
 Data Structure: AVL Trees 2016/2017 Prepared by: Dr. Mamoun Nawahdah

1

COMP242

Data Structure

Lectures Note: AVL Trees

Prepared by: Dr. Mamoun Nawahdah

2016/2017

 Data Structure: AVL Trees 2016/2017 Prepared by: Dr. Mamoun Nawahdah

2

AVL Trees
• An AVL tree (Georgy Adelson-Velsky and Evgenii Landis' tree) is a BST with the additional balance

property that, for any node in the tree, the height of the left and right subtrees can differ by at most 1.
• Complete binary trees are balanced.

Single Rotation

Example: After inserting (a) 60; (b) 50; and (c) 20 into an initially empty BST, the tree is not balanced;
(d) a corresponding AVL tree rotates its nodes to restore balance

Example: (a) Adding 80 to the tree does not change the balance of the tree;

(b) a subsequent addition of 90 makes the tree unbalanced ;
(c) a left rotation restores its balance

Case 1: Single Right Rotation (left-left addition)

Before and after an addition to an AVL subtree that requires a right rotation to maintain its balance.

 Data Structure: AVL Trees 2016/2017 Prepared by: Dr. Mamoun Nawahdah

3

Example: a) before and b) after a right rotation restores balance to an AVL tree

Case 2: Single Left Rotation (right-right addition)

Before and after an addition to an AVL subtree that requires a left rotation to maintain its balance

 Data Structure: AVL Trees 2016/2017 Prepared by: Dr. Mamoun Nawahdah

4

Double Rotations

A double rotation is accomplished by performing two single rotations:
1. A rotation about node N’s grandchild G (its child’s child)
2. A rotation about node N’s new child

Case 3: Right-Left Double Rotations (right-left addition)

Example: (a) Adding 70 destroys tree’s balance; to restore the balance, perform both

(b) a right rotation and (c) a left rotation

Before and after an addition to an AVL subtree that requires both

a right rotation and a left rotation to maintain its balance

 Data Structure: AVL Trees 2016/2017 Prepared by: Dr. Mamoun Nawahdah

5

Case 4: Left-Right Double Rotations (left-right addition)

Example:

(a) The AVL tree after additions that maintain its balance;

(b) after an addition that destroys the balance;
(c) after a left rotation;
(d) after a right rotation

 Data Structure: AVL Trees 2016/2017 Prepared by: Dr. Mamoun Nawahdah

6

Before and after an addition to an AVL subtree that requires both

a left rotation and a right rotation to maintain its balance

• Four rotations cover the only four possibilities for the cause of the imbalance at node N
• The addition occurred at:

 The left subtree of N’s left child (case 1: right rotation)
 The right subtree of N’s left child (case 4: left-right rotation)
 The left subtree of N’s right child (case 3: right-left rotation)
 The right subtree of N’s right child (case 2: left rotation)

 Data Structure: AVL Trees 2016/2017 Prepared by: Dr. Mamoun Nawahdah

7

Rebalance Code Implementation
• Pseudo-code to rebalance the tree:

private TNode rebalance(TNode nodeN){
 int diff = getHeightDifference(nodeN);
 if (diff > 1) { // addition was in node's left subtree
 if(getHeightDifference(nodeN.left)>0)
 nodeN = rotateRight(nodeN);
 else
 nodeN = rotateLeftRight(nodeN);
 }
 else if (diff < -1){ // addition was in node's right subtree
 if(getHeightDifference(nodeN.right)<0)
 nodeN = rotateLeft(nodeN);
 else
 nodeN = rotateRightLeft(nodeN);
 }
 return nodeN;
}

 Data Structure: AVL Trees 2016/2017 Prepared by: Dr. Mamoun Nawahdah

8

Insert Code Implementation:
public void insert(T data) {
 if(isEmpty()) root = new TNode<>(data);
 else {
 TNode rootNode = root;
 addEntry(data, rootNode);
 root = rebalance(rootNode);
 }
}

public void addEntry(T data, TNode rootNode){
 assert rootNode != null;
 if(data.compareTo((T)rootNode.data) < 0){ // right into left subtree
 if(rootNode.hasLeft()){
 TNode leftChild = rootNode.left;
 addEntry(data, leftChild);
 rootNode.left=rebalance(leftChild);
 }
 else rootNode.left = new TNode(data);
 }
 else { // right into right subtree
 if(rootNode.hasRight()){
 TNode rightChild = rootNode.right;
 addEntry(data, rightChild);
 rootNode.right=rebalance(rightChild);
 }
 else rootNode.right = new TNode(data);
 }
}

Delete Code Implementation:

public TNode delete(T data) {
 TNode temp = super.delete(data);
 if(temp!= null){
 TNode rootNode = root;
 root = rebalance(rootNode);
 }
 return temp;
}

An AVL Tree versus a BST:

Example: The result of adding 60, 50, 20, 80, 90, 70, 55, 10, 40, and 35 to an initially empty (a) AVL tree; (b) BST

 Data Structure: AVL Trees 2016/2017 Prepared by: Dr. Mamoun Nawahdah

9

2-3 Trees
• Definition: general search tree whose interior nodes must have either 2 or 3 children.

 A 2-node contains one data item s and has two children.

 A 3-node contains two data items, s and l, and has three children.

Adding Entries to a 2-3 Tree:

Adding (a) 60 and (b) 50; (c), (d) adding 20 causes the 3-node to split

The 2-3 tree after adding (a) 80; (b) 90; (c) 70

Adding 55 to the 2-3 tree, causes a leaf and then the root to split

The 2-3 tree, after adding 10, 40, 35

 Data Structure: AVL Trees 2016/2017 Prepared by: Dr. Mamoun Nawahdah

10

Splitting Nodes during Addition:

 Splitting a leaf to accommodate a new entry when the leaf’s parent contains:

(a) one entry:

(b) two entries:

 Splitting an internal node to accommodate a new entry:

 Splitting the root to accommodate a new entry:

Searching a 2-3 Tree:

 Data Structure: AVL Trees 2016/2017 Prepared by: Dr. Mamoun Nawahdah

11

2-3 tree: performance:

2-3 tree is a perfect balanced tree: Every path from root to a leaf has same length.

Tree height:

・Worst case: log N. [all 2-nodes]

・Best case: log3 N ≈ .631 log N. [all 3-nodes]

・Between 12 and 20 for a million nodes.

・Between 18 and 30 for a billion nodes.

2-3 tree: implementation?

Direct implementation is complicated, because:

・Maintaining multiple node types is cumbersome.

・Need multiple compares to move down tree.

・Need to move back up the tree to split 4-nodes.

・Large number of cases for splitting.

exercise: 50 60 70 40 30 20 10 80 90 100

2-4 Trees
• Sometimes called a 2-3-4 tree.

 General search tree

 Interior nodes must have either two, three, or four children

 Leaves occur on the same level

 A 4-node contains three data items s, m, and l and has four children.

Adding Entries to a 2-4 Tree

The 2-4 tree, after (a) adding 20, 50, and 60 (b) adding 80 and splitting the root; (c) adding 90

 Data Structure: AVL Trees 2016/2017 Prepared by: Dr. Mamoun Nawahdah

12

Adding 70

The 2-4 tree after adding (a) 55; (b) 10; (c) 40

Adding 5

The 2-4 tree after (a) splitting the leftmost 4-node; (b) adding 35

Comparing AVL, 2-3, and 2-4 Trees:

Three balanced search trees obtained by adding 60, 50, 20, 80, 90, 70, 55, 10, 40, and 35:

(a) AVL tree; (b) 2-3 tree; (c) 2-4 tree

 Data Structure: AVL Trees 2016/2017 Prepared by: Dr. Mamoun Nawahdah

13

B-Trees

B-trees (Bayer-McCreight, 1972)

• Definition: multiway search tree of order m

 A general tree whose nodes have up to m children each

• A binary search tree is a multiway search tree of order 2. In a binary search tree, we need one key to

decide which of two branches to take. In an M-ary search tree, we need M 1 keys to decide which

branch to take.

• 2-3 trees and 2-4 trees are balanced multiway search trees of orders 3 and 4, respectively.

• As branching increases, the depth decreases. Whereas a complete binary tree has height that is

roughly log2 N, a complete M-ary tree has height that is roughly logM N.

• The B-tree is the most popular data structure for disk bound searching.

• To make this scheme efficient in the worst case, we need to ensure that the M-ary search tree is

balanced in some way.

• Additional properties to maintain balance:

 The root has either no children or between 2 and m children.

 Other interior nodes (non-leaves) have between m/2 and m children each.

 All leaves are on the same level.

A B-tree of order M is an M-ary tree with the following properties: (B+ tree)

1. The data items are stored at leaves.

2. The non-leaf nodes store up to M 1 keys to guide the searching; key i represents the smallest key

in subtree i+1.

3. The root is either a leaf or has between two and M children.

4. All non-leaf nodes (except the root) have between M/2 and M children.

5. All leaves are at the same depth and have between L/2 and L data items, for some L (the

determination of L is described shortly).

Example: The following is an example of a B+ tree of order 5 and L=5

 Data Structure: AVL Trees 2016/2017 Prepared by: Dr. Mamoun Nawahdah

14

Add items from the B+ tree:

• Insert 57: A search down the tree reveals that it is not already in the tree. We can then add it to the

leaf as a fifth item:

• Insert 55: The leaf where 55 wants to go is already full. Solution: split them into two leaves:

Note: The node splitting in the previous example worked because the parent did not have its full

complement of children.

