
Data Structure: Lectures Note                          2015                                   Prepared by:  Dr. Mamoun Nawahdah 

1 
 

 

 

 

 

COMP232 

Data Structure 
 

 

 

Lectures Note: part 2 

Prepared by:  Dr. Mamoun Nawahdah 

2015 

 

  



Data Structure: Lectures Note                          2015                                   Prepared by:  Dr. Mamoun Nawahdah 

2 
 

Table of Contents 
 

(Lecture 17, 18) AVL Trees ...................................................................................................................................................... 3 

(Lecture 19) 2-3 Trees ........................................................................................................................................................... 11 

(Lecture 20) Recursion (Time Analysis Revision) .................................................................................................................. 15 

(Lecture xx) Red-Black Trees (Optional) ................................................................................................................................ 20 

(Lecture 21) B-Trees .............................................................................................................................................................. 21 

(Lecture 22) Splay Trees ........................................................................................................................................................ 25 

(Lecture 23 & 24) Hash Tables .............................................................................................................................................. 28 

(Lecture 25) Priority Queues (Heaps).................................................................................................................................... 36 

 

 

 

 

  



Data Structure: Lectures Note                          2015                                   Prepared by:  Dr. Mamoun Nawahdah 

3 
 

(Lecture 17, 18) AVL Trees 

• An AVL tree is a BST with the additional balance property that, for any node in the tree, the height of 
the left and right subtrees can differ by at most 1.  

• Complete binary trees are balanced. 
 

Single Rotations 

 
 

Example: After inserting (a) 60; (b) 50; and (c) 20 into an initially empty BST, the tree is not balanced;  
(d) a corresponding AVL tree rotates its nodes to restore balance 

 

 
Example: (a) Adding 80 to the tree does not change the balance of the tree;  

(b) a subsequent addition of 90 makes the tree unbalanced ;  
(c) a left rotation restores its balance 

 

Case 1: Single Right Rotation 

 
Before and after an addition to an AVL subtree that requires a right rotation to maintain its balance. 
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Example: Before and after a right rotation restores balance to an AVL tree 

 

 
 

Case 2: Single Left Rotation  

 
Before and after an addition to an AVL subtree that requires a left rotation to maintain its balance 
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Double Rotations 

A double rotation is accomplished by performing two single rotations: 
1. A rotation about node N’s grandchild G (its child’s child) 
2. A rotation about node N’s new child 

Case 3: Right-Left Double Rotations 

 
Example: (a) Adding 70 destroys tree’s balance; to restore the balance, perform both  

(b) a right rotation and (c) a left rotation 
 

 

 
Before and after an addition to an AVL subtree that requires both  

a right rotation and a left rotation to maintain its balance 
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Case 4: Left-Right Double Rotations 
Example:  

 

 
(a) The AVL tree after additions that maintain its balance;  

(b) after an addition that destroys the balance;  
(c) after a left rotation;  
(d) after a right rotation 
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Before and after an addition to an AVL subtree that requires both  

a left rotation and a right rotation to maintain its balance 
 
 

 
 
 
• Four rotations cover the only four possibilities for the cause of the imbalance at node N 
• The addition occurred at: 

 The left subtree of N’s left child (case 1: right rotation) 
 The right subtree of N’s left child (case 4: left-right rotation) 
 The left subtree of N’s right child (case 3: right-left rotation) 
 The right subtree of N’s right child (case 2: left rotation) 
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An AVL Tree Versus a  BST 

 
Example: The result of adding 60, 50, 20, 80, 90, 70, 55, 10, 40, and 35 to an initially empty  

(a) AVL tree; (b) BST 
 
 

Code Implementation (Optional) 
• The implementation of the method for a single right rotation:  

 
 

• The implementation for a right-left double rotation:  
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• Pseudo-code to rebalance the tree: 

 
 
• Implementation for rebalancing within the class AVLTree: 
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• Methods to Add: 

 
 

• AddEntry code:  
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(Lecture 19) 2-3 Trees 

• Definition: general search tree whose interior nodes must have either 2 or 3 children. 

