
  Data Structure: Lectures Note                          2016/2017                                Prepared by:  Dr. Mamoun Nawahdah 

13 

 

Analysis of Algorithms 
Once an algorithm is given for a problem and decided (somehow) to be correct, an important step is to 

determine how much in the way of resources, such as time or space, the algorithm will require. 

 Space Complexity   memory and storage are very cheap nowadays.  

 Time Complexity     Different platforms  different time. Absolute time is hard to measure as it 

depends on many factors. 

Example: moving between university buildings: it depends on who are walking, which way he/she use, etc. 

time is not good measurement. Number of steps is a better one.  

Example: 

• Consider the problem of summing    

Come up with an algorithm to solve this problem.  

 

Counting Basic Operations 

• A basic operation of an algorithm is the most significant contributor to its total time requirement. 

 

How to calculate the time complexity? 

 Measure execution time.  Algorithm for small data size will take small time comparing to a large data.  

 Calculate time required for an algorithm in terms of the size of input data.  Does not work as the 

same algorithm over the same data will not take the same time. 

Run summing code 2 times and compare time 

 Determine order of growth of an algorithm with respect to the size of input data.  
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Order of time or growth of time: 

Go back to summing result 

 

In term of time complexity, we say that algorithm C is better than A and B 

 

Types of Time Complexity 

 Best case analysis         too optimistic  

 Average case analysis     too complex (statistical methods) 

 Worst case analysis      it will not exceed this 

 

RAM model of computation 

We assume that: 

 We have infinite memory 

 Each operation (+,-,*,/,=) takes 1 unit of time 

 Each memory access takes 1 unit of time 

 All data is in the RAM 

  

Linear 
growth 

Quadratic 
growth 

Constant 
growth 
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Bubble Sort:  

1. Each two adjacent elements are compared: 

 
2. Swap with larger elements: 

 
3. Move forward and swap with each larger item: 

 
4. If there is a lighter element, then this item begins to bubble to the surface: 

 
5. Finally the smallest element is on its place: 

 
 

Make a demo using the following data set 

12 8 7 5 2 
 

After 1st round: 

8 7 5 2 12 
 

 

Worst case 

analysis 
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After 2nd round: 

7 5 2 8 12 
 

 
 

For whole sorting algorithm:    16+12+8+4     for a data size of 5 elements: 

= 4 (4 + 3 + 2 + 1)     =      4 (n-1  + n-2 + …. + 2 + 1)  =  4 (n-1*n/2) = 

2 * n * (n-1)   pn2 + qn + r   p, q, and r are some constant. 

 
 

Implement and test effectiveness of bubble sort algorithm 

for (int i = 0; i < arr.length-1; i++) { 
    for (int j = 0; j <arr.length-i-1 ; j++) { 
        if(arr[j+1]<arr[j]){ 
            temp = arr[j]; 
            arr[j] = arr[j+1]; 
            arr[j+1] = temp; 
        } 
    } 
} 

i=0 
i=1 

: 
: 

i=n-1 

j=n-1 
j=n-2 

: 
: 

j=0 

n-1 
n-2 

: 
: 
1 
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The Big-O Notation 
 

Assume the order of time of an algorithm is a quadratic time as displayed in the graph. Our job is to 

find an upper bond for this function T(n).  Consider a function c1n2  never over take T(n) 

C2n2 such that its greater than T(n) for n>n0  . In this case we say that C2n2   is an upper bond of T(n) 

But we can come up with many functions satisfy this condition. We need to be precise. 

 

Big Oh O(n2):   f(n): there exist positive constants c and n0   such that   0 ≤ f(n) ≤ cn2   for all  n ≥ n0 

In general  

O(g(n)) :  f(n): there exist positive constants c and n0   such that   0 ≤ f(n) ≤ cg(n)   for all  n ≥ n0 
 

Example 1: 

5n2 + 6       O(n2)   ???     
Find    cn2          c=6  and n0=3 

     c=5.1  n0=8 
 
Example 2: 

5n + 6       O(n2)   ???    
Find    cn2          c=11  and n0=1 

 
Example 3: 

n3 + 2n2 + 4n + 8       O(n2)   ???    
Find    cn2     ≥  n3 + 2n2 + 4n + 8 ???    

 

 

 

What does it mean? 
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Array element access:   

 

Array element search:  

 

Bubble sort algorithm:  
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Asymptotic Analysis 
Asymptotic (مقارب) analysis measures the efficiency of an algorithm as the input size becomes large.  

It is actually an estimation technique. However, asymptotic analysis has proved useful to computer 

scientists who must determine if a particular algorithm is worth considering for implementation. 

 The critical resource for a program is -most often- running time. 

 The growth rate for an algorithm is the rate at which the cost of the algorithm grows as the size of its 

input grows. 

o cn (for c any positive constant)  linear growth rate or running time. 

o n2
   quadratic growth rate 

o 2n
  exponential growth rate. 

Worst case? The advantage to analyzing the worst case is that you know for certain that the 

algorithm must perform at least that well. 

Example: 

Assume: Algorithm A: time = 15n + 93 

  Algorithm B: time = 2n2 + 1   which is faster? 

Graph using Excel 

 
We are interested for large n 

* For sufficiently large n, algorithm A is faster 

* In the long run constants do not mater. 

Upper bound for the growth of the algorithm’s running time. It indicates the upper or 

highest growth rate that the algorithm can have.    big-O notation.  
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For T(n) a non-negatively valued function, T(n) is in set O(f(n)) if there exist 

two positive constants c and n0 such that T(n) ≤ cf(n)  for all n > n0. 

