
Data Structure: Lectures Note 2015 Prepared by: Dr. Mamoun Nawahdah

1

COMP232

Data Structure

Lectures Note: part 2

Prepared by: Dr. Mamoun Nawahdah

2015

Data Structure: Lectures Note 2015 Prepared by: Dr. Mamoun Nawahdah

2

Table of Contents

(Lecture 17, 18) AVL Trees .. 3

(Lecture 19) 2-3 Trees ... 11

(Lecture 20) Recursion (Time Analysis Revision) .. 15

(Lecture xx) Red-Black Trees (Optional) .. 20

(Lecture 21) B-Trees .. 21

(Lecture 22) Splay Trees .. 25

(Lecture 23 & 24) Hash Tables .. 28

(Lecture 25) Priority Queues (Heaps).. 36

Data Structure: Lectures Note 2015 Prepared by: Dr. Mamoun Nawahdah

3

(Lecture 17, 18) AVL Trees

• An AVL tree is a BST with the additional balance property that, for any node in the tree, the height of
the left and right subtrees can differ by at most 1.

• Complete binary trees are balanced.

Single Rotations

Example: After inserting (a) 60; (b) 50; and (c) 20 into an initially empty BST, the tree is not balanced;
(d) a corresponding AVL tree rotates its nodes to restore balance

Example: (a) Adding 80 to the tree does not change the balance of the tree;

(b) a subsequent addition of 90 makes the tree unbalanced ;
(c) a left rotation restores its balance

Case 1: Single Right Rotation

Before and after an addition to an AVL subtree that requires a right rotation to maintain its balance.

Data Structure: Lectures Note 2015 Prepared by: Dr. Mamoun Nawahdah

4

Example: Before and after a right rotation restores balance to an AVL tree

Case 2: Single Left Rotation

Before and after an addition to an AVL subtree that requires a left rotation to maintain its balance

Data Structure: Lectures Note 2015 Prepared by: Dr. Mamoun Nawahdah

5

Double Rotations

A double rotation is accomplished by performing two single rotations:
1. A rotation about node N’s grandchild G (its child’s child)
2. A rotation about node N’s new child

Case 3: Right-Left Double Rotations

Example: (a) Adding 70 destroys tree’s balance; to restore the balance, perform both

(b) a right rotation and (c) a left rotation

Before and after an addition to an AVL subtree that requires both

a right rotation and a left rotation to maintain its balance

Data Structure: Lectures Note 2015 Prepared by: Dr. Mamoun Nawahdah

6

Case 4: Left-Right Double Rotations
Example:

(a) The AVL tree after additions that maintain its balance;

(b) after an addition that destroys the balance;
(c) after a left rotation;
(d) after a right rotation

Data Structure: Lectures Note 2015 Prepared by: Dr. Mamoun Nawahdah

7

Before and after an addition to an AVL subtree that requires both

a left rotation and a right rotation to maintain its balance

• Four rotations cover the only four possibilities for the cause of the imbalance at node N
• The addition occurred at:

 The left subtree of N’s left child (case 1: right rotation)
 The right subtree of N’s left child (case 4: left-right rotation)
 The left subtree of N’s right child (case 3: right-left rotation)
 The right subtree of N’s right child (case 2: left rotation)

Data Structure: Lectures Note 2015 Prepared by: Dr. Mamoun Nawahdah

8

An AVL Tree Versus a BST

Example: The result of adding 60, 50, 20, 80, 90, 70, 55, 10, 40, and 35 to an initially empty

(a) AVL tree; (b) BST

Code Implementation (Optional)
• The implementation of the method for a single right rotation:

• The implementation for a right-left double rotation:

Data Structure: Lectures Note 2015 Prepared by: Dr. Mamoun Nawahdah

9

• Pseudo-code to rebalance the tree:

• Implementation for rebalancing within the class AVLTree:

Data Structure: Lectures Note 2015 Prepared by: Dr. Mamoun Nawahdah

10

• Methods to Add:

• AddEntry code:

Data Structure: Lectures Note 2015 Prepared by: Dr. Mamoun Nawahdah

11

(Lecture 19) 2-3 Trees

• Definition: general search tree whose interior nodes must have either 2 or 3 children.

