
Data Structure: Lectures Note 2015 Prepared by: Dr. Mamoun Nawahdah

1

COMP232

Data Structure

Lectures Note

Prepared by: Dr. Mamoun Nawahdah

2015

Data Structure: Lectures Note 2015 Prepared by: Dr. Mamoun Nawahdah

2

Math Review

Data Structure: Lectures Note 2015 Prepared by: Dr. Mamoun Nawahdah

3

Table of Contents

(Lecture 3) What is an Algorithm? .. 4

(Lecture 4) Analysis of Algorithms ... 6

(Lecture 5) Asymptotic Analysis .. 10

(Lecture 6) Analyzing algorithm examples .. 14

(Lecture 7) Linked List ... 19

(Lecture 8) Doubly Linked List ... 25

(Lecture 9) Analyzing the Complexity of Merge Sort .. 32

(Lecture 10) Stacks 1 ... 37

(Lecture 11) Stacks 2 ... 41

(Lecture 12) Queues .. 48

(Lecture 13) Cursor Implementation of Linked Lists ... 53

(Lecture 14) Trees ... 54

(Lecture 15) Expression Trees ... 58

(Lecture 16) Binary Search Trees BST ... 61

(Lecture 17, 18) AVL Trees .. 68

(Lecture 19) 2-3 Trees ... 76

(Lecture 20) Recursion (Time Analysis Revision) .. 80

(Lecture xx) Red-Black Trees (Optional) .. 85

(Lecture 21) B-Trees .. 86

(Lecture 22) Splay Trees .. 90

(Lecture 23 & 24) Hash Tables .. 93

(Lecture 25) Priority Queues (Heaps).. 101

(Lecture 26) HeapSort ... 105

(Lecture 27) Sorting I ... 109

(Lecture 28) Sorting II .. 118

Data Structure: Lectures Note 2015 Prepared by: Dr. Mamoun Nawahdah

4

(Lecture 3) What is an Algorithm?

Definition:

 An algorithm is a way of solving WELL-SPECIFIED computational problems. Cormen et al.

 A finite set of rules that give a sequence of operations for solving a specific type of problem - Knuth

 Algorithm is a finite list of well-defined instructions for accomplishing some task that, given an initial

state, will terminate in a defined end-state.

Euclid’s Algorithm (300BC)

 Used to find Greatest common divisor (GCD) of two positive integers.

 GCD of two numbers, the largest number that divides both of them without leaving a remainder.

Euclid’s Algorithm:

o Consider two positive integers ‘m’ and ‘n’, such that m>n

o Step1: Divide m by n, and let the reminder be r.

o Step2: if r=0, the algorithm ends, n is the GCD.

o Step3: Set, mn, nr , go back to step 1 .

Implement this iteratively and recursively

Why Algorithms?

o Gives an idea (estimate) of running time.

o Help us decide on hardware requirements.

o What is feasible vs. what is impossible.

o Improvement is a never ending process.

Correctness of an Algorithm

Must be proved (mathematically)

Step1: statement to be proven.

Step2: List all assumptions.

Step3: Chain of reasoning from assumptions to the statement.

Another way is to check for incorrectness of an algorithm.

Step1: give a set of data for which the algorithm does not work.

Step2: usually consider small data sets.

Step3: Especially consider borderline cases.

Data Structure: Lectures Note 2015 Prepared by: Dr. Mamoun Nawahdah

5

Analysis of Algorithms

Once an algorithm is given for a problem and decided (somehow) to be correct, an important step is to

determine how much in the way of resources, such as time or space, the algorithm will require.

 Space Complexity memory and storage is very cheap nowadays.

 Time Complexity Different platforms different time. Absolute time is hard to measure as it

depends on many factors.

Example: moving between university buildings: it depends on who are walking, which way he/she use, etc.

time is not good measurement. Number of steps is a better one.

Example:

• Consider the problem of summing

Come up with an algorithm to solve this problem.

Counting Basic Operations

• A basic operation of an algorithm is the most significant contributor to its total time requirement.

Data Structure: Lectures Note 2015 Prepared by: Dr. Mamoun Nawahdah

6

(Lecture 4) Analysis of Algorithms

 Space Complexity

 Time Complexity

How to calculate the time complexity?

 Measure execution time. Algorithm for small data size will take small time comparing to a large data.

 Calculate time required for an algorithm in terms of the size of input data. Does not work as the

same algorithm over the same data will not take the same time.

Run summing code 2 times and compare time

 Determine order of growth of an algorithm with respect to the size of input data.

Order of time or growth of time

Go back to summing result

In term of time complexity, we say that algorithm C is better than A and B

Types of Time Complexity

 Worst case analysis

 Best case analysis

 Average case analysis too complex (statistical methods)

RAM model of computation

We assume that:

 We have infinite memory

 Each operation (+,-,*,/,=) takes 1 unit of time

 Each memory access takes 1 unit of time

 All data is in the RAM

Linear
growth

Quadratic
growth

Constant
growth

Data Structure: Lectures Note 2015 Prepared by: Dr. Mamoun Nawahdah

7

Bubble sort

 Rules:

o You can only pick one ball at a time.

o Before picking up another ball, you have to drop the existing ball-in hand, in an empty basket.

o You have to start from the left most basket and arrange the balls moving towards the right.

o You can use a stick to keep track of the sorted part.

Make a demo using the following data set

12 8 7 5 2

After 1st round:

After 2nd round:

For whole sorting algorithm: 16+12+8+4 for a data size of 5 elements

= 4 (4 + 3 + 2 + 1) = 4 (n-1 + n-2 + …. + 2 + 1) = 4 (n-1*n/2) =

2 * n * (n-1) pn2 + qn + r p, q, and r are some constant.

Worst case

analysis

Data Structure: Lectures Note 2015 Prepared by: Dr. Mamoun Nawahdah

8

Implement and test effectiveness of bubble sort algorithm

The Big O notation

Assume the order of time of an algorithm is a quadratic time as displayed in the graph. Our job is to find an

upper bond for this function T(n). Consider a function c1n2 never over take T(n)

C2n2 such that its greater than T(n) for n>n0 . in this case we say that C2n2 is an upper bond of T(n)

But we can come up with many functions satisfy this condition. We need to be precise.

Big Oh O(n2) : f(n): there exist positive constants c and n0 such that 0<= f(n) <= cn2 for all n >= n0

In general

O(g(n)) : f(n): there exist positive constants c and n0 such that 0<= f(n) <= cg(n) for all n >= n0

Example 1:

5n2 + 6 O(n2) ???
Find cn2 c=6 and n0=3

 c=5.1 n0=8

Example 2:

5n + 6 O(n2) ???
Find cn2 c=11 and n0=1

Data Structure: Lectures Note 2015 Prepared by: Dr. Mamoun Nawahdah

9

Example 3:

n3 + 2n2 + 4n + 8 O(n2) ???
Find cn2 >= n3 + 2n2 + 4n + 8 ???

What does it mean?

Array element access:

Array element search:

Bubble sort algorithm:

Data Structure: Lectures Note 2015 Prepared by: Dr. Mamoun Nawahdah

10

(Lecture 5) Asymptotic Analysis

Asymptotic analysis measures the efficiency of an algorithm as the input size becomes large.

It is actually an estimation technique. However, asymptotic analysis has proved useful to computer scientists who

must determine if a particular algorithm is worth considering for implementation.

 The critical resource for a program is -most often- running time.

 The growth rate for an algorithm is the rate at which the cost of the algorithm grows as the size of its

input grows.

o cn (for c any positive constant) linear growth rate or running time.

o n2
 quadratic growth rate

o 2n
 exponential growth rate.

Worst case? The advantage to analyzing the worst case is that you know for certain that the algorithm must

perform at least that well.

Example:

Assume : Algorithm A: time = 15n+93

 Algorithm B: time = 2n2+1 which is faster?

Graph using Excel

The “break-even point”

We are interested for large n

* for sufficiently large n, algorithm A is faster

* in the long run constants do not mater.

Upper bound for the growth of the algorithm’s running time. It indicates the upper or highest growth rate

that the algorithm can have. big-O notation.

For T(n) a non-negatively valued function, T(n) is in set O(f(n)) if there exist two positive

constants c and n0 such that T(n) ≤ cf(n) for all n > n0.

0

200

400

600

800

0 2 4 6 8 1012141618

15n+93

2n2+1

Data Structure: Lectures Note 2015 Prepared by: Dr. Mamoun Nawahdah

11

* Prove that 15n+93 is O(n)

We must show +ve c and n0 such that 15n+93 <= cn for n >= n0

<provided n= 93> 15n+n 16n <= cn <provided c = 16>

So for c=16 and n0 = 93 // proved

Graph using Excel

Prove that 2n2+1 = O(n2)

Must show +ve c, n0 such that 2n2+1 <= cn2 for n >= n0

2n2+1 <provided n=1>

2n2+ n2 3n2 <provided c=3>

2n2+1 <= 3n2

So, c=3 , n0=1 // proved

Graph using Excel

The lower bound for an algorithm is denoted by the symbol Ω, pronounced “big-Omega” or just “Omega.”

For T(n) a non-negatively valued function, T(n) is in set Ω(g(n)) if there exist two positive constants c

and n0 such that T(n) ≥ cg(n) for all n > n0.

* prove that 15n+93 is Ω(n)

We must show +ve c and n0 such that 15n+93 >= cn for n >= n0

<because 93 is +ve> >= cn <provided c=15> so any n0 >0 will do

So c=15, n0=1 // proved

Graph using Excel

* prove that 2n2+1 is Ω(n2)

must show +ve c and n0 such that 2n2+1 >= cn2 for n >= n0

<because 1 is +ve>

So c=2, n0=1 // proved

Graph using Excel

Data Structure: Lectures Note 2015 Prepared by: Dr. Mamoun Nawahdah

12

When the upper and lower bounds are the same within a constant factor, we indicate this by using

Θ (big-Theta) notation.

