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Introduction

d Problem-solving Agent by search

& Figure out what exactly the problem i1s

< Design an algorithm to solve the problem (by search)

< Execute the program

1 Searching algorithm can find the shortest path from Arad to Bucharest, but
can’t easily adjust/adapt when the road from Vilcea to Pitesti 1s closed for
maintenance.

d Knowledge-Based Agents
< Identify the knowledge to solve the problem
@ Write down/Represent the knowledge in a machine readable form

< Use logical inference/Reasoning to solve the problem
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Logical Agents

¢ Humans can know “things” and “reason”
® Representation: How are the things stored?

® Reasoning: How is the knowledge used?
To solve a problem...

To generate more knowledge. ..

o Knowledge and reasoning are important to artificial agents because they
enable successful behaviors difficult to achieve otherwise

e Useful in partially observable environments

* Can benefit from knowledge in very general forms, combining and
recombining information
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Knowledge Bases Agents (KBA)

d Knowledge Base (KB): contains a set of

representations of facts (expressed in a formal, Domain independent
standard language) about the agent’s environment Mgarihims
S Each representation is called a sentence \
< Use some knowledge representation language |
_ ASK Inference engine
(KRL), to TELL it what to know e.g.,
(temperature 72F)
_ TELL Knowledge Base
O Agent that uses background or acquired knowledge
to achieve its goals
< Can make more efficient decisions
< Can make informed decisions Domain specific
O Inference Engine: Agents can use inference (rules) | Sontent

to deduce new facts from TELLed (old) facts
 ASK the agent (i.e., to query) what to do
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The Wumpus World Game

J The Wumpus “_%> s computer game

2 The agent explores a cave “—51” consisting

of rooms connected by passageways.

2 The Wumpus is monitoring/lurking 5.l
somewhere in the cave, it eats any agent that

enters 1ts room.

- Some rooms contain bottomless Pits **_isll”
that trap any agent that wanders into the

IrO0IT1.

J Occasionally, there 1s a heap of Gold in a

room.
O The goal 1s to collect the gold and exit the
world/cave without being eaten by the

Wumpus.
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The agent always starts in [1.1].

The task of the agent 1s to find
the gold, return to the field [1,1]

and climb out of the cave.




/
Wumpus World PEAS Description

d Performance measure
S +1000 for getting the gold,
2 -1000 for being dead,
2 -1 for each action taken,
2 -10 for using up the arrow
2 Environment

=)

4

Wumpus

2

Squares adjacent to wumpus are smelly “as3l )l 43 <7
Squares adjacent to pit are breezy 1
Glitter iff gold is in the same square

Shooting kills wumpus if you are facing it. It screams
Shooting uses up the only arrow

Grabbing picks up gold if in same square

OO VouvwoY

Releasing drops the gold in same square

2 You bump if you walk into a wall
Sensors: Stench, Breeze, Glitter, Bump, Scream

Actuators: Left turn, Right turn, Forward, Grab, Release,
Shoot.

d  Goal: bring back gold as quickly as possible
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Wumpus World Characterization

O The agent has 5 sensors, each of which gives a single bit
of information as follows:

>

=

In the square containing the wumpus and the
directory (not diagonally) adjacent squares the agent
will perceive a stench.

In the squares directly adjacent to a pit, the agent 4
will perceive a breeze.
In the square where the gold 1s, the agent will 3

pEl‘CEi\-—'e d g]]tt@l WU“IPUS
When the agent walks into a wall, it will perceive a2

bump.

When the wumpus is killed, it emits a woeful 1
scream that can be perceived any where in the cave

1 The percepts will be given to the agent in the form of a
list of five symbols [ X1, X2, X3, X4, X5].

O For example if there 1s a stench and a breeze but no

glitter, bump or scream, the agent will receive the
precept [Stench, Breeze, None, None, None]
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Wumpus Environment Characterization

J Fully Observable = No — only local perception

 Deterministic Yes — outcomes exactly specified

J Static Yes — Wumpus and Pits do not move

d Discrete Yes

J Single-agent Yes — Wumpus 1s essentially a natural feature
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Life in the Wumpus World

® before performing an action, it is advisable for the agent to
“think” about it
® perceive current state
® avoid danger
wumpus, pits
® seek rewards
gold

° keep track of the environment
internal map, properties of squares

escape route

\o Aziz M. Qaroush - Birzeit University




e

Inferences:current position is safe

Wumpus World Exploration 1

World State

adjacent positions are safe

@ Aziz M. Qaroush - Birzeit University

Agent’s View

1,2

OK

1.1 m 2.1

OK| OK|

Position: [1,1]

Action: Turn right, forward




/Wumpus World Exploration 2

World State

Inferences: current position is safe
adjacent positions may be pits
because of a perceived breeze
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Agent’s View

1,2

OK

2.2

P?

1,1

V__OK

2,1

OK

3,1

P?

Position: [2,1]

Action: Turn right, turn right, forward,
turn right,forward
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World State

Inferences: current position is safe
[2,2] not a pit, no breeze;

hence [3,1] must be a pit

[1,3] wumpus because of stench
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World State

Inferences:
current position is safe
[2,2] not a pit, no breeze;
hence [3,1] must be a pit
[1,3] wumpus because of stench
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Agent’s View
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Position: [2,2]

Action: Turn right, forward




/Wumpus World Exploration 5

World State

Inferences:

current position is safe
[3,3], [4,2] may be pits
because of breeze;
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Agent’s View
1,3 28 3,3
w! P?
OK
1,2 252 3,2 4,2
-
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Position: [3,2]

Action: Turn left, turn left,
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/Wumpus World Exploration 6

World State
Agent’s View
2.4
P?
1,3 2,3 m 3,3
w! P?
0K
1,2 2,2 3,2 4,2

P? X

V_OKYV OKYV OK
1,1 2,1 3,1

P!

V_OKYV OK

Inferences: Position: [3,7]

current position is safe
[2,4], [3,3] may be pits

because of breeze: Action: Grab gold, left, left, forward,
[1,3] wumpus | right, forward, left, forward,
| climb out
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/Wumpus Example

World State Agent’s View

1,2

OK

1,1 m 2.1

OK OK

Position: [1,1]

Inferences:current position is safe
adjacent positions are safe Action: Turn right, forward

@ Aziz M. Qaroush - Birzeit University




/
Wumpus World Observations

® many of the reasoning steps seem trivial to humans, but are
not so trivial for computers

° knowledge gained in different places at different times must

be combined

® absence of percepts is used to draw conclusions

sometimes the “closed-world assumption” is used: everything that is

not explicitly stated is assumed to be false

not always realistic

® reasoning methods should be generalized

® ad hoc representation and methods may be sufficient for one
situation, but may have to be augmented for others

e.g grid—based world vs. graph—based world
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Why Logic in the Wumpus World

* survival in the wumpus world requires advanced skills
® explore the environment
® remember information about the environment
* connect different pieces of information
® make decisions

® ecvaluate risks

® most animals are not “smart” enough to do well in the wumpus world

® computers can perform the above activities
® but some are difficult (the last three above)

® an algorithmic solution may be possible, but not very flexible

° logic provides a framework for knowledge representation and reasoning
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g Knowledge Representation

One of the core problems in developing an agent is knowledge representation:
2 How do you represent knowledge?
2 How do you reason using that knowledge?

A knowledge representation 1s a formal scheme that dictates how an agent is going to
represent its knowledge in the knowledge base.

Representation = Syntax + Semantics + Reasoning

< Syntax: Rules that determine all possible sequences of symbols that constitute
sentences of the language (grammar to form sentences, the alphabet of symbols and
how they could be combined) in the language.

o Semantics: Rules that determine a mapping from sentences in the representation to
situations in the world.

