.Stage;

public class ImageDragAndDrop extends Application {
 ImageView imageView = new ImageView();
 Button clearBtn = new Button("Clear Image");
 Scene scene;

Chapter 26 ■ Understanding drag and drop

1061

 public static void main(String[] args) {
 Application.launch(args);
 }

 @Override
 public void start(Stage stage) {
 // Build UI
 VBox root = getUIs();
 scene = new Scene(root);
 stage.setScene(scene);

 // Add event handlers for the source and target
 this.addDnDEventHanders();

 root.setStyle("-fx-padding: 10;" +
 "-fx-border-style: solid inside;" +
 "-fx-border-width: 2;" +
 "-fx-border-insets: 5;" +
 "-fx-border-radius: 5;" +
 "-fx-border-color: blue;");
 stage.setTitle("Performing a Drag-and-Drop Gesture");
 stage.show();
 }

 private VBox getUIs() {
 Label msgLbl = new Label(
 "Drag and drop an image, an image file, or an image URL below.");

 // Set the size for the image view
 imageView.setFitWidth(300);
 imageView.setFitHeight(300);
 imageView.setSmooth(true);
 imageView.setPreserveRatio(true);

 clearBtn.setOnAction(e -> imageView.setImage(null));

 VBox box = new VBox(20, msgLbl, imageView, clearBtn);
 return box;
 }

 private void addDnDEventHanders() {
 scene.setOnDragOver(this::dragOver);
 scene.setOnDragDropped(this::dragDropped);
 }

 private void dragOver(DragEvent e) {
 // You can drag an image, a URL or a file
 Dragboard dragboard = e.getDragboard();

 if (dragboard.hasImage() || dragboard.hasFiles() || dragboard.hasUrl()) {
 e.acceptTransferModes(TransferMode.ANY);
 }

 e.consume();
 }

Chapter 26 ■ Understanding drag and drop

1062

 private void dragDropped(DragEvent e) {
 boolean isCompleted = false;

 // Transfer the data to the target
 Dragboard dragboard = e.getDragboard();

 if (dragboard.hasImage()) {
 this.transferImage(dragboard.getImage());
 isCompleted = true;
 } else if (dragboard.hasFiles()) {
 isCompleted = this.transferImageFile(dragboard.getFiles());
 } else if (dragboard.hasUrl()) {
 isCompleted = this.transferImageUrl(dragboard.getUrl());
 } else {
 System.out.println("Dragboard does not contain an image" +
 " in the expected format: Image, File, URL");
 }

 // Data transfer is not successful
 e.setDropCompleted(isCompleted);

 e.consume();
 }

 private void transferImage(Image image) {
 imageView.setImage(image);
 }

 private boolean transferImageFile(List<File> files) {
 // Look at the mime typeof all file.
 // Use the first file having the mime type as "image/xxx"
 for(File file : files) {
 String mimeType;
 try {
 mimeType = Files.probeContentType(file.toPath());
 if (mimeType != null && mimeType.startsWith("image/")) {
 this.transferImageUrl(file.toURI().toURL().

toExternalForm());
 return true;
 }
 }
 catch (IOException e) {
 System.out.println(e.getMessage());
 }
 }

 return false;
 }

Chapter 26 ■ Understanding drag and drop

1063

 private boolean transferImageUrl(String imageUrl) {
 try {
 imageView.setImage(new Image(imageUrl));
 return true;
 }
 catch(Exception e) {
 System.out.println(e.getMessage());
 }

 return false;
 }
}

Transferring Custom Data Types
You can transfer data in any format using the drag-and-drop gesture provided the data is Serializable. In
this section, I will demonstrate how to transfer custom data. You will transfer an ArrayList<Item>. The Item
class is shown in Listing 26-5; it is Serializable. The class is very simple. It contains one private field with
its getter and setter methods.

Listing 26-5. Using a Custom Data Type in Data Transfer

// Item.java
package com.jdojo.dnd;

import java.io.Serializable;

public class Item implements Serializable {
 private String name = "Unknown";

 public Item(String name) {
 this.name = name;
 }

 public String getName() {
 return name;
 }

 public void setName(String name) {
 this.name = name;
 }

 @Override
 public String toString() {
 return name;
 }
}

Chapter 26 ■ Understanding drag and drop

1064

The program in Listing 26-6 shows how to use a custom data format in a drag-and-drop gesture. It
displays a window as shown in Figure 26-3. The window contains two ListViews. Initially, only one of the
ListViews is populated with a list of items. Both ListViews support multiple selection. You can select items
in one ListView and drag and drop them into another ListView. The selected items will be copied or moved
depending on the system-determined transfer mode. For example, on Windows, items will be moved by
default. If you press the Ctrl key while dropping, the items will be copied instead.

Listing 26-6. Transferring Custom Data Using a Drag-and-Drop Gesture

// CustomDataTransfer.java
package com.jdojo.dnd;

import java.util.ArrayList;
import java.util.List;
import javafx.application.Application;
import javafx.collections.FXCollections;
import javafx.collections.ObservableList;
import javafx.scene.Scene;
import javafx.scene.control.Label;
import javafx.scene.control.ListView;
import javafx.scene.control.SelectionMode;
import javafx.scene.input.ClipboardContent;
import javafx.scene.input.DataFormat;
import javafx.scene.input.DragEvent;
import javafx.scene.input.Dragboard;
import javafx.scene.input.MouseEvent;
import javafx.scene.input.TransferMode;
import javafx.scene.layout.GridPane;
import javafx.stage.Stage;

public class CustomDataTransfer extends Application {
 ListView<Item> lv1 = new ListView<>();
 ListView<Item> lv2 = new ListView<>();

 // Our custom Data Format
 static final DataFormat ITEM_LIST = new DataFormat("jdojo/itemlist");

 public static void main(String[] args) {
 Application.launch(args);
 }

 @Override
 public void start(Stage stage) {
 // Build the UI
 GridPane root = getUIs();

 // Add event handlers for the source and target
 // text fields of the the DnD operation
 this.addDnDEventHanders();

Chapter 26 ■ Understanding drag and drop

1065

 root.setStyle("-fx-padding: 10;" +
 "-fx-border-style: solid inside;" +
 "-fx-border-width: 2;" +
 "-fx-border-insets: 5;" +
 "-fx-border-radius: 5;" +
 "-fx-border-color: blue;");
 Scene scene = new Scene(root);
 stage.setScene(scene);
 stage.setTitle("Drag-and-Drop Test");
 stage.show();
 }

 private GridPane getUIs() {
 Label msgLbl = new Label("Select one or more items from a list, " +
 "drag and drop them to another list");

 lv1.setPrefSize(200, 200);
 lv2.setPrefSize(200, 200);
 lv1.getItems().addAll(this.getList());

 // Allow multi-select in lists
 lv1.getSelectionModel().setSelectionMode(SelectionMode.MULTIPLE);
 lv2.getSelectionModel().setSelectionMode(SelectionMode.MULTIPLE);

 GridPane pane = new GridPane();
 pane.setHgap(10);
 pane.setVgap(10);
 pane.add(msgLbl, 0, 0, 3, 1);
 pane.addRow(1, new Label("List 1:"), new Label("List 2:"));
 pane.addRow(2, lv1, lv2);
 return pane;
 }

 private ObservableList<Item> getList() {
 ObservableList<Item> list = FXCollections.<Item>observableArrayList();
 list.addAll(new Item("Apple"), new Item("Orange"),
 new Item("Papaya"), new Item("Mango"),
 new Item("Grape"), new Item("Guava"));
 return list;
 }

 private void addDnDEventHanders() {
 lv1.setOnDragDetected(e -> dragDetected(e, lv1));
 lv2.setOnDragDetected(e -> dragDetected(e, lv2));

 lv1.setOnDragOver(e -> dragOver(e, lv1));
 lv2.setOnDragOver(e -> dragOver(e, lv2));

 lv1.setOnDragDropped(e -> dragDropped(e, lv1));
 lv2.setOnDragDropped(e -> dragDropped(e, lv2));

Chapter 26 ■ Understanding drag and drop

1066

 lv1.setOnDragDone(e -> dragDone(e, lv1));
 lv2.setOnDragDone(e -> dragDone(e, lv2));
 }

 private void dragDetected(MouseEvent e, ListView<Item> listView) {
 // Make sure at least one item is selected
 int selectedCount = listView.getSelectionModel().getSelectedIndices().

size();
 if (selectedCount == 0) {
 e.consume();
 return;
 }

 // Initiate a drag-and-drop gesture
 Dragboard dragboard = listView.startDragAndDrop(TransferMode.COPY_OR_MOVE);

 // Put the the selected items to the dragboard
 ArrayList<Item> selectedItems = this.getSelectedItems(listView);
 ClipboardContent content = new ClipboardContent();
 content.put(ITEM_LIST, selectedItems);
 dragboard.setContent(content);

 e.consume();
 }

 private void dragOver(DragEvent e, ListView<Item> listView) {
 // If drag board has an ITEM_LIST and it is not being dragged
 // over itself, we accept the MOVE transfer mode
 Dragboard dragboard = e.getDragboard();

 if (e.getGestureSource() != listView &&
 dragboard.hasContent(ITEM_LIST)) {
 e.acceptTransferModes(TransferMode.COPY_OR_MOVE);
 }

 e.consume();
 }

 @SuppressWarnings("unchecked")
 private void dragDropped(DragEvent e, ListView<Item> listView) {
 boolean dragCompleted = false;

 // Transfer the data to the target
 Dragboard dragboard = e.getDragboard();

 if(dragboard.hasContent(ITEM_LIST)) {
 ArrayList<Item> list = (ArrayList<Item>)dragboard.getContent

(ITEM_LIST);
 listView.getItems().addAll(list);

Chapter 26 ■ Understanding drag and drop

1067

 // Data transfer is successful
 dragCompleted = true;
 }

 // Data transfer is not successful
 e.setDropCompleted(dragCompleted);

 e.consume();
 }

 private void dragDone(DragEvent e, ListView<Item> listView) {
 // Check how data was transfered to the target
 // If it was moved, clear the selected items
 TransferMode tm = e.getTransferMode();

 if (tm == TransferMode.MOVE) {
 removeSelectedItems(listView);
 }

 e.consume();
 }

 private ArrayList<Item> getSelectedItems(ListView<Item> listView) {
 // Return the list of selected item in an ArratyList, so it is
 // serializable and can be stored in a Dragboard.
 ArrayList<Item> list =
 new ArrayList<>(listView.getSelectionModel().getSelectedItems());
 return list;
 }

 private void removeSelectedItems(ListView<Item> listView) {
 // Get all selected items in a separate list to avoid the shared list issue
 List<Item> selectedList = new ArrayList<>();
 for(Item item : listView.getSelectionModel().getSelectedItems()) {
 selectedList.add(item);
 }

 // Clear the selection
 listView.getSelectionModel().clearSelection();

 // Remove items from the selected list
 listView.getItems().removeAll(selectedList);
 }
}

Chapter 26 ■ Understanding drag and drop

1068

Most of the program is similar to what you have seen before. The difference is in how you store and
retrieve the ArrayList<Item> in the dragboard.

You define a new data format for this data transfer because the data do not fit into any of the categories
available as the constants in the DataFormat class. You have to define the data as constants, as in the
following code:

// Our custom Data Format
static final DataFormat ITEM_LIST = new DataFormat("jdojo/itemlist");

Now you have given a unique mime type jdojo/itemlist for the data format.
In the drag-detected event, you need to store the list of selected items onto the dragboard. The following

snippet of code in the dragDetected() method stores the job. Notice that you have used the new data format
while storing the data on the dragboard.

ArrayList<Item> selectedItems = this.getSelectedItems(listView);
ClipboardContent content = new ClipboardContent();
content.put(ITEM_LIST, selectedItems);
dragboard.setContent(content);

In the drag-over event, if the ListView is not being dragged over itself and the dragboard contains data
in the ITEM_LIST data format, the ListView declares that it accepts a COPY or MOVE transfer. The following
snippet of code in the dragOver() method does the job:

Dragboard dragboard = e.getDragboard();
if (e.getGestureSource() != listView && dragboard.hasContent(ITEM_LIST)) {
 e.acceptTransferModes(TransferMode.COPY_OR_MOVE);
}

Figure 26-3. Transferring a list of selected items between two ListViews

Chapter 26 ■ Understanding drag and drop

1069

Finally, you need to read the data from the dragboard when the source is dropped on the target. You
need to use the getContent() method of the dragboard specifying the ITEM_LIST as the data format. The
returned result needs to be cast to the ArrayList<Item>. The following snippet of code in the dragDropped()
method does the job:

Dragboard dragboard = e.getDragboard();
if(dragboard.hasContent(ITEM_LIST)) {
 ArrayList<Item> list = (ArrayList<Item>)dragboard.getContent(ITEM_LIST);
 listView.getItems().addAll(list);

 // Data transfer is successful
 dragCompleted = true;
}

Finally, in the drag-done event handler, which is implemented in the dragDone() method, you remove
the selected items from the source ListView if MOVE was used as the transfer mode. Notice that you have
used an ArrayList<Item>, as both the ArrayList and Item classes are serializable.

Summary
A press-drag-release gesture is a user action of pressing a mouse button, dragging the mouse with the
pressed button, and releasing the button. The gesture can be initiated on a scene or a node. Several nodes
and scenes may participate in a single press-drag-release gesture. The gesture is capable of generating
different types of events and delivering those events to different nodes. The type of generated events and the
nodes receiving the events depend on the purpose of the gesture.

JavaFX supports three types of drag gestures: a simple press-drag-release gesture, a full press-drag-
release gesture, and a drag-and-drop gesture.

The simple press-drag-release gesture is the default drag gesture. It is used when the drag gesture
involves only one node—the node on which the gesture was initiated. During the drag gesture, all
MouseDragEvent types—mouse-drag entered, mouse-drag over, mouse-drag exited, mouse, and mouse-drag
released—are delivered only to the gesture source node.

When the source node of a drag gesture receives the drag-detected event, you can start a full press-
drag-release gesture by calling the startFullDrag() method on the source node. The startFullDrag()
method exists in both Node and Scene classes, allowing you to start a full press-drag-release gesture for a
node and a scene.

The third type of drag gesture is called a drag-and-drop gesture, which is a user action combining
the mouse movement with a pressed mouse button. It is used to transfer data from the gesture source to
a gesture target. In a drag-and-drop gesture, the data can be transferred in three modes: Copy, Move, and
Link. The copy mode indicates that the data will be copied from the gesture source to the gesture target.
The move mode indicates that the data will be moved from the gesture source to the gesture target. The
link mode indicates that the gesture target will create a link (or reference) to the data being transferred. The
actual meaning of “link” depends on the application.

In a drag-and-drop data transfer, the gesture source and the gesture target do not know each other—
they may even belong to two different applications. A dragboard acts as an intermediary between the gesture
source and the gesture target. A dragboard is the storage device to hold the data being transferred. The
gesture source places the data onto a dragboard; the dragboard is made available to the gesture target, so it
can inspect the type of content that is available for the transfer. When the gesture target is ready to transfer
the data, it gets the data from the dragboard.

Chapter 26 ■ Understanding drag and drop

1070

Using a drag-and-drop gesture, the data transfer takes place in three steps: initiating the drag-and-
drop gesture by the source, detecting the drag gesture by the target, and dropping the source onto the
target. Different types of events are generated for the source and target nodes during this gesture. You can
also provide visual clues by showing icons during the drag-and-drop gesture. The drag-and-drop gesture
supports transferring of any type of data, provided the data are serializable.

The next chapter discusses how to handle concurrent operations in JavaFX.

1071

Chapter 27

Understanding Concurrency
in JavaFX

In this chapter, you will learn:

Why you need a concurrency framework in JavaFX•	

How the •	 Worker<V> interface represents a concurrent task

How to run a one-time task•	

How to run a reusable task•	

How to run a scheduled task•	

The Need for a Concurrency Framework
Java (including JavaFX) GUI (graphical user interface) applications are inherently multithreaded. Multiple
threads perform different tasks to keep the UI in sync with the user actions. JavaFX, like Swing and AWT,
uses a single thread, called JavaFX Application Thread, to process all UI events. The nodes representing
UI in a scene graph are not thread-safe. Designing nodes that are not thread-safe has advantages and
disadvantages. They are faster, as no synchronization is involved. The disadvantage is that they need to be
accessed from a single thread to avoid being in an illegal state. JavaFX puts a restriction that a live scene
graph must be accessed from one and only one thread, the JavaFX Application Thread. This restriction
indirectly imposes another restriction that a UI event should not process a long-running task, as it will make
the application unresponsive. The user will get the impression that the application is hung.

The program in Listing 27-1 displays a window as shown in Figure 27-1. It contains three controls.

A •	 Label to display the progress of a task

A •	 Start button to start the task

An •	 Exit button to exit the application

Chapter 27 ■ Understanding ConCUrrenCy in JavaFX

1072

Listing 27-1. Performing a Long-Running Task in an Event Handler

// UnresponsiveUI.java
package com.jdojo.concurrent;

import javafx.application.Application;
import javafx.scene.Scene;
import javafx.scene.control.Button;
import javafx.scene.control.Label;
import javafx.scene.layout.HBox;
import javafx.scene.layout.VBox;
import javafx.stage.Stage;

public class UnresponsiveUI extends Application {
 Label statusLbl = new Label("Not Started...");
 Button startBtn = new Button("Start");
 Button exitBtn = new Button("Exit");

 public static void main(String[] args) {
 Application.launch(args);
 }

 @Override
 public void start(Stage stage) {
 // Add event handlers to the buttons
 startBtn.setOnAction(e -> runTask());
 exitBtn.setOnAction(e -> stage.close());

 HBox buttonBox = new HBox(5, startBtn, exitBtn);
 VBox root = new VBox(10, statusLbl, buttonBox);
 Scene scene = new Scene(root);
 stage.setScene(scene);
 stage.setTitle("An Unresponsive UI");
 stage.show();
 }

 public void runTask() {
 for(int i = 1; i <= 10; i++) {
 try {
 String status = "Processing " + i + " of " + 10;
 statusLbl.setText(status);
 System.out.println(status);
 Thread.sleep(1000);
 }
 catch (InterruptedException e) {
 e.printStackTrace();
 }
 }
 }
}

Chapter 27 ■ Understanding ConCUrrenCy in JavaFX

1073

The program is very simple. When you click the Start button, a task lasting for 10 seconds is started.
The logic for the task is in the runTask() method, which simply runs a loop ten times. Inside the loop, the
task lets the current thread, which is the JavaFX Application Thread, sleep for 1 second. The program has
two problems.

Click the Start button and immediately try to click the Exit button. Clicking the Exit button has no effect
until the task finishes. Once you click the Start button, you cannot do anything else on the window, except to
wait for 10 seconds for the task to finish. That is, the application becomes unresponsive for 10 seconds. This
is the reason you named the class UnresponsiveUI.

Inside the loop in the runTask() method, the program prints the status of the task on the standard
output and displays the same in the Label in the window. You see the status updated on the standard
output, but not in the Label.

It is repeated to emphasize that all UI event handlers in JavaFX run on a single thread, which is
the JavaFX Application Thread. When the Start button is clicked, the runTask() method is executed in the
JavaFX Application Thread. When the Exit button is clicked while the task is running, an ActionEvent event
for the Exit button is generated and queued on the JavaFX Application Thread. The ActionEvent handler for
the Exit button is run on the same thread after the thread is done running the runTask() method as part of
the ActionEvent handler for the Start button.

A pulse event is generated when the scene graph is updated. The pulse event handler is also run on the
JavaFX Application Thread. Inside the loop, the text property of the Label was updated ten times, which
generated the pulse events. However, the scene graph was not refreshed to show the latest text for the Label,
as the JavaFX Application Thread was busy running the task and it did not run the pulse event handlers.

Both problems arise because there is only one thread to process all UI event handlers and you ran a
long-running task in the ActionEvent handler for the Start button.

What is the solution? You have only one option. You cannot change the single-threaded model for
handling the UI events. You must not run long-running tasks in the event handlers. Sometimes, it is a
business need to process a big job as part of a user action. The solution is to run the long-running tasks in
one or more background threads, instead of in the JavaFX Application Thread.

The program in Listing 27-2 is your first, incorrect attempt to provide a solution. The ActionEvent
handler for the Start button calls the startTask() method, which creates a new thread and runs the
runTask() method in the new thread.

Listing 27-2. A Program Accessing a Live Scene Graph from a Non-JavaFX Application Thread

// BadUI.java
package com.jdojo.concurrent;

import javafx.application.Application;
import javafx.scene.Scene;
import javafx.scene.control.Button;

Figure 27-1. An example of an unresponsive UI

Chapter 27 ■ Understanding ConCUrrenCy in JavaFX

1074

import javafx.scene.control.Label;
import javafx.scene.layout.HBox;
import javafx.scene.layout.VBox;
import javafx.stage.Stage;

public class BadUI extends Application {
 Label statusLbl = new Label("Not Started...");
 Button startBtn = new Button("Start");
 Button exitBtn = new Button("Exit");

 public static void main(String[] args) {
 Application.launch(args);
 }

 @Override
 public void start(Stage stage) {
 // Add event handlers to the buttons
 startBtn.setOnAction(e -> startTask());
 exitBtn.setOnAction(e -> stage.close());

 HBox buttonBox = new HBox(5, startBtn, exitBtn);
 VBox root = new VBox(10, statusLbl, buttonBox);
 Scene scene = new Scene(root);
 stage.setScene(scene);
 stage.setTitle("A Bad UI");
 stage.show();
 }

 public void startTask() {
 // Create a Runnable
 Runnable task = () -> runTask();

 // Run the task in a background thread
 Thread backgroundThread = new Thread(task);

 // Terminate the running thread if the application exits
 backgroundThread.setDaemon(true);

 // Start the thread
 backgroundThread.start();
 }

 public void runTask() {
 for(int i = 1; i <= 10; i++) {
 try {
 String status = "Processing " + i + " of " + 10;
 statusLbl.setText(status);
 System.out.println(status);
 Thread.sleep(1000);
 }

Chapter 27 ■ Understanding ConCUrrenCy in JavaFX

1075

 catch (InterruptedException e) {
 e.printStackTrace();
 }
 }
 }
}

Run the program and click the Start button. A runtime exception is thrown. The partial stack trace of the
exception is as follows:

Exception in thread "Thread-4" java.lang.IllegalStateException: Not on FX application
thread; currentThread = Thread-4
 at com.sun.javafx.tk.Toolkit.checkFxUserThread(Toolkit.java:209)
 at com.sun.javafx.tk.quantum.QuantumToolkit.checkFxUserThread(QuantumToolkit.java:393)...
at com.jdojo.concurrent.BadUI.runTask(BadUI.java:47)...

The following statement in the runTask() method generated the exception

statusLbl.setText(status);

The JavaFX runtime checks that a live scene must be accessed from the JavaFX Application Thread. The
runTask() method is run on a new thread, named Thread-4 as shown in the stack trace, which is not the
JavaFX Application Thread. The foregoing statement sets the text property for the Label, which is part of a
live scene graph, from the thread other than the JavaFX Application Thread, which is not permissible.

How do you access a live scene graph from a thread other than the JavaFX Application Thread? The
simple answer is that you cannot. The complex answer is that when a thread wants to access a live scene
graph, it needs to run the part of the code that accesses the scene graph in the JavaFX Application Thread.
The Platform class in the javafx.application package provides two static methods to work with the JavaFX
application Thread.

•	 public static boolean isFxApplicationThread()

•	 public static void runLater(Runnable runnable)

The isFxApplicationThread() method returns true if the thread calling this method is the JavaFX
Application Thread. Otherwise, it returns false.

The runLater() method schedules the specified Runnable to be run on the JavaFX Application Thread
at some unspecified time in future.

Tip ■ if you have experience working with swing, the Platform.runLater() in JavaFX is the counterpart of
the SwingUtilities.invokeLater() in swing.

Let us fix the problem in the BadUI application. The program in Listing 27-3 is the correct
implementation of the logic to access the live scene graph. Figure 27-2 shows a snapshot of the window
displayed by the program.

Chapter 27 ■ Understanding ConCUrrenCy in JavaFX

1076

Listing 27-3. A Responsive UI That Runs Long-Running Tasks in a Background Thread

// ResponsiveUI.java
package com.jdojo.concurrent;

import javafx.application.Application;
import javafx.application.Platform;
import javafx.scene.Scene;
import javafx.scene.control.Button;
import javafx.scene.control.Label;
import javafx.scene.layout.HBox;
import javafx.scene.layout.VBox;
import javafx.stage.Stage;

public class ResponsiveUI extends Application {
 Label statusLbl = new Label("Not Started...");
 Button startBtn = new Button("Start");
 Button exitBtn = new Button("Exit");

 public static void main(String[] args) {
 Application.launch(args);
 }

 @Override
 public void start(Stage stage) {
 // Add event handlers to the buttons
 startBtn.setOnAction(e -> startTask());
 exitBtn.setOnAction(e -> stage.close());

 HBox buttonBox = new HBox(5, startBtn, exitBtn);
 VBox root = new VBox(10, statusLbl, buttonBox);
 Scene scene = new Scene(root);
 stage.setScene(scene);
 stage.setTitle("A Responsive UI");
 stage.show();
 }

 public void startTask() {
 // Create a Runnable
 Runnable task = () -> runTask();

 // Run the task in a background thread
 Thread backgroundThread = new Thread(task);

 // Terminate the running thread if the application exits
 backgroundThread.setDaemon(true);

 // Start the thread
 backgroundThread.start();
 }

Chapter 27 ■ Understanding ConCUrrenCy in JavaFX

1077

 public void runTask() {
 for(int i = 1; i <= 10; i++) {
 try {
 String status = "Processing " + i + " of " + 10;

 // Update the Label on the JavaFx Application Thread
 Platform.runLater(() -> statusLbl.setText(status));

 System.out.println(status);
 Thread.sleep(1000);
 }
 catch (InterruptedException e) {
 e.printStackTrace();
 }
 }
 }
}

The program replaces the statement

statusLbl.setText(status);

in the BadUI class with the statement

// Update the Label on the JavaFx Application Thread
Platform.runLater(() -> statusLbl.setText(status));

Now, setting the text property for the Label takes place on the JavaFX Application Thread. The
ActionEvent handler of the Start button runs the task in a background thread, thus freeing up the JavaFX
Application Thread to handle user actions. The status of the task is updated in the Label regularly. You can
click the Exit button while the task is being processed.

Did you overcome the restrictions imposed by the event-dispatching threading model of the JavaFX?
The answer is yes and no. You used a trivial example to demonstrate the problem. You have solved the trivial
problem. However, in a real world, performing a long-running task in a GUI application is not so trivial. For
example, your task-running logic and the UI are tightly coupled as you are referencing the Label inside the
runTask() method, which is not desirable in a real world. Your task does not return a result, nor does it have
a reliable mechanism to handle errors that may occur. Your task cannot be reliably cancelled, restarted, or
scheduled to be run at a future time.

Figure 27-2. A UI that runs a task in a background thread and updates the live scene graph correctly

Chapter 27 ■ Understanding ConCUrrenCy in JavaFX

1078

The JavaFX concurrency framework has answers to all these questions. The framework provides a
reliable way of running a task in one or multiple background threads and publishing the status and the result
of the task in a GUI application. The framework is the topic of discussion in this chapter. I have taken several
pages just to make the case for a concurrency framework in JavaFX. If you understand the background of the
problem as presented in this section, understanding the framework will be easy.

Understating the Concurrent Framework API
Java 5 added a comprehensive concurrency framework to the Java programming language through the
libraries in the java.util.concurrent package. The JavaFX concurrency framework is very small. It is
built on top of the Java language concurrency framework keeping in mind that it will be used in a GUI
environment. Figure 27-3 shows a class diagram of the classes in the JavaFX concurrency framework.

The framework consists of one interface, four classes, and one enum.
An instance of the Worker interface represents a task that needs to be performed in one or more

background threads. The state of the task is observable from the JavaFX Application Thread.
The Task, Service, and ScheduledService classes implement the Worker interface. They represent

different types of tasks. They are abstract classes. An instance of the Task class represents a one-shot task.
A Task cannot be reused. An instance of the Service class represents a reusable task. The ScheduledService
class inherits from the Service class. A ScheduledService is a task that can be scheduled to run repeatedly
after a specified interval.

The constants in the Worker.State enum represent different states of a Worker.
An instance of the WorkerStateEvent class represents an event that occurs as the state of a Worker

changes. You can add event handlers to all three types of tasks to listen to the change in their states.

Understanding the Worker<V> Interface
The Worker<V> interface provides the specification for any task performed by the JavaFX concurrency
framework. A Worker is a task that is performed in one or more background threads. The generic parameter V
is the data type of the result of the Worker. Use Void as the generic parameter if the Worker does not produce
a result. The state of the task is observable. The state of the task is published on the JavaFX Application
Thread, making it possible for the task to communicate with the scene graph, as is commonly required in a
GUI application.

Worker<V>

Service<V>Task<V>

ScheduledService<V> WorkerStateEvent

State
READY
SCHEDULED
RUNNING
SUCCEEDED
CANCELLED
FAILED

Figure 27-3. A class diagram for classes in the JavaFX Concurrency Framework

Chapter 27 ■ Understanding ConCUrrenCy in JavaFX

1079

State Transitions for a Worker
During the life cycle, a Worker transitions through different states. The constants in the Worker.State enum
represent the valid states of a Worker.

•	 Worker.State.READY

•	 Worker.State.SCHEDULED

•	 Worker.State.RUNNING

•	 Worker.State.SUCCEEDED

•	 Worker.State.CANCELLED

•	 Worker.State.FAILED

Figure 27-4 shows the possible state transitions of a Worker with the Worker.State enum constants
representing the states.

When a Worker is created, it is in the READY state. It transitions to the SCHEDULED state, before it starts
executing. When it starts running, it is in the RUNNING state. Upon successful completion, a Worker transitions
from the RUNNING state to the SUCCEEDED state. If the Worker throws an exception during its execution, it
transitions to the FAILED state. A Worker may be cancelled using the cancel() method. It may transition to
the CANCELLED state from the READY, SCHEDULED, and RUNNING states. These are the normal state transitions
for a one-shot Worker.

A reusable Worker may transition from the CANCELLED, SUCCEEDED, and FAILED states to the READY state
as shown in the figure by dashed lines.

Properties of a Worker
The Worker interface contains nine read-only properties that represent the internal state of the task.

•	 title

•	 message

•	 running

•	 state

READY

SCHEDULED

SUCCEEDEDCANCELLED

RUNNING

FAILED

A reusable
Worker

Figure 27-4. Possible state transition paths for a Worker

Chapter 27 ■ Understanding ConCUrrenCy in JavaFX

1080

•	 progress

•	 workDone

•	 totalWork

•	 value

•	 exception

When you create a Worker, you will have a chance to specify these properties. The properties can also be
updated as the task progresses.

The title property represents the title for the task. Suppose a task generates prime numbers. You may
give the task a title “Prime Number Generator.”

The message property represents a detailed message during the task processing. Suppose a task
generates several prime numbers; you may want to give feedback to the user at a regular interval or at
appropriate times with a message such as “Generating X of Y prime numbers.”

The running property tells whether the Worker is running. It is true when the Worker is in the SCHEDULED
or RUNNING states. Otherwise, it is false.

The state property specifies the state of the Worker. Its value is one of the constants of the
Worker.State enum.

The totalWork, workDone, and progress properties represent the progress of the task. The totalWork is
the total amount of work to be done. The workDone is the amount of work that has been done. The progress
is the ratio of workDone and totalWork. They are set to -1.0 if their values are not known.

The value property represents the result of the task. Its value is non-null only when the Worker finishes
successfully reaching the SUCCEEDED state. Sometimes, a task may not produce a result. In those cases, the
generic parameter V would be Void and the value property will always be null.

A task may fail by throwing an exception. The exception property represents the exception that is
thrown during the processing of the task. It is non-null only when the state of the Worker is FAILED. It is of the
type Throwable.

Typically, when a task is in progress, you want to display the task details in a scene graph. The
concurrency framework makes sure that the properties of a Worker are updated on the JavaFX Application
Thread. Therefore, it is fine to bind the properties of the UI elements in a scene graph to these properties.
You can also add Invalidation and ChangeListener to these properties and access a live scene graph from
inside those listeners.

In subsequent sections, you will discuss specific implementations of the Worker interface. Let us create a
reusable GUI to use in all examples. The GUI is based on a Worker to display the current values of its properties.

Utility Classes for Examples
Let us create the reusable GUI and non-GUI parts of the programs to use in examples in the subsequent
sections. The WorkerStateUI class in Listing 27-4 builds a GridPane to display all properties of a Worker. It is
used with a Worker<ObservableList<Long>>. It displays the properties of a Worker by UI elements to them.
You can bind properties of a Worker to the UI elements by passing a Worker to the constructor or calling the
bindToWorker() method.

Chapter 27 ■ Understanding ConCUrrenCy in JavaFX

1081

Listing 27-4. A Utility Class to Build UI Displaying the Properties of a Worker

// WorkerStateUI.java
package com.jdojo.concurrent;

import javafx.beans.binding.When;
import javafx.collections.ObservableList;
import javafx.concurrent.Worker;
import javafx.scene.control.Label;
import javafx.scene.control.ProgressBar;
import javafx.scene.control.TextArea;
import javafx.scene.layout.GridPane;
import javafx.scene.layout.HBox;

public class WorkerStateUI extends GridPane {
 private final Label title = new Label("");
 private final Label message = new Label("");
 private final Label running = new Label("");
 private final Label state = new Label("");
 private final Label totalWork = new Label("");
 private final Label workDone = new Label("");
 private final Label progress = new Label("");
 private final TextArea value = new TextArea("");
 private final TextArea exception = new TextArea("");
 private final ProgressBar progressBar = new ProgressBar();

 public WorkerStateUI() {
 addUI();
 }

 public WorkerStateUI(Worker<ObservableList<Long>> worker) {
 addUI();
 bindToWorker(worker);
 }

 private void addUI() {
 value.setPrefColumnCount(20);
 value.setPrefRowCount(3);
 exception.setPrefColumnCount(20);
 exception.setPrefRowCount(3);
 this.setHgap(5);
 this.setVgap(5);
 addRow(0, new Label("Title:"), title);
 addRow(1, new Label("Message:"), message);
 addRow(2, new Label("Running:"), running);
 addRow(3, new Label("State:"), state);
 addRow(4, new Label("Total Work:"), totalWork);
 addRow(5, new Label("Work Done:"), workDone);
 addRow(6, new Label("Progress:"), new HBox(2, progressBar, progress));
 addRow(7, new Label("Value:"), value);
 addRow(8, new Label("Exception:"), exception);
 }

Chapter 27 ■ Understanding ConCUrrenCy in JavaFX

1082

 public void bindToWorker(final Worker<ObservableList<Long>> worker) {
 // Bind Labels to the properties of the worker
 title.textProperty().bind(worker.titleProperty());
 message.textProperty().bind(worker.messageProperty());
 running.textProperty().bind(worker.runningProperty().asString());
 state.textProperty().bind(worker.stateProperty().asString());
 totalWork.textProperty().bind(new When(worker.totalWorkProperty().isEqualTo(-1))
 .then("Unknown")
 .otherwise(worker.totalWorkProperty().asString()));
 workDone.textProperty().bind(new When(worker.workDoneProperty().isEqualTo(-1))
 .then("Unknown")
 .otherwise(worker.workDoneProperty().asString()));
 progress.textProperty().bind(new When(worker.progressProperty().isEqualTo(-1))
 .then("Unknown")
 .otherwise(worker.progressProperty().multiply(100.0)
 .asString("%.2f%%")));
 progressBar.progressProperty().bind(worker.progressProperty());
 value.textProperty().bind(worker.valueProperty().asString());

 // Display the exception message when an exception occurs in the worker
 worker.exceptionProperty().addListener((prop, oldValue, newValue) -> {
 if (newValue != null) {
 exception.setText(newValue.getMessage());
 } else {
 exception.setText("");
 }
 });
 }
}

The PrimeUtil class in Listing 27-5 is a utility class to check whether a number is a prime number.

