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What is Learning? 

 Most often heard criticisms of AI is that machines cannot be called 
intelligent until they are able to learn to do new things and adapt to 
new situations, rather than simply doing as they are told to do. 

 Some critics of AI have been saying that computers cannot learn! 

 Definitions of Learning: changes in the system that are adaptive in the 
sense that they enable the system to do the same task or tasks drawn 
from the same population more efficiently and more effectively the 
next time. 

 Learning covers a wide range of phenomenon: 
 Skill refinement : Practice makes skills improve. More you play tennis, better you 

get 
 Knowledge acquisition: Knowledge is generally acquired through experience 



Various learning mechanisms 

 Simple storing of computed information or rote learning, is the most 
basic learning activity. 
 Many computer programs ie., database systems can be said to learn in this 

sense although most people would not call such simple storage learning. 

 Another way we learn if through taking advice from others. Advice 
taking is similar to rote learning, but high-level advice may not be in a 
form simple enough for a program to use directly in problem solving. 

 People also learn through their own problem-solving experience. 

 Learning from examples : we often learn to classify things in the world 
without being given explicit rules. 

 Learning from examples usually involves a teacher who helps us 
classify things by correcting us when we are wrong. 
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An example application 

 An emergency room in a hospital measures 17 variables (e.g., 
blood pressure, age, etc) of newly admitted patients.  

 A decision is needed: whether to put a new patient in an 
intensive-care unit.  

 Due to the high cost of ICU, those patients who may survive 
less than a month are given higher priority.  

 Problem: to predict high-risk patients and discriminate them 
from low-risk patients.  
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Another application 

 A credit card company receives thousands of applications for 
new cards. Each application contains information about an 
applicant,  
 age  

 Marital status 

 annual salary 

 outstanding debts 

 credit rating 

 etc.  

 Problem: to decide whether an application should approved, or 
to classify applications into two categories, approved and not 
approved.  



Forms of Learning 

 supervised learning 
 an agent tries to find a function that matches examples from a sample set 

 each example provides an input together with the correct output 

 a teacher provides feedback on the outcome 

 the teacher can be an outside entity, or part of the environment 

 unsupervised learning 
 the agent tries to learn from patterns without corresponding output values 

 reinforcement learning 
 the agent does not know the exact output for an input, but it receives 

feedback on the desirability of its behavior 

 the feedback can come from an outside entity, the environment, or the agent 
itself 

 the feedback may be delayed, and not follow the respective action immediately 



Learning Agent Model 
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Learning Element Design Issues 

 selections of the components of the performance elements 

that are to be improved 

 representation mechanisms used in those components 

 availability of feedback 

 availability of prior information 



Machine learning  

 

Supervised learning 
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Supervised learning 

 Like human learning from past experiences. 

 A computer does not have “experiences”. 

 A computer system learns from data, which represent some 

“past experiences” of an application domain.  

 Our focus: learn a target function that can be used to predict 

the values of a discrete class attribute, e.g., approve or not-

approved, and high-risk or low risk.  

 The task is commonly called: Supervised learning, classification, 

or inductive learning.  



Example Inductive Learning  

x 

f(x) 
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 Data: A set of data records (also called examples, instances or 

cases) described by 

 k attributes: A1, A2, … Ak.  

 a class: Each example is labelled with a pre-defined class.  

 Goal: To learn a classification model from the data that can be 

used to predict the classes of new (future, or test) 

cases/instances. 

The data and the goal 
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An example: data (loan application) 
Approved or not 
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An example: the learning task 
 Learn a classification model from the data  

 Use the model to classify future loan applications into  

 Yes (approved) and  

 No (not approved) 

 What is the class for following case/instance? 
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Supervised vs. unsupervised Learning 

 Supervised learning: classification is seen as supervised learning 
from examples.  

 Supervision: The data (observations, measurements, etc.) are 
labeled with pre-defined classes. It is like that a “teacher” gives the 
classes (supervision).  

 Test data are classified into these classes too.  

 Unsupervised learning (clustering) 

 Class labels of the data are unknown 

 Given a set of data, the task is to establish the existence of classes or 
clusters in the data 
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Supervised learning process: two steps 

Learning (training): Learn a model using the training data 

Testing: Test the model using unseen test data to assess the model 

accuracy 

,
cases test ofnumber  Total

tionsclassificacorrect  ofNumber 
Accuracy
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What do we mean by learning? 

 Given  

 a data set D,  

 a task T, and  

 a performance measure M,  

 a computer system is said to learn from D to perform the task T 
if after learning the system’s performance on T improves as 
measured by M.  

 In other words, the learned model helps the system to perform T 
better as compared to no learning.  
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An example 

 Data: Loan application data 

 Task: Predict whether a loan should be approved or not. 

 Performance measure: accuracy. 

 

No learning: classify all future applications (test data) to the 

majority class (i.e., Yes):  

  Accuracy = 9/15 = 60%. 

 We can do better than 60% with learning. 



Decision Trees 
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Introduction 

 Decision tree learning is one of the most widely used 

techniques for classification.  

 Its classification accuracy is competitive with other methods, and  

 it is very efficient.  

 The classification model is a tree, called decision tree.  

 C4.5 by Ross Quinlan is perhaps the best known system. It can 

be downloaded from the Web.  