 A 2-node contains one data item s and has two children 

 A 3-node contains two data items, s and l, and has three children 

 

Searching a 2-3 Tree: 

 

Adding Entries to a 2-3 Tree: 

 
Adding (a) 60 and (b) 50; (c), (d) adding 20 causes the 3-node to split 

 

 
The 2-3 tree after adding (a) 80; (b) 90; (c) 70 

 

 
Adding 55 to the 2-3 tree, causes a leaf and then the root to split 
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The 2-3 tree, after adding 10, 40, 35 

Splitting Nodes during Addition 

 Splitting a leaf to accommodate a new entry when the leaf’s parent contains:  

o (a) one entry;  

 
 

o (b) two entries 

 
 

 Splitting an internal node to accommodate a new entry: 

 
 Splitting the root to accommodate a new entry: 
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2-3 tree: performance 

Perfect balance. Every path from root to null link has same length. 

 

Tree height: 

・Worst case: log N. [all 2-nodes] 

・Best case: log3 N ≈ .631 log N. [all 3-nodes] 

・Between 12 and 20 for a million nodes. 

・Between 18 and 30 for a billion nodes. 

 

2-3 tree: implementation? 

Direct implementation is complicated, because: 

・Maintaining multiple node types is cumbersome. 

・Need multiple compares to move down tree. 

・Need to move back up the tree to split 4-nodes. 

・Large number of cases for splitting. 

 

Bottom line. Could do it, but there's a better way. 

HW: 50 60 70 40 30 20 10 80 90 100 

2-4 Trees 
• Sometimes called a 2-3-4 tree 

 General search tree   

 Interior nodes must have either two, three, or four children 

 Leaves occur on the same level 

 A 4-node contains three data items s, m, and l and has four children. 
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Adding Entries to a 2-4 Tree 

 

 
The 2-4 tree, after (a) splitting the root; (b) adding 80; (c) adding 90 

 

Adding 70 

  
The 2-4 tree after adding (a) 55; (b) 10; (c) 40 

 

Adding 5 

 
The 2-4 tree after (a) splitting the leftmost 4-node; (b) adding 35 

 

 

 

Comparing AVL, 2-3, and 2-4 Trees 

 
Three balanced search trees obtained by adding 60, 50, 20, 80, 90, 70, 55, 10, 40, and 35:  

(a) AVL tree; (b) 2-3 tree; (c) 2-4 tree 
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(Lecture 20) Recursion (Time Analysis Revision) 

Example 1: Write a recursive method to calculate the sum of squares of the first n natural numbers. n is to be 

given as an input.  
public int sumOfSquares(int n) { 
   if (n==1)  
         return 1; 

     return   n*n + sumOfSquares(n-1); 
} 

 

Recursion may sometimes be very intuitive and simple, but it may not be the best thing to do. 

Example 2: Fibonacci Sequence: 

 F(n)  =   n  if  n=0,1   ;   F(n) = F(n-1) + F(n-2)  if n > 1  

0 1 1 2 3 5 8 13 .. 

F(0) F(1) F(2) F(3) F(4) F(5) F(6) F(7) .. 

 

Solution 1: Iterative 

public static int fib1(int n){ 

        if(n<=1) return n; 

        int f1 = 0,   f2 = 1,   res=0; 

        for(int i=2; i<=n; i++){ 

            res =f1+f2; 

            f1=f2; 

            f2=res; 

        } 

        return res; 

} 

Solution 2: Recursion 

public static int fib2(int n){ 

        if(n<=1) return n; 

        return (fib2(n-1)+fib2(n-2)); 

 } 

Test for n=6 and n=40 

Why recursive solution is taking much time? 

Do analyze the 2 algorithms in term of calculating F(n) 

In Solution 1: 

We have F(0) and F(1) given 

Then we calculate  F(2) using F(1) and F(0) 

   F(3) using F(2) and F(1) 

F(4) using F(3) and F(2) 

: 

F(n) using F(n-1) and F(n-2) 
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In Solution 2: 

F(5) 

F(4)     F(3) 

F(3)  F(2)   F(2)  F(1) 

F(2) F(1) F(1) F(0)  F(1) F(0)   

F(1) F(0)         

 

Note: we are calculating the same value multiple times!! 

n F(2) F(3) .. 

5 3 2  

6 5   

8 13   

:    

40 63245986   

 

Exponential growth 

  

Time and Space complexity Analysis of recursion 

Example: recursive factorial 

  fact(n){ 

   If (n==0) return 1; 

   Return n *  fact(n-1); 

} 

 Calculate operation costs: 

o If statement takes 1 unit of time 

o Multiplication (*)   takes 1 unit of time 

o Subtraction (-) takes 1 unit of time 

o Function call 

 So   T(0)  =   1    

T(n)  =  3 +  T(n-1)    for n > 0 

To solve this equation, reduce T(n) in term of its base conditions. 

