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(Lecture 3) What is an Algorithm? 

Definition:  

 An algorithm is a way of solving WELL-SPECIFIED computational problems. Cormen et al. 

 A finite set of rules that give a sequence of operations for solving a specific type of problem  - Knuth 

 Algorithm is a finite list of well-defined instructions for accomplishing some task that, given an initial 

state, will terminate in a defined end-state. 

Euclid’s Algorithm   (300BC) 

 Used to find Greatest common divisor (GCD) of two positive integers. 

 GCD of two numbers, the largest number that divides both of them without leaving a remainder. 

Euclid’s Algorithm: 

o Consider two positive integers ‘m’ and ‘n’, such that  m>n 

o Step1: Divide m by n, and let the reminder be r. 

o Step2: if r=0, the algorithm ends, n is the GCD. 

o Step3: Set, mn, nr , go back to step 1 . 

Implement this iteratively and recursively 

Why Algorithms? 

o Gives an idea (estimate) of running time. 

o Help us decide on hardware requirements. 

o What is feasible vs. what is impossible. 

o Improvement is a never ending process. 

Correctness of an Algorithm 

Must be proved (mathematically) 

Step1: statement to be proven. 

Step2: List all assumptions. 

Step3: Chain of reasoning from assumptions to the statement. 

Another way is to check for incorrectness of an algorithm. 

Step1: give a set of data for which the algorithm does not work. 

Step2: usually consider small data sets. 

Step3: Especially consider borderline cases. 
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Analysis of Algorithms 

Once an algorithm is given for a problem and decided (somehow) to be correct, an important step is to 

determine how much in the way of resources, such as time or space, the algorithm will require. 

 Space Complexity   memory and storage is very cheap nowadays.  

 Time Complexity     Different platforms  different time. Absolute time is hard to measure as it 

depends on many factors. 

Example: moving between university buildings: it depends on who are walking, which way he/she use, etc. 

time is not good measurement. Number of steps is a better one.  

Example: 

• Consider the problem of summing    

Come up with an algorithm to solve this problem.  

 

Counting Basic Operations 

• A basic operation of an algorithm is the most significant contributor to its total time requirement. 
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(Lecture 4)  Analysis of Algorithms 

 Space Complexity   

 Time Complexity      

How to calculate the time complexity? 

 Measure execution time.  Algorithm for small data size will take small time comparing to a large data.  

 Calculate time required for an algorithm in terms of the size of input data.  Does not work as the 

same algorithm over the same data will not take the same time. 

Run summing code 2 times and compare time 

 Determine order of growth of an algorithm with respect to the size of input data.  

Order of time or growth of time 

Go back to summing result 

 

In term of time complexity, we say that algorithm C is better than A and B 

Types of Time Complexity 

 Worst case analysis   

 Best case analysis        

 Average case analysis    too complex (statistical methods) 

RAM model of computation 

We assume that: 

 We have infinite memory 

 Each operation (+,-,*,/,=) takes 1 unit of time 

 Each memory access takes 1 unit of time 

 All data is in the RAM 

  

Linear 
growth 

Quadratic 
growth 

Constant 
growth 
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Bubble sort  

 

 Rules: 

o You can only pick one ball at a time. 

o Before picking up another ball, you have to drop the existing ball-in hand, in an empty basket. 

o You have to start from the left most basket and arrange the balls moving towards the right. 

o You can use a stick to keep track of the sorted part. 

Make a demo using the following data set 

12 8 7 5 2 
 

 

After 1st round: 

 

After 2nd round: 

 

For whole sorting algorithm:    16+12+8+4     for a data size of 5 elements 

= 4 (4  + 3 + 2 + 1)     =  4 (n-1  + n-2 + …. + 2 + 1)  =  4 (n-1*n/2) =  

2 * n * (n-1)   pn2 + qn + r   p, q, and r are some constant. 

  

Worst case 

analysis 
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Implement and test effectiveness of bubble sort algorithm 

 

 

The Big O notation 

Assume the order of time of an algorithm is a quadratic time as displayed in the graph. Our job is to find an 

upper bond for this function T(n).  Consider a function c1n2  never over take T(n) 

C2n2 such that its greater than T(n) for n>n0  . in this case we say that C2n2   is an upper bond of T(n) 

But we can come up with many functions satisfy this condition. We need to be precise. 

 

Big Oh O(n2) :   f(n): there exist positive constants c and n0   such that   0<= f(n) <= cn2   for all  n >= n0 

In general  

O(g(n)) :  f(n): there exist positive constants c and n0   such that   0<= f(n) <= cg(n)   for all  n >= n0 

Example 1: 

5n2 + 6       O(n2)   ???     
Find    cn2          c=6  and n0=3 

     c=5.1  n0=8 
 
Example 2: 

5n + 6       O(n2)   ???    
Find    cn2          c=11  and n0=1 
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Example 3: 

n3 + 2n2 + 4n + 8       O(n2)   ???    
Find    cn2     >=  n3 + 2n2 + 4n + 8 ???    
 

 

 

What does it mean? 

Array element access:   

Array element search:  

Bubble sort algorithm:  
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(Lecture 5) Asymptotic Analysis 

Asymptotic analysis measures the efficiency of an algorithm as the input size becomes large.  

It is actually an estimation technique. However, asymptotic analysis has proved useful to computer scientists who 

must determine if a particular algorithm is worth considering for implementation. 

 The critical resource for a program is -most often- running time. 

 The growth rate for an algorithm is the rate at which the cost of the algorithm grows as the size of its 

input grows. 

o cn (for c any positive constant)  linear growth rate or running time. 

o n2
   quadratic growth rate 

o 2n
  exponential growth rate. 

Worst case? The advantage to analyzing the worst case is that you know for certain that the algorithm must 

perform at least that well. 

Example: 

Assume : Algorithm A: time = 15n+93 

  Algorithm B: time = 2n2+1    which is faster? 

Graph using Excel 

 

The “break-even point” 

We are interested for large n 

* for sufficiently large n, algorithm A is faster 

* in the long run constants do not mater. 

Upper bound for the growth of the algorithm’s running time. It indicates the upper or highest growth rate 

that the algorithm can have.    big-O notation.  

For T(n) a non-negatively valued function, T(n) is in set O(f(n)) if there exist two positive 

constants c and n0 such that T(n) ≤ cf(n)  for all n > n0. 
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* Prove that  15n+93 is O(n) 

We must show +ve c and n0 such that 15n+93 <= cn for  n >= n0  

<provided n= 93>       15n+n    16n <= cn     <provided c = 16> 

So  for c=16   and n0 = 93        // proved 

Graph using Excel 

Prove that 2n2+1 = O(n2) 

Must show +ve c, n0 such that 2n2+1 <= cn2  for n >= n0 

2n2+1     <provided n=1> 

2n2+ n2      3n2    <provided c=3>  

2n2+1  <=  3n2 

So,   c=3 ,  n0=1    // proved 

Graph using Excel 

 

The lower bound for an algorithm is denoted by the symbol Ω, pronounced “big-Omega” or just “Omega.” 

For T(n) a non-negatively valued function, T(n) is in set Ω(g(n)) if there exist two positive constants c 

and n0 such that T(n) ≥ cg(n)  for all n > n0. 

* prove that 15n+93 is Ω(n) 

We must show +ve c and n0 such that 15n+93 >= cn for  n >= n0  

<because 93 is +ve>      >= cn        <provided c=15>       so any n0 >0 will do     

So c=15, n0=1   // proved 

Graph using Excel 

* prove that 2n2+1 is Ω(n2) 

must show +ve c and n0 such that 2n2+1 >= cn2 for  n >= n0  

<because 1 is +ve> 

So c=2, n0=1   // proved 

Graph using Excel 
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When the upper and lower bounds are the same within a constant factor, we indicate this by using 

Θ (big-Theta) notation.  

T(n) = Θ(g(n))  iff   T(n) = O(g(n))     and  T(n) = Ω (g(n)) 

Example:  Because the sequential search algorithm is both in O(n) and in Ω(n) in the average case, 

we say it is Θ(n) in the average case. 

Examples: 

 

 

Simplifying Rules 

 

 Rule (2) is that you can ignore any multiplicative constants. 

 Rule (3) says that given two parts of a program run in sequence, you need consider only the more 

expensive part.  

 Rule (4) is used to analyze simple loops in programs.  

Taking the first three rules collectively, you can ignore all constants and all lower-order terms to determine 

the asymptotic growth rate for any cost function. 
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Order of growth of some common functions 

O(1) ≤ O(log2n) ≤ O(n) ≤ O(n log2n) ≤ O(n2) ≤ O(n3) ≤ O(2n) 

 

If the problem size is always small, you can probably ignore an algorithm’s efficiency 

Limitations of big-oh analysis 

 Overestimate. 

 Analysis assumes infinite memory. 

 Not appropriate for small amounts of input. 

 The constant implied by the Big-Oh may be too large to be practical   (2N log N    vs.    1000N) 
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 (Lecture 6) Analyzing algorithm examples 

General Rules of analyzing algorithm code: 

Rule 1—for loops. 

