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 Informed Search 

best-first search 

search with heuristics 

memory-bounded search 

iterative improvement search 

local search and optimization 

 

 



Improving Search Methods 

 make algorithms more efficient 

 avoiding repeated states 

 utilizing memory efficiently 

 

 use additional knowledge about the problem 

 properties (“shape”) of the search space 

 more interesting areas are investigated first 

 pruning of irrelevant areas 

 areas that are guaranteed not to contain a solution can be discarded 
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Informed Search 

 relies on additional knowledge about the problem or domain 

 frequently expressed through heuristics (“rules of thumb”) 

 A Heuristic is a function that, when applied to a state, returns a 
number that tells us approximately how far the state is from  the 
goal state.  

 

 used to distinguish more promising paths towards a goal 

 may be mislead, depending on the quality of the heuristic 

 

 in general, performs much better than uninformed search 

 but frequently still exponential in time and space for realistic 
problems 
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Heuristic Functions 

 A heuristic function is a function f(n) that gives an estimation on the “cost” of 
getting from node n to the goal state – so that the node with the least cost 
among all possible choices can be selected for expansion first. 
 
 
 
 
 
 
 

 Three approaches to defining f: 
 
 f measures the value of the current state (its “goodness”) 

 
 f measures the estimated cost of getting to the goal from the current state: 
  f(n) = h(n) where h(n) = an estimate of the cost to get from n to a goal 
 

 f measures the estimated cost of getting to the goal state from the current state and the 
cost of the existing path to it.  Often, in this case, we decompose f: 
  f(n) = g(n) + h(n) where g(n) = the cost to get to n (from initial state) 
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Approach 1: f  Measures the Value of the 

Current State 

 Usually the case when solving optimization problems 

  Finding a state such that the value of the metric f is optimized 

 

 Often, in these cases, f could be a weighted sum of a set of component 

values: 

 

 N-Queens 

  Example: the number of queens under attack … 
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Approach 2: f  Measures the Cost to the 

Goal 

A state X would be better than a state Y if the estimated cost of 

getting from X to the goal is lower than that of Y – because X 

would be closer to the goal than Y 

 

• 8–Puzzle  

h1: The number of misplaced tiles 

(squares with number). 

h2: The sum of the distances of the tiles 

from their goal positions. 
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Approach 3: f measures the total cost of the 

solution path (Admissible Heuristic Functions) 

 A heuristic function f(n) = g(n) + h(n) is admissible if h(n) never 
overestimates the cost to reach the goal. 

 Admissible heuristics are “optimistic”: “the cost is not that much …” 

 

 However, g(n) is the exact cost to reach node n from the initial state. 

 

 Therefore, f(n) never over-estimate the true cost to reach the goal state 
through node n. 

 

 Theorem: A search is optimal if h(n) is admissible. 

 I.e. The search using h(n) returns an optimal solution. 

 

 Given h2(n) > h1(n) for all n, it’s always more efficient to use h2(n). 

 h2 is more realistic than h1 (more informed), though both are optimistic. 

Aziz M. Qaroush - Birzeit University 



9 

Traditional informed search strategies 

 Greedy Best first search 

 “Always chooses the successor node with the best f value” 

where f(n) = h(n) 

 We choose the one that is nearest to the final state among all 

possible choices 

 

 A* search 

 Best first search using an “admissible” heuristic function f 

that takes into account the current cost g 

 Always returns the optimal solution path 
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Best-First Search 
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Greedy Best-First Search 

 minimizes the estimated cost to a goal 

 expand the node that seems to be closest to a goal 

 utilizes a heuristic function as evaluation function 

 f(n) = h(n) = estimated cost from the current node to a goal 

 heuristic functions are problem-specific 

 often straight-line distance for route-finding and similar problems 

 often better than depth-first, although worst-time 

complexities are equal or worse (space) 

Completeness Time Complexity Space Complexity Optimality

no bm bm no

b: branching factor, d: depth of the solution, m: maximum depth of the search tree, l: depth limit

function GREEDY-SEARCH(problem) returns solution 

 
return BEST-FIRST-SEARCH(problem, h) 
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Greedy Search 
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Greedy Search: Tree Search 
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Greedy Search: Tree Search 
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Greedy Search: Tree Search 
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Greedy Search: Tree Search 
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Greedy Search: Tree Search 
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Path cost(A-E-F-I) = 253 + 178 + 0 = 431 

dist(A-E-F-I) = 140 + 99 + 211 = 450 
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Greedy Search: Optimal ? 
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Greedy Search: Complete ? 
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Greedy Search: Tree Search 
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Greedy Search: Tree Search 
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Greedy Search: Tree Search 
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Greedy Search: Tree Search 
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Greedy Search: Tree Search 
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Greedy Search: Tree Search 
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Greedy Best-First Search: 8-Puzzle Example 
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Greedy Search: Time and Space Complexity ? 
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• Greedy search is not optimal. 

