
Learning Methods

Artificial Intelligence

ENCS 434

1 Aziz M. Qaroush - Birzeit University

What is Learning?

 Most often heard criticisms of AI is that machines cannot be called
intelligent until they are able to learn to do new things and adapt to
new situations, rather than simply doing as they are told to do.

 Some critics of AI have been saying that computers cannot learn!

 Definitions of Learning: changes in the system that are adaptive in the
sense that they enable the system to do the same task or tasks drawn
from the same population more efficiently and more effectively the
next time.

 Learning covers a wide range of phenomenon:
 Skill refinement : Practice makes skills improve. More you play tennis, better you

get
 Knowledge acquisition: Knowledge is generally acquired through experience

Various learning mechanisms

 Simple storing of computed information or rote learning, is the most
basic learning activity.
 Many computer programs ie., database systems can be said to learn in this

sense although most people would not call such simple storage learning.

 Another way we learn if through taking advice from others. Advice
taking is similar to rote learning, but high-level advice may not be in a
form simple enough for a program to use directly in problem solving.

 People also learn through their own problem-solving experience.

 Learning from examples : we often learn to classify things in the world
without being given explicit rules.

 Learning from examples usually involves a teacher who helps us
classify things by correcting us when we are wrong.

4

An example application

 An emergency room in a hospital measures 17 variables (e.g.,
blood pressure, age, etc) of newly admitted patients.

 A decision is needed: whether to put a new patient in an
intensive-care unit.

 Due to the high cost of ICU, those patients who may survive
less than a month are given higher priority.

 Problem: to predict high-risk patients and discriminate them
from low-risk patients.

5

Another application

 A credit card company receives thousands of applications for
new cards. Each application contains information about an
applicant,
 age

 Marital status

 annual salary

 outstanding debts

 credit rating

 etc.

 Problem: to decide whether an application should approved, or
to classify applications into two categories, approved and not
approved.

Forms of Learning

 supervised learning
 an agent tries to find a function that matches examples from a sample set

 each example provides an input together with the correct output

 a teacher provides feedback on the outcome

 the teacher can be an outside entity, or part of the environment

 unsupervised learning
 the agent tries to learn from patterns without corresponding output values

 reinforcement learning
 the agent does not know the exact output for an input, but it receives

feedback on the desirability of its behavior

 the feedback can come from an outside entity, the environment, or the agent
itself

 the feedback may be delayed, and not follow the respective action immediately

Learning Agent Model

Sensors

Effectors

Performance Element

Critic

Learning Element

Problem Generator

Agent

Environment

Performance
Standard

Feedback

Learning
Goals

Changes

Knowledge

Learning Element Design Issues

 selections of the components of the performance elements

that are to be improved

 representation mechanisms used in those components

 availability of feedback

 availability of prior information

Machine learning

Supervised learning

Aziz M. Qaroush - Birzeit University 9

10

Supervised learning

 Like human learning from past experiences.

 A computer does not have “experiences”.

 A computer system learns from data, which represent some

“past experiences” of an application domain.

 Our focus: learn a target function that can be used to predict

the values of a discrete class attribute, e.g., approve or not-

approved, and high-risk or low risk.

 The task is commonly called: Supervised learning, classification,

or inductive learning.

Example Inductive Learning

x

f(x)

12

 Data: A set of data records (also called examples, instances or

cases) described by

 k attributes: A1, A2, … Ak.

 a class: Each example is labelled with a pre-defined class.

 Goal: To learn a classification model from the data that can be

used to predict the classes of new (future, or test)

cases/instances.

The data and the goal

13

An example: data (loan application)
Approved or not

14

An example: the learning task
 Learn a classification model from the data

 Use the model to classify future loan applications into

 Yes (approved) and

 No (not approved)

 What is the class for following case/instance?

15

Supervised vs. unsupervised Learning

 Supervised learning: classification is seen as supervised learning
from examples.

 Supervision: The data (observations, measurements, etc.) are
labeled with pre-defined classes. It is like that a “teacher” gives the
classes (supervision).

 Test data are classified into these classes too.

 Unsupervised learning (clustering)

 Class labels of the data are unknown

 Given a set of data, the task is to establish the existence of classes or
clusters in the data

16

Supervised learning process: two steps

Learning (training): Learn a model using the training data

Testing: Test the model using unseen test data to assess the model

accuracy

,
cases test ofnumber Total

tionsclassificacorrect ofNumber
Accuracy

17

What do we mean by learning?

 Given

 a data set D,

 a task T, and

 a performance measure M,

 a computer system is said to learn from D to perform the task T
if after learning the system’s performance on T improves as
measured by M.

 In other words, the learned model helps the system to perform T
better as compared to no learning.

18

An example

 Data: Loan application data

 Task: Predict whether a loan should be approved or not.

 Performance measure: accuracy.

No learning: classify all future applications (test data) to the

majority class (i.e., Yes):

 Accuracy = 9/15 = 60%.

 We can do better than 60% with learning.

Decision Trees

Aziz M. Qaroush - Birzeit University 19

20

Introduction

 Decision tree learning is one of the most widely used

techniques for classification.

 Its classification accuracy is competitive with other methods, and

 it is very efficient.

 The classification model is a tree, called decision tree.

 C4.5 by Ross Quinlan is perhaps the best known system. It can

be downloaded from the Web.