The running time of a for loop is at most the running time of the statements inside the for loop 

(including tests) times the number of iterations. 

Rule 2 — Nested loops. 

Analyze these inside out. The total running time of a statement inside a group of nested loops 

is the running time of the statement multiplied by the product of the sizes of all the loops. 

Rule 3—Consecutive Statements. 

These just add (which means that the maximum is the one that counts; 

Rule 4 —if/else. 

if( condition ) 

      S1 

else 

       S2 

The running time of an if/else statement is never more than the running time of the test plus 

the larger of the running times of S1 and S2. 

Rule 5 —methods call. 

If there are method calls, these must be analyzed first. 

Sorting Algorithm 

1- Bubble Sort (revision)   O(n2) 
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2- Selection Sort (revision)    O(n2)   : named selection because every time we select the smallest item. 

 

3- Insertion sort:  

 

Example:                                                              

Pseudo code:                                        
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O(n2) sorting algorithms comparison :   

(run demo @ http://www.sorting-algorithms.com/ ) 

 

Merge sort :  recursive algorithm 

Merge: take 2 sorted arrays and merge them together into one. 

Example:   merge method              

Example: merge sort                    
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Pseudo code:                             

 

Make sure of array boundaries  

H.W:  implement merge sort your own 

Searching elements in an array: 

Case 1: unordered array:                   
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Case 2: ordered array:   -Binary search-        

   

Inserting and deleting items from ordered array 
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(Lecture 7) Linked List 

Algorithm - abstract way to perform computation tasks 

Data Structure - abstract way to organize information 

 

Linked List:        

Node:                

 Node code: 

public class Node<T> { 
 private T data; 
 private Node<T> nextNode; 
  
 public Node(T data) { this.data = data;  } 
  
 public void setData(T data) {  this.data = data;  }  
 public T getData() {  return data;  } 
  
 public Node<T> getNextNode() {  return nextNode;  }  
 public void setNextNode(Node<T> nextNode) {   this.nextNode = nextNode;  }   
} 

 

Linked List Code: 

public class LinkedList<T> { 
 private Node<T> head; 
} 
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Inserting a new node: 

 
 

Connect Head  new node ??   we lose pointer to linked list 
Order of connecting the node is very important 

 
 

Insert code: 
public void addAtStart(T data) { 

  Node<T> newNode = new Node<T>(data); 
  newNode.setNextNode(this.head);    // step 1 
  this.head = newNode;   // step 2 
 } 

 
Create a driver class to test linked list classes. 

Override the toString methods first 
 

What’s the time complexity of inserting an item to the head??      O(1) 

 
Node toString: 

@Override 
 public String toString() {  return this.data.toString();  } 

 
LinkedList toString: 

@Override 
 public String toString() { 
  String res = ""; 
  Node<T> curr = this.head; 
  while (curr != null) { 
   res += curr + " "; 
   curr = curr.getNextNode(); 
  } 
  return res + “NULL”; 
 } 
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Length of Linked List? 

Case 1: If it’s empty:   
 
Case 2: If not: Make a pointer and move over all the nodes and maintain a counter  

 
 

Length code:   Time Complexity   O(n) 

public int length() { 
  int length = 0; 
  Node<T> curr = this.head; 
  while (curr != null) { 
   length++; 
   curr = curr.getNextNode(); 
  } 
  return length; 
 } 

 
Deleting the head node: 

 
Simply move the head to the head.nextNode  
Now first Node has no reference to it  Garbage 

Time Complexity    O(1) 

 
Delete at head code:   // make sure linked list is not empty 

public Node<T> deleteAtStart() { 
  Node<T> toDel = this.head; 
  this.head = this.head.getNextNode(); 
  return toDel; 
 } 
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Searching for an Item in a Linked List: 

 
 

Time Complexity: linear growth   O(n) 
Find code: 

public Node<T> find(T data) { 
  Node<T> curr = this.head; 
  while (curr != null) { 
   if (curr.getData() == data)    //  if (curr.getData().equals(data))  
    return curr; 
   curr = curr.getNextNode(); 
  } 
  return null; 
 } 

 
 

How to use Java generics??  (Optional) 
Provided by java, to be able to parameterize the Node and Linked List objects.  
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Doubly Ended Linked List: 

 
 
We have two pointers: one at head and one at tail 
Therefore, we can add and delete at both ends. 
 

Doubly Ended list code: 
public class DoubleEndedList<T> extends LinkedList<T> { 
 private Node<T> tail; 
  
 public Node<T> getTail() {   return this.tail;   } 
  
 public void addAtEnd(T data) { 
  Node<T> newNode = new Node<T>(data); 
   if (this.head == null) {  // empty 
               this.head = newNode; 
               this.tail = newNode; 
          } 

else { 
   this.tail.setNextNode(newNode); 
   this.tail = newNode; 
  } 
 }   
} 

 

Make sure to override addAtStart to set the tail pointer correctly: 

 
     

    @Override 
    public void addAtStart(T data) { 
        Node<T> newNode = new Node<T>(data); 
        if (this.head == null) {  // empty 
            this.head = newNode; 
            this.tail = newNode; 
        } 
        else{ 
            newNode.setNextNode(this.head); 
            this.head = newNode; 
        } 
    } 
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Inserting new Node to a sorted linked list: 

Case 1: empty linked list:  in this case we added as first element.   
 

Case 2: adding first to a sorted linked list:        
 
Case 3:  adding in the middle in a sorted linked list: 

 
 

 
 
However we can access the next node from the current node.  

   
 

Time Complexity   O(n) 

H.W.    implement insert into a sorted linked list 
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(Lecture 8) Doubly Linked List 

 

Node:                                                          
 

Doubly Linked List:    
 

Doubly Node Code: 
public class DNode { 
 private int data; 
 private DNode nextNode; 
 private DNode prevNode; 
 
 public DNode(int data) { this.data = data; }  
 public int getData() { return data;  }   
 public DNode getNextNode() { return nextNode; } 
              public DNode getPrevNode() { return prevNode; } 
  
 public void setNextNode(DNode nextNode) {   this.nextNode = nextNode; }  
 public void setPrevNode(DNode prevNode) {   this.prevNode = prevNode; } 
   
 @Override 
 public String toString() { return this.data+””; } 
} 

 
Doubly Linked List code:  

public class DLinkedList {  
 private DNode head; 
} 
 



Data Structure: Lectures Note                          2015                                   Prepared by:  Dr. Mamoun Nawahdah 

26 
 

Insert a new node at head:                        
Insert at head code: 

public void insertAtHead(int data) { 
  DNode newNode = new DNode(data); 
  newNode.setNextNode(this.head); 
  if (this.head != null)                            // make sure it’s not empty 
   this.head.setPrevNode(newNode); 
  this.head = newNode; 
 } 

 

Length of a doubly linked list code: 
public int length() { 

  int length = 0; 
  DNode curr = this.head; 
  while (curr != null) { 
   length++; 
   curr = curr.getNextNode(); 
  } 
  return length; 
 } 

Override toString method code: 
@Override 

 public String toString() { 
  StringBuilder sb = new StringBuilder(“head ->”); 
  DNode n = this.head; 
  while (n != null) { 
   sb.append(“[“+n+”]”);    
   n = n.getNextNode(); 
   if(n!=null)   
    sb.append(“<=>”); 
  } 
  sb.append(“->NULL”); 
  return sb.toString(); 
 } 
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Student Activity:  insert at last 

public void insertAtEnd(int data) { 
  DNode newNode = new DNode(data);   
  if (this.head == null)       

this.head = newNode; 
  else  {                                                // find last node 
   DNode last = head; 
   while(last.nextNode != null)   last = last.nextNode; 
   last.nextNode = newNode; 
   newNode.prevNode = last; 
  } 
  } 

 

Insertion Sort using doubly linked list: 

Review insertion sort logic and point to problem of insertion and time needed to shift the items  
Worst case if the array is reverse sorted 

 
Example: assume we need to sort the following doubly linked list: 
 

 
 

Assumption: 1st node is sorted. We start from the 2nd element: 
 

 
Here:  

 The black pointer points to the current node to be sorted. 

 The red pointer points to previous node of current node to be sorted. 

 The green pointer points to next node of current node to be sorted. 
 

Step 1: The red pointer keeps move backward until it reaches a node which has a value smaller than the 

current node or reach NULL. 

Step 2: the current item will be inserted after red pointer as follow: 
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Make sure you maintain references correctly. 
To do so draw the expected outcome and follow the steps to change the pointers: 

 

Initial state:    

Final state:        
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Case 1:  insert to head 

Step 2.0:    make new green pointer =  black.nextNode 

Step 2.1:       black.prevNode.nextNode = green 

 

Step 2.2:     

if (green != null)  green.prevNode = black.prevNode 

 

Step 2.3:    black.prevNode = red 

 

Step 2.4:       
if(red==null)  black.nextNode = black.nextNode.prevNode 
else                       black.nextNode =  red.nextNode 
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Step 2.5:       
If (red == null)  black.nextNode.prevNode = black 
else                        red.NextNode. PrevNode = black   

 
 
Step 2.6:  

if (red == NULL )    head = black 

else                              red.setNextNode = black;   

 

 
 

Step 2.7:  black = green 

 
Case 2:  insert 4 in the middle   

Practice yourself 
 
Case 3:  insert last element   
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Insertion Sort Code: 

public void sort() { 
  DNode black = this.head; 
  while (black != null) {   
   DNode red = black.getPrevNode(); 
   while (red != null && (red.getData() > black.getData())) { 
    red = red.getPrevNode(); 
   }    
   DNode green = black.getNextNode();   // step 2.0 
   if (red != null || (head != black)) { 
    black.getPrevNode().setNextNode(green);    // step 2.1 
    if (green!= null) {  
     green.setPrevNode(black.getPrevNode());  // step 2.2 
    } 
    black.setPrevNode(red);   // step 2.3 
   } 
   if (red == null) {    // set the black as head 
    if (head != black) { 
     black.setNextNode(this.head);   // step 2.4 
     black.getNextNode().setPrevNode(black);  // step 2.5 
     head = black;  // step 2.6 
    } 
   } else {   // red is not null 
    black.setNextNode(red.getNextNode());  // step 2.4 
    red.getNextNode().setPrevNode(black);  // step 2.5 
    red.setNextNode(black);  // step 2.6 
   } 
   black = green; 
  } 
 } 
 
Circular Double Linked List: 
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(Lecture 9) Analyzing the Complexity of Merge Sort 

 

 

In Place vs. Not in Place Sorting 
In place sorting algorithms are those, in which we sort the data array, without using any additional 

memory. 

What about selection, bubble, insertion algorithms? 

Well, our implementation of these algorithms is IN PLACE. The thing is, if we use a constant amount of extra 

memory (like one temporary variable/s), the sorting is In-Place.  

But in case extra memory (merging sort), which is proportional to the input data size, is used, then it is 

NOT IN PLACE sorting. 
But because memory these days is so cheap, that we usually don't bother about using extra memory, if it 

makes the program run faster. 

Stable vs. Unstable Sort 
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Example: Insertion Sort Code: 

             

Example: 

 

 

 

O(n2)   selection sort, bubble sort, insertion sort  

O(n log n)  merge sort 

O(n)   (Sorting in linear time) ?? 

 

If we know some information about data to be sorted (e.g. students’ marks  -Range 50 to 99 –), we can 

achieve linear time sorting 
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Counting Sort: 

Example: assume data range from 1 to 10 

 

Time analysis: 

 

Note: K is typically small comparing to n 

Bad Situation:  what if K is larger than n ?? 

 

Is counting sort is In-Place or Not-In-Place ??   why? 
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Radix Sort: 

What is Radix? The radix or base is the number of unique digits, including zero, used to represent numbers 

in a positional numeral system. 

For example, for the decimal system:  radix is 10  ,    Binary system:  radix is 2 

Example Radix Sort: 

Step 1: take the least significant digits of the values to be sorted. 

Step 2: sort the list of elements based on that digit 

Step 3: take the 2nd least significant digits and repeat step 2 

Then the 3rd LSD and so on 

 

How to implement Radix Sort:   

Radix Sort Algorithm using linked list:  

Consider the following array  

9  179 139 38 10 5 36 

 

Create an array of linked lists as follow: 

 Total of 10 linked lists 

 0 to 9 refer to actual numbers 

 With input numbers, we will start with mod 10 then divide the resulted 
number by 1 

Code: 

 m=10    mod operation 

 n=1;    find the specific digit at that column 
e.g.      Arr[0] = 9 
           9 % m = 9 
                                    9 / n = 9 

0 

1 

2 

3 

4 

5 

6 

7 

8 

9 
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 If we reaches the end of array. 

 Make a new array by removing data from the head of each linked 

list in order. 

 

 

 

Result:   

10  5 36 38 9 179 139 

Is this sorted? 

Next step: consider the 2nd significant digit from the previous resulted array: 

Code: 

m = m * 10 = 100 

n = n * 10 =  10 

 

e.g.  Arr[0] = 10 

10 % m = 10 

                         10 / n = 1 

 

 

Result:   

5 9 10 36 38 139 179 

Is this sorted? Yes in this case but we are not done yet 

Next step: consider the 3rd significant digit from the previous array: 

Code: 

m = m * 10 = 1000 

n = n * 10 = 100 

e.g. Arr[0] = 5 

5 % m = 5 

                      5 / n = 0 

 

Result:   

5 9 10 36 38 139 179 

Is this sorted? What is the time complexity 

HW: implement Radix sort using Doubly Linked List 

0 |  10 

1 

2 

3 

4 

5 |  5 

6 |  6 

7 

8 | 38 

9 | 9  179 139 

0 |  5  9 

1 |  10 

2 |  

3 |  36  38  139 

4 |  

5 |   

6 |   

7 |  179 

8 |   

9 |   

0 |  5  9  10  36  38 

1 |  139  179 

2 |  

3 |   

4 |  

5 |   
: 
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(Lecture 10) Stacks 1 

stack is an abstract data type that serves as a collection of elements, with two principal operations:  

 push adds an element to the collection;  

 pop removes the last element that was added. 

 
• Last In, First Out  LIFO 

 
 

Linked Implementation:    

Each of the following operation involves top of stack 

  push 

  pop 

  peek 

Head or Tail for topNode?? 

Head of linked list easiest, fastest to access  Let this be the top of the stack 
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 public class LinkedStack<T> { 

 private Node<T> topNode;  
 public void push(T data) { 
  Node<T> newNode = new Node<T>(data); 
  newNode.setNextNode(topNode); 
  topNode = newNode; 
 } 
 public Node<T> pop() { 
  Node<T> toDel = topNode; 
  assert topNode!=null : "Empty Stack" ; 
  topNode = topNode.getNextNode(); 
  return toDel; 
 } 
  
 public Node<T> peek() {   return topNode;    } 
 public int length() { 
  int length = 0; 
  Node<T> curr = topNode; 
  while (curr != null) { 
   length++; 
   curr = curr.getNextNode(); 
  } 
  return length; 
 } 
 public boolean isEmpty() {    return (topNode == null);    } 
 public  void clear {    topNode == null;    } 
} 

 

Array-Based Implementation 

• End of the array easiest to access 

 Let this be top of stack 

 Let first entry be bottom of stack 

 
H.W. implement array based stack 
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Balanced Expressions 

Delimiters paired correctly   compilers  

Example 1:  The contents of a stack during the scan of an expression that contains the balanced delimiters 

{ [ ( ) ] } 

 
Example 2: The contents of a stack during the scan of an expression that contains the unbalanced delimiters 

{ [ ( ] ) } 

 
Example 3: The contents of a stack during the scan of an expression that contains the unbalanced delimiters 

[ ( ) ] } 

 
Example 4: The contents of a stack during the scan of an expression that contains the unbalanced delimiters 

{ [ ( ) ] 
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Algorithm to process for balanced expression: 

 

 
H.W. implement check balance algorithm using linked/array stacks 

Generic stack: array implementation 
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(Lecture 11) Stacks 2 

Processing Algebraic Expressions 

• Infix: each binary operator appears between its operands  a + b  

• Prefix: each binary operator appears before its operands    + a b  

• Postfix: each binary operator appears after its operands   a b +  

 

Arithmetic expression evaluation 

Evaluate infix expressions. 

 

 
 

 

 
 

Example: 
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Infix to Postfix 

Infix-to-postfix Conversion: 

 
 

Example 1: Converting the infix expression a + b * c to postfix form 
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Example 2: Converting an infix expression to postfix form: a - b + c 

 

 
 

Example 3: Converting an infix expression to postfix form: a ^ b ^ c 

 
 

Example 4: The steps in converting the infix expression a / b * (c + (d - e)) to postfix form 
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Infix-to-postfix Algorithm 
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H.W. example:    

Evaluating Postfix Expressions 

 When an operand is seen, it is pushed onto a stack.  

 When an operator is seen, the appropriate numbers of operands are popped from the stack, the 

operator is evaluated, and the result is pushed back onto the stack.  

o Note that the 1st item popped becomes the rhs parameter to the binary operator and that the 

2nd item popped is the lhs parameter; thus parameters are popped in reverse order. For 

multiplication, the order does not matter, but for subtraction and division, it does. 

 When the complete postfix expression is evaluated, the result should be a single item on the stack that 

represents the answer. 

Example 1: The stack during the evaluation of the postfix expression a b /   when a is 2 and b is 4 

 
 

Example 2: The stack during the evaluation of the postfix expression a b + c / when a is 2, b is 4, and c is 3 
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Algorithm for evaluating postfix expressions. 

 
 

H.W. Example:     
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Iteration (optional) 

 Design challenge. Support iteration over stack items by client, without revealing the internal 

representation of the stack.  

 Java solution. Make stack implement the java.lang.Iterable interface. 
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(Lecture 12) Queues 

 

 

 

 

 
 

Linked-list Representation of a Queue 

Maintain pointer to first (head) and last (tail) nodes in a linked list;  

insert/remove from opposite ends. 

 
Delete  dequeue: 

  
Add enqueue:  

   

First 
Front 

Last 
Back 
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Data Structure: Lectures Note                          2015                                   Prepared by:  Dr. Mamoun Nawahdah 

50 
 

Array implementation of a Queue. 

 

・ enqueue(): add new item at q[tail] . 

・ dequeue(): remove item from q[head] . 

enqueue(8) 

 

enqueue (12) 

 

After a number of enqueues: 

 

dequeue(): returns the item pointed by head and advances head pointer 

 

 

Front 
Back 
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enqueue (27) ??  how to advance tail?? We have space at the beginning?? Shift?? 

 

How to find free spaces?? 

-1 

So, if tail at max index and we have free spaces, we move tail to 1st index.   Circular Queue 

 

enqueue (9) ?? 

 

Circular Queue 
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• To detect queue-full and queue-empty conditions 

– Keep a count of the queue items 

• To initialize the queue, set 

– front to -1 

– back to  -1 

– count to 0 

Inserting into a queue 

If(count < MAX_QUEUE)  // free 

  back = (back+1) % MAX_QUEUE; 

items[back] = newItem; 

++count; 

If(count==1) // first item 

 front = back; 

Deleting from a queue 

 If(count > 0) // not empty 

front = (front+1) % MAX_QUEUE; 

--count; 

   If(count==0)  // empty 

    front = back = -1 
 

DE Queue  (Double Ended Queue) 

Allows add / remove elements from both head/tail. 

HW This of implementations using linked List and Arrays.  
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(Lecture 13) Cursor Implementation of Linked Lists 
 

Many Languages do not support pointers.  

If data max length is known, using Array is faster 

Solution  Cursor Implementation  

2 features present in a pointer implementation of linked lists: 

 The data are stored in array, each array element contains data and a pointer to the next structure. 

 A new structure can be obtained from the system’s global memory by a call to malloc and released by 

a call to free.  

 

 

 

To Be Completed 
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(Lecture 14) Trees 

 

 

 

Tree 

 
 A tree is a collection of N nodes, one of which is the root, and N − 1 edges. 

 Every node except the root has one parent.            

 Nodes with no children are known as leaves. 

 An internal node (parent) is any node that has at least one non-empty child. 

 Nodes with the same parent are siblings. 

 The depth of a node in a tree is the length of the path from the root to the node. 

 The height of a tree is the number of levels in the tree. 
 

Example: Family Trees (one parent) 

Example: file system tree 
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Binary Trees 

 

 A binary tree is a tree in which no node can have more than two children. 

        Binary Tree Node:   

 

 Each node in a full binary tree is either:  

(1) an internal node with exactly two non-empty children or  

(2) a leaf.  

 A complete binary tree has a restricted shape obtained by starting at the root and filling the tree by 

levels from left to right. 

 

 
 

 The max. number of nodes in a full binary tree as a function of the tree’s height = 2h-1 
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Implementation:  

public class TreeNode { 

 private Integer data; 
 private TreeNode leftChild; 
 private TreeNode rightChild; 
 public TreeNode(Integer data)   {   this.data = data;    } 
 public Integer getData()    {    return data;     }   
 public TreeNode getLeftChild()   {    return leftChild;    }  
 public void setLeftChild(TreeNode left)  {    this.leftChild = left;    }  
 public TreeNode getRightChild()   {    return rightChild;   } 
 public void setRightChild(TreeNode right)  {  this.rightChild = right;} 
} 

public class BinaryTree { 

private TreeNode root; 

public void insert(Integer data)  {   } 
public TreeNode find(Integer data)  {      return null;   } 
public void delete(Integer data)  {   } 

} 
 

Tree Traversal  
Definition: visit, or process, each data item exactly once. 

In-Order Traversal:  

             
 

@ TreeNode 

public void traverseInOrder() { 
  if (this.leftChild != null) 
   this.leftChild.traverseInOrder(); 
  System.out.print(this + " "); 
  if (this.rightChild != null) 
   this.rightChild.traverseInOrder(); 
 } 

@BinarySerachTree 
public void traverseInOrder() { 

  if (this.root != null) 
   this.root.traverseInOrder(); 
  System.out.println(); 
 } 
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Pre-Order Traversal  

          
 
 

Post-Order Traversal  

           
 

 

 

Level-Order Traversal    (Optional) 

 Begin at root and visit nodes one level at a time 

 Level-order traversal is implemented via a queue.  

 The traversal is a breadth-first search. 

 

HW: implement level-order traversal 
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(Lecture 15) Expression Trees 

 

 The leaves of an expression tree are operands, such as constants or variable names, and the other 

nodes contain operators. 

 It is also possible for a node to have only one child, as is the case with the unary minus operator. 

 We can evaluate an expression tree by applying the operator at the root to the values obtained by 

recursively evaluating the left and right subtrees. 

Algebraic expressions: 

 Algebraic expression trees represent expressions that contain numbers, variables, and unary and 

binary operators.  

 Some of the common operators are × (multiplication), ÷ (division), + (addition), − (subtraction), ^ 

(exponentiation), and - (negation). 

Example:   ((5 + z) / -8) * (4 ^ 2) 

 

 

 

 

 

Boolean expressions: 

 Boolean expressions are represented very similarly to 

algebraic expressions, the only difference being the specific 

values and operators used.  

 Boolean expressions use true and false as constant values, 

and the operators include  ʌ  (AND),  V  (OR), ~ (NOT). 
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Algorithm for evaluation of an expression tree: 

 

Constructing an expression tree: 

The construction of the expression tree takes place by reading the postfix expression one symbol at a time:  

 If the symbol is an operand, one-node tree is created and a pointer is pushed onto a stack.  

 If the symbol is an operator,  

o Two pointers trees T1 and T2 are popped from the stack  

o A new tree whose root is the operator and whose left and right children point to T2 and T1 

respectively is formed . 

o A pointer to this new tree is then pushed to the Stack. 

 

Example:    (  a b + c d e + * *  ) 
 Since the first two symbols are operands, one-node trees are created and pointers are pushed to them 

onto a stack.  

 

 The next symbol is a '+'. It pops two pointers, a new tree is formed, and a pointer to it is pushed onto 

to the stack. 
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 Next, c, d, and e are read. A one-node tree is created for each and a pointer to the corresponding tree 

is pushed onto the stack. 

 

 Continuing, a '+' is read, and it merges the last two trees. 

 

 Now, a '*' is read. The last two tree pointers are popped and a new tree is formed with a '*' as the root. 

 

 Finally, the last symbol is read. The two trees are merged and a pointer to the final tree remains on the 

stack. 
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 (Lecture 16) Binary Search Trees BST 

                      

 In a binary search tree for every node , X, in the tree, the values of all the items in its left subtree are 

smaller than the item in X, and the values of all the items in its right subtree are larger (or equal) than 

the item in X.   

 
 

Search for an item:       Find(52)       ,          Find(39)         ,    Find(35)          

 

@ TreeNode 

public TreeNode find(Integer data) { 
  if (this.data == data) 
   return this; 
  if (data < this.data && leftChild != null) 
   return leftChild.find(data); 
  if (rightChild != null) 
   return rightChild.find(data); 
  return null; 
 } 
  

@BinarySerachTree 

public TreeNode find(Integer data) { 
  if (root != null) 
   return root.find(data); 
  return null; 
 } 
 

Efficiency of a search:  Searching a binary search tree of height h is O(h) 

To make searching a binary search tree as efficient as possible …  Tree must be as short as possible. 
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Finding Max and Min Values 
 

 
 

 The find Min operation is performed by following left nodes as long as there is a left child.  

 The find Max operation is similar. 
 

@TreeNode 

public Integer largest() { 
  if (this.rightChild == null) 
   return this.data; 
  return this.rightChild.largest(); 
 } 
 
 public Integer smallest() { 
  if (this.leftChild == null) 
   return this.data; 
  return this.leftChild.smallest(); 
 } 
 
 

@BinarySerachTree 
 public Integer largest() { 
  if (this.root != null) 
   return root.largest(); 
  return null; 
 } 
 
 public Integer smallest() { 
  if (this.root != null) 
   return root.smallest(); 
  return null; 
 } 
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Insert in Binary Search Tree 
Insert(63) 

 
 

@TreeNode 

public void insert(Integer data) { 
  if (data >= this.data) {           // insert in right subtree 
   if (this.rightChild == null) 
    this.rightChild = new TreeNode(data); 
   else 
    this.rightChild.insert(data); 
  } else {        // insert in left subtree 
   if (this.leftChild == null) 
    this.leftChild = new TreeNode(data); 
   else 
    this.leftChild.insert(data); 
  } 
 } 
 

@BinarySerachTree 

 
public void insert(Integer data) { 

  if (root == null) 
   this.root = new TreeNode(data); 
  else 
   root.insert(data); 
 } 
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Deleting a Node 
Case 1: Node to be deleted is a leaf. 
Case 2: Node to be deleted has one child. 
Case 3: Node to be deleted has two children. 

 
@BinarySerachTree 

public void delete(Integer data) { 
  TreeNode current = this.root; 
  TreeNode parent = this.root; 
  boolean isLeftChild = false; 
 
  if (current == null)     return;      // tree is empty 
 
  while (current != null && current.getData() != data) { 
   parent = current; 
   if (data < current.getData()) { 
    current = current.getLeftChild(); 
    isLeftChild = true; 
   } else { 
    current = current.getRightChild(); 
    isLeftChild = false; 
   } 
  } 
  if (current == null)   return;     // node to be deleted not found 
 
  // this is case 1 
  if (current.getLeftChild() == null && current.getRightChild() == null) { 
   if (current == root) {   root = null;  // no elements in tree now 
   } else { 
    if (isLeftChild) 
     parent.setLeftChild(null); 
    else 
     parent.setRightChild(null); 
   } 
  } 

} 
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If a node has one child, it can be removed by having its parent bypass it. 
Note: The root is a special case because it does not have a parent. 

 

@BinarySerachTree 
// This is case 2 broken down further into 2 separate cases 

  else if (current.getRightChild() == null) {       // current has left child 
   if (current == root) { 
    root = current.getLeftChild(); 
   } else if (isLeftChild) { 
    parent.setLeftChild(current.getLeftChild()); 
   } else { 
    parent.setRightChild(current.getLeftChild()); 
   } 
  } else if (current.getLeftChild() == null) {        // current has right child 
   if (current == root) { 
    root = current.getRightChild(); 
   } else if (isLeftChild) { 
    parent.setLeftChild(current.getRightChild()); 
   } else { 
    parent.setRightChild(current.getRightChild()); 
   } 
  } 
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A node with two children is replaced by using the smallest item in the right subtree (Successor). Then 

another node is removed. 

What if 34 has a right child?                     
 

@BinarySerachTree 
// This is case 3 - Most complicated (node to be deleted has 2 children) 

  else { 
   TreeNode successor = getSuccessor(current); 
   if (current == root) 
    root = successor; 
   else if (isLeftChild) { 
    parent.setLeftChild(successor); 
   } else { 
    parent.setRightChild(successor); 
   } 
   successor.setLeftChild(current.getLeftChild()); 
  } 
 
 
 private TreeNode getSuccessor(TreeNode node) { 
  TreeNode parentOfSuccessor = node; 
  TreeNode successor = node; 
  TreeNode current = node.getRightChild(); 
  while (current != null) { 
   parentOfSuccessor = successor; 
   successor = current; 
   current = current.getLeftChild(); 
  } 
  if (successor != node.getRightChild()) { 
   parentOfSuccessor.setLeftChild(successor.getRightChild()); 
   successor.setRightChild(node.getRightChild()); 
  } 
  return successor; 
 } 
 

Soft Delete (lazy deletion): When an element is to be deleted, it is left in the tree and merely marked as 

being deleted. 

 If a deleted item is reinserted, the overhead of allocating a new cell is avoided. 
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Tree Height 
@BinarySerachTree 
public int height() { 

  if (this.root == null) return 0;    
  return this.root.height(); 
 } 

 
@TreeNode 

public int height() { 
  if (isLeaf()) return 1;   
  int left = 0; 
  int right = 0; 
  if (this.leftChild != null) 
   left = this.leftChild.height(); 
  if (this.rightChild != null) 
   right = this.rightChild.height(); 
  return (left > right) ? (left + 1) : (right + 1); 
 } 

 
Efficiency of Operations 
 
• For tree of height h 

 The operations add, remove, and getEntry are O(h) 
• If tree of n nodes has height h = n 

 These operations are O(n) 
• Shortest tree is full 

 Results in these operations being O(log n) 
 

Unbalanced Tree 
 

        
 
• The order in which you add entries to a binary search tree affects the shape of the tree. 
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(Lecture 17, 18) AVL Trees 

• An AVL tree is a BST with the additional balance property that, for any node in the tree, the height of 
the left and right subtrees can differ by at most 1.  

• Complete binary trees are balanced. 
 

Single Rotations 

 
 

Example: After inserting (a) 60; (b) 50; and (c) 20 into an initially empty BST, the tree is not balanced;  
(d) a corresponding AVL tree rotates its nodes to restore balance 

 

 
Example: (a) Adding 80 to the tree does not change the balance of the tree;  

(b) a subsequent addition of 90 makes the tree unbalanced ;  
(c) a left rotation restores its balance 

 

Case 1: Single Right Rotation 

 
Before and after an addition to an AVL subtree that requires a right rotation to maintain its balance. 
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Example: Before and after a right rotation restores balance to an AVL tree 

 

 
 

Case 2: Single Left Rotation  

 
Before and after an addition to an AVL subtree that requires a left rotation to maintain its balance 
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Double Rotations 

A double rotation is accomplished by performing two single rotations: 
1. A rotation about node N’s grandchild G (its child’s child) 
2. A rotation about node N’s new child 

Case 3: Right-Left Double Rotations 

 
Example: (a) Adding 70 destroys tree’s balance; to restore the balance, perform both  

(b) a right rotation and (c) a left rotation 
 

 

 
Before and after an addition to an AVL subtree that requires both  

a right rotation and a left rotation to maintain its balance 
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Case 4: Left-Right Double Rotations 
Example:  

 

 
(a) The AVL tree after additions that maintain its balance;  

(b) after an addition that destroys the balance;  
(c) after a left rotation;  
(d) after a right rotation 
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Before and after an addition to an AVL subtree that requires both  

a left rotation and a right rotation to maintain its balance 
 
 

 
 
 
• Four rotations cover the only four possibilities for the cause of the imbalance at node N 
• The addition occurred at: 

 The left subtree of N’s left child (case 1: right rotation) 
 The right subtree of N’s left child (case 4: left-right rotation) 
 The left subtree of N’s right child (case 3: right-left rotation) 
 The right subtree of N’s right child (case 2: left rotation) 
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An AVL Tree Versus a  BST 

 
Example: The result of adding 60, 50, 20, 80, 90, 70, 55, 10, 40, and 35 to an initially empty  

(a) AVL tree; (b) BST 
 
 

Code Implementation (Optional) 
• The implementation of the method for a single right rotation:  

 
 

• The implementation for a right-left double rotation:  
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• Pseudo-code to rebalance the tree: 

 
 
• Implementation for rebalancing within the class AVLTree: 

 

 
 
 
 
  



Data Structure: Lectures Note                          2015                                   Prepared by:  Dr. Mamoun Nawahdah 

75 
 

• Methods to Add: 

 
 

• AddEntry code:  
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(Lecture 19) 2-3 Trees 

• Definition: general search tree whose interior nodes must have either 2 or 3 children. 

 A 2-node contains one data item s and has two children 

 A 3-node contains two data items, s and l, and has three children 

 

Searching a 2-3 Tree: 

 

Adding Entries to a 2-3 Tree: 

 
Adding (a) 60 and (b) 50; (c), (d) adding 20 causes the 3-node to split 

 

 
The 2-3 tree after adding (a) 80; (b) 90; (c) 70 

 

 
Adding 55 to the 2-3 tree, causes a leaf and then the root to split 
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The 2-3 tree, after adding 10, 40, 35 

Splitting Nodes during Addition 

 Splitting a leaf to accommodate a new entry when the leaf’s parent contains:  

o (a) one entry;  

 
 

o (b) two entries 

 
 

 Splitting an internal node to accommodate a new entry: 

 
 Splitting the root to accommodate a new entry: 
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2-3 tree: performance 

Perfect balance. Every path from root to null link has same length. 

 

Tree height: 

・Worst case: log N. [all 2-nodes] 

・Best case: log3 N ≈ .631 log N. [all 3-nodes] 

・Between 12 and 20 for a million nodes. 

・Between 18 and 30 for a billion nodes. 

 

2-3 tree: implementation? 

Direct implementation is complicated, because: 

・Maintaining multiple node types is cumbersome. 

・Need multiple compares to move down tree. 

・Need to move back up the tree to split 4-nodes. 

・Large number of cases for splitting. 

 

Bottom line. Could do it, but there's a better way. 

HW: 50 60 70 40 30 20 10 80 90 100 

2-4 Trees 
• Sometimes called a 2-3-4 tree 

 General search tree   

 Interior nodes must have either two, three, or four children 

 Leaves occur on the same level 

 A 4-node contains three data items s, m, and l and has four children. 
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Adding Entries to a 2-4 Tree 

 

 
The 2-4 tree, after (a) splitting the root; (b) adding 80; (c) adding 90 

 

Adding 70 

  
The 2-4 tree after adding (a) 55; (b) 10; (c) 40 

 

Adding 5 

 
The 2-4 tree after (a) splitting the leftmost 4-node; (b) adding 35 

 

 

 

Comparing AVL, 2-3, and 2-4 Trees 

 
Three balanced search trees obtained by adding 60, 50, 20, 80, 90, 70, 55, 10, 40, and 35:  

(a) AVL tree; (b) 2-3 tree; (c) 2-4 tree 
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(Lecture 20) Recursion (Time Analysis Revision) 

Example 1: Write a recursive method to calculate the sum of squares of the first n natural numbers. n is to be 

given as an input.  
public int sumOfSquares(int n) { 
   if (n==1)  
         return 1; 

     return   n*n + sumOfSquares(n-1); 
} 

 

Recursion may sometimes be very intuitive and simple, but it may not be the best thing to do. 

