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/Logio

= Logics are characterized by what they commit to as "primitives".

Logic

What Exists in World

Knowledge States

Propositional

facts

true/false/unknown

First-Order facts, objects, true/false/unknown
relations

Temporal facts, objects, relations, true/false/unknown
times

Probability facts degree of belief 0..1

Theory

Fuzzy degree of truth degree of belief 0..1
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Probability

® P(a) is the probability of proposition “a”
* E.g., P(it will rain in London tomorrow)
® The proposition a is actually true or false in the real-world
® P(a) = “prior” or marginal or unconditional probability

® Assumes no other information is available

® Axioms:
®* 0 <=Ph) <=1
® P(NOT(a)) =1—P(a)
® P(true) = 1
® P(false) = 0
* P(A OR B) =P(A) + P(B) — P(AAND B)
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Probability and Logic

© Probabﬂity can be viewed as a generalization of propositional

1ogic

® P(a):
® ais any sentence in propositional logic
® Belief of agent in a is no longer restricted to true, false, unknown

® P(a) can range from O to 1
P(a) = 0, and P(a) = 1 are special cases

So logic can be viewed as a special case of probability




4 .
Sources of Uncertainty

Being uncertain/hesitate/not sure/ in your decision may be due to:
» Information is incomplete.

» Information is not fully reliable.

» Representation language is inaccurate.

» Information comes from multiple sources and it is conflicting.

» ¢.g. Which mode of transportation is safer?
a Car or Plane?
0 What is the probability of an accident?

= Probability theory enables us to make rational decisions.
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Example of Uncertainty

= Assume a camera and vision system is used to estimate the

curvature of the road ahead.
= There's uncertainty about which way it curves
0 Limited pixel resolution, noise in image
o Algorithm for “road detection” is not perfect
= This uncertainty can be represented with a simple probability
model:
P(road curves to left|E) = 0.6
P(road goes straight|E) = 0.3
P(road curves to right|E) = 0.1

* Where the probability of an event 1s a measure of agent’s belief

in the event given the evidence E.
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Rules with Uncertainty

= If we are sure that only cavity causes toothache then we can add the
following rule into the KB of the ES.

a2 If toothache then problem is cavity
= But not all patients have toothaches due to cavities

So we can set up a rule like:

« [If toothache A — (gum disease) ~ — (filling) A ... then problem = cavity
= Another method would be:

a0 If toothache then problem is cavity with 0.8 probability

or P(cavity|toothache) = 0.8

10 The probability of cavity is 0.8 given toothache is all that is known.
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Making Decisions under Uncertainty

Suppose I believe the following are the possible decisions:
P(A, gets me there on time | ...) = 0.04
P(A, gets me there on time | ...) = 0.70
P(A, gets me there on time | ...) = 0.95
P(A, gets me there on time | ...) = 0.9999

= Which action to choose?

Depends on my preferences for missing flight vs. time spent waiting,

o Utility theory 1s used to represent and infer preferences

a2 Decision theory = probability theory + utility theory
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Uncertainty in the World Model

= True uncertainty: rules are probabilistic in nature

2 Rolling dice, flipping a coin?

= Laziness: too hard to determine exception less rules
2 Takes too much work to determine all of the relevant factors.

2 Too hard to use the enormous rules that result.

= Theoretical ignorance: don't know all the rules

0 Problem domain has no complete theory (medical diagnosis).

= Practical ignorance: do know all the rules BUT

o Haven't collected all relevant information for a particular case
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Handling Uncertain knowledge

Probability provides a way of summarizing the uncertainty that
comes from our laziness and/or ignorance.

An assignment of probability to a proposition is analogous to saying
whether or not a given logical sentence 1s entailed by the knowledge

base.

The agent’s knowledge provides only a degree of belief in the
relevant sentences.

As the agent receives new percepts, its probability assessments are
updated to reflect the new evidence.

Before the evidence 1s obtained, we talk about prior or unconditional
probability.

After the evidence is obtained, we talk about posterior or conditional
probability.
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Syntax

= Random Variables (RV):
0 Are capitalized (usually) e.g. Sky, RoadCurvature, Temperature
2 Refer to attributes of the world whose "status" 1s unknown
2 Have one and only one value at a time.
2 Have a domain of values that are possible states of the world:
s Boolean: Domain = <true, false>

Cavity=true abbreviated as cavity
Cavity=talse abbreviated as = cavity

= Discrete: Domain 1s countable (includes Boolean)
Values are exhaustive and mutually exclusive
e.g. Sky domain = <clear, partly cloudy, overcast>
Sky=clear abbreviated as clear

Sky 1s not clear also abbreviated as 7 clear
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Syntax: Events

Any collection of outcomes

Simple event

a2 Outcome with 1 characteristic, Probability of tossing 1 coin
Compound event

2 Collection of outcomes or simple events

a2 or more characteristics, tossing 2 coins

Joint event

a2 events occurring simultaneously

a  Probability of being rich and happy

Experiment: Tossing 2 coins.

Event Outcomes in Event
Sample space HH,HT. TH,TT

1 head & 1 tail HT, TH

Heads on 1st coin HH, HT

At least 1 head HH, HT, TH
Heads on both HH
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Syntax: Atomic Events

An atomic event: an assignment of particular values to all the variables

(complete specification of the state of the domain).

