
COMPUTER SCIENCE DEPARTMENT FACULTY
OF ENGINEERING AND TECHNOLOGY

ADVANCED PROGRAMMING COMP231

Lecturer :Farid Mohammad

Inheritance

Inheritance

Object-oriented programming allows you to define
new classes from existing classes.
This is called inheritance.

The new class that is created is known as subclass (child or
derived class)

 and the existing class from where the child class is derived
is known as superclass (parent or base class).

The extends keyword is used to perform inheritance in

Java.

How we do it in Java

public class Vehicle {

private double fuel;
private boolean brake;

public Vehicle() {
}

public double fuelamount() {
return fuel;

}

public void applyBrakes() {
brake=true;

}
}

First subclass

public class Car extends Vehicle {

public Car() {
}

}

What we call
 this class?

What we call
 this class?

others subs

public class Bus extends Vehicle {

public Bus() {
}

}

public class Truck extends Vehicle {

private double load;

public Truck() {
 super();
 System.out.println("Truck created");

}

public void caryyLargeLoad(double load)
{

this.load=load;

}

}

public class MainClass {

public static void main(String[] args) {
Car c=new Car();

c.applyBrakes();

}

}

Why Car has
applyBrakes

is-a relationship

is-a relationship
In Java, inheritance is an is-a relationship. That is, we use
inheritance only if there exists an is-a relationship between
two classes. For example,

• Car is a Vehicle
• Orange is a Fruit
• Surgeon is a Doctor
• Dog is an Animal

Here, Car can inherit from Vehicle, Orange can inherit
from Fruit, and so on.

private fields

Private data fields in a superclass are not
accessible outside the class.

Therefore, they cannot be used directly in a
subclass.

They can, however, be accessed/mutated
through public getters/setters if defined in the
superclass.

Not all is-a

Not all is-a relationships should be modeled using
inheritance.

For example, a square is a rectangle,
but you should not extend a Square class from a
Rectangle class,

because the width and height properties are not
appropriate for a square.

One class only

Some programming languages allow you to derive a
subclass from several classes.

This capability is known as multiple inheritance.
 Java, however, does not allow multiple
inheritance.

A Java class may inherit directly from only one
superclass.

This restriction is known as single inheritance.

 Nevertheless, multiple inheritance can be
achieved through interfaces, which will be
introduced in Section 13.4.

Using the super Keyword
The keyword super refers to the superclass and can
be used to invoke the superclass’s methods and
constructors.

A subclass inherits accessible data fields and
methods from its superclass.

Does it inherit constructors? Can the superclass’s
constructors be invoked from a subclass?

■ To call a superclass constructor.
■ To call a superclass method.

Calling Superclass Constructors

A constructor is used to construct an instance of a
class.

Unlike properties and methods, the constructors of
a superclass are not inherited by a subclass. They
can only be invoked

from the constructors of the subclasses using the
keyword super.
The syntax to call a superclass’s constructor is:
super(), or super(parameters);

superclass constructors
can be invoked using
super()

public class SimpleGeometricObject {
 private String color = "white";
 private boolean filled;
 private java.util.Date dateCreated;

 /** Construct a default geometric object */
 public SimpleGeometricObject() {
 dateCreated = new java.util.Date();
 }

public class CircleFromSimpleGeometricObject extends
SimpleGeometricObject{
 private double radius;
public CircleFromSimpleGeometricObject(double radius, String color,
boolean filled) {
super(color, filled);
this.radius = radius;
}

}

Constructor Chaining

A constructor may invoke an overloaded
constructor or its superclass constructor.

If neither is invoked explicitly, the compiler
automatically puts super() as the first statement in
the
constructor. For example:

 public class Faculty extends Employee {
 public static void main(String[] args) {
 new Faculty();
 }

 public Faculty() {
 System.out.println("(4) Performs Faculty's tasks");
 }
 }

 class Employee extends Person {
 public Employee() {
 this("(2) Invoke Employee's overloaded constructor");
 System.out.println("(3) Performs Employee's tasks ");
 }

 public Employee(String s) {
 System.out.println(s);
 }
 }

 class Person {
 public Person() {
 System.out.println("(1) Performs Person's tasks");
 }
 }

super methods

You can call super methods from subclass

class Animal {

 // method in the superclass
 public void eat() {
 System.out.println("I can eat");
 }
}

// Dog inherits Animal
class Dog extends Animal {

 // overriding the eat() method
 @Override
 public void eat() {

 // call method of superclass
 super.eat();
 System.out.println("I eat dog food");
 }

 // new method in subclass
 public void bark() {
 System.out.println("I can bark");
 }
}

class Main {
 public static void main(String[] args) {

 // create an object of the subclass
 Dog labrador = new Dog();

 // call the eat() method
 labrador.eat();
 labrador.bark();
 }
}

	
	COMPUTER SCIENCE DEPARTMENT FACULTY OF ENGINEERING AND TECHNOLOGY
	ADVANCED PROGRAMMING COMP231
	Lecturer :Farid Mohammad
	Inheritance
	Inheritance
	How we do it in Java
	First subclass
	others subs

	is-a relationship
	is-a relationship
	private fields
	Not all is-a
	One class only
	Calling Superclass Constructors
	Constructor Chaining
	super methods