 Prove that  15n + 93 is O(n) 

We must show +ve c and n0 such that 15n + 93 ≤ c(n) for  n ≥ n0  

<provided n= 93>       15n+n    16n ≤ cn     <provided c = 16> 

So for c=16   and n0 = 93        // proved 

Graph using Excel 

 

 Prove that 2n2+1 = O(n2) 

Must show +ve c, n0 such that 2n2+1 ≤ c(n2) for n ≥ n0 

2n2+1     <provided n=1> 

2n2+ n2      3n2    <provided c=3>  

2n2+1  ≤  3n2 

So,   c=3 ,  n0=1    // proved 

Graph using Excel 

 

 

 

The lower bound for an algorithm is denoted by the symbol Ω, pronounced “big-

Omega” or just “Omega.” 

For T(n) a non-negatively valued function, T(n) is in set Ω(g(n)) if there exist 

two positive constants c and n0 such that T(n) ≥ cg(n)  for all n > n0. 

 Prove that 15n+93 is Ω(n) 

We must show +ve c and n0 such that 15n+93 ≥ c(n) for  n ≥ n0  

<because 93 is +ve> ≥  c(n)        <provided c=15>       so any n0 > 0 will do     

So c=15, n0=1   // proved 

Graph using Excel 

 Prove that 2n2+1 is Ω(n2) 

Must show +ve c and n0 such that 2n2+1 ≥ cn2 for  n ≥ n0  

<because 1 is +ve> 
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So c=2, n0=1   // proved 

Graph using Excel 

 

When the upper and lower bounds are the same within a constant factor, we 

indicate this by using  Θ (big-Theta) notation.  

T(n) = Θ(g(n))  iff   T(n) = O(g(n))     and  T(n) = Ω (g(n)) 

Example:  Because the sequential search algorithm is both in O(n) and in Ω(n) in the average case, 

we say it is Θ(n) in the average case. 

 

Simplifying Rules 

 

 Rule (2) is that you can ignore any multiplicative constants. 

 Rule (3) says that given two parts of a program run in sequence, you need to consider only the 

more expensive part.  

 Rule (4) is used to analyze simple loops in programs.  

 

Taking the first three rules collectively, you can ignore all constants and all lower-order 

terms to determine the asymptotic growth rate for any cost function. 
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Order of growth of some common functions: 

O(1) ≤ O(log2n) ≤ O(n) ≤ O(n log2n) ≤ O(n2) ≤ O(n3) ≤ O(2n) 

 

If the problem size is always small, you can probably ignore an algorithm’s efficiency 

 

Limitations of big-O analysis: 

 Overestimate. 

 Analysis assumes infinite memory. 

 Not appropriate for small amounts of input. 

 The constant implied by the Big-Oh may be too large to be ignored   (2N log N    vs.    1000N) 
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 Analyzing Algorithm Examples 

General Rules of analyzing algorithm code: 

Rule 1 — for loops: 

The running time of a for loop is at most the running time of the statements inside the for loop 

(including tests) times the number of iterations. 

Rule 2 — Nested loops: 

Analyze these inside out. The total running time of a statement inside a group of nested loops 

is the running time of the statement multiplied by the product of the sizes of all the loops. 

Rule 3 — Consecutive Statements: 

These just add (which means that the maximum is the one that counts. 

Rule 4 — if/else: 

if( condition ) 

      S1 

else 

       S2 

The running time of an if/else statement is never more than the running time of the test plus 

the larger of the running times of S1 and S2. 

Rule 5 — methods call: 

If there are method calls, these must be analyzed first. 

 

Sorting Algorithm 

1- Bubble Sort (revision)   O(n2) 

public static void bubble(int[] arr){ 
    int temp; 
    for (int i = 0; i < arr.length-1; i++) { 
        for (int j = 0; j <arr.length-i-1 ; j++) { 
            if(arr[j+1]<arr[j]){ 
                temp = arr[j]; 
                arr[j] = arr[j+1]; 
                arr[j+1] = temp; 
            } 
        } 
    } 
} 
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2- Selection Sort (revision)    O(n2): named selection because every time we select the 

smallest item. 

public static void selection (int[] arr){ 
    int temp, minIndex; 
    for (int i = 0; i < arr.length-1; i++) { 
        minIndex = i; 
        for (int j = i+1; j <arr.length ; j++) { 
            if(arr[j]<arr[minIndex]){ 
                minIndex=j; 
            } 
        } 
        if(i!= minIndex){ 
            temp = arr[i]; 
            arr[i] = arr[minIndex]; 
            arr[minIndex] = temp; 
        } 
    } 
} 

  

3- Insertion sort  O(n2):  

public static void insertion (int[] arr){ 
    int j, temp, current; 
    for (int i = 1; i < arr.length; i++) { 
       current = arr[i]; 
        j=i-1; 
        while (j>=0 && arr[j]>current){ 
            arr[j+1] = arr[j]; 
            j--; 
        } 
        arr[j+1]=current; 
    } 
} 

 
 

 

 

O(n2) sorting algorithms comparison:   

(run demo @ http://www.sorting-algorithms.com/ ) 

Bubble Sort Selection Sort Insertion Sort 

 
Very inefficient 

 Better than bubble sort 

 Running time is independent 
of ordering of elements 

 Relatively good for small lists 

 Relatively good for partially 
sorted lists 
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Merge sort:  recursive algorithm 

Merge: take 2 sorted arrays and merge them together into one. 

 

Example:                
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Pseudo code:               

 

Make sure of array boundaries  

H.W:  implement merge sort your own 
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Searching elements in an array: 

Case 1: unordered array:                   

Case 2: ordered array:   -Binary search-     

   

Inserting and deleting items from ordered array 

 

 

 


