
COMPUTER SCIENCE DEPARTMENT FACULTY
OF ENGINEERING AND TECHNOLOGY

ADVANCED PROGRAMMING COMP231

Lecturer :Farid Mohammad

Inheritance 2

Overriding Methods

To override a method,

the method must be defined in the subclass

using the same signature and the same return type
as in its superclass.

// Method Overriding Example

//Base class
class Parent {
 public void display() {
 System.out.println("parent method is executed");
 }
}

//Derived or Inherited class
class Child extends Parent {

 //Below method overrides the Parent display() method
 @Override
 public void display() {
 System.out.println("child method is executed");
 }
}

//Driver class
public class Main {
 public static void main(String args[])
 {
 // If a Parent type reference refers
 // to a Parent object, then Parent's
 // display() is called
 Parent parentObject = new Parent();
 parentObject.display();

 // If a Parent type reference refers
 // to a Child object Child's display()
 // is called. This is called RUN TIME
 // POLYMORPHISM.
 Parent childObject = new Child();
 childObject.display();
 }
}

■ An instance method can be
overridden only if it is accessible.

Thus a private method cannot
be overridden, because it is not
accessible outside its own class.
If a method defined
in a subclass is private in its superclass,
the two methods are completely
unrelated.

■ Like an instance method, a static
method can be inherited. However, a
static method
cannot be overridden. If a static
method defined in the superclass is
redefined in a subclass, the method
defined in the superclass is hidden. The
hidden static methods
can be invoked using the syntax
SuperClassName.staticMethodName.

11.7 True or false? You can override a private method defined in a
superclass.
11.8 True or false? You can override a static method defined in a
superclass.
11.9 How do you explicitly invoke a superclass’s constructor from a
subclass?
11.10 How do you invoke an overridden superclass method from a
subclass?

11.5 Overriding vs. Overloading

Overloading means to define multiple
methods with the same name but different
signatures.

Overriding means to provide a new
implementation for a method in the subclass.

To avoid mistakes, you can use a special Java syntax, called override
annotation, to place

@Override before the method in the subclass. For example:
 public class CircleFromSimpleGeometricObject extends
SimpleGeometricObject {
 // Other methods are omitted

 @Override
 public String toString() {
 return super.toString() + "\nradius is " + radius;
 }
 }
This annotation denotes that the annotated method is required to override
a method in the superclass. If a method with this annotation does not
override its superclass’s method, the

compiler will report an error.

For example, if toString is mistyped as tostring, a
compile error is reported. If the override annotation
isn’t used, the compile won’t report an error. Using
annotation avoids mistakes.

11.11 Identify the problems in the following
code:
 public class Circle {
 private double radius;

 public Circle(double radius) {
 radius = radius;
 }

 public double getRadius() {
 return radius;
 }

 public double getArea() {
 return radius * radius * Math.PI;
 }
 }

 class B extends Circle {
 private double length;

 B(double radius, double length) {
 Circle(radius);
 length = length;
 }

 @Override
 public double getArea() {
 return getArea() * length;
 }
 }

11.12 Explain the difference between method
overloading and method overriding.

11.13 If a method in a subclass has the same
signature as a method in its superclass with the
same return type, is the method overridden or
overloaded?

11.14 If a method in a subclass has the same
signature as a method in its superclass with a
different return type, will this be a problem?

11.15 If a method in a subclass has the same name
as a method in its superclass with different
parameter types, is the method overridden or
overloaded?

11.16 What is the benefit of using the @Override
annotation?

The Object Class and Its toString() Method

Every class in Java is descended from the
java.lang.Object class.

If no inheritance is specified when a class is
 defined,

the superclass of the class is Object by
default.

For example, the following two class definitions are
the same:

There are some methods provided by the Object

This section introduces the toString method in the
Object class.

The signature of the toString() method is:
public String toString()

Invoking toString() on an object returns a string
that describes the object.

By default, it returns a string consisting of a class
name of which the object is an instance, an at sign
(@),
and the object’s memory address in hexadecimal.

 For example, consider the following code

Loan loan = new Loan();
System.out.println(loan.toString());
The output for this code displays something like
Loan@15037e5.

This message is not very
helpful or informative. Usually you should
override the toString method so that it returns
a descriptive string representation of the object.

 For example, the toString method in the
Object class was overridden in the
GeometricObject class in lines 46–49 in Listing
11.1
as follows:
public String toString() {
return "created on " + dateCreated + "\ncolor: "
+ color +
" and filled: " + filled;
}

Polymorphism

Polymorphism means that a variable of a supertype
can refer to a subtype object.

The three pillars of object-oriented programming
are encapsulation, inheritance, and
polymorphism.

You have already learned the first two. This section
introduces polymorphism.

The definition of "Polymorphism" is hidden in its name
itself. "Poly" means "many" and "morphs" means
"forms".

Thus "Polymorphism" may be considered as a concept in
Java in which an entity(object), variable or function may
present in one or many forms.

You can say that Circle is a subtype of
GeometricObject and
GeometricObject is a supertype for Circle.

The inheritance relationship enables a subclass to
inherit features from its superclass with
additional new features.

A subclass is a specialization of its superclass;
every instance of a subclass is also an instance of its
superclass, but not vice versa.

For example, every circle
is a geometric object, but not every geometric
object is a circle.

Therefore, you can always
pass an instance of a subclass to a parameter of its
superclass type. Consider the code in

The method displayObject (line 12) takes a
parameter of the GeometricObject type.

You can invoke displayObject by passing any
instance of GeometricObject

(e.g., new
CircleFromSimpleGeometricObject(1, "red",
false)

and new Rectangle-
FromSimpleGeometricObject(1, 1, "black",
false) in lines 5–8).

An object of a subclass can be used wherever its
superclass object is used. This is commonly known
as polymorphism

11.8 Dynamic Binding

A method can be implemented in several classes
along the inheritance chain.

The JVM decides which method is invoked at
runtime.

A method can be defined in a superclass and
overridden in its subclass.

 For example, the
toString() method is defined in the Object class
and overridden in GeometricObject.

Consider the following code:
Object o = new GeometricObject();
System.out.println(o.toString());

To answer this question, we first introduce
two terms: declared type and actual type.

A variable must be declared a type.

 Here o’s declared type is Object.

Here o’s actual type is GeometricObject,

because o references an object created using new
GeometricObject().

Which toString() method is invoked by o is
determined by o’s actual type.

This is known as
dynamic binding.

Which toString()
 method
is invoked by o?

11.19 Can you assign new int[50], new Integer[50], new String[50], or new
Object[50], into a variable of Object[] type?

11.20 What is wrong in the following code?

 public class Test {
 public static void main(String[] args) {
Integer[] list1 = {12, 24, 55, 1};
Double[] list2 = {12.4, 24.0, 55.2, 1.0};
int[] list3 = {1, 2, 3};
printArray(list1);
printArray(list2);
printArray(list3);
}

 public static void printArray(Object[] list) {
 for (Object o: list)

 System.out.print(o + " ");
 System.out.println();
 }
 }

	
	COMPUTER SCIENCE DEPARTMENT FACULTY OF ENGINEERING AND TECHNOLOGY
	ADVANCED PROGRAMMING COMP231
	Lecturer :Farid Mohammad
	Inheritance 2
	Overriding Methods
	11.5 Overriding vs. Overloading
	The Object Class and Its toString() Method
	Polymorphism
	11.8 Dynamic Binding