If the world consists of only two Boolean variables Cavity and

Toothache, then there are 4 distinct atomic events:
Cavity = false A Toothache = false
Cavity = false A Toothache = true
Cavity = true A Toothache = false

Cavity = true A Toothache = true

= Properties of atomic events:
o They're mutually exclusive:
= At most one can be the case
o Set of all possible atomic events is exhaustive:

= At least one must be the case
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g Prior versus Conditional Probability

Prior probability (A): Probability of A in absence of any other information
Conditional Probability (A|B): Probability of A given that we already know B

P(Cavity) = 0.1 10% of all individuals have a Cavity
P(Toothache) = 0.05 5% have a Toothache

P(Cavity|Toothache) = 0.8

given that we know the individual has Toothache, there is 80%
chance of him having Cavity

P(Cavity| Toothache A not Gumdisease) = 0.9

additionally given that another diagnosis 1s already excluded,
conditional probability increases

P(Cavity|Toothache A FalseTeeth) =0

adding information does not necessarily increase the
probability
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Assigning Probabilities

= A priori classical method
o Objects have a tendency to behave in certain ways
o Coin has a propensity to come up heads with a probability .5. Some
scientists say Coin has a propensity to come up heads with a probability
333,
= Empirical classical method
0 Probabilities come from experiments
o If 10 of 100 people tested have a cavity then P(cavity) = .1

o Probability means the fraction that would be observed

in the limit of infinitely many samples

= Subjective method
0 Probabilities characterize an agent's belief or point of view

o Have no external physical significance
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Axioms of probability

® For any propositions A, B
e 0SSP
® P(true) = 1 and P(false) = O
® P(AV B) =P(A) + P(B) - P(A A B)

True




e
Using the axioms of probability

®PlaV—a)=Pla)+P(—a)-PlaA —a)
(by axiom 3 withb = = a )

® P(true) = P(a) + P (—a ) - P(false)
(by logical equivalence)

® | = P(a) + P (—a ) (by axiom 2)

® P(—a)=1-P(a)(by algebra).

ZP(Dzd?;) =1,
P(a)= )  P(ei)
e; =ela)
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Probability Distributions

Given A 1s a Random Variable taking values in<a,, a,, ... ,a >
= P(a) represents a single probability where A=a, e.g. P(a) = 1/n
¢.g. if A 1s Sky, and the domain of A= <clear, partly cloudy. overcast>
then P(a) means any one of P(clear), P(partly cloudy), P(overcast)
= Probability Distribution: 2. P(A))
o If A takes n values, then P(A) 1s a set of n probabilities
a2 The set of values {P(a,), P(a,), ..., P(a,)
a Property: 2. P(a,) =P(A=a,) + P(A=a,) + ... + P(A=a ) =1
Sum over all values in the domain of variable A 1s | 1f the domain 1s

exhaustive and mutually exclusive.

\@ Aziz M. Qaroush - Birzeit University




s
Joint Distribution

= Example:

= If we have k random variables X . ..

= P(a,b,...): Joint probability of A=a AB=b A ...
. Xy

= Numerical measure of likelihood that joint event will occur

» The joint distribution of these variables 1s a table in which each entry gives

the probability of one combination of values of X, .... X,
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Toothache —Toothache
Cavity 0.04 0.06 \
—Cavity [0.01  _ [0.89 %
P(—CavityAToothache) P(Cavitya—Toothache)




s
Joint Distribution Says It All

Toothache | -Toothache

Cavity |[0.04 0.06
—~Cavity |0.01 0.89

= P(Toothache) = P((Toothache ACavity) v (Toothache~—Cavity))

= P(Toothache ACavity) + P(Toothache —Cavity)
= 0.04 + 0.01 =0.05
= P(Toothache v Cavity)
= P((Toothache ~Cavity) v (Toothacher—Cavity)

vV (—Toothache ACavity))
=0.04 +0.01 +0.06=0.11
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Conditional Probability

Conditional Probabilities

o  Specity the belief in a proposition that is conditioned on a proposition
being true.

o P(ale): Conditional Probability of A=a given E=e evidence i1s all that 1s
known true.

P(A|B) : Probability of A given B

o P(Cavity|Toothache) = 0.8

P(A/B)=P(A AB)/P(B)

P(A AB)=P(A|B)P(B) =P(B|A)P(A)

P(A A B A C)=P(A|B,C) P(B|C) P(C)

Example:

E is a set of symptoms, such as, coughing, sneezing, headache, ...

H is a dieses, e.g., common cold, flu, ....

The diagnosis problem is to find an H (dieses) such that P(H|E) is
maximum.
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Conditional Probability

Conditional probabilities behave exactly like standard probabilities:

0 <= P(ale) == 1: between 0 and 1 inclusive.
P(a,le) + P(a,le) +... + P(ale) = 1: sumto 1 wherea,, ..., a, are all values in
the domain of RV A.

