

Analysis of Algorithms

Once an algorithm is given for a problem and decided (somehow) to be correct, an important step is to determine **how much in the way of resources**, such as **time** or **space**, the algorithm will require.

- **Space Complexity** \rightarrow memory and storage are very cheap nowadays. \star
- **Time Complexity ** ∕ Different platforms → different time. Absolute time is hard to measure as it depends on many factors.

Example: moving between university buildings: it depends on who are walking, which way he/she use, etc. time is not good measurement. Number of steps is a better one.

Example:

$$
\sum_{k=1}^{n} k = 1 + 2 + 3 + \dots + n
$$

Consider the problem of summing

Come up with an algorithm to solve this problem.

Counting Basic Operations

• A **basic operation** of an algorithm is the most significant contributor to its total time requirement.

How to calculate the time complexity?

- Measure execution time. *** Algorithm for small data size will take small time comparing to a large data.
- Calculate time required for an algorithm in terms of the size of input data. \star Does not work as the

same algorithm over the same data will not take the same time.

Run summing code 2 times and compare time

Determine order of growth of an algorithm with respect to the size of input data. \checkmark

Order of time or **growth of time:**

In term of **time complexity**, we say that algorithm **C** is better than **A** and **B**

Types of Time Complexity

- Best case analysis **x** too optimistic
-
-
-
- Average case analysis **x** too complex (statistical methods)
- Worst case analysis \checkmark it will not exceed this

RAM model of computation

We assume that:

- We have infinite memory
- Each operation $(+,-,*,/,-)$ takes 1 unit of time
- Each memory access takes 1 unit of time
- All data is in the RAM

 Data Structure: Lectures Note 2016/2017 Prepared by: **Dr. Mamoun Nawahdah Bubble Sort:**

1. Each two adjacent elements are compared:

2. Swap with larger elements:

3. Move forward and swap with each larger item:

4. If there is a lighter element, then this item begins to bubble to the surface:

5. Finally the smallest element is on its place:

Make a demo using the following data set

TT

After
$$
2^{nd}
$$
 round:

For whole sorting algorithm: **16+12+8+4** for a data size of 5 elements:

$$
= 4 (4 + 3 + 2 + 1) = 4 (n - 1 + n - 2 + + 2 + 1) = 4 (n - 1 + n/2) = 2 * n * (n - 1) \rightarrow pn2 + qn + r \rightarrow p, q, and r are some constant.
$$

Implement and test effectiveness of bubble sort algorithm

The Big-O Notation

Assume the order of time of an algorithm is a **quadratic** time as displayed in the graph. Our job is to find an **upper bond** for this function **T(n)**. Consider a function $c_1n^2 \leftarrow$ never over take **T(n)**

C2n² such that its greater than **T(n)** for **n>n0** . In this case we say that **C2n²** is an upper bond of **T(n)**

Big Oh $O(n^2)$: **f(n)**: there exist positive constants **c** and n_0 such that $0 \le f(n) \le cn^2$ for all $n \ge n_0$ In general

O(g(n)): **f(n)**: there exist positive constants **c** and n_0 such that $0 \le f(n) \le cg(n)$ for all $n \ge n_0$

Example 1: $5n^2 + 6 \in O(n^2)$ **)** ??? Find **cn²** $c=6$ and $n_0=3$ $c=5.1$ n₀=8 **Example 2:** $5n + 6 \in O(n^2)$??? Find **cn² EXECC** c=11 and n_0 =1 **Example 3:** $n^3 + 2n^2 + 4n + 8 \in O(n^2)$??? ***** $\geq n^3 + 2n^2 + 4n + 8$??? \star Find cn^2 $a_m n^m + a_{m-1} n^{m-1} - \cdots - \cdots - \cdots + a_0 \in O(n^m)$ $log n \le \sqrt{n} \le n \le nlog n \le n^2 \le n^3 \le 2^n \le n!$

What does it mean?

Asymptotic Analysis

Asymptotic (مقارب (analysis measures the efficiency of an algorithm as the input size becomes large.

It is actually an **estimation** technique. However, asymptotic analysis has proved useful to computer scientists who must determine if a particular algorithm is worth considering for implementation.

