Artificial Intelligence ENCS 434

Adversarial Search & Games

Game Playing and AI

Why would game playing be a good problem for AI research?

- \bullet Game-playing is non-trivial
	- Need to display "human-like" intelligence
	- Some games (such as chess) are very complex
	- Requires decision-making within a time-limit
		- More realistic than other search problems
- Games are played in a controlled environment
	- Can do experiments, repeat games, etc
	- Good for evaluating research systems
- Can compare humans and computers directly
	- Can evaluate percentage of wins/losses to quantify performance
- \triangleright All the information is available
	- Human and computer have equal information

How Does a Computer Play a Game?

- \Box A way to play a game is to:
	- Consider all the legal moves you can make
	- Compute the new position resulting from each move
	- Evaluate each resulting position and determine which is best
	- \bullet Make that move
	- Wait for your opponent to move and repeat
- \Box Key problems are:
	- \bullet Representing the "board"
	- Generating all next legal boards
	- \supset Evaluating a position

Tic-Tac-Toe Game

- Tic-Tac-Toe
	- \bullet b ~ 5 legal moves,
	- \bullet d ~ total of 9 moves
	- \bullet 5⁹ = 1,953,125
	- \bullet 9! = 362,880 (Computer goes first)
	- \bullet 8! = 40,320 (Computer goes second)

Game Playing: Adversarial Search

Introduction

Different kinds of games:

- Games with perfect information. No randomness is involved.
- Games with imperfect information. Random factors are part of the game.

Games as Adversarial Search

- many games can be formulated as search problems
- the zero-sum utility function leads to an adversarial situation
	- in order for one agent to win, the other necessarily has to lose
- factors complicating the search task
	- potentially huge search spaces
	- elements of chance
	- multi-person games, teams
	- time limits
	- imprecise rules

Difficulties with Games

- games can be very hard search problems
	- yet reasonably easy to formalize
	- finding the *optimal* solution may be impractical
		- a solution that beats the opponent is "good enough"
	- unforgiving
		- a solution that is "not good enough" not only leads to higher costs, but to a loss to the opponent
- example: chess
	- size of the search space
		- branching factor around 35
		- about 50 moves per player
		- about 35^{100} or 10^{154} nodes
			- about 10^{40} *distinct* nodes (size of the search graph)

Single-Person Game

- conventional search problem
	- identify a sequence of moves that leads to a winning state
	- examples: Solitaire, dragons and dungeons, Rubik's cube
	- little attention in AI
- some games can be quite challenging
	- some versions of solitaire
	- a heuristic for Rubik's cube was found by the Absolver program

Searching in a two player game

- Traditional (single agent) search methods only consider how close the agent is to the goal state (e.g. best first search).
- In two player games, decisions of both agents have to be taken into account: a decision made by one agent will affect the resulting search space that the other agent would need to explore.
- Question: Do we have randomness here since the decision made by the opponent is NOT known in advance?
- \bullet \odot No. Not if *all* the moves or choices that the opponent can make are finite and can be known in advance.

Searching in a two player game

To formalize a two player game as a search problem an agent can be called **MAX** and the opponent can be called **MIN.**

Problem Formulation:

- **Initial state:** board configurations and the player to move.
- **Successor function:** list of pairs (move, state) specifying legal moves and their resulting states. (moves $+$ initial state $=$ game tree)
- **A terminal test:** decide if the game has finished.
- **A utility function:** produces a numerical value for (only) the terminal states. Example: In chess, outcome $=$ win/loss/draw, with values $+1$, -1 , 0 respectively.
- Players need search tree to determine next move.

• **Idea**: MAX chooses the board with the max utility value, MIN the minimum.

Aziz M. Qaroush - Birzeit University

MiniMax Algorithm

- Create start node as a MAX node with current board configuration
- Expand nodes down to some depth of lookahead in the game
- Apply the evaluation function at each of the leaf nodes
- \Box "Back up" values for each of the non-leaf nodes until a value is computed for the root node.
	- At MIN nodes, the backed-up value is the minimum of the values associated with its children.
	- At MAX nodes, the backed-up value is the maximum of the values associated with its children.
- Pick the operator associated with the child node whose backed-up value ⊔ determined the value at the root.

terminal nodes: values calculated from the utility function

other nodes: values calculated via minimax algorithm

MiniMax Properties

Assume all terminal states are at depth d

^S Space complexity?

Depth-first search, so $O(bd)$

^Time complexity?

Given branching factor b, so $O(b^d)$

Time complexity is a major problem! \ast

Computer typically only has a finite amount of time to make a move.

- Direct mini-max also is impractical in practice
- Static Board Evaluator (SBE) function *

Uses heuristics to estimate the value of non-terminal states.

Pruning

Discards parts of the search tree

- Guaranteed not to contain good moves
- Guarantee that the solution is not in that branch or sub-tree
	- If both players make optimal decisions, they will never end up in that part of the search tree
- Use pruning to ignore those branches. ❏

Certain moves are not considered

- Won't result in a better evaluation value than a move further up in the tree
- They would lead to a less desirable outcome
- \Box Applies to moves by both players
	- ∞ (alpha) indicates the best choice for Max so far never decreases
		- Highest Evaluation value seen so far (initialize to -infinity)
	- $\supset \beta$ (beta) indicates the best choice for Min so far never increases
		- Lowest Evaluation value seen so far (initialize to $+i$ nfinity)

Alpha-Beta Pruning

Beta cutoff pruning occurs when maximizing if child's alpha \geq parent's beta Stop expanding children. Why?

