
 Data Structure: Stacks and Queues 2016/2017 Prepared by: Dr. Mamoun Nawahdah

1

COMP242

Data Structure

Lectures Note: Stacks and Queues

Prepared by: Dr. Mamoun Nawahdah

2016/2017

 Data Structure: Stacks and Queues 2016/2017 Prepared by: Dr. Mamoun Nawahdah

2

Stacks

Stack is an abstract data type that serves as a collection of elements, with two principal operations:

 push adds an element to the collection;

 pop removes the last element that was added.

• Last In, First Out  LIFO

 Data Structure: Stacks and Queues 2016/2017 Prepared by: Dr. Mamoun Nawahdah

3

Single Linked List Implementation:

Each of the following operation involves top of stack

 push

 pop

 peek

Head or Tail for topNode??

Head of linked list easiest, fastest to access  Let this be the top of the stack

public class LinkedStack<T extends Comparable<T>> {
 private Node<T> topNode;

 public void push(T data) {
 Node<T> newNode = new Node<T>(data);
 newNode.setNext(topNode);
 topNode = newNode;
 }

 public Node<T> pop() {
 Node<T> toDel = topNode;
 if(topNode != null)
 topNode = topNode.getNext();
 return toDel;
 }

 public Node<T> peek() { return topNode; }

 public int length() {
 int length = 0;
 Node<T> curr = topNode;
 while (curr != null) {
 length++;
 curr = curr.getNext();
 }
 return length;
 }

 public boolean isEmpty() { return (topNode == null); }

 public void clear() { topNode = null; }
}

 Data Structure: Stacks and Queues 2016/2017 Prepared by: Dr. Mamoun Nawahdah

4

Array-Based Implementation:

• End of the array easiest to access

 Let this be top of stack

 Let first entry be bottom of stack

public class ArrayStack <T> {
 private Object[] s;
 private int n=-1;

 public ArrayStack(int capacity){
 s = new Object[capacity];
 }

 public boolean isEmpty(){ return n ==-1;}
 public int getN(){ return n;}

 public void push(T data){
 s[++n] = data;
 }

 public Object pop(){
 if(!isEmpty())
 return s[n--];
 return null;
 }

 public String toString() {
 String res = "Top-->";
 for(int i=n; i>=0;i--)
 res+="["+s[i]+"]-->";
 return res+"Null";
 }
}

 Data Structure: Stacks and Queues 2016/2017 Prepared by: Dr. Mamoun Nawahdah

5

Iteration (Optional)

Design challenge: Support iteration over stack items by client, without revealing the internal

representation of the stack.

 Java solution. Make stack implement the java.lang.Iterable interface.

Iterator<String> itt = ls.iterator();
while (itt.hasNext())
 System.out.println(itt.next());

for(String s: ls)
 System.out.println(s);

import java.util.Iterator;
public class LinkedStack<T extends Comparable<T>> implements Iterable<T> {
 :
 public Iterator<T> iterator(){
 return new ListIterator();
 }

 private class ListIterator implements Iterator<T>{
 private Node<T> curr = topNode;
 public boolean hasNext(){return curr!=null;}
 public void remove(){}
 public T next(){
 T t = curr.data;
 curr = curr.next;
 return t;
 }
 }
}

 Data Structure: Stacks and Queues 2016/2017 Prepared by: Dr. Mamoun Nawahdah

6

Balanced Delimiters

Problem: Find out if delimiters (“[{(]})”) are paired correctly  Compilers

Example 1: The contents of a stack during the scan of an expression that contains the balanced

delimiters { [()] }

Example 2: The contents of a stack during the scan of an expression that contains the unbalanced

delimiters { [(]) }

Example 3: The contents of a stack during the scan of an expression that contains the unbalanced

delimiters [()] }

 Data Structure: Stacks and Queues 2016/2017 Prepared by: Dr. Mamoun Nawahdah

7

Example 4: The contents of a stack during the scan of an expression that contains the unbalanced

delimiters { [()]

Algorithm to process balanced expression:

H.W. implement check balance algorithm using linked list/array stacks

 Data Structure: Stacks and Queues 2016/2017 Prepared by: Dr. Mamoun Nawahdah

8

Processing Algebraic Expressions

• Infix: each binary operator appears between its operands a + b

• Prefix: each binary operator appears before its operands + a b

• Postfix: each binary operator appears after its operands a b +

Evaluate infix expressions:

Example: evaluate a + b * c when a is 2, b is 3, and c is 4:

Step 1: Fill the two stacks until reaching the end of the expression:

Step 2: performing the multiplication:

Step 3: performing the addition:

 Data Structure: Stacks and Queues 2016/2017 Prepared by: Dr. Mamoun Nawahdah

9

Algorithm to evaluate infix expression:

 Data Structure: Stacks and Queues 2016/2017 Prepared by: Dr. Mamoun Nawahdah

10

Infix to Postfix Conversion

Example 1: Converting the infix expression a + b * c to postfix form

Example 2: Successive Operators with Same Precedence: a - b + c

 Data Structure: Stacks and Queues 2016/2017 Prepared by: Dr. Mamoun Nawahdah

11

Example 3: Successive Operators with Same Precedence: a ^ b ^ c

Example 4: The steps in converting the infix expression a / b * (c + (d – e)) to postfix form

 Data Structure: Stacks and Queues 2016/2017 Prepared by: Dr. Mamoun Nawahdah

12

Infix-to-postfix Algorithm:

 Data Structure: Stacks and Queues 2016/2017 Prepared by: Dr. Mamoun Nawahdah

13

Evaluating Postfix Expressions

 When an operand is seen, it is pushed onto a stack.