 A 2-node contains one data item s and has two children

 A 3-node contains two data items, s and l, and has three children

Searching a 2-3 Tree:

Adding Entries to a 2-3 Tree:

Adding (a) 60 and (b) 50; (c), (d) adding 20 causes the 3-node to split

The 2-3 tree after adding (a) 80; (b) 90; (c) 70

Adding 55 to the 2-3 tree, causes a leaf and then the root to split

Data Structure: Lectures Note 2015 Prepared by: Dr. Mamoun Nawahdah

12

The 2-3 tree, after adding 10, 40, 35

Splitting Nodes during Addition

 Splitting a leaf to accommodate a new entry when the leaf’s parent contains:

o (a) one entry;

o (b) two entries

 Splitting an internal node to accommodate a new entry:

 Splitting the root to accommodate a new entry:

Data Structure: Lectures Note 2015 Prepared by: Dr. Mamoun Nawahdah

13

2-3 tree: performance

Perfect balance. Every path from root to null link has same length.

Tree height:

・Worst case: log N. [all 2-nodes]

・Best case: log3 N ≈ .631 log N. [all 3-nodes]

・Between 12 and 20 for a million nodes.

・Between 18 and 30 for a billion nodes.

2-3 tree: implementation?

Direct implementation is complicated, because:

・Maintaining multiple node types is cumbersome.

・Need multiple compares to move down tree.

・Need to move back up the tree to split 4-nodes.

・Large number of cases for splitting.

Bottom line. Could do it, but there's a better way.

HW: 50 60 70 40 30 20 10 80 90 100

2-4 Trees
• Sometimes called a 2-3-4 tree

 General search tree

 Interior nodes must have either two, three, or four children

 Leaves occur on the same level

 A 4-node contains three data items s, m, and l and has four children.

Data Structure: Lectures Note 2015 Prepared by: Dr. Mamoun Nawahdah

14

Adding Entries to a 2-4 Tree

The 2-4 tree, after (a) splitting the root; (b) adding 80; (c) adding 90

Adding 70

The 2-4 tree after adding (a) 55; (b) 10; (c) 40

Adding 5

The 2-4 tree after (a) splitting the leftmost 4-node; (b) adding 35

Comparing AVL, 2-3, and 2-4 Trees

Three balanced search trees obtained by adding 60, 50, 20, 80, 90, 70, 55, 10, 40, and 35:

(a) AVL tree; (b) 2-3 tree; (c) 2-4 tree

Data Structure: Lectures Note 2015 Prepared by: Dr. Mamoun Nawahdah

15

(Lecture 20) Recursion (Time Analysis Revision)

Example 1: Write a recursive method to calculate the sum of squares of the first n natural numbers. n is to be

given as an input.
public int sumOfSquares(int n) {
 if (n==1)
 return 1;

 return n*n + sumOfSquares(n-1);
}

Recursion may sometimes be very intuitive and simple, but it may not be the best thing to do.

Example 2: Fibonacci Sequence:

 F(n) = n if n=0,1 ; F(n) = F(n-1) + F(n-2) if n > 1

0 1 1 2 3 5 8 13 ..

F(0) F(1) F(2) F(3) F(4) F(5) F(6) F(7) ..

Solution 1: Iterative

public static int fib1(int n){

 if(n<=1) return n;

 int f1 = 0, f2 = 1, res=0;

 for(int i=2; i<=n; i++){

 res =f1+f2;

 f1=f2;

 f2=res;

 }

 return res;

}

Solution 2: Recursion

public static int fib2(int n){

 if(n<=1) return n;

 return (fib2(n-1)+fib2(n-2));

 }

Test for n=6 and n=40

Why recursive solution is taking much time?

Do analyze the 2 algorithms in term of calculating F(n)

In Solution 1:

We have F(0) and F(1) given

Then we calculate F(2) using F(1) and F(0)

 F(3) using F(2) and F(1)

F(4) using F(3) and F(2)

:

F(n) using F(n-1) and F(n-2)

Data Structure: Lectures Note 2015 Prepared by: Dr. Mamoun Nawahdah

16

In Solution 2:

F(5)

F(4) F(3)

F(3) F(2) F(2) F(1)

F(2) F(1) F(1) F(0) F(1) F(0)

F(1) F(0)

Note: we are calculating the same value multiple times!!

n F(2) F(3) ..