Listing 27-5. A Utility Class to Work with Prime Numbers

// PrimeUtil.java
package com.jdojo.concurrent;

public class PrimeUtil {
 public static boolean isPrime(long num) {
 if (num <= 1 || num % 2 == 0) {
 return false;
 }

 int upperDivisor = (int)Math.ceil(Math.sqrt(num));
 for (int divisor = 3; divisor <= upperDivisor; divisor += 2) {
 if (num % divisor == 0) {
 return false;
 }
 }
 return true;
 }
}

Chapter 27 ■ Understanding ConCUrrenCy in JavaFX

1083

Using the Task<V> Class
An instance of the Task<V> class represents a one-time task. Once the task is completed, cancelled, or failed,
it cannot be restarted. The Task<V> class implements the Worker<V> interface. Therefore, all properties and
methods specified by the Worker<V> interface are available in the Task<V> class.

The Task<V> class inherits from the FutureTask<V> class, which is part of the Java concurrency
framework. The FutureTask<V> implements the Future<V>, RunnableFuture<V>, and Runnable interfaces.
Therefore, a Task<V> also implements all these interfaces.

Creating a Task
How do you create a Task<V>? Creating a Task<V> is easy. You need to subclass the Task<V> class and
provide an implementation for the abstract method call(). The call() method contains the logic to
perform the task. The following snippet of code shows the skeleton of a Task implementation:

// A Task that produces an ObservableList<Long>
public class PrimeFinderTask extends Task<ObservableList<Long>> {
 @Override
 protected ObservableList<Long>> call() {
 // Implement the task logic here...
 }
}

Updating Task Properties
Typically, you would want to update the properties of the task as it progresses. The properties must be
updated and read on the JavaFX Application Thread, so they can be observed safely in a GUI environment.
The Task<V> class provides special methods to update some of its properties.

•	 protected void updateMessage(String message)

•	 protected void updateProgress(double workDone, double totalWork)

•	 protected void updateProgress(long workDone, long totalWork)

•	 protected void updateTitle(String title)

•	 protected void updateValue(V value)

You provide the values for the workDone and the totalWork properties to the updateProgress()
method. The progress property will be set to workDone/totalWork. The method throws a runtime exception
if the workDone is greater than the totalWork or both are less than -1.0.

Sometimes, you may want to publish partial results of a task in its value property. The updateValue()
method is used for this purpose. The final result of a task is the return value of its call() method.

All updateXxx() methods are executed on the JavaFX application Thread. Their names indicate the
property they update. They are safe to be called from the call() method of the Task. If you want to
update the properties of the Task from the call() method directly, you need to wrap the code inside a
Platform.runLater() call.

Chapter 27 ■ Understanding ConCUrrenCy in JavaFX

1084

Listening to Task Transition Events
The Task class contains the following properties to let you set event handlers for its state transitions:

•	 onCancelled

•	 onFailed

•	 onRunning

•	 onScheduled

•	 onSucceeded

The following snippet of code adds an onSucceeded event handler, which would be called when the task
transitions to the SUCCEEDED state:

Task<ObservableList<Long>> task = create a task...
task.setOnSucceeded(e -> {
 System.out.println("The task finished. Let us party!")
});

Cancelling a Task
Use one of the following two cancel() methods to cancel a task:

•	 public final boolean cancel()

•	 public boolean cancel(boolean mayInterruptIfRunning)

The first version removes the task from the execution queue or stops its execution. The second
version lets you specify whether the thread running the task be interrupted. Make sure to handle the
InterruptedException inside the call() method. Once you detect this exception, you need to finish the
call() method quickly. Otherwise, the call to cancel(true) may not cancel the task reliably. The cancel()
method may be called from any thread.

The following methods of the Task are called when it reaches a specific state:

•	 protected void scheduled()

•	 protected void running()

•	 protected void succeeded()

•	 protected void cancelled()

•	 protected void failed()

Their implementations in the Task class are empty. They are meant to be overridden by the subclasses.

Running a Task
A Task is Runnable as well as a FutureTask. To run it, you can use a background thread or an ExecutorService.

// Schedule the task on a background thread
Thread backgroundThread = new Thread(task);
backgroundThread.setDaemon(true);
backgroundThread.start();

// Use the executor service to schedule the task
ExecutorService executor = Executors.newSingleThreadExecutor();
executor.submit(task);

Chapter 27 ■ Understanding ConCUrrenCy in JavaFX

1085

A Prime Finder Task Example
It is time to see a Task in action. The program in Listing 27-6 is an implementation of the
Task<ObservableList<Long>>. It checks for prime numbers between the specified lowerLimit and
upperLimit. It returns all the numbers in the range. Notice that the task thread sleeps for a short time before
checking a number for a prime number. This is done to give the user an impression of a long-running task.
It is not needed in a real world application. The call() method handles an InterruptedException and
finishes the task if the task was interrupted as part of a cancellation request.

The call to the method updateValue() needs little explanation.

updateValue(FXCollections.<Long>unmodifiableObservableList(results));

Every time a prime number is found, the results list is updated. The foregoing statement wraps the
results list in an unmodifiable observable list and publishes it for the client. This gives the client access to the
partial results of the task. This is a quick and dirty way of publishing the partial results. If the call() method
returns a primitive value, it is fine to call the updateValue() method repeatedly.

Tip ■ in this case, you are creating a new unmodifiable list every time you find a new prime number, which is
not acceptable in a production environment for performance reasons. the efficient way of publishing the partial
results would be to declare a read-only property for the Task; update the read-only property regularly on JavaFX
application thread; let the client bind to the read-only property to see the partial results.

Listing 27-6. Finding Prime Numbers Using a Task<Long>

// PrimeFinderTask.java
package com.jdojo.concurrent;

import javafx.collections.FXCollections;
import javafx.collections.ObservableList;
import javafx.concurrent.Task;

public class PrimeFinderTask extends Task<ObservableList<Long>> {
 private long lowerLimit = 1;
 private long upperLimit = 30;
 private long sleepTimeInMillis = 500;

 public PrimeFinderTask() {
 }

 public PrimeFinderTask(long lowerLimit, long upperLimit) {
 this.lowerLimit = lowerLimit;
 this.upperLimit = upperLimit;
 }

 public PrimeFinderTask(long lowerLimit,
 long upperLimit,
 long sleepTimeInMillis) {
 this(lowerLimit, upperLimit);
 this.sleepTimeInMillis = sleepTimeInMillis;
 }

Chapter 27 ■ Understanding ConCUrrenCy in JavaFX

1086

 // The task implementation
 @Override
 protected ObservableList<Long> call() {
 // An observable list to represent the results
 final ObservableList<Long> results =
 FXCollections.<Long>observableArrayList();

 // Update the title
 this.updateTitle("Prime Number Finder Task");

 long count = this.upperLimit - this.lowerLimit + 1;
 long counter = 0;

 // Find the prime numbers
 for (long i = lowerLimit; i <= upperLimit; i++) {
 // Check if the task is cancelled
 if (this.isCancelled()) {
 break;
 }

 // Increment the counter
 counter++;

 // Update message
 this.updateMessage("Checking " + i + " for a prime number");

 // Sleep for some time
 try {
 Thread.sleep(this.sleepTimeInMillis);
 }
 catch (InterruptedException e) {
 // Check if the task is cancelled
 if (this.isCancelled()) {
 break;
 }
 }

 // Check if the number is a prime number
 if (PrimeUtil.isPrime(i)) {
 // Add to the list
 results.add(i);

 // Publish the read-only list to give the GUI access to the
 // partial results
 updateValue(
 FXCollections.<Long>unmodifiableObservableList(
 results));
 }

Chapter 27 ■ Understanding ConCUrrenCy in JavaFX

1087

 // Update the progress
 updateProgress(counter, count);
 }

 return results;
 }

 @Override
 protected void cancelled() {
 super.cancelled();
 updateMessage("The task was cancelled.");
 }

 @Override
 protected void failed() {
 super.failed();
 updateMessage("The task failed.");
 }

 @Override
 public void succeeded() {
 super.succeeded();
 updateMessage("The task finished successfully.");
 }
}

The program in Listing 27-7 contains the complete code to build a GUI using your PrimeFinderTask
class. Figure 27-5 shows the window when the task is running. You will need to click the Start button to start
the task. Clicking the Cancel button cancels the task. Once the task finishes, it is cancelled or it fails; you
cannot restart it and both the Start and Cancel buttons are disabled. Notice that when the task finds a new
prime number, it is displayed on the window immediately.

Listing 27-7. Executing a Task in GUI Environment

// OneShotTask.java
package com.jdojo.concurrent;

import javafx.application.Application;
import javafx.scene.Scene;
import javafx.scene.control.Button;
import javafx.scene.layout.BorderPane;
import javafx.scene.layout.GridPane;
import javafx.scene.layout.HBox;
import javafx.stage.Stage;
import static javafx.concurrent.Worker.State.READY;
import static javafx.concurrent.Worker.State.RUNNING;

Chapter 27 ■ Understanding ConCUrrenCy in JavaFX

1088

public class OneShotTask extends Application {
 Button startBtn = new Button("Start");
 Button cancelBtn = new Button("Cancel");
 Button exitBtn = new Button("Exit");

 // Create the task
 PrimeFinderTask task = new PrimeFinderTask();

 public static void main(String[] args) {
 Application.launch(args);
 }

 @Override
 public void start(Stage stage) {
 // Add event handlers to the buttons
 startBtn.setOnAction(e -> startTask());
 cancelBtn.setOnAction(e -> task.cancel());
 exitBtn.setOnAction(e -> stage.close());

 // Enable/Disable the Start and Cancel buttons
 startBtn.disableProperty().bind(task.stateProperty().isNotEqualTo(READY));
 cancelBtn.disableProperty().bind(task.stateProperty().isNotEqualTo(RUNNING));
 GridPane pane = new WorkerStateUI(task);
 HBox buttonBox = new HBox(5, startBtn, cancelBtn, exitBtn);
 BorderPane root = new BorderPane();
 root.setCenter(pane);
 root.setBottom(buttonBox);
 root.setStyle("-fx-padding: 10;" +
 "-fx-border-style: solid inside;" +
 "-fx-border-width: 2;" +
 "-fx-border-insets: 5;" +
 "-fx-border-radius: 5;" +
 "-fx-border-color: blue;");
 Scene scene = new Scene(root);
 stage.setScene(scene);
 stage.setTitle("A Prime Number Finder Task");
 stage.show();
 }

 public void startTask() {
 // Schedule the task on a background thread
 Thread backgroundThread = new Thread(task);
 backgroundThread.setDaemon(true);
 backgroundThread.start();
 }
}

Chapter 27 ■ Understanding ConCUrrenCy in JavaFX

1089

Figure 27-5. A window using the prime number finder Task

Using the Service<V> Class
The Service<V> class is an implementation of the Worker<V> interface. It encapsulates a Task<V>. It makes
the Task<V> reusable by letting it be started, cancelled, reset, and restarted.

Creating the Service
Remember that a Service<V> encapsulates a Task<V>. Therefore, you need a Task<V> to have a Service<V>. The
Service<V> class contains an abstract protected createTask() method that returns a Task<V>. To create a service,
you need to subclass the Service<V> class and provide an implementation for the createTask() method.

The following snippet of code creates a Service that encapsulates a PrimeFinderTask, which you have
created earlier:

// Create a service
Service<ObservableList<Long>> service = new Service<ObservableList<Long>>() {
 @Override
 protected Task<ObservableList<Long>> createTask() {
 // Create and return a Task
 return new PrimeFinderTask();
 }
};

The createTask() method of the service is called whenever the service is started or restarted.

Chapter 27 ■ Understanding ConCUrrenCy in JavaFX

1090

Updating Service Properties
The Service class contains all properties (title, message, state, value, etc.) that represent the internal
state of a Worker. It adds an executor property, which is a java.util.concurrent.Executor. The property is
used to run the Service. If it is not specified, a daemon thread is created to run the Service.

Unlike the Task class, the Service class does not contain updateXxx() methods for updating its
properties. Its properties are bound to the corresponding properties of the underlying Task<V>. When the
Task updates its properties, the changes are reflected automatically to the Service and to the client.

Listening to Service Transition Events
The Service class contains all properties for setting the state transition listeners as contained by the Task
class. It adds an onReady property. The property specifies a state transition event handler, which is called
when the Service transitions to the READY state. Note that the Task class does not contain an onReady
property as a Task is in the READY state when it is created and it never transitions to the READY state again.
However, a Service can be in the READY state multiple times. A Service transitions to the READY state when
it is created, reset, and restarted. The Service class also contains a protected ready() method, which is
intended to be overridden by subclasses. The ready() method is called when the Service transitions to the
READY state.

Cancelling the Service
Use the cancel() methods to cancel a Service: the method sets the state of the Service to CANCELLED.

Starting the Service
Calling the start() method of the Service class starts a Service. The method calls the createTask()
method to get a Task instance and runs the Task. The Service must be in the READY state when its start()
method is called.

Service<ObservableList<Long>> service = create a service
...
// Start the service
service.start();

Resetting the Service
Calling the reset() method of the Service class resets the Service. Resetting puts all the Service properties
back to their initial states. The state is set to READY. Resetting a Service is allowed only when the Service
is in one of the finish states: SUCCEEDED, FAILED, CANCELLED, or READY. Calling the reset() method throws a
runtime exception if the Service is in the SCHEDULED or RUNNING state.

Restarting the Service
Calling the restart() method of the Service class restarts a Service. It cancels the task if it exists, resets the
service, and starts it. It calls the three methods on the Service object in sequence.

•	 cancel()

•	 reset()

•	 start()

Chapter 27 ■ Understanding ConCUrrenCy in JavaFX

1091

The Prime Finder Service Example
The program in Listing 27-8 shows how to use a Service. The Service object is created and stored as an
instance variable. The Service object manages a PrimeFinderTask object, which is a Task to find prime
numbers between two numbers. Four buttons are added: Start/Restart, Cancel, Reset, and Exit. The Start
button is labeled Restart after the Service is started for the first time. The buttons do what their labels
indicate. Buttons are disabled when they are not applicative. Figure 27-6 shows a screenshot of the window
after the Start button is clicked.

Listing 27-8. Using a Service to Find Prime Numbers

// PrimeFinderService.java
package com.jdojo.concurrent;

import javafx.application.Application;
import javafx.application.Platform;
import javafx.beans.binding.Bindings;
import javafx.collections.ObservableList;
import javafx.concurrent.Service;
import javafx.concurrent.Task;
import static javafx.concurrent.Worker.State.RUNNING;
import static javafx.concurrent.Worker.State.SCHEDULED;
import javafx.scene.Scene;
import javafx.scene.control.Button;
import javafx.scene.layout.BorderPane;
import javafx.scene.layout.GridPane;
import javafx.scene.layout.HBox;
import javafx.stage.Stage;

public class PrimeFinderService extends Application {
 Button startBtn = new Button("Start");
 Button cancelBtn = new Button("Cancel");
 Button resetBtn = new Button("Reset");
 Button exitBtn = new Button("Exit");
 boolean onceStarted = false;

 // Create the service
 Service<ObservableList<Long>> service = new Service<ObservableList<Long>>() {
 @Override
 protected Task<ObservableList<Long>> createTask() {
 return new PrimeFinderTask();
 }
 };

 public static void main(String[] args) {
 Application.launch(args);
 }

 @Override
 public void start(Stage stage) {
 // Add event handlers to the buttons
 addEventHandlers();

Chapter 27 ■ Understanding ConCUrrenCy in JavaFX

1092

 // Enable disable buttons based on the service state
 bindButtonsState();

 GridPane pane = new WorkerStateUI(service);
 HBox buttonBox = new HBox(5, startBtn, cancelBtn, resetBtn, exitBtn);
 BorderPane root = new BorderPane();
 root.setCenter(pane);
 root.setBottom(buttonBox);
 root.setStyle("-fx-padding: 10;" +
 "-fx-border-style: solid inside;" +
 "-fx-border-width: 2;" +
 "-fx-border-insets: 5;" +
 "-fx-border-radius: 5;" +
 "-fx-border-color: blue;");
 Scene scene = new Scene(root);
 stage.setScene(scene);
 stage.setTitle("A Prime Number Finder Service");
 stage.show();
 }

 public void addEventHandlers() {
 // Add event handlers to the buttons
 startBtn.setOnAction(e -> {
 if (onceStarted) {
 service.restart();
 } else {
 service.start();
 onceStarted = true;
 startBtn.setText("Restart");
 }
 });

 cancelBtn.setOnAction(e -> service.cancel());
 resetBtn.setOnAction(e -> service.reset());
 exitBtn.setOnAction(e -> Platform.exit());
 }

 public void bindButtonsState() {
 cancelBtn.disableProperty().bind(service.stateProperty().isNotEqualTo(RUNNING));
 resetBtn.disableProperty().bind(
 Bindings.or(service.stateProperty().isEqualTo(RUNNING),
 service.stateProperty().isEqualTo(SCHEDULED)));
 }
}

Chapter 27 ■ Understanding ConCUrrenCy in JavaFX

1093

Using the ScheduledService<V> Class
The ScheduledService<V> is a Service<V>, which automatically restarts. It can restart when it finishes
successfully or when it fails. Restarting on a failure is configurable. The ScheduledService<V> class inherits
from the Service<V> class. The ScheduledService is suitable for tasks that use polling. For example, you
may use it to refresh the score of a game or the weather report from the Internet after every 10 minutes.

Creating the ScheduledService
The process of creating a ScheduledService is the same as that of creating a Service. You need to subclass
the ScheduledService<V> class and provide an implementation for the createTask() method.

The following snippet of code creates a ScheduledService that encapsulates a PrimeFinderTask, which
you have created earlier:

// Create a scheduled service
ScheduledService<ObservableList<Long>> service =
 new ScheduledService <ObservableList<Long>>() {
 @Override
 protected Task<ObservableList<Long>> createTask() {
 // Create and return a Task
 return new PrimeFinderTask();
 }
};

Figure 27-6. A window using a Service to find prime numbers

Chapter 27 ■ Understanding ConCUrrenCy in JavaFX

1094

The createTask() method of the service is called when the service is started or restarted manually or
automatically. Note that a ScheduledService is automatically restarted. You can start and restart it manually
by calling the start() and restart() methods.

Tip ■ starting, cancelling, resetting, and restarting a ScheduledService work the same way as these
operations on a Service.

Updating ScheduledService Properties
The ScheduledService<ScheduledService> class inherits properties from the Service<V> class. It adds the
following properties that can be used to configure the scheduling of the service.

•	 lastValue

•	 delay

•	 period

•	 restartOnFailure

•	 maximumFailureCount

•	 backoffStrategy

•	 cumulativePeriod

•	 currentFailureCount

•	 maximumCumulativePeriod

A ScheduledService<V> is designed to run several times. The current value computed by the service is
not very meaningful. Your class adds a new property lastValue, which is of the type V, and it is the last value
computed by the service.

The delay is a Duration, which specifies a delay between when the service is started and when it begins
running. The service stays in the SCHEDULED state for the specified delay. The delay is honored only when
the service is started manually calling the start() or restart() method. When the service is restarted
automatically, honoring the delay property depends on the current state of the service. For example, if the
service is running behind its periodic schedule, it will rerun immediately, ignoring the delay property. The
default delay is zero.

The period is a Duration, which specifies the minimum amount of time between the last run and the
next run. The default period is zero.

The restartOnFailure specifies whether the service restarts automatically when it fails. By default, it is
set to true.

The currentFailureCount is the number of times the scheduled service has failed. It is reset to zero
when the scheduled service is restarted manually.

The maximumFailureCount specifies the maximum number of times the service can fail before it is
transitioned into the FAILED state and it is not automatically restarted again. Note that you can restart a
scheduled service any time manually. By default, it is set to Integer.MAX_VALUE.

Chapter 27 ■ Understanding ConCUrrenCy in JavaFX

1095

The backoffStrategy is a Callback<ScheduledService<?>,Duration> that computes the Duration
to add to the period on each failure. Typically, if a service fails, you want to slow down before retrying it.
Suppose a service runs every 10 minutes. If it fails for the first time, you may want to restart it after
15 minutes. If it fails for the second time, you want to increase the rerun time to 25 minutes, and so on.
The ScheduledService class provides three built-in backoff strategies as constants.

•	 EXPONENTIAL_BACKOFF_STRATEGY

•	 LINEAR_BACKOFF_STRATEGY

•	 LOGARITHMIC_BACKOFF_STRATEGY

The rerun gaps are computed based on the non-zero period and the current failure count.
The time between consecutive failed runs increases exponentially in the exponential backoffStrategy,
linearly in the linear backoffStrategy, and logarithmically in the logarithmic backoffStrategy.
The LOGARITHMIC_BACKOFF_STRATEGY is the default. When the period is zero, the following formulas are
used. The computed duration is in milliseconds.

•	 Exponential: Math.exp(currentFailureCount)

•	 Linear: currentFailureCount

•	 Logarithmic: Math.log1p(currentFailureCount)

The following formulas are used for the non-null period:

•	 Exponential: period + (period * Math.exp(currentFailureCount)

•	 Linear: period + (period * currentFailureCount)

•	 Logarithmic: period + (period * Math.log1p(currentFailureCount))

The cumulativePeriod is a Duration, which is the time between the current failed run and the next run.
Its value is computed using the backoffStrategy property. It is reset upon a successful run of the scheduled
service. Its value can be capped using the maximumCumulativePeriod property.

Listening to ScheduledService Transition Events
The ScheduledService goes through the same transition states as the Service. It goes through the
READY, SCHEDULED, and RUNNING states automatically after a successful run. Depending on how the scheduled
service is configured, it may go through the same state transitions automatically after a failed run.

You can listen to the state transitions and override the transition-related methods (ready(),
running(), failed(), etc.) as you can for a Service. When you override the transition-related methods
in a ScheduledService subclass, make sure to call the super method to keep your ScheduledService
working properly.

The Prime Finder ScheduledService Example
Let us use the PrimeFinderTask with a ScheduledService. Once started, the ScheduledService will keep
rerunning forever. If it fails five times, it will quit by transitioning itself to the FAILED state. You can cancel
and restart the service manually any time.

The program in Listing 27-9 shows how to use a ScheduledService. The program is very similar to
the one shown in Listing 27-8, except at two places. The service is created by subclassing the
ScheduledService class.

Chapter 27 ■ Understanding ConCUrrenCy in JavaFX

1096

// Create the scheduled service
ScheduledService<ObservableList<Long>> service = new ScheduledService<ObservableList<Long>>() {
 @Override
 protected Task<ObservableList<Long>> createTask() {
 return new PrimeFinderTask();
 }
};

The ScheduledService is configured in the beginning of the start() method, setting the delay,
period, and maximumFailureCount properties.

// Configure the scheduled service
service.setDelay(Duration.seconds(5));
service.setPeriod(Duration.seconds(30));
service.setMaximumFailureCount(5);

Figure 27-7, Figure 27-8, and Figure 27-9 show the state of the ScheduledService when it is not started,
when it is observing the delay period in the SCHEDULED state, and when it is running. Use the Cancel and
Reset buttons to cancel and reset the service. Once the service is cancelled, you can restart it manually by
clicking the Restart button.

Listing 27-9. Using a ScheduledService to Run a Task

// PrimeFinderScheduledService.java
package com.jdojo.concurrent;

import javafx.application.Application;
import javafx.application.Platform;
import javafx.beans.binding.Bindings;
import javafx.collections.ObservableList;
import javafx.concurrent.ScheduledService;
import javafx.concurrent.Task;
import static javafx.concurrent.Worker.State.RUNNING;
import static javafx.concurrent.Worker.State.SCHEDULED;
import javafx.scene.Scene;
import javafx.scene.control.Button;
import javafx.scene.layout.BorderPane;
import javafx.scene.layout.GridPane;
import javafx.scene.layout.HBox;
import javafx.stage.Stage;
import javafx.util.Duration;

public class PrimeFinderScheduledService extends Application {
 Button startBtn = new Button("Start");
 Button cancelBtn = new Button("Cancel");
 Button resetBtn = new Button("Reset");
 Button exitBtn = new Button("Exit");
 boolean onceStarted = false;

 // Create the scheduled service

Chapter 27 ■ Understanding ConCUrrenCy in JavaFX

1097

 ScheduledService<ObservableList<Long>> service =
 new ScheduledService<ObservableList<Long>>() {
 @Override
 protected Task<ObservableList<Long>> createTask() {
 return new PrimeFinderTask();
 }
 };

 public static void main(String[] args) {
 Application.launch(args);
 }

 @Override
 public void start(Stage stage) {
 // Configure the scheduled service
 service.setDelay(Duration.seconds(5));
 service.setPeriod(Duration.seconds(30));
 service.setMaximumFailureCount(5);

 // Add event handlers to the buttons
 addEventHandlers();

 // Enable disable buttons based on the service state
 bindButtonsState();

 GridPane pane = new WorkerStateUI(service);
 HBox buttonBox = new HBox(5, startBtn, cancelBtn, resetBtn, exitBtn);
 BorderPane root = new BorderPane();
 root.setCenter(pane);
 root.setBottom(buttonBox);
 root.setStyle("-fx-padding: 10;" +
 "-fx-border-style: solid inside;" +
 "-fx-border-width: 2;" +
 "-fx-border-insets: 5;" +
 "-fx-border-radius: 5;" +
 "-fx-border-color: blue;");
 Scene scene = new Scene(root);
 stage.setScene(scene);
 stage.setTitle("A Prime Number Finder Scheduled Service");
 stage.show();
 }

 public void addEventHandlers() {
 // Add event handlers to the buttons
 startBtn.setOnAction(e -> {
 if (onceStarted) {
 service.restart();
 } else {
 service.start();
 onceStarted = true;

Chapter 27 ■ Understanding ConCUrrenCy in JavaFX

1098

 startBtn.setText("Restart");
 }
 });

 cancelBtn.setOnAction(e -> service.cancel());
 resetBtn.setOnAction(e -> service.reset());
 exitBtn.setOnAction(e -> Platform.exit());
 }

 public void bindButtonsState() {
 cancelBtn.disableProperty().bind(service.stateProperty().isNotEqualTo(RUNNING));
 resetBtn.disableProperty().bind(
 Bindings.or(service.stateProperty().isEqualTo(RUNNING),
 service.stateProperty().isEqualTo(SCHEDULED)));
 }
}

Figure 27-7. The ScheduledService is not started

Chapter 27 ■ Understanding ConCUrrenCy in JavaFX

1099

Figure 27-8. The ScheduledService is started for the first time and it is observing the delay period

Figure 27-9. The ScheduledService is started and running

Chapter 27 ■ Understanding ConCUrrenCy in JavaFX

1100

Summary
Java (including JavaFX) GUI applications are inherently multithreaded. Multiple threads perform different
tasks to keep the UI in sync with the user actions. JavaFX, like Swing and AWT, uses a single thread, called
JavaFX Application Thread, to process all UI events. The nodes representing UI in a scene graph are not
thread-safe. Designing nodes that are not thread-safe has advantages and disadvantages. They are faster, as
no synchronization is involved. The disadvantage is that they need to be accessed from a single thread to
avoid being in an illegal state. JavaFX puts a restriction that a live scene graph must be accessed from one
and only one thread, the JavaFX Application Thread. This restriction indirectly imposes another restriction
that a UI event should not process a long-running task, as it will make the application unresponsive. The
user will get the impression that the application is hung. The JavaFX concurrency framework is built on top
of the Java language concurrency framework keeping in mind that it will be used in a GUI environment. The
framework consists of one interface, four classes, and one enum. It provides a way to design a multithreaded
JavaFX application that can perform long-running tasks in worker threads, keeping the UI responsive.

An instance of the Worker interface represents a task that needs to be performed in one or more
background threads. The state of the task is observable from the JavaFX Application Thread. The Task,
Service, and ScheduledService classes implement the Worker interface. They represent different types of
tasks. They are abstract classes.

An instance of the Task class represents a one-shot task. A Task cannot be reused.
An instance of the Service class represents a reusable task.
The ScheduledService class inherits from the Service class. A ScheduledService is a task that can be

scheduled to run repeatedly after a specified interval.
The constants in the Worker.State enum represent different states of a Worker. An instance of the

WorkerStateEvent class represents an event that occurs as the state of a Worker changes. You can add event
handlers to all three types of tasks to listen to the change in their states.

The next chapter will discuss how to incorporate audios and videos in JavaFX applications.

1101

Chapter 28

Playing Audios and Videos

In this chapter, you will learn:

What the Media API is•	

How to play short audio clips•	

How to playback media (audios and videos) and how to track different aspects of the •	
playback such as playback rate, volume, playback time, repeating the playback, and
media errors

Understanding the Media API
JavaFX supports playing audio and video through the JavaFX Media API. HTTP live streaming of static media
files and live feeds are also supported. A number of media formats are supported, including AAC, AIFF, WAV,
and MP3. FLV containing VP6 video and MP3 audio and MPEG-4 multimedia container with H.264/AVC
video formats are also supported. The support for a specific media format is platform dependent. Some
media playback features and formats do not require any addition installations; some require third-party
software to be installed. Please refer to the web page at http://docs.oracle.com/javafx/release-
documentation.html for details on the system requirements and supported media formats in JavaFX.

The Media API consists of several classes. Figure 28-1 shows a class diagram that includes only the core
classes in the Media API. All classes in the API are included in the javafx.scene.media package.

Node

AudioClip

Media

MediaErrorEventMediaPlayer

MediaExceptionMediaView

Figure 28-1. A class diagram for core classes in the Media API

http://docs.oracle.com/javafx/release-documentation.html
http://docs.oracle.com/javafx/release-documentation.html

Chapter 28 ■ playing audios and Videos

1102

AudioClip is used to play a short audio clip with minimal latency. Typically, this is useful for sound
effects, which are usually short audio clips. Use the Media, MediaPlayer, and MediaView classes for playing
audios and videos of longer length.

The Media and MediaPlayer classes are used to play audios as well as videos. An instance of the Media
class represents a media resource, which could be an audio or video. It provides the information about the
media, for example, the duration of the media. An instance of the MediaPlayer class provides controls for
playing a media.

An instance of the MediaView class provides the view of a media being played by a MediaPlayer.
A MediaView is used for viewing a video.

Several things can go wrong when you attempt to play a media, for example, the media format may
not be supported or the media content may be corrupt. An instance of the MediaException class represents
a specific type of media error that may occur during media playback. When a media-related error occurs,
a MediaErrorEvent is generated. You can handle the error by adding an appropriate event handler to the
media objects.

I will cover the details of using these classes and other supporting classes in the Media API in this
chapter.

Playing Short Audio Clips
An instance of the AudioClip class is used to play a short audio clip with minimal latency. Typically, this is
useful for playing short audio clips, for example, a beep sound when the user makes an error or producing
short sound effects in gaming applications.

The AudioClip class provides only one constructor that takes a URL in string form, which is the URL of
the audio source. The audio clip is immediately loaded into memory in raw, uncompressed form. This is the
reason why you should not use this class for long-playing audio clips. The source URL could use the HTTP,
file, and JAR protocols. This means that you can play an audio clip from the Internet, the local file system,
and a JAR file.

The following snippet of code creates an AudioClip using the HTTP protocol:

String clipUrl = "http://www.jdojo.com/myaudio.wav";
AudioClip audioClip = new AudioClip(clipUrl);

When an AudioClip object is created, the audio data are loaded into the memory and they are ready
to be played immediately. Use the play() method to play the audio and the stop() method to stop the
playback:

// Play the audio
audioClip.play();
...
// Stop the playback
audioClip.stop();

The program in Listing 28-1 shows how to play an audio clip using the AudioClip class. It declares an
instance variable to store the AudioClip reference. The AudioClip is created in the init() method to make
sure the clip is ready to be played when the window is shown in the start() method. You could have also
created the AudioClip in the constructor. The start() method adds Start and Stop buttons. Their action
event handlers start and stop the playback, respectively.

Chapter 28 ■ playing audios and Videos

1103

Listing 28-1. Playing Back an Audio Clip Using an AudioClip Instance

// AudioClipPlayer.java
package com.jdojo.media;

import java.net.URL;
import javafx.application.Application;
import javafx.scene.Scene;
import javafx.scene.control.Button;
import javafx.scene.layout.HBox;
import javafx.scene.media.AudioClip;
import javafx.stage.Stage;

public class AudioClipPlayer extends Application {
 private AudioClip audioClip;

 public static void main(String[] args) {
 Application.launch(args);
 }

 @Override
 public void init() {
 URL mediaUrl = this.getClass()
 .getClassLoader()
 .getResource("resources/media/chimes.wav");

 // Create an AudioClip, which loads the audio data synchronously
 audioClip = new AudioClip(mediaUrl.toExternalForm());
 }

 @Override
 public void start(Stage stage) {
 Button playBtn = new Button("Play");
 Button stopBtn = new Button("Stop");

 // Set event handlers for buttons
 playBtn.setOnAction(e -> audioClip.play());
 stopBtn.setOnAction(e -> audioClip.stop());

 HBox root = new HBox(5, playBtn, stopBtn);
 root.setStyle("-fx-padding: 10;");
 Scene scene = new Scene(root);
 stage.setScene(scene);
 stage.setTitle("Playing Short Audio Clips");
 stage.show();
 }
}

Chapter 28 ■ playing audios and Videos

1104

The AudioClip class supports setting some audio properties when the clip is played:

•	 cycleCount

•	 volume

•	 rate

•	 balance

•	 pan

•	 priority

All of the above properties, except the cycleCount, can be set on the AudioClip class. Subsequent
calls to the play() method will use them as defaults. The play() method may also override the defaults
for a specific playback. The cycleCount property must be specified on the AudioClip and all subsequent
playbacks will use the same value.

The cycleCount specifies the number of times the clip is played when the play() method is called. It
defaults to 1, which plays the clip only once. You can use one of the following three INDEFINITE constants as
the cycleCount to play the AudioClip loop until stopped:

•	 AudioClip.INDEFINITE

•	 MediaPlayer.INDEFINITE

•	 Animation.INDEFINITE

The following snippet of code shows how to play an audio clip five times and indefinitely:

// Play five times
audioClip.setCycleCount(5);
...
// Loop forever
audioClip.setCycleCount(AudioClip.INDEFINITE);

The volume specifies the relative volume of the playback. The valid range is 0.0 to 1.0. A value of 0.0
represented muted, whereas 1.0 represents full volume.

The rate specifies the relative speed at which the audio is played. The valid range is 0.125 to 8.0. A value
of 0.125 means the clip is played eight times slower, and the value of 8.0 means the clip will play eight times
faster. The rate affects the playtime and the pitch. The default rate is 1.0, which plays the clip at the normal
rate.

The balance specifies the relative volume for the left and right channels. The valid range is -1.0 to 1.0.
A value of -1.0 sets the playback in the left channel at normal volume and mutes the right channel. A value of
1.0 sets the playback in the right channel at normal volume and mutes the left channel. The default value is
0.0, which sets the playback in both channels at normal volume.

The pan specifies distribution of the clip between the left and right channels. The valid range is -1.0 to
1.0. A value of -1.0 shifts the clip entirely to the left channel. A value of 1.0 shifts the clip entirely to the right
channel. The default value is 0.0, which plays the clip normally. Setting the value for pan for a mono clip has
the same effect of setting the balance. You should change the default for this property only for audio clips
using stereo sound.

The priority specifies the priority of the clip relative to other clips. It is used only when the number of
playing clips exceeds the system limits. The playing clips with the lower priority will be stopped. It can be set
to any integer. The default priority is set to zero.