 When an operator is seen, the appropriate numbers of operands are popped from the stack, the

operator is evaluated, and the result is pushed back onto the stack.

o Note that the 1st item popped becomes the (right hand side) rhs parameter to the binary

operator and that the 2nd item popped is the (left hand side) lhs parameter; thus parameters

are popped in reverse order.

o For addition and multiplication, the order does not matter, but for subtraction and division, it

does.

 When the complete postfix expression is evaluated, the result should be a single item on the stack that

represents the answer.

Example 1: The stack during the evaluation of the postfix expression a b / when a is 2 and b is 4

Example 2: The stack during the evaluation of the postfix expression a b + c / when a is 2, b is 4, and c is 3

Self exercises:

 2 3 4 + * 6 -  8.0

 2 3 + 7 9 / -  4.222

 10 2 8 * + 3 -  23.0

 1 2 - 4 5 ^ 3 * 6 * 7 2 2 ^ ^ / -  -8.67

 Data Structure: Stacks and Queues 2016/2017 Prepared by: Dr. Mamoun Nawahdah

14

Algorithm for evaluating postfix expressions.

 Data Structure: Stacks and Queues 2016/2017 Prepared by: Dr. Mamoun Nawahdah

15

Queues
• A queue is another name for a waiting line:

• Used within operating systems and to simulate real-world events.

 Come into play whenever processes or events must wait

• Entries organized first-in, first-out.

Terminology

• Item added first, or earliest, is at the front of the queue

• Item added most recently is at the back of the queue

• Additions to a software queue must occur at its back.

• Client can look at or remove only the entry at the front of the queue

Tail
Last

Back

FIFO: First In First Out Head
First
Front

The ADT Queue

 Data Structure: Stacks and Queues 2016/2017 Prepared by: Dr. Mamoun Nawahdah

16

Linked-list Representation of a Queue

public class linkedQueue <T extends Comparable<T>> {
 private Node<T> first;
 private Node<T> last;

 public boolean isEmpty(){ return (first==null) && (last==null); }
 public void clear(){
 first = null;
 last = null;
 }
}

 The definition of enqueue Performance is O(1):

o Adding a new node to an empty chain

o Adding a new node to the end of a nonempty chain that has a tail reference

public void enqueue(T data){
 Node<T> newNode = new Node<T>(data);
 if(isEmpty())
 first=newNode;
 else
 last.next = newNode;
 last = newNode;
}

 Data Structure: Stacks and Queues 2016/2017 Prepared by: Dr. Mamoun Nawahdah

17

 Retrieving the front entry:

public T getFront(){
 if(!isEmpty())
 return first.data;
 return null;
}

 Removing the front entry (dequeue):

o A queue of more than one entry:

o A queue of one entry:

public T dequeue(){
 T front = getFront();
 if(!isEmpty())
 first = first.next;
 if(first==null)
 last = null;
 return front;
}

Circular Linked Implementations of a Queue
A circular linked chain with an external reference to its last node that

a) has more than one node; b) has one node; c) is empty

 Data Structure: Stacks and Queues 2016/2017 Prepared by: Dr. Mamoun Nawahdah

18

Array implementation of a Queue

・ enqueue(): add new item at after last (tail).

・ dequeue(): remove item from first (head).

enqueue(8)

enqueue (12)

After a number of enqueues:
dequeue(): returns the item pointed by head and advances head pointer

dequeue()

enqueue (27) ?? How to advance tail?? We have space at the beginning?? Shift??

First
Last

 Data Structure: Stacks and Queues 2016/2017 Prepared by: Dr. Mamoun Nawahdah

19

Circular Queue

 Data Structure: Stacks and Queues 2016/2017 Prepared by: Dr. Mamoun Nawahdah

20

• To detect circular queue-full and queue-empty conditions

– Keep a count of the queue items

• To initialize the circular queue, set:

– front to -1

– back to -1

– count to 0

• Inserting into a circular queue:

If(count < MAX_QUEUE) // free

 back = (++back) % MAX_QUEUE;

items[back] = newItem;

++count;

If(count == 1) // first item

 front = back;

• Deleting from a circular queue:

 If(count > 0) // not empty

front = (++front) % MAX_QUEUE;

--count;

 If(count == 0) // empty

 front = back = -1

HW: Queue implementations using linked List and Arrays.

DE Queue (Double Ended Queue)

Allows add/remove elements from both head/tail.

 Data Structure: Stacks and Queues 2016/2017 Prepared by: Dr. Mamoun Nawahdah

21

