
Lab 7: Inheritance and Polymorphism

Objectives

• To understand the concepts of inheritance and polymorphism.
• To be able develop a subclass from a superclass through inheritance.
• To understand the concepts of dynamic binding, and generic programming.
• To be able restrict access to data and methods using the protected visibility modifier.

Definition

Inheritance: allows you to derive new classes from existing classes. Inheritance represents the is-a relationship.

Polymorphism: is to behave differently with different subclasses.

As objects do not exist by themselves but are instances of a class, a class can inherit the features of another
class and add its own modifications. (This could mean restrictions or additions to its functionality). Inheritance
aids in the reuse of code.

Classes can have 'Children' that is, one class can be created out of another class. The original or parent class is
known as the SuperClass (or base class). The child class is known as the SubClass (or derived class).

A SubClass inherits all the attributes and behaviors of the SuperClass, and may have additional attributes and
behaviors.

Syntax

In Java inheritance is represented using extends keyword as follows:

[modifiers] super-class-name { //Data members and methods …}

[modifiers] subclass-name extends super-class-name {…}

SuperC lass

Subclass1 Subclass2 Subclass3

is-a
is-a

is-a

Exercises

1. Design a class named Account that contains:

• An int data field named id for the account (default 0).
• A double data field named balance for the account (default 0).
• A double data field named annualInterestRate that stores the current interest rate (default 0).
• A Date data field named dateCreated that stores the date when the account was created.
• A no-arg constructor that creates a default account.
• The accessor and mutator methods for id, balance, and annualInterestRate.
• The accessor method for dateCreated.
• A method named getMonthlyInterestRate() that returns the monthly interest rate.
• A method named withDraw that withdraws a specified amount from the account.
• A method named deposit that deposits a specified amount to the account.

The Account class was created to model a bank account. An account has the properties account number,
balance, annual interest rate, and date created, and methods to deposit and withdraw. Create two subclasses
for checking and saving accounts. A checking account has an overdraft limit, but a savings account cannot
be overdrawn.

Draw the UML diagram for the classes. Implement the classes. Write a test program that creates objects of
Account, SavingsAccount , and CheckingAccount , and invokes their toString() methods.

2. Create the classes in the following inheritance hierarchy. An Employee should have a first name, last name
and social security number. In addition the SalariedEmployee should have a weekly salary; an
HourlyEmployee should have a wage and a number of hours worked; a CommissionEmployee should have
a commission rate and gross sales; and a BaseCommissionEmployee should have a base salary. Each class
should have an appropriate constructor, set and get methods. Each Employee should have an earning() and
toString() methods.
Create a driver class with an array of Employees. Then access the earning() and toString() methods for
each employee. [Now do you understand the concept of Polymorphism? What does it mean?]

 Employee

SalariedEmployee CommissionEmployee HourlyEmployee

 BaseCommissionEmployee

