
COMPUTER SCIENCE DEPARTMENT FACULTY
OF ENGINEERING AND TECHNOLOGY

ADVANCED PROGRAMMING COMP231

Lecturer :Farid Mohammad

Object Oriented

Constructing Objects Using Constructors

A constructor is invoked to create an
object using the new operator.

■ A constructor must have the same
name as the class itself.

■ Constructors do not have a return
type—not even void.

■ Constructors are invoked using the
new operator when an object is
created.

Constructors play the role of
initializing objects.

// Create a Main class

public class Main {

 int x; // Create a class attribute

 // Create a class constructor for the Main
class

 public Main() {

 x = 5; // Set the initial value for the
class attribute x

 }

 public static void main(String[] args) {

 Main myObj = new Main(); // Create an
object of class Main (This will call the
constructor)

 System.out.println(myObj.x); // Print
the value of x

 }

}

// Outputs 5

Also note that the constructor is
called when the object is created.

All classes have constructors by
default: if you do not create a class
constructor yourself, Java creates
one for you.

However, then you are not able to set
initial values for object attributes.

Constructor Parameters

Constructors can also take
parameters, which is used to initialize
attributes.

The following example adds an int y
parameter to the constructor. Inside
the constructor we set x to y (x=y).

When we call the constructor, we
pass a parameter to the constructor
(5), which will set the value of x to 5:

public class Main {

 int x;

 public Main(int y) {

 x = y;

 }

 public static void main(String[] args) {

 Main myObj = new Main(5);

 System.out.println(myObj.x);

 }

}

// Outputs 5

You can have as many parameters as
you want:

public class Main {

 int modelYear;

 String modelName;

 public Main(int year, String name) {

 modelYear = year;

 modelName = name;

 }

 public static void main(String[] args) {

 Main myCar = new Main(1969, "Mustang");

 System.out.println(myCar.modelYear + " "
+ myCar.modelName);

 }

}

9.5 What are the differences between constructors and methods?

9.6 When will a class have a default constructor?

Accessing Objects via Reference Variables

An object’s data and methods can be
accessed through the dot (.) operator
via the object’s reference variable.

Newly created objects are allocated in
the memory.

They can be accessed via reference
variables.

Reference Variables and Reference
Types

Objects are accessed via the object’s reference variables,

which contain references to the
objects.

Such variables are declared using the
following syntax:

ClassName objectRefVar;

example to declare a reference:

Circle myCircle;

to create the object:

myCircle = new Circle();

Accessing an Object’s Data and
Methods

In OOP terminology, an object’s
member refers to its data fields and
methods.

After an object is created, its data can be accessed and its
methods can be invoked using the dot operator (.),

also known as the object member access operator:

■ objectRefVar.dataField references a data field in the
object.

■ objectRefVar.method(arguments) invokes a method on
the object.

For example, myCircle.radius references the radius in
myCircle, and myCircle

.getArea() invokes the getArea method on myCircle.
Methods are invoked as operations

on objects.

9.5.3 Reference Data Fields and
the null Value

If a data field of a reference type does
not reference any object, the data
field holds a special

Java value, null.

class Student {

String name; // name has the default
value null

int age; // age has the default value 0

boolean isScienceMajor; // isScienceMajor has default
value false

char gender; // gender has default value '\u0000'

}

Differences between Variables of Primitive Types

and Reference Types

Every variable represents a memory
location that holds a value.

When you declare a variable,

you are telling the compiler what type
of value the variable can hold.

For a variable of a primitive

type, the value is of the primitive type.

For a variable of a reference type, the
value is a reference to where an
object is located.

For example, the value of int variable i
is int value 1,

and the value of Circle object c holds
a reference to where the contents of
the Circle object are stored in
memory.

When you assign one variable to
another, the other variable is set to
the same value.

For a variable of a primitive type, the
real value of one variable is assigned
to the other variable.

For a variable of a reference type, the
reference of one variable is assigned
to the other variable.

