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AVL Trees 
• An AVL tree (Georgy Adelson-Velsky and Evgenii Landis' tree) is a BST with the additional balance 

property that, for any node in the tree, the height of the left and right subtrees can differ by at most 1.  
• Complete binary trees are balanced. 

Single Rotation 

 
 

Example: After inserting (a) 60; (b) 50; and (c) 20 into an initially empty BST, the tree is not balanced;  
(d) a corresponding AVL tree rotates its nodes to restore balance 

 

 
Example: (a) Adding 80 to the tree does not change the balance of the tree;  

(b) a subsequent addition of 90 makes the tree unbalanced ;  
(c) a left rotation restores its balance 

 

Case 1: Single Right Rotation (left-left addition) 

 
Before and after an addition to an AVL subtree that requires a right rotation to maintain its balance. 
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Example: a) before and b) after a right rotation restores balance to an AVL tree 

 
 

 
 
Case 2: Single Left Rotation (right-right addition) 

 
Before and after an addition to an AVL subtree that requires a left rotation to maintain its balance 
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Double Rotations 

A double rotation is accomplished by performing two single rotations: 
1. A rotation about node N’s grandchild G (its child’s child) 
2. A rotation about node N’s new child 

Case 3: Right-Left Double Rotations (right-left addition) 

 
Example: (a) Adding 70 destroys tree’s balance; to restore the balance, perform both  

(b) a right rotation and (c) a left rotation 
 

 

 
Before and after an addition to an AVL subtree that requires both  

a right rotation and a left rotation to maintain its balance 
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Case 4: Left-Right Double Rotations (left-right addition) 

Example:  

 

 
(a) The AVL tree after additions that maintain its balance;  

(b) after an addition that destroys the balance;  
(c) after a left rotation;  
(d) after a right rotation 
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Before and after an addition to an AVL subtree that requires both  

a left rotation and a right rotation to maintain its balance 
 
 

 
 
 
• Four rotations cover the only four possibilities for the cause of the imbalance at node N 
• The addition occurred at: 

 The left subtree of N’s left child (case 1: right rotation) 
 The right subtree of N’s left child (case 4: left-right rotation) 
 The left subtree of N’s right child (case 3: right-left rotation) 
 The right subtree of N’s right child (case 2: left rotation) 
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Rebalance Code Implementation  
• Pseudo-code to rebalance the tree: 

 
 

private TNode rebalance(TNode nodeN){ 
    int diff = getHeightDifference(nodeN); 
    if ( diff > 1) { // addition was in node's left subtree 
        if(getHeightDifference(nodeN.left)>0) 
            nodeN = rotateRight(nodeN); 
        else 
            nodeN = rotateLeftRight(nodeN); 
    } 
    else if ( diff < -1){  // addition was in node's right subtree 
        if(getHeightDifference(nodeN.right)<0) 
            nodeN = rotateLeft(nodeN); 
        else 
            nodeN = rotateRightLeft(nodeN); 
    } 
    return nodeN; 
} 
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Insert Code Implementation: 
public void insert(T data) { 
    if(isEmpty())        root = new TNode<>(data); 
    else { 
        TNode rootNode = root; 
        addEntry(data, rootNode); 
        root = rebalance(rootNode); 
    } 
} 
 
public void addEntry(T data, TNode rootNode){ 
    assert rootNode != null; 
    if(data.compareTo((T)rootNode.data) < 0){ // right into left subtree 
        if(rootNode.hasLeft()){ 
            TNode leftChild = rootNode.left; 
            addEntry(data, leftChild); 
            rootNode.left=rebalance(leftChild); 
        } 
        else            rootNode.left = new TNode(data); 
    } 
    else {  // right into right subtree 
        if(rootNode.hasRight()){ 
            TNode rightChild = rootNode.right; 
            addEntry(data, rightChild); 
            rootNode.right=rebalance(rightChild); 
        } 
        else            rootNode.right = new TNode(data); 
    } 
} 

Delete Code Implementation: 

public TNode delete(T data) { 
    TNode temp = super.delete(data); 
    if(temp!= null){ 
        TNode rootNode = root; 
        root = rebalance(rootNode); 
    } 
    return temp; 
} 

An AVL Tree versus a BST: 

 
Example: The result of adding 60, 50, 20, 80, 90, 70, 55, 10, 40, and 35 to an initially empty (a) AVL tree; (b) BST 
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2-3 Trees 
• Definition: general search tree whose interior nodes must have either 2 or 3 children. 

