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Logical Agents 

 Humans can know “things” and “reason” 
 Representation: How are the things stored? 

 Reasoning: How is the knowledge used? 
 To solve a problem… 

 To generate more knowledge… 

 

 Knowledge and reasoning are important to artificial agents because they 
enable successful behaviors difficult to achieve otherwise 
 Useful in partially observable environments 

 

 Can benefit from knowledge in very general forms, combining and 
recombining information  



Knowledge Bases Agents (KBA) 
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The Wumpus World Game  
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Wumpus World PEAS Description 
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Wumpus World Characterization 

Aziz M. Qaroush - Birzeit University 7 



Wumpus Environment Characterization 
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Life in the Wumpus World 

 before performing an action, it is advisable for the agent to 

“think” about it 

 perceive current state 

 avoid danger 

 wumpus, pits 

 seek rewards 

 gold 

 keep track of the environment 

 internal map, properties of squares 

 escape route 
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Wumpus World Exploration 1 

World State Agent’s View 

Position: [1,1] 

Percept:  

  [None, None, None, None, None] 

Action: Turn right, forward 

A 

OK 

1,1 

1,2 

2,1 

OK 

OK 

 Inferences:current position is safe 

 adjacent positions are safe 

[-----] 
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Wumpus World Exploration 2 

World State 
Agent’s View 

Position: [2,1] 

Percept:  [None, Breeze, None, None, 

None] 

Action: Turn right, turn right,  forward, 

turn right,forward 

A
 

OK 

1,1 

1,2 

2,1 

OK 

OK 

Inferences:  current position is safe  

adjacent positions may be pits   

because of a perceived breeze 

[-B---] 
V 

P? 

P? 

3,1 

2,2 
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Wumpus World Exploration 3 

World State 
Agent’s View 

Position: [1,2] 

Percept:    [Stench, None, None, 

None, None] 

Action: Turn right, forward 

A 

OK 

1,1 

1,2 

2,1 

OK 

OK 

Inferences:  current position is safe  

 [2,2] not a pit, no breeze; 

 hence [3,1] must be a pit 

 [1,3] wumpus because of stench 

[S----] 

V 

P! 

P? 

V 

OK 

W! 

3,1 

2,2 

1,3 
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Wumpus World Exploration 4 

World State 
Agent’s View 

Position: [2,2] 

Percept:  

  [None, None, None, None, None] 

Action: Turn right, forward 

A
 

OK 

1,1 

1,2 

2,1 

OK 

OK 

Inferences: 

 current position is safe 

 [2,2] not a pit, no breeze; 

  hence [3,1] must be a pit 

 [1,3] wumpus because of stench 

[-----] 

V 

P! 

V 

OK 

W! 

3,1 

2,2 

1,3 

V OK 

OK 

2,3 

3,2 
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Wumpus World Exploration 5 

World State 
Agent’s View 

Position: [3,2] 

Percept:  

  [None, Breeze, None, None, None] 

Action: Turn left, turn left,  

  forward, turn right, forward 

A
 

OK 

1,1 

1,2 

2,1 

OK 

OK 

Inferences: 

 current position is safe 

 [3,3], [4,2] may be pits  

  because of breeze; 

[-B---] 

V 

P! 

V 

OK 

W! 

3,1 

2,2 

1,3 

V OK 

OK 

2,3 

3,2 

P? 

P? 

3,3 

4,2 

V 
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Wumpus World Exploration 6 

World State 
Agent’s View 

Position: [3,2] 

Percept:  

  [Stench, Breeze, Glitter, None, None] 

Action: Grab gold, left, left, forward,  

  right, forward, left, forward,  

  climb out 

A 

OK 

1,1 

1,2 

2,1 

OK 

OK 

Inferences: 

 current position is safe 

 [2,4], [3,3] may be pits  

  because of breeze;  

 [1,3] wumpus 

[SBG--] 

V 

P! 

V 

OK 

W! 

3,1 

2,2 

1,3 

V OK 

OK 

2,3 

3,2 

P? 

P? 

3,3 

4,2 

V V 

P? 

