E Data Structure: Heaps 2016/2017 Prepared by: Dr. Mamoun Nawahdah

- v
S35 ﬂ E‘%\‘/“:
o = M *

BIRZEIT UNIVERSITY

COMP242
Data Structure

Lectures Note: Heaps

Prepared by: Dr. Mamoun Nawahdah
2016/2017

Data Structure: Heaps 2016/2017 Prepared by: Dr. Mamoun Nawahdah
Priority Queues (Heaps)

A priority queue is a data structure that allows at least the following two operations:

e Insert: which does the obvious thing;

e deleteMin (or deleteMax): which finds, returns, and removes the minimum (or maximum) element in
the priority queue.

Simple Implementations:
e Unsorted Linked list, performing insertions at the front in O(1) and traversing the list, which

requires O(N) time, to delete the minimum/maximum.

e Sorted Linked list, performing insertions in O(N) and O(1) to delete the minimum/maximum.
e Binary search tree: this gives an O(log N) average running time for both operations.

Binary Heap

A heap is a binary tree that is completely filled, with the possible exception of the bottom level, which
is filled from left to right. = |

Such a tree is known as a complete binary tree.

A complete binary tree of height h has between
2" and 271 nodes.

Heap representations

As complete binary tree is so regular, therefore, it can be represented as an array:

i 0 1 2 3 4 5 6 7 8 91011
a[i] - T S R P N O A E I HG

- Parent of node at i is at i/2.
- Children of node at i are at 2i (left child) and 2i+1 (right child).

Heap-order property:

e Inamin heap, for every node X, the key in the parent of X is smaller than (or equal to) the key
in X, with the exception of the root (which has no parent). Therefore, the minimum element
can always be found at the root.

e Inamax heap, for every node X, the key in the parent of X is larger than (or equal to) the key

in X, with the exception of the root (which has no parent). Therefore, the maximum element
can always be found at the root.

Data Structure: Heaps 2016/2017 Prepared by: Dr. Mamoun Nawahdah
Interface for the max-heap

public interface MaxHeapInterface<T extends Comparable<? super T>>

{
pubiic void add(T newEntry);
public T removeMax();
public T getMax();
public boolean isEmpty();
public 1int getSize();
public void clear(Q);

}
An Array to Represent a Heap

90 | 80 § 60| 70 | 30 | 20

N
(=]

10 | 40

Promotion (&2.5) in a max heap

Scenario: Child's key becomes larger than its parent's key.
To eliminate the violation:
* Exchange key in child with key in parent.
* Repeat until heap order restored.
Example:

) © ®

violates h(’:fp order
(larger key than parent)
P, . ; 9

private void swim(int k)

{
while (k > 1 & less(k/2, k))
{
exch(k, k/2);
k = k/2;
} ~
} parent of node at k is at k/2

Data Structure: Heaps 2016/2017 Prepared by: Dr. Mamoun Nawahdah
Insertion in a max heap
Insert: Add node at end, then swim it up.
Cost: At most 1 +log N compares.
Example 1:insert S

add kt_':l." to ."In.!p
violates hmp order 9

public void insert(Key x)
{

pal++N] = x;

swim(N) ;

Example 2: insert 85

Method 1: The steps in adding 85 to the previous max-heap

() (b) (©

(%) (%) %)
(30) (60) (30) (60) (8 ()

@M O® ® m @O © @© 0 ©
OXOIO, (19 @@ OXOIO

Method 2: A revision of the steps shown in the previous figure, to avoid swaps:

Data Structure: Heaps 2016/2017 Prepared by: Dr. Mamoun Nawahdah

(d)
(%)

The following figures shows array representation of the steps in the previous figures:

(a)

| Joo[so|[e]70[3|20]so[w]awo] | [|s=>3

0 1 2 3 4 5 6 7 8 9 10 11 12
(10/2)

[[oo]s]e 7] [20[s0]w]4a]3] | | Moeso

0 1 2 3 - 5 6 7 8 9 10 11 12
()
[Joo[s]e[7] J20]so[w]aw|[3] [|s=>s
0 1 2 3 - 5 6 7 8 ¥ 10 11 12
(572)
(@

| [90 | [60]70] 80]20[s0]10]40]30] | | Move 80
o 1 2 3 a4 5 6 7 8 9 10 1u 12

(e)

| [o0 | [60 [70] 80 [20| 50| 10] 40] 30| | | 85<9%
0 1 7 3 4 5 6 7 8 9 10 11 12

(f)

