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Probability 

 P(a) is the probability of proposition “a” 

 E.g., P(it will rain in London tomorrow) 

 The proposition a is actually true or false in the real-world 

 P(a) = “prior” or marginal or unconditional probability 

 Assumes no other information is available 

 

 Axioms: 

 0  <= P(a)  <= 1 

 P(NOT(a))  = 1 – P(a) 

 P(true)  =  1 

 P(false) =  0 

 P(A OR B) = P(A) + P(B) – P(A AND B) 

 

 



Probability and Logic 

 Probability can be viewed as a generalization of propositional 

logic 

 

 P(a): 

 a is any sentence in propositional logic  

 Belief of agent in a is no longer restricted to true, false, unknown 

 P(a) can range from 0 to 1 

 P(a) = 0, and P(a) = 1 are special cases 

 So logic can be viewed as a special case of probability 



Sources of Uncertainty 
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Example of Uncertainty 
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Rules with Uncertainty 
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Making Decisions under Uncertainty 
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Uncertainty in the World Model 
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Handling Uncertain knowledge 
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Syntax 
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Syntax: Events 
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Syntax: Atomic Events 
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Prior versus Conditional Probability 
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Assigning Probabilities 
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Axioms of probability 

 For any propositions A, B 

 0 ≤ P(A) ≤ 1 

 P(true) = 1 and P(false) = 0 

 P(A  B) = P(A) + P(B) - P(A  B) 



Using the axioms of probability 

 P(a⋁¬a ) = P(a) + P (¬ a ) - P(a⋀¬a )  

   (by axiom 3 with b = ¬ a ) 

 P(true) = P(a) + P (¬a ) - P(false) 

    (by logical equivalence) 

 1 = P(a) + P (¬a ) (by axiom 2) 

 P (¬a ) = 1 - P(a) (by algebra). 



Probability Distributions 
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Joint Distribution 
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Joint Distribution Says It All 
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Conditional Probability 
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Conditional Probability 
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Reasoning Under 

Uncertainty 
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Joint Probability Distribution(JPD) 
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Full Joint Probability Distribution Table (FJPDT)  
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Reasoning Under Uncertainty: Using FJPDT 
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Reasoning Under Uncertainty: Using FJPDT 
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Reasoning Under Uncertainty: Using FJPDT 
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Independence RV 
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Independence RV 
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Reasoning under Uncertainty: Using FJPDT 
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Reasoning under Uncertainty: Using FJPDT 
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Combining Multiple Evidence 
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Combining Multiple Evidence 
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Evaluating FJPDT 
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Independence 

 A and B are independent iff 

 P(A|B) = P(A)  or  P(B|A) = P(B)   or  P(A, B) = P(A) P(B) 

 

 

 

 
P(Toothache, Catch, Cavity, Weather) 
 = P(Toothache, Catch, Cavity) P(Weather) 

 

 

 Absolute independence powerful but rare 

 Dentistry is a large field with hundreds of variables, none of which 
are independent. What to do? 



Conditional independence 

 P(Toothache, Cavity, Catch) has 23 – 1 = 7 independent entries 
 

 If I have a cavity, the probability that the probe catches in it doesn't 
depend on whether I have a toothache: 
(1) P(catch | toothache, cavity) = P(catch | cavity) 

 

 The same independence holds if I haven't got a cavity: 
(2) P(catch | toothache,cavity) = P(catch | cavity) 

 

 Catch is conditionally independent of Toothache given Cavity: 
P(Catch | Toothache,Cavity) = P(Catch | Cavity) 

 

 Equivalent statements: 
P(Toothache | Catch, Cavity) = P(Toothache | Cavity) 
 
P(Toothache, Catch | Cavity) = P(Toothache | Cavity) P(Catch | Cavity) 



Conditional independence  

 Write out full joint distribution using chain rule: 

 P(Toothache, Catch, Cavity) 
 = P(Toothache | Catch, Cavity) P(Catch, Cavity) 
 = P(Toothache | Catch, Cavity) P(Catch | Cavity) P(Cavity) 
 = P(Toothache | Cavity) P(Catch | Cavity) P(Cavity) 
 

 I.e., 2 + 2 + 1 = 5 independent numbers 
 

 In most cases, the use of conditional independence reduces 
the size of the representation of the joint distribution from 
exponential in n to linear in n. 