• Greedy search is incomplete 

without systematic checking of 

repeated states. 

• In the worst case, the Time and 

Space Complexity of Greedy 

Search are both O(bm) 

Where b is the branching factor and m 

the maximum path length 
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A* Search 
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A* Algorithm 
1.   Search queue Q is empty. 

2.   Place the start state s in Q with f  value h(s). 

3.   If Q is empty, return failure. 

4.   Take node n from Q with lowest f value. 

      (Keep Q sorted by f  values and pick the first element). 

5.   If n is a goal node, stop and return solution. 

6.   Generate successors of node n. 

7.   For each successor n’ of n do: 

a) Compute f(n’) = g(n) + cost(n,n’) + h(n’). 

b) If n’ is new (never generated before), add n’ to Q.  

c) If node n’ is already in Q with a higher f value, replace it with current 
f(n’) and place it in sorted order in Q.  

End for 

8.   Go back to step 3. 
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A* Search 

f(n) = g(n) + h (n) 

g(n): is the exact cost to reach node n from the initial state. 
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A* Search: Tree Search 

A Start 
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A* Search: Tree Search 
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A* Search: Tree Search 
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A* Search: Tree Search 
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A* Search: Tree Search 
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A* Search: Tree Search 
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A* Search: Tree Search 
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A* Search: Tree Search 
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A* Search: h not admissible ! 
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f(n) = g(n) + h (n) – (H-I) Overestimated 

g(n): is the exact cost to reach node n from the initial state. 

 

State Heuristic: h(n) 
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h() overestimates the cost to reach the goal state  
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A* Search: Tree Search 

A Start 
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A* Search: Tree Search 
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A* Search: Tree Search 
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A* Search: Tree Search 
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A* Search: Tree Search 
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A* Search: Tree Search 
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A* Search: Tree Search 
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A* Search: Tree Search 
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A* Search: Tree Search 

A 

B C E 

F 

99 

G 

H 

80 

Start 

97 

75 118 
140 

[393] [449] 
[447] 

[417] [413] 

[455] Goal I [450] 

D [473] 

A* not optimal !!! 
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8-Puzzle Example: A* Search 
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A* Search: Analysis 

A 

B 

D 

C 

E 

F 

I 

99 

211 

G 

H 

80 

Start 

Goal 

97 

101 

75 118 

111 

140 

•A* is complete except if there is an 

infinity of nodes with f < f(G). 

•A* is optimal if heuristic h is 

admissible. 

•Time complexity depends on the 

quality of heuristic but is still 

exponential. 

•For space complexity, A* keeps all 

nodes in memory. A* has worst case 

O(bd) space complexity, but an 

iterative deepening version is possible 

(IDA*). 
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A* Properties 

 the value of f never decreases along any path starting from 

the initial node 

 also known as monotonicity of the function 

 almost all admissible heuristics show monotonicity 

 those that don’t can be modified through minor changes 

 

 this property can be used to draw contours 

 regions where the f-cost is below a certain threshold 

 with uniform cost search (h = 0), the contours are circular 

 the better the heuristics h, the narrower the contour around 

the optimal path 
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A* Snapshot with Contour f=11 
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A* Snapshot with Contour f=13 
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Optimality of A* 

 A* will find the optimal solution 

 the first solution found is the optimal one 

 

 A* is optimally efficient 

 no other algorithm is guaranteed to expand fewer nodes than A*  

 

 A* is not always “the best” algorithm 

 optimality refers to the expansion of nodes 

 other criteria might be more relevant 

 it generates and keeps all nodes in memory 

 improved in variations of A* 
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Complexity of A* 

 the number of nodes within the goal contour search space is 

still exponential 

 with respect to the length of the solution 

 better than other algorithms, but still problematic 

 

 frequently, space complexity is more severe than time 

complexity 

 A* keeps all generated nodes in memory 
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Improving A*: Memory-bounded Heuristic Search 
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Iterative deepening A* 
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IDA* Algorithm 

 In the first iteration, we determine a “f-cost limit” – cut-
off value  
f(n0) = g(n0) + h(n0) = h(n0), where n0 is the start node. 
 