Negation for conditional probabilities: P(—ale) = 1 - P(ale)

P(conjunction of events | e): PlaabAac|e)orasP(a,b,c|e)

2 The agent’s belief in the sentence a ~ b A ¢ conditioned on ¢ being true.

P(a | conjunction of evidences): P(a|eAfA g)oras P(a|e,f, g)

12 The agent’s belief in the sentence a conditioned on ¢ A I A g being true.
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Reasoning Under

anertainty
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/Joint Probability Distribution(JPD) A

= A joint event describes two occurrences at the same time.
0 e.g., (A and B) specifies that both propositions A and B are true in the
world.
= A joint probability distribution over a set of random variables specifies a
probability for each possible combinations of values for those variables.

2 e.g., ajoint probability distribution for Boolean variables X and Y

specifies a probability for four cases:
= P(XandY), P(X and —Y), P(—X and Y), and finally P(—X and —Y)
» The sum of the joint probabilities of all cases must be equal to 1
» The joint probability of two events under absolute independence.
P(A and B) =P(A) P(B)
%" The random variables A and B are called independent if occurrence of B

does not influence on probability of A.
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"Full Joint Probability Distribution Table (JPDT)

» FJIPDT: Represents all the possible combination of an experiment repeated

N times over the random variables A and B.
N=nl1+n12+n21+n22

» nll represents the number of time A A B was observed, nl2 represents the
number of times —A A B was observed, n21 represents the number of time

A A — B, n22 represents the number of time —A A - B .
A —A

B nll nli2

—B n2l n22

= P(A)=nl1+n21/N P(B)=nl1+nl2/N P(A AB)=nl1/N
= P(A|B)=P(A A B)/P(B)=nl1/nl1+n12
« P(BJA)=P(A A B)/P(A)=nll1/n11+n21
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Who (What |Where|Probability
plum [rope |hall 1/8
plum |rope |study 1/8
plum |pipe |hall 1/8
plum |pipe |study 1/8
green [rope [hall 1/8
green [rope [study 1/8
green [pipe |hall 1/8
green |pipe [study 1/8
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Reasoning Under Uncertainty: Using FJPDT

““"What is P(green)?

2 since 50-50 % chance of green being picked over plum

P(a)= X2 P(e)
where e, 1s an element of e(a)

P(greem) = ? gt gtlgtl/g=1/,

P(pipe) =1/8+1/8+1/8+1/8=1/2

% This i1s the marginal probability
of pipe 1gnoring any information
about the other events.

* It can be just a prior probability.

% This process is called
marginalization or summing out.
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Reasoning Under Uncertainty: Using FJPDT

“¥"What is P(green, pipe, hall)?
1/8 = P(green) * P(pipe) * P(hall) =% * Y% * 1

Who |What |Where | Probability
plum |rope [|hall 1/8
plum |rope [study 1/8
plum |pipe |hall 1/8
plum |pipe [study 1/8
green |rope |hall 1/8
green [rope |[study 1/8
green [pipe |hall 1/8
green [pipe  [study 1/8
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Prior probability for each i1s 1/8
- Each equally likely
- €.g. P(plum,rope,hall) = 1/8

= P(atomic_event;) = 1
- Since each RV's domain 1s
exhaustive & mutually exclusive
-e.g. 1=1/8+1/8+1/8+ 1/8 +
1/8 +1/8 +1/8 + 1/8
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Reasoning Under Uncertainty: Using FJPDT

“*"How do you figure out more complex probabilities?

Who |What (Where|Probability
plum |rope [hall 1/8
plum |rope |study 1/8
plum |pipe [hall 1/8
plum |pipe [study 1/8
green |[rope |hall 1/8
E:;reen rope |study 1/8
green |pipe |hall 1/8
green |pipe |study 1/8
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P(a) =X P(e))
where e, 1s an element of e(a)

P(green.pipe) = ? Ngtlg="1l,

P(rope,hall) = ? Mgtlg="1l,

P(rope v hall) = ?

g+ 1/ # A+ =3,

/




/Independence RV

= We used the random variables Who, What, Where because they are
independent.

" How are these RVs independent?

Picking the card for one RV doesn’t affect the others.
E.g. Picking the murder from the deck of “Who™ cards doesn’t
affect which weapon 1s chosen or location.

5" Absolute Independence: The random variables X and Y are
called independent if occurrence of } does not influence on
probability of X.

1. P(X]Y) = P(X)
2. P(Y|IX)=P(Y)
3. P(X)Y) = P(X) P(Y)
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Independence RV

= Conditional Independence:
RVs (X, Y) are dependent on another RV (Z) but are independent of each

other.

1. P(X]Y,Z) =P(X|Z)

2. P(Y|X,Z2)=P(Y|Z)

3. P(X.Y|Z) =P(X|Z) P(Y|Z)

» Idea:
sneezing (x) and itchy eyes (y) are both directly caused by hayfever (z) but

neither sneezing nor itchy eyes has a direct effect on each other.