As shown in Figure 9.8, the
assignment statement i = j copies the
contents of j into i

9.7 Which operator is used to access a data field or invoke a method
from an object?

9.8 What is an anonymous object?

9.9 What is NullPointerException?

9.10 Is an array an object or a primitive type value? Can an array
contain elements of an

object type? Describe the default value for the elements of an array.

9.11 What is wrong with each of the following programs?

Static Variables, Constants, and Methods
A static variable is shared by all objects of the class.

A static method cannot access instance members of the class.

class Circle{
 float radius;

 Circle(float r){
 radius=r;
}
}

Circle circle1 = new Circle();
Circle circle2 = new Circle(5);

Whats the value of circle1.radius

class Circle{
 static float radius;

 Circle(float r){
 radius=r;
}
}

Circle circle1 = new Circle();
Circle circle2 = new Circle(5);

Whats the value of circle1.radius

How to know number of objects created
 public class Circle {
 /** The radius of the circle */
 double radius;

 /** The number of objects created */
 static int numberOfObjects = 0;

 /** Construct a circle with a specified radius */
 Circle(double newRadius) {
 radius = newRadius;
 numberOfObjects++;
 }

 /** Return numberOfObjects */
 static int getNumberOfObjects() {
 return numberOfObjects;
 }

 }

 static int numberOfObjects = 0;

static int getNumberOfObjects() {

public class TestCircleWithStaticMembers {
 /** Main method */
 public static void main(String[] args) {
 System.out.println("Before creating objects");
 System.out.println("The number of Circle objects is " +
 Circle.numberOfObjects);

 // Create c1
 Circle c1 = new Circle();

// Display c1 BEFORE c2 is created
System.out.println("\nAfter creating c1");
System.out.println("c1: radius (" + c1.radius +
") and number of Circle objects (" +
c1.numberOfObjects + ")");

// Create c2
Circle c2 = new Circle(5);

// Modify c1
c1.radius = 9;

// Display c1 and c2 AFTER c2 was created
System.out.println("\nAfter creating c2 and modifying c1");
System.out.println("c1: radius (" + c1.radius +
") and number of Circle objects (" +
c1.numberOfObjects + ")");
System.out.println("c2: radius (" + c2.radius +
") and number of Circle objects (" +
c2.numberOfObjects + ")");
}
}

Static variable:
only one place in
memory for all
objects

Static method
No object needed

Circle.getNumberOfObjects

D
Design Guide

How do you decide whether a variable or a
method should be an instance one or a
static one?

A variable or a method that is dependent on a
specific instance of the class
should be an instance variable or method.

A variable or a method that is not dependent
on a specific instance of the class should be a
static variable or method.

For example, every circle has its own radius,
so the radius is dependent on a specific circle.
Therefore, radius is an instance variable of the
Circle class.

Since the getArea method is dependent on a
specific circle, it is an instance method.

None of the methods in the
Math class, such as random, pow, sin, and
cos, is dependent on a specific instance.
Therefore, these methods are static methods.

 The main method is static and can be
invoked directly from a class.

Caution
It is a common design error to define an
instance method that should have been
defined as static. For example, the method
factorial(int n) should be defined as static,
as shown next, because it is independent of
any specific instance.

Visibility Modifiers

Visibility modifiers can be used to
specify the visibility of a class and its
members.

1- You can use the public visibility
modifier for classes, methods, and
data fields to denote that they can be
accessed from any other classes.

2- If no visibility modifier is used,
then by default the classes, methods,
and data fields are accessible by any
class in the same package.

 This is known as package-private or
package-access .

3- Private:
Methods and data fields accessible
only from within its own class.

4- The protected modifier will be introduced in
Section 11.14, The protected Data and Methods.

C1 can be accessed from a class C2 in the same
package and from a class C3 in a different package

If a class is not defined as public, it
can be accessed only within the same
package.

As shown in Figure 9.15, C1 can be
accessed from C2 but not from C3.

 As shown in Figure 9.16a, an object c of class C can access
its private members, because c is defined inside its own
class.

Data Field Encapsulation

Making data fields private protects data and makes
the class easy to maintain.