5 3 2

6 5

8 13

:

40 63245986

Exponential growth

Time and Space complexity Analysis of recursion

Example: recursive factorial

 fact(n){

 If (n==0) return 1;

 Return n * fact(n-1);

}

 Calculate operation costs:

o If statement takes 1 unit of time

o Multiplication (*) takes 1 unit of time

o Subtraction (-) takes 1 unit of time

o Function call

 So T(0) = 1

T(n) = 3 + T(n-1) for n > 0

To solve this equation, reduce T(n) in term of its base conditions.

T(n) = T(n-1) + 3

 = T(n-2) + 6

 = T(n-3) + 9

 :

 = T(n-k) + 3k

For T(0) n-k = 0 n = k

Therefore T(n) = T(0) + 3n

 = 1 + 3n O(n)

Data Structure: Lectures Note 2015 Prepared by: Dr. Mamoun Nawahdah

17

Space analysis:

 Recursive Tree

 Fact(5) Fact(4) Fact(3) Fact(2) Fact(1) Fact(0)

Each function call will cause to save current function state into memory (call stack, push):

Fact(1)

Fact(2)

Fact(3)

Fact(4)

Fact(5)

 Each return statement will retrieve previous saved function state from memory (pop):

So needed space is proportional to n O(n)

Fibonacci sequence time complexity analysis

public static int fib2(int n){

 if(n<=1) return n;

 return (fib2(n-1)+fib2(n-2));

 }

 Calculate operation costs:

o If statement takes 1 unit of time

o 2 subtractions (-) takes 2 unit of time

o 1 addition (+) takes 1 unit of time

o 2 function calls

 So T(0) = T(1) = 1

T(n) = T(n-1) + T(n-2) + 4 for n > 1

To solve this equation, reduce T(n) in term of its base conditions.

For approximation assume T(n-1) ≈ T(n-2) in reality T(n-1) > T(n-2)

 T(n) = 2 T(n-2) + 4 c = 4

 = 2 T(n-2) + c T(n-2) = 2 T(n-4) + c

 = 2 { 2 T(n-4) + c } + c

 = 4 T(n-4) + 3c

 = 8 T(n-6) + 7c

 = 16 T(n-8) + 15c

 :

 = 2k T(n-2k) +(2k-1)c

For T(0) n-2k = 0 k = n/2

Therefore T(n) = 2n/2 T(0) + (2n/2 - 1) c 2n/2 (1+c) - c

 T(n) is proportional to 2n/2 O(2n/2) lower bound analysis

Data Structure: Lectures Note 2015 Prepared by: Dr. Mamoun Nawahdah

18

Similarly, for approximation assume T(n-2) ≈ T(n-1) in reality T(n-2) < T(n-1)

 T(n) = 2 T(n-1) + c T(n-1) = 2 T(n-2) + c

 = 2 { 2 T(n-2) + c } + c

 = 4 T(n-2) + 3c

 = 8 T(n-3) + 7c

 = 16 T(n-4) + 15c

 :

 = 2k T(n-k) +(2k-1)c

For T(0) n-k = 0 k = n

Therefore T(n) = 2n T(0) + (2n - 1) c 2n (1+c) - c

T(n) is proportional to 2n O(2n) upper bound analysis worst case analysis

While for iterative solution O(n)

Recursion with memorization

Solution: don’t calculate something already has been calculated.

Algorithm:

 fib(n){

 If (n<=1) return n

 If(F[n] is in memory) return F[n]

 F[n] = fib(n-1) + fib(n-2)

 Return F[n]

 }

Time complexity O(n)

Calculate Xn using recursion

Iterative solution: O(n)
Xn = X * X * X * X * …. * X

n-1 multiplication

Recursive solution 1: O(n)

Xn = X * Xn-1 if n > 0
X0 = 1 if n > 0

Recursive solution 2: O(log n)

Xn = Xn/2 * Xn/2 if n is even
Xn = X * Xn-1 if n is odd

X0 = 1 if n > 0

res = 1
for i1 to n
 res res * x

pow(x, n){
 if n==0 return 1
 return x * pow(x, n-1)
}

pow(x, n){
 if n==0 return 1
 if n%2 == 0 {
 y pow(x, n/2)
 return y * y
 }
 return x * pow(x, n-1)
}

Data Structure: Lectures Note 2015 Prepared by: Dr. Mamoun Nawahdah

19

Recursive solution 1: Time analysis

T(1) = 1

T(n) = T(n-1) + c

 = (T(n-2) + c) + c T(n-2) + 2c

 = T(n-3) + 3c

 :

 = T(n-k) + kc

For T(0) n-k = 0 n = k

T(n) = T(0) + nc 1 + nc O(n)

