
Informed Search

Artificial Intelligence

ENCS 434

1 Aziz M. Qaroush - Birzeit University

Overview

2 Aziz M. Qaroush - Birzeit University

 Informed Search

best-first search

search with heuristics

memory-bounded search

iterative improvement search

local search and optimization

Improving Search Methods

 make algorithms more efficient

 avoiding repeated states

 utilizing memory efficiently

 use additional knowledge about the problem

 properties (“shape”) of the search space

 more interesting areas are investigated first

 pruning of irrelevant areas

 areas that are guaranteed not to contain a solution can be discarded

3 Aziz M. Qaroush - Birzeit University

Informed Search

 relies on additional knowledge about the problem or domain

 frequently expressed through heuristics (“rules of thumb”)

 A Heuristic is a function that, when applied to a state, returns a
number that tells us approximately how far the state is from the
goal state.

 used to distinguish more promising paths towards a goal

 may be mislead, depending on the quality of the heuristic

 in general, performs much better than uninformed search

 but frequently still exponential in time and space for realistic
problems

4 Aziz M. Qaroush - Birzeit University

5

Heuristic Functions

 A heuristic function is a function f(n) that gives an estimation on the “cost” of
getting from node n to the goal state – so that the node with the least cost
among all possible choices can be selected for expansion first.

 Three approaches to defining f:

 f measures the value of the current state (its “goodness”)

 f measures the estimated cost of getting to the goal from the current state:
 f(n) = h(n) where h(n) = an estimate of the cost to get from n to a goal

 f measures the estimated cost of getting to the goal state from the current state and the
cost of the existing path to it. Often, in this case, we decompose f:
 f(n) = g(n) + h(n) where g(n) = the cost to get to n (from initial state)

Aziz M. Qaroush - Birzeit University

6

Approach 1: f Measures the Value of the

Current State

 Usually the case when solving optimization problems

 Finding a state such that the value of the metric f is optimized

 Often, in these cases, f could be a weighted sum of a set of component

values:

 N-Queens

 Example: the number of queens under attack …

Aziz M. Qaroush - Birzeit University

7

Approach 2: f Measures the Cost to the

Goal

A state X would be better than a state Y if the estimated cost of

getting from X to the goal is lower than that of Y – because X

would be closer to the goal than Y

• 8–Puzzle

h1: The number of misplaced tiles

(squares with number).

h2: The sum of the distances of the tiles

from their goal positions.

Aziz M. Qaroush - Birzeit University

8

Approach 3: f measures the total cost of the

solution path (Admissible Heuristic Functions)

 A heuristic function f(n) = g(n) + h(n) is admissible if h(n) never
overestimates the cost to reach the goal.

 Admissible heuristics are “optimistic”: “the cost is not that much …”

 However, g(n) is the exact cost to reach node n from the initial state.

 Therefore, f(n) never over-estimate the true cost to reach the goal state
through node n.

 Theorem: A search is optimal if h(n) is admissible.

 I.e. The search using h(n) returns an optimal solution.

 Given h2(n) > h1(n) for all n, it’s always more efficient to use h2(n).

 h2 is more realistic than h1 (more informed), though both are optimistic.

Aziz M. Qaroush - Birzeit University

9

Traditional informed search strategies

 Greedy Best first search

 “Always chooses the successor node with the best f value”

where f(n) = h(n)

 We choose the one that is nearest to the final state among all

possible choices

 A* search

 Best first search using an “admissible” heuristic function f

that takes into account the current cost g

 Always returns the optimal solution path

Aziz M. Qaroush - Birzeit University

Best-First Search

10 Aziz M. Qaroush - Birzeit University

Greedy Best-First Search

 minimizes the estimated cost to a goal

 expand the node that seems to be closest to a goal

 utilizes a heuristic function as evaluation function

 f(n) = h(n) = estimated cost from the current node to a goal

 heuristic functions are problem-specific

 often straight-line distance for route-finding and similar problems

 often better than depth-first, although worst-time

complexities are equal or worse (space)

Completeness Time Complexity Space Complexity Optimality

no bm bm no

b: branching factor, d: depth of the solution, m: maximum depth of the search tree, l: depth limit

function GREEDY-SEARCH(problem) returns solution

return BEST-FIRST-SEARCH(problem, h)

11 Aziz M. Qaroush - Birzeit University

12

Greedy Search

A

B

D

C

E

F

I

99

211

G

H

80

Start

Goal

97

101

75 118

111

f(n) = h (n) = straight-line distance heuristic

State Heuristic: h(n)

