
Adversarial Search &
Games

Artificial Intelligence

ENCS 434

1 Aziz M. Qaroush - Birzeit University

Game Playing and AI

Aziz M. Qaroush - Birzeit University 2

How Does a Computer Play a Game?

Aziz M. Qaroush - Birzeit University 3

Tic-Tac-Toe Game

Aziz M. Qaroush - Birzeit University 4

 Introduction

 Different kinds of games:

Deterministic Chance

Perfect

Information

Chess, Checkers

Go, Othello

Backgammon,

Monopoly

Imperfect

Information
Battleship Bridge, Poker, Scrabble,

 Games with perfect information. No randomness is involved.

 Games with imperfect information. Random factors are part of the

game.

Game Playing: Adversarial Search

5 Aziz M. Qaroush - Birzeit University

Games as Adversarial Search

 many games can be formulated as search problems

 the zero-sum utility function leads to an adversarial situation

 in order for one agent to win, the other necessarily has to lose

 factors complicating the search task

 potentially huge search spaces

 elements of chance

 multi-person games, teams

 time limits

 imprecise rules

6 Aziz M. Qaroush - Birzeit University

Difficulties with Games

 games can be very hard search problems

 yet reasonably easy to formalize
 finding the optimal solution may be impractical

 a solution that beats the opponent is “good enough”

 unforgiving

 a solution that is “not good enough” not only leads to higher costs, but to a loss
to the opponent

 example: chess

 size of the search space
 branching factor around 35

 about 50 moves per player

 about 35100 or 10154 nodes

 about 1040 distinct nodes (size of the search graph)

7 Aziz M. Qaroush - Birzeit University

Single-Person Game

 conventional search problem

 identify a sequence of moves that leads to a winning state

 examples: Solitaire, dragons and dungeons, Rubik’s cube

 little attention in AI

 some games can be quite challenging

 some versions of solitaire

 a heuristic for Rubik’s cube was found by the Absolver

program

8 Aziz M. Qaroush - Birzeit University

 Traditional (single agent) search methods only consider how close the
agent is to the goal state (e.g. best first search).

 In two player games, decisions of both agents have to be taken into

account: a decision made by one agent will affect the resulting search
space that the other agent would need to explore.

 Question: Do we have randomness here since the decision made by the

opponent is NOT known in advance?

 No. Not if all the moves or choices that the opponent can make
are finite and can be known in advance.

Searching in a two player game

9 Aziz M. Qaroush - Birzeit University

To formalize a two player game as a search problem an agent can be
called MAX and the opponent can be called MIN.

Problem Formulation:

 Initial state: board configurations and the player to move.

 Successor function: list of pairs (move, state) specifying legal
moves and their resulting states. (moves + initial state = game tree)

 A terminal test: decide if the game has finished.

 A utility function: produces a numerical value for (only) the
terminal states. Example: In chess, outcome = win/loss/draw, with
values +1, -1, 0 respectively.

 Players need search tree to determine next move.

Searching in a two player game

10 Aziz M. Qaroush - Birzeit University

Partial game tree for Tic-Tac-Toe

• Root node represents the current board

configuration; player must decide

the best single move to make next

• Each level of search nodes in the tree

corresponds to all possible board

configurations for a particular player MAX or

MIN.

• If it is my turn to move, then the root is

labeled a "MAX" node; otherwise it is

labeled a "MIN" node, indicating opponent's

turn.

• Utility values found at the end can be

returned back to their parent nodes.

• Idea: MAX chooses the board with the max

utility value, MIN the minimum.