T(n) = Θ(g(n)) iff T(n) = O(g(n)) and T(n) = Ω (g(n))

Example: Because the sequential search algorithm is both in O(n) and in Ω(n) in the average case,

we say it is Θ(n) in the average case.

Examples:

Simplifying Rules

 Rule (2) is that you can ignore any multiplicative constants.

 Rule (3) says that given two parts of a program run in sequence, you need consider only the more

expensive part.

 Rule (4) is used to analyze simple loops in programs.

Taking the first three rules collectively, you can ignore all constants and all lower-order terms to determine

the asymptotic growth rate for any cost function.

Data Structure: Lectures Note 2015 Prepared by: Dr. Mamoun Nawahdah

13

Order of growth of some common functions

O(1) ≤ O(log2n) ≤ O(n) ≤ O(n log2n) ≤ O(n2) ≤ O(n3) ≤ O(2n)

If the problem size is always small, you can probably ignore an algorithm’s efficiency

Limitations of big-oh analysis

 Overestimate.

 Analysis assumes infinite memory.

 Not appropriate for small amounts of input.

 The constant implied by the Big-Oh may be too large to be practical (2N log N vs. 1000N)

Data Structure: Lectures Note 2015 Prepared by: Dr. Mamoun Nawahdah

14

 (Lecture 6) Analyzing algorithm examples

General Rules of analyzing algorithm code:

Rule 1—for loops.

The running time of a for loop is at most the running time of the statements inside the for loop

(including tests) times the number of iterations.

Rule 2 — Nested loops.

Analyze these inside out. The total running time of a statement inside a group of nested loops

is the running time of the statement multiplied by the product of the sizes of all the loops.

Rule 3—Consecutive Statements.

These just add (which means that the maximum is the one that counts;

Rule 4 —if/else.

if(condition)

 S1

else

 S2

The running time of an if/else statement is never more than the running time of the test plus

the larger of the running times of S1 and S2.

Rule 5 —methods call.

If there are method calls, these must be analyzed first.

Sorting Algorithm

1- Bubble Sort (revision) O(n2)

Data Structure: Lectures Note 2015 Prepared by: Dr. Mamoun Nawahdah

15

2- Selection Sort (revision) O(n2) : named selection because every time we select the smallest item.

3- Insertion sort:

Example:

Pseudo code:

Data Structure: Lectures Note 2015 Prepared by: Dr. Mamoun Nawahdah

16

O(n2) sorting algorithms comparison :

(run demo @ http://www.sorting-algorithms.com/)

Merge sort : recursive algorithm

Merge: take 2 sorted arrays and merge them together into one.

Example: merge method

Example: merge sort

Data Structure: Lectures Note 2015 Prepared by: Dr. Mamoun Nawahdah

17

Pseudo code:

Make sure of array boundaries

H.W: implement merge sort your own

Searching elements in an array:

Case 1: unordered array:

Data Structure: Lectures Note 2015 Prepared by: Dr. Mamoun Nawahdah

18

Case 2: ordered array: -Binary search-

Inserting and deleting items from ordered array

Data Structure: Lectures Note 2015 Prepared by: Dr. Mamoun Nawahdah

19

(Lecture 7) Linked List

Algorithm - abstract way to perform computation tasks

Data Structure - abstract way to organize information

Linked List:

Node:

 Node code:

public class Node<T> {
 private T data;
 private Node<T> nextNode;

 public Node(T data) { this.data = data; }

 public void setData(T data) { this.data = data; }
 public T getData() { return data; }

 public Node<T> getNextNode() { return nextNode; }
 public void setNextNode(Node<T> nextNode) { this.nextNode = nextNode; }
}

Linked List Code:

public class LinkedList<T> {
 private Node<T> head;
}

Data Structure: Lectures Note 2015 Prepared by: Dr. Mamoun Nawahdah

20

Inserting a new node:

Connect Head new node ?? we lose pointer to linked list
Order of connecting the node is very important

Insert code:
public void addAtStart(T data) {

 Node<T> newNode = new Node<T>(data);
 newNode.setNextNode(this.head); // step 1
 this.head = newNode; // step 2
 }

Create a driver class to test linked list classes.

Override the toString methods first

What’s the time complexity of inserting an item to the head?? O(1)

Node toString:

@Override
 public String toString() { return this.data.toString(); }

LinkedList toString:

@Override
 public String toString() {
 String res = "";
 Node<T> curr = this.head;
 while (curr != null) {
 res += curr + " ";
 curr = curr.getNextNode();
 }
 return res + “NULL”;
 }

Data Structure: Lectures Note 2015 Prepared by: Dr. Mamoun Nawahdah

21

Length of Linked List?

Case 1: If it’s empty:

Case 2: If not: Make a pointer and move over all the nodes and maintain a counter

Length code: Time Complexity O(n)

public int length() {
 int length = 0;
 Node<T> curr = this.head;
 while (curr != null) {
 length++;
 curr = curr.getNextNode();
 }
 return length;
 }

Deleting the head node:

Simply move the head to the head.nextNode
Now first Node has no reference to it Garbage

Time Complexity O(1)

Delete at head code: // make sure linked list is not empty

public Node<T> deleteAtStart() {
 Node<T> toDel = this.head;
 this.head = this.head.getNextNode();
 return toDel;
 }

Data Structure: Lectures Note 2015 Prepared by: Dr. Mamoun Nawahdah

22

Searching for an Item in a Linked List:

Time Complexity: linear growth O(n)
Find code:

public Node<T> find(T data) {
 Node<T> curr = this.head;
 while (curr != null) {
 if (curr.getData() == data) // if (curr.getData().equals(data))
 return curr;
 curr = curr.getNextNode();
 }
 return null;
 }

How to use Java generics?? (Optional)
Provided by java, to be able to parameterize the Node and Linked List objects.

Data Structure: Lectures Note 2015 Prepared by: Dr. Mamoun Nawahdah

23

Doubly Ended Linked List:

We have two pointers: one at head and one at tail
Therefore, we can add and delete at both ends.

Doubly Ended list code:
public class DoubleEndedList<T> extends LinkedList<T> {
 private Node<T> tail;

 public Node<T> getTail() { return this.tail; }

 public void addAtEnd(T data) {
 Node<T> newNode = new Node<T>(data);
 if (this.head == null) { // empty
 this.head = newNode;
 this.tail = newNode;
 }

else {
 this.tail.setNextNode(newNode);
 this.tail = newNode;
 }
 }
}

Make sure to override addAtStart to set the tail pointer correctly:

 @Override
 public void addAtStart(T data) {
 Node<T> newNode = new Node<T>(data);
 if (this.head == null) { // empty
 this.head = newNode;
 this.tail = newNode;
 }
 else{
 newNode.setNextNode(this.head);
 this.head = newNode;
 }
 }

Data Structure: Lectures Note 2015 Prepared by: Dr. Mamoun Nawahdah

24

Inserting new Node to a sorted linked list:

Case 1: empty linked list: in this case we added as first element.

Case 2: adding first to a sorted linked list:

Case 3: adding in the middle in a sorted linked list:

However we can access the next node from the current node.

Time Complexity O(n)

H.W. implement insert into a sorted linked list

Data Structure: Lectures Note 2015 Prepared by: Dr. Mamoun Nawahdah

25

(Lecture 8) Doubly Linked List

Node:

Doubly Linked List:

Doubly Node Code:
public class DNode {
 private int data;
 private DNode nextNode;
 private DNode prevNode;

 public DNode(int data) { this.data = data; }
 public int getData() { return data; }
 public DNode getNextNode() { return nextNode; }
 public DNode getPrevNode() { return prevNode; }

 public void setNextNode(DNode nextNode) { this.nextNode = nextNode; }
 public void setPrevNode(DNode prevNode) { this.prevNode = prevNode; }

 @Override
 public String toString() { return this.data+””; }
}

Doubly Linked List code:

public class DLinkedList {
 private DNode head;
}

Data Structure: Lectures Note 2015 Prepared by: Dr. Mamoun Nawahdah

26

Insert a new node at head:
Insert at head code:

public void insertAtHead(int data) {
 DNode newNode = new DNode(data);
 newNode.setNextNode(this.head);
 if (this.head != null) // make sure it’s not empty
 this.head.setPrevNode(newNode);
 this.head = newNode;
 }

Length of a doubly linked list code:
public int length() {

 int length = 0;
 DNode curr = this.head;
 while (curr != null) {
 length++;
 curr = curr.getNextNode();
 }
 return length;
 }

Override toString method code:
@Override

 public String toString() {
 StringBuilder sb = new StringBuilder(“head ->”);
 DNode n = this.head;
 while (n != null) {
 sb.append(“[“+n+”]”);
 n = n.getNextNode();
 if(n!=null)
 sb.append(“<=>”);
 }
 sb.append(“->NULL”);
 return sb.toString();
 }

Data Structure: Lectures Note 2015 Prepared by: Dr. Mamoun Nawahdah

27

Student Activity: insert at last

public void insertAtEnd(int data) {
 DNode newNode = new DNode(data);
 if (this.head == null)

this.head = newNode;
 else { // find last node
 DNode last = head;
 while(last.nextNode != null) last = last.nextNode;
 last.nextNode = newNode;
 newNode.prevNode = last;
 }
 }

Insertion Sort using doubly linked list:

Review insertion sort logic and point to problem of insertion and time needed to shift the items
Worst case if the array is reverse sorted

Example: assume we need to sort the following doubly linked list:

Assumption: 1st node is sorted. We start from the 2nd element:

Here:

 The black pointer points to the current node to be sorted.

 The red pointer points to previous node of current node to be sorted.

 The green pointer points to next node of current node to be sorted.

Step 1: The red pointer keeps move backward until it reaches a node which has a value smaller than the

current node or reach NULL.

Step 2: the current item will be inserted after red pointer as follow:

Data Structure: Lectures Note 2015 Prepared by: Dr. Mamoun Nawahdah

28

Make sure you maintain references correctly.
To do so draw the expected outcome and follow the steps to change the pointers:

Initial state:

Final state:

Data Structure: Lectures Note 2015 Prepared by: Dr. Mamoun Nawahdah

29

Case 1: insert to head

Step 2.0: make new green pointer = black.nextNode

Step 2.1: black.prevNode.nextNode = green

Step 2.2:

if (green != null) green.prevNode = black.prevNode

Step 2.3: black.prevNode = red

Step 2.4:
if(red==null) black.nextNode = black.nextNode.prevNode
else black.nextNode = red.nextNode

Data Structure: Lectures Note 2015 Prepared by: Dr. Mamoun Nawahdah

30

Step 2.5:
If (red == null) black.nextNode.prevNode = black
else red.NextNode. PrevNode = black

Step 2.6:

if (red == NULL) head = black

else red.setNextNode = black;

Step 2.7: black = green

Case 2: insert 4 in the middle

Practice yourself

Case 3: insert last element

Data Structure: Lectures Note 2015 Prepared by: Dr. Mamoun Nawahdah

31

Insertion Sort Code:

public void sort() {
 DNode black = this.head;
 while (black != null) {
 DNode red = black.getPrevNode();
 while (red != null && (red.getData() > black.getData())) {
 red = red.getPrevNode();
 }
 DNode green = black.getNextNode(); // step 2.0
 if (red != null || (head != black)) {
 black.getPrevNode().setNextNode(green); // step 2.1
 if (green!= null) {
 green.setPrevNode(black.getPrevNode()); // step 2.2
 }
 black.setPrevNode(red); // step 2.3
 }
 if (red == null) { // set the black as head
 if (head != black) {
 black.setNextNode(this.head); // step 2.4
 black.getNextNode().setPrevNode(black); // step 2.5
 head = black; // step 2.6
 }
 } else { // red is not null
 black.setNextNode(red.getNextNode()); // step 2.4
 red.getNextNode().setPrevNode(black); // step 2.5
 red.setNextNode(black); // step 2.6
 }
 black = green;
 }
 }

Circular Double Linked List:

Data Structure: Lectures Note 2015 Prepared by: Dr. Mamoun Nawahdah

32

(Lecture 9) Analyzing the Complexity of Merge Sort

In Place vs. Not in Place Sorting
In place sorting algorithms are those, in which we sort the data array, without using any additional

memory.

What about selection, bubble, insertion algorithms?

Well, our implementation of these algorithms is IN PLACE. The thing is, if we use a constant amount of extra

memory (like one temporary variable/s), the sorting is In-Place.

But in case extra memory (merging sort), which is proportional to the input data size, is used, then it is

NOT IN PLACE sorting.
But because memory these days is so cheap, that we usually don't bother about using extra memory, if it

makes the program run faster.

Stable vs. Unstable Sort

Data Structure: Lectures Note 2015 Prepared by: Dr. Mamoun Nawahdah

33

Example: Insertion Sort Code:

Example:

O(n2) selection sort, bubble sort, insertion sort

O(n log n) merge sort

O(n) (Sorting in linear time) ??

If we know some information about data to be sorted (e.g. students’ marks -Range 50 to 99 –), we can

achieve linear time sorting

Data Structure: Lectures Note 2015 Prepared by: Dr. Mamoun Nawahdah

34

Counting Sort:

Example: assume data range from 1 to 10

Time analysis:

Note: K is typically small comparing to n

Bad Situation: what if K is larger than n ??

Is counting sort is In-Place or Not-In-Place ?? why?

Data Structure: Lectures Note 2015 Prepared by: Dr. Mamoun Nawahdah

35

Radix Sort:

What is Radix? The radix or base is the number of unique digits, including zero, used to represent numbers

in a positional numeral system.

For example, for the decimal system: radix is 10 , Binary system: radix is 2

Example Radix Sort:

Step 1: take the least significant digits of the values to be sorted.

Step 2: sort the list of elements based on that digit

Step 3: take the 2nd least significant digits and repeat step 2

Then the 3rd LSD and so on

How to implement Radix Sort:

Radix Sort Algorithm using linked list:

Consider the following array

9 179 139 38 10 5 36

Create an array of linked lists as follow:

 Total of 10 linked lists

 0 to 9 refer to actual numbers

 With input numbers, we will start with mod 10 then divide the resulted
number by 1

Code:

 m=10 mod operation

 n=1; find the specific digit at that column
e.g. Arr[0] = 9
 9 % m = 9
 9 / n = 9

0

1

2

3

4

5

6

7

8

9

Data Structure: Lectures Note 2015 Prepared by: Dr. Mamoun Nawahdah

36

 If we reaches the end of array.

 Make a new array by removing data from the head of each linked

list in order.

Result:

10 5 36 38 9 179 139

Is this sorted?

Next step: consider the 2nd significant digit from the previous resulted array:

Code:

m = m * 10 = 100

n = n * 10 = 10

e.g. Arr[0] = 10

10 % m = 10

 10 / n = 1

Result:

5 9 10 36 38 139 179

Is this sorted? Yes in this case but we are not done yet

Next step: consider the 3rd significant digit from the previous array:

Code:

m = m * 10 = 1000

n = n * 10 = 100

e.g. Arr[0] = 5

5 % m = 5

 5 / n = 0

Result:

5 9 10 36 38 139 179

Is this sorted? What is the time complexity

HW: implement Radix sort using Doubly Linked List

0 | 10

1

2

3

4

5 | 5

6 | 6

7

8 | 38

9 | 9 179 139

0 | 5 9

1 | 10

2 |

3 | 36 38 139

4 |

5 |

6 |

7 | 179

8 |

9 |

0 | 5 9 10 36 38

1 | 139 179

2 |

3 |

4 |

5 |
:

Data Structure: Lectures Note 2015 Prepared by: Dr. Mamoun Nawahdah

37

(Lecture 10) Stacks 1

stack is an abstract data type that serves as a collection of elements, with two principal operations:

 push adds an element to the collection;

 pop removes the last element that was added.

• Last In, First Out LIFO

Linked Implementation:

Each of the following operation involves top of stack

 push

 pop

 peek

Head or Tail for topNode??

Head of linked list easiest, fastest to access Let this be the top of the stack

Data Structure: Lectures Note 2015 Prepared by: Dr. Mamoun Nawahdah

38

 public class LinkedStack<T> {

 private Node<T> topNode;
 public void push(T data) {
 Node<T> newNode = new Node<T>(data);
 newNode.setNextNode(topNode);
 topNode = newNode;
 }
 public Node<T> pop() {
 Node<T> toDel = topNode;
 assert topNode!=null : "Empty Stack" ;
 topNode = topNode.getNextNode();
 return toDel;
 }

 public Node<T> peek() { return topNode; }
 public int length() {
 int length = 0;
 Node<T> curr = topNode;
 while (curr != null) {
 length++;
 curr = curr.getNextNode();
 }
 return length;
 }
 public boolean isEmpty() { return (topNode == null); }
 public void clear { topNode == null; }
}

Array-Based Implementation

• End of the array easiest to access

 Let this be top of stack

 Let first entry be bottom of stack

H.W. implement array based stack

Data Structure: Lectures Note 2015 Prepared by: Dr. Mamoun Nawahdah

39

Balanced Expressions

Delimiters paired correctly compilers

Example 1: The contents of a stack during the scan of an expression that contains the balanced delimiters

{ [()] }

Example 2: The contents of a stack during the scan of an expression that contains the unbalanced delimiters

{ [(]) }

Example 3: The contents of a stack during the scan of an expression that contains the unbalanced delimiters

[()] }

Example 4: The contents of a stack during the scan of an expression that contains the unbalanced delimiters

{ [()]

Data Structure: Lectures Note 2015 Prepared by: Dr. Mamoun Nawahdah

40

Algorithm to process for balanced expression:

H.W. implement check balance algorithm using linked/array stacks

Generic stack: array implementation

Data Structure: Lectures Note 2015 Prepared by: Dr. Mamoun Nawahdah

41

(Lecture 11) Stacks 2

Processing Algebraic Expressions

• Infix: each binary operator appears between its operands a + b

• Prefix: each binary operator appears before its operands + a b

• Postfix: each binary operator appears after its operands a b +

Arithmetic expression evaluation

Evaluate infix expressions.

Example:

Data Structure: Lectures Note 2015 Prepared by: Dr. Mamoun Nawahdah

42

Infix to Postfix

Infix-to-postfix Conversion:

Example 1: Converting the infix expression a + b * c to postfix form

Data Structure: Lectures Note 2015 Prepared by: Dr. Mamoun Nawahdah

43

Example 2: Converting an infix expression to postfix form: a - b + c

Example 3: Converting an infix expression to postfix form: a ^ b ^ c

Example 4: The steps in converting the infix expression a / b * (c + (d - e)) to postfix form

Data Structure: Lectures Note 2015 Prepared by: Dr. Mamoun Nawahdah

44

Infix-to-postfix Algorithm

Data Structure: Lectures Note 2015 Prepared by: Dr. Mamoun Nawahdah

45

H.W. example:

Evaluating Postfix Expressions

 When an operand is seen, it is pushed onto a stack.

 When an operator is seen, the appropriate numbers of operands are popped from the stack, the

operator is evaluated, and the result is pushed back onto the stack.

o Note that the 1st item popped becomes the rhs parameter to the binary operator and that the

2nd item popped is the lhs parameter; thus parameters are popped in reverse order. For

multiplication, the order does not matter, but for subtraction and division, it does.

 When the complete postfix expression is evaluated, the result should be a single item on the stack that

represents the answer.

Example 1: The stack during the evaluation of the postfix expression a b / when a is 2 and b is 4

Example 2: The stack during the evaluation of the postfix expression a b + c / when a is 2, b is 4, and c is 3

Data Structure: Lectures Note 2015 Prepared by: Dr. Mamoun Nawahdah

46

Algorithm for evaluating postfix expressions.

H.W. Example:

Data Structure: Lectures Note 2015 Prepared by: Dr. Mamoun Nawahdah

47

Iteration (optional)

 Design challenge. Support iteration over stack items by client, without revealing the internal

representation of the stack.

 Java solution. Make stack implement the java.lang.Iterable interface.

Data Structure: Lectures Note 2015 Prepared by: Dr. Mamoun Nawahdah

48

(Lecture 12) Queues

Linked-list Representation of a Queue

Maintain pointer to first (head) and last (tail) nodes in a linked list;

insert/remove from opposite ends.

Delete dequeue:

Add enqueue:

First
Front

Last
Back

Data Structure: Lectures Note 2015 Prepared by: Dr. Mamoun Nawahdah

49

Data Structure: Lectures Note 2015 Prepared by: Dr. Mamoun Nawahdah

50

Array implementation of a Queue.

・ enqueue(): add new item at q[tail] .

・ dequeue(): remove item from q[head] .

enqueue(8)

enqueue (12)

After a number of enqueues:

dequeue(): returns the item pointed by head and advances head pointer

Front
Back

Data Structure: Lectures Note 2015 Prepared by: Dr. Mamoun Nawahdah

51

enqueue (27) ?? how to advance tail?? We have space at the beginning?? Shift??

How to find free spaces??

-1

So, if tail at max index and we have free spaces, we move tail to 1st index. Circular Queue

enqueue (9) ??

Circular Queue

Data Structure: Lectures Note 2015 Prepared by: Dr. Mamoun Nawahdah

52

• To detect queue-full and queue-empty conditions

– Keep a count of the queue items

• To initialize the queue, set

– front to -1

– back to -1

– count to 0

Inserting into a queue

If(count < MAX_QUEUE) // free

 back = (back+1) % MAX_QUEUE;

items[back] = newItem;

++count;

If(count==1) // first item

 front = back;

Deleting from a queue

 If(count > 0) // not empty

front = (front+1) % MAX_QUEUE;

--count;

 If(count==0) // empty

 front = back = -1

DE Queue (Double Ended Queue)

Allows add / remove elements from both head/tail.

HW This of implementations using linked List and Arrays.

Data Structure: Lectures Note 2015 Prepared by: Dr. Mamoun Nawahdah

53

(Lecture 13) Cursor Implementation of Linked Lists

Many Languages do not support pointers.

If data max length is known, using Array is faster

Solution Cursor Implementation

2 features present in a pointer implementation of linked lists:

 The data are stored in array, each array element contains data and a pointer to the next structure.

 A new structure can be obtained from the system’s global memory by a call to malloc and released by

a call to free.

To Be Completed

Data Structure: Lectures Note 2015 Prepared by: Dr. Mamoun Nawahdah

54

(Lecture 14) Trees

Tree

 A tree is a collection of N nodes, one of which is the root, and N − 1 edges.

 Every node except the root has one parent.

 Nodes with no children are known as leaves.

 An internal node (parent) is any node that has at least one non-empty child.

 Nodes with the same parent are siblings.

 The depth of a node in a tree is the length of the path from the root to the node.

 The height of a tree is the number of levels in the tree.

Example: Family Trees (one parent)

Example: file system tree

Data Structure: Lectures Note 2015 Prepared by: Dr. Mamoun Nawahdah

55

Binary Trees

 A binary tree is a tree in which no node can have more than two children.

 Binary Tree Node:

 Each node in a full binary tree is either:

(1) an internal node with exactly two non-empty children or

(2) a leaf.

 A complete binary tree has a restricted shape obtained by starting at the root and filling the tree by

levels from left to right.

 The max. number of nodes in a full binary tree as a function of the tree’s height = 2h-1

Data Structure: Lectures Note 2015 Prepared by: Dr. Mamoun Nawahdah

56

Implementation:

public class TreeNode {

 private Integer data;
 private TreeNode leftChild;
 private TreeNode rightChild;
 public TreeNode(Integer data) { this.data = data; }
 public Integer getData() { return data; }
 public TreeNode getLeftChild() { return leftChild; }
 public void setLeftChild(TreeNode left) { this.leftChild = left; }
 public TreeNode getRightChild() { return rightChild; }
 public void setRightChild(TreeNode right) { this.rightChild = right;}
}

public class BinaryTree {

private TreeNode root;

public void insert(Integer data) { }
public TreeNode find(Integer data) { return null; }
public void delete(Integer data) { }

}

Tree Traversal
Definition: visit, or process, each data item exactly once.

In-Order Traversal:

@ TreeNode

public void traverseInOrder() {
 if (this.leftChild != null)
 this.leftChild.traverseInOrder();
 System.out.print(this + " ");
 if (this.rightChild != null)
 this.rightChild.traverseInOrder();
 }

@BinarySerachTree
public void traverseInOrder() {

 if (this.root != null)
 this.root.traverseInOrder();
 System.out.println();
 }

Data Structure: Lectures Note 2015 Prepared by: Dr. Mamoun Nawahdah

57

Pre-Order Traversal

Post-Order Traversal

Level-Order Traversal (Optional)

 Begin at root and visit nodes one level at a time

 Level-order traversal is implemented via a queue.

 The traversal is a breadth-first search.

HW: implement level-order traversal

Data Structure: Lectures Note 2015 Prepared by: Dr. Mamoun Nawahdah

58

(Lecture 15) Expression Trees

 The leaves of an expression tree are operands, such as constants or variable names, and the other

nodes contain operators.

 It is also possible for a node to have only one child, as is the case with the unary minus operator.

 We can evaluate an expression tree by applying the operator at the root to the values obtained by

recursively evaluating the left and right subtrees.

Algebraic expressions:

 Algebraic expression trees represent expressions that contain numbers, variables, and unary and

binary operators.

 Some of the common operators are × (multiplication), ÷ (division), + (addition), − (subtraction), ^

(exponentiation), and - (negation).

Example: ((5 + z) / -8) * (4 ^ 2)

Boolean expressions:

 Boolean expressions are represented very similarly to

algebraic expressions, the only difference being the specific

values and operators used.

 Boolean expressions use true and false as constant values,

and the operators include ʌ (AND), V (OR), ~ (NOT).

Data Structure: Lectures Note 2015 Prepared by: Dr. Mamoun Nawahdah

59

Algorithm for evaluation of an expression tree:

Constructing an expression tree:

The construction of the expression tree takes place by reading the postfix expression one symbol at a time:

 If the symbol is an operand, one-node tree is created and a pointer is pushed onto a stack.

 If the symbol is an operator,

o Two pointers trees T1 and T2 are popped from the stack

o A new tree whose root is the operator and whose left and right children point to T2 and T1

respectively is formed .

o A pointer to this new tree is then pushed to the Stack.

Example: (a b + c d e + * *)
 Since the first two symbols are operands, one-node trees are created and pointers are pushed to them

onto a stack.

 The next symbol is a '+'. It pops two pointers, a new tree is formed, and a pointer to it is pushed onto

to the stack.

Data Structure: Lectures Note 2015 Prepared by: Dr. Mamoun Nawahdah

60

 Next, c, d, and e are read. A one-node tree is created for each and a pointer to the corresponding tree

is pushed onto the stack.

 Continuing, a '+' is read, and it merges the last two trees.

 Now, a '*' is read. The last two tree pointers are popped and a new tree is formed with a '*' as the root.

 Finally, the last symbol is read. The two trees are merged and a pointer to the final tree remains on the

stack.

Data Structure: Lectures Note 2015 Prepared by: Dr. Mamoun Nawahdah

61

 (Lecture 16) Binary Search Trees BST

 In a binary search tree for every node , X, in the tree, the values of all the items in its left subtree are

smaller than the item in X, and the values of all the items in its right subtree are larger (or equal) than

the item in X.

Search for an item: Find(52) , Find(39) , Find(35)

@ TreeNode

public TreeNode find(Integer data) {
 if (this.data == data)
 return this;
 if (data < this.data && leftChild != null)
 return leftChild.find(data);
 if (rightChild != null)
 return rightChild.find(data);
 return null;
 }

@BinarySerachTree

public TreeNode find(Integer data) {
 if (root != null)
 return root.find(data);
 return null;
 }

Efficiency of a search: Searching a binary search tree of height h is O(h)

To make searching a binary search tree as efficient as possible … Tree must be as short as possible.

Data Structure: Lectures Note 2015 Prepared by: Dr. Mamoun Nawahdah

62

Finding Max and Min Values

 The find Min operation is performed by following left nodes as long as there is a left child.

 The find Max operation is similar.

