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AVL Trees
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Binary Search Tree

Best Time
• All BST operations are O(h), where d is 

tree height.

• maximum h is                  for a binary tree 
with N nodes

› What is the best case tree?

› What is the worst case tree?

• So, best case running time of BST 
operations is O(log N)

 Nlogh 2
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Binary Search Tree

Worst Time
• Worst case running time is O(N) 

› What happens when you Insert elements in 
ascending order?

• Insert: 2, 4, 6, 8, 10, 12 into an empty BST

› Problem: Lack of “balance”: 
• compare heights of left and right subtree

› Unbalanced degenerate tree
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Balanced and unbalanced BST
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Balancing Binary Search 

Trees

• Many algorithms exist for keeping 

binary search trees balanced

› Adelson-Velskii and Landis (AVL) trees

(height-balanced trees) 

› Splay trees and other self-adjusting trees

› B-trees and other multiway search trees
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Perfect Balance

• Want a complete tree after every operation

› tree is full except possibly in the lower right

• This is expensive

› For example, insert 2 in the tree on the left and 

then rebuild as a complete tree

Insert 2 &

complete tree
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AVL - Good but not Perfect 

Balance
• AVL trees are height-balanced binary 

search trees

• Balance factor of a node

› height(left subtree) - height(right subtree)

• An AVL tree has balance factor calculated 
at every node

› For every node, heights of left and right 
subtree can differ by no more than 1

› Store current heights in each node
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Node Heights
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Node Heights after Insert 7
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4/10/2017 10

Insert and Rotation in AVL 

Trees
• Insert operation may cause balance factor 

to become 2 or –2 for some node 

› only nodes on the path from insertion point to 
root node have possibly changed in height

› So after the Insert, go back up to the root 
node by node, updating heights

› If a new balance factor (the difference hleft-
hright) is 2 or –2, adjust tree by rotation around 
the node
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Single Rotation in an AVL Tree
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Let the node that needs rebalancing be .

There are 4 cases:

Outside Cases (require single rotation) :

1. Insertion into left subtree of left child of .

2. Insertion into right subtree of right child of .

Inside Cases (require double rotation) :

3. Insertion into right subtree of left child of .

4. Insertion into left subtree of right child of .

The rebalancing is performed through four 

separate rotation algorithms.

Insertions in AVL Trees
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j

k

X Y

Z

Consider a valid

AVL subtree

AVL Insertion: Outside Case
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h
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j

k

X
Y

Z

Inserting into X

destroys the AVL 

property at node j

AVL Insertion: Outside Case

h

h+1 h
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j

k

X
Y

Z

Do a “right rotation”

AVL Insertion: Outside Case
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h+1 h
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j

k

X
Y

Z

Do a “right rotation”

Single right rotation
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h+1 h
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j

k

X Y Z

“Right rotation” done!

(“Left rotation” is mirror

symmetric)

Outside Case Completed

AVL property has been restored!
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h
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j

k

X Y

Z

AVL Insertion: Inside Case

Consider a valid

AVL subtree

h

hh
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Inserting into Y 

destroys the

AVL property

at node j 

j

k

X
Y

Z

AVL Insertion: Inside Case

Does “right rotation”

restore balance?

h

h+1h
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“Right rotation”

does not restore

balance… now k is

out of balance

AVL Insertion: Inside Case

h
h+1
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Consider the structure

of subtree Y… j

k

X
Y

Z

AVL Insertion: Inside Case

h

h+1h
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i

Y = node i and

subtrees V and W

AVL Insertion: Inside Case

h

h+1h

h or h-1
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j

k

X

V

Z

W

i

AVL Insertion: Inside Case

We will do a left-right 

“double rotation” . . .
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Double rotation : first rotation

left rotation complete
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j

k

X V

Z

W

i

Double rotation : second 

rotation

Now do a right rotation
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jk

X V ZW

i

Double rotation : second 

rotation

right rotation complete

Balance has been 

restored

hh h or h-1
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Implementation

balance (1,0,-1)

key

rightleft

No need to keep the height; just the difference in height,            

i.e. the balance factor; this has to be modified on the path of 

insertion even if you don’t perform rotations

Once you have performed a rotation (single or double) you won’t 

need to go back up the tree

4/10/2017 28



15

4/10/2017 29

4/10/2017 30

Single Rotation
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Double Rotation

• Implement Double Rotation in two lines.

DoubleRotateFromRight(n : reference node pointer) {

????

}

X

n

V W

Z
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Double Rotation
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Insertion in AVL Trees

• Insert at the leaf (as for all BST)

› only nodes on the path from insertion point to 

root node have possibly changed in height

› So after the Insert, go back up to the root 

node by node, updating heights

› If a new balance factor (the difference hleft-

hright) is 2 or –2, adjust tree by rotation around 

the node
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Example of Insertions in an 

AVL Tree
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Example of Insertions in an 

AVL Tree
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Single rotation (outside case)
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Double rotation (inside case)
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• Insert 15
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• Insert 14
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• Insert 13
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• Insert 12
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AVL Tree Deletion

• Similar but more complex than insertion

› Rotations and double rotations needed to 

rebalance

› Imbalance may propagate upward so that 

many rotations may be needed.
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Arguments for AVL trees:

1. Search is O(log N) since AVL trees are always balanced.

2. Insertion and deletions are also O(logn)

3. The height balancing adds no more than a constant factor to the 

speed of insertion.

Arguments against using AVL trees:
1. Difficult to program & debug; more space for balance factor.

2. Asymptotically faster but rebalancing costs time.

3. Most large searches are done in database systems on disk and use 

other structures (e.g. B-trees).

4. May be OK to have O(N) for a single operation if total run time for 

many consecutive operations is fast (e.g. Splay trees).

Pros and Cons of AVL Trees


