[bookmark: _Hlk517887217]بسم الله الرحمن الرحيم

[image: download]Computer Science Department
COMP2321
Data Structure In C
Project#4:Sorting Algorthims

Student Name:
Majd Khasib
ID #:
1162331

Instructors Name:
Iyad Jaber

2

· Abstract:

In this report we are going to talk about some of the most used sorting algorithms ,their properties with examples and how they are compared.

Contents
1). Counting Sort:	4
2). Bucket Sort:	6
3.)Cocktail Sort:	8
4).Gnome Sort:	9
5).Comb Sort:	11
	Summary:	14
	References:	15

[bookmark: _GoBack]

[bookmark: _Toc520719597][bookmark: _Toc532796683]1). Counting Sort:
Counting Sort is easy to be implemented. It needs a range of the data to be sorted, uses the number of occurrences of each element as an index to get the sorted array.
[image:]The following pseudo code shows how the algorithm works:

To talk about the algorithm properties ,we can see in the blow table.

	
	 The type of case
	
	 Time complexity

	
	Worst (Reverse)
Average(Random)
Best(sorted
	
	 O(n)

	
	Space
	
	 Space=max(A[i])

	
	Stability
	
	 Stable(if line 8 was changed from start to end it become unstable)

[image:][image:]The following is an example of the sort technique :
[bookmark: page17]

[image:]

[bookmark: _Toc532796684]2). Bucket Sort:
Bucket sort is mainly useful when input is uniformly distributed over a range. To use the bucket sort we need to build a bucket to store the elements of the array using a given way. After the elements is being stored in buckets ,each bucket is sorted using a given sorting method(let’s say insertion). Finally, The buckets will have the values sorted and to be moved into the original array.

The following pseudo code shows the algorithm :
[image:]

[bookmark: page18]To talk about the algorithm properties ,see the following table:
	The type of case
	Time complexity

	Best
Average
worst
	O(N+R),where N is number of elements ,R Number of buckets

	space
	Space=N+R

	Stability
	Stable

This is an example of Bucket sort:
[image:][image:]

[bookmark: _Toc532796685]3.)Cocktail Sort:
Cocktail Sort is a sorting algorithm that traverses the array from both directions at each iteration using a variation of Bubble sort, in a given iteration the largest number will hold at last in forward direction, while the smallest number will be at first of the start index of the given iteration.

The following C code shows how the algorithm works:
[image:]

The below table shows the algorithm properties :

	The type of case
	Time complexity

	Best(sorted)
Worst(Reversed)
	O(n)
O(n*n)

	space
	Space=C,c is a constant to hold swap varaible

	Stability
	Stable

This example illustrates how the algorithm works:
[image:]

[bookmark: _Toc532796686]4).Gnome Sort:

Gnome Sort also called Stupid sort is based on the concept of a Garden Gnome sorting his flower pots. A garden gnome sorts the flower pots by the following method-

He looks at the flower pot next to him and the previous one; if they are in the right order he steps one pot forward, otherwise he swaps them and steps one pot backwards.

If there is no previous pot (he is at the starting of the pot line), he steps forwards; if there is no pot next to him (he is at the end of the pot line), he is done.
The following C code shows how the algorithm works:
[image:]

The following table shows the properties of the algorithm:
	The type of case
	Time complexity

	Best(sorted)
Worst(Reversed)
	O(n)
O(n*n)

	space
	Space=C,c is a constant to hold swap varaible

	Stability
	Stable

The following example illustrates the algorithm:
[image:]

[bookmark: _Toc532796687]5).Comb Sort:
Comb Sort is mainly an improvement over Bubble Sort. Bubble sort always compares adjacent values. So all inversions are removed one by one. Comb Sort improves on Bubble Sort by using gap of size more than 1. The gap starts with a large value and shrinks by a factor of 1.3 in every iteration until it reaches the value 1.
Thus Comb Sort removes more than one inversion counts with one swap and performs better than Bubble Sort.
The shrink factor has been empirically found to be 1.3 (by testing Comb sort on over 200,000 random lists) [Source: Wiki]

The pseudo code for the Comb sort is int the following figure:
[image:]

The properties for the comp sort is:
	The type of case
	Time complexity

	Best(sorted)
Worst(Reversed)
	O(n)
O(n*n)

	space
	Space=C,c is a constant to hold swap varaible

	Stability
	 Not Stable

The following example shows the algorithm:

[image:]

· [bookmark: _Toc532796688]Summary:
The following table shows time complexity, space and stability of the used algorithms.

	Name
	Best
	Average
	Worst
	Space
	Stability

	Counting
	n
	n
	n
	1
	Yes

	Bucket
	N+R
	N+R
	N+R
	N+R
	Yes

	Cocktail
	n
	n*n
	n*n
	1
	Yes

	Gnome
	n
	n*n
	n*n
	1
	Yes

	Comb
	n
	n*n /2^p
	n*n
	1
	No

From the above table we can see the counting sort is the best sorting algorithm between them. However, it can be used for float or negative numbers.