@TreeNode

public Integer largest() {
 if (this.rightChild == null)
 return this.data;
 return this.rightChild.largest();
 }

 public Integer smallest() {
 if (this.leftChild == null)
 return this.data;
 return this.leftChild.smallest();
 }

@BinarySerachTree
 public Integer largest() {
 if (this.root != null)
 return root.largest();
 return null;
 }

 public Integer smallest() {
 if (this.root != null)
 return root.smallest();
 return null;
 }

Data Structure: Lectures Note 2015 Prepared by: Dr. Mamoun Nawahdah

63

Insert in Binary Search Tree
Insert(63)

@TreeNode

public void insert(Integer data) {
 if (data >= this.data) { // insert in right subtree
 if (this.rightChild == null)
 this.rightChild = new TreeNode(data);
 else
 this.rightChild.insert(data);
 } else { // insert in left subtree
 if (this.leftChild == null)
 this.leftChild = new TreeNode(data);
 else
 this.leftChild.insert(data);
 }
 }

@BinarySerachTree

public void insert(Integer data) {

 if (root == null)
 this.root = new TreeNode(data);
 else
 root.insert(data);
 }

Data Structure: Lectures Note 2015 Prepared by: Dr. Mamoun Nawahdah

64

Deleting a Node
Case 1: Node to be deleted is a leaf.
Case 2: Node to be deleted has one child.
Case 3: Node to be deleted has two children.

@BinarySerachTree

public void delete(Integer data) {
 TreeNode current = this.root;
 TreeNode parent = this.root;
 boolean isLeftChild = false;

 if (current == null) return; // tree is empty

 while (current != null && current.getData() != data) {
 parent = current;
 if (data < current.getData()) {
 current = current.getLeftChild();
 isLeftChild = true;
 } else {
 current = current.getRightChild();
 isLeftChild = false;
 }
 }
 if (current == null) return; // node to be deleted not found

 // this is case 1
 if (current.getLeftChild() == null && current.getRightChild() == null) {
 if (current == root) { root = null; // no elements in tree now
 } else {
 if (isLeftChild)
 parent.setLeftChild(null);
 else
 parent.setRightChild(null);
 }
 }

}

Data Structure: Lectures Note 2015 Prepared by: Dr. Mamoun Nawahdah

65

If a node has one child, it can be removed by having its parent bypass it.
Note: The root is a special case because it does not have a parent.

@BinarySerachTree
// This is case 2 broken down further into 2 separate cases

 else if (current.getRightChild() == null) { // current has left child
 if (current == root) {
 root = current.getLeftChild();
 } else if (isLeftChild) {
 parent.setLeftChild(current.getLeftChild());
 } else {
 parent.setRightChild(current.getLeftChild());
 }
 } else if (current.getLeftChild() == null) { // current has right child
 if (current == root) {
 root = current.getRightChild();
 } else if (isLeftChild) {
 parent.setLeftChild(current.getRightChild());
 } else {
 parent.setRightChild(current.getRightChild());
 }
 }

Data Structure: Lectures Note 2015 Prepared by: Dr. Mamoun Nawahdah

66

A node with two children is replaced by using the smallest item in the right subtree (Successor). Then

another node is removed.

What if 34 has a right child?

@BinarySerachTree
// This is case 3 - Most complicated (node to be deleted has 2 children)

 else {
 TreeNode successor = getSuccessor(current);
 if (current == root)
 root = successor;
 else if (isLeftChild) {
 parent.setLeftChild(successor);
 } else {
 parent.setRightChild(successor);
 }
 successor.setLeftChild(current.getLeftChild());
 }

 private TreeNode getSuccessor(TreeNode node) {
 TreeNode parentOfSuccessor = node;
 TreeNode successor = node;
 TreeNode current = node.getRightChild();
 while (current != null) {
 parentOfSuccessor = successor;
 successor = current;
 current = current.getLeftChild();
 }
 if (successor != node.getRightChild()) {
 parentOfSuccessor.setLeftChild(successor.getRightChild());
 successor.setRightChild(node.getRightChild());
 }
 return successor;
 }

Soft Delete (lazy deletion): When an element is to be deleted, it is left in the tree and merely marked as

being deleted.

 If a deleted item is reinserted, the overhead of allocating a new cell is avoided.

Data Structure: Lectures Note 2015 Prepared by: Dr. Mamoun Nawahdah

67

Tree Height
@BinarySerachTree
public int height() {

 if (this.root == null) return 0;
 return this.root.height();
 }

@TreeNode

public int height() {
 if (isLeaf()) return 1;
 int left = 0;
 int right = 0;
 if (this.leftChild != null)
 left = this.leftChild.height();
 if (this.rightChild != null)
 right = this.rightChild.height();
 return (left > right) ? (left + 1) : (right + 1);
 }

Efficiency of Operations

• For tree of height h

 The operations add, remove, and getEntry are O(h)
• If tree of n nodes has height h = n

 These operations are O(n)
• Shortest tree is full

 Results in these operations being O(log n)

Unbalanced Tree

• The order in which you add entries to a binary search tree affects the shape of the tree.

Data Structure: Lectures Note 2015 Prepared by: Dr. Mamoun Nawahdah

68

(Lecture 17, 18) AVL Trees

• An AVL tree is a BST with the additional balance property that, for any node in the tree, the height of
the left and right subtrees can differ by at most 1.

• Complete binary trees are balanced.

Single Rotations

Example: After inserting (a) 60; (b) 50; and (c) 20 into an initially empty BST, the tree is not balanced;
(d) a corresponding AVL tree rotates its nodes to restore balance

Example: (a) Adding 80 to the tree does not change the balance of the tree;

(b) a subsequent addition of 90 makes the tree unbalanced ;
(c) a left rotation restores its balance

Case 1: Single Right Rotation

Before and after an addition to an AVL subtree that requires a right rotation to maintain its balance.

Data Structure: Lectures Note 2015 Prepared by: Dr. Mamoun Nawahdah

69

Example: Before and after a right rotation restores balance to an AVL tree

Case 2: Single Left Rotation

Before and after an addition to an AVL subtree that requires a left rotation to maintain its balance

Data Structure: Lectures Note 2015 Prepared by: Dr. Mamoun Nawahdah

70

Double Rotations

A double rotation is accomplished by performing two single rotations:
1. A rotation about node N’s grandchild G (its child’s child)
2. A rotation about node N’s new child

Case 3: Right-Left Double Rotations

Example: (a) Adding 70 destroys tree’s balance; to restore the balance, perform both

(b) a right rotation and (c) a left rotation

Before and after an addition to an AVL subtree that requires both

a right rotation and a left rotation to maintain its balance

Data Structure: Lectures Note 2015 Prepared by: Dr. Mamoun Nawahdah

71

Case 4: Left-Right Double Rotations
Example:

(a) The AVL tree after additions that maintain its balance;

(b) after an addition that destroys the balance;
(c) after a left rotation;
(d) after a right rotation

Data Structure: Lectures Note 2015 Prepared by: Dr. Mamoun Nawahdah

72

Before and after an addition to an AVL subtree that requires both

a left rotation and a right rotation to maintain its balance

• Four rotations cover the only four possibilities for the cause of the imbalance at node N
• The addition occurred at:

 The left subtree of N’s left child (case 1: right rotation)
 The right subtree of N’s left child (case 4: left-right rotation)
 The left subtree of N’s right child (case 3: right-left rotation)
 The right subtree of N’s right child (case 2: left rotation)

Data Structure: Lectures Note 2015 Prepared by: Dr. Mamoun Nawahdah

73

An AVL Tree Versus a BST

Example: The result of adding 60, 50, 20, 80, 90, 70, 55, 10, 40, and 35 to an initially empty

(a) AVL tree; (b) BST

Code Implementation (Optional)
• The implementation of the method for a single right rotation:

• The implementation for a right-left double rotation:

Data Structure: Lectures Note 2015 Prepared by: Dr. Mamoun Nawahdah

74

• Pseudo-code to rebalance the tree:

• Implementation for rebalancing within the class AVLTree:

Data Structure: Lectures Note 2015 Prepared by: Dr. Mamoun Nawahdah

75

• Methods to Add:

• AddEntry code:

Data Structure: Lectures Note 2015 Prepared by: Dr. Mamoun Nawahdah

76

(Lecture 19) 2-3 Trees

• Definition: general search tree whose interior nodes must have either 2 or 3 children.

 A 2-node contains one data item s and has two children

 A 3-node contains two data items, s and l, and has three children

Searching a 2-3 Tree:

Adding Entries to a 2-3 Tree:

Adding (a) 60 and (b) 50; (c), (d) adding 20 causes the 3-node to split

The 2-3 tree after adding (a) 80; (b) 90; (c) 70

Adding 55 to the 2-3 tree, causes a leaf and then the root to split

Data Structure: Lectures Note 2015 Prepared by: Dr. Mamoun Nawahdah

77

The 2-3 tree, after adding 10, 40, 35

Splitting Nodes during Addition

 Splitting a leaf to accommodate a new entry when the leaf’s parent contains:

o (a) one entry;

o (b) two entries

 Splitting an internal node to accommodate a new entry:

 Splitting the root to accommodate a new entry:

Data Structure: Lectures Note 2015 Prepared by: Dr. Mamoun Nawahdah

78

2-3 tree: performance

Perfect balance. Every path from root to null link has same length.

Tree height:

・Worst case: log N. [all 2-nodes]

・Best case: log3 N ≈ .631 log N. [all 3-nodes]

・Between 12 and 20 for a million nodes.

・Between 18 and 30 for a billion nodes.

2-3 tree: implementation?

Direct implementation is complicated, because:

・Maintaining multiple node types is cumbersome.

・Need multiple compares to move down tree.

・Need to move back up the tree to split 4-nodes.

・Large number of cases for splitting.

Bottom line. Could do it, but there's a better way.

HW: 50 60 70 40 30 20 10 80 90 100

2-4 Trees
• Sometimes called a 2-3-4 tree

 General search tree

 Interior nodes must have either two, three, or four children

 Leaves occur on the same level

 A 4-node contains three data items s, m, and l and has four children.

