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AVL Trees 
• An AVL tree (Georgy Adelson-Velsky and Evgenii Landis' tree) is a BST with the additional balance 

property that, for any node in the tree, the height of the left and right subtrees can differ by at most 1.  
• Complete binary trees are balanced. 

Single Rotation 

 
 

Example: After inserting (a) 60; (b) 50; and (c) 20 into an initially empty BST, the tree is not balanced;  
(d) a corresponding AVL tree rotates its nodes to restore balance 

 

 
Example: (a) Adding 80 to the tree does not change the balance of the tree;  

(b) a subsequent addition of 90 makes the tree unbalanced ;  
(c) a left rotation restores its balance 

 

Case 1: Single Right Rotation (left-left addition) 

 
Before and after an addition to an AVL subtree that requires a right rotation to maintain its balance. 
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Example: a) before and b) after a right rotation restores balance to an AVL tree 

 
 

 
 
Case 2: Single Left Rotation (right-right addition) 

 
Before and after an addition to an AVL subtree that requires a left rotation to maintain its balance 
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Double Rotations 

A double rotation is accomplished by performing two single rotations: 
1. A rotation about node N’s grandchild G (its child’s child) 
2. A rotation about node N’s new child 

Case 3: Right-Left Double Rotations (right-left addition) 

 
Example: (a) Adding 70 destroys tree’s balance; to restore the balance, perform both  

(b) a right rotation and (c) a left rotation 
 

 

 
Before and after an addition to an AVL subtree that requires both  

a right rotation and a left rotation to maintain its balance 
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Case 4: Left-Right Double Rotations (left-right addition) 

Example:  

 

 
(a) The AVL tree after additions that maintain its balance;  

(b) after an addition that destroys the balance;  
(c) after a left rotation;  
(d) after a right rotation 
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Before and after an addition to an AVL subtree that requires both  

a left rotation and a right rotation to maintain its balance 
 
 

 
 
 
• Four rotations cover the only four possibilities for the cause of the imbalance at node N 
• The addition occurred at: 

 The left subtree of N’s left child (case 1: right rotation) 
 The right subtree of N’s left child (case 4: left-right rotation) 
 The left subtree of N’s right child (case 3: right-left rotation) 
 The right subtree of N’s right child (case 2: left rotation) 
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Rebalance Code Implementation  
• Pseudo-code to rebalance the tree: 

 
 

private TNode rebalance(TNode nodeN){ 
    int diff = getHeightDifference(nodeN); 
    if ( diff > 1) { // addition was in node's left subtree 
        if(getHeightDifference(nodeN.left)>0) 
            nodeN = rotateRight(nodeN); 
        else 
            nodeN = rotateLeftRight(nodeN); 
    } 
    else if ( diff < -1){  // addition was in node's right subtree 
        if(getHeightDifference(nodeN.right)<0) 
            nodeN = rotateLeft(nodeN); 
        else 
            nodeN = rotateRightLeft(nodeN); 
    } 
    return nodeN; 
} 
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Insert Code Implementation: 
public void insert(T data) { 
    if(isEmpty())        root = new TNode<>(data); 
    else { 
        TNode rootNode = root; 
        addEntry(data, rootNode); 
        root = rebalance(rootNode); 
    } 
} 
 
public void addEntry(T data, TNode rootNode){ 
    assert rootNode != null; 
    if(data.compareTo((T)rootNode.data) < 0){ // right into left subtree 
        if(rootNode.hasLeft()){ 
            TNode leftChild = rootNode.left; 
            addEntry(data, leftChild); 
            rootNode.left=rebalance(leftChild); 
        } 
        else            rootNode.left = new TNode(data); 
    } 
    else {  // right into right subtree 
        if(rootNode.hasRight()){ 
            TNode rightChild = rootNode.right; 
            addEntry(data, rightChild); 
            rootNode.right=rebalance(rightChild); 
        } 
        else            rootNode.right = new TNode(data); 
    } 
} 

Delete Code Implementation: 

public TNode delete(T data) { 
    TNode temp = super.delete(data); 
    if(temp!= null){ 
        TNode rootNode = root; 
        root = rebalance(rootNode); 
    } 
    return temp; 
} 

An AVL Tree versus a BST: 

 
Example: The result of adding 60, 50, 20, 80, 90, 70, 55, 10, 40, and 35 to an initially empty (a) AVL tree; (b) BST 



  Data Structure:  AVL Trees                        2016/2017                                Prepared by:  Dr. Mamoun Nawahdah 

9 

 

2-3 Trees 
• Definition: general search tree whose interior nodes must have either 2 or 3 children. 

