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  Introduction 

 Different kinds of games: 

 

 

 

 

 

 

 

 

 

 

Deterministic Chance 

Perfect 

Information 

Chess, Checkers 

Go, Othello 

Backgammon, 

Monopoly 

Imperfect 

Information 
Battleship Bridge, Poker, Scrabble, 

  Games with perfect information. No randomness is involved.  

 

 Games with imperfect information. Random factors are part of the 

game.  

 

Game Playing: Adversarial Search 
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Games as Adversarial Search 

 many games can be formulated as search problems 

 

 the zero-sum utility function leads to an adversarial situation 

 in order for one agent to win, the other necessarily has to lose 

 

 factors complicating the search task 

 potentially huge search spaces 

 elements of chance  

 multi-person games, teams 

 time limits 

 imprecise rules 
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Difficulties with Games 

 games can be very hard search problems 

 yet reasonably easy to formalize 
 finding the optimal solution may be impractical 

 a solution that beats the opponent is “good enough” 

 unforgiving 

 a solution that is “not good enough” not only leads to higher costs, but to a loss 
to the opponent 

 

 example: chess 

 size of the search space 
 branching factor around 35 

 about 50 moves per player 

 about 35100 or 10154 nodes 

 about 1040 distinct nodes (size of the search graph) 
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Single-Person Game 

 conventional search problem 

 identify a sequence of moves that leads to a winning state 

 examples: Solitaire, dragons and dungeons, Rubik’s cube 

 little attention in AI 

 

 some games can be quite challenging 

 some versions of solitaire 

 a heuristic for Rubik’s cube was found by the Absolver 

program 
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 Traditional (single agent) search methods only consider how close the 
agent is to the goal state (e.g. best first search). 

 
 In two player games, decisions of both agents have to be taken into 

account: a decision made by one agent will affect the resulting search 
space that the other agent would need to explore. 

 
 Question: Do we have randomness here since the decision made by the 

opponent is NOT known in advance? 
 

  No. Not if all the moves or choices that the opponent can make 
are finite and can be known in advance.  

 
 

Searching in a two player game 
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To formalize a two player game as a search problem an agent can be 
called MAX and the opponent can be called MIN. 

 

Problem Formulation:  

 

 Initial state: board configurations and the player to move. 

 Successor function: list of pairs (move, state) specifying legal 
moves and their resulting states. (moves + initial state = game tree) 

 A terminal test: decide if the game has finished. 

 A utility function: produces a numerical value for (only) the 
terminal states. Example: In chess, outcome = win/loss/draw, with 
values +1, -1, 0 respectively. 

 

 Players need search tree to determine next move. 

 

Searching in a two player game 
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Partial game tree for Tic-Tac-Toe 

• Root node represents the current board 

configuration; player must decide                          

the best single move to make next  

• Each level of search nodes in the tree 

corresponds to all possible board 

configurations for a particular player MAX or 

MIN. 

• If it is my turn to move, then the root is 

labeled a "MAX" node; otherwise it is 

labeled a "MIN" node, indicating opponent's 

turn. 

• Utility values found at the end can be  

returned back to their parent nodes. 

• Idea: MAX chooses the board with the max 

utility value, MIN the minimum. 
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MiniMax  Algorithm 
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MiniMax Example 

4 7 9 6 9 8 8 5 6 7 5 2 3 2 5 4 9 3 

terminal nodes: values calculated from the utility function 
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MiniMax Example 

Min 

4 7 9 6 9 8 8 5 6 7 5 2 3 2 5 4 9 3 

4 7 6 2 6 3 4 5 1 2 5 4 1 2 6 3 4 3 

other nodes: values calculated via minimax algorithm 
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MiniMax Example 

Max 

Min 

4 7 9 6 9 8 8 5 6 7 5 2 3 2 5 4 9 3 

4 7 6 2 6 3 4 5 1 2 5 4 1 2 6 3 4 3 

7 6 5 5 6 4 
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MiniMax Example 