Data Structure: Lectures Note 2015 Prepared by: Dr. Mamoun Nawahdah

79

Adding Entries to a 2-4 Tree

The 2-4 tree, after (a) splitting the root; (b) adding 80; (c) adding 90

Adding 70

The 2-4 tree after adding (a) 55; (b) 10; (c) 40

Adding 5

The 2-4 tree after (a) splitting the leftmost 4-node; (b) adding 35

Comparing AVL, 2-3, and 2-4 Trees

Three balanced search trees obtained by adding 60, 50, 20, 80, 90, 70, 55, 10, 40, and 35:

(a) AVL tree; (b) 2-3 tree; (c) 2-4 tree

Data Structure: Lectures Note 2015 Prepared by: Dr. Mamoun Nawahdah

80

(Lecture 20) Recursion (Time Analysis Revision)

Example 1: Write a recursive method to calculate the sum of squares of the first n natural numbers. n is to be

given as an input.
public int sumOfSquares(int n) {
 if (n==1)
 return 1;

 return n*n + sumOfSquares(n-1);
}

Recursion may sometimes be very intuitive and simple, but it may not be the best thing to do.

Example 2: Fibonacci Sequence:

 F(n) = n if n=0,1 ; F(n) = F(n-1) + F(n-2) if n > 1

0 1 1 2 3 5 8 13 ..

F(0) F(1) F(2) F(3) F(4) F(5) F(6) F(7) ..

Solution 1: Iterative

public static int fib1(int n){

 if(n<=1) return n;

 int f1 = 0, f2 = 1, res=0;

 for(int i=2; i<=n; i++){

 res =f1+f2;

 f1=f2;

 f2=res;

 }

 return res;

}

Solution 2: Recursion

public static int fib2(int n){

 if(n<=1) return n;

 return (fib2(n-1)+fib2(n-2));

 }

Test for n=6 and n=40

Why recursive solution is taking much time?

Do analyze the 2 algorithms in term of calculating F(n)

In Solution 1:

We have F(0) and F(1) given

Then we calculate F(2) using F(1) and F(0)

 F(3) using F(2) and F(1)

F(4) using F(3) and F(2)

:

F(n) using F(n-1) and F(n-2)

Data Structure: Lectures Note 2015 Prepared by: Dr. Mamoun Nawahdah

81

In Solution 2:

F(5)

F(4) F(3)

F(3) F(2) F(2) F(1)

F(2) F(1) F(1) F(0) F(1) F(0)

F(1) F(0)

Note: we are calculating the same value multiple times!!

n F(2) F(3) ..

5 3 2

6 5

8 13

:

40 63245986

Exponential growth

Time and Space complexity Analysis of recursion

Example: recursive factorial

 fact(n){

 If (n==0) return 1;

 Return n * fact(n-1);

}

 Calculate operation costs:

o If statement takes 1 unit of time

o Multiplication (*) takes 1 unit of time

o Subtraction (-) takes 1 unit of time

o Function call

 So T(0) = 1

T(n) = 3 + T(n-1) for n > 0

To solve this equation, reduce T(n) in term of its base conditions.

T(n) = T(n-1) + 3

 = T(n-2) + 6

 = T(n-3) + 9

 :

 = T(n-k) + 3k

For T(0) n-k = 0 n = k

Therefore T(n) = T(0) + 3n

 = 1 + 3n O(n)

Data Structure: Lectures Note 2015 Prepared by: Dr. Mamoun Nawahdah

82

Space analysis:

 Recursive Tree

 Fact(5) Fact(4) Fact(3) Fact(2) Fact(1) Fact(0)

Each function call will cause to save current function state into memory (call stack, push):

Fact(1)

Fact(2)

Fact(3)

Fact(4)

Fact(5)

 Each return statement will retrieve previous saved function state from memory (pop):

So needed space is proportional to n O(n)

Fibonacci sequence time complexity analysis

public static int fib2(int n){

 if(n<=1) return n;

 return (fib2(n-1)+fib2(n-2));

 }

 Calculate operation costs:

o If statement takes 1 unit of time

o 2 subtractions (-) takes 2 unit of time

o 1 addition (+) takes 1 unit of time

o 2 function calls

 So T(0) = T(1) = 1

T(n) = T(n-1) + T(n-2) + 4 for n > 1

To solve this equation, reduce T(n) in term of its base conditions.

For approximation assume T(n-1) ≈ T(n-2) in reality T(n-1) > T(n-2)

 T(n) = 2 T(n-2) + 4 c = 4

 = 2 T(n-2) + c T(n-2) = 2 T(n-4) + c

 = 2 { 2 T(n-4) + c } + c

 = 4 T(n-4) + 3c

 = 8 T(n-6) + 7c

 = 16 T(n-8) + 15c

 :

 = 2k T(n-2k) +(2k-1)c

For T(0) n-2k = 0 k = n/2

Therefore T(n) = 2n/2 T(0) + (2n/2 - 1) c 2n/2 (1+c) - c

 T(n) is proportional to 2n/2 O(2n/2) lower bound analysis

Data Structure: Lectures Note 2015 Prepared by: Dr. Mamoun Nawahdah

83

Similarly, for approximation assume T(n-2) ≈ T(n-1) in reality T(n-2) < T(n-1)

 T(n) = 2 T(n-1) + c T(n-1) = 2 T(n-2) + c

 = 2 { 2 T(n-2) + c } + c

 = 4 T(n-2) + 3c

 = 8 T(n-3) + 7c

 = 16 T(n-4) + 15c

 :

 = 2k T(n-k) +(2k-1)c

For T(0) n-k = 0 k = n

Therefore T(n) = 2n T(0) + (2n - 1) c 2n (1+c) - c

T(n) is proportional to 2n O(2n) upper bound analysis worst case analysis

While for iterative solution O(n)

Recursion with memorization

Solution: don’t calculate something already has been calculated.

Algorithm:

 fib(n){

 If (n<=1) return n

 If(F[n] is in memory) return F[n]

 F[n] = fib(n-1) + fib(n-2)

 Return F[n]

 }

Time complexity O(n)

Calculate Xn using recursion

Iterative solution: O(n)
Xn = X * X * X * X * …. * X

n-1 multiplication

Recursive solution 1: O(n)

Xn = X * Xn-1 if n > 0
X0 = 1 if n > 0

Recursive solution 2: O(log n)

Xn = Xn/2 * Xn/2 if n is even
Xn = X * Xn-1 if n is odd

X0 = 1 if n > 0

res = 1
for i1 to n
 res res * x

pow(x, n){
 if n==0 return 1
 return x * pow(x, n-1)
}

pow(x, n){
 if n==0 return 1
 if n%2 == 0 {
 y pow(x, n/2)
 return y * y
 }
 return x * pow(x, n-1)
}

Data Structure: Lectures Note 2015 Prepared by: Dr. Mamoun Nawahdah

84

Recursive solution 1: Time analysis

T(1) = 1

T(n) = T(n-1) + c

 = (T(n-2) + c) + c T(n-2) + 2c

 = T(n-3) + 3c

 :

 = T(n-k) + kc

For T(0) n-k = 0 n = k

T(n) = T(0) + nc 1 + nc O(n)

Recursive solution 2: Time analysis

 Xn = Xn/2 * Xn/2 if n is even

 Xn = X * Xn-1 if n is odd

 Xn = 1 if n == 0

 Xn = X * 1 if n == 1

If even T(n) = T(n/2) + c1

If odd T(n) = T(n-1) + c2

If 0 T(0) = 1

If 1 T(1) = c3

If odd, next call will become even:

T(n) = T((n-1)/2) + c1 + c2

If even

T(n) = T(n/2) + c

 = T(n/4) + 2c

 = T(n/8) + 3c

 :

 = T(n/2k) + k c

For T(1) T(0) + c 1

n/2k = 1 n = 2k k = log n

 = c3 + c log n O(log n)

Data Structure: Lectures Note 2015 Prepared by: Dr. Mamoun Nawahdah

85

(Lecture xx) Red-Black Trees (Optional)

Left-leaning red-black BSTs (Guibas-Sedgewick 1979 and Sedgewick 2007): LLRB

1. Represent 2–3 tree as a BST.

2. Use "internal" left-leaning links as "glue" for 3–nodes.

Example:

An equivalent definition:

Key property. 1–1 correspondence between 2–3 and LLRB.

To be continue.

Data Structure: Lectures Note 2015 Prepared by: Dr. Mamoun Nawahdah

86

(Lecture 21) B-Trees

An M-ary search tree allows M-way branching.

As branching increases, the depth decreases.

B-trees (Bayer-McCreight, 1972)

Nodes must be half full to guarantee that the tree does not degenerate into a simple binary tree.

Example: A 5-ary tree of 31 nodes has only three levels:

Example:

Searching in a B-tree

 Start at root.

 Find interval for search key and take corresponding link.

 Search terminates in external node.

Data Structure: Lectures Note 2015 Prepared by: Dr. Mamoun Nawahdah

87

Insertion in a B-tree

・ Search for new key.

・ Insert at bottom.

・ Split nodes with M key-link pairs on the way up the tree.

Balance in B-tree

The B-tree is the most popular data structure for disk bound searching.

Data Structure: Lectures Note 2015 Prepared by: Dr. Mamoun Nawahdah

88

Example: A B-tree of order 5

Insertion: insert 57

 If the leaf contains room for a new item, we insert it and are done.

 If the leaf is full, we can insert a new item by splitting the leaf and forming two half-empty nodes.

The B-tree after insertion of 57

Data Structure: Lectures Note 2015 Prepared by: Dr. Mamoun Nawahdah

89

Insertion: insert 40

 Node splitting creates an extra child for the leaf’s parent.

 If the parent already has a full number of children, we split the parent.

 We may have to continue splitting all the way up the tree (though this possibility is unlikely).

 In the worst case, we split the root, creating a new root with two children.

Insertion of 40 causes a split into two leaves and then a split of the parent node.

Deletion works in reverse: remove 99:

 If a leaf loses a child, it may need to combine with another leaf.