T(n)  = T(n-1)  + 3 

 = T(n-2)  + 6 

 = T(n-3)  + 9 

 : 

 = T(n-k)  + 3k 

For    T(0)      n-k = 0    n = k 

Therefore    T(n)  =  T(0)  +  3n 

   =  1   + 3n         O(n) 
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Space analysis: 

 Recursive Tree 

  Fact(5)   Fact(4)   Fact(3)   Fact(2)   Fact(1)   Fact(0) 

  

Each function call will cause to save current function state into memory (call stack, push): 

 

 

Fact(1) 

Fact(2) 

Fact(3) 

Fact(4) 

Fact(5) 

 Each return statement will retrieve previous saved function state from memory (pop): 

So needed space is proportional to n       O(n) 

 

Fibonacci sequence time complexity analysis 

public static int fib2(int n){ 

        if(n<=1) return n; 

        return (fib2(n-1)+fib2(n-2)); 

 } 

 Calculate operation costs: 

o If statement takes 1 unit of time 

o 2 subtractions (-) takes 2 unit of time 

o 1 addition (+) takes 1 unit of time 

o 2 function calls 

 So   T(0)  = T(1)  =  1    

T(n)  =  T(n-1) + T(n-2) + 4    for n > 1 

To solve this equation, reduce T(n) in term of its base conditions. 

For approximation assume   T(n-1) ≈ T(n-2)         in reality T(n-1) > T(n-2)  

 T(n)   =   2 T(n-2)  + 4          c = 4 

  =  2 T(n-2)  + c          T(n-2) =  2 T(n-4) + c     

  = 2 { 2 T(n-4) + c } + c 

  = 4  T(n-4) + 3c 

  = 8  T(n-6) + 7c 

  = 16  T(n-8) + 15c 

  : 

  = 2k  T(n-2k) +(2k-1)c 

For T(0)     n-2k  = 0       k = n/2 

Therefore  T(n) =  2n/2 T(0) + (2n/2 - 1) c        2n/2  (1+c)  -  c 

  T(n) is proportional to   2n/2                  O(2n/2)            lower bound analysis 
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Similarly, for approximation assume   T(n-2) ≈ T(n-1)         in reality T(n-2) < T(n-1)  

 T(n)   =   2 T(n-1)  + c          T(n-1) =  2 T(n-2) + c     

  = 2 { 2 T(n-2) + c } + c 

  = 4  T(n-2) + 3c 

  = 8  T(n-3) + 7c 

  = 16  T(n-4) + 15c 

  : 

  = 2k  T(n-k) +(2k-1)c 

For T(0)     n-k  = 0       k = n 

Therefore  T(n) =  2n T(0) + (2n - 1) c        2n  (1+c)  -  c 

T(n) is proportional to   2n                  O(2n)            upper bound analysis  worst case analysis 

 

While for iterative solution    O(n) 

 

 

Recursion with memorization 

Solution: don’t calculate something already has been calculated. 

Algorithm: 

 

 fib(n){ 

  If (n<=1)   return n 

  If(F[n] is in memory) return F[n] 

  F[n] =  fib(n-1) + fib(n-2) 

  Return F[n] 

 } 

Time complexity     O(n) 

Calculate Xn using recursion 

Iterative solution:    O(n) 
Xn  =  X * X * X * X * …. * X 

n-1 multiplication 

Recursive solution 1:  O(n) 

Xn  =  X * Xn-1  if n > 0   
X0  = 1     if n > 0   

Recursive solution 2:  O(log n) 

Xn  =  Xn/2 * Xn/2 if n is even  
Xn  =  X * Xn-1  if n is odd  

X0  = 1     if n > 0   

res = 1 
for i1 to n 
    res  res * x 

pow(x, n){ 
    if n==0   return 1 
    return  x  *   pow(x, n-1) 
} 

pow(x, n){ 
    if n==0   return 1 
    if  n%2 == 0 { 
        y  pow(x, n/2) 
        return y * y 
    } 
    return  x  *   pow(x, n-1) 
} 
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Recursive solution 1: Time analysis 

 

T(1)   =  1  

T(n) =  T(n-1) + c 

 =  (T(n-2) + c) + c     T(n-2) + 2c 

 =  T(n-3)  + 3c 

 : 

 =  T(n-k)  + kc 

For T(0)     n-k = 0      n = k 

T(n) =  T(0)  + nc       1 + nc       O(n) 

 

Recursive solution 2: Time analysis 

 

 Xn   =   Xn/2  *  Xn/2        if n is even 

 Xn   =   X  *  Xn-1               if n is odd 

 Xn   =   1                      if n == 0 

 Xn   =   X  *  1        if n == 1 

 

If  even  T(n)   =   T(n/2)  + c1 

If odd  T(n)  =  T(n-1)  + c2 

If  0  T(0)  =   1 

If   1        T(1)  =  c3 

 

If odd, next call will become even: 

T(n)   =   T((n-1)/2) + c1 + c2 

If even 

T(n)    =  T(n/2) + c 

 =  T(n/4) + 2c 

 =  T(n/8) + 3c 

 : 

 =  T(n/2k) + k c        

For T(1)    T(0)  +  c     1 

n/2k = 1        n  =  2k        k  = log n  

             = c3  +  c  log  n        O(log n) 
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(Lecture xx) Red-Black Trees (Optional) 

 

Left-leaning red-black BSTs (Guibas-Sedgewick 1979 and Sedgewick 2007):  LLRB 

1. Represent 2–3 tree as a BST. 

2. Use "internal" left-leaning links as "glue" for 3–nodes. 

 
Example: 

 
 

An equivalent definition: 

 
Key property. 1–1 correspondence between 2–3 and LLRB. 

 
To be continue. 
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(Lecture 21) B-Trees 

An M-ary search tree allows M-way branching.  

As branching increases, the depth decreases. 

B-trees (Bayer-McCreight, 1972) 
 

Nodes must be half full to guarantee that the tree does not degenerate into a simple binary tree. 

Example: A 5-ary tree of 31 nodes has only three levels: 

 
Example:  

 

Searching in a B-tree 

 Start at root. 

 Find interval for search key and take corresponding link. 

 Search terminates in external node. 
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Insertion in a B-tree 

・ Search for new key. 

・ Insert at bottom. 

・ Split nodes with M key-link pairs on the way up the tree. 

 

Balance in B-tree 

 

 

The B-tree is the most popular data structure for disk bound searching.  
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Example:  A B-tree of order 5 

 

 
 

 

 

 

 

Insertion: insert 57 

 If the leaf contains room for a new item, we insert it and are done. 

 If the leaf is full, we can insert a new item by splitting the leaf and forming two half-empty nodes. 

 

 
The B-tree after insertion of 57 
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Insertion: insert 40 

 Node splitting creates an extra child for the leaf’s parent.  

 If the parent already has a full number of children, we split the parent. 

 We may have to continue splitting all the way up the tree (though this possibility is unlikely).  

 In the worst case, we split the root, creating a new root with two children. 

 

 
Insertion of 40 causes a split into two leaves and then a split of the parent node. 

 

 

 

Deletion works in reverse: remove 99: 

 If a leaf loses a child, it may need to combine with another leaf. 

 Combining of nodes may continue all the way up the tree, though this possibility is unlikely.  

 In the worst case, the root loses one of its two children. Then we delete the root and use the other 

child as the new root. 

 

 
The B-tree after deletion of 99 from the tree 
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(Lecture 22) Splay Trees 

 

Recall: Asymptotic analysis examines how an algorithm will perform in worst case. 

Amortized analysis examines how an algorithm will perform in practice or on average. 

 

The 90–10 rule states that 90% of the accesses are to 10% of the data items.  

However, balanced search trees do not take advantage of this rule. 

 The 90–10 rule has been used for many years in disk I/O systems.  

 A cache stores in main memory the contents of some of the disk blocks. The hope is that when a disk 

access is requested, the block can be found in the main memory cache and thus save the cost of an 

expensive disk access. 

 Browsers make use of the same idea: A cache stores locally the previously visited Web pages. 

 

Splay Trees: 

 Like AVL trees, use the standard binary search tree property. 

 After any operation on a node, make that node the new root of the tree. 

 

A simple self-adjusting strategy (that does not work) 

The easiest way to move a frequently accessed item toward the root is to rotate it continually with its parent. 

Moving the item closer to the root, a process called the rotate-to-root strategy. 