Boolean Decision Trees 

 compute yes/no decisions based on sets of desirable or 

undesirable properties of an object or a situation 

 each node in the tree reflects one yes/no decision based on a 

test of the value of one property of the object 

 the root node is the starting point 

 leaf nodes represent the possible final decisions 

 branches are labeled with possible values 

 the learning aspect is to predict the value of a goal predicate 

(also called goal concept) 

 a hypothesis is formulated as a function that defines the goal 

predicate 
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The loan data (reproduced) 
Approved or not 



Learning Decision Trees 

 problem: find a decision tree that agrees with the training set 

 trivial solution: construct a tree with one branch for each 

sample of the training set 

 works perfectly for the samples in the training set 

 may not work well for new samples (generalization) 

 results in relatively large trees 

 better solution: find a concise tree that still agrees with all 

samples 

 corresponds to the simplest hypothesis that is consistent with 

the training set 



Constructing Decision Trees - Ockham’s Razor 

The most likely hypothesis is the simplest one that is 

consistent with all observations. 

 general principle for inductive learning 

 a simple hypothesis that is consistent with all observations is 

more likely to be correct than a complex one 

 in general, constructing the smallest possible decision tree is 

an intractable problem 

 algorithms exist for constructing reasonably small trees 

 basic idea: test the most important attribute first 

 attribute that makes the most difference for the classification 

of an example 

 can be determined through information theory 

 hopefully will yield the correct classification with few tests 

 



Decision Tree Algorithm 

 recursive formulation 

 select the best attribute to split positive and negative 

examples 

 if only positive or only negative examples are left, we are 

done 

 if no examples are left, no such examples were observers 

 return a default value calculated from the majority classification at the 

node’s parent 

 if we have positive and negative examples left, but no 

attributes to split them we are in trouble 

 samples  have the same description, but different classifications 

 may be caused by incorrect data (noise), or by a lack of information, or 

by a truly non-deterministic domain 
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A decision tree from the loan data 

Decision nodes and leaf nodes (classes) 
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Use the decision tree 

No 
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Is the decision tree unique? 

No. Here is a simpler tree.  

We want smaller tree and accurate tree. 

  Easy to understand and perform better.  

Finding the best tree is NP-hard. 

All current tree building algorithms 

are heuristic algorithms 

Idea: a good attribute splits the 

examples into subsets that are 

(ideally) "all positive" or "all 

negative" 
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From a decision tree to a set of rules 

A decision tree can be 

converted to a set of rules 

Each path from the root to a 

leaf is a rule. 
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Algorithm for decision tree learning 

 Basic algorithm (a greedy divide-and-conquer algorithm) 

 Assume attributes are categorical now (continuous attributes can be handled 
too) 

 Tree is constructed in a top-down recursive manner 

 At start, all the training examples are at the root 

 Examples are partitioned recursively based on selected attributes 

 Attributes are selected on the basis of an impurity function (e.g., information 
gain) 

 Conditions for stopping partitioning 

 All examples for a given node belong to the same class 

 There are no remaining attributes for further partitioning – majority class is 
the leaf 

 There are no examples left 
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Decision tree learning algorithm 
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Choose an attribute to partition data  

 The key to building a decision tree - which attribute to choose in 

order to branch.  

 The objective is to reduce impurity or uncertainty in data as much 

as possible. 

 A subset of data is pure if all instances belong to the same class.  

 The heuristic in C4.5 is to choose the attribute with the maximum 

Information Gain or Gain Ratio based on information theory. 
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The loan data (reproduced) 
Approved or not 
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Two possible roots, which is better? 

Fig. (B) seems to be better.  
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Information theory 

 Information theory provides a mathematical basis for 
measuring the information content.  

 To understand the notion of information, think about it as 
providing the answer to a question, for example, whether a 
coin will come up heads.  
 If one already has a good guess about the answer, then the actual 

answer is less informative.  
 If one already knows that the coin is rigged so that it will come 

with heads with probability 0.99, then a message (advanced 
information) about the actual outcome of a flip is worth less than 
it would be for a honest coin (50-50).  
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Information theory (cont …) 

 For a fair (honest) coin, you have no information, and 
you are willing to pay more (say in terms of $) for 
advanced information - less you know, the more valuable 
the information.  

 Information theory uses this same intuition, but instead 
of measuring the value for information in dollars, it 
measures information contents in bits.  

 One bit of information is enough to answer a yes/no 
question about which one has no idea, such as the flip of 
a fair coin  
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Information theory: Entropy measure 
 The entropy formula, 

 

 

 

 

 

 Pr(cj) is the probability of class cj in data set D  

 We use entropy as a measure of impurity or disorder of data set 

D. (Or, a measure of information in a tree) 
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Entropy measure: let us get a feeling 

As the data become purer and purer, the entropy value becomes 

smaller and smaller. This is useful to us! 
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Information gain 
 Given a set of examples D, we first compute its entropy: 

 

 

 If we make attribute Ai, with v values, the root of the current 

tree, this will partition D into v subsets D1, D2 …, Dv . The 

expected entropy if Ai is used as the current root: 

 





v

j

j

j

A Dentropy
D

D
Dentropy

i

1

)(
||

||
)(



40 

Information gain (cont …) 

 Information gained by selecting attribute Ai to branch or to 

partition the data is  

 

 

 We choose the attribute with the highest gain to 

branch/split the current tree.  