Opponent won't allow computer to take this move

 \Box Alpha cutoff pruning occurs when minimizing if parent's alpha \geq child's beta Stop expanding children. Why?

 \supset Computer has a better move than this

α best choice for Max β best choice for Min

- we assume a depth-first, left-to-right search as basic strategy
- the range of the possible values for each node are indicated
	- initially $[-\infty, +\infty]$
	- from Max's or Min's perspective
	- these *local* values reflect the values of the sub-trees in that node; the *global* values α and β are the best overall choices so far for Max or Min

- Min obtains the third value from a successor node
- this is the last value from this sub-tree, and the exact value is known
- Max now has a value for its first successor node, but hopes that something better might still come

- Min continues with the next sub-tree, and gets a better value
- Max has a better choice from its perspective, however, and will not consider a move in the sub-tree currently explored by Min
	- \bullet initially $[-\infty, +\infty]$

this is a case of *pruning*, indicated by

- Min explores the next sub-tree, and finds a value that is worse than the other nodes at this level
- if Min is not able to find something lower, then Max will choose this branch, so Min must explore more successor nodes

- Min is lucky, and finds a value that is the same as the current worst value at this level
- Max can choose this branch, or the other branch with the same value

- Min could continue searching this sub-tree to see if there is a value that is less than the current worst alternative in order to give Max as few choices as possible
	- this depends on the specific implementation
- Max knows the best value for its sub-tree

Properties of Alpha-Beta Pruning

- in the ideal case, the best successor node is examined first
	- results in $O(b^{d/2})$ nodes to be searched instead of $O(b^d)$
	- alpha-beta can look ahead twice as far as minimax
	- in practice, simple ordering functions are quite useful
- assumes an idealized tree model
	- uniform branching factor, path length
	- random distribution of leaf evaluation values
- transpositions tables can be used to store permutations
	- sequences of moves that lead to the same position
- requires additional information for good players
	- game-specific background knowledge
	- empirical data

Imperfect Decisions

- complete search is impractical for most games
- alternative: search the tree only to a certain depth
	- requires a cutoff-test to determine where to stop
		- replaces the terminal test
		- the nodes at that level effectively become terminal leave nodes
	- uses a heuristics-based evaluation function to estimate the expected utility of the game from those leave nodes

Evaluation Function

- determines the performance of a game-playing program
- must be consistent with the utility function
	- values for terminal nodes (or at least their order) must be the same
- tradeoff between accuracy and time cost
	- without time limits, minimax could be used
- should reflect the actual chances of winning
- frequently weighted linear functions are used
	- $E = w_l f_l + w_2 f_2 + \ldots + w_n f_n$
	- \bullet combination of features, weighted by their relevance

Example: Tic-Tac-Toe

simple evaluation function

 $E(s) = (rx + cx + dx) - (ro + co + do)$

(number of rows, columns, and diagonals open for MAX) – (number of rows, columns, and diagonals open for MIN)

- 1-ply lookahead
	- start at the top of the tree
	- evaluate all 9 choices for player 1
	- pick the maximum E-value
- 2-ply lookahead
	- also looks at the opponents possible move
		- assuming that the opponents picks the minimum E-value

Checkers Case Study

- initial board configuration
	- Black single on 20
		-
	- single on 21 king on 31 • Red single on 23 king on 22
	- evaluation function

$$
E(s) = (5 x_1 + x_2) - (5r_1 + r_2)
$$

where

- x_1 = black king advantage,
- x_2 = black single advantage,
- r_1 = red king advantage,
- r_2 = red single advantage

Search Limits

- search must be cut off because of time or space limitations
- strategies like depth-limited or iterative deepening search can be used
	- don't take advantage of knowledge about the problem
- more refined strategies apply background knowledge
	- quiescent search
		- cut off only parts of the search space that don't exhibit big changes in the evaluation function

Horizon Problem

- moves may have disastrous consequences in the future, but the consequences are not visible
	- the corresponding change in the evaluation function will only become evident at deeper levels
		- they are "beyond the horizon"
- determining the horizon is an open problem without a general solution
	- only some pragmatic approaches restricted to specific games or situation

Games with Chance

- in many games, there is a degree of unpredictability through random elements
	- throwing dice, card distribution, roulette wheel, ...
- this requires *chance nodes* in addition to the Max and Min nodes
	- branches indicate possible variations
	- each branch indicates the outcome and its likelihood

Decisions with Chance

- the utility value of a position depends on the random element
	- the definite minimax value must be replaced by an expected value
- calculation of expected values
	- utility function for terminal nodes
	- for all other nodes
		- calculate the utility for each chance event
		- weigh by the chance that the event occurs
		- add up the individual utilities

Chapter Summary

- many game techniques are derived from search methods
- the minimax algorithm determines the best move for a player by calculating the complete game tree
- alpha-beta pruning dismisses parts of the search tree that are provably irrelevant
- an evaluation function gives an estimate of the utility of a state when a complete search is impractical
- chance events can be incorporated into the minimax algorithm by considering the weighted probabilities of chance events