2,4 
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Wumpus Example 

World State Agent’s View 

Position: [1,1] 

Percept:  

  [None, None, None, None, None] 

Action: Turn right, forward 

A 

OK 

1,1 

1,2 

2,1 

OK 

OK 

Inferences:current position is safe 

 adjacent positions are safe 

[-----] 
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Wumpus World Observations 

 many of the reasoning steps seem trivial to humans, but are 

not so trivial for computers 

 knowledge gained in different places at different times must 

be combined 

 absence of percepts is used to draw conclusions 

 sometimes the “closed-world assumption” is used: everything that is 

not explicitly stated is assumed to be false 

 not always realistic 

 

 reasoning methods should be generalized 

 ad hoc representation and methods may be sufficient for one 

situation, but may have to be augmented for others 

 e.g grid-based world vs. graph-based world 
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Why Logic in the Wumpus World 

 survival in the wumpus world requires advanced skills 
 explore the environment 

 remember information about the environment 

 connect different pieces of information 

 make decisions 

 evaluate risks 

 

 most animals are not “smart” enough to do well in the wumpus world 

 

 computers can perform the above activities 
 but some are difficult (the last three above) 

 an algorithmic solution may be possible, but not very flexible 

 logic provides a framework for knowledge representation and reasoning 
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Knowledge Representation 
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Logic 

 

 

 

• Logics are formal languages for representing information 
such that conclusions can be drawn. 

 

• Each sentence is defined by a syntax and a semantic. 

 

• Syntax defines the sentences in the language. It specifies well 
formed sentences. 

 

• Semantics define the ``meaning'' of  sentences; 

i.e., in logic it defines the truth of  a sentence in a possible 
world. 
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Logic 

 

 

 

 

• For example, the language of  arithmetic 

 

– x + 2  y  is a sentence. 

 

– x + y >     is not a sentence. 

 

– x + 2  y  is true iff  the number x+2 is not less   
 than the number y. 

 

– x + 2  y  is true in a world where x = 7, y =1. 

 

– x + 2  y  is false in a world where x = 0, y= 6. 
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Semantics and Interpretations 
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General Logic 
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Propositional Logic 
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Propositional Logic 

 Propositions: assertions about an aspect of a world that can 
be assigned either a true or false value. 

 a relatively simple framework for reasoning 

 can be extended for more expressiveness at the cost of 
computational overhead 

 important aspects 

 syntax 

 semantics 

 validity and inference 

 models 

 inference rules 

 complexity 
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Syntax 

 symbols 

 logical constants True, False 

 propositional symbols  P, Q, … 

 logical connectives 

 conjunction ∧, disjunction ∨,  

 negation ¬,  

 implication ⇒, equivalence ⇔ 

 parentheses (, ) 

 sentences 

 constructed from simple sentences 

 conjunction, disjunction, implication, equivalence, negation 
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BNF Grammar Propositional Logic 

Sentence  → AtomicSentence | ComplexSentence 

AtomicSentence → True | False | P | Q | R | ... 

ComplexSentence → (Sentence ) 

        | Sentence Connective Sentence 

        | ¬ Sentence 

Connective  →  ∧ | ∨ | ⇒ | ⇔ 
 

 

ambiguities are resolved through precedence ¬ ∧ ∨ ⇒ ⇔ or parentheses 

e.g. ¬ P ∨ Q ∧ R ⇒ S is equivalent to  (¬ P) ∨ (Q ∧ R)) ⇒ S 
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Semantics 

 SEMANTIC: It defines the rules for determining the 

truth of a sentence with respect to a particular model. 

 

 The question:  

How to compute the truth value of any 

sentence given a model? 

 
 

28 Aziz M. Qaroush - Birzeit University 



Logical Connectives 
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Truth Tables for Connectives 

¬ P 
True 

True 

False 

False 

P ∧ Q 
False 

False 

False 

True 

P ∨ Q 
False 

True 

True 

True 

P ⇒ Q 
True 

True 

False True 

P ⇔ Q 
True 

False 

False 

True 

Q 
False 

True 

False 

True 

P 
False 

False 

True 

True 
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Validity and Satisfiability 
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Validity Example 

 known facts about the Wumpus World 

 there is a wumpus in [1,3] or in [2,2] 

 there is no wumpus in [2,2] 

 question (hypothesis) 

 is there a wumpus in [1,3] 

 task 

 prove or disprove the validity of the question 

 approach 

 construct a sentence that combines the above statements in an appropriate 

manner 

 so that it answers the questions 

 construct a truth table that shows if the sentence is valid 

 incremental approach with truth tables for sub-sentences 
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Validity Example 

W22 

False  

True 

False 

True 

W13 

False 

False 

True 

True 

Q 
False 

True 

False 

True 

P 
False 

False 

True 

True 

∨ 

P ∨ Q 
False 

True 

True 

True 

Interpretation: 

 W13 Wumpus in [1,3] 

 W22 Wumpus in [2,2] 

Facts: 

• there is a wumpus in [1,3] or in [2,2] 

W13 ∨ W22 

False 

True 

True 

True 
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Validity Example 

¬ W22 

True 

False 

True 

False 

W13 ∨ W22 

False 

True 

True 

True 

Q 
False 

True 

False 

True 

P 
False 

False 

True 

True 

∧ 

P ∧ Q 
False 

False 

False 

True 

Interpretation: 

