
 Data Structure: Binary Trees 2016/2017 Prepared by: Dr. Mamoun Nawahdah

1

COMP242

Data Structure

Lectures Note: Binary Trees

Prepared by: Dr. Mamoun Nawahdah

2016/2017

 Data Structure: Binary Trees 2016/2017 Prepared by: Dr. Mamoun Nawahdah

2

Trees
Revision:

 Sorted Arrays Sorted Linked List

Search Fast O(log n) Slow O(n)

Insert Slow O(n) Slow O(n)

Delete slow O(n) Slow O(n)

Tree

 A tree is a collection of N nodes, one of which is the root, and N 1 edges.

 Every node except the root has one parent.

 Nodes with no children are known as leaves.

 An internal node (parent) is any node that has at least one non-empty child.

 Nodes with the same parent are siblings.

 The depth of a node in a tree is the length of the path from the root to the node.

 The height of a tree is the number of levels in the tree.

Example 1: Family Trees (one parent)

Example 2: File system tree

 Data Structure: Binary Trees 2016/2017 Prepared by: Dr. Mamoun Nawahdah

3

Binary Trees
 A binary tree is a tree in which no node can have more than two children:

 Binary Tree Node:

(a) Each node in a full binary tree is either:

(1) an internal node with exactly two non-empty children or

(2) a leaf.

(b) A complete binary tree has a restricted shape obtained by starting at the root and filling the tree by

levels from left to right.

 Data Structure: Binary Trees 2016/2017 Prepared by: Dr. Mamoun Nawahdah

4

 The maximum number of nodes in a full binary tree as a function of the tree’s height = 2h-1

 Data Structure: Binary Trees 2016/2017 Prepared by: Dr. Mamoun Nawahdah

5

Implementation:

public class TNode<T extends Comparable<T>> {
 T data;
 TNode left;
 TNode right;

 public TNode(T data) { this.data = data; }
 public void setData(T data) { this.data = data; }
 public T getData() { return data; }
 public TNode getLeft() { return left; }
 public void setLeft(TNode left) { this.left = left; }
 public TNode getRight() { return right; }
 public void setRight(TNode right) { this.right = right;}
 public boolean isLeaf(){ return (left == null && right == null); }
 public boolean hasLeft(){ return left != null; }
 public boolean hasRight(){ return right != null; }
 public String toString() { return "[" + data + "]"; }
}

Tree Traversal

Definition: visit, or process, each data item exactly once.

 In-Order Traversal: Visit root of a binary tree between visiting nodes in root’s subtrees.

o Recursive implementation:

public void traverseInOrder() { traverseInOrder(root); }
public void traverseInOrder(TNode node) {
 if (node != null) {
 if (node.left != null)
 traverseInOrder(node.left);
 System.out.print(node + " ");
 if (node.right != null)
 traverseInOrder(node.right);
 }
}

 Data Structure: Binary Trees 2016/2017 Prepared by: Dr. Mamoun Nawahdah

6

 Using a stack to perform an in-order traversal iteratively: (Optional)

1) Create an empty stack S.
2) Initialize current node as root
3) Push the current node to S and set current = currentleft until current is NULL
4) If current is NULL and stack is not empty then
 a) Pop the top item from stack.
 b) Print the popped item, set current = popped_itemright
 c) Go to step 3.
5) If current is NULL and stack is empty then we are done.

void traverseInOrder () {
 if (root == null) return;
 Stack<Node> stack = new Stack<Node>();
 Node node = root;
 //first node to be visited will be the left one
 while (node != null) {
 stack.push(node);
 node = node.left;
 }
 // traverse the tree
 while (!stack.isEmpty()) {
 // visit the top node
 node = stack.pop();
 System.out.print(node.data + " ");
 if (node.right != null) {
 node = node.right;
 // the next node to be visited is the leftmost
 while (node != null) {
 stack.push(node);
 node = node.left;
 }
 }
 }
 }

 Data Structure: Binary Trees 2016/2017 Prepared by: Dr. Mamoun Nawahdah

7

 Pre-Order Traversal: Visit root before we visit root’s subtrees.

 Post-Order Traversal: Visit root of a binary tree after visiting nodes in root’s

subtrees.

 Level-Order Traversal: Begin at root and visit nodes one level at a time.