 If the item is accessed a second time, the second access is cheap. 

Example: Rotate-to-root strategy applied when node 3 is accessed 

 

 
 As a result of the rotation: 

o future accesses of node 3 are cheap 

o Unfortunately, in the process of moving node 3 up two levels, nodes 4 and 5 each move down a 

level. 

 Thus, if access patterns do not follow the 90–10 rule, a long sequence of bad accesses can occur. 
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The basic bottom-up splay tree 

Splaying cases: 

 The zig case (normal single rotation) 

If X is a non root node on the access path on which we are rotating and the parent of X is the root of 

the tree, we merely rotate X and the root, as shown: 

 
 

Otherwise, X has both a parent P and a grandparent G, and we must consider two cases and symmetries. 

 zig-zag case: 

 This corresponds to the inside case for AVL trees.  

 Here X is a right child and P is a left child (or vice versa: X is a left child and P is a right child). 

 We perform a double rotation exactly like an AVL double rotation, as shown: 

 

 zig-zig case: 

 The outside case for AVL trees. 

 Here, X and P are either both left children or both right children. 

 In this case, we transform the left-hand tree to the right-hand tree (or vice versa). 

 Note that this method differs from the rotate-to-root strategy.  

o The zig-zig splay rotates between P and G and then X and P, whereas the rotate-to-root 

strategy rotates between X and P and then between X and G. 
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Splaying has the effect of roughly halving the depth of most nodes on the access path and increasing by at 

most two levels the depth of a few other nodes. 

 

Example: Result of splaying at node 1 (three zig-zigs) 

 
Exercise: perform rotate-to-root strategy 

 

Basic splay tree operations 

A splay operation is performed after each access: 

 After an item has been inserted as a leaf, it is splayed to the root. 

 All searching operations incorporate a splay. (find, findMin and findMax) 

 To perform deletion, we access the node to be deleted, which puts the node at the root. If it is deleted, 

we get two subtrees, L and R (left and right). If we find the largest element in L, using a findMax 

operation, its largest element is rotated to L’s root and L’s root has no right child. We finish the remove 

operation by making R the right child of L’s root. An example of the remove operation is shown below: 

 

Example: The remove operation applied to node 6: 

 First, 6 is splayed to the root, leaving two subtrees;  

 A findMax is performed on the left subtree, raising 5 to the root of the left subtree;  

 Then the right subtree can be attached (not shown). 

 
 The cost of the remove operation is two splays. 
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(Lecture 23 & 24) Hash Tables 

• Hashing: is a technique that determines element index using only element’s distinct search key. 

• Hash function:   

 Takes a search key and produces the integer index of an element in the hash table. 

 Search key—maps, or hashes, to the index. 

 

Example 1: Phone numbers (xxx-xxxx). 

・Bad: first three digits.   // identical for same area 

・Better: last four digits.   // distinct  

Example 2: Social Security numbers (ID number). 

・Bad: first three digits.   // identical for same period 

・Better: last three digits.   // distinct 

 

Practical challenge: Need different approach for each key type. 

 

Simple algorithms for the hash operations that add and retrieve: 

 
Typical Hashing 

Typical hash functions perform two steps: 

1. Convert search key to an integer called the hash code. 

2. Compress hash code into the range of indices for hash table. 

 
 

• Typical hash functions are not perfect:  

 Can allow more than one search key to map into a single index. 

 Causes a collision in the hash table. 

Example: Consider tableSize = 101  

 getHashIndex(555-1264) = 52 

 getHashIndex(555-8132) = 52 also!!! 
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Hash Functions 

• A good hash function should: 

 Minimize collisions 

 Be fast to compute 

• To reduce the chance of a collision 

 Choose a hash function that distributes entries uniformly throughout hash table. 

 

Java’s hash code conventions 

All Java classes inherit a method hashCode(), which returns a 32-bit int. 

Default implementation: Memory address.  

Customized implementations: Integer, Double, String, File, URL, Date, … 

User-defined types: Users are on their own. 

Java library implementations: 

Integer 

 
 

Boolean 

 
 

Double   
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String      

  
  

Horner's method to hash string of length L: 

 
Example:   

 
 

Implementing hash code: user-defined types 

Hash code design 

"Standard" recipe for user-defined types: 

・Combine each significant field using the 31x + y rule. 