11 Aziz M. Qaroush - Birzeit University

MiniMax Algorithm

Aziz M. Qaroush - Birzeit University 12

MiniMax Example

4 7 9 6 9 8 8 5 6 7 5 2 3 2 5 4 9 3

terminal nodes: values calculated from the utility function

13 Aziz M. Qaroush - Birzeit University

MiniMax Example

Min

4 7 9 6 9 8 8 5 6 7 5 2 3 2 5 4 9 3

4 7 6 2 6 3 4 5 1 2 5 4 1 2 6 3 4 3

other nodes: values calculated via minimax algorithm

14 Aziz M. Qaroush - Birzeit University

MiniMax Example

Max

Min

4 7 9 6 9 8 8 5 6 7 5 2 3 2 5 4 9 3

4 7 6 2 6 3 4 5 1 2 5 4 1 2 6 3 4 3

7 6 5 5 6 4

15 Aziz M. Qaroush - Birzeit University

MiniMax Example

Max

Min

Min

4 7 9 6 9 8 8 5 6 7 5 2 3 2 5 4 9 3

4 7 6 2 6 3 4 5 1 2 5 4 1 2 6 3 4 3

7 6 5 5 6 4

5 3 4

16 Aziz M. Qaroush - Birzeit University

MiniMax Example

Max

Max

Min

Min

4 7 9 6 9 8 8 5 6 7 5 2 3 2 5 4 9 3

4 7 6 2 6 3 4 5 1 2 5 4 1 2 6 3 4 3

7 6 5 5 6 4

5 3 4

5

17 Aziz M. Qaroush - Birzeit University

MiniMax Example

Max

Max

Min

Min

4 7 9 6 9 8 8 5 6 7 5 2 3 2 5 4 9 3

4 7 6 2 6 3 4 5 1 2 5 4 1 2 6 3 4 3

7 6 5 5 6 4

5 3 4

5

moves by Max and countermoves by Min

18 Aziz M. Qaroush - Birzeit University

MiniMax Properties

19 Aziz M. Qaroush - Birzeit University

Pruning

20 Aziz M. Qaroush - Birzeit University

Alpha-Beta Pruning

21 Aziz M. Qaroush - Birzeit University

Alpha-Beta Example 1

Max

Min [-∞, +∞]

5

 we assume a depth-first, left-to-right search as basic strategy

 the range of the possible values for each node are indicated

 initially [-∞, +∞]

 from Max’s or Min’s perspective

 these local values reflect the values of the sub-trees in that node;
the global values α and β are the best overall choices so far for Max or Min

[-∞, +∞]

α best choice for Max ?

β best choice for Min ?

22 Aziz M. Qaroush - Birzeit University

Alpha-Beta Example 2

Max

Min

7

[-∞, 7]

5

 Min obtains the first value from a successor node

[-∞, +∞]

α best choice for Max ?

β best choice for Min 7

23 Aziz M. Qaroush - Birzeit University

Alpha-Beta Example 3

Max

Min

7 6

[-∞, 6]

5

 Min obtains the second value from a successor node

[-∞, +∞]

α best choice for Max ?

β best choice for Min 6

24 Aziz M. Qaroush - Birzeit University

Alpha-Beta Example 4

Max

Min

7 6 5

5

5 [5, +∞]

α best choice for Max 5

β best choice for Min 5

 Min obtains the third value from a successor node

 this is the last value from this sub-tree, and the exact value is known

 Max now has a value for its first successor node, but hopes that something better
might still come

25 Aziz M. Qaroush - Birzeit University

Alpha-Beta Example 5

Max

Min

7 6 5

5

5

 Min continues with the next sub-tree, and gets a better value

 Max has a better choice from its perspective, however, and will not consider a move in
the sub-tree currently explored by Min

 initially [-∞, +∞]

3

[5, +∞]

α best choice for Max 5

β best choice for Min 3

[-∞, 3]

26 Aziz M. Qaroush - Birzeit University

Alpha-Beta Example 6

Max

Min

7 6 5

5

5

 Min knows that Max won’t consider a move to this sub-tree, and abandons it

 this is a case of pruning, indicated by

3

[5, +∞]

α best choice for Max 5

β best choice for Min 3

[-∞, 3]

27 Aziz M. Qaroush - Birzeit University

Alpha-Beta Example 7

Max

Min

7 6 5 6

5

 Min explores the next sub-tree, and finds a value that is worse than the other nodes at
this level

 if Min is not able to find something lower, then Max will choose this branch, so Min
must explore more successor nodes

3

α best choice for Max 5

β best choice for Min 3

5

[5, +∞]

[-∞, 3] [-∞, 6]

28 Aziz M. Qaroush - Birzeit University

Alpha-Beta Example 8

Max

Min

7 6 5 6

5

 Min is lucky, and finds a value that is the same as the current worst value at this level

 Max can choose this branch, or the other branch with the same value

3

α best choice for Max 5

β best choice for Min 3

5

[5, +∞]

[-∞, 3] [-∞, 5]