Boolean Decision Trees

 compute yes/no decisions based on sets of desirable or

undesirable properties of an object or a situation

 each node in the tree reflects one yes/no decision based on a

test of the value of one property of the object

 the root node is the starting point

 leaf nodes represent the possible final decisions

 branches are labeled with possible values

 the learning aspect is to predict the value of a goal predicate

(also called goal concept)

 a hypothesis is formulated as a function that defines the goal

predicate

22

The loan data (reproduced)
Approved or not

Learning Decision Trees

 problem: find a decision tree that agrees with the training set

 trivial solution: construct a tree with one branch for each

sample of the training set

 works perfectly for the samples in the training set

 may not work well for new samples (generalization)

 results in relatively large trees

 better solution: find a concise tree that still agrees with all

samples

 corresponds to the simplest hypothesis that is consistent with

the training set

Constructing Decision Trees - Ockham’s Razor

The most likely hypothesis is the simplest one that is

consistent with all observations.

 general principle for inductive learning

 a simple hypothesis that is consistent with all observations is

more likely to be correct than a complex one

 in general, constructing the smallest possible decision tree is

an intractable problem

 algorithms exist for constructing reasonably small trees

 basic idea: test the most important attribute first

 attribute that makes the most difference for the classification

of an example

 can be determined through information theory

 hopefully will yield the correct classification with few tests

Decision Tree Algorithm

 recursive formulation

 select the best attribute to split positive and negative

examples

 if only positive or only negative examples are left, we are

done

 if no examples are left, no such examples were observers

 return a default value calculated from the majority classification at the

node’s parent

 if we have positive and negative examples left, but no

attributes to split them we are in trouble

 samples have the same description, but different classifications

 may be caused by incorrect data (noise), or by a lack of information, or

by a truly non-deterministic domain

26

A decision tree from the loan data

Decision nodes and leaf nodes (classes)

27

Use the decision tree

No

28

Is the decision tree unique?

No. Here is a simpler tree.

We want smaller tree and accurate tree.

 Easy to understand and perform better.

Finding the best tree is NP-hard.

All current tree building algorithms

are heuristic algorithms

Idea: a good attribute splits the

examples into subsets that are

(ideally) "all positive" or "all

negative"

29

From a decision tree to a set of rules

A decision tree can be

converted to a set of rules

Each path from the root to a

leaf is a rule.

30

Algorithm for decision tree learning

 Basic algorithm (a greedy divide-and-conquer algorithm)

 Assume attributes are categorical now (continuous attributes can be handled
too)

 Tree is constructed in a top-down recursive manner

 At start, all the training examples are at the root

 Examples are partitioned recursively based on selected attributes

 Attributes are selected on the basis of an impurity function (e.g., information
gain)

 Conditions for stopping partitioning

 All examples for a given node belong to the same class

 There are no remaining attributes for further partitioning – majority class is
the leaf

 There are no examples left

31

Decision tree learning algorithm

32

Choose an attribute to partition data

 The key to building a decision tree - which attribute to choose in

order to branch.

 The objective is to reduce impurity or uncertainty in data as much

as possible.

 A subset of data is pure if all instances belong to the same class.

 The heuristic in C4.5 is to choose the attribute with the maximum

Information Gain or Gain Ratio based on information theory.

33

The loan data (reproduced)
Approved or not

34

Two possible roots, which is better?

Fig. (B) seems to be better.

35

Information theory

 Information theory provides a mathematical basis for
measuring the information content.

 To understand the notion of information, think about it as
providing the answer to a question, for example, whether a
coin will come up heads.
 If one already has a good guess about the answer, then the actual

answer is less informative.
 If one already knows that the coin is rigged so that it will come

with heads with probability 0.99, then a message (advanced
information) about the actual outcome of a flip is worth less than
it would be for a honest coin (50-50).

36

Information theory (cont …)

 For a fair (honest) coin, you have no information, and
you are willing to pay more (say in terms of $) for
advanced information - less you know, the more valuable
the information.

 Information theory uses this same intuition, but instead
of measuring the value for information in dollars, it
measures information contents in bits.

 One bit of information is enough to answer a yes/no
question about which one has no idea, such as the flip of
a fair coin

37

Information theory: Entropy measure
 The entropy formula,

 Pr(cj) is the probability of class cj in data set D

 We use entropy as a measure of impurity or disorder of data set

D. (Or, a measure of information in a tree)

,1)Pr(

)Pr(log)Pr()(

||

1

||

1

2













C

j

j

j

C

j

j

c

ccDentropy

38

Entropy measure: let us get a feeling

As the data become purer and purer, the entropy value becomes

smaller and smaller. This is useful to us!

39

Information gain
 Given a set of examples D, we first compute its entropy:

 If we make attribute Ai, with v values, the root of the current

tree, this will partition D into v subsets D1, D2 …, Dv . The

expected entropy if Ai is used as the current root:





v

j

j

j

A Dentropy
D

D
Dentropy

i

1

)(
||

||
)(

40

Information gain (cont …)

 Information gained by selecting attribute Ai to branch or to

partition the data is

 We choose the attribute with the highest gain to

branch/split the current tree.

)()(),(DentropyDentropyADgain
iAi 

41

An example

Age Yes No entropy(Di)

young 2 3 0.971

middle 3 2 0.971

old 4 1 0.722

Own_house is the best choice

for the root.

971.0
15

9
log

15

9

15

6
log

15

6
)(22 Dentropy

551.0

918.0
15

9
0

15

6

)(
15

9
)(

15

6
)(21_





 DentropyDentropyDentropy houseOwn

888.0

722.0
15

5
971.0

15

5
971.0

15

5

)(
15

5
)(

15

5
)(

15

5
)(321





 DentropyDentropyDentropyDentropyAge

42

We build the final tree

43

Avoid overfitting in classification

 Overfitting: A tree may overfit the training data

 Good accuracy on training data but poor on test data

 Symptoms: tree too deep and too many branches, some may reflect
anomalies due to noise or outliers

 Trade-off full consistency for compactness

 Larger decision trees can be more consistent

 Smaller decision trees generalize better

 Two approaches to avoid overfitting
 Pre-pruning: Halt tree construction early

 Difficult to decide because we do not know what may happen subsequently if
we keep growing the tree.

 Post-pruning: Remove branches or sub-trees from a “fully grown”
tree.
 This method is commonly used. C4.5 uses a statistical method to estimates

the errors at each node for pruning.

 A validation set may be used for pruning as well.

44

An example

Likely to overfit the data

Performance Evaluation

Aziz M. Qaroush - Birzeit University 45

46

Evaluating classification methods

 Predictive accuracy

 Efficiency
 time to construct the model
 time to use the model

 Robustness: handling noise and missing values

 Scalability: efficiency in disk-resident databases

 Interpretability:
 understandable and insight provided by the model

 Compactness of the model: size of the tree, or the number of rules.