A 366

B 374

C 329

D 244

E 253

F 178

G 193

H 98

I 0

140

Aziz M. Qaroush - Birzeit University

13

Greedy Search: Tree Search

A
Start

Aziz M. Qaroush - Birzeit University

14

Greedy Search: Tree Search

A

B
C

E

Start

75 118

140 [374] [329]

[253]

Aziz M. Qaroush - Birzeit University

15

Greedy Search: Tree Search

A

B
C

E

F

99

G
A

80

Start

75 118

140 [374] [329]

[253]

[193]

[366]

[178]

Aziz M. Qaroush - Birzeit University

16

Greedy Search: Tree Search

A

B
C

E

F

I

99

211

G
A

80

Start

Goal

75 118

140 [374] [329]

[253]

[193]

[366]

[178]

E
[0] [253]

Aziz M. Qaroush - Birzeit University

17

Greedy Search: Tree Search

A

B
C

E

F

I

99

211

G
A

80

Start

Goal

75 118

140 [374] [329]

[253]

[193]

[366]

[178]

E
[0] [253]

Path cost(A-E-F-I) = 253 + 178 + 0 = 431

dist(A-E-F-I) = 140 + 99 + 211 = 450

Aziz M. Qaroush - Birzeit University

18

Greedy Search: Optimal ?

A

B

D

C

E

F

I

99

211

G

H

80

Start

Goal

97

101

75 118

111

f(n) = h (n) = straight-line distance heuristic

dist(A-E-G-H-I) =140+80+97+101= 418

State Heuristic: h(n)

A 366

B 374

C 329

D 244

E 253

F 178

G 193

H 98

I 0

140

Aziz M. Qaroush - Birzeit University

19

Greedy Search: Complete ?

A

B

D

C

E

F

I

99

211

G

H

80

Start

Goal

97

101

75 118

111

f(n) = h (n) = straight-line distance heuristic

State Heuristic: h(n)

A 366

B 374

** C 250

D 244

E 253

F 178

G 193

H 98

I 0

140

Aziz M. Qaroush - Birzeit University

20

Greedy Search: Tree Search

A
Start

Aziz M. Qaroush - Birzeit University

21

Greedy Search: Tree Search

A

B
C

E

Start

75 118

140 [374] [250]

[253]

Aziz M. Qaroush - Birzeit University

22

Greedy Search: Tree Search

A

B
C

E

D

111

Start

75 118

140 [374] [250]

[253]

[244]

Aziz M. Qaroush - Birzeit University

23

Greedy Search: Tree Search

A

B
C

E

D

111

Start

75 118

140 [374] [250]

[253]

[244]

C [250]

Infinite Branch !

Aziz M. Qaroush - Birzeit University

24

Greedy Search: Tree Search

A

B
C

E

D

111

Start

75 118

140 [374] [250]

[253]

[244]

C

D

[250]

[244]

Infinite Branch !

Aziz M. Qaroush - Birzeit University

25

Greedy Search: Tree Search

A

B
C

E

D

111

Start

75 118

140 [374] [250]

[253]

[244]

C

D

[250]

[244]

Infinite Branch !

Aziz M. Qaroush - Birzeit University

Greedy Best-First Search: 8-Puzzle Example

26 Aziz M. Qaroush - Birzeit University

27

Greedy Search: Time and Space Complexity ?

A

B

D

C

E

F

I

99

211

G

H

80

Start

Goal

97

101

75 118

111

140

• Greedy search is not optimal.

• Greedy search is incomplete

without systematic checking of

repeated states.

• In the worst case, the Time and

Space Complexity of Greedy

Search are both O(bm)

Where b is the branching factor and m

the maximum path length

Aziz M. Qaroush - Birzeit University

A* Search

28 Aziz M. Qaroush - Birzeit University

29

A* Algorithm
1. Search queue Q is empty.

2. Place the start state s in Q with f value h(s).

3. If Q is empty, return failure.

4. Take node n from Q with lowest f value.

 (Keep Q sorted by f values and pick the first element).

5. If n is a goal node, stop and return solution.

6. Generate successors of node n.

7. For each successor n’ of n do:

a) Compute f(n’) = g(n) + cost(n,n’) + h(n’).

b) If n’ is new (never generated before), add n’ to Q.

c) If node n’ is already in Q with a higher f value, replace it with current
f(n’) and place it in sorted order in Q.

End for

8. Go back to step 3.

Aziz M. Qaroush - Birzeit University

30

A* Search

f(n) = g(n) + h (n)

g(n): is the exact cost to reach node n from the initial state.