Chapter 28 ■ playing audios and Videos

1105

The play() method is overloaded. It has three versions:

•	 Void play()

•	 void play(double volume)

•	 void play(double volume, double balance, double rate, double pan,
int priority)

The no-args version of the method uses all of the properties set on the AudioClip. The other two
versions can override the specified properties for a specific playback. Suppose the volume for the AudioClip
is set to 1.0. Calling play() will play the clip at the volume 1.0 and calling play(0.20) will play the clip at
volume 0.20, leaving the volume property for the AudioClip unchanged at 1.0. That is, the play() method
with parameters allows you to override the AudioClip properties on a per-playback basis.

The AudioClip class contains an isPlaying() method to check if the clip is still playing. It returns true
is the clip is playing. Otherwise, it returns false.

Playing Media
JavaFX provides a unified API to work with audio and videos. You use the same classes to work with both.
The Media API internally treats them as two different types of media that is transparent to the API users.
From here onward, I will use the term media to mean both audio and video, unless specified otherwise.

The Media API contains three core classes to play back media:

•	 Media

•	 MediaPlayer

•	 MediaView

Creating a Media Object
An instance of the Media class represents a media resource, which could be an audio or a video. It provides
the information related to the media, for example, the duration, metadata, data, and so forth. If the media is
a video, it provides the width and height of the video. A Media object is immutable. It is created by supplying
a string URL of the media resource, as in the following code:

// Create a Media
String mediaUrl = "http://www.jdojo.com/mymusic.wav";
Media media = new Media(mediaUrl);

The Media class contains the following properties, all (except onError) of which are read-only:

•	 duration

•	 width

•	 height

•	 error

•	 onError

The duration specifies the duration of the media in seconds. It is a Duration object. If the duration is
unknown, it is Duration.UNKNOWN.

Chapter 28 ■ playing audios and Videos

1106

The width and height give the width and height of the source media in pixels, respectively. If the media
does not have width and height, they are set as zero.

The error and onError properties are related. The error property represents the MediaException that
occurs during the loading of the media. The onError is a Runnable object that you can set to get notified
when an error occurs. The run() method of the Runnable is called when an error occurs:

// When an error occurs in loading the media, print it on the console
media.setOnError(() -> System.out.println(player.getError().getMessage()));

Creating a MediaPlayer Object
A MediaPlayer provides the controls, for example, play, pause, stop, seek, play speed, volume adjustment,
for playing the media. The MediaPlayer provides only one constructor that takes a Media object as an
argument:

// Create a MediaPlayer
MediaPlayer player = new MediaPlayer(media);

You can get the reference of the media from the MediaPlayer using the getMedia() method of the
MediaPlayer class.

Like the Media class, the MediaPlayer class also contains error and onError properties to report errors.
When an error occurs on the MediaPlayer, the same error is also reported on the Media object.

The MediaPlayer class contains many properties and methods. I will discuss them in subsequent
sections.

Creating a MediaView Node
A MediaView is a node. It provides the view of a media being played by a MediaPlayer. Note that an audio
clip does not have visuals. If you try creating a MediaView for an audio content, it would be empty. To watch a
video, you create a MediaView and add it to a scene graph.

The MediaView class provides two constructors: one no-args constructor and one that takes a
MediaPlayer as an argument:

•	 public MediaView()

•	 public MediaView(MediaPlayer mediaPlayer)

The no-args constructor creates a MediaView that is attached to any MediaPlayer. You will need to set a
MediaPlayer using the setter for the mediaPlayer property:

// Create a MediaView with no MediaPlayer
MediaView mediaView = new MediaView();
mediaView.setMediaPlayer(player);

The other constructor lets you specify a MediaPlayer for the MediaView:

// Create a MediaView
MediaView mediaView = new MediaView(player);

Chapter 28 ■ playing audios and Videos

1107

Combining Media, MediaPlayer, and MediaView
The content of a media can be used simultaneously by multiple Media objects. However, one Media object
can be associated with only one media content in its lifetime.

A Media object can be associated with multiple MediaPlayer objects. However, a MediaPlayer is
associated with only one Media in its lifetime.

A MediaView may optionally be associated with a MediaPlayer. Of course, a MediaView that is not
associated with a MediaPlayer does not have any visuals. The MediaPlayer for a MediaView can be changed.
Changing the MediaPlayer for a MediaView is similar to changing the channel on a television. The view
for the MediaView is provided by its current MediaPlayer. You can associate the same MediaPlayer with
multiple MediaViews: Different MediaViews may display different parts of the same media during the
playback. This relationship between the three types of objects involved in a media playback is shown in
Figure 28-2.

A Media

A Media

A Media

A MediaPlayer

A MediaPlayer

A MediaPlayer

A MediaPlayer

A MediaView

A MediaView

A MediaView

A MediaView

Media Content

Figure 28-2. Roles of different media-related objects in a media playback and relation among them

A Media Player Example
You now have enough background to understand the mechanism used to play an audio and a video. The
program in Listing 28-2 plays a video clip from the CLASSPATH. The program uses a video file resources/
media/gopro.mp4. You will need to have this file in the CLASSPATH. This file is not included in the source code
because it is approximately 50MB. You can substitute your own media file in this program if it is in a format
supported by JavaFX.

Listing 28-2. Using the Media, MediaPlayer, and MediaView Classes to Play a Media

// QuickMediaPlayer.java
package com.jdojo.media;

import java.net.URL;
import javafx.application.Application;
import javafx.scene.Scene;
import javafx.scene.control.Button;
import javafx.scene.layout.BorderPane;
import javafx.scene.layout.HBox;
import javafx.scene.media.Media;
import javafx.scene.media.MediaPlayer;
import javafx.scene.media.MediaView;
import javafx.stage.Stage;
import static javafx.scene.media.MediaPlayer.Status.PLAYING;

Chapter 28 ■ playing audios and Videos

1108

public class QuickMediaPlayer extends Application {
 public static void main(String[] args) {
 Application.launch(args);
 }

 @Override
 public void start(Stage stage) {
 // Locate the media content in the CLASSPATH
 String mediaPath = "resources/media/gopro.mp4";
 URL mediaUrl = getClass().getClassLoader().getResource(mediaPath);
 String mediaStringUrl = mediaUrl.toExternalForm();

 // Create a Media
 Media media = new Media(mediaStringUrl);

 // Create a Media Player
 MediaPlayer player = new MediaPlayer(media);

 // Automatically begin the playback
 player.setAutoPlay(true);

 // Create a 400X300 MediaView
 MediaView mediaView = new MediaView(player);
 mediaView.setFitWidth(400);
 mediaView.setFitHeight(300);

 // Create Play and Stop player control buttons and add action
 // event handlers to them
 Button playBtn = new Button("Play");
 playBtn.setOnAction(e -> {
 if (player.getStatus() == PLAYING) {
 player.stop();
 player.play();
 } else {
 player.play();
 }
 });

 Button stopBtn = new Button("Stop");
 stopBtn.setOnAction(e -> player.stop());

 // Add an error handler
 player.setOnError(() -> System.out.println(player.getError().getMessage()));

 HBox controlBox = new HBox(5, playBtn, stopBtn);
 BorderPane root = new BorderPane();

 // Add the MediaView and player controls to the scene graph
 root.setCenter(mediaView);
 root.setBottom(controlBox);

Chapter 28 ■ playing audios and Videos

1109

 Scene scene = new Scene(root);
 stage.setScene(scene);
 stage.setTitle("Playing Media");
 stage.show();
 }
}

The first three statements in the start() method prepare a string URL for the media file. The media
path is assumed to exist in the application CLASSPATH:

// Locate the media content in the CLASSPATH
String mediaPath = "resources/media/beach.flv";
URL mediaUrl = getClass().getClassLoader().getResource(mediaPath);
String mediaStringUrl = mediaUrl.toExternalForm();

If you want to play a media from your local file system, you can replace the above three statements with
a string URL using the file protocol. The following statement uses a URL on the Windows file system:

String mediaStringUrl = "file:///C:/myvideo.flv";

If you want to play a media from the Internet, you can replace the three statements with a statement
similar to the following:

String mediaStringUrl = "http://www.jdojo.com/video.flv";

The program creates a Media, a MediaPlayer, and a MediaView. It sets the autoPlay property for the
MediaPlayer to true, which will start playing the media as soon as possible:

// Automatically begin the playback
player.setAutoPlay(true);

The size of the MediaView is set 400px wide by 300px tall. If the media is a video, the video will be scaled
to fit in this size. You will see an empty area for the audios. You can enhance the MediaView later, so it will
take as much space as the media needs.

The Play and Stop buttons are created. Event handlers are added to them. They can be used to begin
and stop the playback, respectively. When the media is already playing, clicking the Play button stops the
playback and plays the media again.

A number of things can go wrong when playing a media. The program sets the onError property for
the MediaPlayer, which is a Runnable. Its run() method is called when an error occurs. The run() method
prints the error message on the console:

// Add an error handler
player.setOnError(() -> System.out.println(player.getError().getMessage()));

When you run the program the video should play automatically. You can stop and replay it using the
buttons at the bottom of the screen. If there is an error, you will see an error message on the console.

Tip ■ the QuickMediaPlayer class can play audios as well as videos. all you need to do is change the url
of the source to point to the media you want to play.

Chapter 28 ■ playing audios and Videos

1110

Handling Playback Errors
An instance of the MediaException class, which inherits from the RuntimeException class, represents a
media error that may occur in a Media, MediaPlayer, and MediaView. Media playback may fail for a number
of reasons. The API users should be able to identify specific errors. The MediaException class defines a static
enum MediaException.Type whose constants identify the type of error. The MediaException class contains a
getType() method that returns one of the constants of the MediaException.Type enum.

The constants in the MediaException.Type enum are listed below:

•	 MEDIA_CORRUPTED

•	 MEDIA_INACCESSIBLE

•	 MEDIA_UNAVAILABLE

•	 MEDIA_UNSPECIFIED

•	 MEDIA_UNSUPPORTED

•	 OPERATION_UNSUPPORTED

•	 PLAYBACK_HALTED

•	 PLAYBACK_ERROR

•	 UNKNOWN

The MEDIA_CORRUPTED error type indicates that the media is corrupted or invalid. The MEDIA_
INACCESSIBLE error type indicates that the media is inaccessible. However, the media may exist. The MEDIA_
UNAVAILABLE error type indicates that that media does not exist or it is unavailable. The MEDIA_UNSPECIFIED
error type indicates that the media has not been specified. The MEDIA_UNSUPPORTED error type indicates
that the media is not supported by the platform. The OPERATION_UNSUPPORTED error type indicates that
the operation performed on the media is not supported by the platform. The PLAYBACK_HALTED error type
indicates an unrecoverable error that has halted the playback. The PLAYBACK_ERROR error type indicates a
playback error that does not fall into any other described categories. The UNKNOWN error type indicates that an
unknown error has occurred.

The Media and MediaPlayer classes contain an error property that is a MediaException. All three
classes—Media, MediaPlayer, and MediaView—contain an onError property, which is an event handler that
is invoked when an error occurs. The types of the onError properties in these classes are not consistent. It
is a Runnable for the Media and MediaPlayer classes and the MediaErrorEvent for the MediaView class. The
following snippet of code shows how to handle errors on a Media, MediaPlayer, and MediaView. They print
the error details on the console:

player.setOnError(() -> {
 System.out.println(player.getError().getMessage());
});

media.setOnError(() -> {
 System.out.println(player.getError().getMessage());
});

Chapter 28 ■ playing audios and Videos

1111

mediaView.setOnError((MediaErrorEvent e) -> {
 MediaException error = e.getMediaError();
 MediaException.Type errorType = error.getType();
 String errorMsg = error.getMessage();
 System.out.println("Error Type:" + errorType + ", error mesage:" + errorMsg);
});

Media error handlers are invoked on the JavaFX Application Thread. Therefore, it is safe to update the
scene graph from the handlers.

It is recommended that you enclose the creation of the Media, MediaPlayer, and MediaView objects
in a try-catch block and handle the exception appropriately. The onError handlers for these objects are
involved after the objects are created. If an error occurs during the creation of these objects, those handlers
will not be available. For example, if the media type you are trying to use is not supported, creating the Media
object results in an error:

try {
 Media media = new Media(mediaStringUrl);
 ...
}
catch (MediaException e) {
 // Handle errors here
}

State Transitions of the MediaPlayer
A MediaPlayer always has a status. The current status of a MediaPlayer is indicated by the read-only status
property. The status changes when an action is performed on the MediaPlayer. It cannot be set directly. The
status of a MediaPlayer is defined by one of the eight constants in the MediaPlayer.Status enum:

•	 UNKNOWN

•	 READY

•	 PLAYING

•	 PAUSED

•	 STALLED

•	 STOPPED

•	 HALTED

•	 DISPOSED

The MediaPlayer transitions from one status to another when one of the following methods is called:

•	 play()

•	 pause()

•	 stop()

•	 dispose()

Chapter 28 ■ playing audios and Videos

1112

Figure 28-3 shows the status transition for a MediaPlayer. Figure 28-3 excludes the HALTED and
DISPOSED statuses as these two statuses are terminal statuses.

READY

UNKNOWN

PLAYING

STALLED PAUSED STOPPED

HALTED

DISPOSED

Figure 28-3. Statuses of a MediaPlayer and the transition among them

When a MediaPlayer is created, its status is UNKNOWN. Once the media is prerolled and it is ready to be
played, the MediaPlayer transitions from UNKNOWN to READY. Once the MediaPlayer exits the UNKNOWN status,
it cannot reenter it in its lifetime.

The MediaPlayer transitions to the PLAYING status when the play() method is called. This status
indicates that the media is playing. Note if the autoPlay property is set to true, the MediaPlayer may enter
the PLAYING status without calling the play() method explicitly after it is created.

When the MediaPlayer is playing, it may enter the STALLED status if it does not have enough data in its
buffer to play. This status indicates that the MediaPlayer is buffering data. When enough data are buffered, it
goes back to the PLAYING status. When a MediaPlayer is stalled, calling the pause() and stop() methods, it
transitions to the PAUSED and STOPPED status, respectively. In that case, the buffering continues; however, the
MediaPlayer does not transition to the PLAYING status once enough data are buffered. Rather, it stays in the
PAUSED or STOPPED status.

Calling the paused() method transitions the MediaPlayer to the PAUSED status. Calling the stop()
method transitions the MediaPlayer to the STOPPED status.

In cases of an unrecoverable error, the MediaPlayer transitions to the HALTED terminal status. This status
indicates that the MediaPlayer cannot be used again. You must create a new MediaPlayer if you want to play
the media again.

The dispose() method frees all of the resources associated with the MediaPlayer. However, the Media
object used by the MediaPlayer can still be used. Calling the dispose() method transitions the MediaPlayer
to the terminal status DISPOSED.

It is common to display the status of the MediaPlayer in an application. Add a ChangeListener to the
status property to listen for any status changes.

Tip ■ Before Java 8, the status property of the MediaPlayer was updated on a thread other than the JavaFX
application thread. therefore, it was not safe to update the scene graph from the status change listeners. in
JavaFX 8, the status change notifications are sent on the JavaFX application thread, and, therefore, you can
update the scene graph from the status change listeners or bind the status property to ui elements.

Chapter 28 ■ playing audios and Videos

1113

Typically, you will be interested in receiving a notification when the status of the MediaPlayer changes.
There are two ways to get the notifications:

By adding a •	 ChangeListener to the status property

By setting status change handlers•	

The first method is suitable if you are interested in listening for any type of status change. The following
snippet of code shows this method:

MediaPlayer player = new MediaPlayer(media);

// Add a ChangeListener to the player
player.statusProperty().addListener((prop, oldStatus, newStatus) -> {
 System.out.println("Status changed from " + oldStatus + " to " + newStatus);
});

The second method is suitable if you are interested in handling a specific type of status change.
The MediaPlayer class contains the following properties that can be set to Runnable objects:

•	 onReady

•	 onPlaying

•	 onRepeat

•	 onStalled

•	 onPaused

•	 onStopped

•	 onHalted

The run() method of the Runnable object is called when the MediaPlayer enters into the specific status.
For example, the run() method of the onPlaying handler is called when the player enters the PLAYING status.
The following snippet of code shows how to set handlers for a specific type of status change:

// Add a handler for PLAYING status
player.setOnPlaying(() -> {
 System.out.println("Playing...");
});

// Add a handler for STOPPED status
player.setOnStopped(() -> {
 System.out.println("Stopped...");
});

Chapter 28 ■ playing audios and Videos

1114

Repeating Media Playback
A media can be played repeatedly for a specified number of times or even indefinitely. The cycleCount
property specifies the number of times a playback will be repeated. By default, it is set to 1. Set it to
MediaPlayer.INDEFINITE to repeat the playback indefinitely until the player is paused or stopped. The read-
only currentCount property is set to the number of completed playback cycles. It is set to 0 when the media
is playing the first cycle. At the end of the first cycle, it is set to 1; it is incremented to 2 at the end of second
cycle, and so on. The following code would set a playback cycle of four times:

// The playback should repeat 4 times
player.setCycleCount(4);

You can receive a notification when the end of media for a cycle in playback is reached. Set a Runnable
for the onEndOfMedia property of the MediaPlayer class to get the notification. Note that if a playback
continues for four cycles, the end of media notification will be sent four times.

player.setOnEndOfMedia(() -> {
 System.out.println("End of media...");
});

You can add an onRepeat event handler that is called when the end of media for a playback cycle is
reached and the playback is going to repeat. It is called after the onEndOfMedia event handler:

player.setOnRepeat(() -> {
 System.out.println("Repeating...");
});

Tracking Media Time
Displaying the media duration and the elapsed time for a playback are important feedback for the audience.
A good understanding of these duration types is important in developing a good media playback dashboard.
Different types of duration can be associated with a media:

The current duration of a media playing media•	

The duration of the media playback•	

The duration of the media play for one cycle•	

The start offset time•	

The end offset time•	

By default, a media plays for its original duration. For example, if the duration of the media is
30 minutes, the media will play for 30 minutes in one cycle. The MediaPlayer lets you specify the length of
the playback, which can be anywhere in the duration of the media. For example, for each playback cycle, you
can specify that only the middle 10 minutes (11th to 12th) of the media should be played. The length of the
media playback is specified by the following two properties of the MediaPlayer class:

•	 startTime

•	 stopTime

Chapter 28 ■ playing audios and Videos

1115

Both properties are of the Duration type. The startTime and stopTime are the time offsets where
the media should start and stop playing for each cycle, respectively. By default, the startTime is set to
Duration.ZERO and the stopTime is set to the duration of the media. The following snippet of code sets these
properties, so the media will be played from the 10th minute to the 21st minute:

player.setStartTime(Duration.minutes(10));
player.setStartTime(Duration.minutes(21));

The following constrains are applicable to the startTime and stopTime values:

0 ≤ startTime < stopTime
startTime < stopTime ≤ Media.duration

The read-only currentTime property is the current time offset in the media playback. The read-only
cycleDuration property is the difference between the stopTime and startTime. It is the length of playback
for each cycle. The read-only totalDuration property specifies the total duration of the playback if the
playback is allowed to continue until finished. Its value is the cycleDuration multiplied by the cycleCount.
If the cycleCount is INDEFINITE, the totalDuration will be INDEFINITE. If the media duration is UNKNOWN,
the totalDuration will be UNKNOWN.

When you play a media from the network, the MediaPlayer may get stalled because it does not have
enough data to continue the playback. The read-only bufferProgressTime property gives you the duration
for which the media can be played without stalling.

Controlling the Playback Rate
The rate property of the MediaPlayer specifies the rate of the playback. The valid range is 0.0 to 8.0. For
example, a rate of 2.0 plays the media two times faster than the normal rate. The default value is 1.0, which
plays the media at the normal rate. The read-only currentRate property is the current rate of playback.
The following code would set the rate at three times the normal rate:

// Play the media at 3x
player.setRate(3.0);

Controlling the Playback Volume
Three properties in the MediaPlayer class control the volume of the audio in the media:

•	 volume

•	 mute

•	 balance

The volume specifies the volume of the audio. The range is 0.0 to 1.0. A value of 0.0 makes the audio
inaudible, whereas a value of 1.0 plays it at full volume. The default value is 1.0.

Chapter 28 ■ playing audios and Videos

1116

The mute specifies whether the audio is produced by the MediaPlayer. By default, its value is false and
the audio is produced. Setting it to true does not produce audio. Note that setting the mute property does not
affect the volume property. Suppose the volume is set to 1.0 and the muted is set to true. There is no audio
being produced. When the mute is set to false, the audio will use the volume property that is 1.0 and it will
play at full volume. The following code would set the volume at half:

// Play the audio at half the full volumne
player.setVolumne(0.5);
...
// Mute the audio
player.setMute(true)

The balance specifies the relative volume for the left and right channels. The valid range is -1.0 to 1.0.
A value of -1.0 sets the playback in the left channel at normal volume and mutes the right channel. A value of
1.0 sets the playback in the right channel at normal volume and mutes the left channel. The default value is
0.0, which sets the playback in both channels at normal volume.

Positioning the MediaPlayer
You can position a MediaPlayer at a specific playback time using the seek(Duration position) method:

// Position the media at the fifth minutes play time
player.seek(Duration.minutes(5.0));

Calling the seek() method has no effect if:

The •	 MediaPlayer is in the STOPPED status

The media duration is •	 Duration.INDEFINITE

You pass •	 null or Duration.UNKNOWN to the seek() method

In all other cases, the position is clamped between the •	 startTime and stopTime of
the MediaPlayer.

Marking Positions in the Media
You can associate markers with specific point on the media timeline. Markers are simply text that are
useful in a number of ways. You can use them to insert advertisements. For example, you can insert a
URL as the marker text. When the marker is reached, you can pause playing the media and play another
media. Note that playing another media involves creating new Media and MediaPlayer objects. You can
reuse a MediaView. When you are playing the advertisement video, associate the MediaView with the new
MediaPlayer. When the advertisement playback is finished, associate the MediaView back to the main
MediaPlayer.

Chapter 28 ■ playing audios and Videos

1117

The Media class contains a getMarkers() method that returns an ObservableMap<String, Duration>.
You need to add the (key, value) pairs in the map to add markers. The following snippet of code adds three
markers to a media:

Media media = ...
ObservableMap<String, Duration> markers = media.getMarkers();
markers.put("START", Duration.ZERO);
markers.put("INTERVAL", media.getDuration().divide(2.0));
markers.put("END", media.getDuration());

The MediaPlayer fires a MediaMarkerEvent when a marker is reached. You can register a handler for
this event in the onMarker property of the MediaPlayer. The following snippet of code shows how to handle
the MediaMarkerEvent. The getMarker() method of the event returns a Pair<String, Duration> whose key
and value are the marker text and marker duration, respectively.

// Add a marker event handler
player.setOnMarker((MediaMarkerEvent e) -> {
 Pair<String, Duration> marker = e.getMarker();
 String markerText = marker.getKey();
 Duration markerTime = marker.getValue();
 System.out.println("Reached the marker " + markerText + " at " + markerTime);
});

Showing Media Metadata
Some metadata may be embedded into a media that describe the media. Typically, the metadata contains
the title, artist name, album name, genre, year, and so forth. The following snippet of code displays the
metadata for the media when the MediaPlayer enters the READY status. Do not try reading the metadata just
after creating the Media object, as the metadata may not be available.

Media media = ...
MediaPlayer player = new MediaPlayer(media);

// Display the metadata data on the console
player.setOnReady(() -> {
 ObservableMap<String, Object> metadata = media.getMetadata();
 for(String key : metadata.keySet()) {
 System.out.println(key + " = " + metadata.get(key));
 }
});

You cannot be sure whether there are metadata in a media or the type of metadata a media may
contain. In your application, you can just look for the title, artist, album, and year. Alternatively, you could
read all of the metadata and display them in a two-column table. Sometimes the metadata may contain an
embedded image of the artist. You would need to check the class name of the value in the map to use the
image.

Chapter 28 ■ playing audios and Videos

1118

Customizing the MediaView
If the media has a view (e.g., a video), you can customize the size, area, and quality of the video using the
following properties:

•	 fitHeight

•	 fitWidth

•	 preserveRatio

•	 smooth

•	 viewport

•	 x

•	 y

The fitWidth and fitHeight properties specify the resized width and height of the video, respectively.
By default, they are zero, which means that the original width and height of the media will be used.

The preserveRatio property specifies whether to preserve the aspect ratio of the media while resizing.
By default, it is false.

The smooth property specifies the quality of the filtering algorithm to be used in resizing the video. The
default value is platform dependent. If it is set to true, a better-quality filtering algorithm is used. Note that
a better-quality filtering takes more processing time. For smaller-sized videos, you may set it to false. For
bigger-sized videos, it is recommended to set the property to true.

A viewport is a rectangular region to view part of a graphic. The viewport, x, and y properties together
let you specify the rectangular area in the video that will be shown in the MediaView. The viewport is a
Rectangle2D that is specified in the coordinate system of the original media frame. The x and y properties
are the coordinates of the upper left corner of the viewport. Recall that you can have multiple MediaViews
associated with a MediaPlayer. Using multiple MediaViews with viewports, you can give the audience the
impression of splitting the video. Using one MediaView with a viewport, you can let the audience view only
part of the viewable area of the video.

A MediaView is a node. Therefore, to give a better visual experience to the audience, you can also apply
effects and transformations to the MediaView.

Developing a Media Player Application
It requires a careful design to develop a good-looking, customizable media player application. I have
covered most of the features offered by the Media API in JavaFX. Combining your knowledge of developing a
user interface and the Media API, you can design and develop your own media player application. Keep the
following points in mind while developing the application:

The application should have the ability to specify a media source.•	

The application should provide a UI to control the media playback.•	

When the media source changes, you will need to create a new •	 Media object and a
MediaPlayer. You can reuse the MediaView by setting the new MediaPlayer using its
setMediaPlayer() method.

Chapter 28 ■ playing audios and Videos

1119

Summary
JavaFX supports playing audio and video through the JavaFX Media API. HTTP live streaming of static
media files and live feeds are also supported. A number of media formats are supported, such as AAC, AIFF,
WAV, and MP3. FLV containing VP6 video and MP3 audio and MPEG-4 multimedia container with H.264/
AVC video formats are supported. The support for a specific media format is platform dependent. Some
media playback features and formats do not require any addition installations; but some require third-party
software to be installed. The Media API consists of several classes. All classes in the API are included in the
javafx.scene.media package.

An AudioClip is used to play a short audio clip with minimal latency. Typically, this is useful for sound
effects, which are usually short audio clips. Use the Media, MediaPlayer, and MediaView classes for playing
audios and videos of longer length.

The Media and MediaPlayer classes are used to play audios as well as videos. An instance of the
Media class represents a media resource, which could be an audio or video. It provides the information
about the media, for example, the duration of the media. An instance of the MediaPlayer class provides
controls for playing a media. A MediaPlayer always indicates the status of the playback. The current status
of a MediaPlayer is indicated by the read-only status property. The status changes when an action is
performed on the MediaPlayer. The status can be unknown, ready, playing, paused, stalled, stopped, halted,
or disposed.

An instance of the MediaView class provides the view of a media being played by a MediaPlayer.
A MediaView is used for viewing a video.

Several things can go wrong when you attempt to play a media, for example, the media format may
not be supported or the media content may be corrupt. An instance of the MediaException class represents
a specific type of media error that may occur during media playback. When a media-related error occurs,
a MediaErrorEvent is generated. You can handle the error by adding an appropriate event handler to the
media objects.

The next chapter will discuss FXML, which is an XML-based language to build user interfaces for a
JavaFX application

1120

Chapter 29

Understanding FXML

In this chapter, you will learn:

What FXML is•	

How to edit an FXML document•	

The structure of an FXML document•	

How to create objects in an FXML document•	

How to specify the location of resources in FXML documents•	

How to use resource bundles in FXML documents•	

How to refer to other FXML documents from an FXML document•	

How to refer to constants in FXML documents•	

How to refer to other elements and how to copy elements in FXML documents•	

How to bind properties in FXML documents•	

How to create custom controls using FXML•	

What Is FXML?
FXML is an XML-based language designed to build the user interface for JavaFX applications. You can use
FXML to build an entire scene or part of a scene. FXML allows application developers to separate the logic
for building the UI from the business logic. If the UI part of the application changes, you do not need to
recompile the JavaFX code. Instead you can change the FXML using a text editor and rerun the application.
You still use JavaFX to write business logic using the Java language. An FXML document is an XML
document. A basic knowledge of XML is required to understand this chapter.

A JavaFX scene graph is a hierarchical structure of Java objects. XML format is well suited for storing
information representing some kind of hierarchy. Therefore, using FXML to store the scene-graph is very
intuitive. It is common to use FXML to build a scene graph in a JavaFX application. However, the use of
FXML is not limited to building only scene graphs. It can build a hierarchical object-graph of Java objects. In
fact, it can be used to create just one object, such as an object of a Person class.

Let’s get a quick preview of what an FXML document looks like. First, create a simple UI, which consists
of a VBox with a Label and a Button. Listing 29-1 contains the JavaFX code to build the UI, which is familiar
to you. Listing 29-2 contains the FXML version for building the same UI.

Chapter 29 ■ Understanding FXML

1121

Listing 29-1. A Code Snippet to Build an Object-Graph in JavaFX

import javafx.scene.layout.VBox;
import javafx.scene.control.Label;
import javafx.scene.control.Button;

VBox root = new VBox();
root.getChildren().addAll(new Label("FXML is cool"), new Button("Say Hello"));

Listing 29-2. A Code Snippet to Build an Object-Graph in FXML

<?xml version="1.0" encoding="UTF-8"?>

<?import javafx.scene.layout.VBox?>
<?import javafx.scene.control.Label?>
<?import javafx.scene.control.Button?>

<VBox>
 <children>
 <Label text="FXML is cool"/>
 <Button text="Say Hello"/>
 </children>
</VBox>

The first line in FXML is the standard XML declaration that is used by XML parsers. It is optional in
FXML. If it is omitted, the version and encoding are assumed to be 1 and UTF-8, respectively. The next three
lines are import statements that correspond to the import statements in Java code. Elements representing
UI, such as VBox, Label, and Button, have the same name as the JavaFX classes. The <children> tag specifies
the children of the VBox. The text property for the Label and Button are specified using the text attributes of
the respective elements.

Editing FXML Documents
An FXML document is simply a text file. Typically, the file name has a .fxml extension (e.g., hello.fxml).
For example, you can use Notepad to create an FXML document in Windows. If you have used XML, you
know that it is not easy to edit a large XML document in a text editor. Oracle Corporation provides a visual
editor called Scene Builder for editing FXML documents. Scene Builder is open source. You can download its
latest version from www.oracle.com/technetwork/java/javase/downloads/index.html. Scene Builder can
also be integrated into NetBeans IDE, so you can edit FXML documents using Scene Builder from inside the
NetBeans IDE. Scene Builder is not discussed in this book.

FXML Basics
This section covers the basics of FXML. You will develop a simple JavaFX application, which consists of the
following:

A •	 VBox

A •	 Label

A •	 Button

http://www.oracle.com/technetwork/java/javase/downloads/index.html

Chapter 29 ■ Understanding FXML

1122

The spacing property for the VBox is set to 10px. The text properties for the Label and Button are set
to “FXML is cool!” and “Say Hello”. When the Button is clicked, the text in the Label changes to “Hello from
FXML!”. Figure 29-1 shows two instances of the window displayed by the application.

Figure 29-1. Two instances of a window whose scene graphs are created using FXML

The program in Listing 29-3 is the JavaFX implementation of the example application. The program
should be easy if you have made it up to this chapter in the book.

Listing 29-3. The JavaFX Version of the FXML Example Application

// HelloJavaFX.java
package com.jdojo.fxml;

import javafx.application.Application;
import javafx.event.ActionEvent;
import javafx.scene.Scene;
import javafx.scene.control.Button;
import javafx.scene.control.Label;
import javafx.scene.layout.VBox;
import javafx.stage.Stage;

public class HelloJavaFX extends Application {
 private final Label msgLbl = new Label("FXML is cool!");
 private final Button sayHelloBtn = new Button("Say Hello");

 public static void main(String[] args) {
 Application.launch(args);
 }

 @Override
 public void start(Stage stage) {
 // Set the preferred width of the label
 msgLbl.setPrefWidth(150);

 // Set the ActionEvent handler for the button
 sayHelloBtn.setOnAction(this::sayHello);

 VBox root = new VBox(10);
 root.getChildren().addAll(msgLbl, sayHelloBtn);
 root.setStyle("-fx-padding: 10;" +

Chapter 29 ■ Understanding FXML

1123

 "-fx-border-style: solid inside;" +
 "-fx-border-width: 2;" +
 "-fx-border-insets: 5;" +
 "-fx-border-radius: 5;" +
 "-fx-border-color: blue;");
 Scene scene = new Scene(root);
 stage.setScene(scene);
 stage.setTitle("Hello FXML");
 stage.show();
 }

 public void sayHello(ActionEvent e) {
 msgLbl.setText("Hello from FXML!");
 }
}

Creating the FXML File
Let’s create an FXML file sayhello.fxml. Store the file in the resources/fxml directory where the resources
directory will be included in the CLASSPATH for the application.

Adding UI Elements
The root element of the FXML document is the top-level object in the object-graph. Your top-level object is a
VBox. Therefore, the root element of your FXML would be

<VBox>
</VBox>

How do you know that to represent a VBox in the object-graph, you need to use a <VBox> tag in FXML?
It is both difficult and easy. It is difficult because there is no documentation for FXML tags. It is easy because
FXML has a few rules explaining what constitutes a tag name. For example, if a tag name is the simple or full-
qualified name of a class, the tag will create an object of that class. The above element will create an object of
the VBox class. The above FXML can be rewritten using the fully qualified class name:

<javafx.scene.layout.VBox>
</javafx.scene.layout.VBox>

In JavaFX, layout panes have children. In FXML, layout panes have children as their child elements. You
can add a Label and a Button to the VBox as follows.

<VBox>
 <Label></Label>
 <Button></Button>
</VBox>

This defines the basic structure of the object-graph for this example application. It will create a VBox
with a Label and a Button. The rest of the discussion will focus on adding details, for example, adding text
for controls and setting styles for the VBox.

Chapter 29 ■ Understanding FXML

1124

The above FXML shows that the Label and Button are children of the VBox. In the GUI sense, that is
true. However, technically, they belong to the children property of the VBox object, not directly to the VBox.
To be more technical (and a little verbose), you can rewrite the above FXML as shown below.

<VBox>
 <children>
 <Label></Label>
 <Button></Button>
 <children>
</VBox>

How do you know that you can ignore the <children> tag in the above FXML and still get the same
results? The JavaFX library contains an annotation DefaultProperty in the javafx.beans package. It can be
used to annotate classes. It contains a value element of the String type. The element specifies the property
of the class, which should be treated as the default property in FXML. If a child element in FXML does not
represent a property of its parent element, it belongs to the default property of the parent. The VBox class
inherits from the Pane class, whose declaration is as follows.

@DefaultProperty(value="children")
public class Pane extends Region {...}

The annotation on the Pane class makes the children property the default property in FXML. The VBox
inherits this annotation from the Pane class. This is the reason that the <children> tag can be omitted in the
above FXML. If you see the DefaultProperty annotation on a class, it means you can omit the tag for the
default property in FXML.

Importing Java Types in FXML
To use the simple names of Java classes in FXML, you must import the classes as you do in Java programs.
There is one exception. In Java programs, you do not need to import classes from the java.lang package.
However, in FXML, you need to import classes from all packages, including the java.lang package.
An import processing instruction is used to import a class or all classes from a package. The following
processing instructions import the VBox, Label, and Button classes.

<?import javafx.scene.layout.VBox?>
<?import javafx.scene.control.Label?>
<?import javafx.scene.control.Button?>

The following import processing instructions import all classes from the javafx.scene.control and
java.lang packages:

<?import javafx.scene.control.*?>
<?import java.lang.*?>

Importing static members is not supported in FXML. Note that the import statement does not use a
trailing semi-colon.