Recursive solution 2: Time analysis

 Xn = Xn/2 * Xn/2 if n is even

 Xn = X * Xn-1 if n is odd

 Xn = 1 if n == 0

 Xn = X * 1 if n == 1

If even T(n) = T(n/2) + c1

If odd T(n) = T(n-1) + c2

If 0 T(0) = 1

If 1 T(1) = c3

If odd, next call will become even:

T(n) = T((n-1)/2) + c1 + c2

If even

T(n) = T(n/2) + c

 = T(n/4) + 2c

 = T(n/8) + 3c

 :

 = T(n/2k) + k c

For T(1) T(0) + c 1

n/2k = 1 n = 2k k = log n

 = c3 + c log n O(log n)

Data Structure: Lectures Note 2015 Prepared by: Dr. Mamoun Nawahdah

20

(Lecture xx) Red-Black Trees (Optional)

Left-leaning red-black BSTs (Guibas-Sedgewick 1979 and Sedgewick 2007): LLRB

1. Represent 2–3 tree as a BST.

2. Use "internal" left-leaning links as "glue" for 3–nodes.

Example:

An equivalent definition:

Key property. 1–1 correspondence between 2–3 and LLRB.

To be continue.

Data Structure: Lectures Note 2015 Prepared by: Dr. Mamoun Nawahdah

21

(Lecture 21) B-Trees

An M-ary search tree allows M-way branching.

As branching increases, the depth decreases.

B-trees (Bayer-McCreight, 1972)

Nodes must be half full to guarantee that the tree does not degenerate into a simple binary tree.

Example: A 5-ary tree of 31 nodes has only three levels:

Example:

Searching in a B-tree

 Start at root.

 Find interval for search key and take corresponding link.

 Search terminates in external node.

Data Structure: Lectures Note 2015 Prepared by: Dr. Mamoun Nawahdah

22

Insertion in a B-tree

・ Search for new key.

・ Insert at bottom.

・ Split nodes with M key-link pairs on the way up the tree.

Balance in B-tree

The B-tree is the most popular data structure for disk bound searching.

Data Structure: Lectures Note 2015 Prepared by: Dr. Mamoun Nawahdah

23

Example: A B-tree of order 5

Insertion: insert 57

 If the leaf contains room for a new item, we insert it and are done.

 If the leaf is full, we can insert a new item by splitting the leaf and forming two half-empty nodes.

The B-tree after insertion of 57

Data Structure: Lectures Note 2015 Prepared by: Dr. Mamoun Nawahdah

24

Insertion: insert 40

 Node splitting creates an extra child for the leaf’s parent.

 If the parent already has a full number of children, we split the parent.

 We may have to continue splitting all the way up the tree (though this possibility is unlikely).

 In the worst case, we split the root, creating a new root with two children.

Insertion of 40 causes a split into two leaves and then a split of the parent node.

Deletion works in reverse: remove 99:

 If a leaf loses a child, it may need to combine with another leaf.

 Combining of nodes may continue all the way up the tree, though this possibility is unlikely.

 In the worst case, the root loses one of its two children. Then we delete the root and use the other

child as the new root.

The B-tree after deletion of 99 from the tree

Data Structure: Lectures Note 2015 Prepared by: Dr. Mamoun Nawahdah

25

(Lecture 22) Splay Trees

Recall: Asymptotic analysis examines how an algorithm will perform in worst case.

Amortized analysis examines how an algorithm will perform in practice or on average.

The 90–10 rule states that 90% of the accesses are to 10% of the data items.

However, balanced search trees do not take advantage of this rule.

 The 90–10 rule has been used for many years in disk I/O systems.

 A cache stores in main memory the contents of some of the disk blocks. The hope is that when a disk

access is requested, the block can be found in the main memory cache and thus save the cost of an

expensive disk access.

 Browsers make use of the same idea: A cache stores locally the previously visited Web pages.

Splay Trees:

 Like AVL trees, use the standard binary search tree property.

 After any operation on a node, make that node the new root of the tree.

A simple self-adjusting strategy (that does not work)

The easiest way to move a frequently accessed item toward the root is to rotate it continually with its parent.

Moving the item closer to the root, a process called the rotate-to-root strategy.

 If the item is accessed a second time, the second access is cheap.

Example: Rotate-to-root strategy applied when node 3 is accessed

 As a result of the rotation:

o future accesses of node 3 are cheap

o Unfortunately, in the process of moving node 3 up two levels, nodes 4 and 5 each move down a

level.

