m Data Structure: Stacks and Queues 2016/2017 Prepared by: Dr. Mamoun Nawahdah

e ‘*‘%) X
BIRZEIT UNIVERSITY

COMP242
Data Structure

Lectures Note: Stacks and Queues

Prepared by: Dr. Mamoun Nawahdah
2016/2017

Data Structure: Stacks and Queues 2016/2017 Prepared by: Dr. Mamoun Nawahdah
Stacks

Stack is an abstract data type that serves as a collection of elements, with two principal operations:
® push adds an element to the collection;
" pop removes the last element that was added.

Push L‘ /" Pop

|

e Last In, First Out = LIFO

ABsTRACT DATA TYPE: STACK

DATA
e A collection of objects in reverse chronological order and having the same data type
OPERATIONS
PseupocobE UML DEscripTION

push(newEntry) +push(newEntry: T): void Task: Adds a new entry to the top of the
stack.
Input: newEntry is the new entry.
Output: None.

pop() +popO: T Task: Removes and retums the stack’s top
entry.
Input: None.
Output: Returns the stack’s top entry.
Throws an exception if the stack 1s
empty before the operation.
peek() +peek(): T Task: Retrieves the stack’s top entry
without changing the stack mn any
way.
Input: None,
Output: Retums the stack’s top entry.
Throws an exception 1f the stack
15 empty.

isEmpty () +isEmpty(): boolean Task: Detects whether the stack 1s empty.
Input: None
Output: Retumns true if the stack 1s empty.

clear() +clear(): void Task: Removes all entries from the stack.
Input: None.
Output: None.

E Data Structure: Stacks and Queues 2016/2017 Prepared by: Dr. Mamoun Nawahdah
Single Linked List Implementation:
Each of the following operation involves top of stack

= push
" pop
= peek

Head or Tail for topNode??
Head of linked list easiest, fastest to access = Let this be the top of the stack

Chain

E--Glo—Glo—

topNode

Top entry of stack @
o
O

Stack
public class LinkedStack<T extends Comparable<T>> {
private Node<T> topNode;

public void push(T data) {
Node<T> newNode = new Node<T>(data);
newNode.setNext(topNode);
topNode = newNode;

}

public Node<T> pop() {
Node<T> toDel = topNode;
if(topNode != null)
topNode = topNode.getNext();
return toDel;

}
public Node<T> peek() { return topNode; }

public int length() {
int length = 0;
Node<T> curr = topNode;
while (curr != null) {
length++;
curr = curr.getNext();
}

return length;

}

public boolean isEmpty() { return (topNode ==null); }

public void clear() { topNode = null; }

E Data Structure: Stacks and Queues
Array-Based Implementation:
* End of the array easiest to access
= Let this be top of stack

= Let first entry be bottom of stack

Array

0 1 2

2016/2017

~
J

!
\ topIndex
C) Top entry of stack

O
a,
O

Stack

Prepared by: Dr. Mamoun Nawahdah

public class ArrayStack <T> {
private Object[] s;
private int n=-1;

public ArrayStack(int capacity){
s = new Object[capacity];

}

public int getN(){ return n;}

public void push(T data){
s[++n] = data;

}

public Object pop(){
if(lisEmpty())
return s[n--|;
return null;

}

public String toString() {
String res = "Top-->";
for(int i=n; i>=0;i--)
ress="["+s[il+"]-->";
return res+"Null";

}

}

public boolean isEmpty(){ return n ==-1;}

Data Structure: Stacks and Queues 2016/2017 Prepared by: Dr. Mamoun Nawahdah
Iteration (Optional)

Design challenge: Support iteration over stack items by client, without revealing the internal

representation of the stack.

e Java solution. Make stack implement the java.lang.lterable interface.
Iterable interface

Q. What is an Iterable ? -
public interface Iterable<Item> {

A. Has a method that returns an Iterator. Iterator<Item> iterator():
}
Q. What is an Iterator ? Iterator interface
A. Has methods hasNext() and next(). public interface Iterator<Item> {
Q. Why make data structures Iterable ? tl’::le::x't‘g"f'e"to‘
; = ' optional; use
A. Java supports elegant client code. void remove(); +— 4 yvour i
}

import java.util.lterator;
public class LinkedStack<T extends Comparable<T>> implements Iterable<T> {

public Iterator<T> iterator(){
return new Listlterator();