Chapter 29 ■ Understanding FXML

1125

Setting Properties in FXML
You can set properties for Java objects in FXML. A property for an object can be set in FXML if the property
declaration follows the JavaBean conventions. There are two ways to set properties:

Using attributes of an FXML element•	

Using property elements•	

The attribute name or the property element name is the same as the name of the property being set.
The following FXML creates a Label and sets its text property using an attribute.

<Label text="FXML is cool!"/>

The following FXML achieves the same using a property element.

<Label>
 <text>FXML is cool!</text>
</Label>

The following FXML creates a Rectangle, and sets its x, y, width, height, and fill properties using
attributes.

<Rectangle x="10" y="10" width="100" height="40" fill="red"/>

FXML specifies values for attributes as Strings. Appropriate conversion is automatically applied to
convert the String values to the required types. In the above case, the value “red” for the fill property will
be automatically converted to a Color object; the value “100” for the width property will be converted to a
double value, and so on.

Using property elements to set object properties is more flexible. Attributes can be used when the
automatic type conversion from String is possible. Suppose you want set an object of a Person class to a
property of an object. It can be done using a property element. The following FXML sets the person property
of an object of the class MyCls.

<MyCls>
 <person>
 <Person>
 <!-- Configure the Person object here -->
 </Person>
 </person>
</MyCls>

A read-only property is a property that has a getter, but no setter. Two special types of read-only
properties can be set in FXML using a property element:

A read-only •	 List property

A read-only •	 Map property

Use a property element for setting a read-only List property. All children of the property element will
be added to the List returned by the getter of the property. The following FXML sets the read-only children
property of a VBox.

Chapter 29 ■ Understanding FXML

1126

<VBox>
 <children>
 <Label/>
 <Button/>
 <children>
</VBox>

You can use attributes of the property element to add entries to a read-only Map property. The names
and values of the attributes become the keys and the values in the Map. The following snippet of code
declares a class Item, which has a read-only map property.

public class Item {
 private Map<String, Integer> map = new HashMap<>();
 public Map getMap() {
 return map;
 }
}

The following FXML creates an Item object and sets its map property with two entries (“n1”, 100) and
(“n2”, 200). Notice that the names of the attributes n1 and n2 become the keys in the Map.

<Item>
 <map n1="100" n2="200"/>
</Item>

There is one special type of property for Java objects known as static property. The static property is not
declared on the class of the object. Rather, it is set using a static method of another class. Suppose you want
to set the margin for a Button that will be placed in a VBox. The JavaFX code is shown below.

Button btn = new Button("OK");
Insets insets = new Insets(20.0);;
VBox.setMargin(btn, insets);
VBox vbox = new VBox(btn);

You can achieve the same in FXML by setting a VBox.margin property for the Button.

<?import javafx.scene.layout.VBox?>
<?import javafx.scene.control.Button?>
<?import javafx.geometry.Insets?>

<VBox>
 <Button text="OK">
 <VBox.margin>
 <Insets top="20.0" right="20.0" bottom="20.0" left="20.0"/>
 </VBox.margin>
 </Button>
</VBox>

You cannot create an Insets object from a String, and therefore, you cannot use an attribute to set the
margin property. You need to use a property element to set it. When you use a GridPane in FXML, you can
set the rowIndex and columnIndex static as shown below.

Chapter 29 ■ Understanding FXML

1127

<?import javafx.scene.layout.GridPane?>
<?import javafx.scene.control.Button?>

<GridPane>
 <Button text="OK">
 <GridPane.rowIndex>0</GridPane.rowIndex>
 <GridPane.columnIndex>0</GridPane.columnIndex>
 </Button>
</GridPane>

Because the rowIndex and columnIndex properties can also be represented as Strings, you can use
attributes to set them.

<GridPane>
 <Button text="OK" GridPane.rowIndex="0" GridPane.columnIndex="0"/>
</GridPane>

Specifying FXML Namespace
FXML does not have an XML schema. It uses a namespace that needs to be specified using the namespace
prefix “fx”. For the most part, the FXML parser will figure out the tag names such as tag names that are
classes, properties of the classes, and so on. FXML uses special elements and attribute names, which must
be qualified with the “fx” namespace prefix. The following FXML declares the “fx” namespace prefix.

<VBox xmlns:fx="http://javafx.com/fxml">...</VBox>

Optionally, you can append the version of the FXML in the namespace URI. The FXML parser will verify
that it can parse the specified. At the time of this writing, the only supported version is 1.0.

<VBox xmlns:fx="http://javafx.com/fxml/1.0">...</VBox>

The FXML version can include dots, underscores, and dashes. Only the numbers before the first
occurrence of the underscores and dashes are compared. All of the following three declarations specify the
FXML version as 1.0.

<VBox xmlns:fx="http://javafx.com/fxml/1">...</VBox>
<VBox xmlns:fx="http://javafx.com/fxml/1.0-ea">...</VBox>
<VBox xmlns:fx="http://javafx.com/fxml/1.0-rc1-2014_03_02">...</VBox>

The following FXML uses the “fx” namespace prefix to define a block of script that defines a sayHello()
function.

<?language JavaScript?>
<?import javafx.scene.layout.VBox?>

<VBox xmlns:fx="http://javafx.com/fxml">
 <fx:script>
 function sayHello() {
 java.lang.System.out.println("Hello from FXML");
 }
 </fx:script>
</VBox>

Chapter 29 ■ Understanding FXML

1128

FXML needs to specify the name of the scripting language for the script using a language processing
instruction. The above FXML specifies javascript as the scripting language. You can use any other scripting
languages such as Python, Ruby, and Groovy. You can use any scripting language to define a block of script
in an FXML document.

Assigning an Identifier to an Object
An object created in FXML can be referred to somewhere else in the same document. It is common to get the
reference of UI objects created in FXML inside the JavaFX code. You can achieve this by first identifying the
objects in FXML with an fx:id attribute. The value of the fx:id attribute is the identifier for the object. If the
object type has an id property, the value will be also set for the property. Note that each Node in JavaFX has
an id property that can be used to refer to them in CSS. The following is an example of specifying the fx:id
attribute for a Label.

<Label fx:id="msgLbl" text="FXML is cool!"/>

Now, you can refer to the Label using the msgLbl. The following FXML has a block of script written in
JavaScript to set the text property for the Label, assuming that both the Label and the script elements exist
in the same FXML.

<fx:script>
 function sayHello() {
 msgLbl.setText("Hello from FXML!");
 }
</fx:script>

The fx:id attribute has several uses. It is also used to inject the reference of UI elements into the
instance variables of a JavaFX class at the time FXML is loaded. I will discuss other uses in separate sections.

Adding Event Handlers
You can set event handlers for nodes in FXML. Setting an event handler is similar to setting any other
properties. JavaFX classes define onXxx properties to set an event handler for Xxx event. For example, the
Button class contains an onAction property to set an ActionEvent handler. In FXML, you can specify two
types of event handlers:

Script Event Handlers•	

Controller Event Handlers•	

The script event handler is used when the event handler is defined in a scripting language. The value
of the attribute is the script itself, such as a function call or one or more statements. The following snippet of
FXML sets the ActionEvent handler for a Button that calls the f1() function defined using JavaScript.

<?language JavaScript?>
<?import javafx.scene.control.Button?>

<fx:script>
 function f1() {
 java.lang.System.out.println("f1");
 };

Chapter 29 ■ Understanding FXML

1129

 function f2() {
 java.lang.System.out.println("f2");
 };
</fx:script>
<Button text="Close" onAction="f1();"/>

If you want to execute both functions f1() and f2() when the button is clicked, you can set the event
handler as

<Button text="Close" onAction="f1(); f2();"/>

The following snippet of FXML is the shorter version of the one shown above. It prints a string on
the console when the button is clicked. The call to the println() function is made directly as part of the
onAction attribute value.

<?language javascript?>
<?import javafx.scene.control.Button?>

<Button text="Close" onAction="java.lang.System.out.println("f1");"/>

Note the use of " in the attribute value. It is an XML entity reference to represent double quotes.
You can use single quotes instead.

<Button text="Close" onAction="java.lang.System.out.println('f1');"/>

I will discuss how to specify controller event handlers in the section Using a Controller in FXML.
Listing 29-4 is the FXML document for this example. It will create the root element for the scene shown

in Figure 29-1.

Listing 29-4. The Contents of the sayhello.fxml File

<?xml version="1.0" encoding="UTF-8"?>
<?language javascript?>
<?import javafx.scene.Scene?>
<?import javafx.scene.layout.VBox?>
<?import javafx.scene.control.Label?>
<?import javafx.scene.control.Button?>

<VBox spacing="10" xmlns:fx="http://javafx.com/fxml">
 <Label fx:id="msgLbl" text="FXML is cool!" prefWidth="150"/>
 <Button fx:id="sayHelloBtn" text="Say Hello" onAction="sayHello()"/>
 <style>
 -fx-padding: 10;
 -fx-border-style: solid inside;
 -fx-border-width: 2;
 -fx-border-insets: 5;
 -fx-border-radius: 5;
 -fx-border-color: blue;
 </style>

Chapter 29 ■ Understanding FXML

1130

 <fx:script>
 function sayHello() {
 msgLbl.setText("Hello from FXML!");
 }
 </fx:script>
</VBox>

You have set the spacing property for the VBox, the fx:id attribute for the Label and Button controls. You
have set the style property of the VBox using a <style> property element. You had an option to set the style
using a style attribute or a property element. You chose to use a property element because the style value is
a big string and it is more readable to write them in multiple lines. The <fx:script> element defines a script
block with one function sayHello(). The function sets the text property of the Label identifies by the msgLbl
fx:id attribute.

Loading FXML Documents
An FXML document defines the view (the GUI) part of a JavaFX application. You need to load the FXML
document to get the object-graph it represents. Loading an FXML is performed by an instance of the
FXMLLoader class, which is in the javafx.fxml package.

The FXMLLoader class provides several constructors that let you specify the location, charset, resource
bundle, and other elements to be used for loading the document. You need to specify at least the location of
the FXML document, which is a URL. The class contains load() methods to perform the actual loading of the
document. The following snippet of code loads an FXML document from a local file system in Windows:

String fxmlDocUrl = "file:///C:/resources/fxml/test.fxml";
URL fxmlUrl = new URL(fxmlDocUrl);
FXMLLoader loader = new FXMLLoader();
loader.setLocation(fxmlUrl);
VBox root = loader.<VBox>load();

The load() method has a generic return type. In the above snippet of code, you have made your
intention clear in the call to the load() method (loader.<VBox>load()) that you are expecting a VBox
instance from the FXML document. If you prefer, you may omit the generic parameter.

// Will work
VBox root = loader.load();

FXMLLoader supports loading a FXML document using an InputStream. The following snippet of code
loads the same FXML document using an InputStream.

FXMLLoader loader = new FXMLLoader();
String fxmlDocPath = " C:\\resources\\fxml\\test.fxml ";
FileInputStream fxmlStream = new FileInputStream(fxmlDocPath);
VBox root = loader.<VBox>load(fxmlStream);

Internally, the FXMLLoader reads the document using streams, which may throw an IOException. All
versions of the load() method in FXMLLoader class throw IOException. You have omitted the exception-
handling code in this sample code above. In your application, you will need to handle the exception.

The FXMLLoader class contains several versions of the load() method. Some of them are instance
methods and some static methods. You need to create an FXMLLoader instance and use the instance load()
method, if you want to retrieve more information from the loader, such as the controller reference, resource

Chapter 29 ■ Understanding FXML

1131

bundle, the location, charset, and root object. If you just want to load an FXML document without regard
for any other details, you need to use the static load() methods. The following snippet of code uses a static
load() method to load an FXML document.

String fxmlDocUrl = "file:///C:/resources/fxml/test.fxml";
URL fxmlUrl = new URL(fxmlDocUrl);
VBox root = FXMLLoader.<VBox>load(fxmlUrl);

What do you do next after loading an FXML document? At this point, the role of FXML is over and your
JavaFX code should take over. I will discuss the loader later in the text.

The program in Listing 29-5 has the JavaFX code for this example. It loads the FXML document stored
in the sayHello.fxml file. The program loads the document from the CLASSPATH. The loader returns a VBox,
which is set as the root for the scene. The rest of the code is the same as you have been using except for one
difference in the declaration of the start() method. The method declares that it may throw an IOException,
which you had to add because you have called the load() method of the FXMLLoader inside the method.
When you run the program, it displays a window as shown in Figure 29-1. Click the button and the text for
the Label will change.

Listing 29-5. Using FXML to Build the GUI

// SayHelloFXML.java
package com.jdojo.fxml;

import javafx.application.Application;
import javafx.fxml.FXMLLoader;
import java.io.IOException;
import java.net.URL;
import javafx.scene.Scene;
import javafx.scene.layout.VBox;
import javafx.stage.Stage;

public class SayHelloFXML extends Application {
 public static void main(String[] args) {
 Application.launch(args);
 }

 @Override
 public void start(Stage stage) throws IOException {
 // Construct a URL for the FXML document
 URL fxmlUrl = this.getClass()
 .getClassLoader()
 .getResource("resources/fxml/sayhello.fxml");

 // Load the FXML document
 VBox root = FXMLLoader.<VBox>load(fxmlUrl);
 Scene scene = new Scene(root);
 stage.setScene(scene);
 stage.setTitle("Hello FXML");
 stage.show();
 }
}

Chapter 29 ■ Understanding FXML

1132

You have completed the example that you started in the beginning of this section. You need to note a
few points about this implementation:

The FXML built the UI and it also provided the event handling code in JavaScript.•	

You do not have references to the UI elements such as the •	 Label and Button in your
JavaFX code. References to UI elements are needed to hookup event handling code
and bind the UI to the model.

In short, you are missing the link between UI and JavaFX code. You can create this link by specifying a
controller in FXML, which is discussed in the next section.

Using a Controller in FXML
A controller is simply a class name whose object is created by FXML and used to initialize the UI elements.
FXML lets you specify a controller on the root element using the fx:controller attribute. Note that only one
controller is allowed per FXML document, and if specified, it must be specified on the root element.

The following FXML specifies a controller for the VBox element.

<VBox fx:controller="com.jdojo.fxml.SayHelloController"
 xmlns:fx="http://javafx.com/fxml">
</VBox>

A controller needs to conform to some rules and it can be used for different reasons:

The controller is instantiated by the FXML loader.•	

The controller must have a public no-args constructor. If it does not exist, the FXML •	
loader will not be able to instantiate it, which will throw an exception at the load time.

The controller can have accessible methods, which can be specified as event •	
handlers in FXML. Please refer to the discussion below for the meaning of
“accessible”.

The FXML loader will automatically look for accessible instance variables of the •	
controller. If the name of an accessible instance variable matches the fx:id attribute
of an element, the object reference from FXML is automatically copied into the
controller instance variable. This feature makes the references of UI elements in
FXML available to the controller. The controller can use them later, such as binding
them to model.

The controller can have an accessible •	 initialize() method, which should
take no arguments and have a return type of void. The FXML loader will call the
initialize() method after the loading of the FXML document is complete.

Listing 29-6 shows the code for a controller class that you will use for this example.

Listing 29-6. A Controller Class

// SayHelloController.java
package com.jdojo.fxml;

import java.net.URL;
import java.util.ResourceBundle;
import javafx.fxml.FXML;
import javafx.scene.control.Label;

Chapter 29 ■ Understanding FXML

1133

public class SayHelloController {
 // The reference of msgLbl will be injected by the FXML loader
 @FXML
 private Label msgLbl;

 // location and resources will be automatically injected by the FXML loader
 @FXML
 private URL location;

 @FXML
 private ResourceBundle resources;

 // Add a public no-args constructor explicitly just to
 // emphasize that it is needed for a controller
 public SayHelloController() {
 }

 @FXML
 private void initialize() {
 System.out.println("Initializing SayHelloController...");
 System.out.println("Location = " + location);
 System.out.println("Resources = " + resources);
 }

 @FXML
 private void sayHello() {
 msgLbl.setText("Hello from FXML!");
 }
}

The controller class uses a @FXML annotation on some members. The @FXML annotation can be used
on fields and methods. It cannot be used on classes and constructors. By using a @FXML annotation on
a member, you are declaring that the FXML loader can access the member even if it is private. A public
member used by the FXML loader does not need to be annotated with @FXML. However, annotating a public
member with @FXML is not an error. It is better to annotate all members, public and private, used by the
FXML loader with @FXML annotation. This tells the reader of your code how the members are being used.

The following FXML sets the sayHello() method of the controller class as the event handler for the
Button.

<VBox fx:controller="com.jdojo.fxml.SayHelloController"
 xmlns:fx="http://javafx.com/fxml">
 <Button fx:id="sayHelloBtn" text="Say Hello" onAction="#sayHello"/>
...
</VBox>

There two special instance variables that can be declared in the controller and they are automatically
injected by the FXML loader:

•	 @FXML private URL location;

•	 @FXML private ResourceBundle resources;

Chapter 29 ■ Understanding FXML

1134

The location is the location of the FXML document. The resources is the reference of the
ResourceBundle used, if any, in the FXML.

When the event handler attribute value starts with a hash symbol (#), it indicates to the FXML loader
that sayHello is the method in the controller, not in a script. The event handler method in the controller
should conform to some rules:

The method may take no arguments or a single argument. If it takes an argument, the •	
argument type must be a type assignment compatible with the event it is supposed
to handle.

It is not an error to have both versions of the method: one that takes no arguments •	
and with a single argument. In such a case, the method with a single argument
is used.

Conventionally, the method return type should be •	 void, because there is no taker of
the returned value.

The method must be accessible to the FXML loader: make it public or annotate it •	
with @FXML.

When the FXML loader is done loading the FXML document, it calls the initialize() method of the
controller. The method should not take any argument. It should be accessible to the FXML loader. In the
controller, you used the @FXML annotation to make it accessible to the FXML loader.

The FXMLLoader class lets you set a controller for the root element in the code using the
setController() method. Use the getController() method to get the reference of the controller from
the loader. Developers make a common mistake in getting the reference of the controller. The mistake
is made because of the way the load() method is designed. There are seven overloaded versions of the
load() method: two of them are instance methods and five are static methods. To use the getController()
method, you must create an object of the FXMLLoader class and make sure that you use one of the instance
methods of the class to load the document. Below is an example of the common mistake.

URL fxmlUrl = new URL("file:///C:/resources/fxml/test.fxml");

// Create an FXMLLoader object – a good start
FXMLLoader loader = new FXMLLoader();

// Load the document -- mistake
VBox root = loader.<VBox>load(fxmlUrl);

// loader.getController() will return null
Test controller = loader.getController();
// controller is null here

The above code creates an object of the FXMLLoader class. However, the load(URL url) method that
is called in the loader variable is the static load() method, not the instance load() method. Therefore,
the loader instance never got a controller and when you ask it for a controller, it returns null. To clear
the confusion, below are the instance and static versions of the load() method of which only the first two
versions are instance methods:

•	 <T> T load()

•	 <T> T load(InputStream inputStream)

•	 static <T> T load(URL location)

•	 static <T> T load(URL location, ResourceBundle resources)

Chapter 29 ■ Understanding FXML

1135

•	 static <T> T load(URL location, ResourceBundle resources, BuilderFactory
builderFactory)

•	 static <T> T load(URL location, ResourceBundle resources, BuilderFactory
builderFactory, Callback<Class<?>,Object> controllerFactory)

•	 static <T> T load(URL location, ResourceBundle resources, BuilderFactory
builderFactory, Callback<Class<?>,Object> controllerFactory, Charset
charset)

The following snippet of code is the correct way of using the load() method, so you can get the
reference of the controller in JavaFX code.

URL fxmlUrl = new URL("file:///C:/resources/fxml/test.fxml");

// Create an FXMLLoader object – a good start
FXMLLoader loader = new FXMLLoader();
loader.setLocation(fxmlUrl);

// Calling the no-args instance load() method - Correct
VBox root = loader.<VBox>load();

// loader.getController() will return the controller
Test controller = loader.getController();

You now have the controller for this example application. Let’s modify the FXML to match the
controller. Listing 29-7 shows the modified FXML. It is saved in the sayhellowithcontroller.fxml file under the
resources/fxml directory.

Listing 29-7. The Contents of the sayhellowithcontroller.fxml File

<?xml version="1.0" encoding="UTF-8"?>
<?language javascript?>

<?import javafx.scene.Scene?>
<?import javafx.scene.layout.VBox?>
<?import javafx.scene.control.Label?>
<?import javafx.scene.control.Button?>

<VBox fx:controller="com.jdojo.fxml.SayHelloController" spacing="10" xmlns:fx="http://
javafx.com/fxml">
 <Label fx:id="msgLbl" text="FXML is cool!" prefWidth="150"/>
 <Button fx:id="sayHelloBtn" text="Say Hello" onAction="#sayHello"/>
 <style>
 -fx-padding: 10;
 -fx-border-style: solid inside;
 -fx-border-width: 2;
 -fx-border-insets: 5;
 -fx-border-radius: 5;
 -fx-border-color: blue;
 </style>
</VBox>

Chapter 29 ■ Understanding FXML

1136

The program in Listing 29-8 is the JavaFX application for this example. The code is very similar to
the one shown in Listing 29-5. The main difference is the FXML document that uses a controller. When
the document is loaded, the initialize() method of the controller is called by the loader. The method
prints a message, the location and the resource bundle the reference. When you click the button, the
sayHello() method of the controller is called that sets the text in the Label. Note that the Label reference is
automatically injected into the controller by the FXML loader.

Listing 29-8. A JavaFX Application Class using FXML and a Controller

// SayHelloFXMLMain.java
package com.jdojo.fxml;

import java.io.IOException;
import java.net.URL;
import javafx.application.Application;
import javafx.fxml.FXMLLoader;
import javafx.scene.Scene;
import javafx.scene.layout.VBox;
import javafx.stage.Stage;

public class SayHelloFXMLMain extends Application {
 public static void main(String[] args) {
 Application.launch(args);
 }

 @Override
 public void start(Stage stage) throws IOException {
 // Construct a URL for the FXML document
 String stringUrl = "resources/fxml/sayhellowithcontroller.fxml";
 URL fxmlUrl = this.getClass()
 .getClassLoader()
 .getResource(stringUrl);

 VBox root = FXMLLoader.<VBox>load(fxmlUrl);
 Scene scene = new Scene(root);
 stage.setScene(scene);
 stage.setTitle("Hello FXML");
 stage.show();
 }
}

Creating Objects in FXML
The main purpose of using FXML is creating an object-graph. Objects of all classes are not created the same
way. For example, some classes provide constructors to create their objects, some static valueOf() method
and some factory methods. FXML should be able to create objects of all classes, or at least it should give you
some control over deciding how to create those objects. In the following sections, I will discuss different
ways of creating objects in FXML.

Chapter 29 ■ Understanding FXML

1137

Using the no-args Constructor
Using the no-args constructor to create objects in FXML is easy. If an element name is a class name, which
has a no-args constructor, the element will create an object of that class. The following element creates a
VBox object as the VBox class has a no-args constructor.

<VBox>
 ...
</VBox>

Using the static valueOf() Method
Sometimes, immutable classes provide a valueOf() method to construct an object. If the valueOf() method
is declared static; it can accept a single String argument, and returns an object. You can use the fx:value
attribute to create an object using the method. Suppose you have an Xxx class, which contains a static
valueOf(String s) method. The following is the Java code:

Xxx x = Xxx.valueOf("a value");

You can do the same in FXML as

<Xxx fx:value="a value"/>

Note that you have stated that the valueOf() method should be able to accept a String argument,
which qualifies both of the following methods in this category.

•	 public static Xxx valueOf(String arg)

•	 public static Xxx valueOf(Object arg)

The following elements create Long and String objects with 100 and “Hello” as their values.

<Long fx:value="100"/>
<String fx:value="Hello"/>

Note that the String class contains a no-args constructor that creates an empty string. If you need a
String object with an empty string as the content, you can still use the no-args constructor:

<!-- Will create a String object with "" as the content -->
<String/>

Do not forget to import classes, Long and String when you use the above elements as FXML does not
automatically import classes from the java.lang package.

It is worth noting that the object type the fx:value attribute creates is the type of the returned object
from the valueOf() object, not of the class type of the element. Consider the following method declaration
for a class Yyy.

public static Zzz valueOf(String arg);

What type of object will the following element create?

<Yyy fx:value="hello"/>

Chapter 29 ■ Understanding FXML

1138

If your answer is Yyy, it is wrong. It is commonly thought that the element name is Yyy, so it creates a
Yyy type object. The above element is the same as invoking Yyy.valueOf("Hello"), which returns an object
of Zzz type. Therefore, the above element creates an object of Zzz type, not Yyy type. Although it is possible
to have this use case, this is a confusing way to design your class. Typically, a valueOf() method in the class
Xxx returns an object of the Xxx type.

Using a Factory Method
Sometimes, a class provides factory methods to create its object. If a class contains a static, no-args method
that returns an object, you can use the method with the fx:factory attribute. The following element creates
a LocalDate in FXML using the now() factory method of the LocalDate class.

<?import java.time.LocalDate?>
<LocalDate fx:factory="now"/>

Sometimes, you need to create JavaFX collections in FXML. The FXCollections class contains several
factory methods to create collections. The following snippet of FXML creates an ObservableList<String>
that adds four fruit names to the list.

<?import java.lang.String?>
<?import javafx.collections.FXCollections?>
<FXCollections fx:factory="observableArrayList">
 <String fx:value="Apple"/>
 <String fx:value="Banana"/>
 <String fx:value="Grape"/>
 <String fx:value="Orange"/>
</FXCollections>

The FXML in Listing 29-9 is an example of using the fx:factory attribute to create an ObservableList.
The list is used to set the items property of a ComboBox. The value “Orange” from the list is set as the default
value. The VBox will show a Label and a ComboBox with the list of four fruit names.

Listing 29-9. Creating a ComboBox, Populating It, and Selecting an Item

<?import javafx.scene.layout.VBox?>
<?import javafx.scene.control.Label?>
<?import javafx.scene.control.Button?>
<?import javafx.scene.control.ComboBox?>
<?import java.lang.String?>
<?import javafx.collections.FXCollections?>

<VBox xmlns:fx="http://javafx.com/fxml">
 <Label text="List of Fruits"/>
 <ComboBox>
 <items>
 <FXCollections fx:factory="observableArrayList">
 <String fx:value="Apple"/>
 <String fx:value="Banana"/>
 <String fx:value="Grape"/>
 <String fx:value="Orange"/>
 </FXCollections>
 </items>

Chapter 29 ■ Understanding FXML

1139

 <value>
 <String fx:value="Orange"/>
 </value>
 </ComboBox>
</VBox>

Using Builders
If the FXMLLoader cannot create an object of a class, it looks for a builder that can create the object. A builder
is an implementation of the Builder interface. The interface is in the javafx.util package and it contains
one method build().

public interface Builder<T> {
 public T build();
}

A Builder knows how to build an object of a specific type. A Builder is used with a BuilderFactory,
which is another interface in the same package.

public interface BuilderFactory {
 public Builder<?> getBuilder(Class<?> type);
}

The FXMLLoader allows you to use a BuilderFactory. When it cannot create the object of a class using
all other methods, it calls the getBuilder() method of the BuilderFactory by passing the type of the object
as the method argument. If the BuilderFactory returns a non-null Builder, the loader sets all the properties
of the object being created in the Builder. Finally, it calls the build() method of the Builder to get the
object. The FXMLLoader class uses an instance of the JavaFXBuilderFactory as a default BuilderFactory.

FXMLLoader supports two types of Builders:

If the •	 Builder implements the Map interface, the put() method is used to pass the
object properties to the Builder. The put() method is passed the name and value of
the property.

If the •	 Builder does not implement the Map interface, the Builder should contain
the getter and setter methods, based on the JavaBeans convention, for all properties
specified in the FXML.

Consider the declaration of the Item class in Listing 29-10. By default, FXML will not be able to create an
Item object as it does not have a no-args constructor. The class has two properties, id and name.

Listing 29-10. An Item Class That Does Not Have a no-args Constructor

// Item.java
package com.jdojo.fxml;

public class Item {
 private Long id;
 private String name;

 public Item(Long id, String name) {
 this.id = id;
 this.name = name;
 }

Chapter 29 ■ Understanding FXML

1140

 public Long getId() {
 return id;
 }

 public void setId(Long id) {
 this.id = id;
 }

 public String getName() {
 return name;
 }

 public void setName(String name) {
 this.name = name;
 }

 @Override
 public String toString() {
 return "id=" + id + ", name=" + name;
 }
}

Listing 29-11 contains the content of an FXML file items.fxml. It creates an ArrayList with three
objects of the Item class. If you load this file using FXMLLoader, you would receive an error that the loader
cannot instantiate the Item class.

Listing 29-11. FXML to create a list of Item objects

<!-- items.fxml -->
<?import com.jdojo.fxml.Item?>
<?import java.util.ArrayList?>
<ArrayList>
 <Item name="Kishori" id="100"/>
 <Item name="Ellen" id="200"/>
 <Item name="Kannan" id="300"/>
</ArrayList>

Let’s create a Builder to build object of the Item class. The ItemBuilder class in Listing 29-12 is the
Builder for the Item class. It declares id and name instance variables. As the FXMLLoader comes across these
properties, the loader will call the corresponding setters. The setters store the values in the instance variable.
When the loader needs the object, it calls the build() method, which builds and returns an Item object.

Listing 29-12. A Builder for the Item Class That Uses Properties Setters to Build an Object

// ItemBuilder.java
package com.jdojo.fxml;

import javafx.util.Builder;

public class ItemBuilder implements Builder<Item> {
 private Long id;
 private String name;

Chapter 29 ■ Understanding FXML

1141

 public Long getId() {
 return id;
 }

 public String getName() {
 return name;
 }

 public void setId(Long id) {
 this.id = id;
 }

 public void setName(String name) {
 this.name = name;
 }

 @Override
 public Item build() {
 return new Item(id, name);
 }
}

Now, you need to create a BuilderFactory for the Item type. The ItemBuilderFactory class shown in
Listing 29-13 implements the BuilderFactory interface. When the getBuilder() is passed the Item type, it
returns an ItemBuilder object. Otherwise, it returns the default JavaFX builder.

Listing 29-13. A BuilderFactory to Get a Builder for Item Type

// ItemBuilderFactory.java
package com.jdojo.fxml;

import javafx.util.Builder;
import javafx.util.BuilderFactory;
import javafx.fxml.JavaFXBuilderFactory;

public class ItemBuilderFactory implements BuilderFactory {
 private final JavaFXBuilderFactory fxFactory = new JavaFXBuilderFactory();

 @Override
 public Builder<?> getBuilder(Class<?> type) {
 // You supply a Builder only for Item type
 if (type == Item.class) {
 return new ItemBuilder();
 }

 // Let the default Builder do the magic
 return fxFactory.getBuilder(type);
 }
}

Chapter 29 ■ Understanding FXML

1142

Listings 29-14 and 29-15 have code for the Builder and BuilderFactory implementation for Item
type. This time, the Builder implements the Map interface by extending the AbstractMap class. It overrides
the put() method to read the passed in properties and their values. The entrySet() method needs to be
overridden as it is defined as abstract in the AbstractMap class. You do not have any useful implementation
for it. You just throw a runtime exception. The build() method creates and returns an object of the Item
type. The BuilderFactory implementation is similar to the one in Listing 29-13, except that it returns a
ItemBuilderMap as the Builder for the Item type.

Listing 29-14. A Builder for the Item Class That Implements the Map Interface

// ItemBuilderMap.java
package com.jdojo.fxml;

import java.util.AbstractMap;
import java.util.Map;
import java.util.Set;
import javafx.util.Builder;

public class ItemBuilderMap extends AbstractMap<String, Object> implements Builder<Item> {
 private String name;
 private Long id;

 @Override
 public Object put(String key, Object value) {
 if ("name".equals(key)) {
 this.name = (String)value;
 } else if ("id".equals(key)) {
 this.id = Long.valueOf((String)value);
 } else {
 throw new IllegalArgumentException("Unknown Item property: " + key);
 }

 return null;
 }

 @Override
 public Set<Map.Entry<String, Object>> entrySet() {
 throw new UnsupportedOperationException();
 }

 @Override
 public Item build() {
 return new Item(id, name);
 }
}

Chapter 29 ■ Understanding FXML

1143

Listing 29-15. Another BuilderFactory to Get a Builder for Item Type

// ItemBuilderFactoryMap.java
package com.jdojo.fxml;

import javafx.fxml.JavaFXBuilderFactory;
import javafx.util.Builder;
import javafx.util.BuilderFactory;

public class ItemBuilderFactoryMap implements BuilderFactory {
 private final JavaFXBuilderFactory fxFactory = new JavaFXBuilderFactory();

 @Override
 public Builder<?> getBuilder(Class<?> type) {
 if (type == Item.class) {
 return new ItemBuilderMap();
 }
 return fxFactory.getBuilder(type);
 }
}

Let’s test both Builders for the Item class. The program in Listing 29-16 uses both Builders for the Item
class. It loads the list of Items from the items.fxml file, assuming that the file is located in the CLASSPATH in
the resources/fxml directory.

Listing 29-16. Using Builders to Instantiate Item Objects in FXML

// BuilderTest.java
package com.jdojo.fxml;

import java.io.IOException;
import java.net.URL;
import java.util.ArrayList;
import javafx.fxml.FXMLLoader;
import javafx.util.BuilderFactory;

public class BuilderTest {
 public static void main(String[] args) throws IOException {
 // Use the Builder with property getter and setter
 loadItems(new ItemBuilderFactory());

 // Use the Builder with Map
 loadItems(new ItemBuilderFactoryMap());
 }

 public static void loadItems(BuilderFactory builderFactory) throws IOException {
 URL fxmlUrl = BuilderTest.class
 .getClassLoader()
 .getResource("resources/fxml/items.fxml");

Chapter 29 ■ Understanding FXML

1144

 FXMLLoader loader = new FXMLLoader();
 loader.setLocation(fxmlUrl);
 loader.setBuilderFactory(builderFactory);
 ArrayList items = loader.<ArrayList>load();
 System.out.println("List:" + items);
 }
}

List:[id=100, name=Kishori, id=200, name=Ellen, id=300, name=Kannan]
List:[id=100, name=Kishori, id=200, name=Ellen, id=300, name=Kannan]

Tip ■ the BuilderFactory you supply to the FXMLLoader replaces the default BuilderFactory. You need to
make sure that your BuilderFactory returns a specific Builder for your custom type and returns the default
Builder for the rest. Currently, FXMLLoader does not allow using more than one BuilderFactory.

Creating Reusable Objects in FXML
Sometimes, you need to create objects that are not directly part of the object-graph. However, they may be
used somewhere else in the FXML document. For example, you may want to create an Insets or a Color
once and reuse them in several places. Using a ToggleGroup is a typical use case. A ToggleGroup is created
once and used with several RadioButton objects.

You can create an object in FXML without making it part of the object-group using the <fx:define>
block. You can refer to the objects created in the <fx:define> block by their fx:id in the attribute value of
other elements. The attribute value must be prefixed with a dollar symbol ($).

<?import javafx.scene.layout.VBox?>
<?import javafx.scene.control.Label?>
<?import javafx.scene.control.Button?>
<?import javafx.geometry.Insets?>
<?import javafx.scene.control.ToggleGroup?>
<?import javafx.scene.control.RadioButton?>

<VBox fx:controller="com.jdojo.fxml.Test" xmlns:fx="http://javafx.com/fxml">
 <fx:define>
 <Insets fx:id="margin" top="5.0" right="5.0" bottom="5.0" left="5.0"/>
 <ToggleGroup fx:id="genderGroup"/>
 </fx:define>
 <Label text="Gender" VBox.margin="$margin"/>
 <RadioButton text="Male" toggleGroup="$genderGroup"/>
 <RadioButton text="Female" toggleGroup="$genderGroup"/>
 <RadioButton text="Unknown" toggleGroup="$genderGroup" selected="true"/>
 <Button text="Close" VBox.margin="$margin"/>
</VBox>

The above FXML creates two objects, an Insets and a ToggleGroup, in a <fx:define> block. They are
given an fx:id of "margin" and "genderGroup". They are referred to in controls, which are part of the object-
graph, by "$margin" and "$genderGroup".