 Thus, if access patterns do not follow the 90–10 rule, a long sequence of bad accesses can occur.

Data Structure: Lectures Note 2015 Prepared by: Dr. Mamoun Nawahdah

26

The basic bottom-up splay tree

Splaying cases:

 The zig case (normal single rotation)

If X is a non root node on the access path on which we are rotating and the parent of X is the root of

the tree, we merely rotate X and the root, as shown:

Otherwise, X has both a parent P and a grandparent G, and we must consider two cases and symmetries.

 zig-zag case:

 This corresponds to the inside case for AVL trees.

 Here X is a right child and P is a left child (or vice versa: X is a left child and P is a right child).

 We perform a double rotation exactly like an AVL double rotation, as shown:

 zig-zig case:

 The outside case for AVL trees.

 Here, X and P are either both left children or both right children.

 In this case, we transform the left-hand tree to the right-hand tree (or vice versa).

 Note that this method differs from the rotate-to-root strategy.

o The zig-zig splay rotates between P and G and then X and P, whereas the rotate-to-root

strategy rotates between X and P and then between X and G.

Data Structure: Lectures Note 2015 Prepared by: Dr. Mamoun Nawahdah

27

Splaying has the effect of roughly halving the depth of most nodes on the access path and increasing by at

most two levels the depth of a few other nodes.

Example: Result of splaying at node 1 (three zig-zigs)

Exercise: perform rotate-to-root strategy

Basic splay tree operations

A splay operation is performed after each access:

 After an item has been inserted as a leaf, it is splayed to the root.

 All searching operations incorporate a splay. (find, findMin and findMax)

 To perform deletion, we access the node to be deleted, which puts the node at the root. If it is deleted,

we get two subtrees, L and R (left and right). If we find the largest element in L, using a findMax

operation, its largest element is rotated to L’s root and L’s root has no right child. We finish the remove

operation by making R the right child of L’s root. An example of the remove operation is shown below:

Example: The remove operation applied to node 6:

 First, 6 is splayed to the root, leaving two subtrees;

 A findMax is performed on the left subtree, raising 5 to the root of the left subtree;

 Then the right subtree can be attached (not shown).

 The cost of the remove operation is two splays.

Data Structure: Lectures Note 2015 Prepared by: Dr. Mamoun Nawahdah

28

(Lecture 23 & 24) Hash Tables

• Hashing: is a technique that determines element index using only element’s distinct search key.

• Hash function:

 Takes a search key and produces the integer index of an element in the hash table.

 Search key—maps, or hashes, to the index.

Example 1: Phone numbers (xxx-xxxx).

・Bad: first three digits. // identical for same area

・Better: last four digits. // distinct

Example 2: Social Security numbers (ID number).

・Bad: first three digits. // identical for same period

・Better: last three digits. // distinct

Practical challenge: Need different approach for each key type.

Simple algorithms for the hash operations that add and retrieve:

Typical Hashing

Typical hash functions perform two steps:

1. Convert search key to an integer called the hash code.

2. Compress hash code into the range of indices for hash table.

• Typical hash functions are not perfect:

 Can allow more than one search key to map into a single index.

 Causes a collision in the hash table.

Example: Consider tableSize = 101

 getHashIndex(555-1264) = 52

 getHashIndex(555-8132) = 52 also!!!

Data Structure: Lectures Note 2015 Prepared by: Dr. Mamoun Nawahdah

29

Hash Functions

• A good hash function should:

 Minimize collisions

 Be fast to compute

• To reduce the chance of a collision

 Choose a hash function that distributes entries uniformly throughout hash table.

Java’s hash code conventions

All Java classes inherit a method hashCode(), which returns a 32-bit int.

Default implementation: Memory address.

Customized implementations: Integer, Double, String, File, URL, Date, …

User-defined types: Users are on their own.

Java library implementations:

Integer

Boolean

Double

Data Structure: Lectures Note 2015 Prepared by: Dr. Mamoun Nawahdah

30

String

Horner's method to hash string of length L:

Example:

Implementing hash code: user-defined types

Hash code design

"Standard" recipe for user-defined types:

・Combine each significant field using the 31x + y rule.

・If field is a primitive type, use wrapper type hashCode().

・If field is null, return 0.

・If field is a reference type, use hashCode().