» This lets us decompose the joint distribution:

g PPAABAC)=PA|C)PB|C)PC)
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Reasoning under Uncertainty: Using FJPDT

= Assume three Boolean RVs: Haytever (HF), Sneeze (SN), ItchyEyes (IE)

and fictional probabilities:

HF |SN |[IE Probability
false |false [false 0.5
false |false [true 0.09
false |true [false 0.1
false [true |true 0.1
true |[false [false 0.01
true |[false [true 0.06
true [true |false 0.04
true [true |true 0.1
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Birzeit University

P(a) =2 P(e)
where €, 1s an element of e(a)

P(sn)= 0.1+ 0.1+ 0.04+ 0.1=0.34
P(ht)= 0.01+ 0.06+ 0.04+ 0.1=0.21

P(sn.ie) = 0.1+ 0.1=0.20

P(hf,sn) = 0.04+0.1=0.14




Reasoning under Uncertainty: Using FJPDT

= Assume three Boolean RVs: Haytever (HF), Sneeze (SN), ItchyEyes (IE)
and fictional probabilities:

HF |SN |IE Probability
false [false |false 0.5
false [false [true 0.09
false |true [false 0.1
false [true |true 0.1
true |[false [false 0.01
true |[false [true 0.06
true [true |false 0.04
true [true |true 0.1
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P(ale) = P(a, e) / P(e)

P(hf | sn) = P(hf,sn) / P(sn)

=  0.14/034=041
P(hf | 1e) = P(hf.ie) / P(ie)

= 0.16/0.35 =046
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Combining Multiple Evidence

= Using the Full Joint Prob. Dist. Table:

= P(VieersVi Vi gpeesVy) = 2 P(V =V, V =V ) /
ZP(ka:ka?'“?Vn:vn)
I. Sum of all entries in the table, where V,=v, ..., V. =v_

2. Divided by the sum of all entries in the table corresponding to

the evidence, where Vi =v, ., ..., V=V
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Combining Multiple Evidence

= Assume three Boolean RVs: Hayfever (HF), Sneeze (SN), ItchyEyes (IE) and

fictional probabilities:

HF |[SN |IE Probability
false [false |false 0.5
false [false [true 0.09
false [true [false 0.1
false [true |true 0.1
true |[false |false 0.01
true |false [true 0.06
true |[true |false 0.04
true [true |[true 0.1
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P(alb, c) = P(a,b,c) | X P(b,c)
as described in prior slide

P(hf | sn, ie) = P(hf.sn,ie) / Z P(sn,ie)
= 0.1 /(0.140.1)
= 05




s

Evaluating FJPDT

= Advantage
2 All combinations are available
2 Any joint or unconditional probability can be computed

= Disadvantage
o Combinatorial Explosion! For N variables, need 2" individual
probabilities.

2 Difficult to get probabilities for all combinations

» As FJPDT is large, is there an alternative technique?

Yes - use Bayes™ Rule to calculate probabilities and represent
independence assertions using Bayesian networks.
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Independence

® A and B are independent iff
P(4|B) = P(4) or P(B|4)=P(B) or P(A, B) = P(4) P(B)

7 Cavity
decomposes into ':-.TDOthElChE- Catch

Cavity
Toothache Catch
Weather

P(Toothache, Catch, Cavity,Weather)
= P(loothache, Catch, Cavity) P(Weather)

® Absolute independence powertul but rare

® Dentistry is a large field with hundreds of variables, none of which
are independent. What to do?
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Conditional independence

® P(Toothache, Cavity, Catch) has 2° — 1 = 7 independent entries

* If I have a cavity, the probability that the probe catches in it doesn't
depend on whether I have a toothache:

(1) P(catch | toothache, cavity) = P(catch | cavity)

® The same independence holds if I haven't got a cavity:
(2) P(catch | toothache,—cavity) = P(catch | —cavity)

® Catch is conditionally independent of Toothache given Cavity:
P(Catch | Toothache,Cavity) = P(Catch | Cavity)

* Equivalent statements:
P(Toothache | Catch, Cavity) = P(loothache | Cavity)

P(Toothache, Catch | Cavity) = P(Toothache | Cavity) P(Catch | Cavity)
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-

Conditional independence

* Write out tull joint distribution using chain rule:

P(Toothache, Catch, Cavity)

= P(Toothache
= P(loothache
= P(loothache

Catch, Cavity) P(Catch, Cavity)
Catch, Cavity) P(Catch | Cavity) P(Cavity)
Cavity) P(Catch | Cavity) P(Cavity)

l.e.,2 +2 + 1 =5 independent numbers

® In most cases, the use of conditional independence reduces
the size of the representation of the joint distribution from
exponential in n to linear in n.

® Conditional independence is our most basic and robust form
of knowledge about uncertain environments.




Bayesian networks
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Bayes' Rule

» From the definition of conditional probability we have
2 p(ab) = p(ab)/p) (1)

1 From the same definition we also have

2 p(bla) = p(a,b)/p(a)  (2)

2 So, p(a,b) = p(alb) p(b) (from (1))
= p(bla) p(a) (from (2))

2 Dividing both sides by p(b), we get:

p(alb) = p(bla) p(a)
p(b)

(This 1s Bayes’ rule)
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Why is Bayes’ Rule useful?