- The critical resource for a program is -most often- **running time**.
- The **growth rate** for an algorithm is the rate at which the cost of the algorithm grows as the size of its input grows.
	- o *cn* (for *c* any positive constant) **linear** growth rate or running time.
	- \circ **n²** \rightarrow quadratic growth rate
	- \circ **2ⁿ** \rightarrow **exponential** growth rate.

Worst case? The advantage to analyzing the worst case is that you know for certain that the algorithm must perform at least that well.

Example:

- *** For sufficiently large n, algorithm A is faster**
- *** In the long run constants do not mater.**

Upper bound for the growth of the algorithm's running time. It indicates the upper or highest growth rate that the algorithm can have. **big-O notation**.

 Data Structure: Lectures Note 2016/2017 Prepared by: **Dr. Mamoun Nawahdah** For **T(***n***)** a non-negatively valued function, **T(***n***)** is in set **O(***f***(***n***))** if there exist two positive constants c and n_0 such that $T(n) \leq cf(n)$ for all $n > n_0$. Prove that **15n + 93** is **O(n)** We must show +ve c and n_0 such that $15n + 93 \le c(n)$ for $n \ge n_0$ \langle provided **n**= 93> \rightarrow 15n+n \rightarrow 16n \leq cn \rightarrow \langle provided c = 16> So for $c=16$ and $n_0 = 93$ \rightarrow // proved **Graph using Excel** • Prove that $2n^2 + 1 = O(n^2)$ M ust show +ve **c**, n_0 such that $2n^2+1 \le c(n^2)$ for $n \ge n_0$ **2n² +1 <provided n=1>** $2n^2 + n^2$ \rightarrow $3n^2$ <provided c=3> **2n² +1 ≤ 3n²** So, **c=3**, **n**₀=1 // proved **Graph using Excel Example 3.5** For a particular algorithm, $\mathbf{T}(n) = c_1 n^2 + c_2 n$ in the average case where c_1 and c_2 are positive numbers. Then, $c_1n^2 + c_2n \leq$ $c_1n^2 + c_2n^2 \le (c_1 + c_2)n^2$ for all $n > 1$. So, $\mathbf{T}(n) \le cn^2$ for $c = c_1 + c_2$, and $n_0 = 1$. Therefore, $\mathbf{T}(n)$ is in $O(n^2)$ by the second definition.

The **lower bound** for an algorithm is denoted by the symbol **Ω**, pronounced "big-Omega" or just "Omega."

For **T(***n***)** a non-negatively valued function, **T(***n***)** is in set **Ω(***g***(***n***))** if there exist two positive constants *c* and n_0 such that **T(***n***)** \geq *cg***(***n***) for all** $n > n_0$ **.**

```
 Prove that 15n+93 is Ω(n)
```

```
We must show +ve c and n_0 such that 15n+93 \ge c(n) for n \ge n_0\leq because 93 is +ve> \geq c(n) \rightarrow \leq provided c=15> \leq so any n<sub>0</sub> > 0 will do
So c=15, n_0=1 // proved
```
Graph using Excel

• Prove that $2n^2+1$ is $Ω(n^2)$ Must show +ve **c** and n_0 such that $2n^2+1 \ge cn^2$ for $n \ge n_0$ <because 1 is +ve>

Graph using Excel

Example 3.7 Assume $T(n) = c_1 n^2 + c_2 n$ for c_1 and $c_2 > 0$. Then,

 $c_1n^2 + c_2n > c_1n^2$

for all $n > 1$. So, $\mathbf{T}(n) \ge cn^2$ for $c = c_1$ and $n_0 = 1$. Therefore, $\mathbf{T}(n)$ is in $\Omega(n^2)$ by the definition.

When the **upper** and **lower bounds** are the same within a constant factor, we indicate this by using **Θ (big-Theta)** notation.

 $T(n) = \Theta(g(n))$ iff $T(n) = \Theta(g(n))$ and $T(n) = \Omega(g(n))$

Example: Because the **sequential search algorithm** is both in **O(***n***)** and in **Ω(***n***)** in the average case, we say it is **Θ(***n***)** in the average case.