Chapter 29 ■ Understanding FXML

1145

Tip ■ if the value of an attribute starts with a $ symbol, it is considered a reference to an object. if you want
to use a leading $ symbol as part of the value, escape it with a backslash ("\$hello").

Specifying Locations in Attributes
An attribute value starting with a @ symbol refers to a location. If the @ symbol is followed by a forward slash
(@/), the location is considered relative to the CLASSPATH. If the @ symbol is not followed by a forward slash,
the location is considered relative to the location of the FXML file being processed.

In the following FXML, the image URL will be resolved relative to the location of the FXML file that
contains the element.

<ImageView>
 <Image url="@resources/picture/ksharan.jpg"/>
</ImageView>

In the following FXML, the image URL will be resolved relative to the CLASSPATH.

<ImageView>
 <Image url="@/resources/picture/ksharan.jpg"/>
</ImageView>

If you want to use a leading @ symbol as part of the attribute value, escape it with a backward slash
("\@not-a-location").

Using Resource Bundles
Using a ResourceBundle in FXML is much easier than using it in Java code. Specifying the keys from a
ResourceBundle in attribute values uses the corresponding values for the default Locale. If an attribute
value starts with a % symbol, it is considered as the key name from the resource bundle. At runtime, the
attribute value will come from the specified ResourceBundle in the FXMLLoader. If you want to use a leading
% symbol in an attribute value, escape it with a backward slash (e.g., "\%hello").

Consider the FXML content in Listing 29-17. It uses "%greetingText" as the value for the text property
of the Label. The attribute value starts with a % symbol. The FXMLLoader will look up the value of the
"greetingText" in the ResourceBundle and use it for the text property. It is all done for you without writing
even a single line of code!

Listing 29-17. The Contents of the greetings.fxml File

<?import javafx.scene.control.Label?>
<Label text="%greetingText"/>

Listings 29-18 and 29-19 have contents for ResourceBundle files: one for default Locale named
greetings.properties, and one for Indian Locale named greetings_hi.properties. The suffix _hi in the
file name means the Indian language Hindi.

Chapter 29 ■ Understanding FXML

1146

Listing 29-18. The Contents of the greetings.properties File

The default greeting
greetingText = Hello

Listing 29-19. The Contents of the greetings_hi.properties File

The Indian greeting
greetingText = Namaste

The program in Listing 29-20 uses a ResourceBundle with the FXMLLoader. The ResourceBundle
is loaded from resources/resourcebundles directory in CLASSPATH. The FXML file is loaded from the
resources/fxml/greetings.fxml in CLASSPATH. The program loads the Label from the FXML file twice:
once for the default Locale US and once by change the default Locale to India Hindi. Both Labels are
displayed in the VBox as shown in Figure 29-2.

Listing 29-20. Using a Resource Bundle With the FXMLLoader

// ResourceBundleTest.java
package com.jdojo.fxml;

import java.io.IOException;
import java.net.URL;
import java.util.Locale;
import java.util.ResourceBundle;
import javafx.application.Application;
import javafx.fxml.FXMLLoader;
import javafx.scene.Scene;
import javafx.scene.control.Label;
import javafx.scene.layout.VBox;
import javafx.stage.Stage;

public class ResourceBundleTest extends Application {
 public static void main(String[] args) {
 Application.launch(args);
 }

 @Override
 public void start(Stage stage) throws IOException {
 URL fxmlUrl = this.getClass()
 .getClassLoader()
 .getResource("resources/fxml/greetings.fxml");

 // Create a ResourceBundle to use in FXMLLoader
 String resourcePath = "resources/resourcebundles/greetings";
 ResourceBundle resourceBundle = ResourceBundle.getBundle(resourcePath);

 // Load the Label for default Locale
 Label defaultGreetingLbl = FXMLLoader.<Label>load(fxmlUrl, resourceBundle);

 // Change the default Locale and load the Label again
 Locale.setDefault(new Locale("hi", "in"));

Chapter 29 ■ Understanding FXML

1147

 // We need to recreate the ResourceBundler to pick up the new default Locale
 resourceBundle = ResourceBundle.getBundle(resourcePath);

 Label indianGreetingLbl = FXMLLoader.<Label>load(fxmlUrl, resourceBundle);

 // Add both Labels to a Vbox
 VBox root = new VBox(5, defaultGreetingLbl, indianGreetingLbl);
 Scene scene = new Scene(root);
 stage.setScene(scene);
 stage.setTitle("Using a ResourceBundle in FXML");
 stage.show();
 }
}

Figure 29-2. Labels using a resource bundle to populate their text properties

Including FXML Files
An FXML document can include another FXML document using the <fx:include> element. The object-
graph generated by the nested document is included at the position where the nested document occurs in
the containing document. The <fx:include> element takes a source attribute whose value is the path of the
nested document.

<fx:include source="nested_document_path"/>

If the nested document path starts with a leading forward slash, the path is resolved relative to the
CLASSPATH. Otherwise, it is resolved related to the containing document path.

The <fx:include> element can have the fx:id attribute and all attributes that are available for the
included object. The attributes specified in the containing document override the corresponding attributes
in the included document. For example, if you include an FXML document, which creates a Button, you
can specify the text property in the included document as well as the containing document. When the
containing document is loaded, the text property from the containing document will be used.

An FXML document may optionally specify a controller using the fx:controller attribute for the root
element. The rule is that you can have maximum of one controller per FXML document. When you nest
documents, each document can have its own controller. FXMLLoader lets you inject the nested controller
reference into the controller of the main document. You need to follow a naming convention to inject the
nested controller. The controller for the main document should have an accessible instance variable with the
name as:

Instance variable name = "fx:id of the fx:include element" + "Controller"

Chapter 29 ■ Understanding FXML

1148

If the fx:id for the <fx:include> element is “xxx”, the instance variable name should be
xxxController.

Consider the two FXML documents shown in Listings 29-21 and 29-22. The closebutton.fxml file
creates a Button, sets its text property to Close, and attaches an action event handler. The event handler uses
the JavaScript language. It closes the containing window.

The maindoc.fxml includes the closebutton.fxml, assuming that both files are in the same directory.
It specifies text and fx:id attributes for the <fx:include> element. Note that the included FXML specifies
“Close” as the test property and the maindoc.fxml overrides it and sets it to “Close”.

Listing 29-21. An FXML Document That Creates a Close Button to Close the Containing Window

<!-- closebutton.fxml -->
<?language javascript?>
<?import javafx.scene.control.Button?>
<Button fx:controller="com.jdojo.fxml.CloseBtnController" text="Close" fx:id="closeBtn"
onAction="closeWindow()" xmlns:fx="http://javafx.com/fxml">
 <fx:script>
 function closeWindow() {
 var scene = closeBtn.getScene();
 if (scene != null) {
 scene.getWindow().hide();
 }
 }
 </fx:script>
</Button>

Listing 29-22. An FXML Document Using a <fx:include> Element

<!-- maindoc.fxml -->
<?import javafx.scene.layout.VBox?>
<?import javafx.scene.control.Label?>

<VBox fx:controller="com.jdojo.fxml.MainDocController" xmlns:fx="http://javafx.com/fxml">
 <Label text="Testing fx:include"/>

 <!-- Override the text property of the included Button -->
 <fx:include source="closebutton.fxml" fx:id="includedCloseBtn" text="Hide"/>
</VBox>

Both FXML documents specify a controller listed in Listings 29-23 and 29-24. Note that the controller
for the main document declares two instance variables: one will refer to the included Button and the other
will refer to the controller of the included document. Note that the reference of the Button will also be
included in the controller of the nested document.

Listing 29-23. The ControllerClass for the FXML Defining the Close Button

// CloseBtnController.java
package com.jdojo.fxml;

import javafx.fxml.FXML;
import javafx.scene.control.Button;

Chapter 29 ■ Understanding FXML

1149

public class CloseBtnController {
 @FXML
 private Button closeBtn;

 @FXML
 public void initialize() {
 System.out.println("CloseBtnController.initialize()");
 }
}

Listing 29-24. The Controller Class for the Main Document

// MainDocController.java
package com.jdojo.fxml;

import javafx.fxml.FXML;
import javafx.scene.control.Button;

public class MainDocController {
 @FXML
 private Button includedCloseBtn;

 @FXML
 private CloseBtnController includedCloseBtnController;

 @FXML
 public void initialize() {
 System.out.println("MainDocController.initialize()");
 // You can use the nested controller here
 }
}

The program in Listing 29-25 loads the maindoc.fxml and adds the loaded VBox to the scene. It displays
a window with the Hide button from the closebutton.fxml file. Clicking the Hide button will close the
window.

Listing 29-25. Loading and Using a Nested FXML Documents

// FxIncludeTest.java
package com.jdojo.fxml;

import java.io.IOException;
import java.net.MalformedURLException;
import java.net.URL;

import javafx.application.Application;
import javafx.fxml.FXMLLoader;
import javafx.scene.Scene;
import javafx.scene.layout.VBox;
import javafx.stage.Stage;

Chapter 29 ■ Understanding FXML

1150

public class FxIncludeTest extends Application {
 public static void main(String[] args) {
 Application.launch(args);
 }

 @Override
 public void start(Stage stage) throws MalformedURLException, IOException {
 URL fxmlUrl = this.getClass()
 .getClassLoader()
 .getResource("resources/fxml/maindoc.fxml");

 FXMLLoader loader = new FXMLLoader();
 loader.setLocation(fxmlUrl);
 VBox root = loader.<VBox>load();
 Scene scene = new Scene(root);
 stage.setScene(scene);
 stage.setTitle("Nesting Documents in FXML");
 stage.show();
 }
}

Using Constants
Classes, interfaces, and enums may define constants, which are static, final variables. You can refer to those
constants using the fx:constant attribute. The attribute value is the name of the constant. The name of the
element is the name of the type that contains the constant. For example, for Long.MAX_VALUE, you can use
the following element.

<Long fx:constant="MAX_VALUE"/>

Note that all enum constants belong to this category and they can be accessed using the fx:constant
attribute. The following element accesses the Pos.CENTER enum constant.

<Pos fx:constant="CENTER"/>

The following FXML content accesses constants from the Integer and Long classes, and the Pos enum.
It sets the alignment property of a VBox to Pos.CENTER.

<?import javafx.scene.layout.VBox?>
<?import javafx.scene.control.TextField?>
<?import java.lang.Integer?>
<?import java.lang.Long?>
<?import javafx.scene.text.FontWeight?>
<?import javafx.geometry.Pos?>

<VBox xmlns:fx="http://javafx.com/fxml">
 <fx:define>
 <Integer fx:constant="MAX_VALUE" fx:id="minInt"/>
 </fx:define>
 <alignment><Pos fx:constant="CENTER"/></alignment>
 <TextField text="$minInt"/>

Chapter 29 ■ Understanding FXML

1151

 <TextField>
 <text><Long fx:constant="MIN_VALUE"/></text>
 </TextField>
</VBox>

Referencing Another Element
You can reference another element in the document using the <fx:reference> element. The fx:id attribute
specifies the fx:id of the referred element.

<fx:reference source="fx:id of the source element"/>

The following FXML content uses an <fx:reference> element to refer to an Image.

<?import javafx.scene.layout.VBox?>
<?import javafx.scene.image.Image?>
<?import javafx.scene.image.ImageView?>
<VBox xmlns:fx="http://javafx.com/fxml">
 <fx:define>
 <Image url="resources/picture/ksharan.jpg" fx:id="myImg"/>
 </fx:define>
 <ImageView>
 
 </ImageView>
</VBox>

Note that you can also rewrite the above FXML content using the variable dereferencing method as
follows:

<VBox xmlns:fx="http://javafx.com/fxml">
 <fx:define>
 <Image url="resources/picture/ksharan.jpg" fx:id="myImg"/>
 </fx:define>
 <ImageView image="$myImg"/>
</VBox>

Copying Elements
Sometimes, you want to copy an element. Copying in this context is creating a new object by copying the
attributes of the source object. You can do so using the <fx:copy> element.

<fx:copy source="fx:id of the source object" />

To copy an object, the class must provide a copy constructor. A copy constructor takes an object of the
same class. Suppose you have an Item class that contains a copy constructor.

Chapter 29 ■ Understanding FXML

1152

public class Item {
 private Long id;
 private String name;

 public Item() {
 }

 // The copy constructor
 public Item(Item source) {
 this.id = source.id + 100;
 this.name = source.name + " (Copied)";
 }
 ...
}

The following FXML document creates an Item object inside the <fx:define> block. It copies the Item
object several times and adds them to the items list for a ComboBox. Note that the source Item itself is added
to the items list using a <fx:reference> element.

<?import javafx.scene.layout.VBox?>
<?import javafx.scene.control.ComboBox?>
<?import javafx.collections.FXCollections?>
<?import com.jdojo.fxml.Item?>

<VBox xmlns:fx="http://javafx.com/fxml">
 <fx:define>
 <Item name="Kishori" id="100" fx:id="myItem"/>
 </fx:define>
 <ComboBox value="$myItem">
 <items>
 <FXCollections fx:factory="observableArrayList">
 <fx:reference source="myItem"/>
 <fx:copy source="myItem" />
 <fx:copy source="myItem" />
 <fx:copy source="myItem" />
 <fx:copy source="myItem" />
 </FXCollections>
 </items>
 </ComboBox>

</VBox>

Binding Properties in FXML
FXML supports simple property bindings. You need to use an attribute for the property to bind it to the
property of another element or a document variable. The attribute value starts with a $ symbol, which is
followed with a pair of curly braces. The following FXML content creates a VBox with two TextFields. The
text property of the mirrorText field is bound to the text property of the mainText field.

Chapter 29 ■ Understanding FXML

1153

<?import javafx.scene.layout.VBox?>
<?import javafx.scene.control.TextField?>

<VBox xmlns:fx="http://javafx.com/fxml">
 <TextField fx:id="mainText" text="Hello"/>
 <TextField fx:id="mirrorText" text="${mainText.text}" disable="true"/>
</VBox>

Creating Custom Controls
You can create custom controls using FXML. Let’s create a log in form with two Labels, a TextField, a
PasswordField, and two Buttons. Listing 29-26 contains the FXML content for the form. Note that the root
element is a <fx:root>. The <fx:root> element creates a reference to the previously created element. The
value for the <fx:root> element is set in the FXMLLoader using the setRoot() method. The type attribute
specifies the type of the root that will be injected.

Listing 29-26. The FXML contents for a custom login form

<!-- login.fxml -->
<?import javafx.scene.layout.GridPane?>
<?import javafx.scene.control.Label?>
<?import javafx.scene.control.Button?>
<?import javafx.scene.control.TextField?>
<?import javafx.scene.control.PasswordField?>

<fx:root type="javafx.scene.layout.GridPane" xmlns:fx="http://javafx.com/fxml">
 <Label text="User Id:" GridPane.rowIndex="0" GridPane.columnIndex="0"/>
 <TextField fx:id="userId" GridPane.rowIndex="0" GridPane.columnIndex="1"/>
 <Label text="Password:" GridPane.rowIndex="1" GridPane.columnIndex="0"/>
 <PasswordField fx:id="pwd" GridPane.rowIndex="1" GridPane.columnIndex="1"/>
 <Button fx:id=" okBtn" text="OK" onAction="#okClicked" GridPane.rowIndex="0"

GridPane.columnIndex="2"/>
 <Button fx:id= "cancelBtn" text="Cancel" onAction="#cancelClicked"

GridPane.rowIndex="1" GridPane.columnIndex="2"/>
</fx:root>

The class in Listing 29-27 represents the JavaFX part of the custom control. You will create an object of
the LogInControl class and use it as any other standard control. This class is also used as a controller for the
login.fxml. In the constructor, the class loads the FXML content. Before loading the content, it sets itself
as the root and the controller in the FXMLLoader. Instance variables allow for the userId and pwd controls
injection in the class. When the Buttons are clicked, you simply print a message on the console. This control
needs more work, if you want to use it in a real-world application. You will need to provide a way for the
users to hook event notification when the OK and Cancel buttons are clicked.

Listing 29-27. A Class Implementing the Custom Control

// LoginControl.java
package com.jdojo.fxml;

import java.io.IOException;
import java.net.URL;
import javafx.fxml.FXML;

Chapter 29 ■ Understanding FXML

1154

import javafx.fxml.FXMLLoader;
import javafx.scene.control.PasswordField;
import javafx.scene.control.TextField;
import javafx.scene.layout.GridPane;

public class LoginControl extends GridPane {
 @FXML
 private TextField userId;

 @FXML
 private PasswordField pwd;

 public LoginControl() {
 // Load the FXML
 URL fxmlUrl = this.getClass()
 .getClassLoader()
 .getResource("resources/fxml/login.fxml");
 FXMLLoader loader = new FXMLLoader();
 loader.setLocation(fxmlUrl);
 loader.setRoot(this);
 loader.setController(this);
 try {
 loader.load();
 }
 catch (IOException exception) {
 throw new RuntimeException(exception);
 }
 }

 @FXML
 private void initialize() {
 // Do some work
 }

 @FXML
 private void okClicked() {
 System.out.println("Ok clicked");
 }

 @FXML
 private void cancelClicked() {
 System.out.println("Cancel clicked");
 }

 public String getUserId() {
 return userId.getText();
 }

 public String getPassword() {
 return pwd.getText();
 }
}

Chapter 29 ■ Understanding FXML

1155

The program in Listing 29-28 shows how to use the custom control. Using the custom control is as easy
as creating a Java object. The custom control extends the GridPane, therefore, it can be used as a GridPane.
Using the control in FXML is no different than using other controls. The control provides a no-args
constructor, which will allow creating it in FXML by using an element with the class name <LoginControl>.

Listing 29-28. Using the Custom Control

// LoginTest.java
package com.jdojo.fxml;

import javafx.application.Application;
import javafx.scene.Scene;
import javafx.scene.layout.GridPane;
import javafx.stage.Stage;

public class LoginTest extends Application {
 public static void main(String[] args) {
 Application.launch(args);
 }

 @Override
 public void start(Stage stage) {
 // Create the Login custom control
 GridPane root = new LoginControl();
 Scene scene = new Scene(root);
 stage.setScene(scene);
 stage.setTitle("Using FXMl Custom Control");
 stage.show();
 }
}

Summary
FXML is an XML-based language to build a user interface for a JavaFX application. You can use FXML
to build an entire scene or part of a scene. FXML allows application developers to separate the logic for
building the UI from the business logic. If the UI part of the application changes, you do not need to
recompile the JavaFX code: change the FXML using a text editor and rerun the application. You still use
JavaFX to write business logic using the Java language. An FXML document is an XML document.

It is common to use FXML to build a scene graph in a JavaFX application. However, the use of FXML is
not limited to building only scene graphs. It can build a hierarchical object-graph of Java objects. In fact, it
can be used to create just one object, such as an object of a Person class.

An FXML document is simply a text file. Typically, the file name has a .fxml extension (e.g., hello.fxml).
You can use any text editor to edit an FXML document. Oracle Corporation provides an open-source visual
editor called Scene Builder for editing FXML documents. You can download its latest version from the link
www.oracle.com/technetwork/java/javase/downloads/index.html. Scene Builder can also be integrated
into NetBeans IDE, so you can edit FXML documents using Scene Builder from inside the NetBeans IDE.

FXML lets you create an object using the no-args constructor, the valueOf() method, a factory method
and a builder.

http://www.oracle.com/technetwork/java/javase/downloads/index.html

Chapter 29 ■ Understanding FXML

1156

Sometimes, you need to create objects that are not directly part of the object-graph. However, they may
be used somewhere else in the FXML document. You can create an object in FXML without making it part of
the object-group using the <fx:define> block. You can refer to the objects created in the <fx:define> block
by their fx:id in the attribute value of other elements. The attribute value must be prefixed with a dollar
symbol ($).

FXML lets you refer to resources by specifying their locations. An attribute value starting with a
@ symbol refers to a location. If the @ symbol is followed with a forward slash (@/), the location is
considered relative to the CLASSPATH. If the @ symbol is not followed by a forward slash, the location is
considered relative to the location of the FXML file being processed.

Using a ResourceBundle in FXML is much easier than using it in Java code. Specifying the keys from
a ResourceBundle in attribute values uses the corresponding values for the default Locale. If an attribute
value starts with a % symbol, it is considered as the key name from the resource bundle. At runtime, the
attribute value will come from the specified ResourceBundle in the FXMLLoader. If you want to use a leading
% symbol in an attribute value, escape it with a backward slash (e.g., "\%hello").

An FXML document can include another FXML document using the <fx:include> element. The
object-graph generated by the nested document is included at the position where the nested document
occurs in the containing document.

Classes, interfaces, and enums may define constants, which are static, final variables. You can refer to
those constants using the fx:constant attribute. The attribute value is the name of the constant. The name
of the element is the name of the type that contains the constant. For example, for Long.MAX_VALUE, you can
use the element <Long fx:constant="MAX_VALUE"/>.

You can reference another element in the document using the <fx:reference> element. The fx:id
attribute specifies the fx:id of the referred element. You can copy an element using the <fx:copy> element.
It will create a new object by copying the attributes of the source object.

FXML supports simple property bindings. You need to use an attribute for the property to bind it to
the property of another element or a document variable. The attribute value starts with a $ symbol, which
is followed with a pair of curly braces. You can create custom controls using FXML. The next chapter will
discuss Printing API in JavaFX that lets you configure printers and print nodes in JavaFX applications.

1157

Chapter 30

Understanding the Print API

In this chapter, you will learn:

What the Print API is•	

How to obtain the list of available printers•	

How to get the default printer•	

How to print nodes•	

How to show the page setup and print dialog to users•	

How to customize the setting for the printer jobs•	

How to setup the page layout for printing•	

How to print webpages displayed in a •	 WebView

What is the Printing API?
JavaFX 8 added support for printing nodes through the Print API in the javafx.print package. The API
consists of the following classes and a number of enums (not listed):

•	 Printer

•	 PrinterAttributes

•	 PrintResolution

•	 PrinterJob

•	 JobSettings

•	 Paper

•	 PaperSource

•	 PageLayout

•	 PageRange

Instances of the above-listed classes represent different parts of the printing process. For example,
a Printer represents a printer that can be used for printing jobs; a PrinterJob represents a print job that
can be sent to a Printer for printing; and a Paper represents the paper sizes available on printers.

Chapter 30 ■ Understanding the print api

1158

The Print API provides support for printing nodes that may or may not be attached to a scene graph.
It is a common requirement to print the content of a webpage, not the WebView node that contains the
webpage. The javafx.scene.web.WebEngine class contains a print(PrinterJob job) method that prints
the contents of the webpage, not the WebView node.

If a node is modified during the printing process, the printed node may not appear correct. Note that
the printing of a node may span multiple pulse events resulting in concurrent change in the content being
printed. To ensure correct printing, please make sure that the node being printed is not modified during the
print process.

Nodes can be printed on any thread including the JavaFX Application Thread. It is recommended that
large, time-consuming print jobs be submitted on a background thread to keep the UI responsive.

Classes in the Print API are final as they represent existing printing device properties. Most of them
do not provide any public constructor as you cannot make up a printing device. Rather, you obtain their
references using factory methods in various classes.

Note ■ the print api provides the basic printing support only to print nodes and webpages. You will not be
able to use it to print reports in JavaFX applications.

Listing Available Printers
The Printer.getAllPrinters() static method returns an observable list of installed printers on the
machine. Note that the list of printers returned by the method may change over time as new printers are
installed or old printers are removed. Use the getName() method of the Printer to get the name of the
printer. The following snippet of code lists all installed printers on the machine running the code. You may
get a different output.

import javafx.collections.ObservableSet;
import javafx.print.Printer;
...
ObservableSet<Printer> allPrinters = Printer.getAllPrinters();
for(Printer p : allPrinters) {
 System.out.println(p.getName());
}

ImageRight Printer
Microsoft XPS Document Writer
PDF995
Sybase DataWindow PS
\\pro-print1\IS-CANON1
\\pro-print1\IS-HP4000
\\pro-print1\IS-HP4015
\\pro-print1\IS-HP4050
\\pro-print1\IS-HP4650
\\pro-print1\IS-HP4650(Color)

Chapter 30 ■ Understanding the print api

1159

Getting the Default Printer
The Printer.getDefaultPrinter() method returns the default Printer. The method may return null if no
printer is installed. The default printer may be changed on a machine. Therefore, the method may return
different printers from call to call, and the printer returned may not be valid after some time. The following
snippet of code shows how to get the default printer.

Printer defaultprinter = Printer.getDefaultPrinter();
if (defaultprinter != null) {
 String name = defaultprinter.getName();
 System.out.println("Default printer name: " + name);
} else {
 System.out.println("No printers installed.");
}

Printing Nodes
Printing a node is easy: create a PrinterJob and call its printPage() method passing the node to be printed.
Printing a node using the default printer with all default settings takes only three lines of code:

PrinterJob printerJob = PrinterJob.createPrinterJob();
printerJob.printPage(node); // node is the node to be printed
printerJob.endJob();

In a real-world application, you want to handle the errors. You can rewrite the code to handle errors
as follows:

// Create a printer job for the default printer
PrinterJob printerJob = PrinterJob.createPrinterJob();
if (printerJob!= null) {
 // Print the node
 boolean printed = printerJob.printPage(node);
 if (printed) {
 // End the printer job
 printerJob.endJob();
 } else {
 System.out.println("Printing failed.");
 }
} else {
 System.out.println("Could not create a printer job.");
}

You can use the createPrinterJob() static method of the PrinterJob class to create a printer job:

•	 public static PrinterJob createPrinterJob()

•	 public static PrinterJob createPrinterJob(Printer printer)

The method with no-args creates a printer job for the default printer. You can use the other version of
the method to create a printer job for the specified printer.

Chapter 30 ■ Understanding the print api

1160

You can change the printer for a PrinterJob by calling its setPrinter() method. If the current printer
job settings are not supported by the new printer, the settings are reset automatically for the new printer.

// Set a new printer for the printer job
printerJob.setPrinter(myNewPrinter);

Setting a null printer for the job will use the default printer.
Use one of the following printPage() methods to print a node:

•	 boolean printPage(Node node)

•	 boolean printPage(PageLayout pageLayout, Node node)

The first version of the method takes only the node to be printed as the parameter. It uses the default
page layout for the job for printing.

The second version lets you specify a page layout for printing the node. The specified PageLayout will
override the PageLayout for the job and it will be used only for printing the specified node. For subsequent
printing, the default PageLayout for the job will be used. You can create a PageLayout using the Printer
class. I will discuss an example of this kind later.

The printPage() method returns true if the printing was successful. Otherwise, it returns false. When
you are done printing, call the endJob() method. The method returns true if the job can be successfully
spooled to the printer queue. Otherwise, it returns false, which may indicate that the job could not be
spooled or it was already completed. After successful completion of the job, the job can no longer be reused.

Tip ■ You can call the printPage() method on a PrinterJob as many times as you want. Calling the
endJob() method tells the job that no more printing will be performed. the method transitions the job status
to DONE and the job should no longer be reused.

You can cancel a print job using the cancelJob() method of the PrinterJob. The printing may not be
cancelled immediately, for example, when a page is in the middle of printing. The cancellation occurs as
soon as possible. The method does not have any effect if

The job has already been requested to be cancelled.•	

The job is already completed.•	

The job has an error.•	

A PrinterJob has a read-only status, which is defined by one of the constants of the
PrinterJob.JobStatus enum:

•	 NOT_STARTED

•	 PRINTING

•	 CANCELED

•	 DONE

•	 ERROR

The NOT_STARTED status indicates a new job. In this status, the job can be configured and printing can
be initiated. The PRINTING status indicates that the job has requested to print at least one page and it has not
terminated printing. In this status, the job cannot be configured.

Chapter 30 ■ Understanding the print api

1161

The other three statuses, CANCELED, DONE, and ERROR, indicate the termination state of the job. Once the
job is in one of these statuses, it should not be reused. There is no need to call the endJob() method when
the status goes to CANCELED or ERROR. The DONE status is entered when the printing was successful and the
endJob() method was called. The PrinterJob class contains a read-only jobStatus property that indicates
the current status of the print job.

The program in Listing 30-1 shows how to print nodes. It displays a TextArea where you can enter text.
Two Buttons are provided: one prints the TextArea node and the other the entire scene. When printing
is initiated, the print job status is displayed in a Label. The code in the print() method is the same as
previously discussed. The method includes the logic to display the job status in the Label. The program
displays the window shown in Figure 30-1. Run the program; enter text in the TextArea; and click one of the
two buttons to print.

Listing 30-1. Printing Nodes

// PrintingNodes.java
package com.jdojo.print;

import javafx.application.Application;
import javafx.print.PrinterJob;
import javafx.scene.Node;
import javafx.scene.Scene;
import javafx.scene.control.Button;
import javafx.scene.control.Label;
import javafx.scene.control.TextArea;
import javafx.scene.layout.HBox;
import javafx.scene.layout.VBox;
import javafx.stage.Stage;

public class PrintingNodes extends Application {
 private Label jobStatus = new Label();

 public static void main(String[] args) {
 Application.launch(args);
 }

 @Override
 public void start(Stage stage) {
 VBox root = new VBox(5);

 Label textLbl = new Label("Text:");
 TextArea text = new TextArea();
 text.setPrefRowCount(10);
 text.setPrefColumnCount(20);
 text.setWrapText(true);

 // Button to print the TextArea node
 Button printTextBtn = new Button("Print Text");
 printTextBtn.setOnAction(e -> print(text));

Chapter 30 ■ Understanding the print api

1162

 // Button to print the entire scene
 Button printSceneBtn = new Button("Print Scene");
 printSceneBtn.setOnAction(e -> print(root));

 HBox jobStatusBox = new HBox(5, new Label("Print Job Status:"), jobStatus);
 HBox buttonBox = new HBox(5, printTextBtn, printSceneBtn);

 root.getChildren().addAll(textLbl, text, jobStatusBox, buttonBox);
 Scene scene = new Scene(root);
 stage.setScene(scene);
 stage.setTitle("Printing Nodes");
 stage.show();
 }

 private void print(Node node) {
 jobStatus.textProperty().unbind();
 jobStatus.setText("Creating a printer job...");

 // Create a printer job for the default printer
 PrinterJob job = PrinterJob.createPrinterJob();
 if (job != null) {
 // Show the printer job status
 jobStatus.textProperty().bind(job.jobStatusProperty().asString());

 // Print the node
 boolean printed = job.printPage(node);
 if (printed) {
 // End the printer job
 job.endJob();
 } else {
 jobStatus.textProperty().unbind();
 jobStatus.setText("Printing failed.");
 }
 } else {
 jobStatus.setText("Could not create a printer job.");
 }
 }
}

Chapter 30 ■ Understanding the print api

1163

Showing the Page Setup and Print Dialogs
The Print API allows users to interact with the printing process. Users can change the printer settings
interactively before the printing is initiated. The API lets you show Page Setup and Print Setup dialogs for
setting the page properties and printer settings for the job.

You can let the user configure the page layout by showing a Page Setup dialog. Use the
showPageSetupDialog(Window owner) method of the PrinterJob to show a Page Setup dialog. The user can
set the page size, source, orientation, and margin. The dialog may allow the user to access other printing
properties such as the list of printers. Once the user confirms the settings on the dialog, the PrinterJob has
the new settings. The method returns true if the user confirms the settings on the dialog. It returns false if
the user cancels the dialog. It also returns false if the dialog cannot be displayed, such as when the job is not
in the NOT_STARTED state.

The owner parameter to the method is the window that will be the owner of the dialog box. It can be
null. If specified, the inputs to the window will be blocked while the dialog is displayed.

PrinterJob job = PrinterJob.createPrinterJob();

// Show the page setup dialog
boolean proceed = job.showPageSetupDialog(null);
if (proceed) {
 // Start printing here or you can print later
}

Figure 30-1. A window letting the user print text in a TextArea and the scene

Chapter 30 ■ Understanding the print api

1164

You can use the showPrintDialog(Window owner) method to show a Print dialog where the user can
modify the printer and settings for the PrinterJob. The return value and parameter of this method have
meanings similar to that of the showPageSetupDialog() method.

PrinterJob job = PrinterJob.createPrinterJob();

// Show the print setup dialog
boolean proceed = job.showPrintDialog(null);
if (proceed) {
 // Start printing here or you can print later
}

The program in Listing 30-2 shows a similar window as shown by the program in Listing 30-1. This time,
clicking the print buttons displays a Page Setup and Print Setup dialogs (as shown in Figure 30-2). Once the
user confirms the settings on the dialogs, the text in the TextArea is printed. Notice that even though you
create a PrinterJob for the default printer before showing the dialogs, you can change the printer using the
dialogs, and the text will print using the changed printer.

Listing 30-2. Showing the Page Setup and Print Dialogs to the User

// PrintDialogs.java
package com.jdojo.print;

import javafx.application.Application;
import javafx.print.PrinterJob;
import javafx.scene.Node;
import javafx.scene.Scene;
import javafx.scene.control.Button;
import javafx.scene.control.Label;
import javafx.scene.control.TextArea;
import javafx.scene.layout.HBox;
import javafx.scene.layout.VBox;
import javafx.stage.Stage;

public class PrintDialogs extends Application {
 private final Label jobStatus = new Label();

 public static void main(String[] args) {
 Application.launch(args);
 }

 @Override
 public void start(Stage stage) {
 Label textLbl = new Label("Text:");
 TextArea text = new TextArea();
 text.setPrefRowCount(10);
 text.setPrefColumnCount(20);
 text.setWrapText(true);

 // Button to print the TextArea node
 Button pageSetupBtn = new Button("Page Setup and Print");
 pageSetupBtn.setOnAction(e -> pageSetup(text, stage));

Chapter 30 ■ Understanding the print api

1165

 // Button to print the entire scene
 Button printSetupBtn = new Button("Print Setup and Print");
 printSetupBtn.setOnAction(e -> printSetup(text, stage));

 HBox jobStatusBox = new HBox(5, new Label("Print Job Status:"), jobStatus);
 HBox buttonBox = new HBox(5, pageSetupBtn, printSetupBtn);

 VBox root = new VBox(5, textLbl, text, jobStatusBox, buttonBox);
 Scene scene = new Scene(root);
 stage.setScene(scene);
 stage.setTitle("Showing Print Dialogs");
 stage.show();
 }

 private void pageSetup(Node node, Stage owner) {
 PrinterJob job = PrinterJob.createPrinterJob();
 if (job == null) {
 return;
 }

 // Show the page setup dialog
 boolean proceed = job.showPageSetupDialog(owner);
 if (proceed) {
 print(job, node);
 }
 }

 private void printSetup(Node node, Stage owner) {
 PrinterJob job = PrinterJob.createPrinterJob();
 if (job == null) {
 return;
 }

 // Show the print setup dialog
 boolean proceed = job.showPrintDialog(owner);
 if (proceed) {
 print(job, node);
 }
 }

 private void print(PrinterJob job, Node node) {
 jobStatus.textProperty().bind(job.jobStatusProperty().asString());

 boolean printed = job.printPage(node);
 if (printed) {
 job.endJob();
 }
 }
}

Chapter 30 ■ Understanding the print api

1166

Customizing PrinterJob Settings
The Print API contains two classes that are related to printer and printer job settings:

•	 PrinterAttributes

•	 JobSettings

A printer has attributes, which indicate the printing capabilities of the printer. Examples of printer
attributes are default paper size, supported paper sizes, maximum number of copies, and default collation.
A PrinterAttributes object encapsulates the attributes of a printer. The Print API does not let you change
the printer attributes as you cannot change the capabilities of a printer. You can only use its capabilities.
You cannot create a PrinterAttributes object directly. You need to get it from a Printer object using
the getPrinterAttributes() method. The following snippet of code prints some attributes of the default
printer in the machine: You may get a different output.

import javafx.print.Collation;
import javafx.print.PageOrientation;
import javafx.print.PrintSides;
import javafx.print.Printer;
import javafx.print.PrinterAttributes;
...
Printer printer = Printer.getDefaultPrinter();
PrinterAttributes attribs = printer.getPrinterAttributes();

// Read some printer attributes
int maxCopies = attribs.getMaxCopies();
PrintSides printSides = attribs.getDefaultPrintSides();
Set<PageOrientation> orientations = attribs.getSupportedPageOrientations();
Set<Collation> collations = attribs.getSupportedCollations();

Figure 30-2. A window letting users use print dialogs to customize the printer settings

Chapter 30 ■ Understanding the print api

1167

// Print the printer attributes
System.out.println("Max. Copies: " + maxCopies);
System.out.println("Print Sides: " + printSides);
System.out.println("Supported Orientation: " + orientations);
System.out.println("Supported Collations: " + collations);

Max. Copies: 999
Print Sides: ONE_SIDED
Supported Orientation: [PORTRAIT, LANDSCAPE, REVERSE_LANDSCAPE]
Supported Collations: [UNCOLLATED, COLLATED]

Tip ■ a PrinterAttributes is an immutable object. it contains the default and supported attributes
of a printer. You obtain PrinterAttributes from a Printer object.

