
COMPUTER SCIENCE DEPARTMENT FACULTY
OF ENGINEERING AND TECHNOLOGY

ADVANCED PROGRAMMING COMP231

Lecturer :Farid Mohammad

Object Oriented Thinking

Class Abstraction and Encapsulation

Class abstraction is the separation of class
implementation from the use of a class.

The details of implementation are encapsulated and
hidden from the user.
This is known as class encapsulation.

Listing 2.9, ComputeLoan.java, presented a program
for computing loan payments.

That program cannot be reused in other programs
because the code for computing the payments is
in the main method.

One way to fix this problem is to define static
methods for computing the monthly payment and
total payment.

 However, this solution has limitations.

Suppose you wish to associate a date with the loan.
There is no good way to tie a date with a loan without
using objects.

The traditional procedural programming paradigm is
action-driven, and data are separated from actions.

 To tie a date with a loan, you can define a loan class
with a date

A loan object now contains data and actions

 Figure 10.2 shows the UML class diagram for the
Loan class.

Thinking in Objects

The procedural paradigm focuses on designing
methods.

The object-oriented paradigm couples data and
methods together into objects.

Software design using the
object-oriented paradigm focuses on objects and
operations on objects.

Chapters 1–8 introduced fundamental programming
techniques for problem solving using
loops, methods, and arrays.

Knowing these techniques lays a solid foundation for
object-oriented programming.

Classes provide more flexibility and modularity for
building reusable software.

This section improves the solution for a problem
introduced in Chapter 3 using the
object-oriented approach.

Listing 3.4, ComputeAndInterpretBMI.java, presented a program for
computing body
mass index.

The code cannot be reused in other programs, because the code is in
the main method.

To make it reusable, define a static method to compute body mass
index as follows:
public static double getBMI(double weight, double height)

LISTING 3.4 ComputeAndInterpretBMI.java
1 import java.util.Scanner;
2
3 public class ComputeAndInterpretBMI {
4 public static void main(String[] args) {
5 Scanner input = new Scanner(System.in);
6
7 // Prompt the user to enter weight in pounds
8 System.out.print("Enter weight in pounds: ");
9 double weight = input.nextDouble();
10
11 // Prompt the user to enter height in inches
12 System.out.print("Enter height in inches: ");
13 double height = input.nextDouble();
14
15 final double KILOGRAMS_PER_POUND = 0.45359237; //
Constant
16 final double METERS_PER_INCH = 0.0254; // Constant
17
18 // Compute BMI
19 double weightInKilograms = weight *
KILOGRAMS_PER_POUND;
20 double heightInMeters = height * METERS_PER_INCH;
21 double bmi = weightInKilograms /
22 (heightInMeters * heightInMeters);
23
24 // Display result
25 System.out.println("BMI is " + bmi);
26 if (bmi < 18.5)
27 System.out.println("Underweight");
28 else if (bmi < 25)
29 System.out.println("Normal");
30 else if (bmi < 30)
31 System.out.println("Overweight");
32 else
33 System.out.println("Obese");
34 }
35 }

This method is useful for computing body mass index for a
specified weight and height.
 However, it has limitations.

 Suppose you need to associate the weight and height with a
person’s name and birth date.

You could declare separate variables to store these values, but
these values would not be tightly coupled.

The ideal way to couple them is to create an object that
contains them all.

Since these values are tied to individual objects, they should be
stored in instance data fields.

You can define a class named BMI as shown in Figure 10.3.

LISTING 10.3 UseBMIClass.java
public class UseBMIClass {
public static void main(String[] args) {
BMI bmi1 = new BMI("Kim Yang", 18, 145, 70);
System.out.println("The BMI for " + bmi1.getName() + "
is "
+ bmi1.getBMI() + " " + bmi1.getStatus());