 A 2-node contains one data item s and has two children. 

 A 3-node contains two data items, s and l, and has three children. 

 
Adding Entries to a 2-3 Tree: 

 
Adding (a) 60 and (b) 50; (c), (d) adding 20 causes the 3-node to split 

 

 
The 2-3 tree after adding (a) 80; (b) 90; (c) 70 

 
Adding 55 to the 2-3 tree, causes a leaf and then the root to split 

 
The 2-3 tree, after adding 10, 40, 35 
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Splitting Nodes during Addition: 

 Splitting a leaf to accommodate a new entry when the leaf’s parent contains:  

(a) one entry:  

 
 

(b) two entries: 

 
 

 Splitting an internal node to accommodate a new entry: 

 
 Splitting the root to accommodate a new entry: 

 

Searching a 2-3 Tree: 
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2-3 tree: performance: 

2-3 tree is a perfect balanced tree: Every path from root to a leaf has same length. 

Tree height: 

・Worst case: log N. [all 2-nodes] 

・Best case: log3 N ≈ .631 log N. [all 3-nodes] 

・Between 12 and 20 for a million nodes. 

・Between 18 and 30 for a billion nodes. 

 

2-3 tree: implementation? 

Direct implementation is complicated, because: 

・Maintaining multiple node types is cumbersome. 

・Need multiple compares to move down tree. 

・Need to move back up the tree to split 4-nodes. 

・Large number of cases for splitting. 

exercise: 50 60 70 40 30 20 10 80 90 100 

 

2-4 Trees 
• Sometimes called a 2-3-4 tree. 

 General search tree   

 Interior nodes must have either two, three, or four children 

 Leaves occur on the same level 

 A 4-node contains three data items s, m, and l and has four children. 

 
Adding Entries to a 2-4 Tree 

 

 
The 2-4 tree, after (a) adding 20, 50, and 60 (b) adding 80 and splitting the root; (c) adding 90 
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Adding 70 

  
The 2-4 tree after adding (a) 55; (b) 10; (c) 40 

 

Adding 5 

 
The 2-4 tree after (a) splitting the leftmost 4-node; (b) adding 35 

 

 

 

Comparing AVL, 2-3, and 2-4 Trees: 

 
Three balanced search trees obtained by adding 60, 50, 20, 80, 90, 70, 55, 10, 40, and 35:  

(a) AVL tree; (b) 2-3 tree; (c) 2-4 tree 
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B-Trees 

B-trees (Bayer-McCreight, 1972) 

• Definition: multiway search tree of order m 

 A general tree whose nodes have up to m children each 

• A binary search tree is a multiway search tree of order 2. In a binary search tree, we need one key to 

decide which of two branches to take. In an M-ary search tree, we need M 1 keys to decide which 

branch to take. 

• 2-3 trees and 2-4 trees are balanced multiway search trees of orders 3 and 4, respectively. 

• As branching increases, the depth decreases. Whereas a complete binary tree has height that is 

roughly log2 N, a complete M-ary tree has height that is roughly logM N. 

• The B-tree is the most popular data structure for disk bound searching. 

• To make this scheme efficient in the worst case, we need to ensure that the M-ary search tree is 

balanced in some way. 

• Additional properties to maintain balance: 

 The root has either no children or between 2 and m children. 

 Other interior nodes (non-leaves) have between m/2 and m children each. 

 All leaves are on the same level. 

A B-tree of order M is an M-ary tree with the following properties:  (B+ tree) 

1. The data items are stored at leaves. 

2. The non-leaf nodes store up to M 1 keys to guide the searching; key i represents the smallest key 

in subtree i+1. 

3. The root is either a leaf or has between two and M children. 

4. All non-leaf nodes (except the root) have between M/2 and M children. 

5. All leaves are at the same depth and have between L/2 and L data items, for some L (the 

determination of L is described shortly). 

 

Example: The following is an example of a B+ tree of order 5 and L=5 
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Add items from the B+ tree: 

• Insert 57: A search down the tree reveals that it is not already in the tree. We can then add it to the 

leaf as a fifth item: 

 
 

• Insert 55: The leaf where 55 wants to go is already full. Solution: split them into two leaves: 

 
Note: The node splitting in the previous example worked because the parent did not have its full 

complement of children. 