Programming language
° Advantages: independent of context, effective procedure
o Disadvantages: unable to describe problems with incomplete information (1.e., not
expressive enough) E.g., There is a pit in [2,2] or [3,1]
Natural language
o Advantages: expressive enough
© Disadvantages: suffer from ambiguity (e.g., Small dogs and cats)

A good knowledge representation should combine both the advantages of natural
languages and formal languages.

\@ Aziz M. Qaroush - Birzeit University
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Logic

* Logics are formal languages for representing information
such that conclusions can be drawn.

* Fach sentence is defined by a syntax and a semantic.

* Syntax defines the sentences in the language. It specifies well
formed sentences.

* Semantics define the “"meaning’ of sentences;

i.e., in logic it defines the truth of a sentence in a possible
world.
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Logic

* For example, the language ot arithmetic

— x + 22y is a sentence.
— x+y> 1snota sentence.

— x+ 22y is true iff the number x+2 is not less
than the number vy.

— x + 22y is true in a world where x = 7, y =1.

— x + 22y is false in a world where x = 0, y= 6.
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g Semantics and Interpretations

1 A sentence does not mean anything by itself.

» The writer has to provide an interpretation for it.

 Interpretation: a way of matching objects in the world to symbols in the

sentence.
J We want to be able to test sentences for truth

< But truth depends both on interpretation of the sentence and on the

actual state of the world.

< A sentence may be true in one interpretation and false in another

S e.g. 2*Xx <y means:

» 1s true 1ff the number 2 times x 1s less than the number y
» 1s true in a world where x=11, y=33
» 1s false in a world where x=3, y=4
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2 How do we establish the correspondence between sentences and facts ?

» E.g.,xty =4 1s true when x=2 & y=2, but is false when x=1 & y=1

™




General Logic

J Logics are characterized by what they commit to as "primitives".

Logic

What Exists in World

Knowledge States

Propositional

facts

true/false/unknown

First-Order facts, objects, true/false/unknown
relations
Temporal facts, objects, relations, true/false/unknown
times
Probability facts degree of belief 0..1
Theory
Fuzzy degree of truth degree of belief 0..1
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Propositional Logic

® Propositions: assertions about an aspect of a world that can
be assigned either a true or false value.

® 3 relatively simple framework for reasoning

® can be extended for more expressiveness at the cost of
computational overhead

® important aspects
¢ syntax
® semantics
® validity and inference
® models
® inference rules

° complexity
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Syntax

® symbols
® logical constants True, False
® propositional symbols P, Q, ...
® logical connectives
conjunction A, disjunction V,
negation 7,
implication =, equivalence <
® parentheses (, )
® sentences

® constructed from simple sentences

® conjunction, disjunction, implication, equivalence, negation
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BNF Grammar Propositional Logic

Sentence — AtomicSentence | Comp]eXSentence
AtomicSentence — True | False | P | Q | R | ...

ComplexSentence — (Sentence )

| Sentence Connective Sentence

| 1 Sentence

Connective — N | V | = | —

ambiguities are resolved through precedence 7 AV = & or parentheses

e.g. 7PV QA R= Sisequivalentto (T7P)V(QAR))=S
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Semantics

e SEMANTIC: It defines the rules for determining the

truth of a sentence with respect to a particular model.

e The question:

How to compute the truth value of any
sentence given a model?
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Logical Connectives

a -8 Negation (not)
d S4n S, Conjunction (and)

S, and S, are conjuncts
d S,v S, Disjunction (or)

S, and S, are disjuncts

a1 8,= S, Implication/conditional (if-then)
S, is the antecedent/premise
S, is the consequent/conclusion

d S, 9, Equivalence/bi-conditional (if and only if)
- Ambiguities are resolved through Parentheses
eg.-PvQAR=Sisequivalentto (-P)v(QAR))=S

- Operator priority: (highest) = A Vv = < (lowest)
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Truth Tables for Connectives

P Q P | PA Q| PVQ | P=>Q| P=Q
False False True False False Irue Irue
False True True False True True False
True False | False False True False True False
True True |False True True True
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Validity and Satisfiability

A sentence is valid if it is true in all models,
e.g. True, Av-A, A=A (AA(A=B))=B

Validity is connected to inference via the Deduction Theorem:
KB |= a if and only if (KB = a) is valid

A sentence is satisfiable if it is true in some model
e.g.,AvB, C

A sentence is unsatisfiable if it is false in all models
e.g., A=A

Satisfiability is connected to inference via the following:
KB F a if and only if (KB A—a) is unsatisfiable
(there is no model for which KB=true and ¢y is false)
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Validity Example

* known facts about the Wumpus World
® there is a wumpus in [1,3] or in [2,2]
® there is no wumpus in [2,2]

® question (hypothesis)
® is there a wumpus in [1,3]

® task

® prove or disprove the validity of the question

® approach

® construct a sentence that combines the above statements in an appropriate
manner
so that it answers the questions
® construct a truth table that shows if the sentence is valid

incremental approach with truth tables for sub-sentences
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Validity Example

Interpretation:
W,;  Wumpusin [1,3]
W,,  Wumpusin [2,2]

Facts:

there is a wumpus in [1,3] or in [2,2]

\@ Aziz M. Qaroush - Birzeit University
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Validity Example

Interpretation:
W,;  Wumpusin [1,3]
W,,  Wumpusin [2,2]

Facts:

WisV Wy Wy
False True
True False
True True
True False

there is a wumpus in [1,3] or in [2,2]

there is no wumpus in [2,2]
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Validity Example

WiV W, W
False True
True /\ False
True True
True False

(Wi3VWL)NT Wy,

False
False

True
False

False
False
True

True

Question:
can we conclude that the wumpus is in [1,3]?
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Validity Example

Valid Sentence:
For all possible combinations, the

value of the sentence is true.

WiV Wy, W
False True
True /\ False
True True
True False

(Wi3VWH)NT Wy,

False
False

True

False

WI 3

False
False
True

True

(WY WL)ANT W)= Wi

True
True
True

True

Question: Can we conclude that the wampus is in [1,3]?
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Entailment

O Entailment means that one thing follows from another:

O Entailment 1s used in propositional logic and predicate logic to describe a
relationship between two sentences or sets of sentences.

O KB |=a
A knowledge base KB entails sentence a if and only if a 1s true in all (models)
where KB 1s true.

2 E.g.,xty=4entails 4 =x+y
J For example:
2 KB: "sky 1s blue" = true, "sun 1s shining" = true
< entails a: "sky is blue and sun is shining" = true
2 arepresents a true fact as long as facts represented in KB are true

2 Ifitis night then KB 1sn't the true state then a would not represent a true
fact.

d Entailment requires sentences in KB to be true.
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Entailment

* Leta=A v B and
KB =(A v C) A(B v =C)
* Is it the case that KB |=OL P
® Check all possible models -- a

must be true whenever KB 1is
true.

@Aziz M. Qaroush - Birzeit University

KB o
A B C (AvC)An | AVvB
(B \Y4 ﬁC)

False False False False False
False False True False False
False True False False True
False True True True True
True False False True True
True False True False True
True True False True True
True True True True True
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Entailment

@ Aziz M. Qaroush - Birzeit University

KB o
A B C AvC)ABvV AvVvB

—-C)
False | False | False False False
False | False | True False False
False | True | False False True
False | True | True True
True | False | False True
True | False | True True
True | True | False True
True | True | True True
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KB o
A B C (AvC)A(BvV AvVB

—-C)
False | False | False False False
False | False | True False False
False | True | False False True
False | True | True True
True | False | False True
True | False | True True
True | True | False True
True | True | True True

@ Aziz M. Qaroush - Birzeit University
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Models

® Models are formal definitions of possible states of the

world
® We say m is a model of a sentence ol if 0 is true in m
* M() is the set of all models of a
® Then KB—=at it and only if M(KB) C M(Q\)

\@ Aziz M. Qaroush - Birzeit University
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logical Inference

O Formal Definition of Inference (e.g., A |-B);
< It can be read as "B can be proven/inferred from A".

