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Algorithmic Complexity 

Introduction 

 Algorithmic complexity is concerned about how fast or slow particular algorithm performs. 

 We define complexity as a numerical function T(n) - time versus the input size n.  

 We want to define time taken by an algorithm without depending on the implementation details. 

But you agree that T(n) does depend on the implementation! A given algorithm will take 

different amounts of time on the same inputs depending on such factors as:  

o processor speed; instruction set, disk speed, brand of compiler and etc.  

The way around is to estimate efficiency of each algorithm asymptotically. We will measure time T(n) as 

the number of elementary "steps" (defined in any way), provided each such step takes constant time.  

Let us consider two classical examples: addition of two integers. We will add two integers digit by digit 

(or bit by bit), and this will define a "step" in our computational model. Therefore, we say that addition 

of two n-bit integers takes n steps. Consequently, the total computational time is T(n) = c * n, where c is 

time taken by addition of two bits. On different computers, addition of two bits might take different 

time, say c1 and c2, thus the addition of two n-bit integers takes T(n) = c1 * n and T(n) = c2* n 

respectively. This shows that different machines result in different slopes, but time T(n) grows linearly 

as input size increases.  

The process of abstracting away details and determining the rate of resource usage in terms of the input 

size is one of the fundamental ideas in computer science.  

Asymptotic Notations 

 The goal of computational complexity is to classify algorithms according to their performances. 

We will represent the time function T(n) using the "big-O" notation to express an algorithm 

runtime complexity. For example, the following statement  

T(n) = O(n
2
) 

says that an algorithm has a quadratic time complexity. 

Definition of "big Oh" 

For any monotonic functions f(n) and g(n) from the positive integers to the positive integers, we say that 

f(n) = O(g(n)) when there exist constants c > 0 and n0 > 0 such that  

f(n) ≤ c * g(n), for all n ≥ n0 

Intuitively, this means that function f(n) does not grow faster than g(n), or that function g(n) is an upper 

bound for f(n), for all sufficiently large n→∞  
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Here is a graphic representation of f(n) = O(g(n)) relation:  

 

Examples:  

 1 = O(n)  

 n = O(n
2
)  

 log(n) = O(n)  

 2 n + 1 = O(n)  

The "big-O" notation is not symmetric: n = O(n
2
) but n

2
 ≠ O(n).  

Exercise. Let us prove n
2
 + 2 n + 1 = O(n

2
). We must find such c and n0 that n 

2
 + 2 n + 1 ≤ c*n

2
. Let 

n0=1, then for n ≥ 1  

1 + 2 n + n
2
 ≤ n + 2 n + n

2
 ≤ n

2
 + 2 n

2 
+ n 

2
 = 4 n

2
 

Therefore, c = 4.  

Constant Time: O(1) 

An algorithm is said to run in constant time if it requires the same amount of time regardless of the input 

size. Examples:  

 array: accessing any element  

 fixed-size stack: push and pop methods  

 fixed-size queue: enqueue and dequeue methods  

Linear Time: O(n) 
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An algorithm is said to run in linear time if its time execution is directly proportional to the input size, 

i.e. time grows linearly as input size increases. Examples:  

 array: linear search, traversing, find minimum  

 ArrayList: contains method  

 queue: contains method  

Logarithmic Time: O(log n) 

An algorithm is said to run in logarithmic time if its time execution is proportional to the logarithm of 

the input size. Example:  

 binary search  

Recall the "twenty questions" game - the task is to guess the value of a hidden number in an interval. 

Each time you make a guess, you are told whether your guess iss too high or too low. Twenty questions 

game imploies a strategy that uses your guess number to halve the interval size. This is an example of 

the general problem-solving method known as binary search:  

locate the element a in a sorted (in ascending order) array by first comparing a with the middle 

element and then (if they are not equal) dividing the array into two subarrays; if a is less than the 

middle element you repeat the whole procedure in the left subarray, otherwise - in the right 

subarray. The procedure repeats until a is found or subarray is a zero dimension.  