Example 2: Fibonacci Sequence: 

 F(n)  =   n  if  n=0,1   ;   F(n) = F(n-1) + F(n-2)  if n > 1  

0 1 1 2 3 5 8 13 .. 

F(0) F(1) F(2) F(3) F(4) F(5) F(6) F(7) .. 

 

Solution 1: Iterative 

public static int fib1(int n){ 

        if(n<=1) return n; 

        int f1 = 0,   f2 = 1,   res=0; 

        for(int i=2; i<=n; i++){ 

            res =f1+f2; 

            f1=f2; 

            f2=res; 

        } 

        return res; 

} 

Solution 2: Recursion 

public static int fib2(int n){ 

        if(n<=1) return n; 

        return (fib2(n-1)+fib2(n-2)); 

 } 

Test for n=6 and n=40 

Why recursive solution is taking much time? 

Do analyze the 2 algorithms in term of calculating F(n) 

In Solution 1: 

We have F(0) and F(1) given 

Then we calculate  F(2) using F(1) and F(0) 

   F(3) using F(2) and F(1) 

F(4) using F(3) and F(2) 

: 

F(n) using F(n-1) and F(n-2) 
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In Solution 2: 

F(5) 

F(4)     F(3) 

F(3)  F(2)   F(2)  F(1) 

F(2) F(1) F(1) F(0)  F(1) F(0)   

F(1) F(0)         

 

Note: we are calculating the same value multiple times!! 

n F(2) F(3) .. 

5 3 2  

6 5   

8 13   

:    

40 63245986   

 

Exponential growth 

  

Time and Space complexity Analysis of recursion 

Example: recursive factorial 

  fact(n){ 

   If (n==0) return 1; 

   Return n *  fact(n-1); 

} 

 Calculate operation costs: 

o If statement takes 1 unit of time 

o Multiplication (*)   takes 1 unit of time 

o Subtraction (-) takes 1 unit of time 

o Function call 

 So   T(0)  =   1    

T(n)  =  3 +  T(n-1)    for n > 0 

To solve this equation, reduce T(n) in term of its base conditions. 

T(n)  = T(n-1)  + 3 

 = T(n-2)  + 6 

 = T(n-3)  + 9 

 : 

 = T(n-k)  + 3k 

For    T(0)      n-k = 0    n = k 

Therefore    T(n)  =  T(0)  +  3n 

   =  1   + 3n         O(n) 
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Space analysis: 

 Recursive Tree 

  Fact(5)   Fact(4)   Fact(3)   Fact(2)   Fact(1)   Fact(0) 

  

Each function call will cause to save current function state into memory (call stack, push): 

 

 

Fact(1) 

Fact(2) 

Fact(3) 

Fact(4) 

Fact(5) 

 Each return statement will retrieve previous saved function state from memory (pop): 

So needed space is proportional to n       O(n) 

 

Fibonacci sequence time complexity analysis 

public static int fib2(int n){ 

        if(n<=1) return n; 

        return (fib2(n-1)+fib2(n-2)); 

 } 

 Calculate operation costs: 

o If statement takes 1 unit of time 

o 2 subtractions (-) takes 2 unit of time 

o 1 addition (+) takes 1 unit of time 

o 2 function calls 

 So   T(0)  = T(1)  =  1    

T(n)  =  T(n-1) + T(n-2) + 4    for n > 1 

To solve this equation, reduce T(n) in term of its base conditions. 

For approximation assume   T(n-1) ≈ T(n-2)         in reality T(n-1) > T(n-2)  

 T(n)   =   2 T(n-2)  + 4          c = 4 

  =  2 T(n-2)  + c          T(n-2) =  2 T(n-4) + c     

  = 2 { 2 T(n-4) + c } + c 

  = 4  T(n-4) + 3c 

  = 8  T(n-6) + 7c 

  = 16  T(n-8) + 15c 

  : 

  = 2k  T(n-2k) +(2k-1)c 

For T(0)     n-2k  = 0       k = n/2 

Therefore  T(n) =  2n/2 T(0) + (2n/2 - 1) c        2n/2  (1+c)  -  c 

  T(n) is proportional to   2n/2                  O(2n/2)            lower bound analysis 
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Similarly, for approximation assume   T(n-2) ≈ T(n-1)         in reality T(n-2) < T(n-1)  

 T(n)   =   2 T(n-1)  + c          T(n-1) =  2 T(n-2) + c     

  = 2 { 2 T(n-2) + c } + c 

  = 4  T(n-2) + 3c 

  = 8  T(n-3) + 7c 

  = 16  T(n-4) + 15c 

  : 

  = 2k  T(n-k) +(2k-1)c 

For T(0)     n-k  = 0       k = n 

Therefore  T(n) =  2n T(0) + (2n - 1) c        2n  (1+c)  -  c 

T(n) is proportional to   2n                  O(2n)            upper bound analysis  worst case analysis 

 

While for iterative solution    O(n) 

 

 

Recursion with memorization 

Solution: don’t calculate something already has been calculated. 

Algorithm: 

 

 fib(n){ 

  If (n<=1)   return n 

  If(F[n] is in memory) return F[n] 

  F[n] =  fib(n-1) + fib(n-2) 

  Return F[n] 

 } 

Time complexity     O(n) 

Calculate Xn using recursion 

Iterative solution:    O(n) 
Xn  =  X * X * X * X * …. * X 

n-1 multiplication 

Recursive solution 1:  O(n) 

Xn  =  X * Xn-1  if n > 0   
X0  = 1     if n > 0   

Recursive solution 2:  O(log n) 

Xn  =  Xn/2 * Xn/2 if n is even  
Xn  =  X * Xn-1  if n is odd  

X0  = 1     if n > 0   

res = 1 
for i1 to n 
    res  res * x 

pow(x, n){ 
    if n==0   return 1 
    return  x  *   pow(x, n-1) 
} 

pow(x, n){ 
    if n==0   return 1 
    if  n%2 == 0 { 
        y  pow(x, n/2) 
        return y * y 
    } 
    return  x  *   pow(x, n-1) 
} 
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Recursive solution 1: Time analysis 

 

T(1)   =  1  

T(n) =  T(n-1) + c 

 =  (T(n-2) + c) + c     T(n-2) + 2c 

 =  T(n-3)  + 3c 

 : 

 =  T(n-k)  + kc 

For T(0)     n-k = 0      n = k 

T(n) =  T(0)  + nc       1 + nc       O(n) 

 

Recursive solution 2: Time analysis 

 

 Xn   =   Xn/2  *  Xn/2        if n is even 

 Xn   =   X  *  Xn-1               if n is odd 

 Xn   =   1                      if n == 0 

 Xn   =   X  *  1        if n == 1 

 

If  even  T(n)   =   T(n/2)  + c1 

If odd  T(n)  =  T(n-1)  + c2 

If  0  T(0)  =   1 

If   1        T(1)  =  c3 

 

If odd, next call will become even: 

T(n)   =   T((n-1)/2) + c1 + c2 

If even 

T(n)    =  T(n/2) + c 

 =  T(n/4) + 2c 

 =  T(n/8) + 3c 

 : 

 =  T(n/2k) + k c        

For T(1)    T(0)  +  c     1 

n/2k = 1        n  =  2k        k  = log n  

             = c3  +  c  log  n        O(log n) 
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(Lecture xx) Red-Black Trees (Optional) 

 

Left-leaning red-black BSTs (Guibas-Sedgewick 1979 and Sedgewick 2007):  LLRB 

1. Represent 2–3 tree as a BST. 

2. Use "internal" left-leaning links as "glue" for 3–nodes. 

 
Example: 

 
 

An equivalent definition: 

 
Key property. 1–1 correspondence between 2–3 and LLRB. 

 
To be continue. 
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(Lecture 21) B-Trees 

An M-ary search tree allows M-way branching.  

As branching increases, the depth decreases. 

B-trees (Bayer-McCreight, 1972) 
 

Nodes must be half full to guarantee that the tree does not degenerate into a simple binary tree. 

Example: A 5-ary tree of 31 nodes has only three levels: 

 
Example:  

 

Searching in a B-tree 

 Start at root. 

 Find interval for search key and take corresponding link. 

 Search terminates in external node. 
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Insertion in a B-tree 

・ Search for new key. 

・ Insert at bottom. 

・ Split nodes with M key-link pairs on the way up the tree. 

 

Balance in B-tree 

 

 

The B-tree is the most popular data structure for disk bound searching.  
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Example:  A B-tree of order 5 

 

 
 

 

 

 

 

Insertion: insert 57 

 If the leaf contains room for a new item, we insert it and are done. 

 If the leaf is full, we can insert a new item by splitting the leaf and forming two half-empty nodes. 

 

 
The B-tree after insertion of 57 
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Insertion: insert 40 

 Node splitting creates an extra child for the leaf’s parent.  

 If the parent already has a full number of children, we split the parent. 

 We may have to continue splitting all the way up the tree (though this possibility is unlikely).  

 In the worst case, we split the root, creating a new root with two children. 

 

 
Insertion of 40 causes a split into two leaves and then a split of the parent node. 