47

Evaluation methods

 Holdout set: The available data set D is divided into two
disjoint subsets,
 the training set Dtrain (for learning a model)

 the test set Dtest (for testing the model)

 Important: training set should not be used in testing and the
test set should not be used in learning.
 Unseen test set provides a unbiased estimate of accuracy.

 The test set is also called the holdout set. (the examples in the
original data set D are all labeled with classes.)

 This method is mainly used when the data set D is large.

48

Evaluation methods (cont…)

 n-fold cross-validation: The available data is partitioned into n

equal-size disjoint subsets.

 Use each subset as the test set and combine the rest n-1 subsets as

the training set to learn a classifier.

 The procedure is run n times, which give n accuracies.

 The final estimated accuracy of learning is the average of the n

accuracies.

 10-fold and 5-fold cross-validations are commonly used.

 This method is used when the available data is not large.

49

Evaluation methods (cont…)

 Leave-one-out cross-validation: This method is used when

the data set is very small.

 It is a special case of cross-validation

 Each fold of the cross validation has only a single test example

and all the rest of the data is used in training.

 If the original data has m examples, this is m-fold cross-validation

50

Evaluation methods (cont…)

 Validation set: the available data is divided into three subsets,
 a training set,

 a validation set and

 a test set.

 A validation set is used frequently for estimating parameters in
learning algorithms.

 In such cases, the values that give the best accuracy on the
validation set are used as the final parameter values.

 Cross-validation can be used for parameter estimating as well.

51

Classification measures

 Accuracy is only one measure (error = 1-accuracy).

 Accuracy is not suitable in some applications.

 In text mining, we may only be interested in the documents of a
particular topic, which are only a small portion of a big
document collection.

 In classification involving skewed or highly imbalanced data, e.g.,
network intrusion and financial fraud detections, we are
interested only in the minority class.
 High accuracy does not mean any intrusion is detected.

 E.g., 1% intrusion. Achieve 99% accuracy by doing nothing.

 The class of interest is commonly called the positive class, and
the rest negative classes.

52

Precision and recall measures

 Used in information retrieval and text classification.

 We use a confusion matrix to introduce them.

53

Precision and recall measures (cont…)

Precision p is the number of correctly classified positive

examples divided by the total number of examples that are

classified as positive.

Recall r is the number of correctly classified positive

examples divided by the total number of actual positive

examples in the test set.

. .
FNTP

TP
 r

FPTP

TP
p







54

An example

 This confusion matrix gives

 precision p = 100% and

 recall r = 1%

 because we only classified one positive example correctly and no negative

examples wrongly.

 Note: precision and recall only measure classification on the

positive class.

55

F1-value (also called F1-score)

 It is hard to compare two classifiers using two measures. F1 score combines

precision and recall into one measure

 The harmonic mean of two numbers tends to be closer to the smaller of the

two.

 For F1-value to be large, both p and r much be large.

Supervised learning

Artificial Neural Networks

Aziz M. Qaroush - Birzeit University 56

Artificial neural networks:
Supervised learning

 Introduction, or how the brain works

 The neuron as a simple computing element

 The Perceptron

 Multilayer neural networks

 Accelerated learning in multilayer neural networks

 The Hopfield network

 Bidirectional associative memories (BAM)

 Summary

Introduction, or how the brain works

• Machine learning involves adaptive mechanisms

that enable computers to learn from experience,

learn by example and learn by analogy.

• Learning capabilities can improve the performance

of an intelligent system over time.

• The most popular approache to machine learning is

artificial neural networks

 A neural network can be defined as a model of

reasoning based on the human brain. The brain

consists of a densely interconnected set of nerve

cells, or basic information-processing units, called

neurons.

 The human brain incorporates nearly 10 billion

neurons and 60 trillion connections, synapses,

between them. By using multiple neurons

simultaneously, the brain can perform its functions

much faster than the fastest computers in existence

today.

Artificial Neural Networks

 Each neuron has a very simple structure, but an

army of such elements constitutes a tremendous

processing power.

 A neuron consists of a cell body, soma, a number of

fibers called dendrites, and a single long fiber

called the axon.

Biological neural network

Soma Soma

Synapse

Synapse

Dendrites

Axon

Synapse

Dendrites

Axon

 Our brain can be considered as a highly complex,

non-linear and parallel information-processing

system.

 Information is stored and processed in a neural

network simultaneously throughout the whole

network, rather than at specific locations. In other

words, in neural networks, both data and its

processing are global rather than local.

 Learning is a fundamental and essential

characteristic of biological neural networks. The

ease with which they can learn led to attempts to

emulate a biological neural network in a computer.

 An artificial neural network consists of a number of

very simple processors, also called neurons, which

are analogous to the biological neurons in the brain.

 The neurons are connected by weighted links

passing signals from one neuron to another.

 The output signal is transmitted through the

neuron’s outgoing connection. The outgoing

connection splits into a number of branches that

transmit the same signal. The outgoing branches

terminate at the incoming connections of other

neurons in the network.

Architecture of a typical artificial neural network

Input Layer Output Layer

Middle Layer

I
n

 p
 u

 t

 S

 i
 g

 n
 a

 l
 s

O
 u

 t
 p

 u
 t

 S

 i
 g

 n
 a

 l
 s

Biological Neural Network Artificial Neural Network

Soma

Dendrite

Axon

Synapse

Neuron

Input

Output

Weight

Analogy between biological and

artificial neural networks

The neuron as a simple computing element

Diagram of a neuron

Neuron Y

Input Signals

x1

x2

xn

Output Signals

Y

Y

Y

w2

w1

wn

Weights

 The neuron computes the weighted sum of the input

signals and compares the result with a threshold

value, . If the net input is less than the threshold,

the neuron output is –1. But if the net input is greater

than or equal to the threshold, the neuron becomes

activated and its output attains a value +1.