 The visitation order of a level-order traversal:

1) Create an empty queue q

2) temp_node = root /*start from root*/

3) Loop while temp_node is not NULL

 a) print temp_node->data.

 b) Enqueue temp_node’s children (first left then right children) to q

 c) Dequeue a node from q and assign it’s value to temp_node

 Level-order traversal is implemented via a queue.

 The traversal is a breadth-first search.

HW: implement level-order traversal

 Data Structure: Binary Trees 2016/2017 Prepared by: Dr. Mamoun Nawahdah

8

Expression Trees

 The leaves of an expression tree are operands, such as constants or variable names, and the other

nodes contain operators.

 It is also possible for a node to have only one child, as is the case with the unary minus operator.

 We can evaluate an expression tree by applying the operator at the root to the values obtained by

recursively evaluating the left and right subtrees.

Algorithm for evaluation of an expression tree:

Constructing an expression tree:

The construction of the expression tree takes place by reading the postfix expression one symbol at a

time:

 If the symbol is an operand, one-node tree is created and a pointer is pushed onto a stack.

 If the symbol is an operator,

o Two pointers trees T1 and T2 are popped from the stack

o A new tree whose root is the operator and whose left and right children point to T2 and

T1 respectively is formed .

o A pointer to this new tree is then pushed to the Stack.

 Data Structure: Binary Trees 2016/2017 Prepared by: Dr. Mamoun Nawahdah

9

Example: (a b + c d e + * *)
 Since the first two symbols are operands, one-

node trees are created and pointers are pushed
to them onto a stack.

 The next symbol is a '+'. It pops two pointers, a
new tree is formed, and a pointer to it is
pushed onto to the stack.

 Next, c, d, and e are read. A one-node tree is

created for each and a pointer to the
corresponding tree is pushed onto the stack.

 Continuing, a '+' is read, and it merges the last
two trees.

 Now, a '*' is read. The last two tree pointers
are popped and a new tree is formed with a '*'
as the root.

 Finally, the last symbol is read. The two trees
are merged and a pointer to the final tree
remains on the stack.

 Data Structure: Binary Trees 2016/2017 Prepared by: Dr. Mamoun Nawahdah

10

Binary Search Trees (BST)
 Problem: searching in binary tree takes O(n).

 Solution: forming a binary search tree.

 In a binary search tree for every node , X, in the tree, the values of all the items in its left subtree are

smaller than the item in X, and the values of all the items in its right subtree are larger (or equal if

duplication is allowed) than the item in X.

Binary Tree

Binary Search Tree

 Every node in a binary search tree is the root of a binary search tree.

 Search for an item:

Example: find(52) , find(39) , find(35)

public TNode find(T data) { return find(data, root); }
public TNode find(T data, TNode node) {
 if (node!= null) {
 int comp = node.data.compareTo(data);
 if (comp == 0)
 return node;
 else if (comp > 0 && node.hasLeft()) return find(data, node.left);
 else if (comp < 0 && node.hasRight()) return find(data, node.right);
 }
 return null;
}

Efficiency: Searching a binary search tree of height h is O(h)

However, to make searching a binary search tree as efficient as possible, tree must be as short as possible.

 Data Structure: Binary Trees 2016/2017 Prepared by: Dr. Mamoun Nawahdah

11

Finding Max and Min Values:

 The find Min operation is performed by following left nodes as long as there is a left child.

 The find Max operation is similar.

public TNode largest() { return largest(root); }
public TNode<T> largest(TNode node) {
 if(node!= null){
 if(!node.hasRight())
 return (node);
 return largest(node.right);
 }
 return null;
}

public TNode smallest() { return smallest(root); }
public TNode<T> smallest(TNode node) {
 if(node!= null){
 if(!node.hasLeft())
 return (node);
 return smallest(node.left);
 }
 return null;
}

 Data Structure: Binary Trees 2016/2017 Prepared by: Dr. Mamoun Nawahdah

12

Insert in Binary Search Tree:
Example: insert(63)

public void insert(T data) {
 if (isEmpty())
 root = new TNode(data);
 else
 insert(data, root);
}
public void insert(T data, TNode node) {
 if (data.compareTo((T) node.data) >= 0) { // insert into right subtree
 if (!node.hasRight())
 node.right = new TNode(data);
 else
 insert(data, node.right);
 } else { // insert into left subtree
 if (!node.hasLeft())
 node.left = new TNode(data);
 else
 insert(data, node.left);
 }
}