BMI bmi2 = new BMI("Susan King", 215, 70);
System.out.println("The BMI for " + bmi2.getName() + "
is "
+ bmi2.getBMI() + " " + bmi2.getStatus());
 }
 }

public class BMI {
 private String name;
 private int age;
 private double weight; // in pounds
 private double height; // in inches
 public static final double KILOGRAMS_PER_POUND = 0.45359237;
 public static final double METERS_PER_INCH = 0.0254;

 public BMI(String name, int age, double weight, double height) {
 this.name = name;
 this.age = age;
 this.weight = weight;
 this.height = height;
 }

 public BMI(String name, double weight, double height) {
 this(name, 20, weight, height);
 }

 public double getBMI() {
 double bmi = weight * KILOGRAMS_PER_POUND /
 ((height * METERS_PER_INCH) * (height * METERS_PER_INCH));
 return Math.round(bmi * 100) / 100.0;
 }

 public String getStatus() {
 double bmi = getBMI();
 if (bmi < 18.5)
 return "Underweight";
 else if (bmi < 25)
 return "Normal";
 else if (bmi < 30)
 return "Overweight";
 else
 return "Obese";
 }

 public String getName() {
 return name;
 }

 public int getAge() {
 return age;
 }

 public double getWeight() {
 return weight;
 }

 public double getHeight() {
 return height;
 }
 }

Class Relationships

To design classes, you need to explore the
relationships among classes.

The common relationships among classes
are:

 Association

Aggregation

Composition

Inheritance

What is
Class Relationship

Association

Association is a general binary relationship that
describes an activity between two classes.

For example, a student taking a course is an
association
between
the Student class
and the Course class,

and a faculty member teaching a course is an
association between
the Faculty
class
and the Course class.

These associations can be represented in UML
graphical notation,
as shown in Figure 10.4.

An association is illustrated by
 a solid line between two classes with an optional label that
describes the relationship.

In Figure 10.4, the labels are Take and Teach
.
Each relationship may have an optional small black triangle that
indicates the direction of the relationship.

In this figure, the direction indicates that a student takes a course
(as opposed to a course taking a student).

Each class involved in the relationship may have a role name
that describes the role it plays in the relationship.

In Figure 10.4, teacher is the role name for Faculty.

Each class involved in an association may specify a multiplicity,
which is placed at the side of the class to specify how many of
the class’s objects are involved in the relationship in UML.

 The character * means an unlimited number of objects, and the
interval m..n indicates that the number of objects is between m
and n, inclusively.

In Figure 10.4, each student may take any number of courses,
and
each course must have at least five and at most sixty students.

Each course is taught by only one faculty member, and a
faculty member may teach from zero to three courses per
semester.

In Java code, you can implement associations by using data
fields and methods.

For example,
The relationships in Figure 10.4 may be implemented using the
classes in Figure 10.5.

Aggregation and Composition
Aggregation is a special form of association that represents an
ownership relationship between two objects.

 Aggregation models has-a relationships.

The owner object is called an aggregating object,
and its class is called an aggregating class.

The subject object is called an aggregated object, and its class is
called an aggregated class.

An object can be owned by several other aggregating
objects.

If an object is exclusively owned by an aggregating object,
 the relationship between the object and its aggregating object
is referred to as a composition.

 For example, “a student has a name” is a composition
relationship between the Student class and the Name class,

 whereas “a student has an address” is an
aggregation relationship between the Student class and the
Address class,

since an address
can be shared by several students.

In UML, a filled diamond is attached to an aggregating
class (in this case, Student) to denote the composition
relationship with an aggregated class (Name),

and an empty diamond is attached to an aggregating class
(Student) to denote the aggregation relationship with an
aggregated class (Address),
as shown in Figure 10.6.

An aggregation relationship is usually represented as a data field
in the aggregating class.

For example, the relationships in Figure 10.6 may be
implemented using the classes in Figure 10.7.
The relation “a student has a name” and “a student has an
address” are implemented
in the data field name and address in the Student class.

Aggregation may exist between objects of the same class.

 For example, a person may have a supervisor. This is
illustrated in Figure 10.8.

In the relationship “a person has a supervisor,” a supervisor can
be represented as a data field in the Person class, as follows:

public class Person {
// The type for the data is the class itself
private Person supervisor;
...
}

If a person can have several supervisors, as shown in Figure 10.9a,
you may use an array to
store supervisors, as shown in Figure 10.9b.

	
	COMPUTER SCIENCE DEPARTMENT FACULTY OF ENGINEERING AND TECHNOLOGY
	ADVANCED PROGRAMMING COMP231
	Lecturer :Farid Mohammad
	Object Oriented Thinking
	Class Abstraction and Encapsulation
	Thinking in Objects
	Class Relationships
	Association
	Aggregation and Composition

