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Probability 

 P(a) is the probability of proposition “a” 

 E.g., P(it will rain in London tomorrow) 

 The proposition a is actually true or false in the real-world 

 P(a) = “prior” or marginal or unconditional probability 

 Assumes no other information is available 

 

 Axioms: 

 0  <= P(a)  <= 1 

 P(NOT(a))  = 1 – P(a) 

 P(true)  =  1 

 P(false) =  0 

 P(A OR B) = P(A) + P(B) – P(A AND B) 

 

 



Probability and Logic 

 Probability can be viewed as a generalization of propositional 

logic 

 

 P(a): 

 a is any sentence in propositional logic  

 Belief of agent in a is no longer restricted to true, false, unknown 

 P(a) can range from 0 to 1 

 P(a) = 0, and P(a) = 1 are special cases 

 So logic can be viewed as a special case of probability 



Sources of Uncertainty 
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Example of Uncertainty 
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Rules with Uncertainty 
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Making Decisions under Uncertainty 
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Uncertainty in the World Model 
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Handling Uncertain knowledge 
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Syntax 
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Syntax: Events 
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Syntax: Atomic Events 
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Prior versus Conditional Probability 
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Assigning Probabilities 
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Axioms of probability 

 For any propositions A, B 

 0 ≤ P(A) ≤ 1 

 P(true) = 1 and P(false) = 0 

 P(A  B) = P(A) + P(B) - P(A  B) 



Using the axioms of probability 

 P(a⋁¬a ) = P(a) + P (¬ a ) - P(a⋀¬a )  

   (by axiom 3 with b = ¬ a ) 

 P(true) = P(a) + P (¬a ) - P(false) 

    (by logical equivalence) 

 1 = P(a) + P (¬a ) (by axiom 2) 

 P (¬a ) = 1 - P(a) (by algebra). 



Probability Distributions 
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Joint Distribution 
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Joint Distribution Says It All 
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Conditional Probability 
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Conditional Probability 
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Reasoning Under 

Uncertainty 
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Joint Probability Distribution(JPD) 
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Full Joint Probability Distribution Table (FJPDT)  
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Reasoning Under Uncertainty: Using FJPDT 
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Reasoning Under Uncertainty: Using FJPDT 
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Reasoning Under Uncertainty: Using FJPDT 
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Independence RV 
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Independence RV 
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Reasoning under Uncertainty: Using FJPDT 
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Reasoning under Uncertainty: Using FJPDT 
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Combining Multiple Evidence 
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Combining Multiple Evidence 
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Evaluating FJPDT 
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Independence 

 A and B are independent iff 

 P(A|B) = P(A)  or  P(B|A) = P(B)   or  P(A, B) = P(A) P(B) 

 

 

 

 
P(Toothache, Catch, Cavity, Weather) 
 = P(Toothache, Catch, Cavity) P(Weather) 

 

 

 Absolute independence powerful but rare 

 Dentistry is a large field with hundreds of variables, none of which 
are independent. What to do? 



Conditional independence 

 P(Toothache, Cavity, Catch) has 23 – 1 = 7 independent entries 
 

 If I have a cavity, the probability that the probe catches in it doesn't 
depend on whether I have a toothache: 
(1) P(catch | toothache, cavity) = P(catch | cavity) 

 

 The same independence holds if I haven't got a cavity: 
(2) P(catch | toothache,cavity) = P(catch | cavity) 

 

 Catch is conditionally independent of Toothache given Cavity: 
P(Catch | Toothache,Cavity) = P(Catch | Cavity) 

 

 Equivalent statements: 
P(Toothache | Catch, Cavity) = P(Toothache | Cavity) 
 
P(Toothache, Catch | Cavity) = P(Toothache | Cavity) P(Catch | Cavity) 



Conditional independence  

 Write out full joint distribution using chain rule: 

 P(Toothache, Catch, Cavity) 
 = P(Toothache | Catch, Cavity) P(Catch, Cavity) 
 = P(Toothache | Catch, Cavity) P(Catch | Cavity) P(Cavity) 
 = P(Toothache | Cavity) P(Catch | Cavity) P(Cavity) 
 

 I.e., 2 + 2 + 1 = 5 independent numbers 
 

 In most cases, the use of conditional independence reduces 
the size of the representation of the joint distribution from 
exponential in n to linear in n. 

