
 Data Structure: Stacks and Queues 2016/2017 Prepared by: Dr. Mamoun Nawahdah

1

COMP242

Data Structure

Lectures Note: Stacks and Queues

Prepared by: Dr. Mamoun Nawahdah

2016/2017

 Data Structure: Stacks and Queues 2016/2017 Prepared by: Dr. Mamoun Nawahdah

2

Stacks

Stack is an abstract data type that serves as a collection of elements, with two principal operations:

 push adds an element to the collection;

 pop removes the last element that was added.

• Last In, First Out LIFO

 Data Structure: Stacks and Queues 2016/2017 Prepared by: Dr. Mamoun Nawahdah

3

Single Linked List Implementation:

Each of the following operation involves top of stack

 push

 pop

 peek

Head or Tail for topNode??

Head of linked list easiest, fastest to access Let this be the top of the stack

public class LinkedStack<T extends Comparable<T>> {
 private Node<T> topNode;

 public void push(T data) {
 Node<T> newNode = new Node<T>(data);
 newNode.setNext(topNode);
 topNode = newNode;
 }

 public Node<T> pop() {
 Node<T> toDel = topNode;
 if(topNode != null)
 topNode = topNode.getNext();
 return toDel;
 }

 public Node<T> peek() { return topNode; }

 public int length() {
 int length = 0;
 Node<T> curr = topNode;
 while (curr != null) {
 length++;
 curr = curr.getNext();
 }
 return length;
 }

 public boolean isEmpty() { return (topNode == null); }

 public void clear() { topNode = null; }
}

 Data Structure: Stacks and Queues 2016/2017 Prepared by: Dr. Mamoun Nawahdah

4

Array-Based Implementation:

• End of the array easiest to access

 Let this be top of stack

 Let first entry be bottom of stack

public class ArrayStack <T> {
 private Object[] s;
 private int n=-1;

 public ArrayStack(int capacity){
 s = new Object[capacity];
 }

 public boolean isEmpty(){ return n ==-1;}
 public int getN(){ return n;}

 public void push(T data){
 s[++n] = data;
 }

 public Object pop(){
 if(!isEmpty())
 return s[n--];
 return null;
 }

 public String toString() {
 String res = "Top-->";
 for(int i=n; i>=0;i--)
 res+="["+s[i]+"]-->";
 return res+"Null";
 }
}

 Data Structure: Stacks and Queues 2016/2017 Prepared by: Dr. Mamoun Nawahdah

5

Iteration (Optional)

Design challenge: Support iteration over stack items by client, without revealing the internal

representation of the stack.

 Java solution. Make stack implement the java.lang.Iterable interface.

Iterator<String> itt = ls.iterator();
while (itt.hasNext())
 System.out.println(itt.next());

for(String s: ls)
 System.out.println(s);

import java.util.Iterator;
public class LinkedStack<T extends Comparable<T>> implements Iterable<T> {
 :
 public Iterator<T> iterator(){
 return new ListIterator();
 }

 private class ListIterator implements Iterator<T>{
 private Node<T> curr = topNode;
 public boolean hasNext(){return curr!=null;}
 public void remove(){}
 public T next(){
 T t = curr.data;
 curr = curr.next;
 return t;
 }
 }
}

 Data Structure: Stacks and Queues 2016/2017 Prepared by: Dr. Mamoun Nawahdah

6

Balanced Delimiters

Problem: Find out if delimiters (“[{(]})”) are paired correctly Compilers

Example 1: The contents of a stack during the scan of an expression that contains the balanced

delimiters { [()] }

Example 2: The contents of a stack during the scan of an expression that contains the unbalanced

delimiters { [(]) }

Example 3: The contents of a stack during the scan of an expression that contains the unbalanced

delimiters [()] }

 Data Structure: Stacks and Queues 2016/2017 Prepared by: Dr. Mamoun Nawahdah

7

Example 4: The contents of a stack during the scan of an expression that contains the unbalanced

delimiters { [()]

Algorithm to process balanced expression:

H.W. implement check balance algorithm using linked list/array stacks

 Data Structure: Stacks and Queues 2016/2017 Prepared by: Dr. Mamoun Nawahdah

8

Processing Algebraic Expressions

• Infix: each binary operator appears between its operands a + b

• Prefix: each binary operator appears before its operands + a b

• Postfix: each binary operator appears after its operands a b +

Evaluate infix expressions:

Example: evaluate a + b * c when a is 2, b is 3, and c is 4:

Step 1: Fill the two stacks until reaching the end of the expression:

Step 2: performing the multiplication:

Step 3: performing the addition:

 Data Structure: Stacks and Queues 2016/2017 Prepared by: Dr. Mamoun Nawahdah

9

Algorithm to evaluate infix expression:

 Data Structure: Stacks and Queues 2016/2017 Prepared by: Dr. Mamoun Nawahdah

10

Infix to Postfix Conversion

Example 1: Converting the infix expression a + b * c to postfix form

Example 2: Successive Operators with Same Precedence: a - b + c

 Data Structure: Stacks and Queues 2016/2017 Prepared by: Dr. Mamoun Nawahdah

11

Example 3: Successive Operators with Same Precedence: a ^ b ^ c

Example 4: The steps in converting the infix expression a / b * (c + (d – e)) to postfix form

 Data Structure: Stacks and Queues 2016/2017 Prepared by: Dr. Mamoun Nawahdah

12

Infix-to-postfix Algorithm:

 Data Structure: Stacks and Queues 2016/2017 Prepared by: Dr. Mamoun Nawahdah

13

Evaluating Postfix Expressions

 When an operand is seen, it is pushed onto a stack.