· [bookmark: _Toc520719600][bookmark: _Toc532796689]References:
[1]- http://en.wikipedia.org
[2]- https://geeksforgeeks.org
[3]- http://stackoverflow.com

[bookmark: page10]
[bookmark: page19]

2

image2.jpeg
Counting Sort

CountingSort (A, B, k)
for i=1 to k
cril= 0;
for j=1 to n
CIA[31] += 1;
for i=2 to k
c[i] = c[i] + C[i-1];
for j=n downto 1
BICIA[311] = A[3];
10 crapn

Takes time O(k)

Takes time O(n)

O U WwN H

What will be the running time?

image3.jpeg

image4.jpeg
For simplicity, consider data in range of 0 to 9

(11 fz2]70s]z2)
Q2S4S G B g
02201101 00

Modify the count array by adding the previous counts.

Index :

For simplicity, consider data in range of 0 to 9

(1ol l2]7]s5]2
O T S L5 G 7 S
IE!IIIIIII
22

Index :

image5.jpeg

image6.png
i Bucket sort algorithm

Algorithm BucketSort(S)
(S is an array of entries whose keys are between0.m-1)

for j « 0o m-1do // initilize m buckets
initialize queue b(j]

fori« 0 ton-1do 1/ place in buckets
bISlilgetKey() enqueue(S[il)

i0

for j 0 tom-1do 1/ place elements in

while not b[j]isEmpty()do // buckets back in S
Sli] « b{j]dequeue()
il

image7.png
0.78| 0.17 | 0.39 | 0.26 | 0.72 | 094

0o N o~ =0

012

021
039

0.68
0.72

0.94

017
023

0.78

026

021

012 1023 068

image8.png
0.78| 0.17 | 0.39| 0.26 | 0.72 | 094

0o N~ = o

017
0.26
039

0.68
0.78

094

012
021

0.72

023

021

012 1023 0.68

image9.png
s CoctentiSore ine 20, e =)

Ee——
vapped = fxlse:
S e £ < s)
it > at e €

fon (e % end s 4 5= seaee i) (

it > at o €

Sp(aiil, 2ls + 1)
sapped = crue:

1l

image10.png
First Backward Pass:
(1425028)2(1425028)

(1425028)?(1420528), Swapsince 5>0
(1420528)?(1402528), Swapsince 2>0
(1402528)?(1042528), Swapsince 4 >0
(1042528)?(0142528), Swapsince 1>0

After first backward pass, smallest element of the array will be present at the first index of
the array.

Second Forward Pass:
(0142528)2(0142528)
(0142528)?(0124528), Swapsince 4>2
(0124528)2(0124528)
(0124528)?(0124258), Swapsince 5>2

Second Backward Pass:
(0124258)?(0122458), Swapsinced>2

Now, the array is already sorted, but our algorithm doesrit know if it is completed. The
algorithm needs to complete this whole pass without any swap to know it is sorted.
(0122458)2(0122458)

(0122458)2(0122458)

image11.png
// A function to sort the algorithm using gnome sort
void gnomeSort(int arr[], int n)

{

int index - 0;

while (index < n) {

if (index == 0)
index++;
if (arr[index] >= arr[index - 1])
index++;
else {
swap(arr[index], arr[index - 1]);
index
1
¥
return;

image12.png
34 2 10 -9

2.34 10 -9

2 34 10 -9

2 1034 -9

10 34 -9

2

34 9
34

-9 10 34
9.2 10 34

2 10 34 9
10

2 10 9 34
2 9 10 34
2

2
2

9.2 10 34

-9 2 10 34(sorted output)

-9 2 10 34

image13.png
// Function to sort a[@..n-1] using Comb Sort
void combSort(int a[], int n)
{

// Initialize gap

int gap = n;

// Initialize swapped as true to make sure that
// 1oop runs
bool swapped = true;

// Keep running while gap is more than 1 and last
// iteration caused a swap
while (gap != 1 || swapped
{

true)

// Find next gap
gap = getNextGap(gap);

// Tnitialize swapped as false so that we can
// check if suap happened or not
swapped = false;

// Compare all elements with current gap
for (int i-0; i<n-gap; i++)

{
if (a[i] > ali+gap])
{
swap(a[il, ali+gap]);
swapped = true;
1
1

image14.png
Iniially gap value = 10
After shrinking gap value =>10/13=7;

8415634423 6280
6415534823 8280

6405534823 8281

New gap valu

1325
a0 6me;m
was023 62851

444028162853

New gap valu

51323

441 024628563
4416284 0238563
4416234 02m8563
4416234 0 385628

New gap valu

3n3=2

441604m38562
4416032348562
4416038423562

Newgapalue =>2113=1;

4 61038423562
4460138423562
44 601348235628
460134823285

0 more swaps required (array sorted)

image1.jpeg
553 *)/\;
N A e

BIRZEIT UNIVERSITY

