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Recursion
 A function that calls itself is said to be 

recursive. 

 A function f1 is also recursive if it calls a 
function f2, which under some circumstances 
calls f1, creating a cycle in the sequence of calls.

 The ability to invoke itself enables a recursive 
function to be repeated with different 
parameter values. 

 You can use recursion as an alternative to 
iteration (looping).
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The Nature of Recursion
 Problems that lend themselves to a recursive 

solution have the following characteristics: 

 One or more simple cases of the problem have a 
straightforward, non recursive solution. 

 The other cases can be redefined in terms of 
problems that are closer to the simple cases. 

 By applying this redefinition process every time the 
recursive function is called, eventually the problem 
is reduced entirely to simple cases, which are 
relatively easy to solve.

The Nature of Recursion

 The recursive algorithms will generally 

consist of an if statement with the 
following form: 

if this is a simple case 

solve  it 

else 

redefine the problem using recursion
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Illustration

Example
 Solve the problem of multiplying 6 by 3, 

assuming we only know addition:

 Simple case: any number multiplied by 1 gives 
us the original number.

 The problem can be split into the two problems: 

1. Multiply  6  by  2. 

1.1  Multiply  6  by  1. 

1.2  Add 6 to the result of problem 1.1. 

2.  Add 6 to the result of problem 1. 
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The simplest case is 
reached when n == 1

Tracing a Recursive Function
 Hand tracing an algorithm’s execution 

provides us with valuable insight into how 
that algorithm works.

 By drawing an activation frame 
corresponding to each call of the function. 

 An activation frame shows the parameter 
values for each call and summarizes the 
execution of the call.
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multiply(6, 3)

6

12

18

Recursive Mathematical Functions

 Many mathematical functions can be 
defined recursively. 

 An example is the factorial of n (n! ): 

0!  is  1 

n!  is  n * ( n− 1)! ,  for n> 0 

 Thus 4! is 4 *3!, which means 4 *3 *2 *1, 
or 24. 

The simplest case
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The simplest case
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Fibonacci Numbers
 The Fibonacci sequence is defined as: 

Fibonacci 1  is 1 

Fibonacci 2  is 1 

Fibonacci  n is Fibonacci n−2 +         

Fibonacci  n−1, for n> 2

The simplest cases

Leonardo Bonacci (c. 1170 – c. 1250)
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Self Check
 Write and test a recursive function that 

returns the value of the following 
recursive definition: 

 f(x) = 0  if x = 0 

 f(x) = f(x - 1) + 2  otherwise 

 What set of numbers is generated by this 
definition? 
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Design Guidelines

 Method must be given an input value.

 Method definition must contain logic that 
involves this input, leads to different cases.

 One or more cases should provide solution 
that does not require recursion.

 Else infinite recursion

 One or more cases must include a recursive 
invocation.

Stack of Activation Records
 Each call to a method generates an activation 

record.

 Recursive method uses more memory than an 
iterative method.

 Each recursive call generates an activation 
record.

 If recursive call generates too many activation 
records, could cause stack overflow.
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Recursive Methods 
That Return a Value

Recursive method to calculate 

Tracing a Recursive Method
Tracing the execution of sumOf(3)
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Recursively Processing an Array
Starting with array[first]

Starting with array[last]

Recursively Processing an Array

Two arrays with their middle elements within their left halves
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Recursively Processing an Array

Processing array from middle.

Tower of Hanoi
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Tower of Hanoi

move(n,   A,  C,  B) 

move(n-1, A, B, C)

moving  n from A  C

move(n-1, B, C, A)

From

To

Using

# of 
discs