Note, log(n) < n, when n→∞. Algorithms that run in O(log n) does not use the whole input.  

Quadratic Time: O(n2) 

An algorithm is said to run in logarithmic time if its time execution is proportional to the square of the 

input size. Examples:  

 bubble sort, selection sort, insertion sort  

Definition of "big Omega" 

We need the notation for the lower bound. A capital omega Ω notation is used in this case. We say that 

f(n) = Ω(g(n)) when there exist constant c that f(n) ≥ c*g(n) for for all sufficiently large n. Examples  

 n = Ω(1)  

 n
2
 = Ω(n)  

 n
2
 = Ω(n log(n))  

 2 n + 1 = O(n)  
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Definition of "big Theta" 

To measure the complexity of a particular algorithm, means to find the upper and lower bounds. A new 

notation is used in this case. We say that f(n) = Θ(g(n)) if and only f(n) = O(g(n)) and f(n) = Ω(g(n)). 

Examples  

 2 n = Θ(n)  

 n
2
 + 2 n + 1 = Θ( n

2
)  

Analysis of Algorithms 

The term analysis of algorithms is used to describe approaches to the study of the performance of 

algorithms. In this course we will perform the following types of analysis:  

 the worst-case runtime complexity of the algorithm is the function defined by the maximum 

number of steps taken on any instance of size a.  

 the best-case runtime complexity of the algorithm is the function defined by the minimum 

number of steps taken on any instance of size a.  

 the average case runtime complexity of the algorithm is the function defined by an average 

number of steps taken on any instance of size a.  

 

Example. Let us consider an algorithm of sequential searching in an array.of size n.  

Its worst-case runtime complexity is O(n)  

Its best-case runtime complexity is O(1)  

Its average case runtime complexity is O(n/2)=O(n)  

 
 

Time Complexity meaningful for large value of n 

The time complexity of an algorithm is given by the function which counts the total number of 

operations for n elements of data. What is really of concern here is not what the function is exactly but 

a description of how the function grows. Concretely, consider the two functions: 

f(n) = n + 20 

g(n) = n – 10 

Which function grows faster? 

Try with small values of n say up to 100. It would show that f(n) grows faster. Now try values between 

1000 and 10,000. What does it show? There is hardly any noticeable difference between values of f(n) 
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and g(n). Both grow linearly with n. Thus both are of order n. 

Let us now consider another pair of functions f(n) = n
3
 – 12n

2
 

+ 20n + 110 

g(n) = n 
3
 + n 

2
 + 5n + 5 

They look quite different, but how do they behave for different values of n? Let's look at a few plots 

of the function (f(n) is in red color , and g(n) is in blue color): 

 

 

Plot of f and g, in range 0 to 5 Plot of f and g, in range 0 to 15 

 

 

Plot of f and g, in range 0 to 100                 Plot of f and g, in range 0 to 1000 

In the first graph, drawn for very limited values of n, the curves appear somewhat different. In the 

second graph, they sort of start moving somewhat similar, in the third graph for appreciable values of 

n, there is only a very small difference between f(n) and g(n), and in the last graph drawn for very 

large values of n, the plots are virtually identical. In fact, they approach n
3
, the dominant term. As n 

gets larger, the other terms become minuscule in comparison to n
3
. 