 W13 Wumpus in [1,3] 

 W22 Wumpus in [2,2] 

Facts: 

• there is a wumpus in [1,3] or in [2,2] 

• there is no wumpus in [2,2] 
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Validity Example 

¬ W22 

True 

False 

True 

False 

W13 ∨ W22 

False 

True 

True 

True 

(W13 ∨ W22 ) ∧ ¬ W22 

False 

False 

True 

False 

W13 

False 

False 

True 

True 

∧ 

⇒ 

P ⇒ Q 
True 

True 

False 

True 

Q 
False 

True 

False 

True 

P 
False 

False 

True 

True 

Question:  

• can we conclude that the wumpus is in [1,3]? 
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Validity Example 

((W13 ∨ W22 ) ∧ ¬ W22 ) ⇒ W13 

True 

True 

True 

True 

Valid Sentence: 

For all possible combinations, the 

value of the sentence is true. 

¬ W22 

True 

False 

True 

False 

W13 ∨ W22 

False 

True 

True 

True 

(W13 ∨ W22 ) ∧ ¬ W22 

False 

False 

True 

False 

W13 

False 

False 

True 

True 

∧ 

⇒ 
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Entailment 
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Entailment 

 

 Let     and   

 KB =(  C) B  C) 

 Is it the case that KB ╞  ? 

 Check all possible models --  

must be true whenever KB is 

true. 

 

 

A B C 

KB 

(  C)  

B  C) 

 

   

False False False False False 

False False True False False 

False True False False True 

False True True True True 

True False False True True 

True False True False True 

True True False True True 

True True True True True 
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Entailment 

 
 

 

A B C 

KB 

(  C)  B  

C) 

 

   

False False False False False 

False False True False False 

False True False False True 

False True True True True 

True False False True True 

True False True False True 

True True False True True 

True True True True True 
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Entailment 

 
 

 

A B C 

KB 

(  C)  B  

C) 

 

   

False False False False False 

False False True False False 

False True False False True 

False True True True True 

True False False True True 

True False True False True 

True True False True True 

True True True True True 

 KB ╞ α 
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Models 

 Models are formal definitions of possible states of the 

world 

 We say m is a model of a sentence  if  is true in m 

 M() is the set of all models of  

 Then KB    if and only if M(KB)  M()  

M() 

M(KB) 
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logical Inference 
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Inference Methods 
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Inference by Truth-Table Enumeration 
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Inference by Truth-Table Enumeration 
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Inference by Truth-Table Enumeration 
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Inference by Truth-Table Enumeration 
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 inference rules allow the construction of new sentences from existing 
sentences 
 notation: a sentence β can be derived from  α  

 
 
 

 an inference procedure generates new sentences on the basis of 
inference rules 

 Soundness: An inference procedure is sound if every sentence X it 
produces from a set of sentences S logically follows from S. (No 
contradiction is created). 

    if S |- X then  S |= X 

 Completeness: A inference procedure is complete, if it is able to 
produce every sentence that logically follows from any give S. 

    if S |= X then S | - X 

Inference and Derivation 

α 

β 
 α |- β   or 
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Inference Rules 

 modus ponens 

 from an implication and its 

premise one can infer the 

conclusion 

 and-elimination 

 from a conjunct, one can infer any 

of the conjuncts 

 and-introduction 

 from a list of sentences, one can 

infer their conjunction 

 or-introduction 

 from a sentence, one can infer its 

disjunction with anything else 

α ⇒ β,   α 

β 

α1 ∧ α2 ∧... ∧ αn 

αi 

α1, α2, … , αn 

α1 ∧ α2 ∧... ∧ αn 

αi 

α1 ∨ α2 ∨... ∨ αn 
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Inference Rules 

 double-negation 

elimination 

 a double negations infers the 

positive sentence 

 unit resolution 

 if one of the disjuncts in a 

disjunction is false, then the other 

one must be true 

 resolution 

 β cannot be true and false, so one 

of the other disjuncts must be 

true 

 can also be restated as 

“implication is transitive” 

 ¬ ¬α 

α 

α ∨ β,       ¬ β 

α 

α ∨ β,   ¬ β ∨ γ  

α ∨ γ 

¬ α ⇒ β,  β ⇒ γ  

¬ α ⇒ γ 
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Logical Equivalence 
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Proofing 
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Wumpus Logic 
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Finding the Wumpus 

 two options 

 construct truth table to show that W1,3 is a valid sentence 

 rather tedious 

 use inference rules 

 apply some inference rules to sentences already in the knowledge base 
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Proofing W13 
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Action in the Wumpus World 
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Inference by: Resolution 

Aziz M. Qaroush - Birzeit University 57 



Inference by: Resolution 
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Resolution Procedure 
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Resolution Procedure 
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Conjunctive Normal Form 
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Resolution Example: 
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1. Convert to CNF 



Resolution Example: 
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2. Resolution Procedure 



Horn Clauses 
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Inference Methods 
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Forward Chaining 
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Forward Chaining Example 
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Forward Chaining Example 
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Forward Chaining Example 
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Forward Chaining Example 
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Forward Chaining Example 
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Forward Chaining Example 
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Forward Chaining Example 
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Forward Chaining Example 
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Backward Chaining 
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Backward Chaining Algorithm 
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Backward Chaining Example 

77 Aziz M. Qaroush - Birzeit University 



Backward Chaining Example 
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Backward Chaining Example 
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Backward Chaining Example 
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Backward Chaining Example 
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Backward Chaining Example 
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Backward Chaining Example 
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Backward Chaining Example 
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Backward Chaining Example 
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Backward Chaining Example 
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Backward Chaining Example 
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Forward vs. Backward Chaining 
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Limitations of Propositional Logic  

 number of propositions 

 since everything has to be spelled out explicitly, the number 
of rules is immense 

 dealing with change (monotonicity) 

 even in very simple worlds, there is change 

 the agent’s position changes 

 time-dependent propositions and rules can be used 
 even more propositions and rules 

 propositional logic has only one representational device, the 
proposition 

 difficult to represent objects and relations, properties, 
functions, variables, ... 
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First Order Logic 
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Problem of Propositional Logic 
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BZU 

BZU 



First-Order logic 
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Syntax of FOL: Basic elements 

 Constants KingJohn, 2, NUS,...  

 Predicates Brother, >,... 

 Functions Sqrt, LeftLegOf,... 

 Variables x, y, a, b,... 

 Connectives , , , ,  

 Equality  =  

 Quantifiers   ,    
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Atomic & Complex Sentences 
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Universal Quantifiers (∀) 

 Used to express properties of collections of objects and eliminates the 
need to explicitly enumerate all objects as in PL. 

 Universal quantifier: ∀<variables> <sentence> 

 Means the sentence holds true for all values in the domain of variable x. 

 Everyone at BZU is smart: ∀x At(x,BZU) ⇒ Smart(x) 

 ∀x P is true in a model m iff P is true with x being each possible object 
in the model. 

  All humans are mammals. 

 ∀x Human(x) ⇒ Mammal(x): for all x if x is a human then x is a mammal 

  All birds can fly 

 ∀ x  Bird(x) ⇒ Can-Fly(x)  

 Main connective typically ⇒ forming if-then rules 
 Mammals must have hair 

 ∀x Mammal(x) ⇒ HasHair(x): for all x if x is a mammal then x has hair 

 Equivalent to the conjunction of P instantiations: At(Ahmed,BZU) ⇒ 
Smart(Ahmed) ∧ At(Aymen,BZU) ⇒ Smart(Aymen) ∧ ... 
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A common mistake to avoid 

BZU BZU 
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Existential quantification 

BZU BZU 
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Properties of quantifiers 

 x y is the same as y x 

 x y is the same as y x 

 x y is not the same as y x 

 x y Loves(x,y) 
 “There is a person who loves everyone in the world” 

 y x Loves(x,y) 
 “Everyone in the world is loved by at least one person” 

 Quantifier duality: each can be expressed using the other 

 x Likes(x,IceCream) x Likes(x,IceCream) 

 x Likes(x,Broccoli)   x 
Likes(x,Broccoli) 
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Equality 

 term1 = term2 is true under a given interpretation if and 

only if term1 and term2 refer to the same object 
 

 E.g., definition of Sibling in terms of Parent: 

 

x,y Sibling(x,y)  [(x = y)   m,f  (m = f)  Parent(m,x) 

 Parent(f,x)  Parent(m,y)   Parent(f,y)] 
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Example: Family Relationships 
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Thinking in FOL 
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Thinking in FOL 
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Thinking in FOL 
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Thinking in FOL 
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Thinking in FOL 
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Other Examples 
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Other Examples 
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Other Examples 
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109 

Inference Rules for FOL 

 Inference rules for PL apply to FOL as well (Modus Ponens, 

And-Introduction, And-Elimination, etc.)  

 New (sound) inference rules for use with quantifiers:  

 Universal Elimination 

 Existential Introduction 

 Existential Elimination 

 Generalized Modus Ponens (GMP) 

 Resolution  

 Clause form (CNF in FOL) 

 Unification (consistent variable substitution) 

 Refutation resolution (proof by contradiction) 
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 Universal Elimination (x) P(x) |-- P(c). 
• If (x) P(x) is true, then P(c) is true for any constant c in the 

domain of x, i.e.,, (x) P(x) |= P(c). 
• Replace all occurrences of x in the scope of x by the same ground 

term (a constant or a ground function). 
• Example: (x) eats(Ziggy, x) |-- eats(Ziggy, IceCream) 

 Existential Introduction P(c) |-- (x) P(x) 
• If P(c) is true, so is (x) P(x), i.e., P(c) |= (x) P(x) 
• Replace all instances of the given constant symbol by the same new 

variable symbol.  
• Example eats(Ziggy, IceCream) |-- (x) eats(Ziggy, x) 

• Existential Elimination 

• From (x) P(x) infer P(c), i.e., (x) P(x) |= P(c), where c is a new constant 
symbol,  

– All we know is there must be some constant that makes this true, so we 
can introduce a brand new one to stand in for that constant, even though 
we don’t know exactly what that constant refer to. 

– Example: (x) eats(Ziggy, x) |= eats(Ziggy, Stuff)  

Inference Rules for FOL 
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• Combines And-Introduction, Universal-Elimination, and Modus Ponens 

 

• Ex: P(c), Q(c), (x)(P(x) ^ Q(x)) => R(x) |-- R(c) 

  P(c), Q(c) |-- P(c) ^ Q(c)             (by and-introduction) 

(x)(P(x) ^ Q(x)) => R(x)  

                |-- (P(c) ^ Q(c)) => R(c)        (by universal-elimination) 

P(c) ^ Q(c), (P(c) ^ Q(c)) => R(c) |-- R(c)       (by modus ponens) 

 

• All occurrences of a quantified variable must be instantiated to the same 

constant. 

P(a), Q(c), (x)(P(x) ^ Q(x)) => R(x) |-- R(c) 

because all occurrences of x must either instantiated to a or c which makes the 

modus ponens rule not applicable. 

Generalized Modus Ponens (GMP) 
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Resolution for FOL 

 Resolution rule operates on two clauses 

 A clause is a disjunction of literals (without explicit quantifiers) 

 Relationship between clauses in KB is conjunction 

 Resolution Rule for FOL: 

 clause C1: (l1, l2, ... li, ... ln)  and   

 clause C2: (l’1, l’2, ... l’j, ... l’m)  

 if li and l’j are two opposite literals (e.g., P and ~P) and their argument 

lists can be be made the same (unified) by a set of variable bindings q  

{x1/y1, ... Xk/yk} where x1, ... Xk are variables and y1, ... Yk are terms, 

then derive a new clause (called resolvent)  

      subst((l1, l2, ... ln, l’1, l’2, ... l’m), q) 

 where function subst(expression, q) returns a new expression by applying all 

variable bindings in q to the original expression 
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 How to convert FOL sentences to clause form (especially how 

to remove quantifiers) 

 How to unify two argument lists, i.e., how to find their most 

general unifier (mgu) q 

 How to determine which two clauses in KB should be resolved 

next (among all resolvable pairs of clauses) and how to 

determine a proof is completed 

We need answers to the following questions  
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Conversion procedure 

step 1: remove all “=>” and “<=>” operators 

 (using P => Q    ~P v Q and P <=> Q    P => Q ^ Q => P) 

step 2: move all negation signs to individual predicates  

  (using de Morgan’s law) 

step 3: remove all existential quantifiers y 

    case 1: y is not in the scope of any universally quantified variable,  

            then replace all occurrences of y by a skolem constant  

 case 2: if y is in scope of universally quantified variables x1, ... xi, 

                         then replace all occurrences of y by a skolem function that  

             takes x1, ... Xi as its arguments 

step 4: remove all universal quantifiers x (with the understanding that  all 

remaining variables are universally quantified) 

step 5: convert the sentence into CNF (using distribution law, etc)  

step 6: use parenthesis to separate all disjunctions, then drop all v’s and ^’s 

 
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Conversion examples 

x (P(x) ^ Q(x) => R(x)) 

x ~(P(x) ^ Q(x)) v R(x)  (by step 1)  

x ~P(x) v ~Q(x) v R(x)  (by step 2) 

~P(x) v ~Q(x) v R(x)        (by step 4) 

(~P(x),  ~Q(x), R(x))        (by step 6) 

 

y rose(y) ^ yellow(y) 

   rose(c) ^ yellow(c)  

   (where c is a skolem constant) 

(rose(c)), (yellow(c)) 
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Conversion examples 

x [person(x) => y (person(y) ̂  father(y, x))] 

x [~person(x) v y (person(y) ^ father(y, x))]                        (by step 1) 

x [~person(x) v (person(f_sk(x)) ^ father(f_sk(x), x))]          (by step 3)  

 ~person(x) v (person(f_sk(x)) ^ father(f_sk(x), x))                  (by step 4) 

(~person(x) v person(f_sk(x)) ^ (~person(x) v father(f_sk(x), x))    

                (by step 5) 

(~person(x), person(f_sk(x)),  (~person(x), father(f_sk(x), x))     

                (by step 6) 

(where f_sk(.) is a skolem function) 
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Unification 

 Basic idea: x P(x) => Q(x), P(a) |-- Q(a)  

 

  (~P(x), Q(x)),      (P(a)) 

 

               {x/a} a substitution in which variable x is bound to a 

   (Q(a)) 

 

 The goal is to find a set of variable bindings so that the argument lists of 
two opposite literals (in two clauses) can be made the same.  
 

 Only variables can be bound to other things.  

 Constants a and b cannot be unified (different constants in general refer to 
different objects)  

 Constant a and function f(x) cannot be unified (unless the inverse function of f 
is known, which is not the case for general functions in FOL)  

 f(x) and g(y) cannot be unified (function symbols f and g in general refer to 
different functions and their exact definitions are different in different 
interpretations) 
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 Cannot bind variable x to y if x appears anywhere in y 

 Try to unify x and f(x). If we bind x to f(x) and apply the binding to 

both x and f(x), we get f(x) and f(f(x)) which are still not the same 

(and will never be made the same no matter how many times the 

binding is applied) 

 Otherwise, bind variable x to y, written as x/y (this guarantees 

to find the most general unifier, or mgu) 

 Suppose both x and y are variables, then they can be made the same 

by binding both of them to any constant c or any function f(.). Such 

bindings are less general and impose unnecessary restriction on x 

and y. 

 To unify two terms of the same function symbol, unify their 

argument lists (unification is recursive) 

Ex: to unify f(x) and f(g(b)), we need to unify x and g(b) 

Unification 
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 When the argument lists contain multiple terms, unify each pair of 

terms 

Ex. To unify (x, f(x), ...) (a, y, ...) 

1. unify x and a (q  {x/a}). 

2. apply q to the remaining terms in both lists, resulting  

 (f(a), ...) and (y, ...) 

3. unify f(a) and y with binding y/f(a) 

4. add y/f(a) to new q 

5. goto step 2 

 … 

 

Unification 
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Unification Examples 

 parents(x, father(x), mother(Bill)) and parents(Bill, father(Bill), y) 

 unify x and Bill: q = {x/Bill} 

 unify father(Bill) and father(Bill): q = {x/Bill} 

 unify mother(Bill) and y: q = {x/Bill}, y/mother(Bill)} 

 parents(x, father(x), mother(Bill)) and parents(Bill, father(y), z)  

 unify x and Bill: q = {x/Bill} 

 unify father(Bill) and father(y): q = {x/Bill, y/Bill} 

 unify mother(Bill) and z: q = {x/Bill, y/Bill, z/mother(Bill)} 

 parents(x, father(x), mother(Jane)) and parents(Bill, father(y), mother(y)) 

 unify x and Bill: q = {x/Bill} 

 unify father(Bill) and father(y): q = {x/Bill, y/Bill} 

 unify mother(Jane) and mother(Bill): Failure because Jane and Bill are 

different constants 
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More Unification Examples 

 P(x, g(x), h(b)) and P(f(u, a), v, u)) 

 unify x and f(u, a): q = {x/ f(u, a)};  

 remaining lists: (g(f(u, a)), h(b)) and (v, u) 

 unify g(f(u, a)) and v: q = {x/f(u, a), v/g(f(u, a))}; 

  remaining lists: (h(b)) and (u) 

 unify h(b) and u: q = {x/f(u, a), v/g(f(h(b), a)), u/h(b)}; 

 P(f(x, a), g(x, b)) and P(y, g(y, b)) 

 unify f(x, a) and y: q = {y/f(x, a)} 

 remaining lists: (g(x, b)) and (g(f(x, a), b)) 

 unify x and f(x, a): failure because x is in f(x, a) 
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Unification Algorithm 

procedure unify(p, q, q)          /* p and q are two lists of terms and |p| = |q| */ 

 if p = empty then return q;  /* success */ 

 let r = first(p) and s = first(q); 

 if r = s then return unify(rest(p), rest(q), q); 

 if r is a variable then temp = unify-var(r, s); 

  else if s is a variable then temp = unify-var(s, r); 

      else if both r and s are functions of the same function name then 

  temp = unify(arglist(r), arglist(s), empty); 

  else return “failure”; 

 if temp = “failure” then return “failure”;  /* p and q are not unifiable */ 

 else q = q     temp;   /* apply tmp to old q then insert it into q  */ 

         return unify(subst(rest(p), tmp), subst(rest(q), tmp), q); 

end{unify} 

procedure unify-var(x, y) 

 if x appears anywhere in y then return “failure”; 

 else return (x/y) 

end{unify-var} 

 


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Resolution in FOL 

 Convert all sentences in KB (axioms, definitions, and known facts) and the 

goal sentence (the theorem to be proved) to clause form  

 Two clauses C1 and C2 can be resolved if and only if r in C1 and s in C2 

are two opposite literals, and their argument list arglist_r and arglist_s are 

unifiable with mgu = q. 

 Then derive the resolvent sentence: subst((C1 – {r}, C2 – {s}), q) 

 (substitution is applied to all literals in C1 and C2, but not to any 

other clauses) 
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Resolution example 

 Prove that  

w P(w) => Q(w), y Q(y) => S(y), z R(z) => S(z), x P(x) v R(x) |= u S(u) 

 Convert these sentences to clauses (u S(u) skolemized to S(a)) 

 Apply resolution 

   (~P(w), Q(w))     (~Q(y), S(y))    (~R(z), S(z))     (P(x), R(x))      

                                      

             (~P(y), S(y)) {w/y} 

                                                           

                                    (S(x), R(x)) {y/x} 

                                                                     

                                                            (S(a)) {x/a, z/a} 

 Problems 

 The theorem S(a) does not actively participate in the proof 

 The last resolution is more than a mechanical step 

 Hard to determine if a proof (with consistent variable bindings) is 
completed if the theorem consists of more than one clause 

a resolution 

proof tree 
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Resolution Refutation: a better proof strategy 

 Given a consistent set of axioms KB and goal sentence Q, show that KB 

|= Q.  

 Proof by contradiction:  Add ~Q to KB and try to prove false. 

because (KB |= Q) <=> (KB ^ ~Q |= False, or KB ^ ~Q is inconsistent) 

 How to represent “false” in clause form 

 P(x) ^ ~P(y) is inconsistent 

 Convert them to clause form then apply resolution 

  (P(x))          (~P(y)) 

          {x/y} 

                    ()   a null clause 

 A null clause represents false (inconsistence/contradiction) 

 KB |= Q if we can derive a null clause from KB ^ ~Q by 

resolution 
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 Prove by resolution refutation that  

      w P(w) => Q(w), y Q(y) => S(y), z R(z) => S(z), x P(x) v R(x) |= u S(u) 

 Convert these sentences to clauses (~ u S(u) becomes ~S(u)) 

 

   (~P(w), Q(w))     (~Q(y), S(y))    (~R(z), S(z))     (P(x), R(x))        (~S(u)) 

                                                                                                                      

                                                                                               (~R(z)) {u/z} 

      

          (~Q(y)) {u/y} 

                                   

                  (~P(w)) {y/w}         (P(x)) {z/x} 

                                                                            

 

    () {x/w} 

Resolution Refutation Example 
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Refutation Resolution Procedure 

procedure resolution(KB, Q) 

 /* KB is a set of consistent, true FOL sentences, Q is a goal sentence. 

        It  returns success if KB |-- Q, and failure otherwise */ 

 KB = clause(union(KB, {~Q}))   /* convert KB and ~Q to clause form */ 

 while null clause is not in KB do 

          pick 2 sentences, S1 and S2, in KB that contain a pair of opposite 

   literals whose argument lists are unifiable 

          if none can be found then return "failure" 

          resolvent = resolution-rule(S1, S2) 

          KB = union(KB, {resolvent}) 

 return "success " 

end{resolution} 
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Example of Automatic Theorem Proof: 
 Did Curiosity kill the cat 

 Jack owns a dog. Every dog owner is an animal lover. No 

animal lover kills an animal. Either Jack or Curiosity killed 

the cat, who is named Tuna. Did Curiosity kill the cat? 

 These can be represented as follows: 

A. (x) Dog(x) ^ Owns(Jack,x) 

B. (x) ((y) Dog(y) ^ Owns(x, y)) => AnimalLover(x) 

C. (x) AnimalLover(x) => (y) Animal(y) => ~Kills(x,y) 

D. Kills(Jack,Tuna) v Kills(Curiosity,Tuna) 

E. Cat(Tuna) 

F. (x) Cat(x) => Animal(x)  

Q. Kills(Curiosity, Tuna) 
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 Convert to clause form 

A1. (Dog(D))   /* D is a skolem constant */ 

A2. (Owns(Jack,D)) 

B. (~Dog(y), ~Owns(x, y), AnimalLover(x)) 

C. (~AnimalLover(x), ~Animal(y), ~Kills(x,y)) 

D. (Kills(Jack,Tuna), Kills(Curiosity,Tuna)) 

E. (Cat(Tuna)) 

F. (~Cat(x), Animal(x)) 

 Add the negation of query:  