= We say that the set A of sentences logically imply (or infer) the set B of
sentences, 1f one can derive all sentences in B by assuming all sentences in A
and applying a finite sequence of inference rules to them (for example, those
from propositional logic)

= In cases where multiple logics are under discussion, it may be useful to put a
subscript on the symbol. (e.g., A |- B)

= Inference procedure: KB |- a
» Sentence @ can be derived from KB using inference procedure i

@ Aziz M. Qaroush - Birzeit University /
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Inference Methods

d  Model Checking:
1. Truth-Table Enumeration

»  Sound and complete for propositional logic

d Inference Rules

(Application of Syntactic Operations):
o Sound generation of new sentences from old

& Could use inference rules as operators for search more in FOL.

\@ Aziz M. Qaroush - Birzeit University
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LET:

KB=Av(C,Bv —C

Does: KB |=a?

false

true

true

true

false

false

false

true

true
false

true

frue

Inference by Truth-Table Enumeration

a=AvB

RECALL: The computer doesn't know the
meaning of the proposition symbols (and neither
do we at this point).

So all logically distinct cases must be checked to
prove that a sentence can be derived from a KB.
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Inference by Truth-Table Enumeration

LET: KB=AvC,Bv—-C a=AvB
Does: KB Fa?

A B C A vC B v 7C|KB

Rows where all of

false |false |false [false |[true false santences in KB are true
false [false |true [true false false are the models of KB
false |true |false [false |[true false

false |true |true [true true true

true |false |false |true true true

true |false |true |true false false

true |true |false |irue true true

true |true |true [true true true
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Does: KB F a? YES!

A B C AVCB VTC|KB |A vB |[KB=a
false |false [false [false |true false [false true
false |false |true [true false false [false true
false [true |[false |false |true false |true true
false |true [true [frue true frue™"true true
true [false |false |irue true true  |true true
true [false |true |true false false |true true
true |true |[false [true true true” |true true
true [true |true |irue true true” ftrue true

i.e. all rows where KB is true, @is true

\@ Aziz M. Qaroush - Birzeit University

“ais entailed by KB, if all models of KB are models of @”

Inference by Truth-Table Enumeration
LET: KB=Av(C,Bv—C a=AvB

In other words
KB F ais valid.
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Inference by Truth-Table Enumeration

‘" Why is this technique impractical?

S The proofs using truth-table enumeration grow exponentially in length
as the number of symbols increases.

O(2") where n 1s the number of symbols

S There must be a better way.

- Natural deduction is an inference procedure that uses sound inference
rules to derive new sentences from the KB and any previously derived

sentences until the conclusion sentence 1s derived.

\6 Aziz M. Qaroush - Birzeit University
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Inference and Derivation

® inference rules allow the construction of new sentences from existing
sentences

® notation: a sentence [} can be derived from o
a

B

¢ an inference procedure generates new sentences on the basis of
inference rules

o |- or

® Soundness: An inference procedure is sound if every sentence X it
produces from a set of sentences S logically follows from S. (No
contradiction is created).

it S |-Xthen S |=X
* Completeness: A inference procedure is complete, if it is able to
produce every sentence that logically follows from any give S.

it S |=XthenS | -X
@ Aziz M. Qaroush - Birzeit University /
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Inference Rules

* modus ponens

from an implication and its
premise one can infer the

conclusion
* and-elimination

from a conjunct, one can infer any

of the conjuncts

¢ and-introduction

from a list of sentences, one can

infer their conjunction

e or-introduction

from a sentence, one can infer its

disjunction with anything else

@ Aziz M. Qaroush - Birzeit University
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Inference Rules

* double-negation
elimination
a double negations infers the
positive sentence

® unit resolution

if one of the disjuncts in a
disjunction is false, then the other

one must be true

® resolution

B cannot be true and false, so one
of the other disjuncts must be

true

can also be restated as

“implication is transitive”

@ Aziz M. Qaroush - Birzeit University
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/Logical Equivalence

J These equivalence rules will be used to convert into Conjunctive Normal

Form (CNF) while proofing without using truth tables; Resolution.

(@A B) = (BAa) commutativity of A
(aVB) = (fVa) commutativity of V
(@AB)Ay) = (aA(BAy)) associativity of A
(aVB)Vy) = (aV(BVry)) associativity of V
=(—a) = a double-negation elimination
(@ = ) = (= = —a) contraposition
(@ = ) = (~aV[3) implication elimination
(@ & f) = ((a = B)A( = «)) biconditional elimination
“(aAf) = (~aV-f3) de Morgan
_I(EEVﬁ) = (ma A—f) de Morgan
(@A (BVY) = ((aAB)V(aAy)) distributivity of A over V
(@V(BAy) = ((aVE)A(aVy)) distributivity of V over A

\@ Aziz M. Qaroush - Birzeit University
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Proofing

J A proof is a sequence of sentences, where each sentence is either a
premise or a sentence derived from earlier sentences in the proof by one

of the rules of inference.
J  The last sentence is one that we want to prove. (also called goal or query)

- Example for the “weather problem™:

1. Hu Premise “It 1s humid”

2. Hu—Ho Premise “If 1t 1s humid, it is hot”

3. Ho Modus Ponens(1.2) “It 1s hot™

4. (HoAnHu)—>R Premise “If it’s hot & humid, i1t’s raining”
5. HoaHu And Introduction(1.3) “It1s hot and humid”

6. R Modus Ponens(4.5) “It 1s raining”
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Wumpus Logic
 An agent can use propositional logic to reason about the Wumpus world.
KB contains
» Percepts
» Rules

- Some atomic propositions:
S12 = There is a stench in cell (1,2)
B34 = There is a breeze in cell (3,4)
W22 = The Wumpus is in cell (2,2)
V11 = We have visited cell (1,1)
OK11 = Cell (1,1) is safe.
efc
- Some rules:
(R1) =S11 - W11 A - W12 A - W21
(R2) = S21 - W11 A = W21 A - W22 A - W31
(R3) - S12 > W11 A W12 A - W22 A — W13
(R4) S12 > W13 v W12 v W22 v W11
efc
2 We may give similar rules for other cells
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Finding the Wumpus

® two options
® construct truth table to show that W, ; is a valid sentence
rather tedious

® use inference rules

apply some inference rules to sentences already in the knowledge base
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Proofing W13

a

a

Apply MP with -S11 and R1:
W11 A =-W12 A - W21

Apply And-Elimination to this, yielding 3 sentences:
- W11, - W12, - W21

Apply MP to ~S21 and R2, then apply And-elimination:
- W22, - W21, - W31

Apply MP to S12 and R4 to obtain:
W13 v W12 v W22 v W11

Apply Unit resolution on (W13 v W12 v W22 v W11) and -W11:
W13 v W12 v W22

Apply Unit Resolution with (W13 v W12 v W22) and —W22:
W13 v W12

Apply UR with (W13 v W12) and —-W12:
W13
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/Action in the Wumpus World

J  The agent also needs to Ask the knowledge base what to do
< Must ask specific questions
= Can I go forward?

< General questions are not possible in propositional logic
= Where should I go?

J  Additional rules are required to determine actions for the agent

O The size of the knowledge base even for a small wumpus world becomes
immense

< Explicit statements about the state of each square
< Additional statements for actions, time

< Easily reaches thousands of sentences
1 Completely unmanageable for humans
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Inference by: Resolution

 The resolution process 1s a simple iterative process:

< At each step, two clauses are compared
(resolved), yielding a new clause that has been
inferred from them.

