
1

AVL Trees

4/10/2017 2

Binary Search Tree

Best Time
• All BST operations are O(h), where d is

tree height.

• maximum h is for a binary tree
with N nodes

› What is the best case tree?

› What is the worst case tree?

• So, best case running time of BST
operations is O(log N)

 Nlogh 2

2

4/10/2017 3

Binary Search Tree

Worst Time
• Worst case running time is O(N)

› What happens when you Insert elements in
ascending order?

• Insert: 2, 4, 6, 8, 10, 12 into an empty BST

› Problem: Lack of “balance”:
• compare heights of left and right subtree

› Unbalanced degenerate tree

4/10/2017 4

Balanced and unbalanced BST

4

2 5

1 3

1

5

2

4

3

7

6

4

2 6

5 71 3

Is this “balanced”?

3

4/10/2017 5

Balancing Binary Search

Trees

• Many algorithms exist for keeping

binary search trees balanced

› Adelson-Velskii and Landis (AVL) trees

(height-balanced trees)

› Splay trees and other self-adjusting trees

› B-trees and other multiway search trees

4/10/2017 6

Perfect Balance

• Want a complete tree after every operation

› tree is full except possibly in the lower right

• This is expensive

› For example, insert 2 in the tree on the left and

then rebuild as a complete tree

Insert 2 &

complete tree

6

4 9

81 5

5

2 8

6 91 4

4

4/10/2017 7

AVL - Good but not Perfect

Balance
• AVL trees are height-balanced binary

search trees

• Balance factor of a node

› height(left subtree) - height(right subtree)

• An AVL tree has balance factor calculated
at every node

› For every node, heights of left and right
subtree can differ by no more than 1

› Store current heights in each node

4/10/2017 8

Node Heights

1

00

2

0

6

4 9

81 5

1

height of node = h

balance factor = hleft-hright

empty height = -1

0

0

height=2 BF=1-0=1

0

6

4 9

1 5

1

Tree A (AVL) Tree B (AVL)

5

4/10/2017 9

Node Heights after Insert 7

2

10

3

0

6

4 9

81 5

1

height of node = h

balance factor = hleft-hright

empty height = -1

1

0

2

0

6

4 9

1 5

1

0

7

0

7

balance factor

1-(-1) = 2

-1

Tree A (AVL) Tree B (not AVL)

4/10/2017 10

Insert and Rotation in AVL

Trees
• Insert operation may cause balance factor

to become 2 or –2 for some node

› only nodes on the path from insertion point to
root node have possibly changed in height

› So after the Insert, go back up to the root
node by node, updating heights

› If a new balance factor (the difference hleft-
hright) is 2 or –2, adjust tree by rotation around
the node

6

4/10/2017 11

Single Rotation in an AVL Tree

2

10

2

0

6

4 9

81 5

1

0

7

0

1

0

2

0

6

4

9

8

1 5

1

0

7

4/10/2017 12

Let the node that needs rebalancing be .

There are 4 cases:

Outside Cases (require single rotation) :

1. Insertion into left subtree of left child of .

2. Insertion into right subtree of right child of .

Inside Cases (require double rotation) :

3. Insertion into right subtree of left child of .

4. Insertion into left subtree of right child of .

The rebalancing is performed through four

separate rotation algorithms.

Insertions in AVL Trees

7

4/10/2017 13

j

k

X Y

Z

Consider a valid

AVL subtree

AVL Insertion: Outside Case

h

h
h

4/10/2017 14

j

k

X
Y

Z

Inserting into X

destroys the AVL

property at node j

AVL Insertion: Outside Case

h

h+1 h

8

4/10/2017 15

j

k

X
Y

Z

Do a “right rotation”

AVL Insertion: Outside Case

h

h+1 h

4/10/2017 16

j

k

X
Y

Z

Do a “right rotation”

Single right rotation

h

h+1 h

9

4/10/2017 17

j

k

X Y Z

“Right rotation” done!