・If field is a primitive type, use wrapper type hashCode(). 

・If field is null, return 0. 

・If field is a reference type, use hashCode(). 

・If field is an array, apply to each entry.   or use Arrays.deepHashCode() 

Example: 
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Compressing a Hash Code 

Hash code: An int between -231 and 231 - 1. 

Hash function: An int between 0 and M-1 (for use as array index). 

• Common way to scale an integer 

 Use Java % operator   hash code % m 

• Avoid m as power of 2 or 10 

• Best to use an odd number for m  

• Prime numbers often give good distribution of hash values 

 

 
 

Resolving Collisions 

• Collisions: Two distinct keys hashing to same index. 

• Two choices: 

 Change the structure of the hash table so that each array location can represent more than one 

value.  (Separate Chaining) 

 Use another empty location in the hash table.  (Open Addressing) 

 

Separate Chaining 

• Alter the structure of the hash table: 

 Each location can represent more than one value. 

 Such a location is called a bucket 

• Decide how to represent a bucket:  list, sorted list; array; linked nodes; vector; etc. 
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Where to insert a new entry into a linked bucket? 

(a) If unsorted (apply 90-10 rule): 

 
(b) If sorted: 

 
 

Time Complexity 

Worst case: all keys mapped to the same location  one long list of size N 

Find(key)   O(n)        

Best case: hashing uniformly distribute records over the hash table  each list long = N/M = α  

(α is load factor) 

Find(key)   O(1 + α) 

 

Design Consequences: 

・M too large  too many empty chains. 

・M too small  chains too long. 

・Typical choice: M ≈ N / 5  constant-time ops. 
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Open Addressing 

 Linear Probing  

• When a new key collides, find next empty slot, and put it there. 

• Hash: Map key to integer k between 0 and M-1. 

• Insert: Put at table index k if free; if not try k+1, k+2, etc. 

 If reaches end of table, go to beginning of table (Circular hash table) 

• Hash function:   h(k,i) = (h(k,0)+i) % m 

• Array size M must be greater than number of key-value pairs N. 

 

Example: Linear hash table demo:  take last 2 digits of student’s ID and run a demo 

 
 

Clustering problem:  A contiguous block of items will be easily formed which in turn will affect 

performance. 

 

Q. What is mean displacement of items?    (Knuth’s Parking Problem) 

 Model: Cars arrive at one-way street with M parking spaces. If space k is taken, try k+1, k+2, etc. 
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 Quadratic Probing 

• Linear probing looks at consecutive locations beginning at index k 

• Quadratic probing, considers the locations at indices k + j2  

 Uses the indices k, k+1, k + 4, k + 9, … 

 

 
 

 Hash function:   h(k,i) = (h(k,0)+i2) % m 

 For linear probing it is a bad idea to let the hash table get nearly full, because performance degrades.  

 For quadratic probing, the situation is even worse: There is no guarantee of finding an empty cell once 

the table gets more than half full, or even before the table gets half full if the table size is not prime. 

 Standard deletion cannot be performed in a probing hash table, because the cell might have caused a 

collision to go past it. (instead soft deletion is used) 

 

Double Hashing 

• Linear probing and quadratic probing add increments to k to define a probe sequence 

 Both are independent of the search key 

• Double hashing uses a second hash function to compute these increments  

 This is a key-dependent method. 

 The 2nd hash function must never evaluate to zero. 

 

 
The 1st three locations in a probe sequence generated by double hashing for the search key 16 
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Potential Problem with Open Addressing 

• Note that each location is either occupied, empty (null), or available (removed) 

 Frequent additions and removals can result in no locations that are null 

• Thus searching a probe sequence will not work 

• Consider separate chaining as a solution 

 

Time Complexity 

 

 

Rehashing 

 If the table gets too full, the running time for the operations will start taking too long and insertions 

might fail for open addressing hashing with quadratic resolution. 

 A solution, then, is to build another table that is about twice as big (with an associated new hash 

function) and scan down the entire original hash table, computing the new hash value for each (non 

deleted) element and inserting it in the new table. 

 This entire operation is called rehashing. 

o This is obviously a very expensive operation; the running time is O(N), since there are N 

elements to rehash and the table size is roughly 2N, but it is actually not all that bad, because it 

happens very infrequently. 
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(Lecture 25) Priority Queues (Heaps) 

 

 

 

 

 

 

 

 

 