 

• Insert 40: We have to split the leaf containing the keys 35 through 39, and now 40, into two leaves. 

o The parent has six children now  split the parent. 

 
Note:  

o When the parent is split, we must update the values of the keys and also the parent’s parent. 

o if the parent already has reached its limit of children? In that case, we continue splitting nodes up 

the tree until either we find a parent that does not need to be split or we reach the root. Then we 

split the root and this will generate a new level. 
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Remove items from the B+ tree: 

• We can perform deletion by finding the item that needs to be removed and then removing it.  

o The problem is that if the leaf it was in had the minimum number of data items, then it is 

now below the minimum. 

• Remove 99: Since the leaf has only two items, and its neighbor is already at its minimum of three, 

we combine the items into a new leaf of five items. 
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Splay Trees 

Recall: Asymptotic analysis examines how an algorithm will perform in worst case. 

Amortized analysis examines how an algorithm will perform in practice or on average. 

 

The 90–10 rule states that 90% of the accesses are to 10% of the data items.  

However, balanced search trees do not take advantage of this rule. 

 The 90–10 rule has been used for many years in disk I/O systems.  

 A cache stores in main memory the contents of some of the disk blocks. The hope is that when 

a disk access is requested, the block can be found in the main memory cache and thus save the 

cost of an expensive disk access. 

 Browsers make use of the same idea: A cache stores locally the previously visited Web pages. 

 

Splay Trees: 

 Like AVL trees, use the standard binary search tree property. 

 After any operation on a node, make that node the new root of the tree. 

 

A simple self-adjusting strategy (that does not work) 

The easiest way to move a frequently accessed item toward the root is to rotate it continually with its 

parent. Moving the item closer to the root, a process called the rotate-to-root strategy. 

 If the item is accessed a second time, the second access is cheap. 

Example: Rotate-to-root strategy applied when node 3 is accessed 

 

 
o As a result of the rotation: 

 future accesses of node 3 are cheap 

 Unfortunately, in the process of moving node 3 up two levels, nodes 4 and 5 each move 

down a level. 

o Thus, if access patterns do not follow the 90–10 rule, a long sequence of bad accesses can 

occur. 
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The basic bottom-up splay tree 

Splaying cases: 

 The zig case (normal single rotation) 

If X is a non-root node on the access path on which we are rotating and the parent of X is the root 

of the tree, we merely rotate X and the root, as shown: 

 
 

Otherwise, X has both a parent P and a grandparent G, and we must consider two cases and symmetries. 

 zig-zag case: 

 This corresponds to the inside case for AVL trees.  

 Here X is a right child and P is a left child (or vice versa: X is a left child and P is a right child). 

 We perform a double rotation exactly like an AVL double rotation, as shown: 

 

 zig-zig case: 

 The outside case for AVL trees. 

 Here, X and P are either both left children or both right children. 

 In this case, we transform the left-hand tree to the right-hand tree (or vice versa). 

 Note that this method differs from the rotate-to-root strategy.  

o The zig-zig splay rotates between P and G and then X and P, whereas the rotate-to-root 

strategy rotates between X and P and then between X and G. 
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Splaying has the effect of roughly halving the depth of most nodes on the access path and increasing 

by at most two levels the depth of a few other nodes. 

 

Example: Result of splaying at node 1 (three zig-zigs) 

 
Exercise: perform rotate-to-root strategy 

 

Basic splay tree operations 

A splay operation is performed after each access: 

 After an item has been inserted as a leaf, it is splayed to the root. 

 All searching operations incorporate a splay. (find, findMin and findMax) 

 To perform deletion, we access the node to be deleted, which puts the node at the root. If it is deleted, 

we get two subtrees, L and R (left and right). If we find the largest element in L, using a findMax 

operation, its largest element is rotated to L’s root and L’s root has no right child. We finish the remove 

operation by making R the right child of L’s root. An example of the remove operation is shown below: 

 

Example: The remove operation applied to node 6: 

 First, 6 is splayed to the root, leaving two subtrees;  

 A findMax is performed on the left subtree, raising 5 to the root of the left subtree;  

 Then the right subtree can be attached (not shown). 

 
 The cost of the remove operation is two splays. 
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