
1

Department of Computer Science

COMP242

Data Structure and Algorithm

Project #4

theoretical part

 a report about 5 new sorting algorithms

Instructor : Iyad Jaber

Section: #1

Name : Maryam Shaheen

ID# : 1140427

2

Contents

1. Count Sort ……….……… ……………………………………... 3

2. Bucket Sort …………………..………………………………… 4

3. Odd-Even Sort …..………………….…….……………………...6

4. Cocktail Sort ……….…………………………………………...8

5. Comb Sort …………………..…………………………….….....9

Summary ……………………………………………………….….11

References ………………………………….………………….… 11

3

5 Sorting Algorithms

1.counting sort:

Counting sort works by creating an auxiliary array the size of the range of

values, the unsorted values are then placed into the new array using

the value as the index. The auxiliary array is now in sorted order and can be

iterated over to construct the sorted array.

Counting sort can be exceptionally fast because of the way that elements are

sorted using their values as array keys. This means that more memory is

required for the extra array at the cost of running time.

 It runs in O(n + k) O(n+k) time where n is the number of elements to be

sorted and k is the number of possible values in the range.

Complexity :

Time Space

Worst case Best case Average case Worst case

O(n+k) O(n + k)O(n+k)

O(n + k)O(n+k)

O(k) auxiliary

Analysis:

Because the algorithm uses only simple for loops, without recursion or subroutine calls, it is

straightforward to analyze. The initialization of the count array, and the second for loop which

performs a prefix sum on the count array, each iterate at most k + 1 times and therefore

take O(k) time. The other two for loops, and the initialization of the output array, each

take O(n) time. Therefore, the time for the whole algorithm is the sum of the times for these

steps, O(n + k).

Because it uses arrays of length k + 1 and n, the total space usage of the algorithm is

also O(n + k). For problem instances in which the maximum key value is significantly smaller

than the number of items, counting sort can be highly space-efficient, as the only storage it uses

other than its input and output arrays is the Count array which uses space O(k).

4

Algorithm :

variables:

input -- the array of items to be sorted; key(x) returns the key for item x

n -- the length of the input

k -- a number such that all keys are in the range 0..k-1

count -- an array of numbers, with indexes 0..k-1, initially all zero

output -- an array of items, with indexes 0..n-1

x -- an individual input item, used within the algorithm

total, oldCount, i -- numbers used within the algorithm

calculate the histogram of key frequencies:

for x in input:

 count[key(x)] += 1

calculate the starting index for each key:

total = 0

for i in range(k): # i = 0, 1, ... k-1

 oldCount = count[i]

 count[i] = total

 total += oldCount

copy to output array, preserving order of inputs with equal keys:

for x in input:

 output[count[key(x)]] = x

 count[key(x)] += 1

return output

2.Bucket Sort :

Bucket sort can be exceptionally fast because of the way

elements are assigned to buckets, typically using an array

where the index is the value. This means that more

auxiliary memory is required for the buckets at the cost of

running time than more comparison sorts. It runs

in O(n+k)O(n+k) time in the average case where n is the

number of elements to be sorted and k is the number of

buckets.

5

Complexity:
Time Space

Worst case Best case Worst case Best case

O(n²) O(n + k)

O(n+k) O(n + k)

Analysis:

 In this sorting algorithm we create buckets and put elements into them

 Then we apply some sorting algorithm (insertion sort) to sort the element in each bucket

 Finally, we take the elements out and join them to get the sorted result.

Algorithm:

function bucketSort(array, n) is

 buckets ← new array of n empty lists

 for i = 0 to (length(array)-1) do

 insert array[i] into buckets[msbits(array[i], k)]

 for i = 0 to n - 1 do

 nextSort(buckets[i]);

 return the concatenation of buckets[0],, buckets[n-1]

Here array is the array to be sorted and n is the number of buckets to use. The

function msbits(x,k) returns the k most significant bits of x (floor(x/2^(size(x)-k)));

different functions can be used to translate the range of elements

in array to n buckets, such as translating the letters A–Z to 0–25 or returning the first

character (0–255) for sorting strings. The function nextSort is a sorting function;

using bucketSort itself as nextSort produces a relative of radix sort; in particular, the

case n = 2 corresponds to quicksort(although potentially with poor pivot choices).

https://en.wikipedia.org/wiki/Radix_sort
https://en.wikipedia.org/wiki/Quicksort

6

3. Odd-Even Sort:

Like bubble sort, odd-even sort works by iterating through the

list, comparing adjacent elements and swapping them if they’re

in the wrong order. The unique characteristic of odd-even sort,

and also how it got its name, is how the sort’s iterations

alternate between sorting odd/even and even/odd indexed pairs.

Much like bubble sort, odd-even sort has very little relevance in

the real world and is mainly used to teach algorithms.

Complexity:
Time Space

Worst case Best case Worst case Best case

O(n²) Θ (n)

O(n²) O(1)

Example:

You can see from the following example how ridiculous the amount of passes needed to sort the

array.