 When an operator is seen, the appropriate numbers of operands are popped from the stack, the

operator is evaluated, and the result is pushed back onto the stack.

o Note that the 1st item popped becomes the (right hand side) rhs parameter to the binary

operator and that the 2nd item popped is the (left hand side) lhs parameter; thus parameters

are popped in reverse order.

o For addition and multiplication, the order does not matter, but for subtraction and division, it

does.

 When the complete postfix expression is evaluated, the result should be a single item on the stack that

represents the answer.

Example 1: The stack during the evaluation of the postfix expression a b / when a is 2 and b is 4

Example 2: The stack during the evaluation of the postfix expression a b + c / when a is 2, b is 4, and c is 3

Self exercises:

 2 3 4 + * 6 - 8.0

 2 3 + 7 9 / - 4.222

 10 2 8 * + 3 - 23.0

 1 2 - 4 5 ^ 3 * 6 * 7 2 2 ^ ^ / - -8.67

 Data Structure: Stacks and Queues 2016/2017 Prepared by: Dr. Mamoun Nawahdah

14

Algorithm for evaluating postfix expressions.

 Data Structure: Stacks and Queues 2016/2017 Prepared by: Dr. Mamoun Nawahdah

15

Queues
• A queue is another name for a waiting line:

• Used within operating systems and to simulate real-world events.

 Come into play whenever processes or events must wait

• Entries organized first-in, first-out.

Terminology

• Item added first, or earliest, is at the front of the queue

• Item added most recently is at the back of the queue

• Additions to a software queue must occur at its back.

• Client can look at or remove only the entry at the front of the queue

Tail
Last

Back

FIFO: First In First Out Head
First
Front

The ADT Queue

 Data Structure: Stacks and Queues 2016/2017 Prepared by: Dr. Mamoun Nawahdah

16

Linked-list Representation of a Queue

public class linkedQueue <T extends Comparable<T>> {
 private Node<T> first;
 private Node<T> last;

 public boolean isEmpty(){ return (first==null) && (last==null); }
 public void clear(){
 first = null;
 last = null;
 }
}

 The definition of enqueue Performance is O(1):

o Adding a new node to an empty chain

o Adding a new node to the end of a nonempty chain that has a tail reference

public void enqueue(T data){
 Node<T> newNode = new Node<T>(data);
 if(isEmpty())
 first=newNode;
 else
 last.next = newNode;
 last = newNode;
}

 Data Structure: Stacks and Queues 2016/2017 Prepared by: Dr. Mamoun Nawahdah

17

 Retrieving the front entry:

public T getFront(){
 if(!isEmpty())
 return first.data;
 return null;
}

 Removing the front entry (dequeue):

o A queue of more than one entry:

o A queue of one entry:

public T dequeue(){
 T front = getFront();
 if(!isEmpty())
 first = first.next;
 if(first==null)
 last = null;
 return front;
}

Circular Linked Implementations of a Queue
A circular linked chain with an external reference to its last node that

a) has more than one node; b) has one node; c) is empty

 Data Structure: Stacks and Queues 2016/2017 Prepared by: Dr. Mamoun Nawahdah

18

Array implementation of a Queue

・ enqueue(): add new item at after last (tail).

・ dequeue(): remove item from first (head).

enqueue(8)

enqueue (12)

After a number of enqueues:
dequeue(): returns the item pointed by head and advances head pointer

dequeue()

enqueue (27) ?? How to advance tail?? We have space at the beginning?? Shift??

First
Last

 Data Structure: Stacks and Queues 2016/2017 Prepared by: Dr. Mamoun Nawahdah

19

Circular Queue

 Data Structure: Stacks and Queues 2016/2017 Prepared by: Dr. Mamoun Nawahdah

20

• To detect circular queue-full and queue-empty conditions

– Keep a count of the queue items

• To initialize the circular queue, set:

– front to -1

– back to -1

– count to 0

• Inserting into a circular queue:

If(count < MAX_QUEUE) // free

 back = (++back) % MAX_QUEUE;

items[back] = newItem;

++count;

If(count == 1) // first item

 front = back;

• Deleting from a circular queue:

 If(count > 0) // not empty

front = (++front) % MAX_QUEUE;

--count;

 If(count == 0) // empty

 front = back = -1

HW: Queue implementations using linked List and Arrays.

DE Queue (Double Ended Queue)

Allows add/remove elements from both head/tail.

 Data Structure: Stacks and Queues 2016/2017 Prepared by: Dr. Mamoun Nawahdah

21

