
 Data Structure: Hash Tables 2016/2017 Prepared by: Dr. Mamoun Nawahdah

1

COMP242

Data Structure

Lectures Note: Hash Tables

Prepared by: Dr. Mamoun Nawahdah

2016/2017

 Data Structure: Hash Tables 2016/2017 Prepared by: Dr. Mamoun Nawahdah

2

Hash Tables
• Hashing: is a technique that determines element index using only element’s distinct search key.
• Hash function:

 Takes a search key and produces the integer index of an element in the hash table.
 Search key-maps, or hashes, to the index.

Example 1: Phone numbers (xxx-xxxx).

・Bad: first three digits. // identical for same area

・Better: last four digits. // distinct
Example 2: University ID numbers (114-xxxx).

・Bad: first three digits. // identical for same period

・Better: last four digits. // distinct

Practical challenge: Need different approaches for each key type.

Simple algorithms for the hash operations that add and retrieve:

Typical Hashing

Typical hash functions perform two steps:
1. Convert search key to an integer called the hash code.
2. Compress hash code into the range of indices for hash table.

• Typical hash functions are not perfect:

 Can allow more than one search key to map into a
single index.

 Causes a collision in the hash table.
Example: Consider table (array) size = 101

 getHashIndex(555-1264) = 52
 getHashIndex(555-8132) = 52 also!!!

 Data Structure: Hash Tables 2016/2017 Prepared by: Dr. Mamoun Nawahdah

3

Hash Functions
• A good hash function should:

 Minimize collisions
 Be fast to compute

• To reduce the chance of a collision

 Choose a hash function that distributes entries uniformly throughout hash table.

Java’s hash code conventions
All Java classes inherit a method hashCode() from Object class, which returns a 32-bit int.

Default implementation: Memory address.
Customized implementations: Integer, Double, String, File, URL, Date, …
User-defined types: Users are on their own.

Java library implementations:
Integer

Boolean

Double

 Data Structure: Hash Tables 2016/2017 Prepared by: Dr. Mamoun Nawahdah

4

String

Horner's method to hash a String of length L:

Example:

Implementing hash code: user-defined types

Hash code design
"Standard" recipe for user-defined types:

・Combine each significant field using the 31x + y rule.

・If field is a primitive type, use wrapper type hashCode().

・If field is null, return 0.

・If field is a reference type, use hashCode().

・If field is an array, apply to each entry.  or use Arrays.deepHashCode()
Example:

 Data Structure: Hash Tables 2016/2017 Prepared by: Dr. Mamoun Nawahdah

5

Compressing a Hash Code
Hash code: An int between -231 and 231 - 1.

Hash function: returns an int between 0 and M-1 (for use as array index).
• Common way to scale an integer

 Use Java % operator  hash code % m

• Avoid m as power of 2 or 10

• Best to use an odd number for m

• Prime numbers often give good distribution of hash values

Resolving Collisions
• Collisions: Two distinct keys hashing to the same index.
• Two choices:

 Change the structure of the hash table so that each array location can represent more than one
value. (Separate Chaining)

 Use another empty location in the hash table. (Open Addressing)

Separate Chaining

• Alter the structure of the hash table:
 Each location can represent more than one value.

 Such a location is called a bucket

• Decide how to represent a bucket: list, sorted list; array; linked nodes; Vector; etc.

Where to insert a new entry into a linked bucket?

(a) If unsorted (apply 90-10 rule): add new entry to the beginning of chain

 Data Structure: Hash Tables 2016/2017 Prepared by: Dr. Mamoun Nawahdah

6

(b) If sorted:

Time Complexity

Worst case: all keys mapped to the same location  one long list of size N
Find(key)  O(n) 

Best case: hashing uniformly distribute records over the hash table  each list long = N/M = α
(α is load factor)

Find(key)  O(1 + α) 
Design Consequences

・M too large  too many empty chains.

・M too small  chains too long.

・Typical choice: M ≈ N / 5  constant-time ops.

Open Addressing

 Linear Probing
• When a new key collides, find next empty slot, and put it there.
• Hash: Map key to integer k between 0 and M-1.
• Insert: Put at table index k if free; if not try k+1, k+2, etc.

 If reaches end of table, go to beginning of table (Circular hash table)

• Hash function: h(k , i) = (h(k , 0)+i) % m

• Array size M must be greater than number of key-value pairs N.
Example: Linear hash table demo: take last 2 digits of student’s ID and run a demo

Clustering problem: A contiguous block of items will be easily formed which in turn will affect

performance.

Knuth’s Parking Problem
 Model: Cars arrive at one-way street with M parking spaces. If space k is taken, try k+1, k+2, etc.

 Data Structure: Hash Tables 2016/2017 Prepared by: Dr. Mamoun Nawahdah

7

 Quadratic Probing
• Linear probing looks at consecutive locations beginning at index k
• Quadratic probing, considers the locations at indices k + j2

 Uses the indices k, k+1, k + 4, k + 9, …

 Hash function: h(k , i) = (h(k , 0)+i2) % m

 For linear probing it is a bad idea to let the hash table get nearly full, because performance
degrades.

 For quadratic probing, the situation is even worse: There is no guarantee of finding an empty cell
once the table gets more than half full, or even before the table gets half full if the table size is not
prime.

 Standard deletion cannot be performed in a probing hash table, because the cell might have

caused a collision to go past it. (instead soft deletion is used)

Double Hashing

• Linear probing and quadratic probing add increments to k to define a probe sequence
 Both are independent of the search key

• Double hashing uses a second hash function to compute these increments
 This is a key-dependent method.
 The 2nd hash function must never evaluate to zero.

The 1st three locations in a probe sequence generated by double hashing for the search key 16

 Data Structure: Hash Tables 2016/2017 Prepared by: Dr. Mamoun Nawahdah

8

Potential Problem with Open Addressing
• Note that each location is either occupied, empty (null), or available (removed)

 Frequent additions and removals can result in no locations that are null
• Thus searching a probe sequence will not work
• Consider separate chaining as a solution

Time Complexity

Rehashing

 If the table gets too full, the running time for the operations will start taking too long and insertions
might fail for open addressing hashing with quadratic resolution.

 A solution, then, is to build another table that is about twice as big (with an associated new hash
function) and scan down the entire original hash table, computing the new hash value for each (non-
deleted) element and inserting it in the new table.

 This entire operation is called rehashing.
o This is obviously a very expensive operation; the running time is O(N), since there are N

elements to rehash and the table size is roughly 2N, but it is actually not all that bad, because it
happens very infrequently.

 Data Structure: Hash Tables 2016/2017 Prepared by: Dr. Mamoun Nawahdah

9