State Heuristic: h(n)

A 366

B 374

C 329

D 244

E 253

F 178

G 193

H 98

I 0

A

B

D

C

E

F

I

99

211

G

H

80

Start

Goal

97

101

75 118

111

140

Aziz M. Qaroush - Birzeit University

31

A* Search: Tree Search

A Start

Aziz M. Qaroush - Birzeit University

32

A* Search: Tree Search

A

B C E

Start

75 118
140

[393] [449]
[447]

Aziz M. Qaroush - Birzeit University

33

A* Search: Tree Search

A

B C E

F

99

G

80

Start

75 118
140

[393] [449]
[447]

[417] [413]

Aziz M. Qaroush - Birzeit University

34

A* Search: Tree Search

A

B C E

F

99

G

80

Start

75 118
140

[393] [449]
[447]

[417] [413]

H

97

[415]

Aziz M. Qaroush - Birzeit University

35

A* Search: Tree Search

A

B C E

F

I

99

G

H

80

Start

97

101

75 118
140

[393] [449]
[447]

[417] [413]

[415]

Goal [418]

Aziz M. Qaroush - Birzeit University

36

A* Search: Tree Search

A

B C E

F

I

99

G

H

80

Start

97

101

75 118
140

[393] [449]
[447]

[417] [413]

[415]

Goal [418]

I [450]

Aziz M. Qaroush - Birzeit University

37

A* Search: Tree Search

A

B C E

F

I

99

G

H

80

Start

97

101

75 118
140

[393] [449]
[447]

[417] [413]

[415]

Goal [418]

I [450]

Aziz M. Qaroush - Birzeit University

38

A* Search: Tree Search

A

B C E

F

I

99

G

H

80

Start

97

101

75 118
140

[393] [449]
[447]

[417] [413]

[415]

Goal [418]

I [450]

Aziz M. Qaroush - Birzeit University

39

A* Search: h not admissible !

A

B

D

C

E

F

I

99

211

G

H

80

Start

Goal

97

101

75 118

111

f(n) = g(n) + h (n) – (H-I) Overestimated

g(n): is the exact cost to reach node n from the initial state.

State Heuristic: h(n)

A 366

B 374

C 329

D 244

E 253

F 178

G 193

H 138

I 0

140

h() overestimates the cost to reach the goal state

Aziz M. Qaroush - Birzeit University

40

A* Search: Tree Search

A Start

Aziz M. Qaroush - Birzeit University

41

A* Search: Tree Search

A

B C E

Start

75 118
140

[393] [449]
[447]

Aziz M. Qaroush - Birzeit University

42

A* Search: Tree Search

A

B C E

F

99

G

80

Start

75 118
140

[393] [449]
[447]

[417] [413]

Aziz M. Qaroush - Birzeit University

43

A* Search: Tree Search

A

B C E

F

99

G

80

Start

75 118
140

[393] [449]
[447]

[417] [413]

H

97

[455]

Aziz M. Qaroush - Birzeit University

44

A* Search: Tree Search

A

B C E

F

99

G

H

80

Start

97

75 118
140

[393] [449]
[447]

[417] [413]

[455] Goal I [450]

Aziz M. Qaroush - Birzeit University

45

A* Search: Tree Search

A

B C E

F

99

G

H

80

Start

97

75 118
140

[393] [449]
[447]

[417] [413]

[455] Goal I [450]

D [473]

Aziz M. Qaroush - Birzeit University

46

A* Search: Tree Search

A

B C E

F

99

G

H

80

Start

97

75 118
140

[393] [449]
[447]

[417] [413]

[455] Goal I [450]

D [473]

Aziz M. Qaroush - Birzeit University

47

A* Search: Tree Search

A

B C E

F

99

G

H

80

Start

97

75 118
140

[393] [449]
[447]

[417] [413]

[455] Goal I [450]

D [473]

Aziz M. Qaroush - Birzeit University

48

A* Search: Tree Search

A

B C E

F

99

G

H

80

Start

97

75 118
140

[393] [449]
[447]

[417] [413]

[455] Goal I [450]

D [473]

A* not optimal !!!

Aziz M. Qaroush - Birzeit University

8-Puzzle Example: A* Search

49 Aziz M. Qaroush - Birzeit University

50

A* Search: Analysis

A

B

D

C

E

F

I

99

211

G

H

80

Start

Goal

97

101

75 118

111

140

•A* is complete except if there is an

infinity of nodes with f < f(G).

•A* is optimal if heuristic h is

admissible.

•Time complexity depends on the

quality of heuristic but is still

exponential.

•For space complexity, A* keeps all

nodes in memory. A* has worst case

O(bd) space complexity, but an

iterative deepening version is possible

(IDA*).