A JobSettings contains the printer attributes to be used for a print job for a specific printer. You can
obtain the JobSettings of a print job using the getJobSettings() method of the PrinterJob object. A
JobSettings is a mutable object. It contains a property for each printer attribute that can be set for a print
job. By default, its properties are initialized to the default properties of the printer. You can change the
property that will be used for the current print job. If you change the property of a JobSettings that is not
supported by the printer, the property reverts to the default value for the printer. The following snippet of
code sets the printSides property to DUPLEX. In this case, the printer supports only ONE_SIDED printing.
Therefore, the printSides property is set to ONE_SIDED, which is the default, and only supported printSides
value by the printer. You may get a different output.

// Create a printer job for the default printer
PrinterJob job = PrinterJob.createPrinterJob();

// Get the JobSettings for the print job
JobSettings jobSettings = job.getJobSettings();
System.out.println(jobSettings.getPrintSides());

// Set the printSides to DUPLEX
jobSettings.setPrintSides(PrintSides.DUPLEX);
System.out.println(jobSettings.getPrintSides());

ONE_SIDED
ONE_SIDED

For a print job, you can specify the page ranges using the pageRanges property of the JobSettings.
The pageRanges property is an array of PageRange. A PageRange has startPage and endPage properties that
define the range. The following snippet of code sets the page ranges for a job to 1-5 and 20-25.

PrinterJob job = PrinterJob.createPrinterJob();
JobSettings jobSettings = job.getJobSettings();
jobSettings.setPageRanges(new PageRange(1, 5), new PageRange(20, 25));

Chapter 30 ■ Understanding the print api

1168

Most of the printer attributes are represented by enum constants. For example, the collation attribute
is represented by Collation.COLLATED and Collation.UNCOLLATED constants. Some attributes, such as
number of copies to be printed, are specified as an int. Please refer the list of properties in the JobSettings
class that you can set for a print job.

Setting Page Layout
An instance of the PageLayout class represents the page setup for a print job. By default, it is set to the printer
default value. You have already seen setting up the page layout using the Page Setup dialog. A PageLayout
encapsulates three things:

The paper size•	

The page orientation•	

The page margins•	

A PageLayout is used to configure the printable area of the page, which must lie within the printable
area of the hardware. If a page is rendered outside the printable area of the hardware, the content is clipped.

You cannot create a PageLayout object directly. You need to use one of the createPageLayout()
methods of the Printer to get a PageLayout.

•	 PageLayout createPageLayout(Paper paper, PageOrientation orient,
double lMargin, double rMargin, double tMargin, double bMargin)

•	 PageLayout createPageLayout(Paper paper, PageOrientation orient,
Printer.MarginType mType)

The margins can be specified as numbers or as one of the following constants of the
Printer.MarginType enum.

•	 DEFAULT

•	 EQUAL

•	 EQUAL_OPPOSITES

•	 HARDWARE_MINIMUM

The DEFAULT margin type requests default 0.75 inch on all sides.
The EQUAL margin type uses the largest of the four hardware margins on all four sides, so the margins

are equal on all four sides.
The EQUAL_OPPOSITES margin type uses the larger of left and right hardware margins for the left and

right sides, and the larger of the top and bottom hardware margins for the top and bottom sides.
The HARDWARE_MINIMUM requests that the minimum hardware allowed margins should be set on all sides.
The following snippet of code creates a PageLayout for A4 size paper, LANDSCAPE page orientation, and

equal margins on all sides. The PageLayout is set to a print job.

import javafx.print.JobSettings;
import javafx.print.PageLayout;
import javafx.print.PageOrientation;
import javafx.print.Paper;
import javafx.print.Printer;
import javafx.print.PrinterJob;
...

Chapter 30 ■ Understanding the print api

1169

PrinterJob job = PrinterJob.createPrinterJob();
Printer printer = job.getPrinter();
PageLayout pageLayout = printer.createPageLayout(Paper.A4,
 PageOrientation.LANDSCAPE,
 Printer.MarginType.EQUAL);
JobSettings jobSettings = job.getJobSettings();
jobSettings.setPageLayout(pageLayout);

Sometimes, you want to know the size of the printable area on the page. You can get it using the
getPrintableWidth() and getPrintableHeight() methods of the PageLayout. This is useful if you want to
resize a node before printing, so it fits the printable area. The following snippet of code prints an Ellipse
that fits the printable area.

PrinterJob job = PrinterJob.createPrinterJob();
JobSettings jobSettings = job.getJobSettings();
PageLayout pageLayout = jobSettings.getPageLayout();
double pgW = pageLayout.getPrintableWidth();
double pgH = pageLayout.getPrintableHeight();

// Make the Ellipse fit the printable are of the page
Ellipse node = new Ellipse(pgW/2, pgH/2, pgW /2, pgH/2);
node.setFill(null);
node.setStroke(Color.BLACK);
node.setStrokeWidth(1);

boolean printed = job.printPage(node);
if (printed) {
 // End the printer job
 job.endJob();
}

Printing a Webpage
There is a special way to print the contents of a webpage. Use the print(PrinterJob job) method of the
WebEngine class to print the webpage loaded by the engine. The method does not modify the specified job.
The job can be used for more printing after the print() method call.

WebView webView = new WebView();
WebEngine webEngine = webView.getEngine();
...
PrinterJob job = PrinterJob.createPrinterJob();
webEngine.print(job);

The program in Listing 30-3 shows how to print webpages. There is nothing new in the program that
you have not already covered. If you have not used a WebView before, please refer to Chapter 16: Browsing
Webpages. The program displays a window with a URL field, a Go button, a Print button, and a WebView.
The Print button is enabled when a webpage is successfully loaded. You can enter a webpage URL and click
the Go button to navigate to the page. Click the Print button to print the webpage.

Chapter 30 ■ Understanding the print api

1170

Listing 30-3. Printing a Webpage

// PrintingWebPage.java
package com.jdojo.print;

import javafx.application.Application;
import javafx.concurrent.Worker;
import javafx.geometry.Insets;
import javafx.print.PrinterJob;
import javafx.scene.Scene;
import javafx.scene.control.Button;
import javafx.scene.control.Label;
import javafx.scene.control.TextField;
import javafx.scene.layout.BorderPane;
import javafx.scene.layout.HBox;
import javafx.scene.web.WebEngine;
import javafx.scene.web.WebView;
import javafx.stage.Stage;

public class PrintingWebPage extends Application {
 String HOME_PAGE = "http://www.yahoo.com";

 TextField urlFld = new TextField();
 Button goBtn = new Button("Go");
 Button printBtn = new Button("Print");
 WebView webView = new WebView();
 WebEngine webEngine = webView.getEngine();

 public static void main(String[] args) {
 Application.launch(args);
 }

 @Override
 public void start(Stage stage) {
 // Add event handlers
 addEventHandlers(stage);

 BorderPane root = new BorderPane();
 HBox top = new HBox(5, new Label("URL"), urlFld, goBtn, printBtn);
 top.setPadding(new Insets(2, 5, 10, 5));
 root.setTop(top);

 root.setCenter(webView);
 Scene scene = new Scene(root);
 stage.setScene(scene);
 stage.show();

 // Load the Home Page
 webEngine.load(HOME_PAGE);
 }

Chapter 30 ■ Understanding the print api

1171

 private void addEventHandlers(Stage stage) {
 // Update the stage title when a new web page title is available
 webEngine.titleProperty().addListener((prop, oldTitle, newTitle) -> {
 stage.setTitle(newTitle);
 });

 // Add event handler for GO button
 goBtn.setOnAction(e -> {
 webEngine.load(urlFld.getText());
 });

 printBtn.setOnAction(e -> print(stage));

 // Enable the print button and sync the URL
 webEngine.getLoadWorker().stateProperty().addListener(
 (prop, oldState, newState) -> {
 if (newState == Worker.State.SUCCEEDED) {
 String newLocation = webEngine.getLocation();
 urlFld.setText(newLocation);
 printBtn.setDisable(false);
 } else {
 printBtn.setDisable(true);
 }
 });
 }

 private void print(Stage stage) {
 PrinterJob job = PrinterJob.createPrinterJob();
 if (job == null) {
 return;
 }

 // Show the print setup dialog
 boolean proceed = job.showPrintDialog(stage);
 if (proceed) {
 webEngine.print(job);
 job.endJob();
 }
 }
}

Summary
JavaFX 8 added support for printing nodes through the Print API in the javafx.print package. The API
consists of a few classes and a number of enums. The Print API provides support for printing nodes that
may or may not be attached to a scene graph. It is a common requirement to print the content of a webpage,
not the WebView node that contains the webpage. The javafx.scene.web.WebEngine class contains a
print(PrinterJob job) method that prints the contents of the webpage, not the WebView node.

If a node is modified during the printing process, the printed node may not appear correct. Note that the
printing of a node may span multiple pulse events resulting in concurrent change in the content being printed.
To ensure correct printing, make sure that the node being printed is not modified during the print process.

Chapter 30 ■ Understanding the print api

1172

Nodes can be printed on any thread including the JavaFX Application Thread. It is recommended that
large, time-consuming print jobs be submitted on a background thread to keep the UI responsive.

Classes in the Print API are final as they represent existing printing device properties. Most of them
do not provide any public constructor as you cannot make up a printing device. Rather, you obtain their
references using factory methods in various classes.

An instance of the Printer class represents a printer. The Printer.getAllPrinters() static method
returns an observable list of installed printers on the machine. Note that the list of printers returned by the
method may change over time as new printers are installed or old printers are removed. Use the getName()
method of the Printer to get the name of the printer.

The Printer.getDefaultPrinter() method returns the default Printer. The method may return null
if no printer is installed. The default printer may be changed on a machine. Therefore, the method may
return different printers from call to call, and the printer returned may not be valid after some time.

You can create a printer job by calling the PrinterJob.createPrinterJob() method. It returns an
object of the PrinterJob class. Once you get a PrinterJob object, call its printPage() method to print a
node. The node to be printed is passed as an argument to the method.

The Print API allows users to interact with the printing process. Users can change the printer settings
interactively before the printing is initiated. The API lets you show Page Setup and Print Setup dialogs for
setting the page properties and printer settings for the job. You can let the user configure the page layout by
showing a Page Setup dialog. Use the showPageSetupDialog(Window owner) method of the PrinterJob to
show a Page Setup dialog. The user can set the page size, source, orientation, and margins. The dialog may
allow the user to access other printing properties such as the list of printers.

The Print API lets you customize the printer job settings. The API contains two classes that are related to
printer and printer job settings: PrinterAttributes and JobSettings classes. A printer has attributes, which
indicate the printing capabilities of the printer such as default paper size, supported paper sizes, maximum
number of copies, and default collation. A PrinterAttributes object encapsulates the attributes of a
printer. The Print API does not let you change the printer attributes as you cannot change the capabilities of
a printer. You cannot create a PrinterAttributes object directly. You need to get it from a Printer object
using the getPrinterAttributes() method.

An instance of the PageLayout class represents the page setup for a print job. By default, it is set to
the printer default value. A PageLayout is used to configure the printable area of the page, which must lie
within the printable area of the hardware. If a page is rendered outside the printable area of the hardware,
the content is clipped. You cannot create a PageLayout object directly. You need to use one of the
createPageLayout() methods of the Printer to get a PageLayout.

There is a special way to print the contents of a webpage. Use the print(PrinterJob job) method of
the WebEngine class to print the webpage loaded by the engine. The method does not modify the specified
job. The job can be used for more printing after the print() method call.

1173

A���������
Accordion control, 538
addEventHandler() method, 268
addListener() method, 41
addStrongListener() method, 50–51
Affine class, 900
Affine transformation, 900
Animation

class, 918
controlling

ActionEvent, 929
autoReverse property, 928
cue points, 930
cycleCount property, 928
cycleDuration property, 929
delay property, 927
pause() method, 927
play an animation, 926
rate property, 929
RUNNING, STOPPED, and PAUSED, 928
stop() method, 927

definition, 917
interpolators

curve() method, 948
discrete, 949
Ease-Both, 950
Ease-In, 950
Ease-Out, 950
linear, 949
spline, 951
tangent, 951

key frame, 917
timeline, 917
timeline animation

constructors, 923
scrolling text, 925
start() method, 925
translateX property, 925–926

transitions
FadeTransition class, 933
FillTransition class, 935
ParallelTransition class, 946

PathTransition class, 941
PauseTransition class, 943
RotateTransition class, 938
ScaleTransition class, 940
SequentialTransition class, 944
StrokeTransition class, 936
TranslateTransition class, 937

utility classes
duration class, 919
KeyFrame class, 922
KeyValue class, 921

API classes, 1033
Arc class, 755
ArcTo path element, 765
Area chart

constructors, 986
creation, 987
CSS styling, 988

asString() method, 68
attachEvents() method, 432
AudioClip class, 1102

B���������
Bar chart

barGap, 970
categoryGap, 970
CSS styling, 975
horizontal bar chart, 974
vertical bar chart, 972

bindFieldsToModel() method, 429
Bindings.selectString() method, 75
Blend effect, 874, 876
BlendMode enum constants, 875
Bloom effect, 859
Blurring effect

BoxBlur
class, 854
constructors, 855
Text nodes, 855

GaussianBlur, 856
MotionBlur

class, 857

Index

■ index

1174

constructors, 857
Text node, 858

Bounds class
boundsInLocal, 172
boundsInParent, 174
Bounds object, 168
contains() method, 167
coordinate space, 168
definition, 166
drop shadow effect, 168, 175
getBounds() method, 168
Group, 174
intersects() method, 167
isEmpty() method, 167
layoutBounds, 170
logical bounds, 169
NodeBoundsApp, 178
physical bounds, 169
properties, 169
rotation transformation, 177
snippet of code, 174
3D space, 167
translation transformation, 176

Bubble chart
constructors, 984
creation, 984
CSS styling, 986
setBubbleRadius() method, 984

Builders
ArrayList selection, 1140
definition, 1139
FXMLLoader, 1139
getBuilder() method, 1139
ItemBuilderFactory class, 1141
ItemBuilderFactoryMap, 1143
ItemBuilderMap, 1142
Item class, 1139–1140
test item class, 1143

Button control
ActionEvent, 444
CheckBox control

box and mark, 461
changed() method, 459
CSS pseudo-classes, 461
program creation, 459
rules, 458
selection control, 458

command buttons
cancel button, 445–447
CSS pseudo-classes, 447
default button, 445–446
hyperlink control, 448
MenuButton control, 449
normal button, 445–447

RadioButton control
selected and unselected states, 455

ToggleGroup and tracking, 456
SplitMenuButton, 462
ToggleButton control

creation, 452
selected and unselected states, 452
selection, 454–455
toggleGroup class, 453–454

C���������
call() method, 93–95
cancelEdit() method, 649
Canvas

API classes, 1033
constructors selection, 1033
definition, 1033
drawing

clearRect() method, 1037
drawImage() method, 1037
fillText() method, 1035
fillXxx() shape method, 1034
getGraphicsContext2D()

method, 1034
getPixelWriter() method, 1037
GraphicsContext class methods, 1034
paths methods, 1036
program, 1039
restore() methods, 1038
save() method, 1038
shapes and text, 1038
strokeText() method, 1035
strokeXxx() shape method, 1034

Cartesian coordinate system
coordinate space, 164
GUI application, 166
rectangular coordinate system, 163
rotation transformation, 164
translation transformation, 164–165
2D plane, 164
x and y coordinates, 165

Cascading style sheet (CSS)
background colors

-fx-background-color property, 241
-fx-background-insets property, 241
-fx-background-radius property, 241
Pane class, 241–242
rectangles, 242
Region class, 241

border colors, 243
border insets, 244
border radii, 244
border styles

inside and outside, 246
line-cap parameter, 245
line-join parameter, 245
<dash-style>, 245
<stroke-type>, 245

Blurring effect (cont.)

■ index

1175

Pane class, 246
phase parameter, 245
segments() function, 245

border widths, 243
buttonstyles.css file, 224–225
child selector, 254
ClassLoader, 226–227
class selectors

container classes, 249
hbox and button classes, 247–248
JavaFX node, 249
ObservableList<String>, 247
root node, 250–251
source code, 248

default style sheet, 227
definition, 223–224
descendant selector, 254
getStylesheets() method, 224
ID selector

CLASSPATH, 251
vs. class selectors, 253
Close button, 251–252
StringProperty type, 251

inheritance, 233
inline style, 228
JavaFX class name, 256
javafxpackager tool, 257
multiple selectors, 253–254
naming conventions, 226
Scene and Parent classes, 226
scene graph, 256
skinning, 224
state-based selectors, 255
stylespriorities.css

content, 230
HBox, 230
nodes, 232
property, 230
setFont() method, 230
sources, 232
testing, 231–232
user agent, 231

themes, 224
types

angle, 236
boolean, 235
color-stop, 236
effects, 237
font, 237–238
inherit, 235
number, 236
paint, 238
point, 236
string, 235
URI, 237

UI elements, 224
universal selector, 253

Chaining effects, 843
changed() method, 46–48
Chart API, 953
Charts

area chart
constructors, 986
creation, 987
CSS styling, 988

bar chart
barGap, 970
categoryGap, 970
CSS styling, 975
horizontal bar chart, 974
vertical bar chart, 972

bubble chart
constructors, 984
creation, 984
CSS styling, 986
setBubbleRadius() method, 984

CSS style-class, 954
definition, 953
line chart

constructors, 981
creation, 981
CSS styling, 983

PieChart
class, 958
country population, 956
CSS styling, 961
pie slices(see Pie slices)
utility class, 957

population values, 956
scatter chart

axes and data, 978
creation, 978
CSS styling, 980

stacked area chart
constructors, 990
creation, 990
CSS styling, 991

StackedBarChart
CSS styling, 978
horizontal stacked bar chart, 976
vertical stacked bar chart, 976

XYChart
adding data, 968
alternativeColumnFillVisible, 992
axes, 967
grid lines, 993
numeric tick labels, 993
zero line axes, 992

CheckBoxTableCell, 643
Child selector, 254
ChoiceBox control

ColorPicker control(see ColorPicker control)
creation, 464–465
CSS, 474

■ index

1176

domain objects
fromString() method, 470
Person objects, 471
string converter, 470
toString() method, 469–470

null, 471–472
preselected item, 467, 469
properties, 466
selection model, 467
Separator class, 473
setValue() method, 466
states, 465

ChoiceBoxTableCell, 644
Circle class, 747
Class Selectors

container classes, 249
hbox and button classes, 247–248
JavaFX node, 249
ObservableList<String>, 247
root node, 250–251
source code, 248

clear() method, 108
clearRect() method, 1037
Clipboard class, 1051

data formats, 1051
dragboard method, 1052
getContent() method, 1052
HTML and plain-text formats, 1052

ClosePath path element, 770
ColorAdjust effect, 870
Color class

constructor, 202
diagram, 201
factory methods, 203
ImagePattern class

blue rounded rectangle, 204
creation, 203
image pattern, 204–206
rectangle filling, 204
triangle filling, 204

LinearGradient class
color-stop points, 208
cycleMethod argument, 207
definition, 206
NO_CYCLE method, 208–209
output, 210–211
proportional argument, 207
REFLECT cycle method, 209
REPEAT cycle method, 210
startX and startY arguments, 207
string format, 212
types, 207

Paint class, 201–202
RadialGradient class

center and focus points, 218
centerX and centerY arguments, 216

cycleMethod and stops arguments, 216
determination, 219
focusAngle argument, 215
focusDistance argument, 215
multiple color stops, 220
NO_CYCLE method, 217
proportional argument, 216, 218
REPEAT method, 217
string format, 220–221
triangle, 219

static methods, 202–203
ColorInput effect, 869
ColorPicker control

button and split-button looks, 508
color palette, 505
Combo-box look, 508
components, 504
constructors, 506
CSS, 509
custom color dialog, 505–506
getCustomColors() method, 507
programming, 507–508

ComboBox control
cellFactory property

buttonCell property, 482
Callback implementation, 482
ComboBoxBase class, 484
declaration, 481
execution, 483
getShape() method, 481–482
updateItem() method, 481
views, 484

creation, 475
CSS, 484–485
DatePicker control(see DatePicker control)
editable ComboBox, 477
editor property, 475
Node class, 480
noneditable combo box, 477
parameter type, 475
placeholder node, 476
pop-up list, 479
seasons and breakfasts, 476–477
selection model, 475
StringProperty type, 475
value change detection, 477

ComboBoxTableCell, 645
commitEdit() method, 649
computeValue() method, 78
concat() method, 68
Concurrency framework

ActionEvent handler, 1073
class diagram, 1078
javafx.application

isFxApplicationThread() method, 1075
runLater() method, 1075

live scene graph, 1075, 1077

ChoiceBox control (cont.)

■ index

1177

non-JavaFX application thread, 1073
runTask() method, 1073, 1075
ScheduledService<V> class

createTask() method, 1093–1094
PrimeFinderTask class, 1095
transition events, 1095
updating properties, 1094

Service<V> class
cancel() methods, 1090
createTask() method, 1089
prime finder service class, 1091
reset() method, 1090
restart() method, 1090
start() method, 1090
transition events, 1090
updating service properties, 1090

Task<V> class
cancel() methods, 1084
createtask() method, 1083
PrimeFinderTask class, 1085
run() task, 1084
transition events, 1084
updateValue() method, 1085
updating task properties, 1083

thread application, 1071
UI event, 1071
UI responsive event, 1076
unresponsive UI event, 1073
Worker<V> interface

progress property, 1080
running property, 1080
state property, 1080
state transitions, 1079
title property, 1080
totalWork property, 1080
utility class, 1080
value property, 1080
workDone property, 1080

consume() method, 276
contains() method, 167
ContextMenu control

ActionEvent handler, 584
constructor, 582
CSS, 585
hide() method, 584
MouseEvent object, 582
programming, 584
show() method, 582–583
side parameter, 583
TextField control, 582

Control classes
contextMenu property, 437
definition, 435
diagram, 436
getChildrenUnmodifiable() method, 436
Region class, 436
ScrollBar control, 551

createMeshView() method, 832
Cubic Bezier curve, 760
Cubic curves, 759
CubicCurveTo path element, 769
Cue points, 930
CullFace enum, 819
Custom fonts, 799
cycleMethod argument, 207
Cylinder class, 812

D���������
DatePicker control

ActionEvent, 513
cell factory, 512
chronology, 512
creation, 510
CSS, 515
editor property, 511
LocalDateStringConverter class, 511–512
nonfuture date, 513, 515
pop-up calendar, 510, 513
value property, 510

deleteSelectedRows() method, 657
Descendant selector, 254
DirectoryChooser class, 613
Disclosure node, 664
Discrete interpolator, 949
DisplacementMap effect

class, 863
FloatMap class, 864
pixel-shifting logic, 865
process, 865
setSample() method, 864
Text node, 866
wrap property, 868

dispose() method, 64
Drag-and-drop gesture

application
drag-drop event, 1055
getTransferMode() method, 1055
initiating, 1053
potential gesture target events, 1054
text field, 1053
transfer modes, 1054

clipboard class, 1051
copy mode, 1049
custom data type transfer, 1063
data transfer, 1048, 1050
dragDetected() method, 1068
dragDone() method, 1069
dragDropped() method, 1069
dragOver() method, 1068
image transfer, 1059
JavaFX application, 1049
link mode, 1050
move mode, 1050

■ index

1178

process, 1049
source code, 1057
TextField transfer, 1059
TransferMode enum, 1050
visual clues providing, 1056

Dragboard class, 1050, 1052–1053
Drag gesture

drag-and-drop gesture, 1048
full press-drag-release, 1046
simple press-drag-release, 1044
types, 1043

drawImage() method, 1037
DrawMode enum, 817

E���������
Ease-Both interpolator, 950
Ease-In interpolator, 950
Ease-Out interpolator, 950
Effect class

definition, 841
text nodes, 841–842

Ellipses, 748
emptyObservableList() method, 86
emptyProperty() method, 116
Event filters and handlers

addEventFilter() and addEventHandler()
methods, 268

creation, 267
execution order

addEventHandler() method, 275–276
MouseEvent.ANY event type, 275–276
rules, 273
setOnMouseClicked() method, 275–276
Stage, Scene, HBox, and Circle, 273–275

onXXX convenience properties, 271
removeEventFilter() and removeEventHandler()

methods, 270–271
Event handling

Circle node, 259
class hierarchy, 260
consume() method, 276
definition, 259
EventHandler interface

filters and handlers(see Event filters and
handlers)

source code, 266
EventTarget interface, 261
EventType class, 261–262
InputEvent class, 279
KeyEvent class

KEY_PRESED event, 295
KEY_RELEASED event, 295
key-typed event, 297
methods, 295
types, 294

MouseEvent class(see MouseEvent class)
processing(see Event processing)
UI element, 259
WindowEvent class, 299

Event processing
classes and interfaces, 260
route construction, 263
route traversal

bubbling phase, 265–266
capture phase, 264–265
consume() method, 264

target selection, 263
EventType class, 261–262

F���������
Fade transition, 933
FileChooser control

creation, 609
initial properties, 609–610
open and save files, 611
types, 610

Fill rule
coding script, 772
NON_ZERO fill rule, 772
stroke directions, 771
two triangular subpaths, 771

Fill transition, 935
focusChanged() method, 191
FXML

ActionEvent handler, 1128
application, 1122
attribute value @ symbol, 1145
binding property, 1152
close button, 1148
close button controller class, 1148
closebutton.fxml file, 1149
constants, 1150
controller class, 1132, 1136
copy constructor, 1151
custom controls, 1153
definition, 1120
editing documents, 1121
event handler method, 1134
event handlers, 1128
fx:controller, 1132, 1147
fx:id attribute, 1128
<fx:include> element, 1147–1148
<fx:reference> element, 1151–1152
getController() method, 1134
GridPane, 1126
initialize() method, 1134
InputStream, 1130
Java classes, 1124
JavaFX code, 1126
java import class, 1124
javascript language, 1127

Drag-and-drop gesture (cont.)

■ index

1179

Label property, 1125
loader, 1133
Loader class, 1130
load() method, 1130–1131, 1134
main document controller class, 1149
msgLbl text property, 1128
MyCls class, 1125
namespace prefix, 1127
object

builders(see Builders)
FXCollections class, 1138
fx:value attribute, 1137
no-args constructor, 1137
now() factory method, 1138
ObservableList<String>, 1138
String argument, 1137
valueOf() method, 1137

object-graph, 1121
onAction attribute, 1129
Pane class, 1124
println() function, 1129
read-only List property, 1125
read-only Map property, 1126
Rectangle properties, 1125
ResourceBundle, 1145
reusable objects selection, 1144
root element, 1123
sayHello() function, 1127
sayhello.fxml file, 1129, 1131
sayhellowithcontroller.fxml file, 1135
setController() method, 1134
set properties, 1125
spacing property, 1122
text property, 1122
UI elements, 1132
VBox class, 1123, 1125
VBox element, 1132

FXParamApp class, 18

G���������
GAUSSIAN blur type, 846
Gesture

definition, 1043
events and nodes, 1043
types, 1043

getAccelerators() method, 441
getAddedSize() method, 92
getAgeCategory() method, 427
getBounds() method, 168
getCodeBase() method, 158
getContentBias() method, 185
getDependencies() method, 64
getDocumentBase() method, 159
getElementAdded() method, 105
getElementRemoved() method, 105
getEngine() method, 713

getEventType() method, 261
getFocusOwner() method, 153
getGraphicsContext2D() method, 1034
getList() method, 91
getLoadWorker() method, 713
getMap() method, 110
getParameters() method, 16
getPixelWriter() method, 1037
getProperties() method, 190
getRaw() method, 18
getSelectedItems() method, 489
getSource() method, 261
getStylesheets() method, 226
getTarget() method, 261
getTransferMode() method, 1055
getUserAgentStylesheet() method, 227
getUserData() method, 190
getValueAdded() method, 110
getValueRemoved() method, 110
getVisibleLeafColumn() method, 623
getWebContext() method, 159
Glow effect, 860
Gradient line, 206
Graphics context, 1033
GraphicsContext class methods, 1034

H���������
handleBirthDateChange() method, 433
hasProperties() method, 191
HelloFXApp class, 4–5
HLineTo path element, 765
HostServices class, 158
HTMLEditor control

creation, 606
CSS, 607–608
formatted text, 605
getHTMLText(), 606
print(), 606
programming, 606–607
setHTMLText(), 606
toolbars, 605

I���������
ID selector

CLASSPATH, 251
vs. class selectors, 253
Close button, 251–252
StringProperty type, 251

Image API
class diagram, 997
image loading

CLASSPATH, 998
constructors, 998
properties, 999
read-only properties, 999

■ index

1180

image operations(see Image operations)
image viewing

constructors, 1000
Image object, 1001
ImageView node, 1001
multiple views, 1002
viewport, 1004

snapshot of node, 1029
snapshot of scene, 1029

ImageInput effect, 872
Image operations

new image saving, 1023
pixel format, 1008
PixelReader interface

bulk image reading, 1013
BYTE_BGRA format, 1012
getArgb() and getColor() methods, 1010
getPixelReader() method, 1009–1010
getPixels() method, 1012
reading pixels, 1010

scratch, 1019
writing pixels

getPixelReader() method, 1016
PixelWriter interface, 1015
rectangular region, 1016
setPixels() methods, 1016
width and height, 1016
writing code, 1017

initFieldData() method, 429
InputEvent class, 279
intersects() method, 167
invalidated() method, 41
invalidate() method, 64
isDepthBuffer() method, 808
isEmpty() method, 167
isLeaf() method, 680
isPopupTrigger() method, 284
isPrimaryButtonDown() method, 283
isResizable() method, 181
isStillSincePress() method, 284
isSynthesized() method, 289
isValidBirthDate() method, 427
isValidPerson() method, 427

J���������
Java Archive (JAR) file, 4
JavaBeans API

binding support
applications, 28
bidirectional binding, 28, 60–61
bindBidirectional() method, 42, 58–59
binding interface, 64
Bindings class, 72–77
bind() method, 42
BooleanBinding class, 70–71

BooleanExpression class, 70–71
bound property, 57
CenteredCircle program, 80–81
data binding, 27
dependencies, 28, 55
eager binding, 28
Employee bean, 28–29
IntegerBinding and IntegerProperty

classes, 63–64
isBound() method, 42
isValid() method, 55
lazy binding, 28
low-level binding, 77–79
NumberBinding interface, 64
NumberExpression interface, 65–67
ObjectExpression and ObjectBinding

classes, 69–70
ObservableIntegerValue interface, 65
ObservableNumberValue interface, 64–65
PropertyChangeSupport class, 29
setSalary() method, 29–30
StringBinding class, 67–69
sum.initValue() method, 56–57
ternary operator, 71
unbind() method, 57–58
unidirectional binding, 28, 59, 62

properties
Book class, 35–37
changed() method, 46–48
class diagram, 40
get() and set() methods, 31
getName() method, 26
getReadOnlyProperty() method, 32
getTitle() method, 34
integer property, 31, 42–43
invalidation events, 43–45
invalidation listener, 53–55
Item class, 39
Monitor class, screenType property, 38–39
name property, 26
observable interface, 41
primitive type, 31
private fields, 25
public methods, 25, 27
ReadOnlyDoubleWrapper classes, 31
read-only ISBN property, 35
read/write property, 25
ready-only property, 25
removeListener() method, 48–50
setName() method, 26
setTitle() method, 34
SimpleIntegerProperty class, 33
SimpleStringProperty class, 33
standalone object, 33
titleProperty, 34
WeakChangeListener, 51–53
wrapper classes, 32–33

Image API (cont.)

■ index

1181

WritableValue, 41
write-only property, 25

JavaFX application
components, 2
features, 1–2
Glass Windowing Toolkit, 2
HelloFX application

ActionEvent handler, 11
Button class, 10
creation, 4–5
setStyle() method, 11–12
VBox, 12

history, 3
launch() method

Application class, 19
command-line arguments, 19
HelloFXApp class, 7
main() method, 21
MyJavaFXApp class, 20
options, 7
output, 20
Test class, 20

life cycle, 21
main() method, 8
media engine, 2
NetBeans IDE

creation, 13
execution, 15
Open Project dialog, 14–15

parameters
FXParamApp class, 18
getParameters() method, 16
getRaw() method, 16
named parameter, 16–18
TextArea, 16
unnamed parameter, 16–18

Platform.exit() method, 23
primary stage, 6
prism, 2
runtime JAR file, 4
Scene class, 9
scene graph, 2
source code, 4
start() method, 5–6
system requirements, 4
web engine, 2

K���������
Key frame, 917
Key value, 917

L���������
Labeled controls

accelerators, 441
class diagram, 437–438

contentDisplay property, 439
First Name and Last Name, 443
mnemonics, 440
properties, 438–439
TextField, 443–444
TitledPane(see TitledPane Control)

Layout containerSee Layout pane
layoutForm() method, 429
Layout pane

adding children, 306
AnchorPane

application, 404
constraints, 406–410
creation, 405–406

BorderPane
alignment and margin constraints, 362
creation, 359–361
properties, 362
resizing policies, 358
Windows application, 358

container classes
class diagram, 304
description, 305
getChildren() method, 305
getChildrenUnmodifiable() method, 305
getManagedChildren() method, 305
group class, 305
parent class, 305
region class, 305

creation, 333
definition, 303
features, 332
FlowPane

alignment property, 353–355
content bias, 358
creation, 351–353
definition, 350
hgap and vgap properties, 357
horizontal flow pane, 351
orientation property, 357
prefWrapLength property, 357
row and Column alignments, 355, 357
vertical flow pane, 351

GridPane
adding children, 381–382
alignment property, 391
cell position, 380
clearConstraints static method, 404
ColumnConstraints class, 393–398
convenience method, 384–385
creation, 381, 387–390
getMargin static method, 404
gridLinesVisible property, 381, 391–392
halignment and valignment

constraints, 399–401
hgap and vgap properties, 392–393
hgrow and vgrow constraints, 402–403

■ index

1182

position setting, 383–384
RowConstraints class, 393–398
rowSpan and colSpan constraints, 385–386
setMargin static method, 404

group
creation, 310
CSS properties, 313
effects and transformations, 312–313
layout policy, 309
node positioning, 311–312
rendering nodes, 310–311

HBox object
alignment property, 336–337
creation, 334–335
fillHeight property, 337–339
hgrow priority, TextField, 339–341
margins, 341–342
spacing property, 339

HorizontalDirection enum, 308
HPos enum, 308
Insets class, 307–308
layout policy, 304
orientation enum, 309
Pos enum, 308
preferred size, 333
priority enum, 309
region class

background object, 316, 318
border area, 314, 319–322
border image, 326–328
border object, 322–326
content area, 314
CSS properties, 315, 318
margin, 314, 332
padding, 314, 319
property settings, 314
slice property, 328–329

side enum, 309
snapToPixel property, 415–416
StackPane

alignment and margin constraints, 369–371
creation, 363–367
properties, 367–369
root node, 363

static layout, 303
TextFlow

constraints, 415
creation, 411–414
properties, 414
root node, 410

TilePane
alignment and margin constraints, 377–380
alignment property, 375
content flow, 371–372
creation, 372–373
hgap and vgap properties, 376
orientation property, 376

prefColumns property, 377
prefRows property, 377
prefTileWidth and prefTileHeight

properties, 377
tileAlignment property, 375–376
tileWidth and tileHeight properties, 377

VBox
alignment property, 344–346
creation, 342–344
fillWidth property, 346–347
margins, 350
spacing property, 348
vgrow priority, 348–350

VerticalDirection enum, 309
VPos enum, 308

LightBase class, 823
Lighting effect

class, 878
light sources(see Light sources)
properties, 878
reflection

diffuse, 881
diffuse and specular types, 881
properties, 884
specular, 881
utility class, 882

surfaceScale properties, 879
Text node, 878

Light sources
class diagram, 886
distant, 884

azimuth property, 886
constructers, 887
elevation property, 887
text node, 887

point class, 889
point light, 885
spot, 885

class, 892
constructers, 892
Text node, 892

Linear interpolator, 949
Line chart

constructors, 981
creation, 981
CSS styling, 983

Line class, 743
LineTo path Element, 762
ListChangeTest class, 99
ListUpdateTest class, 95
ListView control

cellFactory property, 492
creation, 486
CSS, 503
editable ListView

CheckBoxListCell class, 498
ChoiceBox/ComboBox, 497–498
handling events, 501

Layout pane (cont.)