 A 2-node contains one data item s and has two children. 

 A 3-node contains two data items, s and l, and has three children. 

 
Adding Entries to a 2-3 Tree: 

 
Adding (a) 60 and (b) 50; (c), (d) adding 20 causes the 3-node to split 

 

 
The 2-3 tree after adding (a) 80; (b) 90; (c) 70 

 
Adding 55 to the 2-3 tree, causes a leaf and then the root to split 

 
The 2-3 tree, after adding 10, 40, 35 
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Splitting Nodes during Addition: 

 Splitting a leaf to accommodate a new entry when the leaf’s parent contains:  

(a) one entry:  

 
 

(b) two entries: 

 
 

 Splitting an internal node to accommodate a new entry: 

 
 Splitting the root to accommodate a new entry: 

 

Searching a 2-3 Tree: 
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2-3 tree: performance: 

2-3 tree is a perfect balanced tree: Every path from root to a leaf has same length. 

Tree height: 

・Worst case: log N. [all 2-nodes] 

・Best case: log3 N ≈ .631 log N. [all 3-nodes] 

・Between 12 and 20 for a million nodes. 

・Between 18 and 30 for a billion nodes. 

 

2-3 tree: implementation? 

Direct implementation is complicated, because: 

・Maintaining multiple node types is cumbersome. 

・Need multiple compares to move down tree. 

・Need to move back up the tree to split 4-nodes. 

・Large number of cases for splitting. 

exercise: 50 60 70 40 30 20 10 80 90 100 

 

2-4 Trees 
• Sometimes called a 2-3-4 tree. 

 General search tree   

 Interior nodes must have either two, three, or four children 

 Leaves occur on the same level 

 A 4-node contains three data items s, m, and l and has four children. 

 
Adding Entries to a 2-4 Tree 

 

 
The 2-4 tree, after (a) adding 20, 50, and 60 (b) adding 80 and splitting the root; (c) adding 90 
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Adding 70 

  
The 2-4 tree after adding (a) 55; (b) 10; (c) 40 

 

Adding 5 

 
The 2-4 tree after (a) splitting the leftmost 4-node; (b) adding 35 

 

 

 

Comparing AVL, 2-3, and 2-4 Trees: 

 
Three balanced search trees obtained by adding 60, 50, 20, 80, 90, 70, 55, 10, 40, and 35:  

(a) AVL tree; (b) 2-3 tree; (c) 2-4 tree 
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B-Trees 

B-trees (Bayer-McCreight, 1972) 

• Definition: multiway search tree of order m 

 A general tree whose nodes have up to m children each 

• A binary search tree is a multiway search tree of order 2. In a binary search tree, we need one key to 

decide which of two branches to take. In an M-ary search tree, we need M 1 keys to decide which 

branch to take. 

• 2-3 trees and 2-4 trees are balanced multiway search trees of orders 3 and 4, respectively. 

• As branching increases, the depth decreases. Whereas a complete binary tree has height that is 

roughly log2 N, a complete M-ary tree has height that is roughly logM N. 

• The B-tree is the most popular data structure for disk bound searching. 

• To make this scheme efficient in the worst case, we need to ensure that the M-ary search tree is 

balanced in some way. 

• Additional properties to maintain balance: 

 The root has either no children or between 2 and m children. 

 Other interior nodes (non-leaves) have between m/2 and m children each. 

 All leaves are on the same level. 

A B-tree of order M is an M-ary tree with the following properties:  (B+ tree) 

1. The data items are stored at leaves. 

2. The non-leaf nodes store up to M 1 keys to guide the searching; key i represents the smallest key 

in subtree i+1. 

3. The root is either a leaf or has between two and M children. 

4. All non-leaf nodes (except the root) have between M/2 and M children. 

5. All leaves are at the same depth and have between L/2 and L data items, for some L (the 

determination of L is described shortly). 

 

Example: The following is an example of a B+ tree of order 5 and L=5 
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Add items from the B+ tree: 

• Insert 57: A search down the tree reveals that it is not already in the tree. We can then add it to the 

leaf as a fifth item: 

 
 

• Insert 55: The leaf where 55 wants to go is already full. Solution: split them into two leaves: 

 
Note: The node splitting in the previous example worked because the parent did not have its full 

complement of children. 

