summary page

NANANANANANANANANANANANANANANA

The five sorting algorimthms are : Cocktail, Comb, Counting, Gnome, Strand

Stable Definition :simply The relative order of items with equal keys is preserved

→ Cocktail (Stable & comparison sort & inplace)

Data structure	Array
Worst case performance	$O(n^2)$
Best case performance	O(n)
Average case performance	$O(n^2)$
Worst case space	O(1)
complexity	

An example of a list that proves the need for cocktail sort : A list (2,3,4,5,1), which would only need to go through one pass of cocktail sort to become sorted, but if using an ascendin <u>gbubble sort</u> would take four passes.

NNNNNNNNNNNNNNNNNNN

→ Comb (inplace ,not stable)

Data structure	Array
Worst case performance	$O(n^2)^{\scriptscriptstyle [1]}$
Best case performance	O(n)
Average case performance	$\Omega(n^2/2^p)$, where $_p$ is the number of increments [1]
Worst case space complexity	O(1)

The basic idea is to eliminate small values near the end of the list, using a gap ...

Gap of initiatly [input size / shrink factor] shrink factor = 1.3 ,,after testing over 200,000 random lists

→ Counting (Stable,only for non negative number)

used as a subroutine in another sorting algorithm, <u>radix sort</u>, →takes linear time :

Time Complexity Analysis

• So the counting sort takes a total time of: O(n + k)

- Counting sort is called stable sort.
 - A sorting algorithm is *stable* when numbers with the same values appear in the output array in the same order as they do in the input array.

→ Gnome(inplace & stable)

moving an element to its proper by a series of swaps

Data structure	Array
Worst case performance	$O(n^2)$
Best case performance	O(n)
Average case performance	$O(n^2)$
Worst case space complexity	O(1) auxiliary

→ Strand (not stable, not in place)

The Idea is pulling sorted sublists out of the list to be sorted and merging them with a result array

NNNNNNNNNNNNNNNNNNNN

THE STANDARD STATES AND A STATES

Data structure	Linked list
Worst case performance	O(n²)
Best case performance	O(n)
Average case performance	O(n²)
Worst case space complexity	O(1) auxiliary