= In practice an agent must reason as follows
effects -> causes
¢.g., symptoms -> diseases
» But normally we build models in the “forward” causal direction
causes -> ecffects
¢.g., diseases -> symptoms
« Bayes rule allows us to work”backward” using the output of the
forward model to to infer causes (inputs)
o Very useful in applications involving diagnosis
= Say we know: p(d) = p(disease) = 0.001, p(s) = p(symptom) = 0.01
and p(symptom s |d) = 0.9
= If someone has the symptom what is the probability they have the disease?
= We need to find p(d|s) from the information above
p(djs) = p(sld) p(d) = 09 x 0.001 = 0.09
p(s) 0.01
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Examples: Bayes' Rule

= Bayes' Rule:
P(bla) = P(a|b)P(b)/P(a)

= For Example:
a=happy, b=sun
P(sunlhappy) =72
P(happy|sun) =0.95
P(sun) =0.5
P(happy) =0.75
(0.95 * 0.5)/0.75 =0.63
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a= sneecze, b= fall

P(falllsneeze) =72
P(sneezel|fall) = 0.85
P(fall) =0.25
P(sneeze) =0.3

(0.85 * 0.25)/0.3 =0.71
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Bayes' Rule: Example

» Using Bayes' Rule with causal knowledge:

a Diagnostic reasoning: want to determine likelihood of a cause
given an effect, which is difficult to obtain from a general

population.
a e.g. symptom is s=stiffNeck, disease is m=meningitis
P(sjm) =1/2 the casual knowledge
P(m) =1/50000, P(s)=1/20 prior probabilities
P(m|s) =7? desired diagnostic knowledge
(1/2 * 1/50000)/ (1/20) = 1/5000

a Doctor can now use P(m|s) to guide diagnosis.
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4 ™
Combining Multiple Evidence: Using Bayes' Rule

“"How do you update conditional probability of Y given two pieces of
evidence A and B?

» General Bayes' Rule for multi-valued RVs:
P(Y|X)=P(X]Y) * P(Y) / P(X)
let X=A,B:
P(Y|A.B) =P(A,B|Y) P(Y)/ P(A.B)
=P(Y) P(B|A,Y) P(A]Y) / (P(B|A) P(A))
=P(Y) * (P(A]Y)/P(A)) * (P(B|A,Y)/P(B|A))

= P(Y|A,B)=P(Y) * (P(AY)/P(A)) * (P(B|Y)/P(B)) (Bayes' Rule Multi-
Evidence)

*x This equation used to define a naive Bayes classifier.

@ Aziz M. Qaroush - Birzeit University /




4 N
Combining Multiple Evidence: Using Bayes' Rule

« Example:
2 What is the likelihood that a patient has sclerosis colangitis 4w lai?

0 Doctor naively assumes jaundice and fibrosis are independent.

a2  Doctor's initial belief: P(sc) =1/1.000,000
o Examination reveals jaundice: P(j) =1/10,000
P(j|lsc) =1/5
a2 Doctor's belief after exam.: P(sclj) = P(sc)P(j|sc)/P(j)
=2/1000
o Test 1ds fibrosis of bile ducts: P(flsc) =8/10
P(f) =1/100
a2 Doctor's belief now is: P(sc|j,f) = 16/100

P(scj.f) =P(sc) * (P(lsc)P(j)) * (P(f[sc)/P(t))
P(Y|A,B)=P(Y) * (P(A]Y)/P(A)) * (P(B|Y) /P(B))
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Bayesian networks

0 Adirected, acyclic graph (DAG)
0 A set of nodes, one per variable (discrete or continuous)

0 Aset of directed links (arrows) connects pairs of nodes. X is
a parent of Y if there is an arrow (direct influence) from node
X to node Y.

a Each node X;has a conditional probability distribution
that quantifies the effect of the parents on the node.

o Combinations of the topology and the conditional
distributions specify (implicitly) the full joint distribution for
all the variables.

P(X, | Parents(X,))
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Bayesian networks

Example 1 : The Teeth Disease Bayesian

Topology of network encodes conditional independence assertions:

Toothache @

Weather is independent of the other variables

Toothache and Catch are conditionally independent given C'avity

- /




Examples of 3-way Bayesian Networks

@ @ Marginal Independence:

P(A,B,C) =p(A) p(B) p(C)
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Examples of 3-way Bayesian Networks

Conditionally independent effects:
P(A,B,C) = p(BIA)P(C|A)p(A)

Q B and C are conditionally independent
9 Given A

e.g., Alis a disease, and we model
B and C as conditionally independent
symptoms given A
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Examples of 3-way Bayesian Networks

Independent Causes:
P(A,B,C) = p(C|A,B)p(A)p(B)

“Explaining away” effect:

Given C, observing A makes B less likely

e.g., earthquake/burglary/alarm examp

A and B are (marginally) independent
but become dependent once C is known

le

/
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Examples of 3-way Bayesian Networks

@_—. Markov dependence:

P(A,B,C) = p(C|B) p(B|A)p(A)




Example

: Burglar alarm system

| have a burglar alarm installed at home

o Itis fairly reliable at detecting a burglary, but also
responds on occasion to minor earth quakes.