 

 Conditional independence is our most basic and robust form 
of knowledge about uncertain environments. 



Bayesian networks 
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Bayes' Rule 



Why is Bayes’ Rule useful? 
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Examples: Bayes' Rule 
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Bayes' Rule: Example 
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Combining Multiple Evidence: Using Bayes' Rule 
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Combining Multiple Evidence: Using Bayes' Rule 
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Bayesian networks 

 A directed, acyclic graph (DAG) 

 A set of nodes, one per variable (discrete or continuous) 

 A set of directed links (arrows) connects pairs of nodes. X is 
a parent of Y if there is an arrow (direct influence) from node 
X to node Y. 

 Each node       has a conditional probability distribution                                
that quantifies the effect of the parents on the node. 

 Combinations of the topology and the conditional 
distributions specify (implicitly) the full joint distribution for 
all the variables. 
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Bayesian networks 

Example 1： The Teeth Disease Bayesian   



Examples of 3-way Bayesian Networks 

A C B Marginal Independence: 

p(A,B,C) = p(A) p(B) p(C) 



Examples of 3-way Bayesian Networks 

A 

C B 

Conditionally independent effects: 

p(A,B,C) = p(B|A)p(C|A)p(A) 

 

B and C are conditionally independent 

Given A 

 

e.g., A is a disease, and we model  

B and C as conditionally independent 

symptoms given A 

 



Examples of 3-way Bayesian Networks 

A B 

C 

Independent Causes: 

p(A,B,C) = p(C|A,B)p(A)p(B) 

 

 

“Explaining away” effect: 

Given C, observing A makes B less likely 

e.g., earthquake/burglary/alarm example 

 

A and B are (marginally) independent  

but become dependent once C is known 

  



Examples of 3-way Bayesian Networks 

A C B Markov dependence: 

p(A,B,C) = p(C|B) p(B|A)p(A) 
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Example: Burglar alarm system 

 I have a burglar alarm installed at home 

 It is fairly reliable at detecting a burglary, but also 
responds on occasion to minor earth quakes. 

 I also have two neighbors, John and Mary 

 They have promised to call me at work when they hear 
the alarm 

 John always calls when he hears the alarm, but 
sometimes confuses the telephone ringing with the alarm 
and calls then, too. 

 Mary likes rather loud music and sometimes misses the 
alarm altogether. 

 Bayesian networks variables: 

 Burglar, Earthquake, Alarm, JohnCalls, MaryCalls 
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Example: Burglar alarm system 

 Network topology reflects “causal” knowledge: 

 A burglar can set the alarm off 

 An earthquake can set the alarm off 

 The alarm can cause Mary to call 

 The alarm can cause John to call  conditional probability 
table (CPT):  
each row contains the 
conditional probability 
of each node value for 
a conditioning case (a 
possible combination 
of values for the parent 
nodes). 



Computing Joint Probabilities: Using a 

Bayesian Network 
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Computing Joint Probabilities: Using a 

Bayesian Network 
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Example: Computing JPD using BN 
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An Example 
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An Example 
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An Example 
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Probabilistic Reasoning: using a Bayesian 

Network 
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Probabilistic Reasoning: Causal (Top-

Down) Inference 
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Probabilistic Reasoning: Causal (Top-

Down) Inference 
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Probabilistic Reasoning: Diagnostic 

(Bottom-Up) Inference 
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Computing Joint Probabilities: Using a 

Bayesian Network 
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Independence in a Bayesian Network 
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Independence in a Bayesian Network 
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Example  

tampering fire 

alarm smoke 

leaving 

report 

P(alarm|fire, tamper) = 0.5 

P(alarm|fire, ~tamper) = 0.99 

P(alarm|~fire, tamper) = 0.85 

P(alarm|~fire, ~tamper) = 0.0001 

P(smoke|fire) = 0.9 

P(smoke|~fire) = 0.01 

P(tampering) = 0.02 

P(fire) = 0.01 

P(leaving|alarm) = 0.88 

P(leaving|~alarm) = 0.001 

P(report|leaving) = 0.75 

P(report|~leaving) = 0.01 
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Example  