■ index

1183

TextFieldListCell class, 494
IndexedCell class, 487
ListCell class, 486
orientation, 487
placeholder property, 486
scrolling feature, 486
selection model, 488
type parameter, 486

loadContent() methods, 713
load() method, 713
localToParent() method, 195
localToScene() method, 195

M���������
main() method, 7–8
Managing stages

bounds
size, 133–134, 136
sized scene, 135
start() method, 133
style, 136
width and height properties, 132
x and y properties, 132

class diagram, 130
fullScreen property, 145
getBounds() and getVisualBounds() methods, 127
getPrimary() method, 127
javafx.stage package, 129
messageBox() method, 146
modalities, 142
opacity, 144
primary stage, 130
pseudo-code, 146
resize, 144
screens details, 128
showAndWait() Call, 146
showAndWait() method, 146
undecorated stage, 139
Window class, 129

Media and MediaPlayer classes, 1102
Media API

AudioClip class, 1102
class diagram, 1101
developing application, 1118
dispose() method, 1112
duration types, 1114
error handlers, 1110–1111
getMarkers() method, 1117
getMedia() method, 1106
marker event handler, 1117
media class properties, 1105
MediaException class, 1110
MediaPlayer.status enum, 1111
MediaPlayer transitions methods, 1111
MediaView class, 1106
media view properties, 1118

metadata, 1117
onRepeat event handler, 1114
paused() method, 1112
playback cycle, 1114
playback volume control, 1115
quick media player, 1107
rate property, 1115
roles of media, 1107
run() method, 1106
seek() method, 1116
transition statuses, 1112

Media class, 1105
MediaException class, 1110
MediaException enum types, 1110
MediaPlayer class, 1111

DISPOSED status, 1112
HALTED terminal status, 1112
Listener change method, 1113
PLAYING status, 1112
position method, 1116
Runnable objects, 1113
STALLED status, 1112
transitions methods, 1111

Menu class
advantage, 566
creation, 570
CSS, 581
File menu, 567
getMenus() method, 569
menu bar, 567
menu item

CheckMenuItem, 574
class diagram, 571
CustomMenuItem, 575–576
getItems() method, 571
properties, 572–573
RadioMenuItem, 573
SeparatorMenuItem, 576
submenu Item, 574–575

onHiding and onHidden event
handlers, 569

onShowing event handler, 569
shape drawing application, 577
showing property, 569
text and graphic, 568

Model-view-controller (MVC) pattern
application model, 420–421
definition, 419–420
GUI application

domain code, 419
presentation code, 419
tasks, 419

interaction, 419–420
model-view-presenter, 421

passive view, 422
Person class, 423
PersonPresenter class, 423, 430

■ index

1184

PersonView class, 423, 427
requirements, 422

NullPointerException, 433
PersonApp class, 433

MouseEvent class, 261
hysteresis, 284
isSynthesized() method, 289
modifier keys, 284
mouse buttons

descriptions, 283
getButton() method, 283
isPopupTrigger() method, 284
isPrimaryButtonDown() method, 283
representation, 282

MOUSE_ENTERED event, 289–291
MOUSE_ENTERED_TARGET event, 292–294
MOUSE_EXITED events, 290–291
MOUSE_EXITED_TARGET event, 292–293
mouse location, 281–282
mouseTransparent property, 287
pickOnBounds property, 285
types, 280

MoveTo path element, 762
Multiple transformations, 914

N���������
newDocument() method, 445
next() method, 91
Node class

bounding box class, 167
bounds(see Bounds class)
branch node, 163
Cartesian coordinate system

coordinate space, 164
GUI application, 166
rectangular coordinate system, 163
rotation transformation, 164
translation transformation, 164–165
2D plane, 164
x and y coordinates, 165

coordinate space transformations, 196
definition, 163
HBox, 181
isResizable() method, 181
layoutX, 179
layoutY, 179
leaf node, 163
localToParent() method, 195
localToScene() method, 195
managed property, 191, 194
nonresizable node, 189
parentToLocal() method, 195
resizable node

content bias, 185
current size, 186

DoubleProperty type, 183
getXXXHeight() method, 184
getXXXWidth() method, 184
intrinsic sizes, 182
size-related methods, 185, 187
sizing policy, 182
sizing range, 182
USE_COMPUTED_SIZE, 182
USE_PREF_SIZE, 182

root node, 163
sceneToLocal() method, 195
slide-left feature, 194
unmanaged node, 191
user data

getProperties() method, 190
getUserData() method, 190
hasProperties() method, 191
setUserData() method, 190

O���������
Observable collections

features, 84
interfaces, 83
ObservableList

addListener() method, 85
bind() and bindBidirectional()

methods, 117–119
callback object, 93–95
ChangeListener, 113–115
class diagram, 84–85
creation, 86–87
detecting changes, 89–90
InvalidationListener, 113–115
invalidations, 87–88
ListChangeListener, 113–115
ListChangeListener.Change

class, 90–92
ListProperty class, 113
ObjectBinding, 120–121
onChanged() method, 89
person class, 95–98
person object, 99–100
removeListener() method, 85
size and empty properties, 116

ObservableMap
class diagram, 106–107
creation, 107–108
invalidation event, 108–109
MapChangeListener.Change class, 110–111
MapChangeListener interface, 107
MapProperty class, 124–126

ObservableSet
class diagram, 101
creation, 102–103
invalidation event, 103–104
onChanged() method, 105–106

Model-view-controller (MVC) pattern (cont.)

■ index

1185

SetChangeListener interface, 102
SetProperty class, 121–123

types, 83–84
onChanged() method, 89
onInvalidating() method, 77

P���������
Pagination control

bullet buttons, 544
constructors, 541
content area, 541
CSS, 544–545
currentPageIndex, 542
maxPageIndicatorCount, 542
navigation area, 541
pageCount, 542
page factory, 542
programming, 543

Parallel transition, 946
parentToLocal() method, 195
Path transition, 941
Pause transition, 943
PersonListChangeListener class, 97
PersonStringConverter class, 478
PerspectiveTransform effect, 895
PhongMaterial class, 814
pickOnBounds property, 285
PieChart

class, 958
CSS styling, 961
pie slices (see Pie slices)
population, 956
tooltips, 960
utility class, 957

Pie slices
background image, 966
series colors, 962
tooltips, 960

Platform.exit() method, 23
play() method, 1102, 1105
Polygons, 750
Polyline, 752
Pop-up control

ContextMenu (see ContextMenu control)
tool tip (see Tool tip control)

Press-drag-release gesture, 1043
Print API

classes, 1157
createPageLayout() methods, 1168
getJobSettings() method, 1167
getName() method, 1158
getPrinterAttributes() method, 1166
JobSettings, 1167
nodes

cancelJob() method, 1160
createPrinterJob() static method, 1159

endJob() method, 1161
PrinterJob.JobStatus enum, 1160
printPage() method, 1159–1160
setPrinter() method, 1160
source code, 1161
TextArea and scene, 1163

PageLayout class, 1168
PageLayout process, 1168
Page Setup and Print Setup dialogs, 1164
Printer.getAllPrinters() method, 1158
Printer.getDefaultPrinter() method, 1159
Printer.MarginType enum, 1168
print() method, 1169
showPageSetupDialog() method, 1164
showPageSetupDialog(Window owner)

method, 1163
webpage, 1170

PrinterAttributes, 1167
ProgressBar control

constructors, 530
CSS, 532–533
indeterminate and determinate

states, 529
programming, 530–531

ProgressIndicator control
constructors, 530
CSS, 532–533
indeterminate and determinate

states, 529
programming, 530–531
properties, 529

proportional argument, 207
pseudo-class selector, 255

Q���������
QuadCurveTo path element, 769
Quadratic curves, 757

R���������
Rectangle class, 745
Reflection effect, 861
reload() method, 713
removeListener() method, 41
reset() method, 91
resolveURI() method, 159
Rotate class, 904
Rotate transition, 938
Rotation transformation, 903
runLater() method, 156–157
runTask() method, 1073

S���������
saveData() method, 433
save() method, 427

■ index

1186

Scale transformation, 907
Scale transition, 940
Scatter chart

axes and data, 978
creation, 978
CSS styling, 980

Scene Builder, 1121
Scene class

builder class
Rectangle class, 154
scene graph, 155–156
types, 154

Cursor class, 152
focusOwner property, 153
HostServices class, 158
Platform class

ConditionalFeature enum, 157
runLater() method, 156–157
static methods, 156
3D features, 158

render graphics
immediate mode API, 151–152
retained mode API, 151–152

sceneToLocal() method, 195
ScheduledService<V> class

createTask() method, 1093–1094
PrimeFinderTask class, 1095
transition events, 1095
updating properties, 1094

ScrollBar control, 550
ScrollPane control

CSS, 554
programming, 553–554
properties, 552–553
setContent() method, 552
viewport, 551

segments() function, 245
selectedIndex property, 488
selectedItem property, 488
selectString() method, 75
Separator control, 554
SepiaTone effect, 862
Sequential transition, 944
Service<V> class

cancel() methods, 1090
createTask() method, 1089
prime finder service class, 1091
reset() method, 1090
restart() method, 1090
start() method, 1090
transition events, 1090
updating service properties, 1090

setCamera() method, 822
setFont() method, 230
setOnAction() method, 11
setRoot() method, 1153
setStyle() method, 11–12

setTitle() method, 6
setUserAgentStylesheet(String url) method, 227
setUserData method, 190
Shadowing effect

class, 852
DropShadow

BlurType enum, 845
class, 844
GAUSSIAN blur type, 846
object, 845
properties, 847
radius property, 846
spread property, 847
width and height setting, 847

higher-level creation, 852–853
InnerShadow class, 849
properties, 853

Shear transformation, 911
showDocument() method, 159
showError() method, 433
sizeProperty() method, 116
skin property, 437
Slider control

blockIncrement property, 561
CSS

axis substructure, 565
inverted triangle, 566
properties, 564
thumb substructure, 565
track substructure, 565

custom major tick labels, 562
horizontal/vertical slider, 559
labelFormatter property, 562
majorTickUnit property, 561
min, max, and value properties, 560
minorTickCount property, 561
orientation property, 560
programming, 562, 564
snapToTicks property, 561
valueChanging property, 561

Sphere class, 811
Spline interpolator, 951
SplitPane control

creation, 557
CSS, 559
getDividerPositions() method, 558
label and TextArea, 556
orientation, 557
programming, 558–559
setDividerPositions() method, 557

Stacked area chart
creation, 990
CSS styling, 991

StackedBarChart
CSS styling, 978
horizontal stacked bar chart, 976
vertical stacked bar chart, 976

■ index

1187

startDragAndDrop() method, 1053
startEdit() method, 649
startFullDrag() method, 1046
start() method, 5–6
stop() method, 1102
Stroke transition, 936
syncAgeCategory() method, 430
syncBirthDate() method, 429

T���������
Tab class

AddressTab class, 593
closable property, 591
content property, 591
creation, 590, 594–595
CSS, 603
definition, 589
GeneralTab class, 592–593
graphic property, 591
GridPane, 591
selection model, 595
text property, 591

TableView
adding and deleting rows, 654
creation

add columns, 620
cell value factories setting, 627
getXxx() and setXxx() methods, 626
JavaFX properties, 627–628
Person object, 624
placeholder, 620, 623
POJO properties, 627–628

CSS style-class, 659
data rendering

Birth Date column, 637–638
cellFactory property, 637
cells and rows, 641
CheckBoxTableCell class, 639
custom cell factory, 639
subclasses, 638
updateItem() method, 638

definition, 617
editing data

cancelEdit() method, 649
CheckBoxTableCell, 643
ChoiceBoxTableCell, 644
ComboBoxTableCell, 645
commitEdit() method, 649
DatePickerTableCell, 650, 653
startEdit() method, 649
TextFieldTableCell, 645
updateItem() method, 649

features, 618
map

cell value factory, 629
hiding columns, 631

idColumnKey, 629
MapValueFactory, 629
rearrange columns, 632

PersonTableUtil utility class, 619
resizing, 658
scrolling, 657
sorting data

column sortable, 633
comparator, 634–635
manual sort, 636
SortEvent, 636
sortNode property, 634
sortOrder property, 635
sort policy, 635
sort type, 633
users, 632

TabPane class
closing Tabs, 597
content area, 589–590
creation, 592, 594–595
CSS, 603
getTabs() method, 592
header area, 590
recessed and floating mode, 602–603
selection model, 595
sizing tabs, 602
tab position, 601

Tangent interpolator, 951
Task<V> class

cancel() methods, 1084
createtask() method, 1083
run() task, 1084
transition events, 1084
updateValue() method, 1085
updating task properties, 1083

Text decorations, 802
TextFieldTableCell, 645
Text input controls

content modification, 518
CSS pseudo-class, 520
cut(), copy(), and paste() methods, 519
PasswordField controls, 524
positioning and moving caret, 516–517
properties, 516, 519–520
selection property, 517
TextArea controls

creation, 525
CSS, 528
getParagraphs() method, 527
prefColumnCount property, 526
prefRowCount property, 526
programming, 527–528
scrollLeft and scrollTop

properties, 526
wrapText property, 526

TextField controls
alignment property, 521

■ index

1188

creation, 521
CSS, 524
custom context menu, 522
default context menu, 522
Layne and Estes, 521
onAction property, 522
prefColumnCount property, 522
programming, 523–524

Text nodes
coordinate system, 791
creation, 790
definition, 789
multiple lines, 793
text centering, 792
text fonts

CSS styles, 804
custom fonts, 799
fonts creation, 795
fonts installation, 798
font smoothing, 803
text decorations, 802
text fill and stroke, 801

textOrigin, 792
x and y properties, 791

3D shapes
cameras

Parallelcamera, 821, 823
PerspectiveCamera, 820

class diagram, 806
coordinate system, 807
definition, 805
JavaFX 3D support, 806
light sources, 823
predefined shapes, 805

Box class, 811
cullFace property, 819
Cylinder class, 812
Draw Mode, 817
PhongMaterial class, 814
primitive shapes, 812
properties, 811
Sphere class, 811

rendering order nodes
adding rectangles, 808
depthBuffer flag, 808
depthTest property, 808
scene graph, 807
Scene object, 808

Subscenes creation, 824
3D box, 806
user defined

box surface map, 828–829
clockwise direction, 830
counterclockwise direction, 830
int values, 831

points array, 828, 832
tetrahedron, 836
texture coordinates array, 829–830, 832
3D rectangle, 835
TriangleMesh class, 826, 831
TriangleMesh program, 833
12 triangles, 827
2D plane, 832

user-defined shapes, 805
Timeline, 917
TitledPane control

Accordion control, 538
animated property, 534
collapsed and expanded states, 533–534
content property, 534
CSS, 536–537
programming, 535

ToggleGroup, 1144
ToolBar control

CSS, 588
programming, 587–588

Tooltip class, 437
Tool tip control

constructor, 546
contentDisplay property, 547
CSS, 549–550
display window, 546
graphic property, 547
graphicTextGap property, 548
icon and placing, 547
install() method, 546
programming, 548–549
textAlignment property, 548
textOverrun property, 548
text property, 547
uninstall() method, 546
wrapText, 548

Transformation
Affine class, 900
class diagram, 899
definition, 899
multiple, 914
node class, 900
rotate class, 900
rotation, 903
scale, 907
shear, 911
Transform class, 900
translation, 901
types, 899

Translate transition, 937
Translations nodes application, 902
Translation transformation, 901
TreeCell, 672
TreeItem, 664

adding and removing nodes, 669

Text input controls (cont.)

■ index

1189

events, 668
root node, 669
type, 668
value and graphic properties, 668

properties, 667
TreeTableUtil class, 694
TreeTableView class

adding and deleting rows, 704
cell value factory, 692
CSS style-class, 709
definition, 689–690
editing data

CellEditEvent class, 701
edit mode, 703
Name cell, 702, 704
onEditCancel event, 701
onEditCommit event, 701
onEditStart event, 701
setEditable(true) method, 701
source code, 702
StringConverter, 702
TextField, 702

execution, 696–697
features, 690
getColumns() method, 691
ObservableList, 690
placeholder property, 691
scrolling, 708
selectionModel, 700–701
showing and hiding columns, 698
sorting, 697
treeColumn property, 693
TreeItem, 692
TreeTableCell class, 698
TreeTableColumn with data, 697–698
TreeTableUtil class, 694

TreeView
branch node, 664
cell factory program, 673
cell factory property, 673
class inheritance, 680–682
control, 664
creation

control, 666–667
empty TreeView, 664
getChildren() method, 665
setRoot() method, 665
utility class, 665–666

CSS style-class, 685
data editing

CheckBoxTreeCell, 675
ChoiceBoxTreeCell, 677
ComboBoxTreeCell, 678
events, 675
TextFieldTreeCell, 678

definition, 663
expanded and collapsed disclosure nodes, 686

file system browser, 683
leaf node, 664
root node, 664
root node hidden, 667
row index items, 674
ScrollToEvent method, 684
selection model, 685
tree-disclosure-node, 686
TreeItem (see TreeItem)
TreeItem properties, 668

2D shapes
class diagram, 741
combining shapes, 780
CSS styles, 787
drawing

Arc class, 755
Circle class, 747
CubicCurve class, 759
Ellipse class, 748
Line class, 743
Polygon class, 750
polylines, 752
quadratic curves, 757
Rectangle class, 745

fill and stroke properties, 742
intersect() method, 780
PathElement class

ArcTo, 765
ClosePath, 770
constructors, 761
CubicCurveTo, 769
Fill Rule (see FillRule)
HLineTo and VLineTo, 765
LineTo, 762
MoveTo, 762
QuadCurveTo, 769

smooth property, 742
stroke

rectangles, 782–783
strokeDashOffset property, 785
strokeLineCap property, 784
strokeLineJoin property, 784
strokeMiterLimit property, 785
stroke property, 742, 782
strokeType property, 782
strokeWidth property, 782

subtract() method, 780
SVGPath class

absolute and relative coordinates, 776
“arcto” command, 778
“closepath” commands, 780
commands, 775–776
content property, 774
“Cubic Bezier curveto” command, 779
draw triangle, 774
“lineto” commands, 777
moveTo command, 777

■ index

1190

“Quadratic Bezier curveto” command, 778
union() method, 780
width and height properties, 742

U���������
unbindBidirectional() method, 62
Universal selector, 253
updateItem() method, 649

V���������
valueAt() method, 120
VLineTo path element, 765

W���������
wasAdded() method, 91–92
wasRemoved() method, 91–92
WeakInvalidationListener, 51
Web browser

architecture, 712
browsing history

currentIndex property, 722
getEntries() method, 722
getHistory() method, 722
getLastVisitedDate() method, 722
getTitle() method, 722
getUrl() method, 722
maxSize property, 722
navigation component, 722

component creation
getEngine() method, 713
getLoadWorker() method, 713
loadContent() methods, 713
load() method, 713
reload() method, 713

contextMenuEnabled property, 715
CSS style-class, 740
DOM access, 739
fontScale property, 715
fontSmoothingType property, 715
JavaScript code

executeScript() method, 733
FXAdder class, 736
JavaFX, 734
showTime() function, 733

startShowingTime() function, 733–734
stopShowingTime() function, 733

JavaScript operations
BrowserPane, 728
command handlers creation, 726
getData() method, 726
jshandlers.html, 730
pop-up handler, 726
window object methods and properties, 725
window.open() method, 725

MenuButton class, 716
navigation bar

creation, 718
display window, 720
functions, 720

PopupFeatures class, 712
PromptData class, 712
style sheets, 739
User-Agent HTTP header, 739
WebEngine class, 712
WebEvent class, 712
WebHistory class, 712
WebHistory.Entry class, 712
WebOptionsMenu class, 716
WebView class, 712
zoom property, 715

weightProperty() method, 40
window.alert() function, 159
Worker<V> interface

progress property, 1080
running property, 1080
state property, 1080
state transitions, 1079
title property, 1080
totalWork property, 1080
utility class, 1080
value property, 1080
workDone property, 1080

X, Y, Z���������
XYChart

adding data, 968
alternativeColumnFillVisible, 992
axes, 967
grid lines, 993
numeric tick labels, 993
zero line axes, 992

2D shapes (cont.)

Learn JavaFX 8
Building User Experience and

Interfaces with Java 8

Kishori Sharan

Learn JavaFX 8: Building User Experience and Interfaces with Java 8

Copyright © 2015 by Kishori Sharan

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed. Exempted from this legal reservation are brief excerpts in connection with
reviews or scholarly analysis or material supplied specifically for the purpose of being entered and executed
on a computer system, for exclusive use by the purchaser of the work. Duplication of this publication or
parts thereof is permitted only under the provisions of the Copyright Law of the Publisher’s location, in its
current version, and permission for use must always be obtained from Springer. Permissions for use may be
obtained through RightsLink at the Copyright Clearance Center. Violations are liable to prosecution under
the respective Copyright Law.

ISBN-13 (pbk): 978-1-4842-1143-4

ISBN-13 (electronic): 978-1-4842-1142-7

Trademarked names, logos, and images may appear in this book. Rather than use a trademark symbol with
every occurrence of a trademarked name, logo, or image we use the names, logos, and images only in an
editorial fashion and to the benefit of the trademark owner, with no intention of infringement of the trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if they are
not identified as such, is not to be taken as an expression of opinion as to whether or not they are subject to
proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of publication,
neither the authors nor the editors nor the publisher can accept any legal responsibility for any errors or
omissions that may be made. The publisher makes no warranty, express or implied, with respect to the
material contained herein.

Managing Director: Welmoed Spahr
Lead Editor: Steve Anglin
Technical Reviewers: Jeff Friesen, David Coffin, Wallace Jackson, Massimo Nardone, and Tri Phan
Editorial Board: Steve Anglin, Louise Corrigan, Jonathan Gennick, Robert Hutchinson,

Michelle Lowman, James Markham, Susan McDermott, Matthew Moodie, Jeffrey Pepper,
Douglas Pundick, Ben Renow-Clarke, Gwenan Spearing, Steve Weiss

Coordinating Editor: Mark Powers
Copy Editors: Mary Bearden, Lori Cavanaugh, Lori Jacobs, and Karen Jameson
Compositor: SPi Global
Indexer: SPi Global
Artist: SPi Global
Cover Designer: Anna Ishchenko

Distributed to the book trade worldwide by Springer Science+Business Media New York,
233 Spring Street, 6th Floor, New York, NY 10013. Phone 1-800-SPRINGER, fax (201) 348-4505,
e-mail orders-ny@springer-sbm.com, or visit www.springeronline.com. Apress Media, LLC is a California
LLC and the sole member (owner) is Springer Science + Business Media Finance Inc (SSBM Finance Inc).
SSBM Finance Inc is a Delaware corporation.

For information on translations, please e-mail rights@apress.com, or visit www.apress.com.

Apress and friends of ED books may be purchased in bulk for academic, corporate, or promotional use. eBook
versions and licenses are also available for most titles. For more information, reference our Special Bulk
Sales–eBook Licensing web page at www.apress.com/bulk-sales.

Any source code or other supplementary material referenced by the author in this text is available to readers
at www.apress.com/9781484211434. For detailed information about how to locate your book’s source code,
go to www.apress.com/source-code/.

http://orders-ny@springer-sbm.com
http://www.springeronline.com
http://rights@apress.com
http://www.apress.com
http://www.apress.com/bulk-sales
http://www.apress.com/9781484211434
www.apress.com/source-code/

To my father-in-law Mr. Jim Baker

vii

Contents

About the Author ��xxi

About the Technical Reviewers ��xxiii

Acknowledgments ���xxv

Introduction ���xxvii

Chapter 1: Getting Started ■ ��� 1

What Is JavaFX? ��� 1

History of JavaFX ��� 3

System Requirements �� 4

JavaFX Runtime Library ��� 4

JavaFX Source Code ��� 4

Your First JavaFX Application ��� 4

Improving the HelloFX Application�� 10

Using the NetBeans IDE �� 13

Passing Parameters to a JavaFX Application ��� 15

Launching a JavaFX Application ��� 19

The Life Cycle of a JavaFX Application ��� 21

Terminating a JavaFX Application �� 23

Summary �� 24

Chapter 2: Properties and Bindings ■ ��� 25

What Is a Property? �� 25

What Is a Binding? �� 27

Understanding Bindings Support in JavaBeans ��� 28

■ Contents

viii

Understanding Properties in JavaFX �� 31

Using Properties in JavaFX Beans �� 33

Lazily Instantiating Property Objects �� 38

Understanding the Property Class Hierarchy�� 40

Handling Property Invalidation Events �� 43

Handling Property Change Events �� 46

Avoiding Memory Leaks in Listeners ��� 48

Handling Invalidation and Change Events �� 53

Using Bindings in JavaFX ��� 55

Unidirectional and Bidirectional Bindings ��� 58

Understanding the Binding API ��� 62

Using Bindings to Center a Circle �� 80

Summary �� 82

Chapter 3: Observable Collections ■ ��� 83

What Are Observable Collections? ��� 83

Understanding ObservableList ��� 84

Understanding ObservableSet �� 101

Understanding ObservableMap �� 106

Properties and Bindings for JavaFX Collections ��� 112

Summary �� 126

Chapter 4: Managing Stages ■ ��� 127

Knowing the Details of Your Screens ��� 127

What Is a Stage? �� 129

Showing the Primary Stage �� 130

Setting the Bounds of a Stage �� 132

Initializing the Style of a Stage ��� 136

Moving an Undecorated Stage ��� 139

Initializing Modality of a Stage ��� 141

■ Contents

ix

Setting the Opacity of a Stage �� 144

Resizing a Stage ��� 144

Showing a Stage in Full-Screen Mode ��� 145

Showing a Stage and Waiting for It to Close �� 145

Summary �� 148

Chapter 5: Making Scenes ■ ��� 149

What Is a Scene? �� 149

Graphics Rendering Modes �� 151

Setting the Cursor for a Scene ��� 152

The Focus Owner in a Scene �� 153

Using Builder Classes ��� 153

Understanding the Platform Class �� 156

Knowing the Host Environment �� 158

Summary �� 161

Chapter 6: Understanding Nodes ■ ��� 163

What Is a Node? ��� 163

The Cartesian Coordinate System ��� 163

Cartesian Coordinate System of a Node ��� 165

The Concept of Bounds and Bounding Box �� 166

Knowing the Bounds of a Node �� 168

Bounds of a Group �� 174

A Detailed Example on Bounds �� 174

Positioning a Node Using layoutX and layoutY ��� 179

Setting the Size of a Node �� 180

Storing User Data in a Node ��� 190

What Is a Managed Node? ��� 191

Transforming Bounds between Coordinate Spaces ��� 195

Summary �� 198

■ Contents

x

Chapter 7: Playing with Colors ■ �� 201

Understanding Colors ��� 201

Understanding Linear Color Gradient ��� 206

Understanding Radial Color Gradient ��� 214

Summary �� 221

Chapter 8: Styling Nodes ■ ��� 223

What Is a Cascading Style Sheet? �� 223

What are Styles, Skins, and Themes? �� 224

A Quick Example �� 224

Naming Conventions in JavaFX CSS �� 226

Adding Style Sheets ��� 226

Default Style Sheet ��� 227

Adding Inline Styles �� 228

Priorities of Styles for a Node ��� 230

Inheriting CSS Properties �� 233

Types of CSS Properties ��� 235

Specifying Background Colors ��� 241

Specifying Borders ��� 242

Understanding Style Selectors ��� 247

Looking Up Nodes in a Scene Graph �� 256

Using Compiled Style Sheets ��� 257

Summary �� 257

Chapter 9: Event Handling ■ ��� 259

What Is an Event? ��� 259

Event Class Hierarchy ��� 260

Event Targets �� 261

Event Types �� 261

■ Contents

xi

Event Processing Mechanism �� 262

Handling Events ��� 266

Execution Order of Event Filters and Handlers ��� 273

Consuming Events �� 276

Handling Input Events �� 279

Handling Mouse Events �� 280

Handling Key Events ��� 294

Handling Window Events �� 299

Summary �� 301

Chapter 10: Understanding Layout Panes ■ �� 303

What Is a Layout Pane? �� 303

Layout Pane Classes �� 304

Adding Children to a Layout Pane �� 306

Utility Classes and Enums �� 307

Understanding Group ��� 309

Understanding Region �� 313

Understanding Panes ��� 332

Understanding HBox ��� 334

Understanding VBox ��� 342

Understanding FlowPane ��� 350

Understanding BorderPane �� 358

Understanding StackPane �� 363

Understanding TilePane�� 371

Understanding GridPane��� 380

Understanding AnchorPane �� 404

Understanding TextFlow ��� 410

Snapping to Pixel ��� 415

Summary �� 416

■ Contents

xii

Chapter 11: Model-View-Controller Pattern ■ �� 419

What Is the Model-View-Controller Pattern? �� 419

A Model-View-Presenter Example �� 422

Summary �� 434

Chapter 12: Understanding Controls ■ ��� 435

What Is a Control? �� 435

Understanding Control Classes Hierarchy �� 436

Labeled Controls �� 437

Understanding the Label Control �� 442

Understanding Buttons �� 444

Understanding Command Buttons ��� 445

Understanding Choice Buttons ��� 451

Understanding the Hybrid Button Control ��� 462

Making Selections from a List of Items �� 464

Understanding the ChoiceBox Control �� 464

Understanding the ComboBox Control ��� 474

Understanding the ListView Control ��� 485

Understanding the ColorPicker Control �� 504

Understanding the DatePicker Control ��� 509

Understanding Text Input Controls ��� 515

Understanding the TextField Control �� 521

Understanding the PasswordField Control ��� 524

Understanding the TextArea Control ��� 525

Showing the Progress of a Task ��� 529

Understanding the TitledPane Control �� 533

Understanding the Accordion Control ��� 538

Understanding the Pagination Control �� 540

Understanding the Tool Tip Control ��� 545

■ Contents

xiii

Providing Scrolling Features in Controls �� 550

Keeping Things Separate ��� 554

Understanding the Slider Control ��� 559

Understanding Menus �� 566

Understanding the ContextMenu Control ��� 581

Understanding the ToolBar Control ��� 586

Understanding TabPane and Tab �� 589

Understanding the HTMLEditor Control �� 605

Choosing Files and Directories ��� 608

Summary �� 613

Chapter 13: Understanding TableView ■ ��� 617

What Is a TableView ? ��� 617

Creating a TableView �� 620

Using a Map as Items in a TableView ��� 629

Sorting Data in a TableView �� 632

Customizing Data Rendering in Cells ��� 637

Selecting Cells and Rows in a TableView ��� 641

Editing Data in a TableView �� 643

Adding and Deleting Rows in a TableView ��� 654

Scrolling in a TableView ��� 657

Resizing a TableColumn ��� 658

Styling a TableView with CSS ��� 659

Summary �� 661

Chapter 14: Understanding TreeView ■ �� 663

What Is a TreeView ? ��� 663

Creating a TreeView �� 664

Hiding the Root Node ��� 667

Handling TreeItem Events ��� 668

■ Contents

xiv

Adding and Removing Nodes ��� 669

Customizing Cells in a TreeView ��� 672

Editing Data in a TreeView �� 674

Loading TreeItems on Demand ��� 680

Scrolling to a TreeItem ��� 684

TreeView Selection Model �� 685

Styling TreeView with CSS�� 685

Summary �� 687

Chapter 15: Understanding TreeTableView ■ �� 689

What Is a TreeTableView? ��� 689

Model for TreeTableView �� 690

Creating a TreeTableView ��� 691

Sorting Data in a TreeTableView ��� 697

Populating a TreeTableColumn with Data ��� 697

Showing and Hiding Columns �� 698

Customizing Data Rendering in Cells ��� 698

Selecting Cells and Rows in a TreeTableView �� 700

Editing Data in a TableView �� 701

Adding and Deleting Rows in a TableView ��� 704

Scrolling in a TreeTableView ��� 708

Styling TreeTableView with CSS ��� 709

Summary �� 710

Chapter 16: Browsing Web Pages ■ �� 711

What Is a WebView? ��� 711

Creating a Web Browser Component �� 712

Setting Properties for a WebView ��� 715

Enhancing the Web Browser Application �� 716

Accessing Browsing History ��� 722

■ Contents

xv

Handling JavaScript UI Requests ��� 725

Executing JavaScript Code from JavaFX �� 733

Executing JavaFX Code from JavaScript �� 736

Accessing the DOM �� 739

Setting the User-Agent HTTP Header ��� 739

Setting a User Style Sheet �� 739

Styling a WebView with CSS �� 740

Summary �� 740

Chapter 17: Understanding 2D Shapes ■ �� 741

What Are 2D Shapes? ��� 741

Drawing 2D Shapes �� 743

Building Complex Shapes Using the Path Class ��� 761

Drawing Scalable Vector Graphics ��� 774

Combining Shapes ��� 780

Understanding the Stroke of a Shape �� 782

Styling Shapes with CSS �� 786

Summary �� 787

Chapter 18: Understanding Text Nodes ■ ��� 789

What Is a Text Node? �� 789

Creating a Text Node �� 790

Understanding the Text Origin �� 791

Displaying Multiline Text ��� 793

Setting Text Fonts ��� 795

Setting Text Fill and Stroke ��� 801

Applying Text Decorations �� 802

Applying Font Smoothing ��� 803

Styling a Text Node with CSS ��� 803

Summary �� 804

■ Contents

xvi

Chapter 19: Understanding 3D Shapes ■ �� 805

What Are 3D Shapes? ��� 805

Checking Support for 3D �� 806

The 3D Coordinate System ��� 807

Rendering Order of Nodes �� 807

Using Predefined 3D Shapes �� 810

Using Cameras ��� 820

Using Light Sources ��� 823

Creating Subscenes ��� 824

Creating User-Defined Shapes ��� 826

Summary �� 839

Chapter 20: Applying Effects ■ ��� 841

What Is an Effect? �� 841

Chaining Effects ��� 843

Shadowing Effects ��� 844

Blurring Effects �� 854

The Bloom Effect �� 859

The Glow Effect �� 860

The Reflection Effect �� 861

The SepiaTone Effect �� 862

The DisplacementMap Effect ��� 863

The ColorInput Effect �� 869

The ColorAdjust Effect �� 870

The ImageInput Effect �� 872

The Blend Effect ��� 874

The Lighting Effect ��� 877

The PerspectiveTransform Effect ��� 895

Summary �� 897

■ Contents

xvii

Chapter 21: Understanding Transformations ■ ��� 899

What Is a Transformation? �� 899

The Translation Transformation �� 901

The Rotation Transformation �� 903

The Scale Transformation ��� 907

The Shear Transformation �� 911

Applying Multiple Transformations ��� 914

Summary �� 915

Chapter 22: Understanding Animation ■ �� 917

What Is Animation? �� 917

Understating Animation Classes ��� 918

Understanding Utility Classes ��� 919

Understating the Timeline Animation ��� 923

Controlling an Animation ��� 926

Understanding Cue Points �� 930

Understanding Transitions �� 933

Understanding Interpolators ��� 948

Summary �� 951

Chapter 23: Understanding Charts ■ �� 953

What Is a Chart? ��� 953

Understating the Chart API ��� 953

Styling Charts with CSS�� 954

Data Used in Chart Examples ��� 956

Understanding the PieChart ��� 956

Understating the XYChart ��� 967

Understating the BarChart �� 970

Understating the StackedBarChart ��� 976

Understanding the ScatterChart ��� 978

■ Contents

xviii

Understanding the LineChart �� 981

Understating the BubbleChart �� 983

Understating the AreaChart �� 986

Understanding the StackedAreaChart �� 990

Customizing XYChart Appearance �� 991

Summary �� 995

Chapter 24: Understanding the Image API ■ �� 997

What Is the Image API? �� 997

Loading an Image ��� 998

Viewing an Image ��� 1000

Understanding Image Operations ��� 1008

Taking the Snapshot of a Node and a Scene �� 1026

Summary �� 1031

Chapter 25: Drawing on a Canvas ■ ��� 1033

What Is the Canvas API? ��� 1033

Creating a Canvas �� 1033

Drawing on the Canvas �� 1034

Clearing the Canvas Area ��� 1037

Saving and Restoring the Drawing States �� 1038

A Canvas Drawing Example �� 1039

Summary �� 1041

Chapter 26: Understanding Drag and Drop ■ �� 1043

What Is a Press-Drag-Release Gesture? �� 1043

Understanding the Data Transfer Modes �� 1049

Understanding the Dragboard �� 1050

The Example Application �� 1053

Providing Visual Clues �� 1056

A Complete Drag-and-Drop Example ��� 1056

■ Contents

xix

Transferring an Image �� 1059

Transferring Custom Data Types ��� 1063

Summary �� 1069

Chapter 27: Understanding Concurrency in JavaFX ■ �� 1071

The Need for a Concurrency Framework �� 1071

Understating the Concurrent Framework API ��� 1078

Understanding the Worker<V> Interface ��� 1078

Using the Task<V> Class�� 1083

Using the Service<V> Class ��� 1089

Using the ScheduledService<V> Class �� 1093

Summary �� 1100

Chapter 28: Playing Audios and Videos ■ ��� 1101

Understanding the Media API ��� 1101

Playing Short Audio Clips ��� 1102

Playing Media ��� 1105

A Media Player Example ��� 1107

Handling Playback Errors ��� 1110

State Transitions of the MediaPlayer �� 1111

Repeating Media Playback ��� 1114

Tracking Media Time �� 1114

Controlling the Playback Rate �� 1115

Controlling the Playback Volume �� 1115

Positioning the MediaPlayer ��� 1116

Marking Positions in the Media �� 1116

Showing Media Metadata ��� 1117

Customizing the MediaView ��� 1118

Developing a Media Player Application �� 1118

Summary �� 1119

■ Contents

xx

Chapter 29: Understanding FXML ■ �� 1120

What Is FXML? �� 1120

Editing FXML Documents ��� 1121

FXML Basics ��� 1121

Creating Objects in FXML ��� 1136

Creating Reusable Objects in FXML ��� 1144

Specifying Locations in Attributes �� 1145

Using Resource Bundles �� 1145

Including FXML Files �� 1147

Using Constants ��� 1150

Referencing Another Element ��� 1151

Copying Elements ��� 1151

Binding Properties in FXML �� 1152

Creating Custom Controls��� 1153

Summary �� 1155

Chapter 30: Understanding the Print API ■ �� 1157

What is the Printing API? �� 1157

Listing Available Printers �� 1158

Getting the Default Printer �� 1159

Printing Nodes �� 1159

Showing the Page Setup and Print Dialogs �� 1163

Customizing PrinterJob Settings �� 1166

Setting Page Layout ��� 1168

Printing a Webpage �� 1169

Summary �� 1171

Index ��� 1173

xxi

About the Author

Kishori Sharan works as a software architect at Up and Running, Inc.
He has earned a master’s of science degree in computer information
systems from Troy State University, Alabama. He is a Sun-certified Java 2
programmer. He has over 18 years of experience in developing enterprise
applications and providing training to professional developers in
Java platform.