As you can see, improving an algorithm's non-dominant terms doesn't help much. What really matters is 
the dominant term. This is why we adopt the big-O notation for this. We say that: 

f(n) = n
3
 - 12n

2
 + 20n + 110 = O(n

3
) 

Or in other words, f(n) is of order n
3
 . 
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GENERAL RULES: 

 

1. Loops: number of iterations/ recursions with respect to the input problem instance 

size N 

 

2. Nested loops: multiplied 

for I = 1 through N do 

 for j = 1 through N do 

  -whatever- 

 

Analysis:  O(N*N) 

 

3. Consecutive statements: add steps, which leads to the max 

for I = 1 through N do 

  -whatever- 

for I = 1 through N do 

 for j = 1 through N do 

  -moreover- 

 

Analysis: O(N) + O(N
2
)  -->  O(N

2
) 

 

4. Conditional statements:  max of the alternative paths (worst-case) 

If (condition) 

 S1 

Else 

 S2 
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Example of two algorithms for the same problem: 

 

Problem (MAXIMUM SUBSEQUENCE SUM): Given an array of numbers find a 

subsequence whose sum is maximum out of all such subsequences. 

 

Example:  3,  4, –7,  1,  9,  -2,  3, -1   (e.g. stock-market data) 

Answer:  11 (for subsequence  1+  9  -2+  3 = 11) 

[Note: for all positive integers the answer is sum of the whole array.] 

 

Algorithm 1: 

 for (i = 0 through N-1) do 

  for (j = i through N-1) do   // choice of subsequence i through j 

  { thisSum = 0; 

   for (k = i through j) do  // addition loop 

    thisSum = thisSum + a[k];    // O(N
3
) 

 

   if (thisSum > maxSum) then 

    maxSum = thisSum;       // O(N
2
) 

  } 

 return maxSum; 

End Algorithm 1. 

 

Analysis of Algorithm 1:   i=0
N-1 

 j=i
N-1 

 k=i
j 
 1   = … = O(N

3
)       

 

Algorithm 2: 

 for (i = 0 through N-1) do 

  thisSum = 0; 

  for (j = i through N-1) do  

  { thisSum = thisSum + a[j];  // reuse the partial sum from  

         // the previous iteration 

   if (thisSum > maxSum) then 

   maxSum = thisSum;  

  } 

 return maxSum; 

End Algorithm 2. 

Analysis of Algorithm 2:   i=0
N-1 

 j=i
N-1 

 1   = … = O(N
2
) 
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Algorithm 3: 
 maxSum = 0; thisSum = 0; 

  

 for (j = 0 through N-1) do  

  { thisSum = thisSum + a[j];  // reuse the partial sum from  

         // the previous iteration 

   if (thisSum > maxSum) then 

   maxSum = thisSum;  

  else if (thisSum < 0) then 

   thisSum =0;  // ignore computation so far 

  } 

 return maxSum; 

End Algorithm 3. 

 

Analysis of Algorithm 3:   i=0
N-1

 O(1)   = … = O(N) 
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Analysis of Recursive Algorithms 
 

Let T(n) ≡ time complexity of (recursive) algorithm 

Time complexity can be defined recursively. 

 

Example 1: Factorial Function 

 

Code: int factorial (int n) { 

  if (n = = 0) return 1; 

  else return n * factorial (n – 1); 

 } 

 

Recurrence Equation:   T(n) = T (n – 1) + 1; n > 0 {all n > 0} 

    T(0) = 1         ; n = 0 {base case} 

 

Thus, 

 T(n – 1) = T(n – 2) + 1 

 T(n – 2) = T(n – 3) + 1 

 T(n – 3) = T(n – 4) + 1 

      .  . 

      .  . 

      .  . 

There are a variety of techniques for solving the recurrence equation (to solve for T(n) without T(n-1) on 

right side of the equation) to get a closed form. We’ll start with the simplest technique: Repeated 

Substitution 
 

Solving the recurrence equation of the factorial form to get the closed form, 

T(n)  = T(n – 1) + 1 

 = [T(n – 2) + 1] + 1 

 = [[T(n – 3) + 1] + 1] + 1 

 = …… 

 = T(n – i) + i  {i
th

 level of substitution} 

if ‘i = n’, 

 T(n) = T(0) + n 

 

or,  T(n) = n + 1 

 

 

 



Department of Computer Science 

COMP2321 / Data Structures 
Learning Material 
 

By: Dr. Majdi Mafarja 10 

 