The data fields radius and
numberOfObjects in the
CircleWithStaticMembers class in
Listing 9.6 can be modified directly (e.g.,
c1.radius = 5 or
CircleWithStaticMembers

.numberOfObjects = 10). This is not a good
practice—for two reasons:

■ First, data may be tampered with. For example,
numberOfObjects is to count the
number of objects created, but it may be mistakenly
set to an arbitrary value (e.g.,
CircleWithStaticMembers.numberOfOb
jects = 10).

■ Second, the class becomes difficult to maintain
and vulnerable to bugs. Suppose
you want to modify the
CircleWithStaticMembers class to ensure
that the radius is nonnegative after other programs
have already used the class.

You have to change not only the
CircleWithStaticMembers class but also

the programs that use it, because the clients may
have modified the radius directly
(e.g., c1.radius = -5).

To prevent direct modifications of data fields, you
should declare the data fields private,

using the private modifier. This is known
as data field encapsulation.

The this Reference
The keyword this refers to the object itself.

 It can also be used inside a constructor to
invoke another constructor of the same class.

The this keyword is the name of a reference that
an object can use to refer to itself.

You can use the this keyword to reference the
object’s instance members. For example, the
following
code in (a) uses this to reference the object’s
radius and invokes its getArea() method
explicitly. The this reference is normally
omitted, as shown in
(b). However, the this
reference is needed to reference hidden data fields
or invoke an overloaded constructor.

simply by using the ClassName.staticVariable reference. A hidden instance variable
can be accessed by using the keyword this, as shown in Figure 9.21a.

The this keyword gives us a way to reference the object that invokes an instance method.

To invoke f1.setI(10),
this.i = i is executed, which assigns the value of parameter i to
the data field i of this calling object f1.

The keyword this refers to the object that invokes the
instance method setI, as shown in Figure 9.21b.

The line F.k = k means that the value in parameter
k is assigned to the static data field k of the class, which is shared by all the objects of the class.

Using this to Invoke a Constructor

9.32 Describe the role of the this keyword.

9.33 What is wrong in the following code?
1 public class C {
2 private int p;
3
4 public C() {
5 System.out.println("C's no-arg constructor invoked");
6 this(0);
7 }
8
9 public C(int p) {
10 p = p;
11 }
12
13 public void setP(int p) {
14 p = p;
15 }
16 }

9.34 What is wrong in the following code?
public class Test {
private int id;
public void m1() {
this.id = 45;
}
public void m2() {
Test.id = 45;
}
}

Immutable Objects and Classes
You can define immutable classes to create
immutable objects.

The contents of immutable objects cannot be
changed.

 public class Student {
 private int id;
 private String name;
 private java.util.Date dateCreated;

 public Student(int ssn, String newName) {
 id = ssn;
 name = newName;
 dateCreated = new java.util.Date();
 }

