
Data Structure: Lectures Note 2015 Prepared by: Dr. Mamoun Nawahdah

12

(Lecture xx) Red-Black Trees (Optional)

Left-leaning red-black BSTs (Guibas-Sedgewick 1979 and Sedgewick 2007): LLRB

1. Represent 2–3 tree as a BST.

2. Use "internal" left-leaning links as "glue" for 3–nodes.

Example:

An equivalent definition:

Key property. 1–1 correspondence between 2–3 and LLRB.

To be continue.

Data Structure: Lectures Note 2015 Prepared by: Dr. Mamoun Nawahdah

13

(Lecture 21) B-Trees

An M-ary search tree allows M-way branching.

As branching increases, the depth decreases.

B-trees (Bayer-McCreight, 1972)

Nodes must be half full to guarantee that the tree does not degenerate into a simple binary tree.

Example: A 5-ary tree of 31 nodes has only three levels:

Example:

Searching in a B-tree

 Start at root.

 Find interval for search key and take corresponding link.

 Search terminates in external node.

Data Structure: Lectures Note 2015 Prepared by: Dr. Mamoun Nawahdah

14

Insertion in a B-tree

・ Search for new key.

・ Insert at bottom.

・ Split nodes with M key-link pairs on the way up the tree.

Balance in B-tree

The B-tree is the most popular data structure for disk bound searching.

Data Structure: Lectures Note 2015 Prepared by: Dr. Mamoun Nawahdah

15

Example: A B-tree of order 5

Insertion: insert 57

 If the leaf contains room for a new item, we insert it and are done.

 If the leaf is full, we can insert a new item by splitting the leaf and forming two half-empty nodes.

The B-tree after insertion of 57

Data Structure: Lectures Note 2015 Prepared by: Dr. Mamoun Nawahdah

16

Insertion: insert 40

 Node splitting creates an extra child for the leaf’s parent.

 If the parent already has a full number of children, we split the parent.

 We may have to continue splitting all the way up the tree (though this possibility is unlikely).

 In the worst case, we split the root, creating a new root with two children.

Insertion of 40 causes a split into two leaves and then a split of the parent node.

Deletion works in reverse: remove 99:

 If a leaf loses a child, it may need to combine with another leaf.

 Combining of nodes may continue all the way up the tree, though this possibility is unlikely.

 In the worst case, the root loses one of its two children. Then we delete the root and use the other

child as the new root.

The B-tree after deletion of 99 from the tree