| also have two neighbors, John and Mary

0 They have promised to call me at work when they hear
the alarm

o John always calls when he hears the alarm, but
sometimes confuses the telephone ringing with the alarm

and cal
0 Mary i

s then, too.
kes rather loud music and sometimes misses the

alarm a
Bayesian

together.
networks variables:

o Burglar, Earthquake, Alarm, JohnCalls, MaryCalls

52




Example: Burglar alarm system

Network topology reflects “causal” knowledge:

o Aburglar can set the alarm off

0 An earthquake can set the alarm off
o The alarm can cause Mary to call

2 The alarm can cause John to call

P(B) P(E)
Burglary )™ Earthquake ) [ 02
B E |[P(ABE)
T T| .95
T F| 94
F T | .29
F F | .001
P(J|A) A [P(M[A)

T 90 T
F | 05 P

70
01

conditional probability
table (CPT):

each row contains the
conditional probability
of each node value for
a conditioning case (a
possible combination
of values for the parent
nodes).
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" Computing Joint Probabilities: Using a A
Bayesian Network

I.  Use product rule

2. Simplify using independence

For Example: Q, /.

Compute P(a,b,c,d) =P(d,c,b,a)
order RVs in the joint probability bottom up D,C,B,A

= P(d|c,b,a) P(c.b,a) Product Rule P(d.c.b.a)
= P(d|c) P(c,b,a) Conditional Independ. of D given C
= P(d|c) P(c|b,a) P(b,a) Product Rule P(c,b.a)

= P(d|c) P(c|b,a) P(bla) P(a) Product Rule P(b.a)
= P(d|c) P(c|b,a) P(b) P(a) Independence of B and A

given no evidence

@ Aziz M. Qaroush - Birzeit University /




" Computing Joint Probabilities: Using a
Bayesian Network

* How is any joint probability computed?
* Answer: Sum the relevant joint probabilities: q ’

 e.g. Compute:

P(a,b) =P(a,b,c,d) + P(a,b,c,—~d) + P(a,b,—c,d) + P(a,b,—c,—d)
e e.g. Compute:
P(c) =P(a,b,c,d) + P(a,—b,c,d) + P(—a,b,c,d) + P(—a,—b,c,d) +
P(a,b,c,—d) + P(a,—b,c,—~d) + P(—a,b,c,—~d) + P(—a,—b,c,—d)
e A BN can answer any query (1.e. probability) about the domain by
summing the relevant joint probabilities.

* Enumerating the relevant joint probabilities can require many

computations!
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Example: Computing JPD using BN

P(A|C)=P(A|BAC)P(B|C)+

[Lemma: P(A|~ BAC)P(~ B|C)
Proof:
P(AANC) o
LHS | P(A|C) =
(4] C) P(C) by definition of cond prob

RHS | p(4|BAC)P(B|C)+P(A|~ BAC)P(~ B|C)
by def.of |_ P(AABAC) PM) P(AA~BAC) P(ygf(:’)

Cond. prob. PnGB'f\/(;) P(C) /B/C) P(C)
_ P(AABAC)+P(Ar~BAC)
N P(C)
_ P(AAC)
- P(O)

\@ Aziz M. Qaroush - Birzeit University
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An Example

P(A
P(A
P(A
P(A
P(A

Let us compute P(Alarm|Burglary):

B)=P(A|EAB)P(E|B)+
~EAB)P(~E|B) bylemma
B)=P(A|E AB)P(E)+
~EAB)P(~E) byabs.independence
B)=(.95)(.002) +(.94)(.998) = .94

@ Aziz M. Qaroush - Birzeit University
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An Example

= Let us compute P(JohnCalls|Burglary):

P(J|B)y=P(J|AAB)P(A|B)+

P(J|~ AANB)P(~ A|B) by lemma
P(J|B)=P(J|A)P(A|B)+

P(J |~ A)P(~ A|B) by cond. independen ce
P(J|B)=(9)(.94)+ (.05)(.06) = .85

This 1s an example of causal inference: from causes to effects.

\@ Aziz M. Qaroush - Birzeit University
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An Example

P(M
P(M
P(M
P(M
P(M

= Let us compute P(MaryCalls|Burglary):

B)=P(M |AAB)P(A|B)+
~AAB)P(~ A|B) by lemma

B)=P(M | A)P(A|B)+

~ A)P(~ A|B) by cond. independen ce
B)=(7).94)+ (.01)(.06) = .66

This 1s an example of causal inference: from causes to effects.

@ Aziz M. Qaroush - Birzeit University
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Probabilistic Reasoning: using a Bayesian

Network

= It is easy if the query involves nodes that are directly connected

to each other. examples assumed to use Boolean RVs
= Simple causal inference: P(E|C)
1 Conditional prob. dist. of effect E given cause C as evidence
12 Reasoning in same direction as arc, €.g. causes to effects
= Simple diagnostic inference: P(C|E)
1 Conditional prob. dist. of cause C given effect E as evidence

2 Reasoning in direction opposite of arc, e.g. effects to causes

@ Aziz M. Qaroush - Birzeit University /




g Probabilistic Reasoning: Causal (Top-
Down) Inference

Compute P(e|c)
Conditional probability of effect £=¢ given cause C'=c as evidence
assume arc exists from C, and C, to £

1. Rewrite conditional probability of ¢ in terms

of ¢ and all of 1ts parents given evidence c

®

2. Re-express each joint probability back to the probability of

¢ given all of its parents

3. Simplify using independence and Look Up required values

in the Bayesian Network.