Q: (~Kills(Curiosity, Tuna)) 

Example of Automatic Theorem Proof: 
 Did Curiosity kill the cat 
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 The resolution refutation proof  

R1: Q, D, {}, (Kills(Jack, Tuna)) 

R2: R1, C, {x/Jack, y/Tuna}, (~AnimalLover(Jack), 

~Animal(Tuna)) 

R3: R2, B, {x/Jack}, (~Dog(y), ~Owns(Jack, y), 

~Animal(Tuna)) 

R4: R3, A1, {y/D}, (~Owns(Jack, D), ~Animal(Tuna)) 

R5: R4, A2, {}, (~Animal(Tuna)) 

R6: R5, F, {x/Tuna}, (~Cat(Tuna)) 

R7: R6, E, {} () 

Example of Automatic Theorem Proof: 
 Did Curiosity kill the cat 

Aziz M. Qaroush - Birzeit University 



131 

The proof tree 

G D 

C 

B 

A1 

A2 

F 

E 

R1: K(J,T) 

R2: AL(J)  A(T) 

R3: D(y)  O(J,y)  A(T) 

R4: O(J,D), A(T) 

R5: A(T) 

R6: C(T) 

R7: () 

{} 

{x/J,y/T} 

{x/J} 

{y/D} 

{} 

{x/T} 

{} 
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Horn Clauses 

 A Horn clause is a clause with at most one positive literal: 

    (~P1(x), ~P2(x), ..., ~Pn(x) v Q(x)),       equivalent to 

 x P1(x) ^ P2(x)  ...  ^ Pn(x) => Q(x)    or 

 Q(x) <= P1(x), P2(x),  ... , Pn(x)          (in prolog format) 

 if contains no negated literals (i.e., Q(a) <=): facts 

 if contains no positive literals (<= P1(x), P2(x),  ... , Pn(x)): query 

 if contain no literal at all (<=): null clause 

 Most knowledge can be represented by Horn clauses 

 Easier to understand (keeps the implication form) 

 Easier to process than FOL 

 Horn clauses represent a subset of the set of sentences representable  

in FOL. For example, it cannot represent uncertain conclusions, e.g.,  

 Q(x) v R(x) <= P(x)). 
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Example of forward chaining 

 Example: KB = All cats like fish, cats eat everything they like, and Ziggy is a 

cat. In FOL, KB = 
 

1. (Ax) cat(x) => likes(x, Fish)  

2. (Ax)(Ay) (cat(x) ^ likes(x,y)) => 

eats(x,y)  

3. cat(Ziggy)  

 

 Goal query: Does Ziggy eat fish?  

 

Proof: 

1. Use GMP with (1) and (3) to derive: 4. likes(Ziggy, Fish)  

2. Use GMP with (3), (4) and (2) to derive eats(Ziggy, Fish)  

3. So, Yes, Ziggy eats fish.  

 

Data-driven 
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Backward chaining 

 Example: Does Ziggy eat fish?  

 To prove eats(Ziggy, Fish), first see if this is known from one of the 

axioms directly. Here it is not known, so see if there is a Horn clause that has the 

consequent (i.e., right-hand side) of the implication matching the goal. 

Proof:    Goal Driven 

1. Goal matches RHS of Horn clause (2), so try and prove new sub-goals 

cat(Ziggy) and likes(Ziggy, Fish) that correspond to the LHS of 

(2)  

2.cat(Ziggy) matches axiom (3), so we've "solved" that sub-goal  

3.likes(Ziggy, Fish) matches the RHS of (1), so try and prove 

cat(Ziggy)  

4.cat(Ziggy) matches (as it did earlier) axiom (3), so we've solved this sub-goal  

5. There are no unsolved sub-goals, so we're done. Yes, Ziggy eats fish.  
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Forward vs. backward chaining 

FC is data-driven  
Automatic, unconscious processing 

E.g., object recognition, routine decisions 

May do lots of work that is irrelevant to the goal 

Efficient when you want to compute all conclusions 

BC is goal-driven, better for problem-solving 
Where are my keys?  How do I get to my next class? 

Complexity of BC can be much less than linear in the size 
of the KB 

Efficient when you want one or a few decisions 
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Chapter Summary 

 some problems require more sophisticated techniques than 

searching for a solution 

 reasoning utilizes existing knowledge to generate new 

knowledge 

 requires appropriate representation and reasoning methods 

 logic provides a flexible and powerful framework for 

representation and reasoning 

 used for the formulation of abstract models that reflect 

essential aspects of the problem and environment 

 propositional logic is relatively simple, but also limited 
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