 Combining of nodes may continue all the way up the tree, though this possibility is unlikely.

 In the worst case, the root loses one of its two children. Then we delete the root and use the other

child as the new root.

The B-tree after deletion of 99 from the tree

Data Structure: Lectures Note 2015 Prepared by: Dr. Mamoun Nawahdah

90

(Lecture 22) Splay Trees

Recall: Asymptotic analysis examines how an algorithm will perform in worst case.

Amortized analysis examines how an algorithm will perform in practice or on average.

The 90–10 rule states that 90% of the accesses are to 10% of the data items.

However, balanced search trees do not take advantage of this rule.

 The 90–10 rule has been used for many years in disk I/O systems.

 A cache stores in main memory the contents of some of the disk blocks. The hope is that when a disk

access is requested, the block can be found in the main memory cache and thus save the cost of an

expensive disk access.

 Browsers make use of the same idea: A cache stores locally the previously visited Web pages.

Splay Trees:

 Like AVL trees, use the standard binary search tree property.

 After any operation on a node, make that node the new root of the tree.

A simple self-adjusting strategy (that does not work)

The easiest way to move a frequently accessed item toward the root is to rotate it continually with its parent.

Moving the item closer to the root, a process called the rotate-to-root strategy.

 If the item is accessed a second time, the second access is cheap.

Example: Rotate-to-root strategy applied when node 3 is accessed

 As a result of the rotation:

o future accesses of node 3 are cheap

o Unfortunately, in the process of moving node 3 up two levels, nodes 4 and 5 each move down a

level.

 Thus, if access patterns do not follow the 90–10 rule, a long sequence of bad accesses can occur.

Data Structure: Lectures Note 2015 Prepared by: Dr. Mamoun Nawahdah

91

The basic bottom-up splay tree

Splaying cases:

 The zig case (normal single rotation)

If X is a non root node on the access path on which we are rotating and the parent of X is the root of

the tree, we merely rotate X and the root, as shown:

Otherwise, X has both a parent P and a grandparent G, and we must consider two cases and symmetries.

 zig-zag case:

 This corresponds to the inside case for AVL trees.

 Here X is a right child and P is a left child (or vice versa: X is a left child and P is a right child).

 We perform a double rotation exactly like an AVL double rotation, as shown:

 zig-zig case:

 The outside case for AVL trees.

 Here, X and P are either both left children or both right children.

 In this case, we transform the left-hand tree to the right-hand tree (or vice versa).

 Note that this method differs from the rotate-to-root strategy.

o The zig-zig splay rotates between P and G and then X and P, whereas the rotate-to-root

strategy rotates between X and P and then between X and G.

Data Structure: Lectures Note 2015 Prepared by: Dr. Mamoun Nawahdah

92

Splaying has the effect of roughly halving the depth of most nodes on the access path and increasing by at

most two levels the depth of a few other nodes.

Example: Result of splaying at node 1 (three zig-zigs)

Exercise: perform rotate-to-root strategy

Basic splay tree operations

A splay operation is performed after each access:

 After an item has been inserted as a leaf, it is splayed to the root.

 All searching operations incorporate a splay. (find, findMin and findMax)

 To perform deletion, we access the node to be deleted, which puts the node at the root. If it is deleted,

we get two subtrees, L and R (left and right). If we find the largest element in L, using a findMax

operation, its largest element is rotated to L’s root and L’s root has no right child. We finish the remove

operation by making R the right child of L’s root. An example of the remove operation is shown below:

Example: The remove operation applied to node 6:

 First, 6 is splayed to the root, leaving two subtrees;

 A findMax is performed on the left subtree, raising 5 to the root of the left subtree;

 Then the right subtree can be attached (not shown).

 The cost of the remove operation is two splays.

Data Structure: Lectures Note 2015 Prepared by: Dr. Mamoun Nawahdah

93

(Lecture 23 & 24) Hash Tables

• Hashing: is a technique that determines element index using only element’s distinct search key.

• Hash function:

 Takes a search key and produces the integer index of an element in the hash table.

 Search key—maps, or hashes, to the index.

Example 1: Phone numbers (xxx-xxxx).

・Bad: first three digits. // identical for same area

・Better: last four digits. // distinct

Example 2: Social Security numbers (ID number).

・Bad: first three digits. // identical for same period

・Better: last three digits. // distinct

Practical challenge: Need different approach for each key type.

Simple algorithms for the hash operations that add and retrieve:

Typical Hashing

Typical hash functions perform two steps:

1. Convert search key to an integer called the hash code.

2. Compress hash code into the range of indices for hash table.

• Typical hash functions are not perfect:

 Can allow more than one search key to map into a single index.

 Causes a collision in the hash table.

Example: Consider tableSize = 101

 getHashIndex(555-1264) = 52

 getHashIndex(555-8132) = 52 also!!!

Data Structure: Lectures Note 2015 Prepared by: Dr. Mamoun Nawahdah

94

Hash Functions

• A good hash function should:

 Minimize collisions

 Be fast to compute

• To reduce the chance of a collision

 Choose a hash function that distributes entries uniformly throughout hash table.

Java’s hash code conventions

All Java classes inherit a method hashCode(), which returns a 32-bit int.

Default implementation: Memory address.

Customized implementations: Integer, Double, String, File, URL, Date, …

User-defined types: Users are on their own.

Java library implementations:

Integer

Boolean

Double

Data Structure: Lectures Note 2015 Prepared by: Dr. Mamoun Nawahdah

95

String

Horner's method to hash string of length L:

Example:

Implementing hash code: user-defined types

Hash code design

"Standard" recipe for user-defined types:

・Combine each significant field using the 31x + y rule.

・If field is a primitive type, use wrapper type hashCode().

・If field is null, return 0.

・If field is a reference type, use hashCode().

・If field is an array, apply to each entry. or use Arrays.deepHashCode()

Example:

Data Structure: Lectures Note 2015 Prepared by: Dr. Mamoun Nawahdah

96

Compressing a Hash Code

Hash code: An int between -231 and 231 - 1.

Hash function: An int between 0 and M-1 (for use as array index).

• Common way to scale an integer

 Use Java % operator hash code % m

• Avoid m as power of 2 or 10

• Best to use an odd number for m

• Prime numbers often give good distribution of hash values

Resolving Collisions

• Collisions: Two distinct keys hashing to same index.

• Two choices:

 Change the structure of the hash table so that each array location can represent more than one

value. (Separate Chaining)

 Use another empty location in the hash table. (Open Addressing)

Separate Chaining

• Alter the structure of the hash table:

 Each location can represent more than one value.

 Such a location is called a bucket

• Decide how to represent a bucket: list, sorted list; array; linked nodes; vector; etc.

Data Structure: Lectures Note 2015 Prepared by: Dr. Mamoun Nawahdah

97

Where to insert a new entry into a linked bucket?

(a) If unsorted (apply 90-10 rule):

(b) If sorted:

Time Complexity

Worst case: all keys mapped to the same location one long list of size N

Find(key) O(n)

Best case: hashing uniformly distribute records over the hash table each list long = N/M = α

(α is load factor)

Find(key) O(1 + α)

Design Consequences:

・M too large too many empty chains.

・M too small chains too long.

・Typical choice: M ≈ N / 5 constant-time ops.

Data Structure: Lectures Note 2015 Prepared by: Dr. Mamoun Nawahdah

98

Open Addressing

 Linear Probing

• When a new key collides, find next empty slot, and put it there.

• Hash: Map key to integer k between 0 and M-1.

• Insert: Put at table index k if free; if not try k+1, k+2, etc.

 If reaches end of table, go to beginning of table (Circular hash table)

• Hash function: h(k,i) = (h(k,0)+i) % m

• Array size M must be greater than number of key-value pairs N.

Example: Linear hash table demo: take last 2 digits of student’s ID and run a demo

Clustering problem: A contiguous block of items will be easily formed which in turn will affect

performance.

Q. What is mean displacement of items? (Knuth’s Parking Problem)

 Model: Cars arrive at one-way street with M parking spaces. If space k is taken, try k+1, k+2, etc.

Data Structure: Lectures Note 2015 Prepared by: Dr. Mamoun Nawahdah

99

 Quadratic Probing

• Linear probing looks at consecutive locations beginning at index k

• Quadratic probing, considers the locations at indices k + j2

 Uses the indices k, k+1, k + 4, k + 9, …

 Hash function: h(k,i) = (h(k,0)+i2) % m

 For linear probing it is a bad idea to let the hash table get nearly full, because performance degrades.

 For quadratic probing, the situation is even worse: There is no guarantee of finding an empty cell once

the table gets more than half full, or even before the table gets half full if the table size is not prime.

 Standard deletion cannot be performed in a probing hash table, because the cell might have caused a

collision to go past it. (instead soft deletion is used)

Double Hashing

• Linear probing and quadratic probing add increments to k to define a probe sequence

 Both are independent of the search key

• Double hashing uses a second hash function to compute these increments

 This is a key-dependent method.

 The 2nd hash function must never evaluate to zero.

The 1st three locations in a probe sequence generated by double hashing for the search key 16

Data Structure: Lectures Note 2015 Prepared by: Dr. Mamoun Nawahdah

100

Potential Problem with Open Addressing

• Note that each location is either occupied, empty (null), or available (removed)

 Frequent additions and removals can result in no locations that are null

• Thus searching a probe sequence will not work

• Consider separate chaining as a solution

Time Complexity

Rehashing

 If the table gets too full, the running time for the operations will start taking too long and insertions

might fail for open addressing hashing with quadratic resolution.

 A solution, then, is to build another table that is about twice as big (with an associated new hash

function) and scan down the entire original hash table, computing the new hash value for each (non

deleted) element and inserting it in the new table.