» Resolution operates by taking two clauses
and producing a new clause containing all the
literals of the two originals except the two
complementary literals (i.e., one in positive
form and the other in negative form).

1 Steps of inference by Resolution
J Represent your knowledge base in CNF.

 Find two clauses that contain complementary literals
< Delete both literals
< Delete multiple copies of remaining literals
< Produce a new clause with the remaining ones
< Iterate the process
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Inference by: Resolution

- Binary Resolution Step

S For any two clauses C, and C,, if there is a literal L, in C, that is
complementary to a literal L, in C,, then delete L, and L, from
C, and C, respectively, and construct the disjunction of the
remaining clauses.

2 The constructed clause is a resolvent of C, and C.,.
O Examples of Resolution Step
°C=av-b,C=bvec
= Complementary literals : —b, b
« Resolvent:avc
°C=-avbve, C=—bvd

= Complementary literals : b, —b

« Resolvent: —-avcvd
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Resolution Procedure

J  Toprove P
& Assume ~P
® Add~PtoKB
< Resolve in KB till resulting:
1. In KB (therefore P is false)

2.  Empty (therefore ~P is contradictory so P is true)
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Resolution Procedure

Proof by resolution

—ia aVﬁbV—'lC

* Theorem proving as search

— Start node: the set of given
premises/axioms (KB +
Input)

— Operator: inference rule (add
a new sentence into parent
node)

— Goal: a state that contains the
theorem asked to prove

— Solution: a path from start
node to a goal
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Conjunctive Normal Form

J Disjunctive Normal Form (DNF)
< Any sentence can be written as a disjunction of conjunctions of literals.

< Example: A’B v C"D v P2Q"R:

< Widely used in logical circuit design (simplification)

1 Conjunctive Normal Form (CNF)

& Any sentence can be written as a conjunction of disjunctions of literals.

& Example: (AvB) " (CvD)"(PvOvR):

1 Normal forms can be obtained by applying equivalence laws

A formula in conjunctive normal form 1s unsatisfiable 1f for every

interpretation I, there 1s a clause C that 1s false in I.

J A formula in CNF is satisfiable if there 1s an interpretation | that makes all

clauses true.
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Resolution Example:
1. Convert to CNF

B,y & ([P,,vP,))

1. Eliminate <, replacing a < 8 with (a = B)A(B = q).
B, =@®,LvP)AWP,vP,)=B,))

2. Eliminate =, replacing a = 3 with —av (.
(=B, vP,,vP, )A(=(P,,VvP,)VvB,))

3. Move — inwards using de Morgan's rules and double-negation:
(=B, vP VP, )A((=P ;A =P, VvB,,)

4. Apply distributive law (A over v) and flatten:
(=B, vP,vP, )A (=P ,vB )A (=P, vB,))

~av B)=—an—p
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Resolution Example:

2. Resolution Procedure

~Py v By

By v Pyv Py

~P3v By

=BV PV By

PiavPyv=P;

“Byv Py v By

Pryv Pyv =Py,
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Horn Clauses

«  Resolution can be exponential in space and time unless we have Horn clauses.

Linear time algorithms exist when knowledge bases are restricted to Horn clauses

. IF we can reduce all clauses to “Horn clauses™ THEN resolution will be linear in
space and time.

Horn clauses: A disjunction of literals of which at most one is positive

A clause with at most 1 positive literal.
e.g. Av =B v - C
*  Every Horn clause can be rewritten as an implication with a conjunction of

positive literals in the premises and a single positive literal as a conclusion.

BArC = A (-Av -B)=(A A B = False)

e.g.

*  Forward Chaining and Backward chaining are sound and complete with Horn
clauses and run linear in space and time.
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Inference Methods

J Forward Chaining
< Data driven

< Proofs start with the given axioms/premises in KB, deriving new
sentences using GMP until the goal/query sentence is derived

< It moves “forward” from the KB to the goal

< Inference using GMP is complete for KBs containing only Horn
clauses

J Backward Chaining
< Goal-directed: we have a goal to prove.
o We first start with the goal,
< Find implication sentences that enable us to conclude it,

< Finally try to establish their premises; use backward chaining on
premises with unknown values.
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/Forward Chaining

O Starting from the current state, matching the premises of the rules (the IF parts), and

performing the corresponding actions (the then parts) that usually update the

knowledge base or working memory.

1 The process continues until no more rules can be applied, or some cycle limit is met.
O Forward Chaining Algorithm:

KB = conjunction of Horn clauses

= Horn clause = proposition symbol or (conjunction of symbols) = symbol

S Eg.CA(B=A)A(CAD=B)

= When a new sentence a 1s added into the knowledge base KB

< Look for all sentences share literals with a

< Perform resolution

= Add new sentence to KB and continue
O Forward chaining 1s data-driven

J In Forwarding chaining: New facts are inferred as soon as possible
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Forward Chaining Example
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Forward Chaining Example
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Forward Chaining Example
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Forward Chaining Example
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Forward Chaining Example
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Forward Chaining Example
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Forward Chaining Example
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Forward Chaining Example
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Backward Chaining

d Backward chaining or goal-driven inference works towards a final state by
looking at the working memory to see if the sub-goal states already exist

there.

- If not, the actions (the THEN parts) of the rules that will establish the sub-
goals are identified and new sub-goals are set up for achieving the premises

of those rules (the IF parts).
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Backward Chaining Algorithm

J  Establish a goal. determine what must be found out in order to reach

that goal, and try to find that knowledge

[dea: work backwards from the query ¢
=  Check if g i1s known already, or
=  Prove by BC all premises of some rule concluding ¢

» Hence BC maintains a stack of sub-goals that need to be proved
to get to q.

Avoid loops: Check if new sub-goal 1s already on the goal stack

Avoid repeated work: check 1f new sub-goal:
1. Has already been proved true, or
2. Has already failed

\@ Aziz M. Qaroush - Birzeit University /




s
Backward Chaining Example
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Backward Chaining Example
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Backward Chaining Example
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Backward Chaining Example
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Backward Chaining Example
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Backward Chaining Example
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Backward Chaining Example
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Backward Chaining Example
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Backward Chaining Example
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Backward Chaining Example

\@ Aziz M. Qaroush - Birzeit University




s
Backward Chaining Example
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/Forward vs. Backward Chaining

O Forward chaining Advantage

< Asks for more data but utilizes this data to eliminate possibilities and therefore
processes fewer rules.

O Forward Chaining Disadvantage

= Many rules may be applicable at each stage: so how should we choose which

one to apply next at each stage?
2 The whole process is not directed towards a goal: so how do we know when to
stop applying the rules?

O Backward Chaining Advantage

2 The search 1s goal directed, so we only apply the rules that are necessary to
achieve the goal.

> Asks for less data than forward-chaining but examines more rules

O Backward Chaining Disadvantage

= The goal has to be known.

< Fortunately, many Al systems can be formulated in a goal based fashion.
d  Complexity of BC can be much less than linear in size of KB.
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Limitations of Propositional Logic

® number of propositions
® since everything has to be spelled out explicitly, the number
of rules is immense
® dealing with change (monotonicity)
® even in very simple worlds, there is change
® the agent’s position changes

° time—dependent propositions and rules can be used

even more propositions and rules
® propositional logic has only one representational device, the
proposition
® difficult to represent objects and relations, properties,
functions, variables, ...
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g Problem of Propositional Logic

Propositional logic has very limited expressive power
o Can’t have one proposition to represent a group of objects
o e.g.: if we want to say “Every BZU ’s student is happy”
m In Propositional Logic =» “Ali is happy”, “Ahmed is happy” , “Mohamed

1s happy”
o e.g., cannot say "pits cause breezes in adjacent squares* except by writing one

sentence for each square.

o We want to be able to say this in one single sentence: “for all squares and pits,
pits cause breezes in adjacent squares.

o First order logic will provide this flexibility by using Vv, 3.
= ie VX At(x,, BZU )= Happy(x)
=  So, FOL fixes the problems of PL:
o PL doesn’t have variables BUT FOL does.

o PL can't directly express properties of individuals or relations between
individuals, But FOL can do that.