Deleting a Node:

Case 1: Node to be deleted is a leaf. Two possible configurations of a leaf node N:
Being a left child or a right child:

 Data Structure: Binary Trees 2016/2017 Prepared by: Dr. Mamoun Nawahdah

13

Example: delete(34)

public TNode delete(T data) {
 TNode current = root;
 TNode parent = root;
 boolean isLeftChild = false;

 if (isEmpty()) return null;// tree is empty
 while (current != null && !current.data.equals(data)) {
 parent = current;
 if (data.compareTo((T)current.data) < 0) {
 current = current.left;
 isLeftChild = true;
 } else {
 current = current.right;
 isLeftChild = false;
 }
 }
 if (current == null) return null; // node to be deleted not found

 // case 1: node is a leaf
 if (!current.hasLeft() && !current.hasRight()) {
 if (current == root) // tree has one node
 root = null;
 else {
 if (isLeftChild) parent.left = null;
 else parent.right = null;
 }
 }

 // other cases
 return current;
}

 Data Structure: Binary Trees 2016/2017 Prepared by: Dr. Mamoun Nawahdah

14

Case 2: If a node has one child, it can be removed by having its parent bypass it.

Example: delete (72)

Note: The root is a special case because it does not have a parent.

// Case 2 broken down further into 2 separate cases
else if (current.hasLeft()) { // current has left child only
 if (current == root) {
 root = current.left;
 } else if (isLeftChild) {
 parent.left = current.left;
 } else {
 parent.right = current.left;
 }
} else if (current.hasRight()) { // current has right child only
 if (current == root) {
 root = current.right;
 } else if (isLeftChild) {
 parent.left = current.right;
 } else {
 parent.right = current.right;
 }
}

 Data Structure: Binary Trees 2016/2017 Prepared by: Dr. Mamoun Nawahdah

15

Case 3:
o Two possible configurations of a node N that has two children:

o A node with two children is replaced by using the smallest item in the right subtree

(Successor).

Example: delete(33)

What if node 34 has a right child (e.g. 36)?

 

 Data Structure: Binary Trees 2016/2017 Prepared by: Dr. Mamoun Nawahdah

16

// case 3: node to be deleted has 2 children
else {
 Node successor = getSuccessor(current);
 if (current == root)
 root = successor;
 else if (isLeftChild) {
 parent.left= successor;
 } else {
 parent.right = successor;
 }
 successor.left = current.left;
}

private Node getSuccessor(Node node) {
 Node parentOfSuccessor = node;
 Node successor = node;
 Node current = node.right;
 while (current != null) {
 parentOfSuccessor = successor;
 successor = current;
 current = current.left;
 }
 if (successor != node.right) { // fix successor connections
 parentOfSuccessor.left = successor.right;
 successor.right = node.right;
 }
 return successor;
}

Soft Delete (lazy deletion):
When an element is to be deleted, it is left in the tree and simply marked as being deleted.

 If a deleted item is reinserted, the overhead of allocating a new cell is avoided.

Tree Height:

public int height() { return height(root); }
public int height(TNode node) {
 if (node == null) return 0;
 if (node.isLeaf()) return 1;
 int left = 0;
 int right = 0;
 if (node.hasLeft()) left = height(node.left);
 if (node.hasRight()) right = height(node.right);
 return (left > right) ? (left + 1) : (right + 1);
}

 Data Structure: Binary Trees 2016/2017 Prepared by: Dr. Mamoun Nawahdah

17

Efficiency of Operations:

• For tree of height h

 The operations add, delete, and find are O(h)
• If tree of n nodes has height h = n

 These operations are O(n)
• Shortest tree is complete

 Results in these operations being O(log n)

Unbalanced Tree:
 The order in which you add entries to a binary search tree affects the shape of the tree.

Example: add 5, 7, 12, 15, 25, 27, 42, 47, 50

 If you add entries into an initially empty binary search tree, do not add them in sorted order.

 Data Structure: Binary Trees 2016/2017 Prepared by: Dr. Mamoun Nawahdah

18