 This entire operation is called rehashing.

o This is obviously a very expensive operation; the running time is O(N), since there are N

elements to rehash and the table size is roughly 2N, but it is actually not all that bad, because it

happens very infrequently.

Data Structure: Lectures Note 2015 Prepared by: Dr. Mamoun Nawahdah

101

(Lecture 25) Priority Queues (Heaps)

A priority queue is a data structure that allows at least the following two operations:

 Insert: which does the obvious thing;

 deleteMin (or deleteMax): which finds, returns, and removes the minimum (or maximum) element in

the priority queue.

Simple Implementations:

 Unsorted Linked list, performing insertions at the front in O(1) and traversing the list, which

requires O(N) time, to delete the minimum/maximum.

 Sorted Linked list, performing insertions in O(N) and O(1) to delete the minimum/maximum.

 Binary search tree: this gives an O(log N) average running time for both operations.

Binary Heap

A heap is a binary tree that is completely filled, with the possible exception of the bottom level, which

is filled from left to right.

Such a tree is known as a complete binary tree.

A complete binary tree of height h has between 2h and 2h+1 – 1

nodes.

As complete binary tree is so regular, it can be represented as an array:

・Parent of node at i is at i/2.

・Children of node at i are at 2i (left child) and 2i+1 (right child).

Heap-order property:

 In a min heap, for every node X, the key in the parent of X is smaller than (or equal to) the key

in X, with the exception of the root (which has no parent). Therefore, the minimum element

can always be found at the root.

 In a max heap, for every node X, the key in the parent of X is larger than (or equal to) the key

in X, with the exception of the root (which has no parent). Therefore, the maximum element

can always be found at the root.

Data Structure: Lectures Note 2015 Prepared by: Dr. Mamoun Nawahdah

102

Promotion in a heap

Scenario 1: Child's key becomes larger than its parent's key.

To eliminate the violation:

・Exchange key in child with key in parent.

・Repeat until heap order restored.

Example:

Insertion in a heap

Insert: Add node at end, then swim it up.

Cost: At most 1 + lg N compares.

Example: Insert S

Data Structure: Lectures Note 2015 Prepared by: Dr. Mamoun Nawahdah

103

Demotion in a heap

Scenario 2: Parent's key becomes smaller than one (or both) of its children's.

To eliminate the violation:

・Exchange key in parent with key in larger child.

・Repeat until heap order restored.

Example:

Delete the maximum in a heap

Delete max: Exchange root with node at end, and then sink it down.

Cost: At most 2 lg N compares.

Example: delete T

Data Structure: Lectures Note 2015 Prepared by: Dr. Mamoun Nawahdah

104

Binary heap: Java implementation

Data Structure: Lectures Note 2015 Prepared by: Dr. Mamoun Nawahdah

105

(Lecture 26) HeapSort

Basic plan for in-place sort:

・Create max-heap with all N keys.

・Repeatedly remove the maximum key.

Heapsort demo:

 First pass. Build heap using bottom-up method:

Array in arbitrary order

Data Structure: Lectures Note 2015 Prepared by: Dr. Mamoun Nawahdah

106

 Second pass:

o Remove the maximum, one at a time.

o Leave in array, instead of nulling out.

Data Structure: Lectures Note 2015 Prepared by: Dr. Mamoun Nawahdah

107

Heapsort: trace

Heapsort: mathematical analysis

 Heap construction uses ≤ 2 N compares and exchanges.

 Heapsort uses ≤ 2 N lg N compares and exchanges.

Heapsort Significance: In-place sorting algorithm with N log N worst-case.

Heapsort is optimal for both time and space, but it makes poor use of cache memory and not stable.

Data Structure: Lectures Note 2015 Prepared by: Dr. Mamoun Nawahdah

108

Heapsort: Java implementation

Data Structure: Lectures Note 2015 Prepared by: Dr. Mamoun Nawahdah

109

(Lecture 27) Sorting I

Selection Sort

 In iteration i, find index min of smallest remaining entry.

 Swap a[i] and a[min].

Demo:

Java implementation:

Mathematical analysis:

 Selection sort uses (N – 1) + (N – 2) + ... + 1 + 0 ~ N2 / 2 compares and N exchanges.

Trace of selection sort:

 Running time insensitive to input:

Quadratic time, even if input is

sorted.

 Data movement is minimal: Linear

number of exchanges.

Data Structure: Lectures Note 2015 Prepared by: Dr. Mamoun Nawahdah

110

Insertion sort

 In iteration i, swap a[i] with each larger entry to its left.

Demo:

Java implementation:

Mathematical analysis:

 To sort a randomly-ordered array with distinct keys, insertion sort uses ~ ¼ N2 compares

and ~ ¼ N2 exchanges on average.

 Expect each entry to move halfway back.

Trace of insertion sort:

 Best case: If the array is in ascending

order, insertion sort makes N - 1

compares and 0 exchanges.

 Worst case: If the array is in

descending order (and no duplicates),

insertion sort makes ~ ½ N2 compares

and ~ ½ N2 exchanges.

 For partially-sorted arrays, insertion

sort runs in linear time.

Data Structure: Lectures Note 2015 Prepared by: Dr. Mamoun Nawahdah

111

Shell sort

Idea: Move entries more than one position at a time by h-sorting the array.

an h-sorted array is h interleaved sorted subsequences:

Shell sort: [Shell 1959] h-sort array for decreasing sequence of values of h.

How to h-sort an array? Insertion sort, with stride length h.

Shell sort example: increments 7, 3, 1

Shell sort: which increment sequence to use?

Data Structure: Lectures Note 2015 Prepared by: Dr. Mamoun Nawahdah

112

 Powers of two: 1, 2, 4, 8, 16, 32, ... No

 Powers of two minus one: 1, 3, 7, 15, 31, 63, … Maybe

 3x + 1: 1, 4, 13, 40, 121, 364, … OK. Easy to compute

Java implementation

Analysis

 The worst-case number of compares used by shell sort with the 3x+1 increments is O(N3/2).

Data Structure: Lectures Note 2015 Prepared by: Dr. Mamoun Nawahdah

113

Mergesort
 Divide array into two halves.

 Recursively sort each half.

 Merge two halves.

Java implementation:

Merging:

Data Structure: Lectures Note 2015 Prepared by: Dr. Mamoun Nawahdah

114

Java implementation:
Mergesort:

Mergesort: trace

Mergesort: empirical analysis

 Good algorithms are better than supercomputers.

Data Structure: Lectures Note 2015 Prepared by: Dr. Mamoun Nawahdah

115

Divide-and-conquer recurrence: number of compares

Mergesort analysis: memory (array accesses)

 Mergesort uses extra space proportional to N.

 The array aux[] needs to be of size N for the last merge.

Mergesort: practical improvements

 Use insertion sort for small subarrays.
o Mergesort has too much overhead for tiny subarrays.
o Cutoff to insertion sort for ≈ 7 items.

 Stop if already sorted.
o Is biggest item in first half ≤ smallest item in second half?
o Helps for partially-ordered arrays.

Data Structure: Lectures Note 2015 Prepared by: Dr. Mamoun Nawahdah

116

 Eliminate the copy to the auxiliary array. Save time (but not space) by switching the role of the input
and auxiliary array in each recursive call.

Complexity of sorting

・ Compares? Mergesort is optimal with respect to number compares.

・ Space? Mergesort is not optimal with respect to space usage.

Data Structure: Lectures Note 2015 Prepared by: Dr. Mamoun Nawahdah

117

Bottom-up Mergesort
Basic plan:

o Pass through array, merging subarrays of size 1.
o Repeat for subarrays of size 2, 4, 8, 16,

Java implementation

Data Structure: Lectures Note 2015 Prepared by: Dr. Mamoun Nawahdah

118

(Lecture 28) Sorting II

Quicksort
Basic plan:

o Shuffle the array. (shuffle needed for performance guarantee)
o Partition so that, for some j

– entry a[j] is in place
– no larger entry to the left of j
– no smaller entry to the right of j

o Sort each piece recursively.

Quicksort t-shirt

Quicksort partitioning demo

Repeat until i and j pointers cross.

・ Scan i from left to right so long as (a[i] < a[lo]).

・ Scan j from right to left so long as (a[j] > a[lo]).

・ Exchange a[i] with a[j] .

When pointers (i and j)cross.

・ Exchange a[lo] with a[j] .

Data Structure: Lectures Note 2015 Prepared by: Dr. Mamoun Nawahdah

119

Quicksort: Java code for partitioning

Data Structure: Lectures Note 2015 Prepared by: Dr. Mamoun Nawahdah

120

Quicksort trace

Quicksort: empirical analysis

Quicksort: Compare analysis

Best case: Number of compares is ~ N lg N

Data Structure: Lectures Note 2015 Prepared by: Dr. Mamoun Nawahdah

121

Worst case: Number of compares is ~ ½ N2

Average-case analysis: complicated 2N ln N

Quicksort: summary of performance characteristics

Worst case: Number of compares is quadratic.

・ N + (N - 1) + (N - 2) + … + 1 ~ ½ N2

・ but this rarely to happen.
Average case: Number of compares is ~ 1.39 N lg N

・ 39% more compares than Mergesort

・ But faster than Mergesort in practice because of less data movement.
Random shuffle

・ Probabilistic guarantee against worst case.
Quicksort is an in-place sorting algorithm.
Quicksort is not stable.

Data Structure: Lectures Note 2015 Prepared by: Dr. Mamoun Nawahdah

122

Quicksort: practical improvements
1- Insertion sort small subarrays:

・ Even quicksort has too much overhead for tiny subarrays.

・ Cutoff to insertion sort for ≈ 10 items.

・ Note: could delay insertion sort until one pass at end.

2- Median of sample:

・ Best choice of pivot item = median.

・ Estimate true median by taking median of sample.