 

Example 2: Towers of Hanoi 

 

Code:  procedure Hanoi (n: integer; from, to, aux: char) 

   if  n > 0 

    Hanoi (n – 1, from, aux, to) 

    write (‘from’, from, ‘to’, to) 

    Hanoi (n – 1, aux, to, from) 

 

Here, 

 T(0) = 0 

 T(n) = T(n – 1) + 1 + T(n – 1); n > 0 

         = 2T(n – 1) + 1 

 

Solving the recurrence equation to get the closed form using repeated substitution, 

T(n)  =  2T(n – 1) + 1 

T(n – 1) = 2T(n – 2) + 1 

T(n – 2) =  2T(n – 3) + 1 

T(n – 3) = 2T(n – 4) + 1 

 

T(n) = 2T(n – 1) + 1 

 = 2[2T(n – 2) + 1] + 1 

 = 2[2[2T(n – 3) + 1] + 1] + 1 

 = 2[2
2
T(n – 3) + 2

1
 + 2

0
] + 2

0
 

 = 2
3
T(n – 3) + 2

2
 + 2

1
 + 2

0
 

Repeating ‘i’ times, 

T(n) = 2
i
T(n – i) + 2

i-1 
+ 2

i-2 
+ … + 2

0
 

 

If ‘i = n’, 

T(n) = 2
n
T(0) + 2

n-1 
+ 2

n-2 
+ … + 2

0
 

 = 2
n-1 

+ 2
n-2 

+ … + 2
0
 

 = 2
0

1
i

i

n
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This is a geometric series whose sum is given by:  S
a ar

r
n

n




1
 

Here, a = 1, r = 2, n = n. Therefore, Sn

n






1 2

1 2
 = 2

n
 – 1. 

 

i.e. T(n) = 2
n
 – 1 

 

Example 3: Binary Search 

 

Code:  function BinSearch (var R: Ratype; a,b: indextype; x: 

keytype): boolean 

   var mid: indextype 

    if a > b 

BinSearch:= false 

else  

mid:= (a + b) div 2 

if x = R[mid] 

BinSearch:= true 

     else 

      if x < R[mid] 

       BinSearch:=BinSearch(R,a,mid–1,x)  

      else 

       BinSearch:=BinSearch(R,mid+1,b,x) 

 

Here, 

 T(0) = 0 

 T(n) = 1     if x = R[mid] 

  1 1 2 1  T n( ( ) / )   if x < R[mid] 

  1 1 2 1   T n n( ( ) / )   if x > R[mid] 

 

We can eliminate the floor function by limiting ‘n’ to 2
k
 – 1; k Z   

 

 

 

 

 

 

Now, 

T(0) = 0 

T(n) = 1   if x = R[mid] 

Complexity of 

BinSearch(R, 1,n, x) 

Characteristic (OR Basic) operation 

2k – 1 

2k-1 – 1 2k-1 – 1 
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 1 2 11 T k( )  if x ≠ R[mid] 

 

Best case occurs if x = R[mid] is true the very first time. 

Thus, 

 

     B(n) = 1      

 

Worst case occurs if x = R[mid] is always false. 

Now, 

W(0) = 0 

W(2
k
 – 1) =  1 2 11 W k( )    

 

Solving the recurrence equation to get the closed form using repeated substitution, 

W(2
k
 – 1)  =  1 2 11 W k( )  

  = 1 + [1 2 12 W k( ) ] 

  =  1 + [1 + [1 2 13 W k( )]] 

  

Repeating ‘i’ times, 

W(2
k
 – 1)  =  i W k i ( )2 1  

 

if ‘i = k’, 

W(2
k
 – 1)  =  k + 0 = k 

 

We want W(n), so  

2
k
 – 1  = n 

or, log 2
k
    = log (n + 1) 

or,  k         = log (n + 1) {k in terms of n} 

 

Thus, 

 W(n) = log (n + 1)  

 

 