Aziz M. Qaroush - Birzeit University

A* Properties

 the value of f never decreases along any path starting from

the initial node

 also known as monotonicity of the function

 almost all admissible heuristics show monotonicity

 those that don’t can be modified through minor changes

 this property can be used to draw contours

 regions where the f-cost is below a certain threshold

 with uniform cost search (h = 0), the contours are circular

 the better the heuristics h, the narrower the contour around

the optimal path

51 Aziz M. Qaroush - Birzeit University

A* Snapshot with Contour f=11

7 7 6 5 4 3 2 1 0 1 3 5 6 2 4 8

6 5 4 2 4 5 3 7

6 5 5 6

7 7

9 Initial
Visited
Fringe
Current
Visible
Goal

1

2 3

4 5 6 7

8 9 10 11 12 13 14 15

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

4 3

7

2

2 2 4

5 4 4 4 3 6 9

3 4 7 2 4 8 6 4 3 4 2 3 9 2 5 8

Edge Cost

7 Heuristics

9

11 10

17 11 10 13

20 21 13 11 12 18 22

24 24 29 23 18 19 18 16 13 13 14 25 31 25 13

f-cost 10

21

14

Contour

52 Aziz M. Qaroush - Birzeit University

A* Snapshot with Contour f=13

7 7 6 5 4 3 2 1 0 1 3 5 6

2

4 8

6 5 4 2 4 5 3 7

6 5 5 6

7 7

9 Initial
Visited
Fringe
Current
Visible
Goal

1

2 3

4 5 6 7

8 9 10 11 12 13 14 15

16 17 18 19 20 21 22 23 24 25

26

27 28 29 30 31

4 3

7

2

2 2 4

5 4 4 4 3 6 9

3 4 7 2 4 8 6 4 3 4 2 3 9 2 5 8

Edge Cost

7 Heuristics

9

11 10

17 11 10 13

20 21 13 11 12 18 22

24 24 29 23 18 19 18 16 13 13

14

25 31 25 13

f-cost 10

21

14

Contour

53 Aziz M. Qaroush - Birzeit University

Optimality of A*

 A* will find the optimal solution

 the first solution found is the optimal one

 A* is optimally efficient

 no other algorithm is guaranteed to expand fewer nodes than A*

 A* is not always “the best” algorithm

 optimality refers to the expansion of nodes

 other criteria might be more relevant

 it generates and keeps all nodes in memory

 improved in variations of A*

54 Aziz M. Qaroush - Birzeit University

Complexity of A*

 the number of nodes within the goal contour search space is

still exponential

 with respect to the length of the solution

 better than other algorithms, but still problematic

 frequently, space complexity is more severe than time

complexity

 A* keeps all generated nodes in memory

55 Aziz M. Qaroush - Birzeit University

Improving A*: Memory-bounded Heuristic Search

Aziz M. Qaroush - Birzeit University 56

Iterative deepening A*

Aziz M. Qaroush - Birzeit University 57

IDA* Algorithm

 In the first iteration, we determine a “f-cost limit” – cut-
off value
f(n0) = g(n0) + h(n0) = h(n0), where n0 is the start node.

 We expand nodes using the depth-first algorithm and
backtrack whenever f(n) for an expanded node n exceeds the
cut-off value.

 If this search does not succeed, determine the lowest f-
value among the nodes that were visited but not expanded.

 Use this f-value as the new limit value – cut-off value
and do another depth-first search.

 Repeat this procedure until a goal node is found.

Aziz M. Qaroush - Birzeit University 58

59

8-Puzzle

4

6

f(N) = g(N) + h(N)

with h(N) = number of misplaced tiles

Cutoff=4

Aziz M. Qaroush - Birzeit University

60

8-Puzzle

4

4

6

Cutoff=4

6

f(N) = g(N) + h(N)

with h(N) = number of misplaced tiles

Aziz M. Qaroush - Birzeit University

61

8-Puzzle

4

4

6

Cutoff=4

6

5

f(N) = g(N) + h(N)

with h(N) = number of misplaced tiles

Aziz M. Qaroush - Birzeit University

62

8-Puzzle

4

4

6

Cutoff=4

6

5

5

f(N) = g(N) + h(N)

with h(N) = number of misplaced tiles

Aziz M. Qaroush - Birzeit University

63

4

8-Puzzle

4

6

Cutoff=4

6

5

5 6

f(N) = g(N) + h(N)

with h(N) = number of misplaced tiles

Aziz M. Qaroush - Birzeit University

64

8-Puzzle

4

6

Cutoff=5

f(N) = g(N) + h(N)

with h(N) = number of misplaced tiles

Aziz M. Qaroush - Birzeit University

65

8-Puzzle

4

4

6

Cutoff=5

6

f(N) = g(N) + h(N)