 

 Conditional independence is our most basic and robust form 
of knowledge about uncertain environments. 



Bayesian networks 
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Bayes' Rule 



Why is Bayes’ Rule useful? 
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Examples: Bayes' Rule 
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Bayes' Rule: Example 
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Combining Multiple Evidence: Using Bayes' Rule 
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Combining Multiple Evidence: Using Bayes' Rule 
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Bayesian networks 

 A directed, acyclic graph (DAG) 

 A set of nodes, one per variable (discrete or continuous) 

 A set of directed links (arrows) connects pairs of nodes. X is 
a parent of Y if there is an arrow (direct influence) from node 
X to node Y. 

 Each node       has a conditional probability distribution                                
that quantifies the effect of the parents on the node. 

 Combinations of the topology and the conditional 
distributions specify (implicitly) the full joint distribution for 
all the variables. 
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Bayesian networks 

Example 1： The Teeth Disease Bayesian   



Examples of 3-way Bayesian Networks 

A C B Marginal Independence: 

p(A,B,C) = p(A) p(B) p(C) 



Examples of 3-way Bayesian Networks 

A 

C B 

Conditionally independent effects: 

p(A,B,C) = p(B|A)p(C|A)p(A) 

 

B and C are conditionally independent 

Given A 

 

e.g., A is a disease, and we model  

B and C as conditionally independent 

symptoms given A 

 



Examples of 3-way Bayesian Networks 

A B 

C 

Independent Causes: 

p(A,B,C) = p(C|A,B)p(A)p(B) 

 

 

“Explaining away” effect: 

Given C, observing A makes B less likely 

e.g., earthquake/burglary/alarm example 

 

A and B are (marginally) independent  

but become dependent once C is known 

  



Examples of 3-way Bayesian Networks 

A C B Markov dependence: 

p(A,B,C) = p(C|B) p(B|A)p(A) 
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Example: Burglar alarm system 

 I have a burglar alarm installed at home 

 It is fairly reliable at detecting a burglary, but also 
responds on occasion to minor earth quakes. 

 I also have two neighbors, John and Mary 

 They have promised to call me at work when they hear 
the alarm 

 John always calls when he hears the alarm, but 
sometimes confuses the telephone ringing with the alarm 
and calls then, too. 

 Mary likes rather loud music and sometimes misses the 
alarm altogether. 

 Bayesian networks variables: 

 Burglar, Earthquake, Alarm, JohnCalls, MaryCalls 
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Example: Burglar alarm system 

 Network topology reflects “causal” knowledge: 

 A burglar can set the alarm off 

 An earthquake can set the alarm off 

 The alarm can cause Mary to call 

 The alarm can cause John to call  conditional probability 
table (CPT):  
each row contains the 
conditional probability 
of each node value for 
a conditioning case (a 
possible combination 
of values for the parent 
nodes). 



Computing Joint Probabilities: Using a 

Bayesian Network 
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Computing Joint Probabilities: Using a 

Bayesian Network 
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Example: Computing JPD using BN 
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An Example 
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An Example 

Aziz M. Qaroush - Birzeit University 58 



An Example 
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Probabilistic Reasoning: using a Bayesian 

Network 
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Probabilistic Reasoning: Causal (Top-

Down) Inference 
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Probabilistic Reasoning: Causal (Top-

Down) Inference 
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Probabilistic Reasoning: Diagnostic 

(Bottom-Up) Inference 
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Computing Joint Probabilities: Using a 

Bayesian Network 
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Independence in a Bayesian Network 
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Independence in a Bayesian Network 
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Example  

tampering fire 

alarm smoke 

leaving 

report 

P(alarm|fire, tamper) = 0.5 

P(alarm|fire, ~tamper) = 0.99 

P(alarm|~fire, tamper) = 0.85 

P(alarm|~fire, ~tamper) = 0.0001 

P(smoke|fire) = 0.9 

P(smoke|~fire) = 0.01 

P(tampering) = 0.02 

P(fire) = 0.01 

P(leaving|alarm) = 0.88 

P(leaving|~alarm) = 0.001 

P(report|leaving) = 0.75 

P(report|~leaving) = 0.01 
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Example  