 We expand nodes using the depth-first algorithm and 
backtrack whenever f(n) for an expanded node n exceeds the 
cut-off value. 

 

 If this search does not succeed, determine the lowest f-
value among the nodes that were visited but not expanded. 

 

 Use this f-value as the new limit value – cut-off value 
and do another depth-first search. 

 

 Repeat this procedure until a goal node is found. 

Aziz M. Qaroush - Birzeit University 58 



59 

8-Puzzle 
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8-Puzzle 
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Simple Recursive Best-First Search 

71 Aziz M. Qaroush - Birzeit University 



SRBFS example with non-monotonic cost 

function  

Expand the 

root and 

compute  the 

costs of the 

children 

5 

1 2 2 
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SRBFS example with non-monotonic cost 

function  

Expand the 

root and 

compute  the 

costs of the 

children 
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Expand the right child , 

evaluate grandchildren. 

The recursive call 

terminates and return 

the minimum value of 

children 
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SRBFS example with non-monotonic cost 

function  

Expand the 

root and 

compute  the 

costs of the 

children 
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Expand the right child , 

evaluate grandchildren. 

The recursive call 

terminates and return 

the minimum value of 

children 

 

5 

3 2 
3 

The backed-

up value of 3 

is stored as 

the new 

value of the 

right child 

74 Aziz M. Qaroush - Birzeit University 



SRBFS -The Algorithm 
 

SRBFS ( node: N ,bound B) 

IF f( N) > B RETURN f(n) 

IF N is a goal, EXIT algorithm 

IF N has no children, RETURN infinity 

FOR each child Ni of N, F[i]  := f(Ni) 

 sort Ni and F[i] in increasing order of F[i]  

IF only one child, F[2] = infinity 

WHILE (F[1]  B and f[1] < infinity) 

 F[1]  := SRBFS (N1, MIN(B, F[2])) 

 insert N1 and F[1] in sorted order 

RETURN F[1] 
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Simplified Memory-Bounded A* (SMA*) 
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Simplified Memory-bounded A* (Cont.) 

Aziz M. Qaroush - Birzeit University 



78 

A A 

B 

A 

B G 

A 

G 

H 

A 

G 

I 

A 

B G 

A 

B 

C 

A 

B 

D 

12 12 

15 

12 

15 
13 

13(15) 

13 

18(∞) 

15(15) 

24(∞) 

24 

24 15 

15 15(24) 

15 

25 ∞  

20(24) 

20(∞) 

20 

Simplified Memory-bounded A* (Cont.) 
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Simplified Memory-bounded A* Example 
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Simplified Memory-bounded A* Example 

Aziz M. Qaroush - Birzeit University 80 



Simplified Memory-bounded A* Example 
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Simplified Memory-bounded A* Example 
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Simplified Memory-bounded A* Example 
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Simplified Memory-bounded A* Example 
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Simplified Memory-bounded A* Example 
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SMA*: Properties 
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Partial Searching 
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Local Search and Optimization 
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Local Search Methods 

 Applicable when seeking Goal State & don't care how to get 
there. E.g., 

 
 N-queens,  
 map coloring,  
 finding shortest/cheapest round trips (TSP, VRP) 

 finding models of propositional formulae (SAT) 

 VLSI layout, scheduling, time-tabling, . . .  
 resource allocation 
 protein structure prediction 
 ………….. 
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Example: 4 Queen 

 States: 4 queens in 4 columns (256 states)  

 Operators: move queen in column  

 Goal test: no attacks  

 Evaluation: h(n) = number of attacks  
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Example: Graph Coloring 

1. Start with random coloring of nodes  

2. Change color of one node to reduce # of conflicts  

3. Repeat 2  
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Example: Traveling Salesperson Problem (TSP) 
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Example: Traveling Salesperson Problem (TSP) 
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Local search 

 Key idea (surprisingly simple): 

 
1. Select (random) initial state (generate 

an initial guess)  
 

2. Make local modification to improve 
current state (evaluate current state 
and move to other states)  
 

3. Repeat Step 2 until goal state found (or 
out of time)  
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Local Search Algorithms 

 Basic idea: Local search algorithms operate on a single state – current 
state – and move to one of its neighboring states. 

 The principle: keep a single "current" state, try to improve it 

  Therefore: Solution path needs not be maintained. Hence, the search is 
“local”. 

 Two advantages 

 Use little memory. 