 The neuron uses the following transfer or activation

function:

 This type of activation function is called a sign

function.





n

i

iiwxX

1 








X

X
Y

 if ,1

 if ,1

Activation functions of a neuron

Step function Sign function

+1

-1

0

+1

-1

0X

Y

X

Y

+1

-1

0 X

Y

Sigmoid function

+1

-1

0 X

Y

Linear function










0 if ,0

0 if ,1

X

X
Y step










0 if ,1

0 if ,1

X

X
Y sign

X

sigmoid

e
Y




1

1 XY linear 

Can a single neuron learn a task?

 In 1958, Frank Rosenblatt introduced a training

algorithm that provided the first procedure for

training a simple ANN: a perceptron.

 The perceptron is the simplest form of a neural

network. It consists of a single neuron with

adjustable synaptic weights and a hard limiter.

Threshold

Inputs

x1

x2

Output

Y

Hard

Limiter

w2

w1

Linear

Combiner



Single-layer two-input perceptron

The Perceptron

 The operation of Rosenblatt’s perceptron is based

on the McCulloch and Pitts neuron model. The

model consists of a linear combiner followed by a

hard limiter.

 The weighted sum of the inputs is applied to the

hard limiter, which produces an output equal to +1

if its input is positive and 1 if it is negative.

 The aim of the perceptron is to classify inputs,

 x1, x2, . . ., xn, into one of two classes, say

 A1 and A2.

 In the case of an elementary perceptron, the n-

dimensional space is divided by a hyperplane into

two decision regions. The hyperplane is defined by

the linearly separable function:

0

1




n

i

iiwx

Linear separability in the perceptrons

x1

x2

Class A2

Class A1

1

2

x1w1 + x2w2   = 0

(a) Two-input perceptron. (b) Three-input perceptron.

x2

x1

x3
x1w1 + x2w2 + x3w3   = 0

1
2

• This is done by making small adjustments in the

weights to reduce the difference between the actual

and desired outputs of the perceptron.

• The initial weights are randomly assigned, usually

in the range [0.5, 0.5], and then updated to obtain

the output consistent with the training examples.

How does the perceptron learn its classification

tasks?

 If at iteration p, the actual output is Y(p) and the

desired output is Yd (p), then the error is given by:

 where p = 1, 2, 3, . . .

 Iteration p here refers to the pth training example

presented to the perceptron.

 If the error, e(p), is positive, we need to increase

perceptron output Y(p), but if it is negative, we

need to decrease Y(p).

)()()(pYpYpe d 

The perceptron learning rule

where p = 1, 2, 3, . . .

 is the learning rate, a positive constant less than

unity.

The perceptron learning rule was first proposed by

Rosenblatt in 1960. Using this rule we can derive

the perceptron training algorithm for classification

tasks.

)()()()1(pepxpwpw iii  

Step 1: Initialisation

 Set initial weights w1, w2,…, wn and threshold 

to random numbers in the range [0.5, 0.5].

 If the error, e(p), is positive, we need to increase

perceptron output Y(p), but if it is negative, we

need to decrease Y(p).

Perceptron’s tarining algorithm

Step 2: Activation

 Activate the perceptron by applying inputs x1(p),

x2(p),…, xn(p) and desired output Yd (p).

Calculate the actual output at iteration p = 1

 where n is the number of the perceptron inputs,

and step is a step activation function.

Perceptron’s tarining algorithm (continued)












 



n

i

ii pwpxsteppY

1

)()()(

Step 3: Weight training

 Update the weights of the perceptron

 where is the weight correction at iteration p.

 The weight correction is computed by the delta

rule:

Step 4: Iteration

 Increase iteration p by one, go back to Step 2 and

repeat the process until convergence.

)()()1(pwpwpw iii 

Perceptron’s tarining algorithm (continued)

)()()(pepxpw ii 

)(pwi

Example of perceptron learning: the logical operation AND
Inputs

x1 x2

0

0

1

1

0

1

0

1

0

0

0

Epoch
Desired
output

Yd

1

Initial

weights
w1 w2

1

0.3

0.3

0.3

0.2

0.1

0.1

0.1

0.1

0

0

1

0

Actual
output

Y

Error

e

0

0

1

1

Final

weights
w1 w2

0.3

0.3

0.2

0.3

0.1

0.1

0.1

 0.0

0

0

1

1

0

1

0

1

0

0

0

2

1

0.3

0.3

0.3

0.2

0

0

1

1

0

0

1

0

0.3

0.3

0.2

0.2

 0.0

 0.0

 0.0

 0.0

0

0

1

1

0

1

0

1

0

0

0

3

1

0.2

0.2

0.2

0.1

 0.0

 0.0

 0.0

 0.0

 0.0

 0.0

 0.0

 0.0

0

0

1

0

0

0

1

1

0.2

0.2

0.1

0.2

 0.0

 0.0

 0.0

 0.1

0

0

1

1

0

1

0

1

0

0

0

4

1

0.2

0.2

0.2

0.1

 0.1

 0.1

 0.1

 0.1

0

0

1

1

0

0

1

0

0.2

0.2

0.1

0.1

 0.1

 0.1

 0.1

 0.1

0

0

1

1

0

1

0

1

0

0

0

5

1

0.1

0.1

0.1

0.1

 0.1

 0.1

 0.1

 0.1

0

0

0

1

0

0

0

0.1

0.1

0.1

0.1

 0.1

 0.1

 0.1

 0.1

0

Threshold:  = 0.2; learning rate:  = 0.1

Two-dimensional plots of basic logical operations

x1

x2

1

(a) AND (x1  x2)

1

x1

x2

1

1

(b) OR (x1  x2)

x1

x2

1

1

(c) Exclusive-OR

(x1  x2)

00 0

 A perceptron can learn the operations AND and

OR, but not Exclusive-OR.

Multilayer neural networks

 A multilayer perceptron is a feedforward neural

network with one or more hidden layers.

 The network consists of an input layer of source

neurons, at least one middle or hidden layer of

computational neurons, and an output layer of

computational neurons.

 The input signals are propagated in a forward

direction on a layer-by-layer basis.

Multilayer perceptron with two hidden layers

Input

layer

First

hidden

layer

Second

hidden

layer

Output

layer

O
 u

 t
 p

 u
 t

 S

 i
 g

 n
 a

 l
 s

I
n
 p

 u
 t

 S

 i
 g

 n
 a

 l
 s

What does the middle layer hide?