 

• Insert 40: We have to split the leaf containing the keys 35 through 39, and now 40, into two leaves. 

o The parent has six children now  split the parent. 

 
Note:  

o When the parent is split, we must update the values of the keys and also the parent’s parent. 

o if the parent already has reached its limit of children? In that case, we continue splitting nodes up 

the tree until either we find a parent that does not need to be split or we reach the root. Then we 

split the root and this will generate a new level. 
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Remove items from the B+ tree: 

• We can perform deletion by finding the item that needs to be removed and then removing it.  

o The problem is that if the leaf it was in had the minimum number of data items, then it is 

now below the minimum. 

• Remove 99: Since the leaf has only two items, and its neighbor is already at its minimum of three, 

we combine the items into a new leaf of five items. 
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Splay Trees 

Recall: Asymptotic analysis examines how an algorithm will perform in worst case. 

Amortized analysis examines how an algorithm will perform in practice or on average. 

 

The 90–10 rule states that 90% of the accesses are to 10% of the data items.  

However, balanced search trees do not take advantage of this rule. 

 The 90–10 rule has been used for many years in disk I/O systems.  

 A cache stores in main memory the contents of some of the disk blocks. The hope is that when 

a disk access is requested, the block can be found in the main memory cache and thus save the 

cost of an expensive disk access. 

 Browsers make use of the same idea: A cache stores locally the previously visited Web pages. 

 

Splay Trees: 

 Like AVL trees, use the standard binary search tree property. 

 After any operation on a node, make that node the new root of the tree. 

 

A simple self-adjusting strategy (that does not work) 

The easiest way to move a frequently accessed item toward the root is to rotate it continually with its 

parent. Moving the item closer to the root, a process called the rotate-to-root strategy. 

 If the item is accessed a second time, the second access is cheap. 

Example: Rotate-to-root strategy applied when node 3 is accessed 

 

 
o As a result of the rotation: 

 future accesses of node 3 are cheap 

 Unfortunately, in the process of moving node 3 up two levels, nodes 4 and 5 each move 

down a level. 

o Thus, if access patterns do not follow the 90–10 rule, a long sequence of bad accesses can 

occur. 
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The basic bottom-up splay tree 

Splaying cases: 

 The zig case (normal single rotation) 

If X is a non-root node on the access path on which we are rotating and the parent of X is the root 

of the tree, we merely rotate X and the root, as shown: 

 
 

Otherwise, X has both a parent P and a grandparent G, and we must consider two cases and symmetries. 

 zig-zag case: 

 This corresponds to the inside case for AVL trees.  

 Here X is a right child and P is a left child (or vice versa: X is a left child and P is a right child). 

 We perform a double rotation exactly like an AVL double rotation, as shown: 

 

 zig-zig case: 

 The outside case for AVL trees. 

 Here, X and P are either both left children or both right children. 

 In this case, we transform the left-hand tree to the right-hand tree (or vice versa). 

 Note that this method differs from the rotate-to-root strategy.  

o The zig-zig splay rotates between P and G and then X and P, whereas the rotate-to-root 

strategy rotates between X and P and then between X and G. 
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Splaying has the effect of roughly halving the depth of most nodes on the access path and increasing 

by at most two levels the depth of a few other nodes. 

 

Example: Result of splaying at node 1 (three zig-zigs) 

 
Exercise: perform rotate-to-root strategy 

 

Basic splay tree operations 

A splay operation is performed after each access: 

 After an item has been inserted as a leaf, it is splayed to the root. 

 All searching operations incorporate a splay. (find, findMin and findMax) 

 To perform deletion, we access the node to be deleted, which puts the node at the root. If it is deleted, 

we get two subtrees, L and R (left and right). If we find the largest element in L, using a findMax 

operation, its largest element is rotated to L’s root and L’s root has no right child. We finish the remove 

operation by making R the right child of L’s root. An example of the remove operation is shown below: 

 

Example: The remove operation applied to node 6: 

 First, 6 is splayed to the root, leaving two subtrees;  

 A findMax is performed on the left subtree, raising 5 to the root of the left subtree;  

 Then the right subtree can be attached (not shown). 

 
 The cost of the remove operation is two splays. 
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