 More applicable in searching large/infinite search space. They find 
reasonable solutions in this case. 

 Algorithms 
 Hill Climbing 

 Local Beam Search 

 Genetics algorithms 
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Hill-Climbing Search 
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Hill-Climbing Search 
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8 Queens Example 
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8 Puzzle Example 
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Drawbacks of Hill Climbing 
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Drawbacks of Hill Climbing 
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Local Beam Search 
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Local Beam Search: Example 
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Local Beam Search: Example 
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Genetic Algorithms 

 An algorithm is a set of instructions that is repeated to solve a 
problem. 

 A genetic algorithm conceptually follows steps inspired by the 
biological processes of evolution. 

 Genetic Algorithms follow the idea of SURVIVAL OF THE 
FITTEST- Better and better solutions evolve from previous 
generations until a near optimal solution is obtained. 

 A genetic algorithm is an iterative procedure that represents its 
candidate solutions as strings of genes called chromosomes. 

 Genetic Algorithms are often used to improve the performance of 
other AI methods such as expert systems or neural networks. 
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Genetic Algorithms: Basic Terminology 
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Genetic Algorithms: Basic Terminology 

 Before we can apply Genetic Algorithm to a problem, 
we need to answer: 
 

- How is an individual represented? 

- What is the fitness function? 

- How are individuals selected? 

- How do individuals reproduce? 
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Representing an Individual 

 An individual is data structure representing the “genetic 

structure” of a possible solution. 

 Genetic structure consists of an alphabet (usually 0,1) 
 

 Binary Encoding 
 Most Common – string of bits, 0 or 1. 

 Chrom: A = 1 0 1 1 0 0 1 0 1 1 

    Chrom: B = 1 1 1 1 1 1 0 0 0 0 

 Gives you many possibilities 

 Example Problem: Knapsack problem 

 The problem: there are things with given value and size. The knapsack 
has given capacity. Select things to maximize the values. 

 Encoding: Each bit says, if the corresponding thing is in the knapsack 
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Representing an Individual 

 Permutation Encoding 

 Used in “ordering problems” 

 Every chromosome is a string of numbers, which represents 
number is a sequence. 

Chrom A: 1 5 3 2 6 4 7 9 8 

Chrom B: 8 5 7 7 2 3 1 4 9 

 Example: Travelling salesman problem 

 The problem: cities that must be visited. 

 Encoding says order of cities in which salesman willl visit. 
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How offspring are produced 

 Reproduction- Through reproduction, genetic algorithms produce new 

generations of improved solutions by selecting parents with higher 

fitness ratings or by giving such parents a greater probability of being 

contributors and by using random selection 

 Crossover- Many genetic algorithms use strings of binary symbols for 

chromosomes, as in our Knapsack example, to represent solutions. 

Crossover means choosing a random position in the string (say, after 2 

digits) and exchanging the segments either to the right or to the left of 

this point with another string partitioned similarly to produce two new 

off spring. 

 Mutation- Mutation is an arbitrary change in a situation. Sometimes it is 

used to prevent the algorithm from getting stuck. The procedure changes 

a 1 to a 0 to a 1 instead of duplicating them. This change occurs with a 

very low probability (say 1 in 1000) 
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Crossover Example 1 

 Parent A 011011 

 Parent B 101100 

 “Mate the parents by splitting each number as shown between the 

second and third digits (position is randomly selected) 

   01*1011  10*1100 

 Now combine the first digits of A with the last digits of B, and the first 
digits of B with the last digits of A 

 This gives you two new offspring 

   011100   101011 

 If these new solutions, or offspring, are better solutions than the parent 
solutions, the system will keep these as more optimal solutions and 
they will become parents. This is repeated until some condition (for 
example number of populations or improvement of the best solution) 
is satisfied.  
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Crossover Example 2 
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Mutation Example 
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1  0  1  0  1  1  1 

1  1  0  0  0  1  1 

Parent 1 

Parent 2 

1  0  1  0  0  1  1 

1  1  0  0  1  1  0 

Child 1 

Child 2 Mutation 

Genetic Algorithm Operators 

Mutation and Crossover 
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Selection Criteria 

 Fitness proportionate selection, rank selection methods.   

 Fitness proportionate – each individual, I, has the probability 

fitness(I)/sum_over_all_individual_j Fitness(j), where Fitness(I) is 

the fitness function value for individual I. 

 Represents a rank of the “representation” 

 It is usually a real number. 