 A hidden layer “hides” its desired output.

Neurons in the hidden layer cannot be observed

through the input/output behaviour of the network.

There is no obvious way to know what the desired

output of the hidden layer should be.

 Commercial ANNs incorporate three and

sometimes four layers, including one or two

hidden layers. Each layer can contain from 10 to

1000 neurons. Experimental neural networks may

have five or even six layers, including three or

four hidden layers, and utilise millions of neurons.

Back-propagation neural network

 Learning in a multilayer network proceeds the

same way as for a perceptron.

 A training set of input patterns is presented to the

network.

 The network computes its output pattern, and if

there is an error  or in other words a difference

between actual and desired output patterns  the

weights are adjusted to reduce this error.

 In a back-propagation neural network, the learning

algorithm has two phases.

 First, a training input pattern is presented to the

network input layer. The network propagates the

input pattern from layer to layer until the output

pattern is generated by the output layer.

 If this pattern is different from the desired output,

an error is calculated and then propagated

backwards through the network from the output

layer to the input layer. The weights are modified

as the error is propagated.

Three-layer back-propagation neural network

Input

layer

xi

x1

x2

xn

1

2

i

n

Output

layer

1

2

k

l

yk

y1

y2

yl

Input signals

Error signals

wjk

Hidden

layer

wij

1

2

j

m

Step 1: Initialisation

 Set all the weights and threshold levels of the

network to random numbers uniformly

distributed inside a small range:

 where Fi is the total number of inputs of neuron i

in the network. The weight initialisation is done

on a neuron-by-neuron basis.

The back-propagation training algorithm













ii FF

4.2
 ,

4.2

Step 2: Activation

 Activate the back-propagation neural network by

applying inputs x1(p), x2(p),…, xn(p) and desired

outputs yd,1(p), yd,2(p),…, yd,n(p).

 (a) Calculate the actual outputs of the neurons in

the hidden layer:

 where n is the number of inputs of neuron j in the

hidden layer, and sigmoid is the sigmoid activation

function.












 



j

n

i

ijij pwpxsigmoidpy

1

)()()(

 (b) Calculate the actual outputs of the neurons in

the output layer:

 where m is the number of inputs of neuron k in the

output layer.














 



k

m

j

jkjkk pwpxsigmoidpy

1

)()()(

Step 2: Activation (continued)

Step 3: Weight training

 Update the weights in the back-propagation network

propagating backward the errors associated with

output neurons.

 (a) Calculate the error gradient for the neurons in the

output layer:

 where

 Calculate the weight corrections:

 Update the weights at the output neurons:

 )()(1)()(pepypyp kkkk 

)()()(, pypype kkdk 

)()()(ppypw kjjk  

)()()1(pwpwpw jkjkjk 

 (b) Calculate the error gradient for the neurons in

the hidden layer:

 Calculate the weight corrections:

 Update the weights at the hidden neurons:

)()()(1)()(

1

][p wppypyp jk

l

k

kjjj 


 

)()()(ppxpw jiij  

)()()1(pwpwpw ijijij 

Step 3: Weight training (continued)

Step 4: Iteration

 Increase iteration p by one, go back to Step 2 and

repeat the process until the selected error criterion

is satisfied.

 As an example, we may consider the three-layer

back-propagation network. Suppose that the

network is required to perform logical operation

Exclusive-OR. Recall that a single-layer

perceptron could not do this operation. Now we

will apply the three-layer net.

Three-layer network for solving the

Exclusive-OR operation

y55

x1 31

x2

Input

layer

Output

layer

Hidden layer

42

3

w13

w24

w23

w24

w35

w45

4

5

1

1

1

 The effect of the threshold applied to a neuron in the

hidden or output layer is represented by its weight, ,

connected to a fixed input equal to 1.

 The initial weights and threshold levels are set

randomly as follows:

 w13 = 0.5, w14 = 0.9, w23 = 0.4, w24 = 1.0, w35 = 1.2,

w45 = 1.1, 3 = 0.8, 4 = 0.1 and 5 = 0.3.

 We consider a training set where inputs x1 and x2 are

equal to 1 and desired output yd,5 is 0. The actual

outputs of neurons 3 and 4 in the hidden layer are

calculated as

  5250.01 /1)()8.014.015.01(
32321313  ewxwx sigmoidy

  8808.01 /1)()1.010.119.01(
42421414  ewxwx sigmoidy

 Now the actual output of neuron 5 in the output layer

is determined as:

 Thus, the following error is obtained:

  5097.01 /1)()3.011.18808.02.15250.0(
54543535  ewywy sigmoidy

5097.05097.0055,  yye d

 The next step is weight training. To update the

weights and threshold levels in our network, we

propagate the error, e, from the output layer

backward to the input layer.

 First, we calculate the error gradient for neuron 5 in

the output layer:

1274.05097).0(0.5097)(1 0.5097)1(555  e y y

 Then we determine the weight corrections assuming

that the learning rate parameter, , is equal to 0.1:

0112.0)1274.0(8808.01.05445   yw

0067.0)1274.0(5250.01.05335   yw

0127.0)1274.0()1(1.0)1(55  

 Next we calculate the error gradients for neurons 3

and 4 in the hidden layer:

 We then determine the weight corrections:

0381.0)2.1 (0.1274) (0.5250)(1 0.5250)1(355333  wyy 

0.0147.11 4) 0.127 (0.8808)(10.8808)1(455444  wyy 

0038.00381.011.03113   xw

0038.00381.011.03223   xw

0038.00381.0)1(1.0)1(33  

0015.0)0147.0(11.04114   xw

0015.0)0147.0(11.04224   xw

0015.0)0147.0()1(1.0)1(44  

 At last, we update all weights and threshold:

5038 . 0 0038 . 0 5 . 0 13 13 13
      w w w

8985 . 0 0015 . 0 9 . 0 14 14 14
      w w w

4038 . 0 0038 . 0 4 . 0 23 23 23
      w w w

9985 . 0 0015 . 0 0 . 1 24 24 24
      w w w

2067 . 1 0067 . 0 2 . 1 35 35 35
        w w w

0888 . 1 0112 . 0 1 . 1 45 45 45
      w w w

7962 . 0 0038 . 0 8 . 0 3 3 3
        

0985 . 0 0015 . 0 1 . 0 4 4 4
          

3127 . 0 0127 . 0 3 . 0 5 5 5
        

 The training process is repeated until the sum of

squared errors is less than 0.001.