 

P(leaving|smoke) = P(leaving|alarm, smoke)*P(alarm|smoke) 

         + P(leaving|~alarm, smoke)*(1-P(alarm|smoke)) 

     = P(leaving|alarm)*P(alarm|smoke) 

          + P(leaving|~alarm)*(1-P(alarm|smoke)) 

 = 0.88*P(alarm|smoke) + 0.001*(1-P(alarm|smoke)) 

 

P(alarm|smoke) = 

P(alarm|fire, tamper, smoke)*P(fire, tamper|smoke) 

+ P(alarm|fire, ~tamper, smoke)*P(fire, ~tamper|smoke) 

+ P(alarm|~fire, tamper, smoke)*P(~fire, tamper|smoke) 

+ P(alarm|~fire, ~tamper, smoke)*P(~fire, ~tamper|smoke) 

tampering fire 

alarm smoke 

leaving 

report 
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Reasoning in a Belief Net 

Updating belief in x based on evidence e from non-descendents: 
 
P(x | e)  = v P(x, y=v | e)  marginalize 
    = v P(x | y=v, e)*P(y=v | e) chain rule 
    = v P(x | y=v)*P(y=v | e)  cond. independence 

  

x 

y 

e 
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P(alarm|smoke) = 

P(alarm|fire, tamper)*P(fire, tamper|smoke) 

+ P(alarm|fire, ~tamper)*P(fire, ~tamper|smoke) 

+ P(alarm|~fire, tamper)*P(~fire, tamper|smoke) 

+ P(alarm|~fire, ~tamper)*P(~fire, ~tamper|smoke) 

 

P(alarm|smoke) = 0.5*P(fire, tamper|smoke) 

+ 0.99*P(fire, ~tamper|smoke) 

+ 0.85*P(~fire, tamper|smoke) 

+ 0.0001*P(~fire, ~tamper|smoke) 

Example 
tampering fire 

alarm smoke 

leaving 

report 
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Example 

P(fire, tamper|smoke) 

= P(fire|tamper, smoke)*P(tamper|smoke) 

= P(fire|tamper, smoke)*P(tamper) 

= 0.02 *  P(fire|tamper, smoke) 

tampering fire 

alarm smoke 

leaving 

report 
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Conditioning on Descendents 

If e includes descendents of x, separate into ed and e~d  
where ed involves only descendents of x and e~d contains only 
non-descendents. By Bayes’ theorem, 
 

P(x | ed, e~d ) = P(ed | x, e~d) * P(x | e~d) 
                 P(ed | e~d) 
 

Probabilities in r.h.s. match specification of belief net. 



73 

Example 

 
P(fire|tamper, smoke) 

= P(smoke|fire, tamper) * P(fire|tamper) 
          P(smoke|tamper) 

=  P(smoke|fire) * P(fire) 
P(smoke|tamper) 

=    0.9 * 0.01     
P(smoke|tamper) 

tampering fire 

alarm smoke 

leaving 

report 
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P(smoke|tamper) = 

P(smoke|tamper, fire) * P(fire|tamper) + 

P(smoke|tamper, ~fire) * P(~fire|tamper) 

= P(smoke|fire) * P(fire) +P(smoke|~fire) * (1-P(fire)) 

= 0.9 * 0.01 + 0.01 * 0.99 

= 0.0189 

P(fire|tamper, smoke) = 0.9*0.01 / 0.0189 =  0.476 

P(alarm | smoke) = ... 

P(leaving | smoke) = ... 

Example 

tampering fire 

alarm smoke 

leaving 

report 
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Another Example 

x 

y1 y2 

e1 

e2 

P(x | e1, e2) = ? 
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Recursive Estimation 
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Tradeoff of FJPDT vs. BB Network 
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Review: Bayesian Nets 
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Review: Conditional Probability 
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Review: Chain Rule 
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Review: Conditional independence 
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