= Inferencing in PL 1s fairly easy But In FOL it is more complex
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First-Order logic

P-Logic assumes the world contains facts that are either true or false.

First-Order Logic models the world in terms of:

Q

Q

a

a

Q

Objects: which are things with individual identities

« e.g. people, houses, numbers, colors, baseball games, wars, computers, ...

Variable: Represents object, X.Y.Z...

Predicate/relation: Gives relation between objects, variables, 1.e. brother of,

bigger than, part of, comes between, ...

» Person (Ahmed), Likes(Ali, Yasser), EquilateralTriangle(X,Y,Z)
Function: a relation where there is only one “value™ for any given “input”
»  MotherOf(Yasser), OldestSonOf(Walid, Aymen), ...

Properties

« Describe specific aspects of objects, used to distinguish between objects

O Green, round, heavy, visible,
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Syntax of FOL: Basic elements

® Constants  KingJohn, 2, NUS,...
® Predicates Brother, >,...

® Functions  Sqrt, LeftLegOf,...

® Variables  x,y,a,b,...

® Connectives —, =, A, V, <&

* Equality =

® Quantifiers V, 3
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= A sentence represents a fact in the world that is assigned a truth value.

« Atomic sentence = predicate (term,,....term ) or term, = term,

0 Father(Ahmed, Mohamed), Mother(Asmaa, Ahmed),
Sister(Dena, Ahmed)

o Married(Ahmed, Asmaa)
o Married(Father-Of(Ahmed), Mother-Of(Ahmed))

» Complex sentences are made from atomic sentences using connectives:
=S, 85, A 8,,85,vS,, 5, =85, 5,85,
o Sibling(Ahmed,Ali) = Sibling(Ali,Ahmed)
0 Friend(Ali,Ahmed) = Friend(Ahmed,Ali)

0 Father(Ahmed, Yasser) A Mother(Asmaa, Yasser) A Sister(Yara, Yasser) —

Sister(Yasser, Yara)
o  Parents(Ahmed, Dena, Ali, Yara) A Married(Ahmed, Dena)

0 Parents(Yasser, Yaraa) = Married(Yasser, Yara)
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Universal Quantifiers (V)

Used to express properties of collections of objects and eliminates the
need to explicitly enumerate all objects as in PL.

Universal quantifier: V<variables> <sentence>

Means the sentence holds true for all values in the domain of variable x.
Everyone at BZU is smart: Vx At(x,BZU) = Smart(x)

Vx P is true in a model m iff P is true with x being each possible object

in the model.

® All humans are mammals.

Vx Human(x) = Mammal(x): for all x if x is a human then x is a mammal

* All birds can fly

V x Bird(x) = Can-Fly(x)
Main connective typically = forming if-then rules
® Mammals must have hair

Vx Mammal(x) = HasHair(x): for all x if x is a mammal then x has hair

Equivalent to the conjunction of P instantiations: At(Ahmed,BZU) =
Smart(Ahmed) A At(Aymen,BZU) = Smart(Aymen) A ...
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/A common mistake to avoid A

= Common mistakes with the use of A as main connective with V:

= Examples

= Vx At(x, BZU ) A Smart(x): means “Everyone isat BZU and
everyone 1s smart”.

» Vx Human(x) A Mammal(x) means? Everything is human and a mammal
(Human(Ali) A Mammal(Al1)) A

(Human(Yasser) A Mammal(Yasser)) A
(Human(Y) A Mammal(Y) ) A ...

o Vx student(x)"smart(x) means “Everyone in the world is a student and
is smart”

= Universal quantification should be rarely used to make blanket statements
about every individual in the world.
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"Existential quantification A

Existential quantifier: 3<variables> <sentence>
+ Means the sentence holds true for some value/s of x 1n the domain of x.

« Existential quantifiers (3) are usually used with “A™ to specify a list of
properties about an individual:

o Jx student(x) " smart(x) means “There 1s a student who 1s smart”

o Mammals may have arms. 3 x Mammal(x) A HasArms(x), this interpreted as
there exist an x such that x 1s a mammal and x has arms

2 “Some humans are computer scientists”: 3 x Human(x) A Computer-
Scientist(x)
o “Ahmed has a sister who i1s a computer scientist”: 3 x Sister(x, Ahmed) A
Computer-Scientist(x).
o “Some birds can’t fly”: 3 x Bird(x) A — Can-Fly(x)
« Common mistake: using = as the main connective with 3 Results in a weak
statement: examples:

« JxAt(x, BZU )= Smart(x): 1s true if there 1s anyone who 1s not at BZU |
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Properties of quantifiers

® Vx Vy is the same as Vy Vx
* dx dy is the same as dy dx
* dx Vyis not the same as Vy dx
e Jx Vy Loves(x,y)
® “There is a person who loves everyone in the world”
* Vy dx Loves(x,y)
® “Everyone in the world is loved by at least one person”
® Quantifier duality: each can be expressed using the other
® Vx Likes(x,IceCream) —dx —Likes(x,lceCream)

e dx Likes(x,Broccoli) —Vx

—Likes(x,Broccoli)
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Equality

® term, = term, is true under a given interpretation if and

only if term, and term, refer to the same object

* E.g., definition of Sibling in terms of Parent:

Vx,y Sibling(x,y) <> [—(x = y) A dm,f — (m = f) A Parent(m,x)
A Parent(f,x) A Parent(m,y) A Parent(t,y)]
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Example: Family Relationships

a Objects: People
a Properties: Gender, ...
= Expressed as unary predicates Male(x), Female(y)
2 Relations: parenthood, brotherhood, marriage
= Expressed through binary predicates Brother(x.y), ...
2 Functions: motherhood, fatherhood
» Mother(x), Father(y)
» Because every person has exactly one mother and one father
» There may also be a relation Mother-of(x,y), Father-of(x.y)

= Family Relationships

2 Vw.,h Husband(h,w) <> Male(h) A Spouse(h,w)

o Vx Male(x) <> —Female(x)

a Vg,c Grandparent(g.c) <> d p Parent(g.p) A Parent(p,c)

o Vx,y Sibling(x.y) < —(x=y) A 3 p Parent(p,x) A Parent(p,y)
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Thinking in FOL

“¥” Convert the following English sentences to FOL.

= Bob is a fish.
2 What are the objects?

Bob look for nouns and noun phrases
2 What are the relations?
is a fish look for verbs and verb phrases
Answer: Fish(Bob) a unary relation or property

“¥” Convert the following English sentences to FOL.

= America bought Alaska from Russia.
2 What are the objects?
America, Alaska, Russia
2 What are the relations?
bought(who, what, from)  an n-ary relation where n 1s 3
Answer: Bought(America,Alaska,Russia)
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Thinking in FOL

“¥"Now lets think about quantifying variables.
=  Ahmed collects everything.

o What are the objects? Ahmed
o What are the variables and how are they quantified?
everything x, all - universal

Answer: Vx Collects(Ahmed.x)

Collects(Ahmed,Pencil) A Collects(Ahmed,Fish) A ...
=  When to restrict the domain, e.g. people:
s Al Vx Pemsontx) A o« =i

0 Things: anything, everything, whatever

o People: anybody, anyone, everybody, everyone, whoever
= Some (at least one): Ix Person(X) A... A ...