Learning curve for operation Exclusive-OR

0 50 100 150 200

10
1

Epoch

S
u

m
-S

q
u

a
re

d
 E

rr
o

r

Sum-Squared Network Error for 224 Epochs

10
0

10
-1

10
-2

10
-3

10
-4

Final results of three-layer network learning

Inputs

x1 x2

1

0

1

0

1

1

0

0

0

1

1

Desired

output

yd

0

 0.0155

Actual

output

y5

Y

Error

e

Sum of

squared
errors

e
 0.9849

 0.9849

 0.0175

0.0155

 0.0151

 0.0151

0.0175

0.0010

Network represented by McCulloch-Pitts model

for solving the Exclusive-OR operation

y55

x1 31

x2 42

+1.0

1

1

1
+1.0

+1.0

+1.0

+1.5

+1.0

+1.0

+0.5

+0.5

(a) Decision boundary constructed by hidden neuron 3;

(b) Decision boundary constructed by hidden neuron 4;

(c) Decision boundaries constructed by the complete

 three-layer network

x1

x2

1

(a)

1

x2

1

1

(b)

00

x1 + x2 – 1.5 = 0 x1 + x2 – 0.5 = 0

x1 x1

x2

1

1

(c)

0

Decision boundaries

Accelerated learning in multilayer

neural networks

 A multilayer network learns much faster when the

sigmoidal activation function is represented by a

hyperbolic tangent:

 where a and b are constants.

 Suitable values for a and b are:

 a = 1.716 and b = 0.667

a
e

a
Y

bX

htan 



1

2

 We also can accelerate training by including a

momentum term in the delta rule:

 where  is a positive number (0    1) called the

momentum constant. Typically, the momentum

constant is set to 0.95.

 This equation is called the generalised delta rule.

)()()1()(ppypwpw kjjkjk  

Accelerated learning in multilayer

neural networks

Learning with momentum for operation Exclusive-OR

0 20 40 60 80 100 120
10

-4

10
-2

10
0

10
2

Epoch

S
u

m
-S

q
u

a
re

d
 E

rr
o

r

Training for 126 Epochs

0 100 140
-1

-0.5

0

0.5

1

1.5

Epoch

L
e
a
rn

in
g

 R
a
te

10
-3

10
1

10
-1

20 40 60 80 120

Learning with adaptive learning rate

To accelerate the convergence and yet avoid the

danger of instability, we can apply two heuristics:

Heuristic 1

 If the change of the sum of squared errors has the same

algebraic sign for several consequent epochs, then the

learning rate parameter, , should be increased.

Heuristic 2

 If the algebraic sign of the change of the sum of

squared errors alternates for several consequent

epochs, then the learning rate parameter, , should be

decreased.

 Adapting the learning rate requires some changes

in the back-propagation algorithm.

 If the sum of squared errors at the current epoch

exceeds the previous value by more than a

predefined ratio (typically 1.04), the learning rate

parameter is decreased (typically by multiplying

by 0.7) and new weights and thresholds are

calculated.

 If the error is less than the previous one, the

learning rate is increased (typically by multiplying

by 1.05).

Learning with adaptive learning rate

0 10 20 30 40 50 60 70 80 90 100

Epoch

Training for 103 Epochs

0 20 40 60 80 100 120
0

0.2

0.4

0.6

0.8

1

Epoch

L
e
a
rn

in
g

 R
a
te

10
-4

10
-2

10
0

10
2

S
u

m
-S

q
u

a
re

d
 E

rr
o

r

10
-3

10
1

10
-1

Learning with momentum and adaptive learning rate

0 10 20 30 40 50 60 70 80

Epoch

Training for 85 Epochs

0 10 20 30 40 50 60 70 80 90
0

0.5

1

2.5

Epoch

L
e
a
rn

in
g

 R
a
te

10
-4

10
-2

10
0

10
2

S
u

m
-S

q
u

a
re

d
 E

rr
o

r

10
-3

10
1

10
-1

1.5

2

Accelerated learning in multilayer

neural networks

 • Back propagation using gradient descent often converges very slowly
or not at all.

• On large-scale problems its success depends on user-specified learning
rate and momentum parameters.

• Conjugate gradient algorithm is another approach to adjust weight
values using the gradient during the backward propagation of errors
through the network.

• Conjugate gradient algorithm takes a more direct path to the optimal set
of weight values. Usually, conjugate gradient is significantly faster and
more robust than gradient descent. Conjugate gradient also does not
require the user to specify learning rate and momentum parameters.

Accelerated learning in multilayer
neural networks

 • The scaled conjugate gradient algorithm compute the optimal step size

in the search direction without having to perform the computationally

expensive line search used by the traditional conjugate gradient

algorithm.

• Tests performed by Moller show the scaled conjugate gradient

algorithm converging up to twice as fast as traditional conjugate

gradient and up to 20 times as fast as backpropagation using gradient

descent.

• Moller’s tests also showed that scaled conjugate gradient failed to

converge less often than traditional conjugate gradient or

backpropagation using gradient descent.

Limiting network complexity

Number of Hidden Layer

Limiting network complexity

Tricks of the trade

Tricks of the trade

Tricks of the trade

Support Vector
Machines

 Linear Classifiers
f x



yest

denotes +1

denotes -1

f(x,w,b) = sign(w. x - b)

How would you
classify this data?

 Linear Classifiers
f x



yest

denotes +1

denotes -1

f(x,w,b) = sign(w. x - b)

How would you
classify this data?

 Linear Classifiers
f x



yest

denotes +1

denotes -1

f(x,w,b) = sign(w. x - b)

How would you
classify this data?

