
2/5/2015

1

Recursion

By: Mamoun Nawahdah (Ph.D.)
2014/2015

Recursion
 A function that calls itself is said to be

recursive.

 A function f1 is also recursive if it calls a
function f2, which under some circumstances
calls f1, creating a cycle in the sequence of calls.

 The ability to invoke itself enables a recursive
function to be repeated with different
parameter values.

 You can use recursion as an alternative to
iteration (looping).

2/5/2015

2

The Nature of Recursion
 Problems that lend themselves to a recursive

solution have the following characteristics:

 One or more simple cases of the problem have a
straightforward, non recursive solution.

 The other cases can be redefined in terms of
problems that are closer to the simple cases.

 By applying this redefinition process every time the
recursive function is called, eventually the problem
is reduced entirely to simple cases, which are
relatively easy to solve.

The Nature of Recursion

 The recursive algorithms will generally

consist of an if statement with the
following form:

if this is a simple case

solve it

else

redefine the problem using recursion

2/5/2015

3

Illustration

Example
 Solve the problem of multiplying 6 by 3,

assuming we only know addition:

 Simple case: any number multiplied by 1 gives
us the original number.

 The problem can be split into the two problems:

1. Multiply 6 by 2.

1.1 Multiply 6 by 1.

1.2 Add 6 to the result of problem 1.1.

2. Add 6 to the result of problem 1.

2/5/2015

4

The simplest case is
reached when n == 1

Tracing a Recursive Function
 Hand tracing an algorithm’s execution

provides us with valuable insight into how
that algorithm works.

 By drawing an activation frame
corresponding to each call of the function.

 An activation frame shows the parameter
values for each call and summarizes the
execution of the call.

2/5/2015

5

multiply(6, 3)

6

12

18

Recursive Mathematical Functions

 Many mathematical functions can be
defined recursively.

 An example is the factorial of n (n!):

0! is 1

n! is n * (n− 1)! , for n> 0

 Thus 4! is 4 *3!, which means 4 *3 *2 *1,
or 24.

The simplest case

2/5/2015

6

The simplest case

2/5/2015

7

Fibonacci Numbers
 The Fibonacci sequence is defined as:

Fibonacci 1 is 1

Fibonacci 2 is 1

Fibonacci n is Fibonacci n−2 +

Fibonacci n−1, for n> 2

The simplest cases

Leonardo Bonacci (c. 1170 – c. 1250)

2/5/2015

8

Self Check
 Write and test a recursive function that

returns the value of the following
recursive definition:

 f(x) = 0 if x = 0

 f(x) = f(x - 1) + 2 otherwise

 What set of numbers is generated by this
definition?

2/5/2015

9

Design Guidelines

 Method must be given an input value.

 Method definition must contain logic that
involves this input, leads to different cases.

 One or more cases should provide solution
that does not require recursion.

 Else infinite recursion

 One or more cases must include a recursive
invocation.

Stack of Activation Records
 Each call to a method generates an activation

record.

 Recursive method uses more memory than an
iterative method.

 Each recursive call generates an activation
record.

 If recursive call generates too many activation
records, could cause stack overflow.

2/5/2015

10

Recursive Methods
That Return a Value

Recursive method to calculate

Tracing a Recursive Method
Tracing the execution of sumOf(3)

2/5/2015

11

Recursively Processing an Array
Starting with array[first]

Starting with array[last]

Recursively Processing an Array

Two arrays with their middle elements within their left halves

2/5/2015

12

Recursively Processing an Array

Processing array from middle.

Tower of Hanoi

2/5/2015

13

Tower of Hanoi

move(n, A, C, B)

move(n-1, A, B, C)

moving n from A C

move(n-1, B, C, A)

From

To

Using

of
discs