with h(N) = number of misplaced tiles

Aziz M. Qaroush - Birzeit University

66

8-Puzzle

4

4

6

Cutoff=5

6

5

f(N) = g(N) + h(N)

with h(N) = number of misplaced tiles

Aziz M. Qaroush - Birzeit University

67

8-Puzzle

4

4

6

Cutoff=5

6

5

7

f(N) = g(N) + h(N)

with h(N) = number of misplaced tiles

Aziz M. Qaroush - Birzeit University

68

8-Puzzle

4

4

6

Cutoff=5

6

5

7

5

f(N) = g(N) + h(N)

with h(N) = number of misplaced tiles

Aziz M. Qaroush - Birzeit University

69

8-Puzzle

4

4

6

Cutoff=5

6

5

7

5 5

f(N) = g(N) + h(N)

with h(N) = number of misplaced tiles

Aziz M. Qaroush - Birzeit University

70

8-Puzzle

4

4

6

Cutoff=5

6

5

7

5 5

f(N) = g(N) + h(N)

with h(N) = number of misplaced tiles

Aziz M. Qaroush - Birzeit University

Simple Recursive Best-First Search

71 Aziz M. Qaroush - Birzeit University

SRBFS example with non-monotonic cost

function

Expand the

root and

compute the

costs of the

children

5

1 2 2

72 Aziz M. Qaroush - Birzeit University

SRBFS example with non-monotonic cost

function

Expand the

root and

compute the

costs of the

children

5

1 2 2

5

2 1

3 4

2

Expand the right child ,

evaluate grandchildren.

The recursive call

terminates and return

the minimum value of

children

73 Aziz M. Qaroush - Birzeit University

SRBFS example with non-monotonic cost

function

Expand the

root and

compute the

costs of the

children

5

1 2 2

5

2 1

3 4

2

Expand the right child ,

evaluate grandchildren.

The recursive call

terminates and return

the minimum value of

children

5

3 2
3

The backed-

up value of 3

is stored as

the new

value of the

right child

74 Aziz M. Qaroush - Birzeit University

SRBFS -The Algorithm

SRBFS (node: N ,bound B)

IF f(N) > B RETURN f(n)

IF N is a goal, EXIT algorithm

IF N has no children, RETURN infinity

FOR each child Ni of N, F[i] := f(Ni)

 sort Ni and F[i] in increasing order of F[i]

IF only one child, F[2] = infinity

WHILE (F[1] B and f[1] < infinity)

 F[1] := SRBFS (N1, MIN(B, F[2]))

 insert N1 and F[1] in sorted order

RETURN F[1]

75 Aziz M. Qaroush - Birzeit University

Simplified Memory-Bounded A* (SMA*)

76 Aziz M. Qaroush - Birzeit University

77

A

B G

C D H I

E F J K

10 8

10 10 8 16

8 8
10 10

10+5=15

0+12=12

8+5=13

20+5=25 20+0=20

16+2=18

20+0=24

24+0=24 24+5=29 30+0=30 30+5=25

Simplified Memory-bounded A* (Cont.)

Aziz M. Qaroush - Birzeit University

78

A A

B

A

B G

A

G

H

A

G

I

A

B G

A

B

C

A

B

D

12 12

15

12

15
13

13(15)

13

18(∞)

15(15)

24(∞)

24

24 15

15 15(24)

15

25 ∞

20(24)

20(∞)

20

Simplified Memory-bounded A* (Cont.)