Array Passes

3 – 99 – 25 – 4 – 1 – 2 – 46 – 32 – 23 Initial Array

3 – 25 – 99 – 1 – 4 – 2 – 46 – 23 - 32 Odd/Even Indexed Pairs Compared

3 – 25 – 1 – 99 – 2 – 4 – 23 – 46 – 32 Even/Odd Indexed Pairs Compared

3 – 1 – 25 – 2 – 99 – 4 – 23 – 32 – 46 Odd/Even Indexed Pairs Compared

1 – 3 – 2 – 25 – 4 – 99 – 23 – 32 – 46 Even/Odd Indexed Pairs Compared

1 – 2 – 3 – 4 – 25 – 23 – 99 – 32 – 46 Odd/Even Indexed Pairs Compared

1 – 2 – 3 – 4 – 23 – 25 – 32 – 99 – 46 Even/Odd Indexed Pairs Compared

1 – 2 – 3 – 4 – 23 – 25 – 32 – 46 – 99 Odd/Even Indexed Pairs Compared

1 – 2 – 3 – 4 – 23 – 25 – 32 – 46 – 99
Even/Odd Indexed Pairs Compared

sorted = true, stop the loop

http://www.growingwiththeweb.com/2014/02/bubble-sort.html

7

Algorithm :

function oddEvenSort(list) {

 function swap(list, i, j){

 var temp = list[i];

 list[i] = list[j];

 list[j] = temp;

 }

 var sorted = false;

 while(!sorted)

 {

 sorted = true;

 for(var i = 1; i < list.length-1; i += 2)

 {

 if(list[i] > list[i+1])

 {

 swap(list, i, i+1);

 sorted = false;

 }

 }

 for(var i = 0; i < list.length-1; i += 2)

 {

 if(list[i] > list[i+1])

 {

 swap(list, i, i+1);

 sorted = false;

 }

 }

 }

8

4. Cocktail Sort:

Like bubble sort, cocktail sort works by iterating through the list,

comparing adjacent elements and swapping them if they’re in the wrong

order. The only real difference is that it alternates directions instead of only

going from left to right. Because of this, cocktail sort manages to get

around the “turtles problem” of bubble sort, however it still retains the same

worst case computational complexity.

Much like bubble sort, cocktail sort has very little relevance in the real

world and is mainly used to teach algorithms.

Complexity:
Time Space

Worst case Best case Worst case Best case

O(n²) O (n)

O(n²) O(1)

When it’s fast:

Cocktail sort is at its fastest when it can reach a sorted list with a

minimal number of passes. Since only adjacent elements are

swapped, this means that cocktail sort performs best when

elements are physically nearby their sorted positions.

http://www.growingwiththeweb.com/2014/02/bubble-sort.html#when-its-fast

9

Algorithm:

public static void cocktailSort(int[] A){

 boolean swapped;

 do {

 swapped = false;

 for (int i =0; i<= A.length - 2;i++) {

 if (A[i] > A[i + 1]) {

 //test whether the two elements are in the wrong order

 int temp = A[i];

 A[i] = A[i+1];

 A[i+1]=temp;

 swapped = true;

 }

 }

 if (!swapped) {

 //we can exit the outer loop here if no swaps occurred.

 break;

 }

 swapped = false;

 for (int i= A.length - 2;i>=0;i--) {

 if (A[i] > A[i + 1]) {

 int temp = A[i];

 A[i] = A[i+1];

 A[i+1]=temp;

 swapped = true;

 }

 }

 //if no elements have been swapped, then the list is sorted

 } while (swapped);

}

5. comb Sort:
Comb sort is similar to bubble sort in that is iterates through the list

multiple times, swapping elements that are out of order as it goes. The

difference is that comb sort doesn’t start off looking at adjacent elements

but instead looks at elements a certain number of indexes apart, this is

called the gap. The gap is defined as ⌊n/c⌋, where n is the number of

elements and cc is the shrink factor which is typically set as 1.3. After

each iteration, this number is against divided by cc and floored until

eventually the algorithm is looking at adjacent elements.

Similar to cocktail sort, comb sort improves upon bubble sort due to its ability to deal with

the “turtles problem”. It does this by swapping elements that are separated by many indexes by

a while the gap is large and progressively shifts them closer to their correct index as the

algorithm continues.

http://www.growingwiththeweb.com/2016/04/cocktail-sort.html
http://www.growingwiththeweb.com/2014/02/bubble-sort.html#when-its-fast

10

Complexity:

Time Space

Worst case Best case
Worst case

O(n²) Θ(nlogn)*
O(1)

Algorithm:

sort(E[] input) {

 int gap = input.length;

 boolean swapped = true;

 while (gap > 1 && swapped) {

 if (gap > 1) {

 gap = (int) (gap / 1.3);

 }

 swapped = false;

 for (int i = 0; i + gap < input.length; i++) {

 if (input[i].compareTo(input[i + gap]) > 0) {

 E t = input[i];

 input[i] = input[i + gap];

 input[i + gap] = t;

 swapped = true;

 }

 }

 }

}

Analysis:

As can be seen from the code, the comb sort sorts the array with a relatively big gap, then

shrinks the gap (by dividing by 1.3) and repeat the same process, until it reaches gap equal to 1,

which would transform into bubble sort at this point.

It should be mentioned that the shrink factor has a great effect on comb sort, and 1.3 was chosen

as the best factor experimentally after testing on comb sort over 200000 random lists.

(unstable)

11

Summary:

Name BestCase AverageCase WorstCase
Space

Complexity
Stable Type

Count Sort O(n + k)O(n+k)

O(n + k)O(n+k)

O(n+k) O(k) No -

Bucket

Sort
O(n+k) O(n+k) O(n

2
) O(n.k) - -

Odd-Even

Sort
O(n) O(n

2
) O(n

2
) O(1) Yes Comparison

Cocktail

Sort
O(n) O(n

2
) O(n

2
) O(1) Yes Comparison

Comb Sort O(n) O(nlogn) O(n
2
) O(1) No Comparison

References:

all information's are brought from:

 http://www.growingwiththeweb.com

https://www.wikipedia.org