\@ Aziz M. Qaroush - Birzeit University /




" Probabilistic Reasoning: Causal (Top-
Down) Inference
Compute P(elc)

1. =P(e,c)/ P(a) product rule
= (P(e,c,,c,)t P(e.c,,—c,)) / P(c)) marginalizing
= P(e.c,,c,) / P(c,) + P(e,c,;,—c,) / P(c,) algebra
= P(e.c,|c,) + P(e,—c,|c)) product rule

2. =P(elc,.c,) P(c,|c,) + P(e|—c,.c,) P(—c,/c,) cond. chain rule

3. Simplify given C, and C, are independent
P(cylc;) =P(c,)
P(—c,lc,) = P(—c,)
= P(elc,.c,) P(c,) + P(e|—c,,c,) P(—c,) algebra

now look up values to finish computation

\@ Aziz M. Qaroush - Birzeit University




" Probabilistic Reasoning: Diagnostic
(Bottom-Up) Inference

Compute P(cle)
Conditional probability of cause C=c given effect E=¢ as evidence
assume arc exists from C to E

Idea: convert to casual inference using Bayes' rule

1. Use Bayes' rule P(cle) = P(elc) P(c) / P(e)
Compute P(¢|c) using causal inference method

Look up value of P(c) in Bayesian Net

>~ W b

Use normalization to avoid computing P(¢)
2 Requires computing P(—cle)

2 Using steps as in 1 — 3 above

\@ Aziz M. Qaroush - Birzeit University




" Computing Joint Probabilities: Using a A
Bayesian Network

»  Basic task of probabilistic system is to compute conditional probabilities.

*  Any conditional probability can be computed:
PV s Vi Vs finne s W) =2 ¥ 5V ioenes Vi) £ U Vit Vhriiasens Y o V)

»  These computations generally rely on the simplifications resulting from

the independence of the RVs.
= Every variable that isn't an ancestor/successor of a query variable or an
evidence variable is irrelevant to the query.

= What ancestors are irrelevant?

@ Aziz M. Qaroush - Birzeit University /
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Independence in a Bayesian Network

Given a Bayesian Network how is independence established?

1. A node is conditionally independent (CI)
of its non-descendants, given its parents.

e.g. Given D and E. G are CI of ?

A,B,C,F,H

e.g. Given I and G, K are CI of ?
A,B,C,D,E,H,L, P

\@ Aziz M. Qaroush - Birzeit University /
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Independence in a Bayesian Network

Given a Bayesian Network how is independence established?

2. A node is conditionally independent
of all other nodes in the network given
its parents, children, and children's

parents, which is called a Markov blanket

e.2. What is the Markov blanket for G?

D E F H K, L
Given this blanket G 1s CI of ?
A.B.CM.N.O,P

What about absolute independence?

\@ Aziz M. Qaroush - Birzeit University /




P(tampering) = 0.02
P(fire) = 0.01

P(smoke|fire) = 0.9
P(smoke|~fire) = 0.01

P(alarm
P(alarm

fire, tamper) = 0.5
fire, ~tamper) = 0.99

P(leavinglalarm) = 0.88

P(alarm|~fire, tamper) = 0.85 P(leaving|~alarm) = 0.001
P(alarm|~fire, ~tamper) = 0.0001 P(report|leaving) = 0.75
P(report|~leaving) = 0.01
\_ 67
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Cgam) Example

Ceaving)
P(leaving|smoke) = P(leaving|alarm, smoke)*P(alarm|smoke)
+ P(leaving|~alarm, smoke)*(1-P(alarm|smoke))
= P(leaving|alarm)*P(alarm|smoke)
+ P(leaving|~alarm)*(1-P(alarm|smoke))
= 0.88*P(alarm|smoke) + 0.001*(1-P(alarm|smoke))

P(alarm|smoke) =
P(alarm|fire, tamper, smoke)*P(fire, tamper|smoke)
+ P(alarm|fire, ~tamper, smoke)*P(fire, ~tamper|smoke)
+ P(alarm|~fire, tamper, smoke)*P(~fire, tamper|smoke)
+ P(alarm|~fire, ~tamper, smoke)*P(~fire, ~tamper|smoke)
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Reasoning in a Belief Net

Updating belief in x based on evidence e from non-descendents:

P(x|e) =%, P(X,y=v|e) marginalize
=2, P(X|y=v, e)*P(y=Vv | e) chain rule
=2, P(x|y=v)*P(y=v|e) cond. independence

©
)
oo
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Calam>  Csmokd)

Ceaving)

P(alarm|smoke) =
P(alarmlfire, tamper)*P(fire, tamper|smoke)
+ P(alarm|fire, ~tamper)*P(fire, ~tamper|smoke)
+ P(alarm|~fire, tamper)*P(~fire, tamper|smoke)
+ P(alarm|~fire, ~tamper)*P(~fire, ~tamper|smoke)