 Linear Classifiers
f x



yest

denotes +1

denotes -1

f(x,w,b) = sign(w. x - b)

How would you
classify this data?

 Linear Classifiers
f x



yest

denotes +1

denotes -1

f(x,w,b) = sign(w. x - b)

Any of these
would be fine..

..but which is
best?

Classifier Margin
f x



yest

denotes +1

denotes -1

f(x,w,b) = sign(w. x - b)

Define the margin
of a linear
classifier as the
width that the
boundary could be
increased by
before hitting a
datapoint.

Maximum Margin
f x



yest

denotes +1

denotes -1

f(x,w,b) = sign(w. x - b)

The maximum
margin linear
classifier is the
linear classifier
with the, um,
maximum margin.

This is the
simplest kind of
SVM (Called an
LSVM)

Linear SVM

Maximum Margin
f x



yest

denotes +1

denotes -1

f(x,w,b) = sign(w. x - b)

The maximum
margin linear
classifier is the
linear classifier
with the, um,
maximum margin.

This is the
simplest kind of
SVM (Called an
LSVM)

Support Vectors
are those
datapoints that
the margin
pushes up
against

Linear SVM

Estimate the Margin

• What is the distance expression for a point x to a
line wx+b= 0?

denotes +1

denotes -1 x
wx +b = 0

2 2

12

()
d

ii

b b
d

w


   
 



x w x w
x

w

Estimate the Margin

• What is the expression for margin?

denotes +1

denotes -1 wx +b = 0

2

1

margin min () min
dD D

ii

b
d

w
 



 
 


x x

x w
x

Margin

Maximize Margin

denotes +1

denotes -1 wx +b = 0

 

2,
1

argmax min

subject to : 0

i

i

dDb
ii

i i i

b

w

D y b





 

    


xw

x w

x x w

Margin

• Min-max problem  game problem

Maximize Margin

denotes +1

denotes -1 wx +b = 0

 

2,
1

argmax min

subject to : 0

i

i

dDb
ii

i i i

b

w

D y b





 

    


xw

x w

x x w

Margin

Strategy:

: 1i iD b    x x w

 

2

1
,

argmin

subject to : 1

d
ii

b

i i i

w

D y b



    


w

x x w

Maximum Margin Linear Classifier

• How to solve it?

 

 

 

* * 2

1
,

1 1

2 2

{ , }= argmin

subject to

1

1

....

1

d

kk
w b

N N

w b w

y w x b

y w x b

y w x b



  

  

  



Quadratic Programming

Uh-oh!

denotes +1

denotes -1

This is going to be a problem!

What should we do?

Support Vector Machine (SVM) for
Noisy Data

• Balance the trade off between
margin and classification errors

 

 

 

d* * 2

1 1, ,

1 1 1 1

2 2 2 2

{ , }= min

1 , 0

1 , 0

...

1 , 0

N

i ji jw b

N N N N

w b w c

y w x b

y w x b

y w x b




 

 

 

 


    

    

    

 
denotes +1

denotes -1

1

2

3

Nonlinear SVM - Kernels
The concept of a kernel mapping function is very powerful. It allows

SVM models to perform separations even with very complex

boundaries such as shown below.

kernel mapping

• The Kernel Trick

• Many kernel mapping functions can be used –
probably an infinite number. But a few kernel
functions have been found to work well in for a
wide variety of applications. The default and
recommended kernel function is the Radial Basis
Function (RBF).

kernel mapping

Kernel Examples
• Polynomial

Kernel Examples

Nonlinear Kernel (II)

SVM applications

• SVMs were originally proposed by Boser, Guyon and Vapnik
in 1992 and gained increasing popularity in late 1990s.

• SVMs are currently among the best performers for a number
of classification tasks ranging from text to genomic data.

• SVMs can be applied to complex data types beyond feature
vectors (e.g. graphs, sequences, relational data) by
designing kernel functions for such data.

• SVM techniques have been extended to a number of tasks
such as regression [Vapnik et al. ’97], principal component
analysis [Schölkopf et al. ’99], etc.

• Most popular optimization algorithms for SVMs use
decomposition to hill-climb over a subset of αi’s at a time,
e.g. SMO [Platt ’99] and [Joachims ’99]

• Tuning SVMs remains a black art: selecting a specific
kernel and parameters is usually done in a try-and-see
manner.

Unsupervised Learning

143

Supervised learning vs. unsupervised learning

 Supervised learning: discover patterns in the data that relate data

attributes with a target (class) attribute.

 These patterns are then utilized to predict the values of the target

attribute in future data instances.

 Unsupervised learning: The data have no target attribute.

 We want to explore the data to find some intrinsic structures in

them.

144

Clustering

 Clustering is a technique for finding similarity groups in data,
called clusters. I.e.,
 it groups data instances that are similar to (near) each other in one cluster

and data instances that are very different (far away) from each other into
different clusters.

 Clustering is often called an unsupervised learning task as no
class values denoting an a priori grouping of the data instances are
given, which is the case in supervised learning.

 Due to historical reasons, clustering is often considered
synonymous with unsupervised learning.
 In fact, association rule mining is also unsupervised

 This chapter focuses on clustering.

145

An illustration

 The data set has three natural groups of data points, i.e., 3 natural

clusters.

146

What is clustering for?

 Let us see some real-life examples

 Example 1: groups people of similar sizes together to make

“small”, “medium” and “large” T-Shirts.

 Tailor-made for each person: too expensive

 One-size-fits-all: does not fit all.

 Example 2: In marketing, segment customers according to their

similarities

 To do targeted marketing.

147

What is clustering for? (cont…)

 Example 3: Given a collection of text documents, we want to
organize them according to their content similarities,

 To produce a topic hierarchy

 In fact, clustering is one of the most utilized data mining
techniques.

 It has a long history, and used in almost every field, e.g., medicine,
psychology, botany, sociology, biology, archeology, marketing,
insurance, libraries, etc.

 In recent years, due to the rapid increase of online documents, text
clustering becomes important.

148

Aspects of clustering

 A clustering algorithm

 Partitional clustering

 Hierarchical clustering

 …

 A distance (similarity, or dissimilarity) function

 Clustering quality

 Inter-clusters distance  maximized

 Intra-clusters distance  minimized

 The quality of a clustering result depends on the algorithm, the
distance function, and the application.