 

 

 

Deletion works in reverse: remove 99: 

 If a leaf loses a child, it may need to combine with another leaf. 

 Combining of nodes may continue all the way up the tree, though this possibility is unlikely.  

 In the worst case, the root loses one of its two children. Then we delete the root and use the other 

child as the new root. 

 

 
The B-tree after deletion of 99 from the tree 
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(Lecture 22) Splay Trees 

 

Recall: Asymptotic analysis examines how an algorithm will perform in worst case. 

Amortized analysis examines how an algorithm will perform in practice or on average. 

 

The 90–10 rule states that 90% of the accesses are to 10% of the data items.  

However, balanced search trees do not take advantage of this rule. 

 The 90–10 rule has been used for many years in disk I/O systems.  

 A cache stores in main memory the contents of some of the disk blocks. The hope is that when a disk 

access is requested, the block can be found in the main memory cache and thus save the cost of an 

expensive disk access. 

 Browsers make use of the same idea: A cache stores locally the previously visited Web pages. 

 

Splay Trees: 

 Like AVL trees, use the standard binary search tree property. 

 After any operation on a node, make that node the new root of the tree. 

 

A simple self-adjusting strategy (that does not work) 

The easiest way to move a frequently accessed item toward the root is to rotate it continually with its parent. 

Moving the item closer to the root, a process called the rotate-to-root strategy. 

 If the item is accessed a second time, the second access is cheap. 

Example: Rotate-to-root strategy applied when node 3 is accessed 

 

 
 As a result of the rotation: 

o future accesses of node 3 are cheap 

o Unfortunately, in the process of moving node 3 up two levels, nodes 4 and 5 each move down a 

level. 

 Thus, if access patterns do not follow the 90–10 rule, a long sequence of bad accesses can occur. 
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The basic bottom-up splay tree 

Splaying cases: 

 The zig case (normal single rotation) 

If X is a non root node on the access path on which we are rotating and the parent of X is the root of 

the tree, we merely rotate X and the root, as shown: 

 
 

Otherwise, X has both a parent P and a grandparent G, and we must consider two cases and symmetries. 

 zig-zag case: 

 This corresponds to the inside case for AVL trees.  

 Here X is a right child and P is a left child (or vice versa: X is a left child and P is a right child). 

 We perform a double rotation exactly like an AVL double rotation, as shown: 

 

 zig-zig case: 

 The outside case for AVL trees. 

 Here, X and P are either both left children or both right children. 

 In this case, we transform the left-hand tree to the right-hand tree (or vice versa). 

 Note that this method differs from the rotate-to-root strategy.  

o The zig-zig splay rotates between P and G and then X and P, whereas the rotate-to-root 

strategy rotates between X and P and then between X and G. 
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Splaying has the effect of roughly halving the depth of most nodes on the access path and increasing by at 

most two levels the depth of a few other nodes. 

 

Example: Result of splaying at node 1 (three zig-zigs) 

 
Exercise: perform rotate-to-root strategy 

 

Basic splay tree operations 

A splay operation is performed after each access: 

 After an item has been inserted as a leaf, it is splayed to the root. 

 All searching operations incorporate a splay. (find, findMin and findMax) 

 To perform deletion, we access the node to be deleted, which puts the node at the root. If it is deleted, 

we get two subtrees, L and R (left and right). If we find the largest element in L, using a findMax 

operation, its largest element is rotated to L’s root and L’s root has no right child. We finish the remove 

operation by making R the right child of L’s root. An example of the remove operation is shown below: 

 

Example: The remove operation applied to node 6: 

 First, 6 is splayed to the root, leaving two subtrees;  

 A findMax is performed on the left subtree, raising 5 to the root of the left subtree;  

 Then the right subtree can be attached (not shown). 

 
 The cost of the remove operation is two splays. 
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(Lecture 23 & 24) Hash Tables 

• Hashing: is a technique that determines element index using only element’s distinct search key. 

• Hash function:   

 Takes a search key and produces the integer index of an element in the hash table. 

 Search key—maps, or hashes, to the index. 

 

Example 1: Phone numbers (xxx-xxxx). 

・Bad: first three digits.   // identical for same area 

・Better: last four digits.   // distinct  

Example 2: Social Security numbers (ID number). 

・Bad: first three digits.   // identical for same period 

・Better: last three digits.   // distinct 

 

Practical challenge: Need different approach for each key type. 

 

Simple algorithms for the hash operations that add and retrieve: 

 
Typical Hashing 

Typical hash functions perform two steps: 

1. Convert search key to an integer called the hash code. 

2. Compress hash code into the range of indices for hash table. 

 
 

• Typical hash functions are not perfect:  

 Can allow more than one search key to map into a single index. 

 Causes a collision in the hash table. 

Example: Consider tableSize = 101  

 getHashIndex(555-1264) = 52 

 getHashIndex(555-8132) = 52 also!!! 
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Hash Functions 

• A good hash function should: 

 Minimize collisions 

 Be fast to compute 

• To reduce the chance of a collision 

 Choose a hash function that distributes entries uniformly throughout hash table. 

 

Java’s hash code conventions 

All Java classes inherit a method hashCode(), which returns a 32-bit int. 

Default implementation: Memory address.  

Customized implementations: Integer, Double, String, File, URL, Date, … 

User-defined types: Users are on their own. 

Java library implementations: 

Integer 

 
 

Boolean 

 
 

Double   
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String      

  
  

Horner's method to hash string of length L: 

 
Example:   

 
 

Implementing hash code: user-defined types 

Hash code design 

"Standard" recipe for user-defined types: 

・Combine each significant field using the 31x + y rule. 

・If field is a primitive type, use wrapper type hashCode(). 

・If field is null, return 0. 

・If field is a reference type, use hashCode(). 

・If field is an array, apply to each entry.   or use Arrays.deepHashCode() 

Example: 
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Compressing a Hash Code 

Hash code: An int between -231 and 231 - 1. 

Hash function: An int between 0 and M-1 (for use as array index). 

• Common way to scale an integer 

 Use Java % operator   hash code % m 

• Avoid m as power of 2 or 10 

• Best to use an odd number for m  

• Prime numbers often give good distribution of hash values 

 

 
 

Resolving Collisions 

• Collisions: Two distinct keys hashing to same index. 

• Two choices: 

 Change the structure of the hash table so that each array location can represent more than one 

value.  (Separate Chaining) 

 Use another empty location in the hash table.  (Open Addressing) 

 

Separate Chaining 

• Alter the structure of the hash table: 

 Each location can represent more than one value. 

 Such a location is called a bucket 

• Decide how to represent a bucket:  list, sorted list; array; linked nodes; vector; etc. 
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Where to insert a new entry into a linked bucket? 

(a) If unsorted (apply 90-10 rule): 

 
(b) If sorted: 

 
 

Time Complexity 

Worst case: all keys mapped to the same location  one long list of size N 

Find(key)   O(n)        

Best case: hashing uniformly distribute records over the hash table  each list long = N/M = α  

(α is load factor) 

Find(key)   O(1 + α) 

 

Design Consequences: 

・M too large  too many empty chains. 

・M too small  chains too long. 

・Typical choice: M ≈ N / 5  constant-time ops. 

 

  



Data Structure: Lectures Note                          2015                                   Prepared by:  Dr. Mamoun Nawahdah 

98 
 

Open Addressing 

 Linear Probing  

• When a new key collides, find next empty slot, and put it there. 

• Hash: Map key to integer k between 0 and M-1. 

• Insert: Put at table index k if free; if not try k+1, k+2, etc. 

 If reaches end of table, go to beginning of table (Circular hash table) 

• Hash function:   h(k,i) = (h(k,0)+i) % m 

• Array size M must be greater than number of key-value pairs N. 

 

Example: Linear hash table demo:  take last 2 digits of student’s ID and run a demo 

 
 

Clustering problem:  A contiguous block of items will be easily formed which in turn will affect 

performance. 

 

Q. What is mean displacement of items?    (Knuth’s Parking Problem) 

 Model: Cars arrive at one-way street with M parking spaces. If space k is taken, try k+1, k+2, etc. 
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 Quadratic Probing 

• Linear probing looks at consecutive locations beginning at index k 

• Quadratic probing, considers the locations at indices k + j2  

 Uses the indices k, k+1, k + 4, k + 9, … 

 

 
 

 Hash function:   h(k,i) = (h(k,0)+i2) % m 

 For linear probing it is a bad idea to let the hash table get nearly full, because performance degrades.  

 For quadratic probing, the situation is even worse: There is no guarantee of finding an empty cell once 

the table gets more than half full, or even before the table gets half full if the table size is not prime. 

 Standard deletion cannot be performed in a probing hash table, because the cell might have caused a 

collision to go past it. (instead soft deletion is used) 

 

Double Hashing 

• Linear probing and quadratic probing add increments to k to define a probe sequence 

 Both are independent of the search key 

• Double hashing uses a second hash function to compute these increments  

 This is a key-dependent method. 

 The 2nd hash function must never evaluate to zero. 