Example

P(alarm|smoke) = 0.5*P(fire, tamper|smoke)
+ 0.99*P(fire, ~tamper|smoke)
+ 0.85*P(~fire, tamper|smoke)
+ 0.0001*P(~fire, ~tamper|smoke)
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Example

Calam>  Csmokd)

Ceaving)

P(fire, tamper|smoke)
= P(fire[tamper, smoke)*P(tamper|smoke)
= P(fire|tamper, smoke)*P(tamper)
=0.02 * P(fire|tamper, smoke)




Conditioning on Descendents

If e Includes descendents of x, separate into e, and e_
where e, Involves only descendents of x and e_, contains only

non-descendents. By Bayes’ theorem,

P(X|eq e-4) =P(eq

X, e_4) * P(X

€_q)

P(eq | €-g)

Probabilities in r.h.s. match specification of belief net.
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<> Example

Ceaving)

P(fire[tamper, smoke)
= P(smoke|fire, tamper) * P(fire|tamper)
P(smoke|tamper)
= P(smokelfire) * P(fire)
P(smoke|tamper)
= 0.9 *0.01
P(smoke|tamper)
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e Example

Ceaving)

P(smoke|tamper) =
P(smoke|tamper, fire) * P(fire[tamper) +
P(smoke|tamper, ~fire) * P(~fire[tamper)
P(smoke|fire) * P(fire) +P(smoke|~fire) * (1-P(fire))
0.9*0.01 +0.01 *0.99
0.0189
P(fire[tamper, smoke) = 0.9*0.01/0.0189 = 0.476
P(alarm | smoke) = ...
P(leaving | smoke) = ...
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Another Example
4w
Y1 Y

‘/v \Cg)
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P(x|e;e)="7
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Recursive Estimation

ﬁ@

76

P(x|e,,e

= ¥ P(X

Y.

—sz

=X P(x]y.Y,

= 3 PX]Y, Y,)

)= L PX]Y,Y,)PYYLY, [€,8,)

Y., Y,)P(Y,
Y., Y,)P(Y,

yZ’el’eZ)P(yZ | el’eZ)
el’eZ)P(yZ | el)

P(e,

)P(ez y..e,)P(y,|€,) (

e |¢) Py, [e,)

P(e, [Y,)PLy, | e )
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Tradeoff of FJPDT vs. BB Network

E:

Recall that the FIPDT can be used to answer any query about the
domain. Since any probability from the joint can be calculated from a
belief network, we can conclude that any query about the domain can be

answered using a belief network.

The tradeoft 1s that by keeping the joint we have to estimate and save a
very large number of probabilities. A belief network can be much more
concise, but you need to calculate, rather than look up in a table, values
for the joint.

E.g. Assuming Boolean variables, with k parents of each node, and n
nodes (which implies n CPTs), the complete network can be specified
with n*2" probabilities. The joint requires 2" probabilities. If n = 20 and
k =5, then the beliet network requires 640 numbers, whereas the full

joint requires over a million.

\6 Aziz M. Qaroush - Birzeit University
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/Review: Bayesian Nets

= Bayesian Nets are the bread and butter of Al-uncertainty community (like resolution to
Al-logic)
» Bayesian Nets are a compact representation

2 Don't require exponential storage to hold all of the probs.

2 In the full joint probability distribution (FJPD) table are a decomposed representation of
the FIPD table

a2 Conditional prob. dist. tables in non-root nodes are only exponential in the max number of
parents of any node
» Bayesian Nets are fast at computing joint probs:P(V;, ..., V}) Le. prior probability of V, ...,
Vi
a2 Computing the probability of an atomic event can be done in linear time with the number
of nodes in the net
» Conditional probabilities can be computed:
P(OIE,, ..., E})
cond. prob. of query Q given evidence £, ..., E;

a2 Requires enumerating all of the relevant joint probabilities, which takes exponential time

in the number of variables

@ Aziz M. Qaroush - Birzeit University
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Review: Conditional Probability

= P(A|B) = the conditional (or posterior) probability of A given
that all we know is B.

P(ANB
p4|B)=242B) pgyso
P(B)
¢+ Once we receive some evidence concerning a proposition, prior
probabilities

are no longer applicable.

¢+ We need to assess the conditional probability of that proposition
given that what we know 1s the available evidence.
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Review: Chain Rule

Chain rule is derived by successive applications of the product rule:
P(X,,...X)=PX,....X_ )PX X,...X )
=P(X,,....X ) P(X__ | X,,....X ) P(X [X,,....X )

= P(X[X,,....X. )

@ Aziz M. Qaroush - Birzeit University /
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Review: Conditional independence

» Xand Y are independent random variables if:
a  P(X.)Y)=P(X)P(Y) orequivalently
o P(X|Y) =P(X)
= X s conditionally independent of Y given Z if
o P(X|Y.Z)=P(X|Z) or equivalently
a0 P(X.Y|Z) = P(X|Z) P(Y|Z)

= P(X.Y|Z)=P(X|Y,Z)P(Y|Z)

»  The product rule is an alternative formulation of conditional probability:

P(A&B)=P(A|B) P(B) =P(B|A) P(A)

o Bayes' Rule
P(B| 4) =" (ALIZ'; (8)
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