)()(),( DentropyDentropyADgain
iAi 
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An example 

Age Yes No entropy(Di)

young 2 3 0.971

middle 3 2 0.971

old 4 1 0.722

Own_house is the best choice 

for the root.  
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We build the final tree 
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Avoid overfitting in classification 

 Overfitting:  A tree may overfit the training data  

 Good accuracy on training data but poor on test data 

 Symptoms: tree too deep and too many branches, some may reflect 
anomalies due to noise or outliers 

 Trade-off full consistency for compactness 

 Larger decision trees can be more consistent 

 Smaller decision trees generalize better 

 Two approaches to avoid overfitting  
 Pre-pruning: Halt tree construction early 

 Difficult to decide because we do not know what may happen subsequently if 
we keep growing the tree.  

 Post-pruning: Remove branches or sub-trees from a “fully grown” 
tree. 
 This method is commonly used. C4.5 uses a statistical method to estimates 

the errors at each node for pruning.  

 A validation set may be used for pruning as well. 
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An example 

Likely to overfit the data 



Performance Evaluation 
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Evaluating classification methods 

 Predictive accuracy 

 

 

 

 Efficiency 
 time to construct the model  
 time to use the model 

 Robustness: handling noise and missing values 

 Scalability: efficiency in disk-resident databases  

 Interpretability:  
 understandable and insight provided by the model 

 Compactness of the model: size of the tree, or the number of rules.  
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Evaluation methods 

 Holdout set: The available data set D is divided into two 
disjoint subsets,  
 the training set Dtrain (for learning a model) 

 the test set Dtest (for testing the model) 

 Important: training set should not be used in testing and the 
test set should not be used in learning.  
 Unseen test set provides a unbiased estimate of accuracy.  

 The test set is also called the holdout set. (the examples in the 
original data set D are all labeled with classes.)  

 This method is mainly used when the data set D is large.  
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Evaluation methods (cont…) 

 n-fold cross-validation: The available data is partitioned into n 

equal-size disjoint subsets.  

 Use each subset as the test set and combine the rest n-1 subsets as 

the training set to learn a classifier.  

 The procedure is run n times, which give n accuracies.  

 The final estimated accuracy of learning is the average of the n 

accuracies.  

 10-fold and 5-fold cross-validations are commonly used.   

 This method is used when the available data is not large.  
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Evaluation methods (cont…) 

 Leave-one-out cross-validation: This method is used when 

the data set is very small.  

 It is a special case of cross-validation 

 Each fold of the cross validation has only a single test example 

and all the rest of the data is used in training.  

 If the original data has m examples, this is m-fold cross-validation  
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Evaluation methods (cont…) 

 Validation set: the available data is divided into three subsets,  
 a training set,  

 a validation set and  

 a test set.  

 A validation set is used frequently for estimating parameters in 
learning algorithms.  

 In such cases, the values that give the best accuracy on the 
validation set are used as the final parameter values.  

 Cross-validation can be used for parameter estimating as well.  
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Classification measures 

 Accuracy is only one measure (error = 1-accuracy). 

 Accuracy is not suitable in some applications.  

 In text mining, we may only be interested in the documents of a 
particular topic, which are only a small portion of a big 
document collection.   

 In classification involving skewed or highly imbalanced data, e.g., 
network intrusion and financial fraud detections, we are 
interested only in the minority class.  
 High accuracy does not mean any intrusion is detected.  

 E.g., 1% intrusion. Achieve 99% accuracy by doing nothing.  

 The class of interest is commonly called the positive class, and 
the rest negative classes. 
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Precision and recall measures 

 Used in information retrieval and text classification.  

 We use a confusion matrix to introduce them.  
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Precision and recall measures (cont…) 

Precision p is the number of correctly classified positive 

examples divided by the total number of examples that are 

classified as positive.  

Recall r is the number of correctly classified positive 

examples divided by the total number of actual positive 

examples in the test set.  
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An example 

 This confusion matrix gives  

 precision p = 100% and  

 recall r = 1%  

 because we only classified one positive example correctly and no negative 

examples wrongly.  

 Note: precision and recall only measure classification on the 

positive class.  
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F1-value (also called F1-score) 

 It is hard to compare two classifiers using two measures. F1 score combines 

precision and recall into one measure 

 

 

 

 

 

 

 

 The harmonic mean of two numbers tends to be closer to the smaller of the 

two.  

 For F1-value to be large, both p and r much be large.  



Supervised learning 

Artificial Neural Networks 
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Artificial neural networks: 
Supervised learning 

 Introduction, or how the brain works 

 The neuron as a simple computing element 

 The Perceptron 

 Multilayer neural networks 

 Accelerated learning in multilayer neural networks 

 The Hopfield network 

 Bidirectional associative memories (BAM) 

 Summary 



Introduction, or how the brain works 

• Machine learning involves adaptive mechanisms 

that enable computers to learn from experience, 

learn by example and learn by analogy.   

• Learning capabilities can improve the performance 

of an intelligent system over time.  

• The most popular approache to machine learning is 

artificial neural networks 



 A neural network can be defined as a model of 

reasoning based on the human brain.  The brain 

consists of a densely interconnected set of nerve 

cells, or basic information-processing units, called 

neurons.   

 The human brain incorporates nearly 10 billion 

neurons and 60 trillion connections, synapses, 

between them.  By using multiple neurons 

simultaneously, the brain can perform its functions 

much faster than the fastest computers in existence 

today. 

Artificial Neural Networks 



 Each neuron has a very simple structure, but an 

army of such elements constitutes a tremendous 

processing power.   