}

private class Listlterator implements Iterator<T>{
private Node<T> curr = topNode;
public boolean hasNext(){return curr!=null;}
public void remove(){}
public T next(){
Tt = curr.data;
curr = curr.next;

return t;

}

}

}

Iterator<String> itt = Is.iterator(); for(String s: Is)

while (itt.hasNext()) System.out.printin(s);
System.out.printIn(itt.next());

first current

| |

times ——> of — best —> the —* was —* it — ol

Data Structure: Stacks and Queues 2016/2017 Prepared by: Dr. Mamoun Nawahdah
Balanced Delimiters

Problem: Find out if delimiters (“[{(]})”) are paired correctly =» Compilers

Example 1: The contents of a stack during the scan of an expression that contains the balanced
delimiters{[()]}

{ [(2 E g Delfmflers in expression
l l l Delimiters popped from stack
{RURLUEL
L [[
{ { { { {
After After After After After After

push('{') push('[') push('(') popQ) pop() pop()

Example 2: The contents of a stack during the scan of an expression that contains the unbalanced
delimiters {[(]) }

Delimiters are not a pair

[(\\\] Delimiters in expression
l l l Delimiter popped from stack
(
[[
{ { {
After After After After

push('{') push('[") push('(") popO)
Example 3: The contents of a stack during the scan of an expression that contains the unbalanced
delimiters [()]}

A pair of parentheses

\ A pair of brackets
) N1}

([Delimiters popped from stack

(
[[[Stack is empty when
} is encountered

After After After After
push('[') push(' (") popO popO

Delimiters in expression

Data Structure: Stacks and Queues 2016/2017 Prepared by: Dr. Mamoun Nawahdah
Example 4: The contents of a stack during the scan of an expression that contains the unbalanced

delimiters {[()]

A pair of parentheses

\ A<ir ;f brackets
[
T

[[

{ { { { { {

After After After After After
push('{") push('[") push(C'(') popQ popO

~a
r

Delimiters in expression

Delimiters popped from stack

M -
—_— N\

Brace is left over in stack

Algorithm to process balanced expression:
Algorithm checkBalance(expression)

isBalanced true
while ((isBalanced true) and not at end of expression) {
nextCharacter next character in expression
switch (nextCharacter)
case '"(': case '[': case
Push nextCharacter onto stack
break

case ')': case ']': case
if (stack is empty)
isBalanced false
(‘]SL‘
openDelimiter fop entry of stack
/’()‘U stack
isBalanced true or false according to whether openDelimiter

and nextCharacter are a pair of delimiters
break
}

i\f (stack is not empty) isBalanced
return 1sBalanced

false

H.W. implement check balance algorithm using linked list/array stacks

Data Structure: Stacks and Queues 2016/2017 Prepared by: Dr. Mamoun Nawahdah

Processing Algebraic Expressions

Infix: each binary operator appears between its operands a + b
Prefix: each binary operator appears before its operands +ab
Postfix: each binary operator appears after its operands a b +

Evaluate infix expressions:

C1+(CC2+3)*(4*5)))

\ \

operand operator

Two-stack algorithm. [E. W. Dijkstra]
« Value: push onto the value stack.
« Operator: push onto the operator stack.
« Left parenthesis: ignore.
+ Right parenthesis: pop operator and two values;
push the result of applying that operator
to those values onto the operand stack.
Example: evaluate a+b * cwhenais 2, bis 3, and cis 4:
Step 1: Fill the two stacks until reaching the end of the expression:

W s

+
(S

Step 2: performing the multiplication:
* 4 *4 3%4 3%4

b \ \
J{J L1 UL UL L

Step 3: performing the addition:

W o

+12 2+ 12 2+ 12

PN\ \
LI LIS LU L

Data Structure: Stacks and Queues 2016/2017 Prepared by: Dr. Mamoun Nawahdah

Algorithm to evaluate infix expression:
Algorithm evaluateInfix(infix)

operatorStack = a new empty stack
valueStack = a new empity stack
while (infix has characters lefi to process) {
nextCharacter = next nonblank character of infix
switch (nextCharacter) {
case variable:
valueStack. push(value of the variable nextCharacter)

break

case 'A'
operatorStack.push(nextCharacter)
break

case '+' : case '-' : case '*' : case '/’

while (loperatorStack.isEmpty() and
precedence of nextCharacter <= precedence of operatorStack.peek()) {

