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Recursive Programming  
Introduction 
 
When we write a method for solving a particular problem, one of the basic design techniques is to break the task 
into smaller subtasks. For example, the problem of adding (or multiplying) n consecutive integers can be reduced 
to a problem of adding (or multiplying) n-1consecutive integers:  

1 + 2 + 3 +... + n = n + [1 + 2 + 3 + .. + (n-1)] 
 
1 * 2 * 3 *... * n = n * [1 * 2 * 3 * .. * (n-1)] 

Therefore, if we introduce a method	sumR(n)	(or	timesR(n))	that adds (or multiplies) integers from 1 to n, then 
the above arithmetics can be rewritten as  

sumR(n) = n + sumR(n-1) 
 
timesR(n) = n * timesR(n-1) 

Such functional definition is called a recursive definition, since the definition contains a call to itself. On each 
recursive call the argument of sumR(n) (or timesR(n)) gets smaller by one. It takes n-1 calls until we reach 
the base case - this is a part of a definition that does not make a call to itself. Each recursive definition requires 
base cases in order to prevent infinite recursion.  

In the following example we provide iterative and recursive implementations for the addition and 
multiplication of n natural numbers.  

int sum(int n)                   int sumR(int n) 
{                                       { 
   int res = 0;                           if(n == 1) 
   for(int i = 1; i = n; i++)                return 1; 
      res = res + i;                      else 
                                             return n + sumR(n-1); 
   return res;                          } 
} 

To solve a problem recursively means that you have to first redefine the problem in terms of a smaller 
sub-problem of the same type as the original problem. In the above summation problem, to sum-up n 
integers we have to know how to sum-up n-1 integers. Next, you have to figure out how the solution to 
smaller sub-problems will give you a solution to the problem as a whole. This step is often called as a 
recursive leap of faith. Before using a recursive call, you must be convinced that the recursive call will 
do what it is supposed to do. You do not need to think how recursive calls works, just assume that it 
returns the correct result.  

 

  
	  



	
Department	of	Computer	Science	
COMP2321	/	Data	Structures	
Learning	Material	

By: Dr. Majdi Mafarja 2	

Examples of a recursive function: 
 

1. Compute factorial of a number 
 

Example	:	Let	us	consider	the	Factorial	Function	
n!	=	n	*	(n-1)	*	(n-2)	*		…	*	2	*	1	
0!	=	1	
Iterative	solution:	
int fact(int n) 
{ 

int p, j; 
p = 1; 
for ( j=n; j>=1; j--) 

 p = p* j; 
 return ( p ); 
} 
	
Recursive definition: 
In the recursive implementation there is no loop. We make use of an important mathematical property of 
factorials. Each factorial is related to factorial of the next smaller integer : 
n! = n * (n-1)! 
To make sure the process stops at some point, we define 0! to be 1.  Thus the conventional mathematical 
definition looks like this:  
n! = 1  if n = 0 
n! = n*(n-1)!  if n > 0 
This definition is recursive, because it defines the factorial of n in terms of factorial of n – 1.  
The new problem has the same form, which is, now find factorial of n – 1 . 
In C: 
int fact(int n) 
{ 
 if (n ==0)  
   return (1); 
 else  

return (n * fact(n-1)); 
} 
	
The Nature of Recursion 
 
1) One or more simple cases of the problem (called the stopping cases) have a simple non-recursive 

solution. 
2) The other cases of the problem can be reduced (using recursion) to problems that are closer to 

stopping cases. 
3) Eventually the problem can be reduced to stopping cases only, which are relatively easy to solve. 
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In general: 
 
if (stopping case) 
 solve it 
else  
 reduce the problem using recursion	

Tracing a Recursive Function 
 
Let us try to follow the logic the computer uses to evaluate any function call. It uses a stack to 
keep track of function calls. Whenever a new function is called, all its parameters and local 
variables are pushed onto the stack along with the memory address of the calling statement (this 
gives the computer the return point after execution of the function) 
	In the factorial example, suppose “main”  has a statement													
	f=	factorial	(4);	