 A neuron consists of a cell body, soma, a number of 

fibers called dendrites, and a single long fiber 

called the axon. 



Biological neural network 
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 Our brain can be considered as a highly complex, 

non-linear and parallel information-processing 

system.   

 Information is stored and processed in a neural 

network simultaneously throughout the whole 

network, rather than at specific locations.  In other 

words, in neural networks, both data and its 

processing are global rather than local. 

 Learning is a fundamental and essential 

characteristic of biological neural networks.  The 

ease with which they can learn led to attempts to 

emulate a biological neural network in a computer. 



 An artificial neural network consists of a number of 

very simple processors, also called neurons, which 

are analogous to the biological neurons in the brain.  

 The neurons are connected by weighted links 

passing signals from one neuron to another.   

 The output signal is transmitted through the 

neuron’s outgoing connection.  The outgoing 

connection splits into a number of branches that 

transmit the same signal.  The outgoing branches 

terminate at the incoming connections of other 

neurons in the network.  



Architecture of a typical artificial neural network 
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Biological Neural Network Artificial Neural Network
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artificial neural networks 



The neuron as a simple computing element 

Diagram of a neuron 
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 The neuron computes the weighted sum of the input 

signals and compares the result with a threshold 

value, .  If the net input is less than the threshold, 

the neuron output is –1.  But if the net input is greater 

than or equal to the threshold, the neuron becomes 

activated and its output attains a value +1. 

 The neuron uses the following transfer or activation 

function: 
 

 

 

 This type of activation function is called a sign 

function. 
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Activation functions of a neuron 
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Can a single neuron learn a task? 

 In 1958, Frank Rosenblatt  introduced a training 

algorithm that provided the first procedure for 

training a simple ANN: a perceptron.   

 The perceptron is the simplest form of a neural 

network.  It consists of a single neuron with 

adjustable synaptic weights and a hard limiter.  
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The Perceptron 

 The operation of Rosenblatt’s perceptron is based 

on the McCulloch and Pitts neuron model.  The 

model consists of a linear combiner followed by a 

hard limiter.  

 The weighted sum of the inputs is applied to the 

hard limiter, which produces an output equal to +1 

if its input is positive and 1 if it is negative.   



 The aim of the perceptron is to classify inputs,  

 x1, x2, . . ., xn, into one of two classes, say  

 A1 and A2.   

 In the case of an elementary perceptron, the n-

dimensional space is divided by a hyperplane into 

two decision regions.  The hyperplane is defined by 

the linearly separable function: 
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Linear separability in the perceptrons 
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• This is done by making small adjustments in the 

weights to reduce the difference between the actual 

and desired outputs of the perceptron.   

 

• The initial weights are randomly assigned, usually 

in the range [0.5, 0.5], and then updated to obtain 

the output consistent with the training examples. 

How does the perceptron learn its classification 

tasks? 



 If at iteration p, the actual output is Y(p) and the 

desired output is Yd (p), then the error is given by: 

 

        where p = 1, 2, 3, . . . 

  

 Iteration p here refers to the pth training example 

presented to the perceptron. 

 If the error, e(p), is positive, we need to increase 

perceptron output Y(p), but if it is negative, we 

need to decrease Y(p). 

)()()( pYpYpe d 



The perceptron learning rule 

where p = 1, 2, 3, . . . 

 is the learning rate, a positive constant less than 

unity. 
 

The perceptron learning rule was first proposed by 

Rosenblatt in 1960.  Using this rule we can derive  

the perceptron training algorithm for classification  

tasks. 
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Step 1: Initialisation 

 Set initial weights w1, w2,…, wn and threshold  

to random numbers in the range [0.5, 0.5].  
 

 If the error, e(p), is positive, we need to increase 

perceptron output Y(p), but if it is negative, we 

need to decrease Y(p). 

Perceptron’s tarining algorithm 



Step 2: Activation 

 Activate the perceptron by applying inputs x1(p), 

x2(p),…, xn(p) and desired output Yd (p).  

Calculate the actual output at iteration p = 1 

 

 

 

 where n is the number of the perceptron inputs, 

and step is a step activation function. 

Perceptron’s tarining algorithm (continued) 
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Step 3: Weight training 

 Update the weights of the perceptron 

 

 

 where           is the weight correction at iteration p. 
 

 The weight correction is computed by the delta 

rule: 

Step 4: Iteration 

 Increase iteration p by one, go back to Step 2 and 

repeat the process until convergence. 

)()()1( pwpwpw iii 

Perceptron’s tarining algorithm (continued) 
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Example of perceptron learning: the logical operation AND 
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Threshold:  = 0.2; learning rate:  = 0.1



Two-dimensional plots of basic logical operations 
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(a)  AND (x1  x2)
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(b)  OR (x1  x2)

x1

x2

1

1

(c)  Exclusive-OR

(x1  x2)

00 0

 A perceptron can learn the operations AND and 

OR, but not Exclusive-OR.  



Multilayer neural networks 

 A multilayer perceptron is a feedforward neural 

network with one or more hidden layers.   

 The network consists of an input layer of source 

neurons, at least one middle or hidden layer of 

computational neurons, and an output layer of 

computational neurons.   

 The input signals are propagated in a forward 

direction on a layer-by-layer basis. 



Multilayer perceptron with two hidden layers 
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What does the middle layer hide? 

 A hidden layer “hides” its desired output.  