Max 

Min 

Min 

4 7 9 6 9 8 8 5 6 7 5 2 3 2 5 4 9 3 

4 7 6 2 6 3 4 5 1 2 5 4 1 2 6 3 4 3 

7 6 5 5 6 4 

5 3 4 
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MiniMax Example 

Max 

Max 

Min 

Min 

4 7 9 6 9 8 8 5 6 7 5 2 3 2 5 4 9 3 

4 7 6 2 6 3 4 5 1 2 5 4 1 2 6 3 4 3 

7 6 5 5 6 4 

5 3 4 

5 

17 Aziz M. Qaroush - Birzeit University 



MiniMax Example 

Max 

Max 

Min 

Min 

4 7 9 6 9 8 8 5 6 7 5 2 3 2 5 4 9 3 

4 7 6 2 6 3 4 5 1 2 5 4 1 2 6 3 4 3 

7 6 5 5 6 4 

5 3 4 

5 

moves by Max and countermoves by Min  
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MiniMax Properties 
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Pruning 
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Alpha-Beta Pruning 
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Alpha-Beta Example 1 

Max 

Min [-∞, +∞] 

5 

 we assume a depth-first, left-to-right search as basic strategy 

 the range of the possible values for each node are indicated 

 initially [-∞, +∞] 

 from Max’s or Min’s perspective 

 these local values reflect the values of the sub-trees in that node;  
the global values α and β are the best overall choices so far for Max or Min 

[-∞, +∞] 

α best choice for Max ?  

β best choice for Min ? 
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Alpha-Beta Example 2 

Max 

Min 

7 

[-∞, 7] 

5 

 Min obtains the first value from a successor node 

[-∞, +∞] 

α best choice for Max ?  

β best choice for Min 7 
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Alpha-Beta Example 3 

Max 

Min 

7 6 

[-∞, 6] 

5 

 Min obtains the second value from a successor node 

[-∞, +∞] 

α best choice for Max ?  

β best choice for Min 6 
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Alpha-Beta Example 4 

Max 

Min 

7 6 5 

5 

5 [5, +∞] 

α best choice for Max 5  

β best choice for Min 5 

 Min obtains the third value from a successor node 

 this is the last value from this sub-tree, and the exact value is known 

 Max now has a value for its first successor node, but hopes that something better 
might still come 
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Alpha-Beta Example 5 

Max 

Min 

7 6 5 

5 

5 

 Min continues with the next sub-tree, and gets a better value  

 Max has a better choice from its perspective, however, and will not consider a move in 
the sub-tree currently explored by  Min 

 initially [-∞, +∞] 

3 

[5, +∞] 

α best choice for Max 5  

β best choice for Min 3 

[-∞, 3] 
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Alpha-Beta Example 6 

Max 

Min 

7 6 5 

5 

5 

 Min knows that Max won’t consider a move to this sub-tree, and abandons it 

 this is a case of pruning, indicated by  

3 

[5, +∞] 

α best choice for Max 5  

β best choice for Min 3 

[-∞, 3] 
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Alpha-Beta Example 7 

Max 

Min 

7 6 5 6 

5 

 Min explores the next sub-tree, and finds a value that is worse than the other nodes at 
this level 

 if Min is not able to find something lower, then Max will choose this branch, so Min 
must explore more successor nodes 

3 

α best choice for Max 5  

β best choice for Min 3 

5 

[5, +∞] 

[-∞, 3] [-∞, 6] 
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Alpha-Beta Example 8 

Max 

Min 

7 6 5 6 

5 

 Min is lucky, and finds a value that is the same as the current worst value at this level 

 Max can choose this branch, or the other branch with the same value 

3 

α best choice for Max 5  

β best choice for Min 3 

5 

[5, +∞] 

[-∞, 3] [-∞, 5] 

5 
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Alpha-Beta Example 9 

Max 

Min 

7 6 5 6 

5 

 Min could continue searching this sub-tree to see if there is a value that is less than the 
current worst alternative in order to give Max as few choices as possible 

 this depends on the specific implementation 

 Max knows the best value for its sub-tree  

3 

α best choice for Max 5 

β best choice for Min 3 

5 

5 

[-∞, 3] [-∞, 5] 