 public int getId() {
 return id;
 }

 public String getName() {
 return name;
 }

 public java.util.Date getDateCreated() {
 return dateCreated;
 }
 }

	
	COMPUTER SCIENCE DEPARTMENT FACULTY OF ENGINEERING AND TECHNOLOGY
	ADVANCED PROGRAMMING COMP231
	Lecturer :Farid Mohammad
	Object Oriented
	Constructing Objects Using Constructors
	A constructor is invoked to create an object using the new operator.
	■ A constructor must have the same name as the class itself.
	■ Constructors do not have a return type—not even void.
	■ Constructors are invoked using the new operator when an object is created.
	Constructors play the role of initializing objects.
	// Create a Main class
	public class Main {
	int x; // Create a class attribute
	// Create a class constructor for the Main class
	public Main() {
	x = 5; // Set the initial value for the class attribute x
	}
	public static void main(String[] args) {
	Main myObj = new Main(); // Create an object of class Main (This will call the constructor)
	System.out.println(myObj.x); // Print the value of x
	}
	}
	// Outputs 5
	Also note that the constructor is called when the object is created.
	All classes have constructors by default: if you do not create a class constructor yourself, Java creates one for you.
	However, then you are not able to set initial values for object attributes.
	Constructor Parameters
	Constructors can also take parameters, which is used to initialize attributes.
	The following example adds an int y parameter to the constructor. Inside the constructor we set x to y (x=y).
	When we call the constructor, we pass a parameter to the constructor (5), which will set the value of x to 5:
	public class Main {
	int x;
	public Main(int y) {
	x = y;
	}
	public static void main(String[] args) {
	Main myObj = new Main(5);
	System.out.println(myObj.x);
	}
	}
	// Outputs 5
	You can have as many parameters as you want:
	public class Main {
	int modelYear;
	String modelName;
	public Main(int year, String name) {
	modelYear = year;
	modelName = name;
	}
	public static void main(String[] args) {
	Main myCar = new Main(1969, "Mustang");
	System.out.println(myCar.modelYear + " " + myCar.modelName);
	}
	}
	9.5 What are the differences between constructors and methods?
	9.6 When will a class have a default constructor?
	Accessing Objects via Reference Variables
	An object’s data and methods can be accessed through the dot (.) operator via the object’s reference variable.
	Newly created objects are allocated in the memory.
	They can be accessed via reference variables.
	Reference Variables and Reference Types
	Objects are accessed via the object’s reference variables,
	which contain references to the objects.
	Such variables are declared using the following syntax:
	ClassName objectRefVar;
	example to declare a reference:
	Circle myCircle;
	to create the object:
	myCircle = new Circle();
	Accessing an Object’s Data and Methods
	In OOP terminology, an object’s member refers to its data fields and methods.
	After an object is created, its data can be accessed and its methods can be invoked using the dot operator (.),
	also known as the object member access operator:
	■ objectRefVar.dataField references a data field in the object.
	■ objectRefVar.method(arguments) invokes a method on the object.
	For example, myCircle.radius references the radius in myCircle, and myCircle
	.getArea() invokes the getArea method on myCircle. Methods are invoked as operations
	on objects.
	9.5.3 Reference Data Fields and the null Value
	If a data field of a reference type does not reference any object, the data field holds a special
	Java value, null.
	class Student {
	String name; // name has the default value null
	int age; // age has the default value 0
	boolean isScienceMajor; // isScienceMajor has default value false
	char gender; // gender has default value 'u0000'
	}
	Differences between Variables of Primitive Types
	and Reference Types
	Every variable represents a memory location that holds a value.
	When you declare a variable,
	you are telling the compiler what type of value the variable can hold.
	For a variable of a primitive
	type, the value is of the primitive type.
	For a variable of a reference type, the value is a reference to where an object is located.
	For example, the value of int variable i is int value 1,
	and the value of Circle object c holds a reference to where the contents of the Circle object are stored in memory.
	When you assign one variable to another, the other variable is set to the same value.
	For a variable of a primitive type, the real value of one variable is assigned to the other variable.
	For a variable of a reference type, the reference of one variable is assigned to the other variable.
	As shown in Figure 9.8, the assignment statement i = j copies the contents of j into i
	9.7 Which operator is used to access a data field or invoke a method from an object?
	9.8 What is an anonymous object?
	9.9 What is NullPointerException?
	9.10 Is an array an object or a primitive type value? Can an array contain elements of an
	object type? Describe the default value for the elements of an array.
	9.11 What is wrong with each of the following programs?
	Static Variables, Constants, and Methods
	How to know number of objects created
	D
	Visibility Modifiers
	Visibility modifiers can be used to specify the visibility of a class and its members.
	1- You can use the public visibility modifier for classes, methods, and data fields to denote that they can be accessed from any other classes.
	2- If no visibility modifier is used, then by default the classes, methods, and data fields are accessible by any class in the same package.
	This is known as package-private or package-access.
	3- Private: Methods and data fields accessible only from within its own class.
	4- The protected modifier will be introduced in Section 11.14, The protected Data and Methods.
	
	
	C1 can be accessed from a class C2 in the same package and from a class C3 in a different package
	If a class is not defined as public, it can be accessed only within the same package.
	As shown in Figure 9.15, C1 can be accessed from C2 but not from C3.
	As shown in Figure 9.16a, an object c of class C can access its private members, because c is defined inside its own class.
	Data Field Encapsulation