Simplifying Rules

- 1. If $f(n)$ is in $O(g(n))$ and $g(n)$ is in $O(h(n))$, then $f(n)$ is in $O(h(n))$.
- 2. If $f(n)$ is in $O(kg(n))$ for any constant $k > 0$, then $f(n)$ is in $O(g(n))$.
- 3. If $f_1(n)$ is in $O(g_1(n))$ and $f_2(n)$ is in $O(g_2(n))$, then $f_1(n) + f_2(n)$ is in $O(max(g_1(n), g_2(n)))$.
- 4. If $f_1(n)$ is in $O(g_1(n))$ and $f_2(n)$ is in $O(g_2(n))$, then $f_1(n)f_2(n)$ is in $O(g_1(n)g_2(n)).$
- **Rule (2)** is that you can ignore any multiplicative constants.
- **Rule (3)** says that given two parts of a program run in sequence, you need to consider only the more expensive part.
- **Rule (4)** is used to analyze simple loops in programs.

Taking the first three rules collectively, you can ignore all constants and all lower-order terms to determine the asymptotic growth rate for any cost function.

 $O(1)$ ≤ $O(log_2 n)$ ≤ $O(n)$ ≤ $O(n log_2 n)$ ≤ $O(n^2)$ ≤ $O(n^3)$ ≤ $O(2^n)$

If the problem size is always small, you can probably ignore an algorithm's efficiency

Limitations of big-O analysis:

- Overestimate.
- Analysis assumes infinite memory.
- Not appropriate for small amounts of input.
- The constant implied by the Big-Oh may be too large to be ignored (**2***N* **log** *N vs.* **1000***N*)

Analyzing Algorithm Examples

General Rules of analyzing algorithm code:

$Rule 1 - for loops:$

The running time of a **for** loop is at most the running time of the statements inside the **for** loop (including tests) **times** the number of iterations.

Rule 2 — Nested loops:

Analyze these **inside out**. The total running time of a statement inside a group of nested loops is the running time of the statement multiplied by the product of the sizes of all the loops.

Rule 3 — Consecutive Statements:

These just add (which means that the maximum is the one that counts.

Rule 4 — *if/else***:**

The running time of an **if/else** statement is never more than the running time of the **test** plus the larger of the running times of **S1** and **S2**.

Rule 5 — *methods call***:**

If there are method calls, these must be analyzed first.

Sorting Algorithm

1- **Bubble Sort (revision)** \rightarrow **O**(n²)

```
public static void bubble(int[] arr){
   int temp;
  for (int i = 0; i < arr.length-1; i++) {
     for (int j = 0; j < arr.length - i - 1; j++) if(arr[j+1]<arr[j]){
          temp = arr[i];arr[j] = arr[j+1];\ar[r+1] = \text{temp}; }
      }
   }
}
```
2- **Selection Sort (revision) O(n²)**: named selection because every time we select the smallest item.

```
public static void selection (int[] arr){
   int temp, minIndex;
  for (int i = 0; i < \text{arr.length-1}; i++)}
    minIndex = i;for (int j = i+1; j < arr.length; j++) {
        if(arr[j]<arr[minIndex]){
          minIndex=j;
        }
      }
     if(i!= minIndex){
       temp = arr[i];arr[i] = arr[minIndex]; arr[minIndex] = temp;
     }
   }
}
```
3- **Insertion sort** \rightarrow **O**(n²):

public static void insertion (**int**[] arr){ **int** j, temp, current; **for (int i = 1; i < arr.length; i++) {** $current = arr[i];$ $j=i-1;$ **while** (j>=0 && arr[j]>current){ $arr[j+1] = arr[j];$ j--; } arr[j+1]=current; } }

O(n2) sorting algorithms comparison:

(run demo @ http://www.sorting-algorithms.com/)

Merge: take 2 sorted arrays and merge them together into one.

Example:

Make sure of array boundaries

H.W: implement merge sort your own

 Data Structure: Lectures Note 2016/2017 Prepared by: **Dr. Mamoun Nawahdah Searching elements** in an array:

Inserting and deleting items from ordered array