Neurons in the hidden layer cannot be observed 

through the input/output behaviour of the network.  

There is no obvious way to know what the desired 

output of the hidden layer should be.  

 Commercial ANNs incorporate three and 

sometimes four layers, including one or two 

hidden layers.  Each layer can contain from 10 to 

1000 neurons.  Experimental neural networks may 

have five or even six layers, including three or 

four hidden layers, and utilise millions of neurons. 



Back-propagation neural network 

 Learning in a multilayer network proceeds the 

same way as for a perceptron.   

 A training set of input patterns is presented to the 

network.   

 The network computes its output pattern, and if 

there is an error  or in other words a difference 

between actual and desired output patterns  the 

weights are adjusted to reduce this error. 



 In a back-propagation neural network, the learning 

algorithm has two phases.   

 First, a training input pattern is presented to the 

network input layer.  The network propagates the 

input pattern from layer to layer until the output 

pattern is generated by the output layer.   

 If this pattern is different from the desired output, 

an error is calculated and then propagated 

backwards through the network from the output 

layer to the input layer.  The weights are modified 

as the error is propagated. 



Three-layer back-propagation neural network 
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Step 1: Initialisation 

 Set all the weights and threshold levels of the 

network to random numbers uniformly 

distributed inside a small range: 

 

 

 
 where Fi is the total number of inputs of neuron i 

in the network.  The weight initialisation is done 

on a neuron-by-neuron basis. 

The back-propagation training algorithm 
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Step 2: Activation 

 Activate the back-propagation neural network by 

applying inputs x1(p), x2(p),…, xn(p) and desired 

outputs yd,1(p), yd,2(p),…, yd,n(p). 
 

 (a)  Calculate the actual outputs of the neurons in 

the hidden layer: 

 

 

  

 where n is the number of inputs of neuron j in the 

hidden layer, and sigmoid is the sigmoid activation 

function. 
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 (b)  Calculate the actual outputs of the neurons in 

the output layer: 

 

 

  

 where m is the number of inputs of neuron k in the 

output layer. 
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Step 2: Activation (continued) 



Step 3: Weight training 

 Update the weights in the back-propagation network 

propagating backward the errors associated with 

output neurons. 

 (a) Calculate the error gradient for the neurons in the 

output layer: 
 

 

 where 
 

 Calculate the weight corrections: 

 
 Update the weights at the output neurons: 

  )()(1)()( pepypyp kkkk 

)()()( , pypype kkdk 

)()()( ppypw kjjk  

)()()1( pwpwpw jkjkjk 



 

 (b)  Calculate the error gradient for the neurons in 

the hidden layer: 

 

 
 

 Calculate the weight corrections: 
 

 
 Update the weights at the hidden neurons: 

)()()(1)()(
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][ p wppypyp jk
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 

)()()( ppxpw jiij  

)()()1( pwpwpw ijijij 

Step 3: Weight training (continued) 



Step 4: Iteration 

 Increase iteration p by one, go back to Step 2 and 

repeat the process until the selected error criterion 

is satisfied. 

 As an example, we may consider the three-layer 

back-propagation network.  Suppose that the 

network is required to perform logical operation 

Exclusive-OR.  Recall that a single-layer 

perceptron could not do this operation.  Now we 

will apply the three-layer net. 



Three-layer network for solving the 

Exclusive-OR operation 
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 The effect of the threshold applied to a neuron in the 

hidden or output layer is represented by its weight, , 

connected to a fixed input equal to 1. 

 The initial weights and threshold levels are set 

randomly as follows: 

 w13 = 0.5, w14 = 0.9, w23 = 0.4, w24 = 1.0, w35 = 1.2, 

w45 = 1.1, 3 = 0.8, 4 = 0.1 and 5 = 0.3. 



 We consider a training set where inputs x1 and x2 are 

equal to 1 and desired output yd,5 is 0.  The actual 

outputs of neurons 3 and 4 in the hidden layer are 

calculated as 

  5250.01 /1)( )8.014.015.01(
32321313  ewxwx sigmoidy

  8808.01 /1)( )1.010.119.01(
42421414  ewxwx sigmoidy

 Now the actual output of neuron 5 in the output layer 

is determined as: 

 

 Thus, the following error is obtained: 

  5097.01 /1)( )3.011.18808.02.15250.0(
54543535  ewywy sigmoidy

5097.05097.0055,  yye d



 The next step is weight training.  To update the 

weights and threshold levels in our network, we 

propagate the error, e, from the output layer 

backward to the input layer. 

 First, we calculate the error gradient for neuron 5 in 

the output layer: 

1274.05097).0( 0.5097)(1 0.5097)1( 555   e y y

 Then we determine the weight corrections assuming 

that the learning rate parameter, , is equal to 0.1: 

0112.0)1274.0(8808.01.05445   yw

0067.0)1274.0(5250.01.05335   yw

0127.0)1274.0()1(1.0)1( 55  



 Next we calculate the error gradients for neurons 3 

and 4 in the hidden layer: 

 

 
 

 We then determine the weight corrections: 

0381.0)2.1 (0.1274) (0.5250)(1 0.5250)1( 355333   wyy 

0.0147.11 4) 0.127 ( 0.8808)(10.8808)1( 455444   wyy 

0038.00381.011.03113   xw

0038.00381.011.03223   xw

0038.00381.0)1(1.0)1( 33  

0015.0)0147.0(11.04114   xw

0015.0)0147.0(11.04224   xw

0015.0)0147.0()1(1.0)1( 44  



 At last, we update all weights and threshold: 

