m Data Structure: AVL Trees 2016/2017 Prepared by: Dr. Mamoun Nawahdah

- v
S35 ﬂ E‘%\‘/“:
o = M *

BIRZEIT UNIVERSITY

COMP242
Data Structure

Lectures Note: AVL Trees

Prepared by: Dr. Mamoun Nawahdah
2016/2017

E Data Structure: AVL Trees 2016/2017 Prepared by: Dr. Mamoun Nawahdah
AVL Trees

* An AVL tree (Georgy Adelson-Velsky and Evgenii Landis' tree) is a BST with the additional balance
property that, for any node in the tree, the height of the left and right subtrees can differ by at most 1.
* Complete binary trees are balanced.

Single Rotation

(a) (b) (c) (d)
60) (s0) (60) (50)
& c , //'\\)
© » @ NE
p
@

Unbalanced Balanced

Example: After inserting (a) 60; (b) 50; and (c) 20 into an initially empty BST, the tree is not balanced;
(d) a corresponding AVL tree rotates its nodes to restore balance

(a) (b) (c)

Balanced Unbalanced Balanced
Example: (a) Adding 80 to the tree does not change the balance of the tree;
(b) a subsequent addition of 90 makes the tree unbalanced ;
(c) a left rotation restores its balance

Case 1: Single Right Rotation (left-left addition)
(a) Before addition (b) After addition (c) After right rotation

Before and after an addition to an AVL subtree that requires a right rotation to maintain its balance.

Data Structure: AVL Trees 2016/2017 Prepared by: Dr. Mamoun Nawahdah

Example: a) before and b) after a right rotation restores balance to an AVL tree
(b) C

Unbalanced Balanced

Algorithm rotateRight(nodeN)

nodeC = /eft child of nodeN

Set nodeN s /eft child to nodeC’s right child
Set nodeC’s right child to nodeN

return nodeC

Case 2: Single Left Rotation (right-right addition)

(a) Before addition (b) After addition (c) After left rotation
Y B N E B (> 7 %
C N M
h h
h+1
v T, -
Tz] Tl T.'! T3
Ty

Before and after an addition to an AVL subtree that requires a left rotation to maintain its balance

Algorithm rotatelLeft(nodeN)

nodeC = right child of nodeN

Set nodeN’s right child to nodeC’s left child
Set nodeC’s left child to nodeN

return nodeC

Data Structure: AVL Trees 2016/2017 Prepared by: Dr. Mamoun Nawahdah
Double Rotations

A double rotation is accomplished by performing two single rotations:
1. A rotation about node N’s grandchild G (its child’s child)
2. Arotation about node N’s new child

Case 3: Right-Left Double Rotations (right-left addition)

(a) After adding 70 (b) After right rotation (c) After left rotation

Example: (a) Adding 70 destroys tree’s balance; to restore the balance, perform both
(b) a right rotation and (c) a left rotation

(a) Before addition (b) After addition
N 'y
C
G
h+1
T,
LM 7, o &
T‘i

(d) After left rotation

I, T, T r; T,
Before and after an addition to an AVL subtree that requires both
a right rotation and a left rotation to maintain its balance

E Data Structure: AVL Trees 2016/2017 Prepared by: Dr. Mamoun Nawahdah
Algorithm rotateRightLeft(nodeN)

nodeC = right child of nodeN
Set nodeN s right child to the node returned by rotateRight(nodeC)
return rotatelLeft(nodeN)

Case 4: Left-Right Double Rotations (left-right addition)
Example:
(a) After adding 55, 10, and 40 (b) After adding 35

Imbalance at
this node

(a) The AVL tree after additions that maintain its balance;
(b) after an addition that destroys the balance;
(c) after a left rotation;
(d) after a right rotation

Data Structure: AVL Trees 2016/2017 Prepared by: Dr. Mamoun Nawahdah
(a) Before addition (b) After addition

h+1

Before and after an addition to an AVL subtree that requires both
a left rotation and a right rotation to maintain its balance

Algorithm rotateLeftRight(nodeN)

nodeC = /eft child of nodeN
Set nodeN s left child to the node returned by rotateLeft(nodeC)
return rotateRight(nodeN)

* Four rotations cover the only four possibilities for the cause of the imbalance at node N
* The addition occurred at:

= The left subtree of N’s left child (case 1: right rotation)

» The right subtree of N’s left child (case 4: left-right rotation)

= The left subtree of N’s right child (case 3: right-left rotation)

» The right subtree of N’s right child (case 2: left rotation)

Data Structure: AVL Trees 2016/2017 Prepared by: Dr. Mamoun Nawahdah
Rebalance Code Implementation
* Pseudo-code to rebalance the tree:

Algorithm rebalance(nodeN)
if (nodeN’s left subtree is taller than its right subtree by more than 1)

{ _
if (the left child of nodeN has a left subtree that is taller than its right subtree)
rotateRight(nodeN)
else
rotatelLeftRight(nodeN)
}
else if (nodeN’s right subtree is taller than its left subtree by more than 1)
{ .
if (the right child of nodeN has a right subtree that is taller than its left subtree)
rotatelLeft(nodeN) -
else
rotateRightLeft(nodeN)
}

private TNode rebalance(TNode nodeN){
int diff = getHeightDifference(nodeN);
if (diff > 1) { // addition was in node's left subtree
if(getHeightDifference(nodeN.left)>0)
nodeN = rotateRight(nodeN);
else
nodeN = rotateLeftRight(nodeN);
}
else if (diff < -1){ // addition was in node's right subtree
if(getHeightDifference(nodeN.right)<0)
nodeN = rotateLeft(nodeN);
else
nodeN = rotateRightLeft(nodeN);
}

return nodeN;

}

E Data Structure: AVL Trees 2016/2017 Prepared by: Dr. Mamoun Nawahdah

Insert Code Implementation:
public void insert(T data) {
if(isEmpty()) root = new TNode<>(data);
else {
TNode rootNode = root;
addEntry(data, rootNode);
root = rebalance(rootNode);

}

}

public void addEntry(T data, TNode rootNode){
assert rootNode != null;
if(data.compareTo((T)rootNode.data) < 0){ // right into left subtree
if(rootNode.hasLeft()){
TNode leftChild = rootNode.left;
addEntry(data, leftChild);
rootNode.left=rebalance(leftChild);
}
else rootNode.left = new TNode(data);
}
else { //right into right subtree
if(rootNode.hasRight()){
TNode rightChild = rootNode.right;
addEntry(data, rightChild);
rootNode.right=rebalance(rightChild);
}
else rootNode.right = new TNode(data);

}

}
Delete Code Implementation:

public TNode delete(T data) {
TNode temp = super.delete(data);
if(temp!= null){
TNode rootNode = root;
root = rebalance(rootNode);
}

return temp;

}

An AVL Tree versus a BST:
(a)

Example: The result of adding 60, 50, 20, 80, 90, 70, 55, 10, 40, and 35 to an initially empty (a) AVL tree; (b) BST

Data Structure: AVL Trees 2016/2017 Prepared by: Dr. Mamoun Nawahdah
2-3 Trees

» Definition: general search tree whose interior nodes must have either 2 or 3 children.
= A 2-node contains one data item s and has two children.
= A 3-node contains two data items, s and /, and has three children.

(s)
o

<s > <s > >
<

Adding Entries to a 2-3 Tree:
(a) (b) () (d)

(50)
® o @ @o 0 ® @

Adding (a) 60 and (b) 50; (c), (d) adding 20 causes the 3-node to split

(a)
(50 80)
Split
(60 80 90) =3 (20) (60) (%)

The 2-3 tree after adding (a) 80; (b) 90; (c) 70
(a) (b)

@)
$9
(Eam) @ ® O ® ® @@® @

Adding 55 to the 2-3 tree, causes a leaf and then the root to split

(c)

The 2-3 tree, after adding 10, 40, 35

Data Structure: AVL Trees 2016/2017 Prepared by: Dr. Mamoun Nawahdah
Splitting Nodes during Addition:

e Splitting a leaf to accommodate a new entry when the leaf’s parent contains:

(a) one entry:
(a)
Parent
Split
D) == OO O
(b) two entries:

(b)
(P q) Parent (p g m) Parent must split
1 B)o)0
C OC DOCmD)=—> DIGD

e Splitting an internal node to accommodate a new entry:

T
> G

T

1 T2 T3 T4 Tl T, T.? N

e Splitting the root to accommodate a new entry:

Split

G = G

Searching a 2-3 Tree:

10

E Data Structure: AVL Trees 2016/2017 Prepared by: Dr. Mamoun Nawahdah

2-3 tree: performance:

2-3 tree is a perfect balanced tree: Every path from root to a leaf has same length.
Tree height:
* Worst case: log N. [all 2-nodes]
* Best case: logs N = .631 log N. [all 3-nodes]
* Between 12 and 20 for a million nodes.
* Between 18 and 30 for a billion nodes.

2-3 tree: implementation?
Direct implementation is complicated, because:
* Maintaining multiple node types is cumbersome.
* Need multiple compares to move down tree.
* Need to move back up the tree to split 4-nodes.
* Large number of cases for splitting.

exercise: 50 60 70 40 30 20 10 80 90 100

2-4 Trees
* Sometimes called a 2-3-4 tree.
= General search tree
= |nterior nodes must have either two, three, or four children
= Leaves occur on the same level
= A 4-node contains three data items s, m, and I and has four children.

<s >s >m >
<m <I

Adding Entries to a 2-4 Tree

(a) (b) (c)

50 5
/\2 0 50 60) /<
20 60 80 60 80 90

The 2-4 tree, after (a) adding 20, 50, and 60 (b) adding 80 and splitting the root; (c) adding 90

11

Data Structure: AVL Trees 2016/2017 Prepared by: Dr. Mamoun Nawahdah

Adding 70
(a) (b) (¢)

(00) (10 20) (5560 70) (10 20 40) (55 60 70)

The 2-4 tree after adding (a) 55; (b) 10; (c) 40

Adding 5
(a) (b)

(205080) (20 50 80)
T@GEe®m @) Eon®

The 2-4 tree after (a) splitting the leftmost 4-node; (b) adding 35

Comparing AVL, 2-3, and 2-4 Trees:
(a) (b)

(60)

(1) (963

Three balanced search trees obtained by adding 60, 50, 20, 80, 90, 70, 55, 10, 40, and 35:
(a) AVL tree; (b) 2-3 tree; (c) 2-4 tree

12

E Data Structure: AVL Trees 2016/2017 Prepared by: Dr. Mamoun Nawahdah
B-Trees

B-trees (Bayer-McCreight, 1972)
* Definition: multiway search tree of order m

= Ageneral tree whose nodes have up to m children each

* A binary search tree is a multiway search tree of order 2. In a binary search tree, we need one key to
decide which of two branches to take. In an M-ary search tree, we need M 1 keys to decide which
branch to take.

e 2-3trees and 2-4 trees are balanced multiway search trees of orders 3 and 4, respectively.

* As branching increases, the depth decreases. Whereas a complete binary tree has height that is
roughly log, N, a complete M-ary tree has height that is roughly logy N.

* The B-tree is the most popular data structure for disk bound searching.

* To make this scheme efficient in the worst case, we need to ensure that the M-ary search tree is
balanced in some way.

* Additional properties to maintain balance:

= The root has either no children or between 2 and m children.

= QOther interior nodes (non-leaves) have between |_m/2—| and m children each.
= All leaves are on the same level.

A B-tree of order M is an M-ary tree with the following properties: (B+ tree)

1. The dataitems are stored at leaves.

2. The non-leaf nodes store up to M 1 keys to guide the searching; key i represents the smallest key
in subtree i+1.

3. Theroot is either a leaf or has between two and M children.

4. All non-leaf nodes (except the root) have between M/2 and M children.

5. All leaves are at the same depth and have between L/2 and L data items, for some L (the
determination of L is described shortly).

Example: The following is an example of a B tree of order 5 and L=5

411,166],(87
| i }

8 118112635 481151154 7211781183 921197
2| 8 [|18[]26(|35]|(41(|48(|51]||54 66(172|178]|83 87119297
4 (1101120(128(136((421149|152|156 6873|179 |84 89(193|(98
6 |[12((22([30([|37((44||50(|53||58 69(|74|181]||85 901(1951]|99

14(1241131||38]||46 59 70(176
16 321(39

13

Data Structure: AVL Trees
Add items from the B" tree:

leaf as a fifth item:

2016/2017

Prepared by: Dr. Mamoun Nawahdah

Insert 57: A search down the tree reveals that it is not already in the tree. We can then add it to the

‘ 411166||87 |
| L
I i l |
|8|IS|26|35|]48|51|54 172|?8|83] |92|9?|
2118 1(118]126(|35((41|]48||51(154 66((72(178]|83 8711921197
4 [110(]20((281|1361|42({49|(52|156 68|173(]79||84 89|193| |98
6 |(|12((22((301|371144|150|(53|157 69|174(/81|85 90|(95](99
141124 1131||38((46 58 701(176
16 321139 59

Insert 55: The leaf where 55 wants to go is already full. Solution: split them into two leaves:

| 411166||87 |
| 1
|) l |
|8|18 26 35| 48 51|54 S?J ?21'}’8|83| |92|9'}'|
21 8 [18](26]|(35]|141|148(151(|54]11571|66||72||78]|83 871192197
4 ((10/120]1281136||42((49((52[155]1158]|68||73|179]||84 891193||98
6 ([12((221(30](37]1441150(153(156]11591(69||74||81]|85 90(|95((99
14|1241131||38|]46 701176
L6/ |132](39]

Note: The node splitting in the previous example worked because the parent did not have its full

complement of children.

Insert 40: We have to split the leaf containing the keys 35 through 39, and now 40, into two leaves.

o The parent has six children now = split the parent.

66

87

||| 26 |||4 1

Note:
o When the parent is split, we must update the values of the keys and also the parent’s parent.

if the parent already has reached its limit of children? In that case, we continue splitting nodes up
the tree until either we find a parent that does not need to be split or we reach the root. Then we

O

} }
|48 51 54|57| |72|?8|83| 192 9?|
4111481511541 157||66]|72(|78]|83 871192197
421149(15211551158((68|]73(179]| |84 891193||98
4411501153(1561159((69]|74(|81]|85 901(195((99

46 70176

split the root and this will generate a new level.

14

E Data Structure: AVL Trees 2016/2017 Prepared by: Dr. Mamoun Nawahdah
Remove items from the B” tree:
* We can perform deletion by finding the item that needs to be removed and then removing it.
o The problem is that if the leaf it was in had the minimum number of data items, then it is
now below the minimum.
* Remove 99: Since the leaf has only two items, and its neighbor is already at its minimum of three,
we combine the items into a new leaf of five items.

485154 IS? 1172)|78 871192],
2 41 721(78
4 42 73|79
6 44| |5 74|81
46 76

15

E Data Structure: AVL Trees 2016/2017 Prepared by: Dr. Mamoun Nawahdah
Splay Trees
Recall: Asymptotic analysis examines how an algorithm will perform in worst case.

Amortized analysis examines how an algorithm will perform in practice or on average.

The 90-10 rule states that 90% of the accesses are to 10% of the data items.
However, balanced search trees do not take advantage of this rule.
e The 90-10 rule has been used for many years in disk 1/O systems.

e A cache stores in main memory the contents of some of the disk blocks. The hope is that when
a disk access is requested, the block can be found in the main memory cache and thus save the
cost of an expensive disk access.

e Browsers make use of the same idea: A cache stores locally the previously visited Web pages.

Splay Trees:

e Like AVL trees, use the standard binary search tree property.

e After any operation on a node, make that node the new root of the tree.

A simple self-adjusting strategy (that does not work)
The easiest way to move a frequently accessed item toward the root is to rotate it continually with its
parent. Moving the item closer to the root, a process called the rotate-to-root strategy.

e |[f the item is accessed a second time, the second access is cheap.
Example: Rotate-to-root strategy applied when node 3 is accessed

R _ @ @

@ ®

0lo @ OO
O

o As aresult of the rotation:
= future accesses of node 3 are cheap

= Unfortunately, in the process of moving node 3 up two levels, nodes 4 and 5 each move
down a level.

o Thus, if access patterns do not follow the 90-10 rule, a long sequence of bad accesses can
occur.

16

E Data Structure: AVL Trees 2016/2017 Prepared by: Dr. Mamoun Nawahdah
The basic bottom-up splay tree
Splaying cases:
e The zig case (normal single rotation)
If X is a non-root node on the access path on which we are rotating and the parent of X is the root
of the tree, we merely rotate X and the root, as shown:

@) ®
® ¢ —= A B
A B B C

Otherwise, X has both a parent P and a grandparent G, and we must consider two cases and symmetries.
e zig-zag case:
e This corresponds to the inside case for AVL trees.
e Here Xis aright child and P is a left child (or vice versa: X is a left child and P is a right child).
e We perform a double rotation exactly like an AVL double rotation, as shown:

(G) (X)
AN
A
B C

A B C D

e zig-zig case:
e The outside case for AVL trees.
e Here, Xand P are either both left children or both right children.
e In this case, we transform the left-hand tree to the right-hand tree (or vice versa).

e Note that this method differs from the rotate-to-root strategy.
o The zig-zig splay rotates between P and G and then X and P, whereas the rotate-to-root
strategy rotates between X and P and then between X and G.

17

E Data Structure: AVL Trees 2016/2017 Prepared by: Dr. Mamoun Nawahdah

Splaying has the effect of roughly halving the depth of most nodes on the access path and increasing
by at most two levels the depth of a few other nodes.

Example: Result of splaying at node 1 (three zig-zigs)

@

Exercise: perform rotate-to-root strategy

Basic splay tree operations
A splay operation is performed after each access:

e After an item has been inserted as a leaf, it is splayed to the root.

e All searching operations incorporate a splay. (find, findMin and findMax)

e To perform deletion, we access the node to be deleted, which puts the node at the root. If it is deleted,
we get two subtrees, L and R (left and right). If we find the largest element in L, using a findMax
operation, its largest element is rotated to L’s root and L’s root has no right child. We finish the remove
operation by making R the right child of L's root. An example of the remove operation is shown below:

Example: The remove operation applied to node 6:
e First, 6 is splayed to the root, leaving two subtrees;
o A findMax is performed on the left subtree, raising 5 to the root of the left subtree;
e Then the right subtree can be attached (not shown).

@)) ®
——- D—=+=@ O+ O
H» OO @ ® 0

@) o &

e The cost of the remove operation is two splays.

18

E Data Structure: AVL Trees

¥
-

Y,

ISHED STIII]YING?

2016/2017 Prepared by: Dr. Mamoun Nawahdah

19