// Execute operator at top of operatorStack

topOperator = operatorStack.pop(Q)

operandTwo = valueStack.pop()

operandOne = valueStack.pop(Q)

result = the result of the operation in topOperator and its operands
operandOne and operandTwo

valueStack.push(result)

}
operatorStack.push(nextCharacter)
break
case "(’
operatorStack.push(nextCharacter)
break
case ')' : // Stackis not empty if infix expression is valid
topOperator = operatorStack.pop()
while (topOperator != '(') {
operandTwo = valueStack.pop()
operandOne = valueStack.pop()
result = the result of the operation in topOperator and its operands
operandOne and operandTwo
valueStack.push(result)
topOperator = operatorStack.pop()
}
break

default: break // Ignore unexpected characters
}
}

while (loperatorStack.isEmpty()) {

topOperator = operatorStack.pop()
operandTwo = valueStack.pop()
operandOne = valueStack.pop()
result = the result of the operation in topOperator and its operands
operandOne and operandTwo
valueStack.push(result)
}

return valueStack.peek()

Data Structure: Stacks and Queues

Infix to Postfix Conversion

* Operand

Operator A

Operator +. -. *, or /

Open parenthesis

Close parenthesis

2016/2017 Prepared by: Dr. Mamoun Nawahdah

Append each operand to the end of the output expression.
Push A onto the stack.

Pop operators from the stack. appending them to the output
expression, until the stack is empty or its top entry has a lower
precedence than the new operator. Then push the new operator
onto the stack.

Push (onto the stack.

Pop operators from the stack and append them to the output
expression until an open parenthesis is popped. Discard both
parentheses.

Example 1: Converting the infix expression a + b * ¢ to postfix form

Next Character in Postfix Form Operator Stack
Infix Expression (bottom to top)
a a
+ a +
b ab +
% ab + *
c abc +*
abc* +
abc*+

Example 2: Successive Operators with Same Precedence:a-b + ¢

Next Character in Postfix Operator Stack
Infix Expression Form (bottom to top)
a a
= a =
b ab =
+ ab—
ab— -
c ab—c +
ab—=c+

10

Data Structure: Stacks and Queues 2016/2017 Prepared by: Dr. Mamoun Nawahdah
Example 3: Successive Operators with Same Precedence:a”b ~ ¢

Next Character in Postfix Operator Stack
Infix Expression Form (bottom to top)
a a
A a A
b ab A
A a b AA
C abc AT
abec?)
a'behh

Example 4: The steps in converting the infix expressiona /b * (c+ (d —e)) to postfix form

Next Character Postfix Operator Stack
from Infix Form (bottom to top)
Expression
a a
/ a /
b ab /
. ab/
ab/ .
(ab/ *(
(e ab/c *(
R ab/c *(+
(ab/c *(+(
d ab/cd *(+(
- ab/cd *(+ (-
e ab/cde *(+ (—
) ab/cde — *(+(
ab/cde— i (5
) ab/cde — + *(
ab/cde— + *

ab/cde— + *

11

Data Structure: Stacks and Queues 2016/2017
Infix-to-postfix Algorithm:

Algorithin convertToPostfix(infix)
operatorStack = a new empty stack
postfix = a new empiy string
while (infix has characters left to parse) {

}

nextCharacter = next nonblank character of infix
switch (nextCharacter) {

case variable:
Append nextCharacter ro postfix
break

case 'A’
operatorStack.push(nextCharacter)
break

"t L | (RO |

case '+' : case '-' : case : case '/'
while (!operatorStack.isEmpty() and

Prepared by: Dr. Mamoun Nawahdah

precedence of nextCharacter <= precedence of operatorStack.peek ()){

Append operatorStack.peek () fo postfix

operatorStack.pop()
}

operatorStack.push(nextCharacter)
break

case '('

operatorStack.push(nextCharacter)
break

case ')' : // Stackis not empty if infix expression is valid

topOperator = operatorStack.pop()
while (topOperator != "('){

Append topOperator to postfix

topOperator = operatorStack.pop()

break

default: break // Ignore unexpected characters

while (loperatorStack.isEmpty()) {

topOperator = operatorStack.pop()
Append topOperator fo postfix

return postfix

12

Data Structure: Stacks and Queues 2016/2017 Prepared by: Dr. Mamoun Nawahdah
Evaluating Postfix Expressions

e When an operand is seen, it is pushed onto a stack.
e When an operator is seen, the appropriate numbers of operands are popped from the stack, the
operator is evaluated, and the result is pushed back onto the stack.