xxiii

About the Technical Reviewers

Jeff Friesen is a freelance tutor and software developer with an
emphasis on Java (and now Android). In addition to authoring
Learn Java for Android Development and coauthoring Android
Recipes, Jeff has written numerous articles on Java and other
technologies for JavaWorld (http://www.JavaWorld.com), informIT
(http://www.InformIT.com), Java.net (http://www.java.net), and
DevSource (http://www.DevSource.com). Jeff can be contacted via his
web site at http://www.tutortutor.ca.

David Coffin is an IT analyst working at the Savannah River Site, a large
Department of Energy facility. For more than 30 years, his expertise has
been in multiplatform network integration and systems programming.
Before coming to the Savannah River Site, he worked for several defense
contractors and served as the technical lead for office and network
computing at the National Aerospace Plane Joint Program Office at
Wright-Patterson Air Force Base in Ohio. As a perpetual student, he has
one master’s degree and has begun several others. As a family man, he has
raised eight children. He is a triathlete who competes in the middle of the
pack. He is also a classical guitar player, but he’s not quitting his day job.

http://www.JavaWorld.com
http://www.InformIT.com
http://www.java.net
http://www.DevSource.com
http://www.tutortutor.ca

■ about the teChniCal RevieweRs

xxiv

Wallace Jackson has been writing for leading multimedia publications
about his work in new media content development since the advent of
Multimedia Producer Magazine nearly two decades ago. He has authored
a half-dozen Android book titles for Apress, including four titles in the
popular Pro Android series. Wallace received his undergraduate degree in
business economics from the University of California at Los Angeles and a
graduate degree in MIS design and implementation from the University of
Southern California. He is currently the CEO of Mind Taffy Design, a new
media content production and digital campaign design and development
agency.

Massimo Nardone holds a master’s of science degree in computing
science from the University of Salerno, Italy. He worked as a PCI QSA
and senior lead IT security/cloud/SCADA architect for many years and
currently works as security, cloud, and SCADA lead IT architect for
Hewlett-Packard in Finland. He has more than 20 years of work experience
in IT, including security, SCADA, cloud computing, IT infrastructure,
mobile, and WWW technology areas for both national and international
projects. He has worked as a project manager, cloud/SCADA lead IT
architect, software engineer, research engineer, chief security architect,
and software specialist. He worked as a visiting lecturer and supervisor
for exercises at the networking laboratory of the Helsinki University of
Technology (Aalto University). He has been programming and teaching
how to program with Perl, PHP, Java, VB, Python, C/C++, and MySQL
for more than 20 years. He is the author of Beginning PHP and MySQL
(Apress, 2014) and Pro Android Games (Apress, 2015).

Tri Phan is the founder of the Programming Learning Channel on YouTube.
He has over seven years of experience in the software industry. Specifically,
he has worked in many outsourcing companies and has written many
applications of many fields in different programming languages such
as PHP, Java, and C#. In addition, he has over six years of experience in
teaching at international and technological centers such as Aptech, NIIT,
and Kent College.

xxv

Acknowledgments

My heartfelt thanks are due to my father-in-law, Jim Baker, for displaying extraordinary patience in reading
the initial draft of the first few chapters of the book and his valuable suggestions for improving the material.

I thank my friend Richard Castillo for his hard work in reading the initial draft of the first 12 chapters
of the book and weeding out several mistakes. Richard was instrumental in running all examples and
pointing out errors. I also thank him for allowing me to use a few pictures in this book from his web site at
www.digitizedchaos.com.

My wife, Ellen, was always patient when I spent long hours at my computer desk working on this book.
I thank her for all of her support for me in writing this book. She also deserves my sincere thanks for letting
me sometimes seclude myself on weekends so I could focus on this book.

I also thank my family members and friends for their encouragement and support for me in writing this
book: my elder brothers, Janki Sharan and Dr. Sita Sharan; my sister and brother-in-law, Ratna and Abhay;
my nephews Babalu, Dabalu, Gaurav, Saurav, and Chitranjan; my friends Shivashankar Ravindranath,
Kannan Somasekar, Mahbub Choudhury, Biju Nair, Srinivas Kakkera, Anil Kumar Singh, Chris Coley, Willie
Baptiste, Rahul Jain, Larry Brewster, Greg Langham, LaTondra Okeke, Dinesh Sankala, Rahul Nagpal, Ravi
Datla, and many more friends not mentioned here.

I thank the president of my company Up and Running Inc., Josh Bush, for his support and my
wonderful, supportive coworkers—Preethi Vasudeva, Tanina Jones, Ann Wedgeworth, William Barnett, and
Shannah Glenn—for their encouragement.

My sincere thanks are due to the wonderful team at Apress for their support during the publication of
this book. Thanks to Mark Powers, the senior coordinating editor, and Matthew Moodie, the development
editor, for providing excellent support. Thanks also to the technical reviewers Jeff Friesen, David Coffin,
Wallace Jackson, Massimo Nardone, and Tri Phan for their insights and feedback during the editing process;
they were instrumental in weeding out many technical errors and improving the material. I also thank the
copy editors, Mary Bearden, Lori Cavanaugh, Lori Jacobs, and Karen Jameson, for their extraordinary efforts
in editing the book and applying many corrections during a very short span of time. Last but not least, my
sincere thanks to Steve Anglin, the lead editor at Apress, for taking the initiative for publication of this book.

http://www.digitizedchaos.com

	Contents at a Glance
	Contents
	About the Author
	About the Technical Reviewers
	Acknowledgments
	Introduction
	Chapter 1: Getting Started
	What Is JavaFX?
	History of JavaFX
	System Requirements
	JavaFX Runtime Library
	JavaFX Source Code
	Your First JavaFX Application
	Creating the HelloJavaFX Class
	Overriding the start() Method
	Showing the Stage
	Launching the Application
	Adding the main() Method
	Adding a Scene to the Stage

	Improving the HelloFX Application
	Using the NetBeans IDE
	Creating a New JavaFX Project
	Opening an Existing JavaFX Project
	Running a JavaFX Project from the NetBeans IDE

	Passing Parameters to a JavaFX Application
	Case 1
	Case 2
	Case 3
	Case 4

	Launching a JavaFX Application
	The Life Cycle of a JavaFX Application
	Terminatin g a JavaFX Application
	Summary

	Chapter 2: Properties and Bindings
	What Is a Property?
	What Is a Binding?
	Understanding Bindings Support in JavaBeans
	Understanding Properties in JavaFX
	Using Properties in JavaFX Beans
	Lazily Instantiating Property Objects
	Understanding the Property Class Hierarchy
	Handling Property Invalidation Events
	Handling Property Change Events
	Avoiding Memory Leaks in Listeners
	Handling Invalidation and Change Events
	Using Bindings in JavaFX
	Unidirectional and Bidirectional Bindings
	Understanding the Binding API
	The High-Level Binding API
	Using the Fluent API
	The Binding Interface
	The NumberBinding Interface
	The ObservableNumberValue Interface
	The ObservableIntegerValue Interface
	The NumberExpression Interface
	The StringBinding Class
	The ObjectExpression and ObjectBinding Classes
	The BooleanExpression and BooleanBinding Classes

	Using Ternary Operation in Expressions
	Using the Bindings Utility Class
	Combining the Fluent API and the Bindings Class

	Using the Low-Level Binding API

	Using Bindings to Center a Circle
	Summary

	Chapter 3: Observable Collections
	What Are Observable Collections?
	Understanding ObservableList
	Creating an ObservableList
	Observing an ObservableList for Invalidations
	Observing an ObservableList for Changes
	Understanding the ListChangeListener.Change Class
	Observing an ObservableList for Updates
	A Complete Example of Observing an ObservableList for Changes

	Understanding ObservableSet
	Creating an ObservableSet
	Observing an ObservableSet for Invalidations
	Observing an ObservableSet for Changes

	Understanding ObservableMap
	Creating an ObservableMap
	Observing an ObservableMap for Invalidations
	Observing an ObservableMap for Changes

	Properties and Bindings for JavaFX Collections
	Understanding ObservableList Property and Binding
	Observing a ListProperty for Changes
	Binding the size and empty Properties of a ListProperty
	Binding to Elements of a List

	Understanding ObservableSet Property and Binding
	Understanding ObservableMap Property and Binding

	Summary

	Chapter 4: Managing Stages
	Knowing the Details of Your Screens
	What Is a Stage?
	Showing the Primary Stage
	Setting the Bounds of a Stage
	Initializing the Style of a Stage
	Moving an Undecorated Stage
	Initializing Modality of a Stage
	Setting the Opacity of a Stage
	Resizing a Stage
	Showing a Stage in Full-Screen Mode
	Showing a Stage and Waiting for It to Close
	Summary

	Chapter 5: Making Scenes
	What Is a Scene?
	Graphics Rendering Modes
	Setting the Cursor for a Scene
	The Focus Owner in a Scene
	Using Builder Classes
	Understanding the Platform Class
	Knowing the Host Environment
	Summary

	Chapter 6: Understanding Nodes
	What Is a Node?
	The Cartesian Coordinate System
	Cartesian Coordinate System of a Node
	The Concept of Bounds and Bounding Box
	Knowing the Bounds of a Node
	The layoutBounds Property
	The boundsInLocal Property
	The boundsInParent Property

	Bounds of a Group
	A Detailed Example on Bounds
	Positioning a N ode Using la youtX and layoutY
	Setting the Size of a Node
	Resizable Nodes
	Nonresizable Nodes

	Storing User Data in a Node
	What Is a Managed Node?
	Transforming Bounds between Coordinate Spaces
	Summary

	Chapter 7: Playing with Colors
	Understanding Colors
	Using the Color Class
	Using the ImagePattern Class

	Understanding Linear Color Gradient
	Using the LinearGradient Class
	Defining Linear Color Gradients Using a String Format

	Understanding Radial Color Gradient
	Using the RadialGradient Class
	Defining Radial Color Gradients in String Format

	Summary

	Chapter 8: Styling Nodes
	What Is a Cascading Style Sheet?
	What are Styles, Skins, and Themes?
	A Quick Example
	Naming Conventions in JavaFX CSS
	Adding Style Sheets
	Default Style Sheet
	Adding Inline Styles
	Priorities of Styles for a Node
	Inheriting CSS Properties
	Types of CSS Properties
	The inherit Type
	The boolean Type
	The string Type
	The number Type
	The angle Type
	The point Type
	The color-stop Type
	The URI Type
	The effect Type
	The font Type
	The paint Type

	Specifying Background Colors
	Specifying Borders
	Border Colors
	Border Widths
	Border Radii
	Border Insets
	Border Styles

	Understanding Style Selectors
	Using Class Selectors
	Class Selector for the root Node
	Using ID Selectors
	Combining ID and Class Selectors
	The Universal Selector
	Grouping Multiple Selectors
	Descendant Selectors
	Child Selectors
	State-Based Selectors
	Using JavaFX Class Names as Selectors

	Looking Up Nodes in a Scene Graph
	Using Compiled Style Sheets
	Summary

	Chapter 9: Event Handling
	What Is an Event?
	Event Class Hierarchy
	Event Targets
	Event Types
	Event Processing Mechanism
	Event Target Selection
	Event Route Construction
	Event Route Traversal
	Event Capture Phase
	Event Bubbling Phase

	Handling Events
	Creating Event Filters and Handlers
	Registering Event Filters and Handlers
	Using addXXX( ) and removeXXX( ) Methods
	Using onXXX Convenience Properties

	Execution Order of Event Filters and Handlers
	Consuming Events
	Handling Input Events
	Handling Mouse Events
	Getting Mouse Location
	Representing Mouse Buttons
	State of Mouse Buttons
	Hysteresis in GUI Applications
	State of Modifier Keys
	Picking Mouse Events on Bounds
	Mouse Transparency
	Synthesized Mouse Events
	Handling Mouse Entered and Exited Events

	Handling Key Events
	Handling Key-pressed and Key-released Events
	Handling the Key-typed Event

	Handling Window Events
	Summary

	Chapter 10: Understanding Layout Panes
	What Is a Layout Pane?
	Layout Pane Classes
	Adding Children to a Layout Pane
	Utility Classes and Enums
	The Insets Class
	The HPos Enum
	The VPos Enum
	The Pos Enum
	The HorizontalDirection Enum
	The VerticalDirection Enum
	The Orientation Enum
	The Side Enum
	The Priority Enum

	Understanding Group
	Creating a Group Object
	Rendering Nodes in a Group
	Positioning Nodes in a Group
	Applying Effects and Transformations to a Group
	Styling a Group with CSS

	Understanding Region
	Setting Backgrounds
	Setting Padding
	Setting Borders
	Setting Margins

	Understanding Panes
	Understanding HBox
	Creating HBox Objects
	HBox Properties
	The Alignment Property
	The fillHeight Property
	The Spacing Property

	Setting Constraints for Children in HBox
	Letting Children Grow Horizontally
	Setting Margins for Children

	Understanding VBox
	Creating VBox Objects
	VBox Properties
	The Alignment Property
	The fillWidth Property
	The Spacing Property

	Setting Constraints for Children in VBox
	Letting Children Grow Vertically
	Setting Margin for Children

	Understanding FlowPane
	Creating FlowPane Objects
	FlowPane Properties
	The Alignment Property
	The rowValignment and columnHalignment Properties
	The hgap and vgap Properties
	The Orientation Property
	The prefWrapLength Property

	Content Bias of a FlowPane

	Understanding BorderPane
	Creating BorderPane Objects
	BorderPane Properties
	Setting Constraints for Children in BorderPane

	Understanding StackPane
	Creating StackPane Objects
	StackPane Properties
	Setting Constraints for Children

	Understanding TilePane
	Creating TilePane Objects
	TilePane Properties
	The Alignment Property
	The tileAlignment Property
	The hgap and vgap Properties
	The Orientation Property
	The prefRows and prefColumns Properties
	The prefTileWidth and prefTileHeight Properties
	The tileWidth and tileHeight Properties

	Setting Constraints for Children in TilePane

	Understanding GridPane
	Creating GridPane Objects
	Making Grid Lines Visible
	Adding Children to GridPane
	Setting Positions of Children
	Using Convenience Methods to Add Children
	Specifying Row and Column Spans

	Creating Forms Using GridPanes
	GridPane Properties
	The Alignment Property
	The gridLinesVisible Property

	The hgap and vgap Properties
	Customizing Columns and Rows
	Setting Constraints on Children in GridPane
	The halignment and valignment Constraints
	The hgrow and vgrow Constraints
	The Margin Constraints
	Clearing All Constraints

	Understanding AnchorPane
	Creating AnchorPane Objects
	Setting Constraints for Children in AnchorPane

	Understanding TextFlow
	Creating TextFlow Objects
	TextFlow Properties
	Setting Constraints for Children in TextFlow

	Snapping to Pixel
	Summary

	Chapter 11: Model-View-Controller Pattern
	What Is the Model-View-Controller Pattern?
	A Model-View-Presenter Example
	The Requirements
	The Design
	The Implementation
	The Model
	The View
	The Presenter

	Putting Them Together

	Summary

	Chapter 12: Understanding Controls
	What Is a Control?
	Understanding Control Classes Hierarchy
	Labeled Controls
	Positioning Graphic and Text
	Understanding Mnemonics and Accelerators

	Understanding the Label Control
	Understanding Buttons
	Understanding Command Buttons
	Understanding the Button Control
	Understanding the Hyperlink Control
	Understanding the MenuButton Control

	Understanding Choice Buttons
	Understanding the ToggleButton Control
	Understanding the RadioButton Control
	Understanding the CheckBox Control

	Understanding the Hybrid Button Control
	Making Selections from a List of Items
	Understanding the ChoiceBox Control
	Using Domain Objects in ChoiceBox
	Allowing Nulls in ChoiceBox
	Using Separators in ChoiceBox
	Styling a ChoiceBox with CSS

	Understanding the ComboBox Control
	Detecting Value Change in ComboBox
	Using Domain Objects in Editable ComboBox
	Customizing the Height of Pop-up List
	Using Nodes as Items in ComboBox
	Using a Cell Factory in ComboBox
	Styling ComboBox with CSS

	Understanding the ListView Control
	Orientation of a ListView
	Selection Model in ListView
	Using Cell Factory in ListView
	Using Editable ListView
	Using a TextField to Edit ListView Items
	Using a ChoiceBox / ComboBox to Edit ListView Items
	Using a Check Box to Edit ListView Items

	Handling Events While Editing a ListView
	Styling ListView with CSS

	Understanding the ColorPicker Control
	Using the ColorPicker Control
	Styling ColorPicker with CSS

	Understanding the DatePicker Control
	Using the DatePicker Control
	Styling DatePicker with CSS

	Understanding Text Input Controls
	Positioning and Moving Caret
	Making Text Selection
	Modifying the Content
	Cutting, Copying, and Pasting Text
	An Example
	Styling TextInputControl with CSS

	Understanding the TextField Control
	Styling TextField with CSS

	Understanding the PasswordField Control
	Understanding the TextArea Control
	Styling TextArea with CSS

	Showing the Progress of a Task
	Styling ProgressIndicator with CSS
	Styling ProgressIndicator and Bar with CSS

	Understanding the TitledPane Control
	Styling TitledPane with CSS

	Understanding the Accordion Control
	Styling Accordion with CSS

	Understanding the Pagination Control
	Styling Pagination with CSS

	Understanding the Tool Tip Control
	Styling Tooltip with CSS

	Providing Scrolling Features in Controls
	Understanding the ScrollBar Control
	Understanding the ScrollPane Control

	Keeping Things Separate
	Understanding the Separator Control
	Styling Separator with CSS
	Understanding the SplitPane Control
	Styling SplitPane with CSS

	Understanding the Slider Control
	Styling Slider with CSS

	Understanding Menus
	Using Menu Bars
	Using Menus
	Using Menu Items
	Using a MenuItem
	Using a RadioMenuItem
	Using a CheckMenuItem
	Using a Submenu Item
	Using a CustomMenuItem
	Using a SeparatorMenuItem

	Putting All Parts of Menus Together
	Styling Menus Using CSS

	Understanding the ContextMenu Control
	Styling ContextMenu with CSS

	Understanding the ToolBar Control
	Styling a Toolbar with CSS

	Understanding TabPane and Tab
	Creating Tabs
	Setting the Title and Content of Tabs
	Creating TabPanes
	Adding Tabs to a TabPane
	Putting TabPanes and Tabs Together
	Understanding Tab Selection
	Closing Tabs in a TabPane
	Positioning Tabs in a TabPane
	Sizing Tabs in a TabPane
	Using Recessed and Floating TabPanes
	Styling Tab and TabPane with CSS

	Understanding the HTMLEditor Control
	Creating an HTMLEditor
	Using an HTMLEditor
	Styling HTMLEditor with CSS

	Choosing Files and Directories
	The FileChooser Dialog
	Creating a File Dialog
	Setting Initial Properties of the Dialog
	Showing the Dialog
	Using a File Dialog

	The DirectoryChooser Dialog

	Summary

	Chapter 13: Understanding TableView
	What Is a TableView  ?
	Creating a TableView
	Adding Columns to a TableView
	Customizing TableView Placeholder
	Populating a TableColumn with Data

	Using a Map as Items in a TableView
	Showing and Hiding Columns
	Reordering Columns in a TableView

	Sorting Data in a TableView
	Sorting Data by Users
	Sorting Data Programmatically
	Making a Column Sortable
	Specifying the Sort Type of a Column
	Specifying the Comparator for a Column
	Specifying the Sort Node for a Column
	Specifying the Sort Order of Columns
	Getting the Comparator for a TableView
	Specifying the Sort Policy
	Sorting Data Manually
	Handling Sorting Event
	Disabling Sorting for a TableView

	Customizing Data Rendering in Cells
	Selecting Cells and Rows in a TableView
	Editing Data in a TableView
	Editing Data Using a Check Box
	Editing Data Using a Choice Box
	Editing Data Using a Combo Box
	Editing Data Using a TextField
	Editing Data in TableCell Using any Control

	Adding and Deleting Rows in a TableView
	Scrolling in a TableView
	Resizing a TableColumn
	Styling a TableView with CSS
	Summary

	Chapter 14: Understanding TreeView
	What Is a TreeView  ?
	Creating a TreeView
	Hiding the Root Node
	Understanding the TreeItem

	Handling TreeItem Events
	Adding and Removing Nodes
	Customizing Cells in a TreeView
	Editing Data in a TreeView
	Editing Data using a Check Box
	Editing Data Using a Choice Box
	Editing Data Using a Combo Box
	Editing Data Using a TextField

	Loading TreeItems on Demand
	Scrolling to a TreeItem
	TreeView Selection Model
	Styling TreeView with CSS
	Summary

	Chapter 15: Understanding TreeTableView
	What Is a TreeTableView ?
	Model for TreeTableView
	Creating a TreeTableView
	Sorting Data in a TreeTableView
	Populating a TreeTableColumn with Data
	Showing and Hiding Columns
	Customizing Data Rendering in Cells
	Selecting Cells and Rows in a TreeTableView
	Editing Data in a TableView
	Adding and Deleting Rows in a TableView
	Scrolling in a TreeTableView
	Styling TreeTableView with CSS
	Summary

	Chapter 16: Browsing Web Pages
	What Is a WebView ?
	Creating a Web Browser Component
	Setting Properties for a WebView
	Enhancing the Web Browser Application
	Accessing Browsing History
	Handling JavaScript UI Requests
	Executing JavaScript Code from JavaFX
	Executing JavaFX Code from JavaScript
	Accessing the DOM
	Setting the User-Agent HTTP Header
	Setting a User Style Sheet
	Styling a WebView with CSS
	Summary

	Chapter 17: Understanding 2D Shapes
	What Are 2D Shapes?
	Drawing 2D Shapes
	Drawing Lines
	Drawing Rectangles
	Drawing Circles
	Drawing Ellipses
	Drawing Polygons
	Drawing Polylines
	Drawing Arcs
	Drawing Quadratic Curves
	Drawing Cubic Curves

	Building Complex Shapes Using the Path Class
	The MoveTo Path Element
	The LineTo Path Element
	The HLineTo and VLineTo Path Elements
	The ArcTo Path Element
	The QuadCurveTo Path Element
	The CubicCurveTo Path Element
	The ClosePath Path Element
	The Fill Rule for a Path

	Drawing Scalable Vector Graphics
	The “moveTo” Command
	The “lineto” Commands
	The “arcto” Command
	The “Quadratic Bezier curveto” Command
	The “Cubic Bezier curveto” Command
	The “closepath” Command

	Combining Shapes
	Understanding the Stroke of a Shape
	Styling Shapes with CSS
	Summary

	Chapter 18: Understanding Text Nodes
	What Is a Text Node?
	Creating a Text Node
	Understanding the Text Origin
	Displaying Multiline Text
	Setting Text Fonts
	Creating Fonts
	Accessing Installed Fonts
	Using Custom Fonts

	Setting Text Fill and Stroke
	Applying Text Decorations
	Applying Font Smoothing
	Styling a Text Node with CSS
	Summary

	Chapter 19: Understanding 3D Shapes
	What Are 3D Shapes?
	Checking Support for 3D
	The 3D Coordinate System
	Rendering Order of Nodes
	Using Predefined 3D Shapes
	Specifying the Shape Material
	Specifying the Draw Mode of Shapes
	Specifying the Face Culling for Shapes

	Using Cameras
	Using Light Sources
	Creating Subscenes
	Creating User-Defined Shapes
	Creating a 3D Triangle
	Creating a 3D Rectangle
	Creating a Tetrahedron

	Summary

	Chapter 20: Applying Effects
	What Is an Effect?
	Chaining Effects
	Shadowing Effects
	The DropShadow Effect
	The InnerShadow Effect
	The Shadow Effect

	Blurring Effects
	The BoxBlur Effect
	The GaussianBlur Effect
	The MotionBlur Effect

	The Bloom Effect
	The Glow Effect
	The Reflection Effect
	The SepiaTone Effect
	The DisplacementMap Effect
	The ColorInput Effect
	The ColorAdjust Effect
	The ImageInput Effect
	The Blend Effect
	The Lighting Effect
	Customizing the Surface Texture
	Understanding Reflection Types
	Understanding the Light Source
	Using a Distant Light Source
	Using a Point Light Source
	Using a Spot Light Source

	The PerspectiveTransform Effect
	Summary

	Chapter 21: Understanding Transformations
	What Is a Transformation?
	The Translation Transformation
	The Rotation Transformation
	The Scale Transformation
	The Shear Transformation
	Applying Multiple Transformations
	Summary

	Chapter 22: Understanding Animation
	What Is Animation?
	Understating Animation Classes
	Understanding Utility Classes
	Understanding the Duration Class
	Understating the KeyValue Class
	Understanding the KeyFrame Class

	Understating the Timeline Animation
	Controlling an Animation
	Playing an Animation
	Delaying the Start of an Animation
	Stopping an Animation
	Pausing an Animation
	Knowing the State of an Animation
	Looping an Animation
	Auto Reversing an Animation
	Attaching an onFinished Action
	Knowing the Duration of an Animation
	Adjusting the Speed of an Animation

	Understanding Cue Points
	Understanding Transitions
	Understanding the Fade Transition
	Understanding the Fill Transition
	Understanding the Stroke Transition
	Understanding the Translate Transition
	Understanding the Rotate Transition
	Understanding the Scale Transition
	Understanding the Path Transition
	Understanding the Pause Transition
	Understanding the Sequential Transition
	Understanding the Parallel Transition

	Understanding Interpolators
	Understanding the Linear Interpolator
	Understanding the Discrete Interpolator
	Understanding the Ease-In Interpolator
	Understanding the Ease-Out Interpolator
	Understanding the Ease-Both Interpolator
	Understanding the Spline Interpolator
	Understanding the Tangent Interpolator

	Summary

	Chapter 23: Understanding Charts
	What Is a Chart?
	Understating the Chart API
	Styling Charts with CSS
	Data Used in Chart Examples
	Understanding the PieChart
	Customizing Pie Slices
	Styling the PieChart with CSS
	Using More Than Eight Series Colors
	Using Background Images for Pie Slices

	Understating the XYChart
	Representing Axes in an XYChart
	Adding Data to an XYChart

	Understating the BarChart
	Styling the BarChart with CSS

	Understating the StackedBarChart
	Styling the StackedBarChart with CSS

	Understanding the ScatterChart
	Styling the ScatterChart with CSS

	Understanding the LineChart
	Styling the LineChart with CSS

	Understating the BubbleChart
	Styling the BubbleChart with CSS

	Understating the AreaChart
	Styling the AreaChart with CSS

	Understanding the StackedAreaChart
	Styling the StackedAreaChart with CSS

	Customizing XYChart Appearance
	Setting Alternate Row/Column Fill
	Showing Zero Line Axes
	Showing Grid Lines
	Formatting Numeric Tick Labels

	Summary

	Chapter 24: Understanding the Image API
	What Is the Image API?
	Loading an Image
	Specifying the Image-Loading Properties
	Reading the Loaded-Image Properties

	Viewing an Image
	Multiple Views of an Image
	Viewing an Image in a Viewport

	Understanding Image Operations
	Pixel Formats
	Reading Pixels from an Image
	Writing Pixels to an Image
	Creating an Image from Scratch
	Saving a New Image to a FileSystem

	Taking the Snapshot of a Node and a Scene
	Taking the Snapshot of a Node
	Taking the Snapshot of a Scene

	Summary

	Chapter 25: Drawing on a Canvas
	What Is the Canvas API?
	Creating a Canvas
	Drawing on the Canvas
	Drawing Basic Shapes
	Drawing Text
	Drawing Paths
	Drawing Images
	Writing Pixels

	Clearing the Canvas Area
	Saving and Restoring the Drawing States
	A Canvas Drawing Example
	Summary

	Chapter 26: Understanding Drag and Drop
	What Is a Press-Drag-Release Gesture?
	A Simple Press-Drag-Release Gesture
	A Full Press-Drag-Release Gesture
	A Drag-and-Drop Gesture

	Understanding the Data Transfer Modes
	Understanding the Dragboard
	The Example Application
	Initiating the Drag-and-Drop Gesture
	Detecting a Drag Gesture
	Dropping the Source onto the Target
	Completing the Drag-and-Drop Gesture

	Providing Visual Clues
	A Complete Drag-and-Drop Example
	Transferring an Image
	Transferring Custom Data Types
	Summary

	Chapter 27: Understanding Concurrency in JavaFX
	The Need for a Concurrency Framework
	Understating the Concurrent Framework API
	Understanding the Worker<V> Interface
	State Transitions for a Worker
	Properties of a Worker
	Utility Classes for Examples

	Using the Task<V> Class
	Creating a Task
	Updating Task Properties
	Listening to Task Transition Events
	Cancelling a Task
	Running a Task
	A Prime Finder Task Example

	Using the Service<V> Class
	Creating the Service
	Updating Service Properties
	Listening to Service Transition Events
	Cancelling the Service
	Starting the Service
	Resetting the Service
	Restarting the Service
	The Prime Finder Service Example

	Using the ScheduledService<V> Class
	Creating the ScheduledService
	Updating ScheduledService Properties
	Listening to ScheduledService Transition Events
	The Prime Finder ScheduledService Example

	Summary

	Chapter 28: Playing Audios and Videos
	Understanding the Media API
	Playing Short Audio Clips
	Playing Media
	Creating a Media Object
	Creating a MediaPlayer Object
	Creating a MediaView Node
	Combining Media, MediaPlayer, and MediaView

	A Media Player Example
	Handling Playback Errors
	State Transitions of the MediaPlayer
	Repeating Media Playback
	Tracking Media Time
	Controlling the Playback Rate
	Controlling the Playback Volume
	Positioning the MediaPlayer
	Marking Positions in the Media
	Showing Media Metadata
	Customizing the MediaView
	Developing a Media Player Application
	Summary

	Chapter 29: Understanding FXML
	What Is FXML?
	Editing FXML Documents
	FXML Basics
	Creating the FXML File
	Adding UI Elements
	Importing Java Types in FXML
	Setting Properties in FXML
	Specifying FXML Namespace
	Assigning an Identifier to an Object
	Adding Event Handlers
	Loading FXML Documents
	Using a Controller in FXML

	Creating Objects in FXML
	Using the no-args Constructor
	Using the static valueOf() Method
	Using a Factory Method
	Using Builders

	Creating Reusable Objects in FXML
	Specifying Locations in Attributes
	Using Resource Bundles
	Including FXML Files
	Using Constants
	Referencing Another Element
	Copying Elements
	Binding Properties in FXML
	Creating Custom Controls
	Summary

	Chapter 30: Understanding the Print API
	What is the Printing API?
	Listing Available Printers
	Getting the Default Printer
	Printing Nodes
	Showing the Page Setup and Print Dialogs
	Customizing PrinterJob Settings
	Setting Page Layout
	Printing a Webpage
	Summary

	Index