5

29 Aziz M. Qaroush - Birzeit University

Alpha-Beta Example 9

Max

Min

7 6 5 6

5

 Min could continue searching this sub-tree to see if there is a value that is less than the
current worst alternative in order to give Max as few choices as possible

 this depends on the specific implementation

 Max knows the best value for its sub-tree

3

α best choice for Max 5

β best choice for Min 3

5

5

[-∞, 3] [-∞, 5]

5

30 Aziz M. Qaroush - Birzeit University

Properties of Alpha-Beta Pruning

 in the ideal case, the best successor node is examined first

 results in O(bd/2) nodes to be searched instead of O(bd)

 alpha-beta can look ahead twice as far as minimax

 in practice, simple ordering functions are quite useful

 assumes an idealized tree model

 uniform branching factor, path length

 random distribution of leaf evaluation values

 transpositions tables can be used to store permutations

 sequences of moves that lead to the same position

 requires additional information for good players

 game-specific background knowledge

 empirical data

32 Aziz M. Qaroush - Birzeit University

Imperfect Decisions

 complete search is impractical for most games

 alternative: search the tree only to a certain depth

 requires a cutoff-test to determine where to stop

 replaces the terminal test

 the nodes at that level effectively become terminal leave nodes

 uses a heuristics-based evaluation function to estimate the

expected utility of the game from those leave nodes

33 Aziz M. Qaroush - Birzeit University

Evaluation Function

 determines the performance of a game-playing program

 must be consistent with the utility function

 values for terminal nodes (or at least their order) must be the

same

 tradeoff between accuracy and time cost

 without time limits, minimax could be used

 should reflect the actual chances of winning

 frequently weighted linear functions are used

 E = w1 f1 + w2 f2 + … + wn fn

 combination of features, weighted by their relevance

34 Aziz M. Qaroush - Birzeit University

Example: Tic-Tac-Toe

 simple evaluation function

E(s) = (rx + cx + dx) - (ro + co + do)

 (number of rows, columns, and diagonals open for MAX) - (number
of rows, columns, and diagonals open for MIN)

 1-ply lookahead

 start at the top of the tree

 evaluate all 9 choices for player 1

 pick the maximum E-value

 2-ply lookahead

 also looks at the opponents possible move
 assuming that the opponents picks the minimum E-value

35 Aziz M. Qaroush - Birzeit University

 E(s12)

 8

- 6

= 2

 E(s13)

 8

- 5

= 3

 E(s14)

 8

- 6

= 2

 E(s15)

 8

- 4

= 4

 E(s16)

 8

- 6

= 2

 E(s17)

 8

- 5

= 3

 E(s18)

 8

- 6

= 2

 E(s19)

 8

- 5

= 3

Tic-Tac-Toe 1-Ply

X X X
X X X

X X X

 E(s11)

 8

- 5

= 3

 E(s0) = Max{E(s11), E(s1n)} = Max{2,3,4} = 4

36 Aziz M. Qaroush - Birzeit University

 E(s2:16)

 5

- 6

= -1

 E(s2:15)

 5

-6

= -1

 E(s28)

 5

- 5

= 0

 E(s27)

 6

- 5

= 1

 E(s2:48)

 5

- 4

= 1

 E(s2:47)

 6

- 4

= 2

 E(s2:13)

 5

- 6

= -1

 E(s2:9)

 5

- 6

= -1

 E(s2:10)

 5

-6

= -1

 E(s2:11)

 5

- 6

= -1

 E(s2:12)

 5

- 6

= -1

 E(s2:14)

 5

- 6

= -1

 E(s25)

 6

- 5

= 1

 E(s21)

 6

- 5

= 1

 E(s22)

 5

- 5

= 0

 E(s23)

 6

- 5

= 1

 E(s24)

4

- 5

= -1

 E(s26)

 5

- 5

= 0

 E(s1:6)

 8

- 6

= 2

 E(s1:7)

 8

- 5

= 3

 E(s1:8)

 8

- 6

= 2

 E(s1:9)

 8

- 5

= 3

 E(s1:5)

 8

- 4

= 4

 E(s1:3)

 8

- 5

= 3

 E(s1:2)

 8

- 6

= 2

 E(s1:1)

 8

- 5

= 3

 E(s2:45)

 6

- 4

= 2

Tic-Tac-Toe 2-Ply

X X X
X X X

X X X

 E(s0) = Max{E(s11), E(s1n)} = Max{2,3,4} = 4

 E(s1:4)

 8

- 6

= 2

X O X
O

X
O

 E(s2:41)