5 
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Properties of Alpha-Beta Pruning 

 in the ideal case, the best successor node is examined first 

 results in O(bd/2) nodes to be searched instead of O(bd) 

 alpha-beta can look ahead twice as far as minimax 

 in practice, simple ordering functions are quite useful 

 assumes an idealized tree model 

 uniform branching factor, path length 

 random distribution of leaf evaluation values 

 transpositions tables can be used to store permutations 

 sequences of moves that lead to the same position 

 requires additional information for good players 

 game-specific background knowledge 

 empirical data 
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Imperfect Decisions 

 complete search is impractical for most games 

 alternative: search the tree only to a certain depth 

 requires a cutoff-test to determine where to stop 

 replaces the terminal test 

 the nodes at that level effectively become terminal leave nodes 

 uses a heuristics-based evaluation function to estimate the 

expected utility of the game from those leave nodes 
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Evaluation Function 

 determines the performance of a game-playing program 

 must be consistent with the utility function 

 values for terminal nodes (or at least their order) must be the 

same 

 tradeoff between accuracy and time cost 

 without time limits, minimax could be used 

 should reflect the actual chances of winning 

 frequently weighted linear functions are used 

 E = w1 f1  + w2 f2 + … + wn fn 

 combination of features, weighted by their relevance 
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Example: Tic-Tac-Toe 

 simple evaluation function 

E(s) = (rx + cx + dx) - (ro + co + do) 

 (number of rows, columns, and diagonals open for MAX) - (number 
of rows, columns, and diagonals open for MIN ) 

 

 1-ply lookahead 

 start at the top of the tree 

 evaluate all 9 choices for player 1 

 pick the maximum E-value 

 2-ply lookahead 

 also looks at the opponents possible move 
 assuming that the opponents picks the minimum E-value 
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 E(s12) 

 8 

- 6 

= 2 

 E(s13) 

 8 

- 5 

= 3 

 E(s14) 

 8 

- 6 

= 2 

 E(s15) 

 8 

- 4 

= 4 

 E(s16) 

 8 

- 6 

= 2 

 E(s17) 

 8 

- 5 

= 3 

 E(s18) 

 8 

- 6 

= 2 

 E(s19) 

 8 

- 5 

= 3 

Tic-Tac-Toe 1-Ply 

X X X 
X X X 

X X X 

 E(s11) 

 8 

- 5 

= 3 

   E(s0) = Max{E(s11), E(s1n)} = Max{2,3,4} = 4  
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 E(s2:16) 

 5 

- 6 

= -1 

 E(s2:15) 

 5 

-6 

= -1 

 E(s28) 

 5 

- 5 

= 0 

 E(s27) 

 6 

- 5 

= 1 

 E(s2:48) 

 5 

- 4 

= 1 

 E(s2:47) 

 6 

- 4 

= 2 

 E(s2:13) 

 5 

- 6 

= -1 

 E(s2:9) 

 5 

- 6 

= -1 

 E(s2:10) 

 5 

-6 

= -1 

 E(s2:11) 

 5 

- 6 

= -1 

 E(s2:12) 

 5 

- 6 

= -1 

 E(s2:14) 

 5 

- 6 

= -1 

 E(s25) 

 6 

- 5 

= 1 

 E(s21) 

 6 

- 5 

= 1 

 E(s22) 

 5 

- 5 

= 0 

 E(s23) 

 6 

- 5 

= 1 

 E(s24) 

4 

- 5 

= -1 

 E(s26) 

 5 

- 5 

= 0 

 E(s1:6) 

 8 

- 6 

= 2 

 E(s1:7) 

 8 

- 5 

= 3 

 E(s1:8) 

 8 

- 6 

= 2 

 E(s1:9) 

 8 

- 5 

= 3 

 E(s1:5) 

 8 

- 4 

= 4 

 E(s1:3) 

 8 

- 5 

= 3 

 E(s1:2) 

 8 

- 6 

= 2 

 E(s1:1) 

 8 

- 5 

= 3 

 E(s2:45) 

 6 

- 4 

= 2 

Tic-Tac-Toe 2-Ply 

X X X 
X X X 

X X X 

   E(s0) = Max{E(s11), E(s1n)} = Max{2,3,4} = 4  

 E(s1:4) 

 8 

- 6 

= 2 

X O X 
O 

X 
O 

 E(s2:41) 

 5 

- 4 

= 1 

 E(s2:42) 

 6 

- 4 

= 2 

 E(s2:43) 

 5 

- 4 

= 1 

 E(s2:44) 

 6 

- 4 

= 2 

 E(s2:46) 