149

K-means clustering

 K-means is a partitional clustering algorithm

 Let the set of data points (or instances) D be

 {x1, x2, …, xn},

 where xi = (xi1, xi2, …, xir) is a vector in a real-valued space X  Rr,

and r is the number of attributes (dimensions) in the data.

 The k-means algorithm partitions the given data into k clusters.

 Each cluster has a cluster center, called centroid.

 k is specified by the user

150

K-means algorithm

 Given k, the k-means algorithm works as follows:

1)Randomly choose k data points (seeds) to be the initial centroids,

cluster centers

2)Assign each data point to the closest centroid

3)Re-compute the centroids using the current cluster memberships.

4)If a convergence criterion is not met, go to 2).

151

K-means algorithm – (cont …)

152

Stopping/convergence criterion

1. no (or minimum) re-assignments of data points to different
clusters,

2. no (or minimum) change of centroids, or

3. minimum decrease in the sum of squared error (SSE),

 Ci is the jth cluster, mj is the centroid of cluster Cj (the mean
vector of all the data points in Cj), and dist(x, mj) is the distance
between data point x and centroid mj.







k

j
C j

j

distSSE
1

2),(
x

mx
(1)

153

An example

+
+

154

An example (cont …)

155

An example distance function

156

A disk version of k-means

 K-means can be implemented with data on disk

 In each iteration, it scans the data once.

 as the centroids can be computed incrementally

 It can be used to cluster large datasets that do not fit in main

memory

 We need to control the number of iterations

 In practice, a limited is set (< 50).

 Not the best method. There are other scale-up algorithms, e.g.,

BIRCH.

157

A disk version of k-means (cont …)

158

Strengths of k-means
 Strengths:

 Simple: easy to understand and to implement

 Efficient: Time complexity: O(tkn),

 where n is the number of data points,

 k is the number of clusters, and

 t is the number of iterations.

 Since both k and t are small. k-means is considered a linear algorithm.

 K-means is the most popular clustering algorithm.

 Note that: it terminates at a local optimum if SSE is used. The

global optimum is hard to find due to complexity.

159

Weaknesses of k-means

 The algorithm is only applicable if the mean is defined.

 For categorical data, k-mode - the centroid is represented by most

frequent values.

 The user needs to specify k.

 The algorithm is sensitive to outliers

 Outliers are data points that are very far away from other data

points.

 Outliers could be errors in the data recording or some special data

points with very different values.

160

Weaknesses of k-means: Problems

with outliers

161

Weaknesses of k-means: To deal

with outliers

 One method is to remove some data points in the clustering

process that are much further away from the centroids than other

data points.

 To be safe, we may want to monitor these possible outliers over a few

iterations and then decide to remove them.

 Another method is to perform random sampling. Since in

sampling we only choose a small subset of the data points, the

chance of selecting an outlier is very small.

 Assign the rest of the data points to the clusters by distance or similarity

comparison, or classification

162

Weaknesses of k-means (cont …)

 The algorithm is sensitive to initial seeds.

163

Weaknesses of k-means (cont …)
 If we use different seeds: good results

There are some

methods to help

choose good seeds

164

Weaknesses of k-means (cont …)
 The k-means algorithm is not suitable for discovering clusters

that are not hyper-ellipsoids (or hyper-spheres).

+

165

K-means summary

 Despite weaknesses, k-means is still the most popular algorithm
due to its simplicity, efficiency and

 other clustering algorithms have their own lists of weaknesses.

 No clear evidence that any other clustering algorithm performs
better in general

 although they may be more suitable for some specific types of data
or applications.

 Comparing different clustering algorithms is a difficult task. No
one knows the correct clusters!

166

Cluster Evaluation: hard problem

 The quality of a clustering is very hard to evaluate because

 We do not know the correct clusters

 Some methods are used:

 User inspection

 Study centroids, and spreads

 Rules from a decision tree.

 For text documents, one can read some documents in clusters.

167

Cluster evaluation: ground truth

 We use some labeled data (for classification)

 Assumption: Each class is a cluster.

 After clustering, a confusion matrix is constructed. From the

matrix, we compute various measurements, entropy, purity,

precision, recall and F-score.

 Let the classes in the data D be C = (c1, c2, …, ck). The clustering

method produces k clusters, which divides D into k disjoint subsets,

D1, D2, …, Dk.

168

Evaluation measures: Entropy

169

Evaluation measures: purity

170

An example

171

A remark about ground truth evaluation
 Commonly used to compare different clustering algorithms.

 A real-life data set for clustering has no class labels.

 Thus although an algorithm may perform very well on some labeled data

sets, no guarantee that it will perform well on the actual application data

at hand.

 The fact that it performs well on some label data sets does give

us some confidence of the quality of the algorithm.

 This evaluation method is said to be based on external data or

information.

172

Evaluation based on internal

information
 Intra-cluster cohesion (compactness):

 Cohesion measures how near the data points in a cluster are to the

cluster centroid.

 Sum of squared error (SSE) is a commonly used measure.

 Inter-cluster separation (isolation):

 Separation means that different cluster centroids should be far away

from one another.

 In most applications, expert judgments are still the key.

173

Indirect evaluation
 In some applications, clustering is not the primary task, but used

to help perform another task.

 We can use the performance on the primary task to compare
clustering methods.

 For instance, in an application, the primary task is to provide
recommendations on book purchasing to online shoppers.
 If we can cluster books according to their features, we might be able to

provide better recommendations.

 We can evaluate different clustering algorithms based on how well they
help with the recommendation task.

 Here, we assume that the recommendation can be reliably evaluated.

Chapter Summary

 learning is very important for agents to improve their decision-

making process

 unknown environments, changes, time constraints

 most methods rely on inductive learning

 a function is approximated from sample input-output pairs

 decision trees are useful for learning deterministic Boolean functions

 neural networks consist of simple interconnected computational

elements

 multi-layer feed-forward networks can learn any function

 provided they have enough units and time to learn