 5

- 4

= 1

 E(s2:42)

 6

- 4

= 2

 E(s2:43)

 5

- 4

= 1

 E(s2:44)

 6

- 4

= 2

 E(s2:46)

 5

- 4

= 1
O X

O
X

O
X

O
X X

O

X
O

X

O

X

O

X X
O

X O O X X

O

X
O

X

O

X

O

X
O

X
O

X O X O X

O

O

37 Aziz M. Qaroush - Birzeit University

31

Checkers Case Study

 initial board configuration

 Black single on 20

 single on 21

 king on 31

 Red single on 23

 king on 22

 evaluation function

E(s) = (5 x1 + x2) - (5r1 + r2)

where

 x1 = black king advantage,

 x2 = black single advantage,

 r1 = red king advantage,

 r2 = red single advantage

1 2 3 4

8 6 5

9 10 11 12

16 14 13

17 18 19 20

24 22 21

25 26 27 28

32 30 29

7

15

23

38 Aziz M. Qaroush - Birzeit University

1

1

1 1 1 2

2

6

6

1

1

1 1 1 1 1

1

1 1 1 1 6

6

0

0

0 0 -4

-4

-4 -8

-8

-8 -8

-8

-8

1 0 -8 -8

1

2
0

 -
>

 1
6

31

1 2 3 4

8 6 5

9 10 11 12

16 14 13

17 18 19 20

24 22 21

25 26 27 28

32 30 29

7

15

23

MAX

MAX

MIN

Checkers MiniMax Example

39 Aziz M. Qaroush - Birzeit University

Checkers Alpha-Beta Example

1

1

1 1 1 2

2

6

6

1

1

1 1 1 1 1

1

1 1 1 1 6

6

0

0

0 0 -4

-4

-4 -8

-8

-8 -8

-8

-8

1 0 -4 -8

1

20
 -

>
 1

6

31

1 2 3 4

8 6 5

9 10 11
1

2

16 14 13

17 18 19
2

0

24 22 21

25 26 27
2

8

32 30 29

7

15

23

α 1

β 6

MAX

MAX

MIN

40 Aziz M. Qaroush - Birzeit University

Checkers Alpha-Beta Example

1

1

1 1 1 2

2

6

6

1

1

1 1 1 1 1

1

1 1 1 1 6

6

0

0

0 0 -4

-4

-4 -8

-8

-8 -8

-8

-8

1 0 -4 -8

1

20
 -

>
 1

6

31

1 2 3 4

8 6 5

9 10 11
1

2

16 14 13

17 18 19
2

0

24 22 21

25 26 27
2

8

32 30 29

7

15

23

α 1

β 1

MAX

MAX

MIN

41 Aziz M. Qaroush - Birzeit University

Checkers Alpha-Beta Example

1

1

1 1 1 2

2

6

6

1

1

1 1 1 1 1

1

1 1 1 1 6

6

0

0

0 0 -4

-4

-4 -8

-8

-8 -8

-8

-8

1 0 -4 -8

1

20
 -

>
 1

6

31

1 2 3 4

8 6 5

9 10 11
1

2

16 14 13

17 18 19
2

0

24 22 21

25 26 27
2

8

32 30 29

7

15

23

α 1

β 1

β− cutoff: no need to

examine further branches

MAX

MAX

MIN

42 Aziz M. Qaroush - Birzeit University

Checkers Alpha-Beta Example

1

1

1 1 1 2

2

6

6

1

1

1 1 1 1 1

1

1 1 1 1 6

6

0

0

0 0 -4

-4

-4 -8

-8

-8 -8

-8

-8

1 0 -4 -8

1

20
 -

>
 1

6

31

1 2 3 4

8 6 5

9 10 11
1

2

16 14 13

17 18 19
2

0

24 22 21

25 26 27
2

8

32 30 29

7

15

23

α 1

β 1
MAX

MAX

MIN

43 Aziz M. Qaroush - Birzeit University

Checkers Alpha-Beta Example

1

1

1 1 1 2

2

6

6

1

1

1 1 1 1 1

1

1 1 1 1 6

6

0

0

0 0 -4

-4

-4 -8

-8

-8 -8

-8

-8

1 0 -4 -8

1

20
 -

>
 1

6

31

1 2 3 4

8 6 5

9 10 11
1

2

16 14 13

17 18 19
2

0

24 22 21

25 26 27
2

8

32 30 29

7

15

23

α 1

β 1

β− cutoff: no need to

examine further branches

MAX

MAX

MIN

44 Aziz M. Qaroush - Birzeit University

Checkers Alpha-Beta Example

1

1

1 1 1 2

2

6

6

1

1

1 1 1 1 1

1

1 1 1 1 6

6

0

0

0 0 -4

-4

-4 -8

-8

-8 -8

-8

-8

1 0 -4 -8

1

20
 -

>
 1

6

31

1 2 3 4

8 6 5

9 10 11
1

2

16 14 13

17 18 19
2

0

24 22 21

25 26 27
2

8

32 30 29

7

15

23

α 1

β 1
MAX

MAX

MIN

45 Aziz M. Qaroush - Birzeit University

Checkers Alpha-Beta Example

1

1

1 1 1 2

