
 Data Structure: Lectures Note 2016/2017 Prepared by: Dr. Mamoun Nawahdah

4

Math Review

 Data Structure: Lectures Note 2016/2017 Prepared by: Dr. Mamoun Nawahdah

5

What is an Algorithm?

Definition:

 Algorithm is a finite list of well-defined instructions for

accomplishing some task that, given an initial state, will

terminate in a defined end-state.

Euclid’s Algorithm (300BC)

 Used to find Greatest common divisor (GCD) of two positive integers.

 GCD of two numbers, the largest number that divides both of them

without leaving a remainder.

Euclid’s Algorithm:

o Consider two positive integers ‘m’ and ‘n’, such that m>n

o Step1: Divide m by n, and let the reminder be r.

o Step2: if r=0, the algorithm ends, n is the GCD.

o Step3: Set, mn, nr , go back to step 1 .

Implement this iteratively and recursively

public static int iteratively (int m, int n){
 int r = m % n;
 while (r != 0) {
 m = n;
 n = r;
 r = m % n;
 }
 return n;
}

public static int recursively(int m, int n) {
 if (n==0)
 return m;
 return recursively(n, m % n);
 }

Why Algorithms?

o Gives an idea (estimate) of running time.

o Help us decide on hardware requirements.

o What is feasible vs. what is impossible.

o Improvement is a never ending process.

Correctness of an Algorithm:

 Must be proved (mathematically)

Step1: statement to be proven.

Step2: List all assumptions.

Step3: Chain of reasoning from assumptions to the statement.

 Another way is to check for incorrectness of an algorithm.

Step1: give a set of data for which the algorithm does not work.

Step2: usually consider small data sets.

Step3: Especially consider borderline cases.

Born: Uzbekistan

Died: 850 AD, Baghdad, Iraq

 Data Structure: Lectures Note 2016/2017 Prepared by: Dr. Mamoun Nawahdah

6

Recursion

Definition:

 A function that calls itself is said to be recursive.

 A function f1 is also recursive if it calls a function f2, which under some circumstances calls

f1, creating a cycle in the sequence of calls.

 The ability to invoke itself enables a recursive function to be repeated with different

parameter values.

 You can use recursion as an alternative to iteration (looping).

The Nature of Recursion:

Problems that lend themselves to a recursive solution have the following characteristics:

 One or more simple cases of the problem have a straightforward, non-recursive solution.

 The other cases can be redefined in terms of problems that are closer to the simple cases.

 By applying this redefinition process every time the recursive function is called, eventually

the problem is reduced entirely to the simple case(s), which are relatively easy to solve.

The recursive algorithms will generally consist of an “if statement” with the following form:

if this is a simple case

 solve it

else

 redefine the problem using recursion

Illustration:

Example:

Solve the problem of multiplying 6 by 3, assuming we only know addition:

 Simple case: any number multiplied by 1 gives us the original number.

 The problem can be split into the two problems:

1. Multiply 6 by 2.
1.1 Multiply 6 by 1.
1.2 Add (Multiply 6 by 1) to the result of problem 1.1.

2. Add (Multiply 6 by 1) to the result of problem 1.

Implement this recursively

 Data Structure: Lectures Note 2016/2017 Prepared by: Dr. Mamoun Nawahdah

7

Tracing a Recursive Function:

 Tracing an algorithm’s execution provides us with valuable insight into how that algorithm works.

 By drawing an activation frame corresponding to each call of the function.

 An activation frame shows the parameter values for each call and summarizes the execution of the

call.

multiply(6, 3):

Recursive Mathematical Functions:

 Many mathematical functions can be defined recursively.

 An example is the factorial of n (n!):

 0! is 1

 n! is n * (n 1)! , for n> 0

 Thus 4! is 4 *3!, which means 4 *3 *2 *1, or 24.

Implement this iteratively and recursively

Tracing the recursive function

 Data Structure: Lectures Note 2016/2017 Prepared by: Dr. Mamoun Nawahdah

8

Fibonacci Numbers:

 Leonardo Bonacci (1170 –1250)

• Problem:

– How many pairs of rabbits are alive in month n?

• Recurrence relation:

 rabbit(n) = rabbit(n-1) + rabbit(n-2)

 The Fibonacci sequence is defined as:

 Fibonacci 0 is 1

 Fibonacci 1 is 1

 Fibonacci n is Fibonacci n 2 + Fibonacci n 1, for n>1

Implement this recursively

Poor Solution to a Simple Problem:

 Data Structure: Lectures Note 2016/2017 Prepared by: Dr. Mamoun Nawahdah

9

Why is this inefficient? Try F6

Self-Check:

 Write and test a recursive function that returns the value of the following recursive definition:

 f(x) = 0 if x = 0

 f(x) = f(x - 1) + 2 otherwise

What set of numbers is generated by this definition?

Design Guidelines:

 Method must be given an input value.

 Method definition must contain logic that involves this input, leads to different cases.

 One or more cases should provide solution that does not require recursion.

 else infinite recursion

 One or more cases must include a recursive invocation.

Stack of Activation Records:

 Each call to a method generates an activation record.

 Recursive method uses more memory than an iterative method.

 Each recursive call generates an activation record.

 If recursive call generates too many activation records, could cause stack overflow.

 Data Structure: Lectures Note 2016/2017 Prepared by: Dr. Mamoun Nawahdah

10

Recursively Processing an Array:

Starting with array[first]:

Starting with array[last]:

Processing array from middle:

 Data Structure: Lectures Note 2016/2017 Prepared by: Dr. Mamoun Nawahdah

11

Tower of Hanoi
Simple Solution to a Difficult Problem:

Rules:

 Move one disk at a time. Each disk moved must be topmost disk.

 No disk may rest on top of a disk smaller than itself.

 You can store disks on the 2nd pole temporarily, as long as you observe the previous two rules.

Tower of Hanoi flash @ https://www.mathsisfun.com/games/towerofhanoi.html

Sequence of moves for solving the Towers of Hanoi problem with three disks:

 Data Structure: Lectures Note 2016/2017 Prepared by: Dr. Mamoun Nawahdah

12

The Tower of Hanoi problem can be decomposed into three sub-problems.

 Move the first n-1 disks from A to C with the assistance of tower B.

 Move disk n from A to B.

 Move n-1 disks from C to B with the assistance of tower A.

Solutions:

