Prepared by: Dr. Mamoun Nawahdah

(Lecture 25) Priority Queues (Heaps)

A **priority queue** is a data structure that allows at least the following two operations:

- **Insert**: which does the obvious thing;
- deleteMin (or deleteMax): which finds, returns, and removes the minimum (or maximum) element in the priority queue.

Simple Implementations:

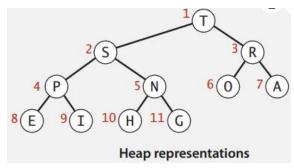
- Unsorted Linked list, performing insertions at the front in O(1) and traversing the list, which requires **O(N)** time, to delete the minimum/maximum.
- Sorted Linked list, performing insertions in O(N) and O(1) to delete the minimum/maximum.
- **Binary search tree**: this gives an **O(log N)** average running time for both operations.

Binary Heap

A heap is a binary tree that is completely filled, with the possible exception of the bottom level, which is filled from left to right.

Such a tree is known as a **complete binary tree**.

A complete binary tree of height h has between 2^h and $2^{h+1}-1$ nodes.



As complete binary tree is so regular, it can be represented as an array:

i	0	1	2	3	4	5	6	7	8	9	10	11	
a[i]	_	Т	S	R	P	N	0	Α	Е	Ι	Н	G	

- Parent of node at *i* is at *i/2*.
- Children of node at *i* are at *2i* (left child) and *2i+1* (right child).

Heap-order property:

- In a **min heap**, for every node **X**, the key in the parent of **X** is smaller than (or equal to) the key in X, with the exception of the root (which has no parent). Therefore, the minimum element can always be found at the root.
- In a **max heap**, for every node **X**, the key in the parent of **X** is larger than (or equal to) the key in X, with the exception of the root (which has no parent). Therefore, the maximum element can always be found at the root.

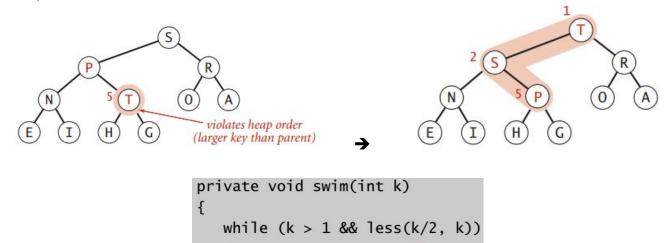
Promotion in a heap

Scenario 1: Child's key becomes larger than its parent's key.

To eliminate the violation:

- Exchange key in child with key in parent.
- · Repeat until heap order restored.

Example:



exch(k, k/2);

parent of node at k is at k/2

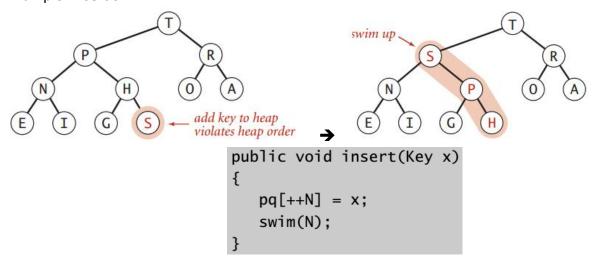
k = k/2;

Insertion in a heap

Insert: Add node at end, then swim it up.

Cost: At most 1 + lg N compares.

Example: Insert S



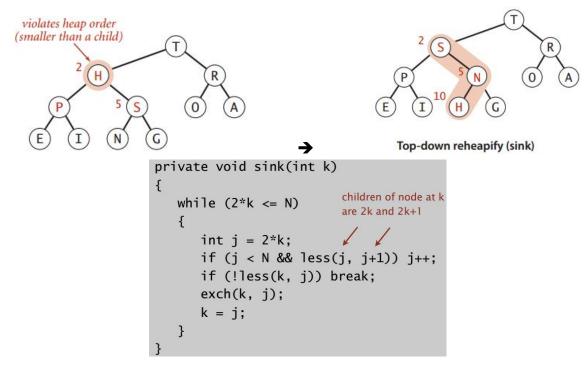
Demotion in a heap

Scenario 2: Parent's key becomes smaller than one (or both) of its children's.

To eliminate the violation:

- Exchange key in parent with key in larger child.
- · Repeat until heap order restored.

Example:

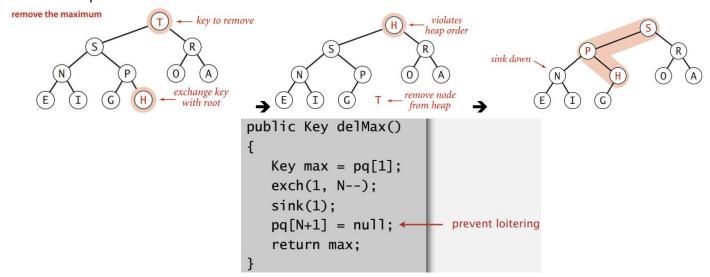


Delete the maximum in a heap

Delete max: Exchange root with node at end, and then sink it down.

Cost: At most 2 lg N compares.

Example: delete T



Binary heap: Java implementation

```
public class MaxPQ<Key extends Comparable<Key>>
 private Key[] pq;
private int N;
                                                        fixed capacity
 public MaxPQ(int capacity)
                                                        (for simplicity)
{ pq = (Key[]) new Comparable[capacity+1]; }
public boolean isEmpty()
                                                        PQ ops
     return N == 0;
public void insert(Key key)
 public Key delMax()
 { /* see previous code */ }
 private void swim(int k)
                                                        heap helper functions
private void sink(int k)
{ /* see previous code */ }
 private boolean less(int i, int j)
 { return pq[i].compareTo(pq[j]) < 0; }
                                                        array helper functions
 private void exch(int i, int j)
 { Key t = pq[i]; pq[i] = pq[j]; pq[j] = t; }
```