Aziz M. Qaroush - Birzeit University

Simplified Memory-bounded A* Example

Aziz M. Qaroush - Birzeit University 79

Simplified Memory-bounded A* Example

Aziz M. Qaroush - Birzeit University 80

Simplified Memory-bounded A* Example

Aziz M. Qaroush - Birzeit University 81

Simplified Memory-bounded A* Example

Aziz M. Qaroush - Birzeit University 82

Simplified Memory-bounded A* Example

Aziz M. Qaroush - Birzeit University 83

Simplified Memory-bounded A* Example

Aziz M. Qaroush - Birzeit University 84

Simplified Memory-bounded A* Example

Aziz M. Qaroush - Birzeit University 85

Simplified Memory-bounded A* Example

Aziz M. Qaroush - Birzeit University 86

Simplified Memory-bounded A* Example

Aziz M. Qaroush - Birzeit University 87

Simplified Memory-bounded A* Example

Aziz M. Qaroush - Birzeit University 88

Simplified Memory-bounded A* Example

Aziz M. Qaroush - Birzeit University 89

Simplified Memory-bounded A* Example

Aziz M. Qaroush - Birzeit University 90

Simplified Memory-bounded A* Example

Aziz M. Qaroush - Birzeit University 91

Simplified Memory-bounded A* Example

Aziz M. Qaroush - Birzeit University 92

Simplified Memory-bounded A* Example

Aziz M. Qaroush - Birzeit University 93

Simplified Memory-bounded A* Example

Aziz M. Qaroush - Birzeit University 94

Simplified Memory-bounded A* Example

Aziz M. Qaroush - Birzeit University 95

Simplified Memory-bounded A* Example

Aziz M. Qaroush - Birzeit University 96

Simplified Memory-bounded A* Example

Aziz M. Qaroush - Birzeit University 97

Simplified Memory-bounded A* Example

Aziz M. Qaroush - Birzeit University 98

Simplified Memory-bounded A* Example

Aziz M. Qaroush - Birzeit University 99

Simplified Memory-bounded A* Example

Aziz M. Qaroush - Birzeit University 100

Simplified Memory-bounded A* Example

Aziz M. Qaroush - Birzeit University 101

Simplified Memory-bounded A* Example

Aziz M. Qaroush - Birzeit University 102

Simplified Memory-bounded A* Example

Aziz M. Qaroush - Birzeit University 103

Simplified Memory-bounded A* Example

Aziz M. Qaroush - Birzeit University 104

Simplified Memory-bounded A* Example

Aziz M. Qaroush - Birzeit University 105

Simplified Memory-bounded A* Example

Aziz M. Qaroush - Birzeit University 106

Simplified Memory-bounded A* Example

Aziz M. Qaroush - Birzeit University 107

Simplified Memory-bounded A* Example

Aziz M. Qaroush - Birzeit University 108

Simplified Memory-bounded A* Example

Aziz M. Qaroush - Birzeit University 109

SMA*: Properties

Aziz M. Qaroush - Birzeit University 110

Partial Searching

Aziz M. Qaroush - Birzeit University 111

Local Search and Optimization

Aziz M. Qaroush - Birzeit University 112

113

Local Search Methods

 Applicable when seeking Goal State & don't care how to get
there. E.g.,

 N-queens,
 map coloring,
 finding shortest/cheapest round trips (TSP, VRP)

 finding models of propositional formulae (SAT)

 VLSI layout, scheduling, time-tabling, . . .
 resource allocation
 protein structure prediction
 …………..

Aziz M. Qaroush - Birzeit University

114

Example: 4 Queen

 States: 4 queens in 4 columns (256 states)

 Operators: move queen in column

 Goal test: no attacks

 Evaluation: h(n) = number of attacks

Aziz M. Qaroush - Birzeit University

115

Example: Graph Coloring

1. Start with random coloring of nodes

2. Change color of one node to reduce # of conflicts

3. Repeat 2

Aziz M. Qaroush - Birzeit University

Example: Traveling Salesperson Problem (TSP)

Aziz M. Qaroush - Birzeit University 116

Example: Traveling Salesperson Problem (TSP)

Aziz M. Qaroush - Birzeit University 117

118

Local search

 Key idea (surprisingly simple):

1. Select (random) initial state (generate

an initial guess)

2. Make local modification to improve
current state (evaluate current state
and move to other states)

3. Repeat Step 2 until goal state found (or
out of time)

Aziz M. Qaroush - Birzeit University

119

Local Search Algorithms

 Basic idea: Local search algorithms operate on a single state – current
state – and move to one of its neighboring states.

 The principle: keep a single "current" state, try to improve it

 Therefore: Solution path needs not be maintained. Hence, the search is
“local”.

 Two advantages

 Use little memory.

 More applicable in searching large/infinite search space. They find
reasonable solutions in this case.

 Algorithms
 Hill Climbing

 Local Beam Search

 Genetics algorithms

Aziz M. Qaroush - Birzeit University

Hill-Climbing Search

Aziz M. Qaroush - Birzeit University 120

Hill-Climbing Search

Aziz M. Qaroush - Birzeit University 121

8 Queens Example

Aziz M. Qaroush - Birzeit University 122

8 Puzzle Example

Aziz M. Qaroush - Birzeit University 123

Drawbacks of Hill Climbing

Aziz M. Qaroush - Birzeit University 124

Drawbacks of Hill Climbing

Aziz M. Qaroush - Birzeit University 125

Drawbacks of Hill Climbing

Aziz M. Qaroush - Birzeit University 126

Local Beam Search

Aziz M. Qaroush - Birzeit University 127

Local Beam Search: Example

Aziz M. Qaroush - Birzeit University 128

Local Beam Search: Example

Aziz M. Qaroush - Birzeit University 129

Local Beam Search: Example

Aziz M. Qaroush - Birzeit University 130

Local Beam Search: Example

Aziz M. Qaroush - Birzeit University 131

Local Beam Search: Example

Aziz M. Qaroush - Birzeit University 132

Genetic Algorithms

 An algorithm is a set of instructions that is repeated to solve a
problem.