 

 
The 1st three locations in a probe sequence generated by double hashing for the search key 16 
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Potential Problem with Open Addressing 

• Note that each location is either occupied, empty (null), or available (removed) 

 Frequent additions and removals can result in no locations that are null 

• Thus searching a probe sequence will not work 

• Consider separate chaining as a solution 

 

Time Complexity 

 

 

Rehashing 

 If the table gets too full, the running time for the operations will start taking too long and insertions 

might fail for open addressing hashing with quadratic resolution. 

 A solution, then, is to build another table that is about twice as big (with an associated new hash 

function) and scan down the entire original hash table, computing the new hash value for each (non 

deleted) element and inserting it in the new table. 

 This entire operation is called rehashing. 

o This is obviously a very expensive operation; the running time is O(N), since there are N 

elements to rehash and the table size is roughly 2N, but it is actually not all that bad, because it 

happens very infrequently. 
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(Lecture 25) Priority Queues (Heaps) 

A priority queue is a data structure that allows at least the following two operations:  

 Insert: which does the obvious thing;  

 deleteMin (or deleteMax): which finds, returns, and removes the minimum (or maximum) element in 

the priority queue. 

Simple Implementations: 

 Unsorted Linked list, performing insertions at the front in O(1) and traversing the list, which 

requires O(N) time, to delete the minimum/maximum. 

 Sorted Linked list, performing insertions in O(N) and O(1) to delete the minimum/maximum. 

 Binary search tree: this gives an O(log N) average running time for both operations. 

 

Binary Heap 

A heap is a binary tree that is completely filled, with the possible exception of the bottom level, which 

is filled from left to right.  

Such a tree is known as a complete binary tree. 

 

A complete binary tree of height h has between 2h and 2h+1 – 1 

nodes.  

 
As complete binary tree is so regular, it can be represented as an array: 

 
・Parent of node at i is at i/2. 

・Children of node at i are at 2i (left child) and 2i+1 (right child). 
 

 

Heap-order property:  

 In a min heap, for every node X, the key in the parent of X is smaller than (or equal to) the key 

in X, with the exception of the root (which has no parent). Therefore, the minimum element 

can always be found at the root.  

 In a max heap, for every node X, the key in the parent of X is larger than (or equal to) the key 

in X, with the exception of the root (which has no parent). Therefore, the maximum element 

can always be found at the root.  
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Promotion in a heap 

Scenario 1: Child's key becomes larger than its parent's key. 

To eliminate the violation: 

・Exchange key in child with key in parent. 

・Repeat until heap order restored. 

Example:  

                       

 

 
 

Insertion in a heap 

Insert: Add node at end, then swim it up. 

Cost: At most 1 + lg N compares. 

Example: Insert S 
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Demotion in a heap 

Scenario 2: Parent's key becomes smaller than one (or both) of its children's. 

To eliminate the violation: 

・Exchange key in parent with key in larger child. 

・Repeat until heap order restored. 

Example:   

                              

 
 

Delete the maximum in a heap 

Delete max: Exchange root with node at end, and then sink it down. 

Cost: At most 2 lg N compares. 

Example: delete T 
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Binary heap: Java implementation 
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(Lecture 26) HeapSort 

Basic plan for in-place sort: 

・Create max-heap with all N keys. 

・Repeatedly remove the maximum key. 

 

Heapsort demo: 

 First pass. Build heap using bottom-up method: 

Array in arbitrary order 
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 Second pass: 

o Remove the maximum, one at a time. 

o Leave in array, instead of nulling out. 
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Heapsort: trace 

 

Heapsort: mathematical analysis 

 Heap construction uses ≤ 2 N compares and exchanges. 

 Heapsort uses ≤ 2 N lg N compares and exchanges. 

 

Heapsort Significance:  In-place sorting algorithm with N log N worst-case. 

Heapsort is optimal for both time and space, but it makes poor use of cache memory and not stable. 
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Heapsort: Java implementation 
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(Lecture 27) Sorting I 

Selection Sort 

 In iteration i, find index min of smallest remaining entry. 

 Swap a[i] and a[min]. 

 

Demo: 

 
 

Java implementation: 

 
 

Mathematical analysis: 

 Selection sort uses (N – 1) + (N – 2) + ... + 1 + 0 ~ N2 / 2 compares and N exchanges. 

 

Trace of selection sort: 

 Running time insensitive to input: 

Quadratic time, even if input is 

sorted. 

 Data movement is minimal: Linear 

number of exchanges. 
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Insertion sort 

 In iteration i, swap a[i] with each larger entry to its left. 

Demo: 

 

Java implementation: 

 

Mathematical analysis: 

 To sort a randomly-ordered array with distinct keys, insertion sort uses ~ ¼ N2 compares 

and ~ ¼ N2 exchanges on average. 

 Expect each entry to move halfway back. 

 

Trace of insertion sort: 

 Best case: If the array is in ascending 

order, insertion sort makes N - 1 

compares and 0 exchanges.  

 Worst case: If the array is in 

descending order (and no duplicates), 

insertion sort makes ~ ½ N2 compares 

and ~ ½ N2 exchanges. 

 For partially-sorted arrays, insertion 

sort runs in linear time. 
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Shell sort 

Idea: Move entries more than one position at a time by h-sorting the array. 

an h-sorted array is h interleaved sorted subsequences: 

 
Shell sort: [Shell 1959] h-sort array for decreasing sequence of values of h. 

 
 

How to h-sort an array? Insertion sort, with stride length h. 

 
Shell sort example: increments 7, 3, 1 

     
 

Shell sort: which increment sequence to use? 
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 Powers of two: 1, 2, 4, 8, 16, 32, ...         No 

 Powers of two minus one: 1, 3, 7, 15, 31, 63, …    Maybe 

 3x + 1: 1, 4, 13, 40, 121, 364, …   OK. Easy to compute 

 

Java implementation 

 

Analysis 

 The worst-case number of compares used by shell sort with the 3x+1 increments is O(N3/2). 
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Mergesort 
 Divide array into two halves. 

 Recursively sort each half. 

 Merge two halves. 

 
 
Java implementation: 

Merging: 
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Java implementation: 
Mergesort: 

 
 
Mergesort: trace 

 
 
Mergesort: empirical analysis 

 
 Good algorithms are better than supercomputers. 
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Divide-and-conquer recurrence: number of compares 

 
 
Mergesort analysis: memory (array accesses) 

 Mergesort uses extra space proportional to N.  

 The array aux[] needs to be of size N for the last merge. 
 
Mergesort: practical improvements 

 Use insertion sort for small subarrays. 
o Mergesort has too much overhead for tiny subarrays. 
o Cutoff to insertion sort for ≈ 7 items. 

 

 
 

 Stop if already sorted. 
o Is biggest item in first half ≤ smallest item in second half? 
o Helps for partially-ordered arrays. 
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 Eliminate the copy to the auxiliary array. Save time (but not space) by switching the role of the input 
and auxiliary array in each recursive call. 

 
 
 

Complexity of sorting 

・ Compares? Mergesort is optimal with respect to number compares. 

・ Space? Mergesort is not optimal with respect to space usage. 
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Bottom-up Mergesort 
Basic plan: 

o Pass through array, merging subarrays of size 1. 
o Repeat for subarrays of size 2, 4, 8, 16, .... 

 
 
Java implementation 
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(Lecture 28) Sorting II 

Quicksort 
Basic plan: 

o Shuffle the array.  (shuffle needed for performance guarantee) 
o Partition so that, for some j 

– entry a[j] is in place 
– no larger entry to the left of j 
– no smaller entry to the right of j 

o Sort each piece recursively. 
 

 
 

 
Quicksort t-shirt 

 
Quicksort partitioning demo 

Repeat until i  and j pointers cross. 

・ Scan i  from left to right so long as (a[i] < a[lo]). 

・ Scan j from right to left so long as (a[j] > a[lo]). 

・ Exchange a[i]  with a[j] . 

 
When pointers (i and j)cross. 

・ Exchange a[lo]  with a[j] . 
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Quicksort: Java code for partitioning 
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Quicksort trace 

 
 

Quicksort: empirical analysis 

 
 
Quicksort: Compare analysis 

Best case: Number of compares is ~ N lg N 
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Worst case: Number of compares is ~ ½ N2  

 
 
Average-case analysis: complicated  2N ln N 

 
Quicksort: summary of performance characteristics 

Worst case: Number of compares is quadratic. 

・ N + (N - 1) + (N - 2) + … + 1 ~ ½ N2 

・ but this rarely to happen. 
Average case: Number of compares is ~ 1.39 N lg N 

・ 39% more compares than Mergesort  

・ But faster than Mergesort in practice because of less data movement. 
Random shuffle 

・ Probabilistic guarantee against worst case. 
Quicksort is an in-place sorting algorithm. 
Quicksort is not stable. 
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Quicksort: practical improvements 
1- Insertion sort small subarrays: 

・ Even quicksort has too much overhead for tiny subarrays. 

・ Cutoff to insertion sort for ≈ 10 items. 

・ Note: could delay insertion sort until one pass at end. 

 
 

2- Median of sample: 

・ Best choice of pivot item = median. 

・ Estimate true median by taking median of sample. 

 
 
 
 
 

 
 