5038 . 0 0038 . 0 5 . 0 13 13 13 
      w w w 

8985 . 0 0015 . 0 9 . 0 14 14 14 
      w w w 

4038 . 0 0038 . 0 4 . 0 23 23 23 
      w w w 

9985 . 0 0015 . 0 0 . 1 24 24 24 
      w w w 

2067 . 1 0067 . 0 2 . 1 35 35 35 
        w w w 

0888 . 1 0112 . 0 1 . 1 45 45 45 
      w w w 

7962 . 0 0038 . 0 8 . 0 3 3 3 
         

0985 . 0 0015 . 0 1 . 0 4 4 4 
           

3127 . 0 0127 . 0 3 . 0 5 5 5 
         

 The training process is repeated until the sum of 

squared errors is less than 0.001.   



Learning curve for operation Exclusive-OR 
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Final results of three-layer network learning 
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Network represented by McCulloch-Pitts model 

for solving the Exclusive-OR operation 
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(a) Decision boundary constructed by hidden neuron 3; 

(b) Decision boundary constructed by hidden neuron 4;  

(c) Decision boundaries constructed by the complete 

      three-layer network 
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Accelerated learning in multilayer 

neural networks 

 A multilayer network learns much faster when the 

sigmoidal activation function is represented by a 

hyperbolic tangent: 

 

 

 

 where a and b are constants. 
  

 Suitable values for a and b are:  

 a = 1.716 and b = 0.667 

a
e

a
Y

bX

htan 
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 We also can accelerate training by including a 

momentum term in the delta rule: 

 

 

 where  is a positive number (0    1) called the 

momentum constant.  Typically, the momentum 

constant is set to 0.95. 

  

 This equation is called the generalised delta rule. 

)()()1()( ppypwpw kjjkjk  

Accelerated learning in multilayer 

neural networks 



Learning with momentum for operation Exclusive-OR 
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Learning with adaptive learning rate 

To accelerate the convergence and yet avoid the  

danger of instability, we can apply two heuristics: 
 

Heuristic 1 

 If the change of the sum of squared errors has the same 

algebraic sign for several consequent epochs, then the 

learning rate parameter, , should be increased. 
 

Heuristic 2 

 If the algebraic sign of the change of the sum of 

squared errors alternates for several consequent 

epochs, then the learning rate parameter, , should be 

decreased. 



 Adapting the learning rate requires some changes 

in the back-propagation algorithm.   

 If the sum of squared errors at the current epoch 

exceeds the previous value by more than a 

predefined ratio (typically 1.04), the learning rate 

parameter is decreased (typically by multiplying 

by 0.7) and new weights and thresholds are 

calculated.   

 If the error is less than the previous one, the 

learning rate is increased (typically by multiplying 

by 1.05). 



Learning with adaptive learning rate 
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Learning with momentum and adaptive learning rate 
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Accelerated learning in multilayer 

neural networks 

 • Back propagation using gradient descent often converges very slowly 
or not at all.  

 

• On large-scale problems its success depends on user-specified learning 
rate and momentum parameters.  

 

• Conjugate gradient algorithm is another approach to adjust weight 
values using the gradient during the backward propagation of errors 
through the network.  

 

• Conjugate gradient algorithm takes a more direct path to the optimal set 
of weight values. Usually, conjugate gradient is significantly faster and 
more robust than gradient descent. Conjugate gradient also does not 
require the user to specify learning rate and momentum parameters.  



Accelerated learning in multilayer 
neural networks 

 • The scaled conjugate gradient algorithm compute the optimal step size 

in the search direction without having to perform the computationally 

expensive line search used by the traditional conjugate gradient 

algorithm.  

• Tests performed by Moller show the scaled conjugate gradient 

algorithm converging up to twice as fast as traditional conjugate 

gradient and up to 20 times as fast as backpropagation using gradient 

descent.  

• Moller’s tests also showed that scaled conjugate gradient failed to 

converge less often than traditional conjugate gradient or 

backpropagation using gradient descent.  



Limiting network complexity 



Number of Hidden Layer 



Limiting network complexity 



Tricks of the trade 



Tricks of the trade 



Tricks of the trade 



Support Vector 
Machines  

 

 



 Linear Classifiers 
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f(x,w,b) = sign(w. x - b) 

How would you 
classify this data? 
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 Linear Classifiers 
f          x 
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yest 

denotes +1 
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How would you 
classify this data? 



 Linear Classifiers 
f          x 

 

yest 

denotes +1 

denotes -1 

f(x,w,b) = sign(w. x - b) 

Any of these 
would be fine.. 

 

..but which is 
best? 



Classifier Margin 
f          x 

 

yest 

denotes +1 

denotes -1 

f(x,w,b) = sign(w. x - b) 

Define the margin 
of a linear 
classifier as the 
width that the 
boundary could be 
increased by 
before hitting a 
datapoint. 



Maximum Margin 
f          x 

 

yest 

denotes +1 

denotes -1 

f(x,w,b) = sign(w. x - b) 

The maximum 
margin linear 
classifier is the 
linear classifier 
with the, um, 
maximum margin. 

This is the 
simplest kind of 
SVM (Called an 
LSVM) 

Linear SVM 



Maximum Margin 
f          x 

 

yest 

denotes +1 

denotes -1 

f(x,w,b) = sign(w. x - b) 

The maximum 
margin linear 
classifier is the 
linear classifier 
with the, um, 
maximum margin. 

This is the 
simplest kind of 
SVM (Called an 
LSVM) 

Support Vectors 
are those 
datapoints that 
the margin 
pushes up 
against 

Linear SVM 



Estimate the Margin 

• What is the distance expression for a point x to a 
line wx+b= 0? 

 

denotes +1 

denotes -1 x 
wx +b = 0 
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Estimate the Margin 

• What is the expression for margin? 

 

denotes +1 

denotes -1 wx +b = 0 
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Maximize Margin 

denotes +1 

denotes -1 wx +b = 0 
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• Min-max problem  game problem 



Maximize Margin 
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Maximum Margin Linear Classifier 

• How to solve it? 
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Uh-oh! 

denotes +1 

denotes -1 

This is going to be a problem! 

What should we do? 



Support Vector Machine (SVM) for 
Noisy Data 

• Balance the trade off between 
margin and classification errors 
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Nonlinear SVM - Kernels  
The concept of a kernel mapping function is very powerful.  It allows 

SVM models to perform separations even with very complex 

boundaries such as shown below. 



kernel mapping 
 

• The Kernel Trick  

• Many kernel mapping functions can be used – 
probably an infinite number.  But a few kernel 
functions have been found to work well in for a 
wide variety of applications.  The default and 
recommended kernel function is the Radial Basis 
Function (RBF).  

 



kernel mapping 



Kernel Examples 
• Polynomial 



Kernel Examples 



Nonlinear Kernel (II) 



SVM applications 

• SVMs were originally proposed by Boser, Guyon and Vapnik 
in 1992 and gained increasing popularity in late 1990s. 

• SVMs are currently among the best performers for a number 
of classification tasks ranging from text to genomic data. 

• SVMs can be applied to complex data types beyond feature 
vectors (e.g. graphs, sequences, relational data) by 
designing kernel functions for such data. 

• SVM techniques have been extended to a number of tasks 
such as regression [Vapnik et al. ’97], principal component 
analysis [Schölkopf et al. ’99], etc.  

• Most popular optimization algorithms for SVMs use 
decomposition to hill-climb over a subset of αi’s at a time, 
e.g. SMO [Platt ’99] and  [Joachims ’99] 

•  Tuning SVMs remains a black art:  selecting a specific 
kernel and parameters is usually done in a try-and-see 
manner.  
 



Unsupervised Learning 
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Supervised learning vs. unsupervised learning 

 Supervised learning: discover patterns in the data that relate data 

attributes with a target (class) attribute.  

 These patterns are then utilized to predict the values of the target 

attribute in future data instances.  

 Unsupervised learning: The data have no target attribute.  

 We want to explore the data to find some intrinsic structures in 

them.  
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Clustering 

 Clustering is a technique for finding similarity groups in data, 
called clusters. I.e.,  
 it groups data instances that are similar to (near) each other in one cluster 

and data instances that are very different (far away) from each other into 
different clusters.  

 Clustering is often called an unsupervised learning task as no 
class values denoting an a priori grouping of the data instances are 
given, which is the case in supervised learning.  

 Due to historical reasons, clustering is often considered 
synonymous with unsupervised learning. 
 In fact, association rule mining is also unsupervised 

 This chapter focuses on clustering.  
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An illustration 

 The data set has three natural groups of data points, i.e., 3 natural 

clusters.  
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What is clustering for?  

 Let us see some real-life examples 

 Example 1: groups people of similar sizes together to make 

“small”, “medium” and “large” T-Shirts. 

 Tailor-made for each person: too expensive 

 One-size-fits-all: does not fit all.  

 Example 2: In marketing, segment customers according to their 

similarities 

 To do targeted marketing.  
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What is clustering for? (cont…) 

 Example 3: Given a collection of text documents, we want to 
organize them according to their content similarities, 

 To produce a topic hierarchy 

 In fact, clustering is one of the most utilized data mining 
techniques.  

 It has a long history, and used in almost every field, e.g., medicine, 
psychology, botany, sociology, biology, archeology, marketing, 
insurance, libraries, etc.  

 In recent years, due to the rapid increase of online documents, text 
clustering becomes important.  
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Aspects of clustering 

 A clustering algorithm 

 Partitional clustering 

 Hierarchical clustering 

 … 

 A distance (similarity, or dissimilarity) function 

 Clustering quality 

 Inter-clusters distance  maximized 

 Intra-clusters distance  minimized 

 The quality of a clustering result depends on the algorithm, the 
distance function, and the application. 
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K-means clustering 

 K-means is a partitional clustering algorithm 

 Let the set of data points (or instances) D be  

  {x1, x2, …, xn},  

 where xi = (xi1, xi2, …, xir) is a vector in a real-valued space X  Rr, 

and r is the number of attributes (dimensions) in the data.  

 The k-means algorithm partitions the given data into k clusters.  

 Each cluster has a cluster center, called centroid. 

 k is specified by the user  
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K-means algorithm 

 Given k, the k-means algorithm works as follows:  

1)Randomly choose k data points (seeds) to be the initial centroids, 

cluster centers 

2)Assign each data point to the closest centroid 

3)Re-compute the centroids using the current cluster memberships. 