 A genetic algorithm conceptually follows steps inspired by the
biological processes of evolution.

 Genetic Algorithms follow the idea of SURVIVAL OF THE
FITTEST- Better and better solutions evolve from previous
generations until a near optimal solution is obtained.

 A genetic algorithm is an iterative procedure that represents its
candidate solutions as strings of genes called chromosomes.

 Genetic Algorithms are often used to improve the performance of
other AI methods such as expert systems or neural networks.

Aziz M. Qaroush - Birzeit University 133

Genetic Algorithms: Basic Terminology

134 Aziz M. Qaroush - Birzeit University

Genetic Algorithms: Basic Terminology

 Before we can apply Genetic Algorithm to a problem,
we need to answer:

- How is an individual represented?

- What is the fitness function?

- How are individuals selected?

- How do individuals reproduce?

135 Aziz M. Qaroush - Birzeit University

Representing an Individual

 An individual is data structure representing the “genetic

structure” of a possible solution.

 Genetic structure consists of an alphabet (usually 0,1)

 Binary Encoding
 Most Common – string of bits, 0 or 1.

 Chrom: A = 1 0 1 1 0 0 1 0 1 1

 Chrom: B = 1 1 1 1 1 1 0 0 0 0

 Gives you many possibilities

 Example Problem: Knapsack problem

 The problem: there are things with given value and size. The knapsack
has given capacity. Select things to maximize the values.

 Encoding: Each bit says, if the corresponding thing is in the knapsack

136 Aziz M. Qaroush - Birzeit University

Representing an Individual

 Permutation Encoding

 Used in “ordering problems”

 Every chromosome is a string of numbers, which represents
number is a sequence.

Chrom A: 1 5 3 2 6 4 7 9 8

Chrom B: 8 5 7 7 2 3 1 4 9

 Example: Travelling salesman problem

 The problem: cities that must be visited.

 Encoding says order of cities in which salesman willl visit.

137 Aziz M. Qaroush - Birzeit University

How offspring are produced

 Reproduction- Through reproduction, genetic algorithms produce new

generations of improved solutions by selecting parents with higher

fitness ratings or by giving such parents a greater probability of being

contributors and by using random selection

 Crossover- Many genetic algorithms use strings of binary symbols for

chromosomes, as in our Knapsack example, to represent solutions.

Crossover means choosing a random position in the string (say, after 2

digits) and exchanging the segments either to the right or to the left of

this point with another string partitioned similarly to produce two new

off spring.

 Mutation- Mutation is an arbitrary change in a situation. Sometimes it is

used to prevent the algorithm from getting stuck. The procedure changes

a 1 to a 0 to a 1 instead of duplicating them. This change occurs with a

very low probability (say 1 in 1000)

138 Aziz M. Qaroush - Birzeit University

Crossover Example 1

 Parent A 011011

 Parent B 101100

 “Mate the parents by splitting each number as shown between the

second and third digits (position is randomly selected)

 01*1011 10*1100

 Now combine the first digits of A with the last digits of B, and the first
digits of B with the last digits of A

 This gives you two new offspring

 011100 101011

 If these new solutions, or offspring, are better solutions than the parent
solutions, the system will keep these as more optimal solutions and
they will become parents. This is repeated until some condition (for
example number of populations or improvement of the best solution)
is satisfied.

139 Aziz M. Qaroush - Birzeit University

Crossover Example 2

140 Aziz M. Qaroush - Birzeit University

Mutation Example

141 Aziz M. Qaroush - Birzeit University

1 0 1 0 1 1 1

1 1 0 0 0 1 1

Parent 1

Parent 2

1 0 1 0 0 1 1

1 1 0 0 1 1 0

Child 1

Child 2 Mutation

Genetic Algorithm Operators

Mutation and Crossover

142 Aziz M. Qaroush - Birzeit University

Selection Criteria

 Fitness proportionate selection, rank selection methods.

 Fitness proportionate – each individual, I, has the probability

fitness(I)/sum_over_all_individual_j Fitness(j), where Fitness(I) is

the fitness function value for individual I.

 Represents a rank of the “representation”

 It is usually a real number.

 E.g. the length of the route in the traveling salesperson problem

is a good measure, because the shorter the route, the better the

solution

 Rank selection – sorts individual by fitness and the probability

that an individual will be selected is proportional to its rank in

this sorted list.