o Note that the 1% item popped becomes the (right hand side) rhs parameter to the binary
operator and that the 2" item popped is the (left hand side) lhs parameter; thus parameters
are popped in reverse order.

o For addition and multiplication, the order does not matter, but for subtraction and division, it
does.

e When the complete postfix expression is evaluated, the result should be a single item on the stack that
represents the answer.

Example 1: The stack during the evaluation of the postfix expressionab/ whenais2andbis 4

a b / / /4 /4 2/4 2/4

I

Example 2: The stack during the evaluation of the postfix expressionab +c/whenais2,bis4,and cis 3
a b - + +4 +4 2+4 2+4 c / / /3 /3 6/3 6/3

N Y N A

4 4 4 3 3 3
6 2

(58]
o
(8]
(8]
(8]
(S5}
=)
=)
=)
o
=)

Self exercises:

o 234+*6- = 8.0
e 23+79/- = 4.222
e 1028*+3- = 23.0
e 12-45A3*6*722AN /- = -8.67

13

Data Structure: Stacks and Queues 2016/2017 Prepared by: Dr. Mamoun Nawahdah

Algorithm for evaluating postfix expressions.

Algorithm evaluatePostfix(postfix)

// Evaluates a pos [Jix expression

valueStack = a new empty stack
while (postfix has characters left to parse)
{
nextCharacter = next nonblank character of postfix
switch (nextCharacter)
{
case variable:
valueStack.push(value of the variable nextCharacter)
break

case '+' : case '-' : case '*' : case '/' : case 'A'
operandTwo = valueStack.pop()
operandOne = valueStack.pop()

result = the result of the operation in nextCharacter and its operands

operandOne and operandTwo
valueStack.push(result)
break

default: break // Ignore unexpected characters
}

E Data Structure: Stacks and Queues 2016/2017 Prepared by: Dr. Mamoun Nawahdah
Queues

* A queue is another name for a waiting line:

* Used within operating systems and to simulate real-world events.
= Come into play whenever processes or events must wait

* Entries organized first-in, first-out.

Terminology

* Item added first, or earliest, is at the front of the queue

* Item added most recently is at the back of the queue

e Additions to a software queue must occur at its back.

* Client can look at or remove only the entry at the front of the queue

Tail FIFO: First In First Out Head

Last First

Back Front
The ADT Queue

Data
e A collection of objects in chronological order and having the same data type

OPERATIONS

PSEUDOCODE UML DESCRIPTION

enqueue (newEntry) +enqueue(newEntry: integer): void Task: Adds a new entry to the back of
the queue.

dequeue() +dequeue(): T Task: Removes and returns the entry at
the front of the queue.

getFront() +getFront(): T Task Retrieves the queue’s front entry
without changing the queue 1n
any way.

isEmpty() +isEmpty(): boolean Task Detects whether the queue 1s empty

clearQ) +clear(): void Task: Removes all entries from the queue.

15

Data Structure: Stacks and Queues 2016/2017 Prepared by: Dr. Mamoun Nawahdah
Linked-list Representation of a Queue

Cpa €l °9—>CI ESaa €l °9—>CI [+l

firstNode TastNode

Y /
Entry at front Entry at back
of queue of queue

public class linkedQueue <T extends Comparable<T>> {
private Node<T> first;
private Node<T> last;

public boolean isEmpty(){ return (first==null) && (last==null); }
public void clear(){
first = null;
last = null;
}
}

e The definition of enqueue Performance is O(1):

o Adding a new node to an empty chain
(a) (b)

B O H B[O~

firstNode 1 TastNode firstNode TastNode

4]

newNode

o Adding a new node to the end of a nonempty chain that has a tail reference

: CIo Cl
d

TastNode newNode

*r—

(b)

coo—(R /—lj After executing
\] .f7—_>\\ .</I TastNode.setNextNode (newNode) ;