0 Things: something

o People: somebody, someone
= None: —dx Person(X) A...A ...

a2 Things: nothing

o People: nobody, no one
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Thinking in FOL

¥ How about sentences with multiple variables?

« Somebody collects something.
o What are the objects? none!
2 What are the variables and how are they quantified?

somebody x and something y, some - existential

Answer: 3 x,y Person(x) A Collects(x,y)

= Everybody collects everything.

» Everybody collects something.

= Something is collected by everybody.

“¥” Convert the following English sentences to FOL.

= Nothing collects anything.

2 What are the variables? nothing x and anything y
o How are they quantified? not one (i.e. not existential) and all
(universal)

Answer: —3x Vy Collects(x,y)

“¥” What's the “double-negative™ equivalent?
Everything does not collect anything.
Answer: Vx,y —Collects(x,y)

»« Everything collects nothing.
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Thinking in FOL

" More complex quantified sentences:
All hoarders™ (388l collect everything.
0  How are ideas connected? being a hoarder implies collecting everything
Answer: Vx,y Horder(x) = Collects(x.y)
X Hoarders collect valuable things. Is ambiguous!
Some hoarders collect all valuable things.
Some hoarders collect some valuable things.

All hoarders collect some valuable things.

U O O O

All hoarders collect all valuable things.
2 All stinky shoes are allowed.
How are i1deas connected? being any shoe and stinky implies it 1s allowed
Answer: Vx Shoe(x) A Stinky(x) = Allowed(x).
4 No stinky shoes are allowed.

Answer: —3 x Shoe(x) A Stinky(x) A Allowed(x).
(All) Stinky shoes are not allowed.

Answer: Vx Shoe(x) A Stinky(x) = —Allowed(x)
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Thinking in FOL

“¥” And now for functional relations and equalities:
» John's income is 20K.
o Are functional relations specified?
0 Are equalities specified?
Answer: Income(John) = 20K
= There are exactly two shoes.
0 Are quantities specified?
a  Are equalities implied?
Ans.: 3x,y Shoe(x) A Shoe(y) A =(x=y) A Vz (Shoe(z) = (x=2) v (y=2))
= Interesting words: always, sometimes, never
a2  Good people always have friends = All good people have friends.
Vx Person(x) A Good(x) = Jy(Friend(x.y))
o  Busy people sometimes have friends = Some busy people have friends.
Ix Person(x) A Busy(x) A Jy(Friend(x,y))
o Bad people never have friends = Bad people have no friends.
¥x Person(x) A Bad(x) = —3y(Friend(x,y))
or equivalently: No bad people have friends.
—3x Person(x) A Bad(x) A Jy(Friend(x.,y))
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/Other Examples

All smidents are smart.
vV X ( Student(x) = Smart(x) )

There exists a student.
3 X Student(x).

There exists a smart student.
1 x ( Student(x) A Smart(x) )

Every student loves some student.
¥V X ( Student(x) = 4 v ( Student(y) A Loves(x.y) ))

Every student loves some other student.
¥V X ( Student(x) = 4 v ( Student(v) A — (X =v) A Loves(x.v) ))

There 1s a student who 1s loved by every other student.
1 x ( Student(x) A ¥V v ( Student(yv) A —(X=vy) = Loves(v.X) ))

Bill 1s a student.
Student(Bill)
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Other Examples
Bill takes either Analysis or Geometry (but not both)
Takes(Bill. Analysis) < — Takes(Bill. Geometry)

Bill takes Analysis or Geometry (or both).
Takes(Bill. Analysis) v Takes(Bill. Geometry)

Bill takes Analysis and Geometry.
Takes(Bill. Analysis) A Takes(Bill. Geometry)

Bill does not take Analysis.
— Takes(Bill. Analysis).

No student loves Bill.
— d X ( Student(x) A Loves(x. Bill) )

Bill has at least one sister.
1 X SisterOf(x.Bill)

Bill has no sister.
— 3 X SisterOf(x.Bill)
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/Other Examples

Bill has at most one sister.
WV X. v ( SisterOf(x. Bill) A SisterOf(v. Bill) = x=v)

Bill has exactly one sister.
3 x ( SisterOf(X. Bill) A ¥V v ( SisterOf(y. Bill) = x=v))

Bill has at least two sisters.
31 X, v ( SisterOf(x, Bill) A SisterOf(yv. Bill) A = (x=v) )

Every student takes at least one course.
V X ( Student(x) = 3 v ( Course(y) A Takes(x.y) ))

Only one student failed History.
3 x ( Student(x) A Failed(x. History) A V¥V v ( Student(y) A Failed(y. History) = x=v))

No student failed Chemistry but at least one student failed History.
— d x ( Student(x) A Failed(x. Chemistry) ) A d x ( Student(x) » Failed(x. History) )

Every student who takes Analysis also takes Geometry.
¥V X ( Student(x) A Takes(x, Analysis) = Takes(x. Geometry) )

No student can fool all the other students.
— d x ( Student(x) A V v ( Student(y) A — (Xx=v) = Fools(x.y) )
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Inference Rules for FOL

® Inference rules for PL apply to FOL as well (Modus Ponens,

And-Introduction, And-Elimination, etc.)

® New (sound) inference rules for use with quantifiers:
® Universal Elimination
® Existential Introduction

e Existential Elimination

® Generalized Modus Ponens (GMP)
e Resolution

® (Clause form (CNF in FOL)

® Unification (consistent variable substitution)

® Retfutation resolution (proof by contradiction)
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Inference Rules for FOL

* Universal Elimination (Vx) P(x) |-- P(c).
- It (Vx) P(x) is true, then P(c) is true for any constant c in the
domain of x, i.e.,, (Vx) P(x) | = P(c).
* Replace all occurrences of x in the scope of Vx by the same ground
term (a constant or a ground function).

+ Example: (Vx) eats(Ziggy, x) | -- eats(Ziggy, IceCream)

* Existential Introduction P(c) |-- (3x) P(x)
« It P(c) is true, so is (Ix) P(x), i.e., P(c) | = (Ix) P(x)
* Replace all instances of the given constant symbol by the same new
variable symbol.
* Example eats(Ziggy, [ceCream) | -- (dx) eats(Ziggy, x)
- Existential Elimination
- From (3x) P(x) infer P(c), i.e., (3x) P(X) |= P(c), where c is a new constant
symbol,

— All we know is there must be some constant that makes this true, so we
can introduce a brand new one to stand in for that constant, even though
we don’t know exactly what that constant refer to.

— Example: (3x) eats(Ziggy, X) |= eats(Ziggy, Stuff)
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Generalized Modus Ponens (GMP)

« Combines And-Introduction, Universal-Elimination, and Modus Ponens

© Ex: P(c), Q(0), (VX)(P(x) * Q(x)) => R(x) |-- R(c)
P(c), Q(c) |-- P(c) ™ Q(c) (by and-introduction)

(Vx)(P(x) " Q(x)) => R(x)
|-- (P(c) * Q(c)) => R(c) (by universal-elimination)

P(c) " Q(0), (P() * Q(¢)) => R(c) |-~ R(c)  (by modus ponens)

* All occurrences of a quantified variable must be instantiated to the same
constant.
P(a), Q(c), (Vx)(P(x) " Q(x)) => R(x) |-- R(c)
because all occurrences of x must either instantiated to a or ¢ which makes the

modus ponens rule not applicable.
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Resolution for FOL

* Resolution rule operates on two clauses
* A clause is a disjunction of literals (without explicit quantifiers)

° Relationship between clauses in KB is conjunction

® Resolution Rule for FOL.:
® clause C1: (I, 1,, ... 1, ... 1) and
clause C2: (I, I’,, ... 1’]-, LT

® ifI.and 1 ’]- are two opposite literals (e.g., P and ~P) and their argument

lists can be be made the same (unified) by a set of variable bindings 0=
{x1/y1, ... Xk/yk} where x1, ... Xk are variables and y1, ... Yk are terms,

then derive a new clause (called resolvent)
subst((1,, 1, ... 1, I’,,I’,, ... I ), 0)

where function subst(expression, 0) returns a new expression by applying all

variable bindings in O to the original expression
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We need answers to the following questions

® How to convert FOL sentences to clause form (especially how

to remove quantifiers)

* How to unify two argument lists, i.e., how to find their most
general unifier (mgu) 0

® How to determine which two clauses in KB should be resolved

next (among all resolvable pairs of clauses) and how to

determine a proof is completed
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Conversion procedure

-

step 1:

step 2:

step 3:

step 4:

step 5:
step 6:

Aziz M.

remove all “=>” and “<=>” operators
(using P =>Q_~PvQand P <=>Q_P=>Q"Q=>P)
move all negation signs to individual predicates

(using de Morgan’s law)
remove all existential quantifiers Jy
case 1:y is not in the scope of any universally quantified variable,
then replace all occurrences of y by a skolem constant
case 2: if y is in scope of universally quantified variables x1, ... xi,
then replace all occurrences of y by a skolem function that
takes x1, ... Xi as its arguments
remove all universal quantifiers Vx (with the understanding that all
remaining variables are universally quantified)
convert the sentence into CNF (using distribution law, etc)

use parenthesis to separate all disjunctions, then drop all v’s and s
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Conversion examples

Vx (P(x) " Q(x) => R(x))

Vx ~(P(x) " Q(x)) v R(x) (by step 1)
Vx ~P(x) v ~Q(x) v R(x) (by step 2)
~P(x) v ~Q(x) v R(x) (by step 4)
(~P(x), ~Q(x),R(x))  (bystep 6)

dy rose(y) * vellow(y)

\v / \v /

rose(c) " yellow(c)

(where c is a skolem constant)

(rose(c)), (yellow(c))
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-

Conversion examples

Vx [person(x) => Jy (person(y) * father(y, x))]

Vx [~person(x) v Jy (person(y) * father(y, x))] (by step 1)
Vx [~person(x) v (person(f_sk(x))  father(f_sk(x), x))] (by step 3)
~person(x) v (person(f_sk(x)) * father(f_sk(x), x)) (by step 4)
(~person(x) v person(f_sk(x)) * (~person(x) v father(f_sk(x), x))

(by step 5)
(~person(x), person(f_sk(x)), (~person(x), father(f_sk(x), x))

(by step 6)
(where f_sk(.) is a skolem function)

116
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" Unification
* Basicidea: Vx P(x) => Q(x), P(a) |-- Q(a)

(=P(x), Q()), (Pf
\A {x/a} a substitution in which variable x is bound to a

Q@)

® The goal is to find a set of variable bindings so that the argument lists of
two opposite literals (in two clauses) can be made the same.

® Only variables can be bound to other things.

Constants a and b cannot be unified (different constants in general refer to
ditferent objects)
Constant a and function f(x) cannot be unitfied (unless the inverse function of f
is known, which is not the case for general functions in FOL)
f(x) and g(y) cannot be unified (function symbols f and g in general refer to
different functions and their exact definitions are different in different
interpretations)
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Unification

e (Cannot bind variable x to y if x appears anywhere in 'y

Try to unify x and f(x). If we bind x to f(x) and apply the binding to
both x and f(x), we get f(x) and f(f(x)) which are still not the same
(and will never be made the same no matter how many times the
binding is applied)
® Otherwise, bind variable x to y, written as x/y (this guarantees
to find the most general unifier, or mgu)
Suppose both x and y are variables, then they can be made the same
by binding both of them to any constant c or any function {(.). Such
bindings are less general and impose unnecessary restriction on x
and y.
® To unity two terms of the same function symbol, unity their
argument lists (unification is recursive)

Ex: to unify f(x) and f(g(b)), we need to unity x and g(b)
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Unification

® When the argument lists contain multiple terms, unity each pair of
terms
Ex.To unity (x, {(x), ...) (a, ¥, ...)
I. unify x and a (0 = {x/a}).
2. apply O to the remaining terms in both lists, resulting
(f(a), ...)and (y, ...)
3. unity f(a) and y with binding y/f(a)
4. add y/f(a) to new 0
5. goto step 2
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Unification Examples

e parents(x, father(x), mother(Bill)) and parents(Bill, father(Bill), y)
* unify x and Bill: O = {x/Bill}
* unify father(Bill) and father(Bill): O = {x/Bill}
* unify mother(Bill) and y: 0 = {x/Bill}, y/mother(Bill)}
® parents(x, father(x), mother(Bill)) and parents(Bill, father(y), z)
* unify x and Bill: 0 = {x/Bill}
* unify father(Bill) and father(y): O = {x/Bill, y/Bill}
* unify mother(Bill) and z: © = {x/Bill, y/Bill, z/mother(Bill)}
® parents(x, father(x), mother(Jane)) and parents(Bill, father(y), mother(y))
* unify x and Bill: 0 = {x/Bill}
® unify father(Bill) and father(y): O = {x/Bill, y/Bill}
® unify mother(Jane) and mother(Bill): Failure because Jane and Bill are

different constants
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More Unification Examples

* P(x, g(x), h(b)) and P(f(u, a), v, u))
® unify x and f(u, a): 0 = {x/ f(u, a)};
remaining lists: (g(f(u, a)), h(b)) and (v, u)
* unify g(f(u, a)) and v: 0 = {x/f(u, a), v/g(f(u, a))};
remaining lists: (h(b)) and (u)
® unify h(b) and u: 0 = {x/f(u, a), v/g(f(h(b), a)), u/h(b)};
* P(f(x,a), g(x, b)) and P(y, g(y, b))
® unify f(x, a) and y: 0 = {y/f(x, a)}
remaining lists: (g(x, b)) and (g(f(x, a), b))

® unity x and f(x, a): failure because x is in {(x, a)
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Unification Algorithm

procedure unify(p, q, 0) /* p and q are two lists of terms and |p| = |q| */
if p = empty then return 0; /* success */
let r = first(p) and s = first(q);
if r = s then return unify(rest(p), rest(q), 0);
if r is a variable then temp = unify-var(r, s);
else if s is a variable then temp = unify-var(s, r);
else if both r and s are functions of the same function name then
temp = unify(arglist(r), arglist(s), empty);
else return “failure”;
if temp = “failure” then return “failure”; /* p and q are not unifiable */
else 0 = 0 temp; /* apply tmp to old O then insert it into @ */
retuthunify(subst(rest(p), tmp), subst(rest(q), tmp), 0);
end {unify}
procedure unify-var(x, y)
if x appears anywhere in y then return “failure”;

else return (x/y)
end {unify-var}
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Resolution in FOL

® Convert all sentences in KB (axioms, definitions, and known facts) and the

goal sentence (the theorem to be proved) to clause form

® Two clauses C1 and C2 can be resolved if and only if r in C1 and s in C2
are two opposite literals, and their argument list arglist_r and arglist_s are

unifiable with mgu = 6.
® Then derive the resolvent sentence: subst((C1 — {r}, C2 — {s}), 6)

(substitution is applied to all literals in C1 and C2, but not to any
other clauses)
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esolution example

® Prove that
Vw P(w) => Q(w), Vy Q(y) => 5(y), VzR(z) => S(z), Vx P(x) v R(x) | = Ju S(u)
® Convert these sentences to clauses (Fu S(u) skolemized to S(a))