	
2. Find sum of squares of a series. 

 
Here we are interested in evaluating the sum of the series 
m2		+		(m	+	1)2		+	(m	+	2)2		+	……….+	(	n	)2						
We can compute the sum recursively, if we break up the sum in two parts as shown below: 
	m2		+	[	(m	+	1)2		+	(m	+	2)2		+	……….+	(	n	)2					]	
Note that the terms inside the square brackets computes the sum of the terms from m+1 to n.	
Thus we can write recursively 
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sumsq(m,	n)	=	m2		+		sumsq(	m+1,	n	)	
The sum of the terms inside the square brackets can again be computed in similar manner by 
simply replacing m with  m+1. The process can be continued till m reaches the value of n. Then 
sumsq(n, n) is simply (n)2      
 
Here is the recursive function:  
int  sumsq ( int m, int n) { 
 if (m ==n )  
  return n *n;  
 else  
  return ( m * m + sumsq(m+1, n); 
 } 
Trace the above recursive function to find sumsq(2,5). 
sumsq(2, 5) = m2  + sumsq (3,5) 
  = 4 +  sumsq(3,5) 
  = 4 +  9 +      sumsq(4,5) 
  = 13 +            16 +  sumsq(5,5) 
  = 29 +                      25 
  = 54 

3. Consider the following recursive function: 
	

int speed (int N) 
{ 
   if (N == 2) return 5; 
   if (N % 2 == 0) 
              return (1 + speed(N/2)); 
 
   else 
              return (2+speed(3 + N)); 
 } 
 
Trace the function for N= 7. 
 
Speed(7) = 2 + speed(10) 
    =  2 + 1 + speed(5) 
    =  3 + 2 + speed(8) 
    =  5 + 1 + speed (4) 
    =  6 + 1 + speed (2) 
    =  7 + 5 
    = 12 
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4. Consider the following recursive function 
 

int value(int a, int b) { 
 
     if (a <= 0) 
          return 1; 
     else 
          return (b*value(a-1,b+1)); 
} 
 
Let us trace the calls 
	
a) value(1, 5) 
=  5 * value( 0, 6) 
=  5 * 1 
= 5 
  	
b) value(3, 3) 
= 3 * value(2, 4) 
= 3 * 4 * value(1, 5) 
= 3 * 4 * 5 * value( 0, 6) 
= 3 * 4 * 5 * 1 
= 60  

5. To print a user-entered string in reverse order 
 
Here is a recursive function that reads the characters of a string from the keyboard, as they are 
being typed, but prints them out in the reverse order. The function needs to know how many 
characters would be read before it starts printing. Obviously, printing cannot start until all the 
characters have been read. The function uses an internal stack of the computer to store each 
character as it is being read. 
 
void print_reverse(int n) 
{ 
 char next; 
 
 if (n == 1) {  /* stopping case */ 
  scanf("%c",&next); 
  printf("%c", next); 
    } 
 else { 
  scanf("%c", &next); 
  print_reverse(n-1); 
  printf("%c",next); 
 } 
 return; 
} 
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6. Binary Search 
 
Given an array with elements in the ascending order, the problem is to search for a target element 
in the array. The function should return the position of the element which matches the target. If 
the target is not found, it should return -1.  
Here is the recursive version of the binary search. The stopping case is when the target is found. 
If the target is not found, then the function is recursively called again with either the left half of 
the array or the right half of the array. 
 
 
 int targetsearch ( int target, int A[], int  n ) 
 { 
        return Rbinary(target, A, 0, n-1); 

    
 } 
 
 
 int Rbinary ( int target, int A [ ], int left, int right) 
 { 
    int mid; 
    if ( left > right )  
  return -1 ; 
    mid =  ( left + right )/ 2; 
    if   ( target ==  A[mid] ) 
            return mid; 
    if  ( target < A [mid])   

       return Rbinary (target, A, left, mid-1 ); 
    else   
            return Rbinary (target, A, mid+1, right ); 
 } 

 

 
 

 