143 Aziz M. Qaroush - Birzeit University

Outline of the Basic Genetic Algorithm

1. [Start] Generate random population of n

chromosomes (suitable solutions for the problem)

2. [Fitness] Evaluate the fitness f(x) of each

chromosome x in the population

3. [New population] Create a new population by

repeating following steps until the new population is

complete

4. [Selection] Select two parent chromosomes

 from a population according to their fitness (the
better fitness, the bigger chance to be selected) The
idea is to choose the better parents.

144 Aziz M. Qaroush - Birzeit University

Outline of the Basic Genetic Algorithm

5. [Crossover] With a crossover probability cross over the
parents to form a new offspring (children). If no crossover
was performed, offspring is an exact copy of parents.

6. [Mutation] With a mutation probability mutate new
offspring at each locus (position in chromosome).

7. [Accepting] Place new offspring in a new

 population

8. [Replace] Use new generated population for a further run
of algorithm

9. [Test] If the end condition is satisfied, stop, and return the
best solution in current population

10. [Loop] Go to step 2

145 Aziz M. Qaroush - Birzeit University

Flow Diagram of the Genetic Algorithm Process

Describe

Problem

Generate

Initial

Solutions

Test: is initial

solution good enough?
Stop

Select parents

to reproduce

Apply crossover process

and create a set of offspring

Apply random mutation

Step 1

 Step 2

 Step 3

 Step 4

 Step 5

Yes

No

146 Aziz M. Qaroush - Birzeit University

Example: The Knapsack Problem

 You are going on an overnight hike and have a number of
items that you could take along.

 Each item has a weight (in pounds) and a benefit or value
to you on the hike(for measurements sake let’s say, in US
dollars), and you can take one of each item at most.

 There is a capacity limit on the weight you can carry
(constraint).

 This problem only illustrates one constraint, but in
reality there could be many constraints including
volume, time, etc.

147 Aziz M. Qaroush - Birzeit University

 Item: 1 2 3 4 5 6 7

 Benefit: 5 8 3 2 7 9 4

 Weight: 7 8 4 10 4 6 4

 Knapsack holds a maximum of 22 pounds

 Fill it to get the maximum benefit

 Solutions take the form of a string of 1’s and 0’s. Also known

as strings of genes called Chromosomes

 0101010

 1101100

 0100111

GA Example: The Knapsack Problem

148 Aziz M. Qaroush - Birzeit University

Example: The Knapsack Problem

 We represent a solution as a string of seven 1s and 0s and the
fitness function as the total benefit, which is the sum of the
gene values in a string solution times their representative
benefit coefficient.

 The method generates a set of random solutions (initial
parents), uses total benefit as the fitness function and selects the
parents randomly to create generations of offspring by
crossover and mutation.

 Possible solutions generated by the system using Reproduction,
Crossover, or Mutations

 0101010

 1101100

 0100110

149 Aziz M. Qaroush - Birzeit University

Knapsack Example

Solution 1

 Benefit 8 + 2 + 9 = 19

 Weight 8 + 10 + 6 = 24

Item 1 2 3 4 5 6 7

Solution 0 1 0 1 0 1 0

Benefit 5 8 3 2 7 9 4

Weight 7 8 4 10 4 6 4

150
Aziz M. Qaroush - Birzeit University

Knapsack Example

Solution 2

 Benefit 5 + 8 + 7 = 20

 Weight 7 + 8 + 4 = 19

Item 1 2 3 4 5 6 7

Solution 1 1 0 0 1 0 0

Benefit 5 8 3 2 7 9 4

Weight 7 8 4 10 4 6 4

151 Aziz M. Qaroush - Birzeit University

Knapsack Example

Solution 3

 Benefit 8 + 7 + 9 + 4 = 28

 Weight 8 + 4 + 6 + 4 = 22

Item 1 2 3 4 5 6 7

Solution 0 1 0 0 1 1 1

Benefit 5 8 3 2 7 9 4

Weight 7 8 4 10 4 6 4

152
Aziz M. Qaroush - Birzeit University

Knapsack Example

 Solution 3 is clearly the best solution and has met our

conditions, therefore, item number 2, 5, 6, and 7 will be

taken on the hiking trip. We will be able to get the most

benefit out of these items while still having weight equal

to 22 pounds.

 This is a simple example illustrating a genetic algorithm

approach.

153 Aziz M. Qaroush - Birzeit University

8 Queen Example

Aziz M. Qaroush - Birzeit University 154

Summery

Aziz M. Qaroush - Birzeit University 155

Summery

156 Aziz M. Qaroush - Birzeit University