4

TastNode newNode
(©)
ce e _»(l — I .) After executing

[Eﬂ//////}(\‘ TastNode = newNode;

TastNode newNode

public void enqueue(T data){
Node<T> newNode = new Node<T>(data);
if(isEmpty())
first=newNode;
else
last.next = newNode;
last = newNode;

16

Data Structure: Stacks and Queues 2016/2017 Prepared by: Dr. Mamoun Nawahdah
e Retrieving the front entry:

public T getFront(){
if(lisEmpty())
return first.data;
return null;

}

e Removing the front entry (dequeue):

o A queue of more than one entry:
(a)

firstNode TastNode

E—*Qjﬁ—'(l I -9—>CI [=>—G O~

o O O O

Entry at front Entry at back
of queue of queue

(b)

firstNode TastiNode

\

front ~ Returned Entry at front Entry at back
to client of queue of queue

, }
o

04.

o A queue of one entry:
(a) (b)

E—'(%E%—E [*] [¢]
firstNode TastNode firstNode TastNode

Entry at front front Rclu.rncd
of queue to client
public T dequeue(){

T front = getFront();
if(lisEmpty())
first = first.next;
if(first==null)
last = null;
return front;
}
Circular Linked Implementations of a Queue
A circular linked chain with an external reference to its last node that
a) has more than one node; b) has one node; c) is empty
(a) (b) (c)

e rac e ar

d o o

TastNode TastNode TastNode

17

Data Structure: Stacks and Queues 2016/2017 Prepared by: Dr. Mamoun Nawahdah
Array implementation of a Queue
0 Y Y e Y I v [5 O 3 [2

TE maxSize = 8
int[] queueArray = new int[maxSize]
First int head = -1
Last int tail = -1

* enqueue(): add new item at after last (tail).
+ dequeue(): remove item from first (head).

S Y [Em S o) 3 [O S |

enqueue(8)

| [R Y 3 [1 [|

enqueue(8) n =

enqueue (12)

After a number of enqueues: g Tg

dequeue(): returns the item pointed by head and advances head pointer
0 0O &6 6 6 6 6

:"
II

Gl

dequeue() n

enqueue (27) ?? How to advance tail?? We have space at the beginning?? Shift??

18

Data Structure: Stacks and Queues

2016/2017 Prepared by: Dr. Mamoun Nawahdah
Circular Queue
front
MAX_QUEUE — 1 0
2
4 1
)
7
3
back
Delete » Delete » Insert 9
MAX QUEUE-1 ___ ,front yax QuEvE-1___ 0 MAX QUEUVE-1 0
&2{1 /ﬁ 1 ﬂ/% 1
front front
1 /2 /2
7 7 917
3 T 3 4 3
back
back back
Queue with single item —— Delete item—queue becomes empty
MAX_QUEUE —1 0 MAX_QUEUE —1 0
1/2 5 2
91 7 P
4 T 3 front 4T 3
back back
front
Queue with single empty slot ——— Insert 9—queue becomes full
MAX QUEUE =1 0 MAX QUEUE =1 0
L2 L2
6 1 6 1
4 6 4 6
(b)
5 2 3/ 5 2 3/
4 8 9| 8
front T 3 front 4T 3
back back
19

E Data Structure: Stacks and Queues 2016/2017 Prepared by: Dr. Mamoun Nawahdah

* To detect circular queue-full and queue-empty conditions
— Keep a count of the queue items

* Toinitialize the circular queue, set:
— frontto-1
— backto -1
— counttoO

* Inserting into a circular queue:
If(count < MAX_QUEUE) // free
back = (++back) % MAX_QUEUE;
items[back] = newltem;
++count;
If(count == 1) // first item
front = back;

* Deleting from a circular queue:
If(count > 0) // not empty
front = (++front) % MAX_QUEUE;
--count;
If(count == 0) // empty
front = back = -1

HW: Queue implementations using linked List and Arrays.

DE Queue (Double Ended Queue)

Allows add/remove elements from both head/tail.

20

E Data Structure: Stacks and Queues 2016/2017 Prepared by: Dr. Mamoun Nawahdah

FINISHED STIII]YING?
{» :

21