2

6

6

1

1

1 1 1 1 1

1

1 1 1 1 6

6

0

0

0 0 -4

-4

-4 -8

-8

-8 -8

-8

-8

1 0 -4 -8

1

20
 -

>
 1

6

31

1 2 3 4

8 6 5

9 10 11
1

2

16 14 13

17 18 19
2

0

24 22 21

25 26 27
2

8

32 30 29

7

15

23

α 1

β 0
MAX

MAX

MIN

46 Aziz M. Qaroush - Birzeit University

Checkers Alpha-Beta Example

1

1

1 1 1 2

2

6

6

1

1

1 1 1 1 1

1

1 1 1 1 6

6

0

0

0 0 -4

-4

-4 -8

-8

-8 -8

-8

-8

1 0 -4 -8

1

20
 -

>
 1

6

31

1 2 3 4

8 6 5

9 10 11
1

2

16 14 13

17 18 19
2

0

24 22 21

25 26 27
2

8

32 30 29

7

15

23

α 1

β -4

α− cutoff: no need to

examine further branches

MAX

MAX

MIN

47 Aziz M. Qaroush - Birzeit University

Checkers Alpha-Beta Example

1

1

1 1 1 2

2

6

6

1

1

1 1 1 1 1

1

1 1 1 1 6

6

0

0

0 0 -4

-4

-4 -8

-8

-8 -8

-8

-8

1 0 -4 -8

1

20
 -

>
 1

6

31

1 2 3 4

8 6 5

9 10 11
1

2

16 14 13

17 18 19
2

0

24 22 21

25 26 27
2

8

32 30 29

7

15

23

α 1

β -8
MAX

MAX

MIN

48 Aziz M. Qaroush - Birzeit University

Search Limits

 search must be cut off because of time or space limitations

 strategies like depth-limited or iterative deepening search

can be used

 don’t take advantage of knowledge about the problem

 more refined strategies apply background knowledge

 quiescent search

 cut off only parts of the search space that don’t exhibit big changes in

the evaluation function

49 Aziz M. Qaroush - Birzeit University

Horizon Problem

 moves may have disastrous consequences in the future, but

the consequences are not visible

 the corresponding change in the evaluation function will only

become evident at deeper levels

 they are “beyond the horizon”

 determining the horizon is an open problem without a

general solution

 only some pragmatic approaches restricted to specific games

or situation

50 Aziz M. Qaroush - Birzeit University

Games with Chance

 in many games, there is a degree of unpredictability through

random elements

 throwing dice, card distribution, roulette wheel, …

 this requires chance nodes in addition to the Max and Min

nodes

 branches indicate possible variations

 each branch indicates the outcome and its likelihood

51 Aziz M. Qaroush - Birzeit University

Decisions with Chance

 the utility value of a position depends on the random

element

 the definite minimax value must be replaced by an expected

value

 calculation of expected values

 utility function for terminal nodes

 for all other nodes

 calculate the utility for each chance event

 weigh by the chance that the event occurs

 add up the individual utilities

52 Aziz M. Qaroush - Birzeit University

Chapter Summary

 many game techniques are derived from search methods

 the minimax algorithm determines the best move for a player by

calculating the complete game tree

 alpha-beta pruning dismisses parts of the search tree that are

provably irrelevant

 an evaluation function gives an estimate of the utility of a state

when a complete search is impractical

 chance events can be incorporated into the minimax algorithm by

considering the weighted probabilities of chance events

53 Aziz M. Qaroush - Birzeit University