4)If a convergence criterion is not met, go to 2). 
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K-means algorithm – (cont …) 
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Stopping/convergence criterion  

1. no (or minimum) re-assignments of data points to different 
clusters,  

2. no (or minimum) change of centroids, or  

3. minimum decrease in the sum of squared error (SSE),  

 

 

 

 Ci is the jth cluster, mj is the centroid of cluster Cj (the mean 
vector of all the data points in Cj), and dist(x, mj) is the distance 
between data point x and centroid mj.  
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An example 

+ 
+ 
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An example (cont …) 
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An example distance function 
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A disk version of k-means 

 K-means can be implemented with data on disk 

 In each iteration, it scans the data once. 

 as the centroids can be computed incrementally 

 It can be used to cluster large datasets that do not fit in main 

memory 

 We need to control the number of iterations  

 In practice, a limited is set (< 50). 

 Not the best method. There are other scale-up algorithms, e.g., 

BIRCH.  
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A disk version of k-means (cont …) 
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Strengths of k-means  
 Strengths:  

 Simple: easy to understand and to implement 

 Efficient: Time complexity: O(tkn),  

 where n is the number of data points,  

 k is the number of clusters, and  

 t is the number of iterations.  

 Since both k and t are small. k-means is considered a linear algorithm.  

 K-means is the most popular clustering algorithm. 

 Note that: it terminates at a local optimum if SSE is used. The 

global optimum is hard to find due to complexity.  



159 

Weaknesses of k-means 

 The algorithm is only applicable if the mean is defined.  

 For categorical data, k-mode - the centroid is represented by most 

frequent values.  

 The user needs to specify k. 

 The algorithm is sensitive to outliers 

 Outliers are data points that are very far away from other data 

points.  

 Outliers could be errors in the data recording or some special data 

points with very different values.  
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Weaknesses of k-means: Problems 

with outliers 



161 

Weaknesses of k-means: To deal 

with outliers 

 One method is to remove some data points in the clustering 

process that are much further away from the centroids than other 

data points.  

 To be safe, we may want to monitor these possible outliers over a few 

iterations and then decide to remove them.  

 Another method is to perform random sampling. Since in 

sampling we only choose a small subset of the data points, the 

chance of selecting an outlier is very small.  

 Assign the rest of the data points to the clusters by distance or similarity 

comparison, or classification 
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Weaknesses of k-means (cont …) 

 The algorithm is sensitive to initial seeds. 
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Weaknesses of k-means (cont …) 
 If we use different seeds: good results 

There are some 

methods to help 

choose good seeds 
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Weaknesses of k-means (cont …) 
 The k-means algorithm is not suitable for discovering clusters 

that are not hyper-ellipsoids (or hyper-spheres).  

+ 
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K-means summary 

 Despite weaknesses, k-means is still the most popular algorithm 
due to its simplicity, efficiency and  

 other clustering algorithms have their own lists of weaknesses. 

 No clear evidence that any other clustering algorithm performs 
better in general  

 although they may be more suitable for some specific types of data 
or applications.  

 Comparing different clustering algorithms is a difficult task. No 
one knows the correct clusters! 
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Cluster Evaluation: hard problem 

 The quality of a clustering is very hard to evaluate because 

 We do not know the correct clusters 

 Some methods are used:  

 User inspection 

 Study centroids, and spreads 

 Rules from a decision tree. 

 For text documents, one can read some documents in clusters.  
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Cluster evaluation: ground truth 

 We use some labeled data (for classification) 

 Assumption: Each class is a cluster. 

 After clustering, a confusion matrix is constructed. From the 

matrix, we compute various measurements, entropy, purity, 

precision, recall and F-score.  

 Let the classes in the data D be C = (c1, c2, …, ck). The clustering 

method produces k clusters, which divides D into k disjoint subsets, 

D1, D2, …, Dk.  
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Evaluation measures: Entropy 
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Evaluation measures: purity 
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An example 
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A remark about ground truth evaluation 
 Commonly used to compare different clustering algorithms.  

 A real-life data set for clustering has no class labels.  

 Thus although an algorithm may perform very well on some labeled data 

sets, no guarantee that it will perform well on the actual application data 

at hand.  

 The fact that it performs well on some label data sets does give 

us some confidence of the quality of the algorithm.  

 This evaluation method is said to be based on external data or 

information.  
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Evaluation based on internal 

information 
 Intra-cluster cohesion (compactness): 

 Cohesion measures how near the data points in a cluster are to the 

cluster centroid.  

 Sum of squared error (SSE) is a commonly used measure.  

 Inter-cluster separation (isolation):  

 Separation means that different cluster centroids should be far away 

from one another.  

 In most applications, expert judgments are still the key.  
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Indirect evaluation  
 In some applications, clustering is not the primary task, but used 

to help perform another task.  

 We can use the performance on the primary task to compare 
clustering methods.  

 For instance, in an application, the primary task is to provide 
recommendations on book purchasing to online shoppers.  
 If we can cluster books according to their features, we might be able to 

provide better recommendations.  

 We can evaluate different clustering algorithms based on how well they 
help with the recommendation task.  

 Here, we assume that the recommendation can be reliably evaluated.  



Chapter Summary 

 learning is very important for agents to improve their decision-

making process 

 unknown environments, changes, time constraints 

 most methods rely on inductive learning 

 a function is approximated from sample input-output pairs 

 decision trees are useful for learning deterministic Boolean functions 

  neural networks consist of simple interconnected computational 

elements 

 multi-layer feed-forward networks can learn any function  

 provided they have enough units and time to learn 