 5 

- 4 

= 1 
O X 

O 
X 

O 
X 

O 
X X 

O 

X 
O 

X 

O 

X 

O 

X X 
O 

X O O X X 

O 

X 
O 

X 

O 

X 

O 

X 
O 

X 
O 

X O X O X 

O 

O 
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31 

Checkers Case Study 

 initial board configuration 

 Black   single on 20 

   single on 21 

   king on 31 

 Red  single on 23 

   king on 22 

 evaluation function 

E(s) = (5 x1 + x2) - (5r1 + r2) 

where  

 x1 = black king advantage,  

 x2 = black single advantage, 

  r1 = red king advantage,  

 r2 = red single advantage 

1 2 3 4 

8 6 5 

9 10 11 12 

16 14 13 

17 18 19 20 

24 22 21 

25 26 27 28 

32 30 29 

7 

15 

23 
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1 

1 

1 1 1 2 

2 

6 

6 

1 

1 

1 1 1 1 1 

1 

1 1 1 1 6 

6 

0 

0 

0 0 -4 

-4 

-4 -8 

-8 

-8 -8 

-8 

-8 

1 0 -8 -8 

1 

2
0

 -
>

 1
6
 

31 

1 2 3 4 

8 6 5 

9 10 11 12 

16 14 13 

17 18 19 20 

24 22 21 

25 26 27 28 

32 30 29 

7 

15 

23 

MAX 

MAX 

MIN 

Checkers MiniMax Example 
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Checkers Alpha-Beta Example 

1 

1 

1 1 1 2 

2 

6 

6 

1 

1 

1 1 1 1 1 

1 

1 1 1 1 6 

6 

0 

0 

0 0 -4 

-4 

-4 -8 

-8 

-8 -8 

-8 

-8 

1 0 -4 -8 

1 

20
 -

>
 1

6 

31 

1 2 3 4 

8 6 5 

9 10 11 
1

2 

16 14 13 

17 18 19 
2

0 

24 22 21 

25 26 27 
2

8 

32 30 29 

7 

15 

23 

α  1  

β  6 

MAX 

MAX 

MIN 
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Checkers Alpha-Beta Example 

1 

1 

1 1 1 2 

2 

6 

6 

1 

1 

1 1 1 1 1 

1 

1 1 1 1 6 

6 

0 

0 

0 0 -4 

-4 

-4 -8 

-8 

-8 -8 

-8 

-8 

1 0 -4 -8 

1 

20
 -

>
 1

6 

31 

1 2 3 4 

8 6 5 

9 10 11 
1

2 

16 14 13 

17 18 19 
2

0 

24 22 21 

25 26 27 
2

8 

32 30 29 

7 

15 

23 

α  1  

β  1 

MAX 

MAX 

MIN 
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Checkers Alpha-Beta Example 

1 

1 

1 1 1 2 

2 

6 

6 

1 

1 

1 1 1 1 1 

1 

1 1 1 1 6 

6 

0 

0 

0 0 -4 

-4 

-4 -8 

-8 

-8 -8 

-8 

-8 

1 0 -4 -8 

1 

20
 -

>
 1

6 

31 

1 2 3 4 

8 6 5 

9 10 11 
1

2 

16 14 13 

17 18 19 
2

0 

24 22 21 

25 26 27 
2

8 

32 30 29 

7 

15 

23 

α  1  

β  1 

β− cutoff: no need to 

examine further branches 

MAX 

MAX 

MIN 
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Checkers Alpha-Beta Example 

1 

1 

1 1 1 2 

2 

6 

6 

1 

1 

1 1 1 1 1 

1 

1 1 1 1 6 

6 

0 

0 

0 0 -4 

-4 

-4 -8 

-8 

-8 -8 

-8 

-8 

1 0 -4 -8 

1 

20
 -

>
 1

6 

31 

1 2 3 4 

8 6 5 

9 10 11 
1

2 

16 14 13 

17 18 19 
2

0 

24 22 21 

25 26 27 
2

8 

32 30 29 

7 

15 

23 

α  1  

β  1 
MAX 

MAX 

MIN 
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Checkers Alpha-Beta Example 

1 

1 

1 1 1 2 

2 

6 

6 

1 

1 

1 1 1 1 1 

1 

1 1 1 1 6 

6 

0 

0 

0 0 -4 

-4 

-4 -8 

-8 

-8 -8 

-8 

-8 

1 0 -4 -8 

1 

20
 -

>
 1

6 

31 

1 2 3 4 

8 6 5 

9 10 11 
1

2 

16 14 13 

17 18 19 
2

0 

24 22 21 

25 26 27 
2

8 

32 30 29 

7 

15 

23 

α  1  

β  1 

β− cutoff: no need to 

examine further branches 

MAX 

MAX 

MIN 
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Checkers Alpha-Beta Example 