* Apply resolution
(~“P(w), Qw)) (=ZQM), S(y)) (ZR(@), 5(z)) (), R(x))

a resolution
(S(x), Rx)) {y/x} proof tree

T

(S(a)) {x/a,z/a}
® Problems
® The theorem S(a) does not actively participate in the proof
® The last resolution is more than a mechanical step

* Hard to determine if a proof (with consistent variable bindings) is

completed if the theorem consists of more than one clause 124
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Resolution Refutation: a better proof strategy

® Given a consistent set of axioms KB and goal sentence Q, show that KB
= Q.
* Proof by contradiction: Add ~Q to KB and try to prove false.
because (KB | = Q) <=> (KB” ~Q | = False, or KB * ~Q is inconsistent)
* How to represent “false” in clause form
* P(x) " ~P(y) is inconsistent
® Convert them to clause form then apply resolution
Px) (P
\ /{/X/ ¥}
() anull clause
* A null clause represents false (inconsistence/ contradiction)

KB | = Q if we can derive a null clause from KB * ~Q by
resolution
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Resolution Refutation Example

® Prove by resolution refutation that
Vaw P(w) => Q(w), Yy Q(y) => S(y), V7 R(z) => S(2), ¥x P(x) v R(x) | = Ju S(u)

® Convert these sentences to clauses (~ Ju S(u) becomes ~S(u))

(~P(w), Q(w))  (ZQ(y), S(y))  (TR(z), X

(=Q(y)) {u’y}
\ .

(~P(w)) {y/w} (P(x)) {z/x}

~_—

(O {x/w}

(Px), Rx))  (~5(u

(~R(2)) {u/z}
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Refutation Resolution Procedure

procedure resolution(KB, Q)
/* KB is a set of consistent, true FOL sentences, Q is a goal sentence.
It returns success if KB | -- Q, and failure otherwise */
KB = clause(union(KB, {~Q})) /* convert KB and ~Q to clause form */
while null clause is not in KB do
pick 2 sentences, S1 and S2, in KB that contain a pair of opposite
literals whose argument lists are unifiable
if none can be found then return "failure"
resolvent = resolution-rule(S1, S2)
KB = union(KB, {resolvent})
return "success "

end {resolution}
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Example of Automatic Theorem Proof:
Did Curiosity kill the cat

® Jack owns a dog. Every dog owner is an animal lover. No
animal lover kills an animal. Either Jack or Curiosity killed
the cat, who is named Tuna. Did Curiosity kill the cat?

® These can be represented as follows:
A. (3x) Dog(x) * Owns(Jack,x)
B. (vx) ((3y) Dog(y)  Owns(x, y)) => AnimalLover(x)
C. (vx) AnimalLover(x) => (Vy) Animal(y) => ~Kills(x,y)
D. Kills(Jack, Tuna) v Kills(Curiosity, Tuna)
E. Cat(Tuna)
F. (vx) Cat(x) => Animal(x)
Q. Kills(Curiosity, Tuna)
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Did Curiosity Kill the cat

* Convert to clause form
Al. (Dog(D)) /* D is a skolem constant */
A2. (Owns(Jack,D))
B. (~Dog(y), ~Owns(x, y), AnimalLover(x))
C. (~AnimalLover(x), ~Animal(y), ~Kills(x,y))
D. (Kills(Jack, Tuna), Kills(Curiosity, Tuna))
E. (Cat(Tuna))
E. (~Cat(x), Animal(x))
* Add the negation of query:
—Q: (~Kills(Curiosity, Tuna))
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Example of Automatic Theorem Proof:
Did Curiosity kill the cat

¢ The resolution refutation proof
R1: =Q, D, {}, (Kills(Jack, Tuna))

R2:R1, C, {x/]Jack, y/Tuna}, (~AnimalLover(Jack),
~Animal(Tuna))

R3:R2, B, {x/]Jack}, (~Dog(y), ~Owns(Jack, y),
~Animal(Tuna))

R4:R3,Al, {y/D}, (~Owns(Jack, D), ~Animal(Tuna))
R5:R4,A2, {}, (~Animal(Tuna))

R6: R5, F, {x/Tuna}, (~Cat(Tuna))

R7:R6, E, {} ()
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The proof tree

\[}/

R1: K(J,T)

QJ y/y

R2: —ALQ)v—A(T) B

oy

R3: —D(y) v —0(J,y) v —A(T)

Al
\ {y/D}/

R4: —0(J,D), —A(T) A2

\{}
R5: -A(T) F

Sem

R6: —C(T)

o/

R7:()
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Horn Clauses

® A Horn clause is a clause with at most one positive literal:
(~P1(x), ~P2(x), ..., ~Pn(x) v Q(x)),  equivalent to
Vx P1(x) " P2(x) ... “Pn(x) => Q(x) or
Q(x) <= Pl(x), P2(x), ..., Pn(x) (in prolog format)
® if contains no negated literals (i.e., Q(a) <=): facts
® if contains no positive literals (<= Pi(x), P2(x), ..., Pn(x)): query
® it contain no literal at all (<=): null clause
® Most knowledge can be represented by Horn clauses
* Easier to understand (keeps the implication form)
* Easier to process than FOL

e Horn clauses represent a subset of the set of sentences representable

in FOL. For example, it cannot represent uncertain conclusions, e.g,

Q(x) v R(x) <= P(x)).
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Example of forward chaining

® Example: KB = All cats like fish, cats eat everything they like, and Ziggy is a
cat. In FOL, KB =

1. (Ax) cat(x) => likes(x, Fish)

2. (Ax) (Ay) (cat(x) ~ likes(x,y)) =>
eats(x,y)

3. cat(Ziggy)

®  Goal query: Does Ziggy eat fish?
Data-driven

Proof:
1. Use GMP with (1) and (3) to derive: 4. 1ikes (Ziggy, Fish)

2. Use GMP with (3), (4) and (2) to derive eats (Ziggy, Fish)
3. So,Yes, Ziggy eats fish.
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Backward chaining

Example: Does Ziggy eat fish?

To prove eats (Ziggy, Fish) , firstsee if this is known from one of the
axioms directly. Here it is not known, so see if there is a Horn clause that has the

consequent (i.e., right-hand side) of the implication matching the goal.

Proof: Goal Driven

1.

Goal matches RHS of Horn clause (2), so try and prove new sub-goals

cat(Ziggy) and 1ikes (Ziggy, Fish) that correspond to the LHS of
(2)

.cat (Ziggy) matchesaxiom (3), so we've "solved" that sub-goal

.likes (Ziggy, Fish) matches the RHS of (1), so try and prove

cat(Ziggy)

.cat (Z2iggy) matches (as it did earlier) axiom (3), so we've solved this sub-goal

. There are no unsolved sub-goals, so we're done. Yes, Ziggy eats fish.
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Forward vs. backward chaining

® EC is data-driven
® Automatic, unconscious processing
* E.g., object recognition, routine decisions
® May do lots of work that is irrelevant to the goal

e Efficient when you want to compute all conclusions
* BC is goal-driven, better for problem-solving

® Where are my keys? How do 1 get to my next class?

o Complexity of BC can be much less than linear in the size

of the KB

e Efficient when you want one or a few decisions
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Chapter Summary

® some problems require more sophisticated techniques than

searching for a solution

® reasoning utilizes existing knowledge to generate new
knowledge

® requires appropriate representation and reasoning methods
q pprop P g

® logic provides a flexible and powerful framework for
representation and reasoning

® used for the formulation of abstract models that reflect

essential aspects of the problem and environment

® propositional logic is relatively simple, but also limited
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