• Insert 40: We have to split the leaf containing the keys 35 through 39, and now 40, into two leaves.

o The parent has six children now  split the parent.

Note:

o When the parent is split, we must update the values of the keys and also the parent’s parent.

o if the parent already has reached its limit of children? In that case, we continue splitting nodes up

the tree until either we find a parent that does not need to be split or we reach the root. Then we

split the root and this will generate a new level.

 Data Structure: AVL Trees 2016/2017 Prepared by: Dr. Mamoun Nawahdah

15

Remove items from the B+ tree:

• We can perform deletion by finding the item that needs to be removed and then removing it.

o The problem is that if the leaf it was in had the minimum number of data items, then it is

now below the minimum.

• Remove 99: Since the leaf has only two items, and its neighbor is already at its minimum of three,

we combine the items into a new leaf of five items.

 Data Structure: AVL Trees 2016/2017 Prepared by: Dr. Mamoun Nawahdah

16

Splay Trees

Recall: Asymptotic analysis examines how an algorithm will perform in worst case.

Amortized analysis examines how an algorithm will perform in practice or on average.

The 90–10 rule states that 90% of the accesses are to 10% of the data items.

However, balanced search trees do not take advantage of this rule.

 The 90–10 rule has been used for many years in disk I/O systems.

 A cache stores in main memory the contents of some of the disk blocks. The hope is that when

a disk access is requested, the block can be found in the main memory cache and thus save the

cost of an expensive disk access.

 Browsers make use of the same idea: A cache stores locally the previously visited Web pages.

Splay Trees:

 Like AVL trees, use the standard binary search tree property.

 After any operation on a node, make that node the new root of the tree.

A simple self-adjusting strategy (that does not work)

The easiest way to move a frequently accessed item toward the root is to rotate it continually with its

parent. Moving the item closer to the root, a process called the rotate-to-root strategy.

 If the item is accessed a second time, the second access is cheap.

Example: Rotate-to-root strategy applied when node 3 is accessed

o As a result of the rotation:

 future accesses of node 3 are cheap

 Unfortunately, in the process of moving node 3 up two levels, nodes 4 and 5 each move

down a level.

o Thus, if access patterns do not follow the 90–10 rule, a long sequence of bad accesses can

occur.

 Data Structure: AVL Trees 2016/2017 Prepared by: Dr. Mamoun Nawahdah

17

The basic bottom-up splay tree

Splaying cases:

 The zig case (normal single rotation)

If X is a non-root node on the access path on which we are rotating and the parent of X is the root

of the tree, we merely rotate X and the root, as shown:

Otherwise, X has both a parent P and a grandparent G, and we must consider two cases and symmetries.

 zig-zag case:

 This corresponds to the inside case for AVL trees.

 Here X is a right child and P is a left child (or vice versa: X is a left child and P is a right child).

 We perform a double rotation exactly like an AVL double rotation, as shown:

 zig-zig case:

 The outside case for AVL trees.

 Here, X and P are either both left children or both right children.

 In this case, we transform the left-hand tree to the right-hand tree (or vice versa).

 Note that this method differs from the rotate-to-root strategy.

o The zig-zig splay rotates between P and G and then X and P, whereas the rotate-to-root

strategy rotates between X and P and then between X and G.

 Data Structure: AVL Trees 2016/2017 Prepared by: Dr. Mamoun Nawahdah

18

Splaying has the effect of roughly halving the depth of most nodes on the access path and increasing

by at most two levels the depth of a few other nodes.

Example: Result of splaying at node 1 (three zig-zigs)

Exercise: perform rotate-to-root strategy

Basic splay tree operations

A splay operation is performed after each access:

 After an item has been inserted as a leaf, it is splayed to the root.

 All searching operations incorporate a splay. (find, findMin and findMax)

 To perform deletion, we access the node to be deleted, which puts the node at the root. If it is deleted,

we get two subtrees, L and R (left and right). If we find the largest element in L, using a findMax

operation, its largest element is rotated to L’s root and L’s root has no right child. We finish the remove

operation by making R the right child of L’s root. An example of the remove operation is shown below:

Example: The remove operation applied to node 6:

 First, 6 is splayed to the root, leaving two subtrees;

 A findMax is performed on the left subtree, raising 5 to the root of the left subtree;

 Then the right subtree can be attached (not shown).

 The cost of the remove operation is two splays.

 Data Structure: AVL Trees 2016/2017 Prepared by: Dr. Mamoun Nawahdah

19