・If field is an array, apply to each entry. or use Arrays.deepHashCode()

Example:

Data Structure: Lectures Note 2015 Prepared by: Dr. Mamoun Nawahdah

31

Compressing a Hash Code

Hash code: An int between -231 and 231 - 1.

Hash function: An int between 0 and M-1 (for use as array index).

• Common way to scale an integer

 Use Java % operator hash code % m

• Avoid m as power of 2 or 10

• Best to use an odd number for m

• Prime numbers often give good distribution of hash values

Resolving Collisions

• Collisions: Two distinct keys hashing to same index.

• Two choices:

 Change the structure of the hash table so that each array location can represent more than one

value. (Separate Chaining)

 Use another empty location in the hash table. (Open Addressing)

Separate Chaining

• Alter the structure of the hash table:

 Each location can represent more than one value.

 Such a location is called a bucket

• Decide how to represent a bucket: list, sorted list; array; linked nodes; vector; etc.

Data Structure: Lectures Note 2015 Prepared by: Dr. Mamoun Nawahdah

32

Where to insert a new entry into a linked bucket?

(a) If unsorted (apply 90-10 rule):

(b) If sorted:

Time Complexity

Worst case: all keys mapped to the same location one long list of size N

Find(key) O(n)

Best case: hashing uniformly distribute records over the hash table each list long = N/M = α

(α is load factor)

Find(key) O(1 + α)

Design Consequences:

・M too large too many empty chains.

・M too small chains too long.

・Typical choice: M ≈ N / 5 constant-time ops.

Data Structure: Lectures Note 2015 Prepared by: Dr. Mamoun Nawahdah

33

Open Addressing

 Linear Probing

• When a new key collides, find next empty slot, and put it there.

• Hash: Map key to integer k between 0 and M-1.

• Insert: Put at table index k if free; if not try k+1, k+2, etc.

 If reaches end of table, go to beginning of table (Circular hash table)

• Hash function: h(k,i) = (h(k,0)+i) % m

• Array size M must be greater than number of key-value pairs N.

Example: Linear hash table demo: take last 2 digits of student’s ID and run a demo

Clustering problem: A contiguous block of items will be easily formed which in turn will affect

performance.

Q. What is mean displacement of items? (Knuth’s Parking Problem)

 Model: Cars arrive at one-way street with M parking spaces. If space k is taken, try k+1, k+2, etc.

Data Structure: Lectures Note 2015 Prepared by: Dr. Mamoun Nawahdah

34

 Quadratic Probing

• Linear probing looks at consecutive locations beginning at index k

• Quadratic probing, considers the locations at indices k + j2

 Uses the indices k, k+1, k + 4, k + 9, …

 Hash function: h(k,i) = (h(k,0)+i2) % m

 For linear probing it is a bad idea to let the hash table get nearly full, because performance degrades.

 For quadratic probing, the situation is even worse: There is no guarantee of finding an empty cell once

the table gets more than half full, or even before the table gets half full if the table size is not prime.

 Standard deletion cannot be performed in a probing hash table, because the cell might have caused a

collision to go past it. (instead soft deletion is used)

Double Hashing

• Linear probing and quadratic probing add increments to k to define a probe sequence

 Both are independent of the search key

• Double hashing uses a second hash function to compute these increments

 This is a key-dependent method.

 The 2nd hash function must never evaluate to zero.

The 1st three locations in a probe sequence generated by double hashing for the search key 16

Data Structure: Lectures Note 2015 Prepared by: Dr. Mamoun Nawahdah

35

Potential Problem with Open Addressing

• Note that each location is either occupied, empty (null), or available (removed)

 Frequent additions and removals can result in no locations that are null

• Thus searching a probe sequence will not work

• Consider separate chaining as a solution

Time Complexity

Rehashing

 If the table gets too full, the running time for the operations will start taking too long and insertions

might fail for open addressing hashing with quadratic resolution.

 A solution, then, is to build another table that is about twice as big (with an associated new hash

function) and scan down the entire original hash table, computing the new hash value for each (non

deleted) element and inserting it in the new table.

 This entire operation is called rehashing.

o This is obviously a very expensive operation; the running time is O(N), since there are N

elements to rehash and the table size is roughly 2N, but it is actually not all that bad, because it

happens very infrequently.

Data Structure: Lectures Note 2015 Prepared by: Dr. Mamoun Nawahdah

36

(Lecture 25) Priority Queues (Heaps)