1 

1 

1 1 1 2 

2 

6 

6 

1 

1 

1 1 1 1 1 

1 

1 1 1 1 6 

6 

0 

0 

0 0 -4 

-4 

-4 -8 

-8 

-8 -8 

-8 

-8 

1 0 -4 -8 

1 

20
 -

>
 1

6 

31 

1 2 3 4 

8 6 5 

9 10 11 
1

2 

16 14 13 

17 18 19 
2

0 

24 22 21 

25 26 27 
2

8 

32 30 29 

7 

15 

23 

α  1  

β  1 
MAX 

MAX 

MIN 
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Checkers Alpha-Beta Example 

1 

1 

1 1 1 2 

2 

6 

6 

1 

1 

1 1 1 1 1 

1 

1 1 1 1 6 

6 

0 

0 

0 0 -4 

-4 

-4 -8 

-8 

-8 -8 

-8 

-8 

1 0 -4 -8 

1 

20
 -

>
 1

6 

31 

1 2 3 4 

8 6 5 

9 10 11 
1

2 

16 14 13 

17 18 19 
2

0 

24 22 21 

25 26 27 
2

8 

32 30 29 

7 

15 

23 

α  1  

β  0 
MAX 

MAX 

MIN 
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Checkers Alpha-Beta Example 

1 

1 

1 1 1 2 

2 

6 

6 

1 

1 

1 1 1 1 1 

1 

1 1 1 1 6 

6 

0 

0 

0 0 -4 

-4 

-4 -8 

-8 

-8 -8 

-8 

-8 

1 0 -4 -8 

1 

20
 -

>
 1

6 

31 

1 2 3 4 

8 6 5 

9 10 11 
1

2 

16 14 13 

17 18 19 
2

0 

24 22 21 

25 26 27 
2

8 

32 30 29 

7 

15 

23 

α  1  

β  -4 

α− cutoff: no need to 

examine further branches 

MAX 

MAX 

MIN 
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Checkers Alpha-Beta Example 

1 

1 

1 1 1 2 

2 

6 

6 

1 

1 

1 1 1 1 1 

1 

1 1 1 1 6 

6 

0 

0 

0 0 -4 

-4 

-4 -8 

-8 

-8 -8 

-8 

-8 

1 0 -4 -8 

1 

20
 -

>
 1

6 

31 

1 2 3 4 

8 6 5 

9 10 11 
1

2 

16 14 13 

17 18 19 
2

0 

24 22 21 

25 26 27 
2

8 

32 30 29 

7 

15 

23 

α  1  

β  -8 
MAX 

MAX 

MIN 
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Search Limits 

 search must be cut off because of time or space limitations 

 strategies like depth-limited or iterative deepening search 

can be used 

 don’t take advantage of knowledge about the problem 

 more refined strategies apply background knowledge 

 quiescent search 

 cut off only parts of the search space that don’t exhibit big changes in 

the evaluation function 
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Horizon Problem 

 moves may have disastrous consequences in the future, but 

the consequences are not visible 

 the corresponding change in the evaluation function will only 

become evident at deeper levels 

 they are “beyond the horizon” 

 determining the horizon is an open problem without a 

general solution 

 only some pragmatic approaches restricted to specific games 

or situation  

50 Aziz M. Qaroush - Birzeit University 



Games with Chance 

 in many games, there is a degree of unpredictability through 

random elements 

 throwing dice, card distribution, roulette wheel, … 

 this requires chance nodes in addition to the Max and Min 

nodes 

 branches indicate possible variations 

 each branch indicates the outcome and its likelihood 
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Decisions with Chance 

 the utility value of a position depends on the random 

element 

 the definite minimax value must be replaced by an expected 

value 

 calculation of expected values 

 utility function for terminal nodes 

 for all other nodes 

 calculate the utility for each chance event 

 weigh by the chance that the event occurs 

 add up the individual utilities 
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Chapter Summary 

 many game techniques are derived from search methods 

 the minimax algorithm determines the best move for a player by 

calculating the complete game tree 

 alpha-beta pruning dismisses parts of the search tree that are 

provably irrelevant  

 an evaluation function gives an estimate of the utility of a state 

when a complete search is impractical 

 chance events can be incorporated into the minimax algorithm by 

considering the weighted probabilities of chance events 
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