(“Left rotation” is mirror

symmetric)

Outside Case Completed

AVL property has been restored!

h

h+1

h

4/10/2017 18

j

k

X Y

Z

AVL Insertion: Inside Case

Consider a valid

AVL subtree

h

hh

10

4/10/2017 19

Inserting into Y

destroys the

AVL property

at node j

j

k

X
Y

Z

AVL Insertion: Inside Case

Does “right rotation”

restore balance?

h

h+1h

4/10/2017 20

j

k

X

Y
Z

“Right rotation”

does not restore

balance… now k is

out of balance

AVL Insertion: Inside Case

h
h+1

h

11

4/10/2017 21

Consider the structure

of subtree Y… j

k

X
Y

Z

AVL Insertion: Inside Case

h

h+1h

4/10/2017 22

j

k

X

V

Z

W

i

Y = node i and

subtrees V and W

AVL Insertion: Inside Case

h

h+1h

h or h-1

12

4/10/2017 23

j

k

X

V

Z

W

i

AVL Insertion: Inside Case

We will do a left-right

“double rotation” . . .

4/10/2017 24

j

k

X V

Z

W

i

Double rotation : first rotation

left rotation complete

13

4/10/2017 25

j

k

X V

Z

W

i

Double rotation : second

rotation

Now do a right rotation

4/10/2017 26

jk

X V ZW

i

Double rotation : second

rotation

right rotation complete

Balance has been

restored

hh h or h-1

14

4/10/2017 27

Implementation

balance (1,0,-1)

key

rightleft

No need to keep the height; just the difference in height,

i.e. the balance factor; this has to be modified on the path of

insertion even if you don’t perform rotations

Once you have performed a rotation (single or double) you won’t

need to go back up the tree

4/10/2017 28

15

4/10/2017 29

4/10/2017 30

Single Rotation

16

4/10/2017 31

4/10/2017 32

Double Rotation

• Implement Double Rotation in two lines.

DoubleRotateFromRight(n : reference node pointer) {

????

}

X

n

V W

Z

17

4/10/2017 33

Double Rotation

4/10/2017 34

18

4/10/2017 35

Insertion in AVL Trees

• Insert at the leaf (as for all BST)

› only nodes on the path from insertion point to

root node have possibly changed in height

› So after the Insert, go back up to the root

node by node, updating heights

› If a new balance factor (the difference hleft-

hright) is 2 or –2, adjust tree by rotation around

the node

4/10/2017 36

19

4/10/2017 37

4/10/2017 38

20

4/10/2017 39

Example of Insertions in an

AVL Tree

1

0

2

20

10 30

25

0

35

0

Insert 5, 40

4/10/2017 40

Example of Insertions in an

AVL Tree

1

0

2

20

10 30

25

1

35

0

5

0

20

10 30

25

1

355

40

0

0

0
1

2

3

Now Insert 45

21

4/10/2017 41

Single rotation (outside case)

2

0

3

20

10 30

25

1

35

2

5

0

20

10 30

25

1

405

40

0

0

0

1

2

3

45

Imbalance
35 45

0 0

1

Now Insert 34

4/10/2017 42

Double rotation (inside case)

3

0

3

20

10 30

25

1

40

2

5

0

20

10 35

30

1

405

45

0 1

2

3

Imbalance

45

0

1

Insertion of 34

35

34

0

0

1 25 340

22

• Insert 15

4/10/2017 43

• Insert 14

4/10/2017 44

23

• Insert 13

4/10/2017 45

• Insert 12

4/10/2017 46

24

4/10/2017 47

AVL Tree Deletion

• Similar but more complex than insertion

› Rotations and double rotations needed to

rebalance

› Imbalance may propagate upward so that

many rotations may be needed.

4/10/2017 48

25

4/10/2017 49

4/10/2017 50

Arguments for AVL trees:

1. Search is O(log N) since AVL trees are always balanced.

2. Insertion and deletions are also O(logn)

3. The height balancing adds no more than a constant factor to the

speed of insertion.

Arguments against using AVL trees:
1. Difficult to program & debug; more space for balance factor.

2. Asymptotically faster but rebalancing costs time.

3. Most large searches are done in database systems on disk and use

other structures (e.g. B-trees).

4. May be OK to have O(N) for a single operation if total run time for

many consecutive operations is fast (e.g. Splay trees).

Pros and Cons of AVL Trees