 

P(leaving|smoke) = P(leaving|alarm, smoke)*P(alarm|smoke) 

         + P(leaving|~alarm, smoke)*(1-P(alarm|smoke)) 

     = P(leaving|alarm)*P(alarm|smoke) 

          + P(leaving|~alarm)*(1-P(alarm|smoke)) 

 = 0.88*P(alarm|smoke) + 0.001*(1-P(alarm|smoke)) 

 

P(alarm|smoke) = 

P(alarm|fire, tamper, smoke)*P(fire, tamper|smoke) 

+ P(alarm|fire, ~tamper, smoke)*P(fire, ~tamper|smoke) 

+ P(alarm|~fire, tamper, smoke)*P(~fire, tamper|smoke) 

+ P(alarm|~fire, ~tamper, smoke)*P(~fire, ~tamper|smoke) 

tampering fire 

alarm smoke 

leaving 

report 
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Reasoning in a Belief Net 

Updating belief in x based on evidence e from non-descendents: 
 
P(x | e)  = v P(x, y=v | e)  marginalize 
    = v P(x | y=v, e)*P(y=v | e) chain rule 
    = v P(x | y=v)*P(y=v | e)  cond. independence 

  

x 

y 

e 
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P(alarm|smoke) = 

P(alarm|fire, tamper)*P(fire, tamper|smoke) 

+ P(alarm|fire, ~tamper)*P(fire, ~tamper|smoke) 

+ P(alarm|~fire, tamper)*P(~fire, tamper|smoke) 

+ P(alarm|~fire, ~tamper)*P(~fire, ~tamper|smoke) 

 

P(alarm|smoke) = 0.5*P(fire, tamper|smoke) 

+ 0.99*P(fire, ~tamper|smoke) 

+ 0.85*P(~fire, tamper|smoke) 

+ 0.0001*P(~fire, ~tamper|smoke) 

Example 
tampering fire 

alarm smoke 

leaving 

report 
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Example 

P(fire, tamper|smoke) 

= P(fire|tamper, smoke)*P(tamper|smoke) 

= P(fire|tamper, smoke)*P(tamper) 

= 0.02 *  P(fire|tamper, smoke) 

tampering fire 

alarm smoke 

leaving 

report 
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Conditioning on Descendents 

If e includes descendents of x, separate into ed and e~d  
where ed involves only descendents of x and e~d contains only 
non-descendents. By Bayes’ theorem, 
 

P(x | ed, e~d ) = P(ed | x, e~d) * P(x | e~d) 
                 P(ed | e~d) 
 

Probabilities in r.h.s. match specification of belief net. 
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Example 

 
P(fire|tamper, smoke) 

= P(smoke|fire, tamper) * P(fire|tamper) 
          P(smoke|tamper) 

=  P(smoke|fire) * P(fire) 
P(smoke|tamper) 

=    0.9 * 0.01     
P(smoke|tamper) 

tampering fire 

alarm smoke 

leaving 

report 
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P(smoke|tamper) = 

P(smoke|tamper, fire) * P(fire|tamper) + 

P(smoke|tamper, ~fire) * P(~fire|tamper) 

= P(smoke|fire) * P(fire) +P(smoke|~fire) * (1-P(fire)) 

= 0.9 * 0.01 + 0.01 * 0.99 

= 0.0189 

P(fire|tamper, smoke) = 0.9*0.01 / 0.0189 =  0.476 

P(alarm | smoke) = ... 

P(leaving | smoke) = ... 

Example 

tampering fire 

alarm smoke 

leaving 

report 
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Another Example 

x 

y1 y2 

e1 

e2 

P(x | e1, e2) = ? 
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Recursive Estimation 
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Tradeoff of FJPDT vs. BB Network 
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Review: Bayesian Nets 
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Review: Conditional Probability 
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Review: Chain Rule 
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Review: Conditional independence 
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