 E.g. the length of the route in the traveling salesperson problem 

is a good measure, because the shorter the route, the better the 

solution 

 

 Rank selection – sorts individual by fitness and the probability 

that an individual will be selected is proportional to its rank in 

this sorted list. 
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Outline of the Basic Genetic Algorithm  

1. [Start] Generate random population of n 

chromosomes (suitable solutions for the problem)  

2. [Fitness] Evaluate the fitness f(x) of each 

chromosome x in the population  

3. [New population] Create a new population by 

repeating following steps until the new population is 

complete  

4. [Selection] Select two parent chromosomes  

 from a population according to their fitness (the 
better fitness, the bigger chance to be selected) The 
idea is to choose the better parents.  
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Outline of the Basic Genetic Algorithm  

5. [Crossover] With a crossover probability cross over the 
parents to form a new offspring (children). If no crossover 
was performed, offspring is an exact copy of parents.  

6. [Mutation] With a mutation probability mutate new 
offspring at each locus (position in chromosome).  

7. [Accepting] Place new offspring in a new 

  population  

8. [Replace] Use new generated population for a further run 
of algorithm  

9. [Test] If the end condition is satisfied, stop, and return the 
best solution in current population  

10. [Loop] Go to step 2  
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Flow Diagram of the Genetic Algorithm Process 

Describe  

Problem 

Generate  

Initial 

Solutions 

Test:  is initial 

solution good enough? 
Stop 

Select parents  

to reproduce 

Apply crossover process  

and create a set of offspring 

 

Apply random mutation 

Step 1 

 Step 2 

 Step 3 

 Step 4 

 Step 5 

Yes 

No 
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Example: The Knapsack Problem 

 You are going on an overnight hike and have a number of 
items that you could take along.  

 Each item has a weight (in pounds) and a benefit or value 
to you on the hike(for measurements sake let’s say, in US 
dollars), and you can take one of each item at most.  

 There is a capacity limit on the weight you can carry 
(constraint).  

 This problem only illustrates one constraint, but in 
reality there could be many constraints including 
volume, time, etc. 
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 Item:  1   2   3   4   5   6   7 

 Benefit: 5   8   3   2   7   9   4 

 Weight: 7   8   4 10   4   6   4 

 Knapsack holds a maximum of 22 pounds  

 Fill it to get the maximum benefit 

 Solutions take the form of a string of 1’s and 0’s. Also known 

as strings of genes called Chromosomes  

 0101010 

 1101100 

 0100111 

 

GA Example: The Knapsack Problem 

148 Aziz M. Qaroush - Birzeit University 



Example: The Knapsack Problem 

 We represent a solution as a string of seven 1s and 0s and the 
fitness function as the total benefit, which is the sum of the 
gene values in a string solution times their representative 
benefit coefficient. 

 The method generates a set of random solutions (initial 
parents), uses total benefit as the fitness function and selects the 
parents randomly to create generations of offspring by 
crossover and mutation. 

 Possible solutions generated by the system using Reproduction, 
Crossover, or Mutations 

 0101010 

 1101100 

 0100110 
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Knapsack Example 

Solution 1 

 Benefit  8 + 2 + 9 = 19 

 Weight  8 + 10 + 6 = 24 

Item 1 2 3 4 5 6 7 

Solution 0 1 0 1 0 1 0 

Benefit 5 8 3 2 7 9 4 

Weight 7 8 4 10 4 6 4 
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Knapsack Example 

Solution 2 

 Benefit 5 + 8 + 7 = 20 

 Weight 7 + 8 + 4 = 19 

Item 1 2 3 4 5 6 7 

Solution 1 1 0 0 1 0 0 

Benefit 5 8 3 2 7 9 4 

Weight 7 8 4 10 4 6 4 
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Knapsack Example 

Solution 3 

 Benefit 8 + 7 + 9 + 4 = 28 

 Weight 8 + 4 + 6 + 4 = 22 

Item 1 2 3 4 5 6 7 

Solution 0 1 0 0 1 1 1 

Benefit 5 8 3 2 7 9 4 

Weight 7 8 4 10 4 6 4 
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Knapsack Example 

 Solution 3 is clearly the best solution and has met our 

conditions, therefore, item number 2, 5, 6, and 7 will be 

taken on the hiking trip. We will be able to get the most 

benefit out of these items while still having weight equal 

to 22 pounds. 

 This is a simple example illustrating a genetic algorithm 

approach. 
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8 Queen Example 
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Summery  
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Summery 

156 Aziz M. Qaroush - Birzeit University 