[[oo]|ss]eo[70]s |20]s0]1w]4[30] | | nsenss
o 1 2 3 4 5 6 7 8 9 10 1 12

Data Structure: Heaps 2016/2017 Prepared by: Dr. Mamoun Nawahdah
Demotion (45, JI) in a max heap

Scenario: Parent's key becomes smaller than one (or both) of its children's.
To eliminate the violation:
* Exchange key in parent with key in larger child.
* Repeat until heap order restored.
Example 1:

violates heap order o

(smaller than a child) 2 o
2
(W) (P32 ONO.
10
Q ® '@ ©

G o > Top-down reheapify (sink)
private void sink(int k)
{
. children of node at k
H‘E'h'i Te 2%k <= N) are 2k and 2k+1

Nt i = 2tk / /

if (3 < N && less(j, j+1)) j++;
if (!less(k, j)) break;
exch(k, j);

k=133

Delete the maximum in a max heap (Removing the root)
Delete max: Exchange root with node at end, and then sink it down.
Cost: At most 2 log N compares.
Example 1: deIete T

remove the maximum
Ra\ to remove Vi lates

J'n ap order
'. e sintk dow H
o o o ® ¢ uhrr{nu key T . removeng ode
with root 9 G o 0 from heap

public Key delMax()
{
Key max = pq[1];
exch(1l, N--);
sink(1);
pg[N+1] = null; «<—f— prevent loitering
return max;
}

Data Structure: Heaps 2016/2017 Prepared by: Dr. Mamoun Nawahdah
Example 2: delete root (max)

(0
&) ()
) O @ ®
1) @ @
(@) ® (b) ®)
© © © ()
19 @ ® (19 @

(d)

© ® ®

(30) (60) (80 (60
)) @ @ () O ® ©
(19 @ (1) ()

Creating a Heap
The steps in adding 20, 40, 30, 10, 90, and 70 to an initially empty heap

(40)
(30) (20) () (30)
()

Data Structure: Heaps 2016/2017
Binary heap: Java implementation

public class MaxPQ<Key extends Comparable<Key>>

{

private Key[] pq;
private int N;

public MaxPQ(int capacity)
{ pq = (Key[]) new Comparable[capacity+1];

public boolean isEmpty()

{ return N == 0; }

public void insert(Key key)
public Key delMax()

{ /* see previous code */ }

private void swim(int k)
private void sink(int k)
{ /* see previous code */ }

private boolean less(int i, int j)

{ return pq[i].compareTo(pq[j]) < 0; }
private void exch(int i, int j)

{ Key t = pq[il; pqlil = pq(jl; pqlj] = t;

Prepared by: Dr. Mamoun Nawahdah

}

}

fixed capacity
(for simplicity)

PQ ops

heap helper functions

array helper functions

Data Structure: Heaps 2016/2017

Prepared by: Dr. Mamoun Nawahdah
HeapSort

Basic plan:

+ Create max heap with all N keys.
* Repeatedly remove the maximum key.

Heapsort demo:

First pass. Build heap using bottom-up method:

Array in arbitrary (random) order
S PR T E (X A M

PIIL ' E
1 2 3 4 5 6 7

8 9 10 11 N=11

for (int k = N/2; k >= 1; k--)
sink(a, k, N);

sink(5, 11)

starting point (arbitrary order)

> >
sink(4, 11) sink(3, 11)
® ® s
sink(2, 11)
(T)
& (L)
m @ e e > result (heap-ordered)

Data Structure: Heaps 2016/2017 Prepared by: Dr. Mamoun Nawahdah
e Second pass:
o Remove the maximum, one at a time.
o Leave in array, instead of nulling out.

while (N > 1)

{
exch(a, 1, N--);
sink(a, 1, N);

}
exch(1l, 11) exch(l, 10)
sink(1, 10) sink(1, 9)
(S)
R) &
®® ® x
exch(1l, 9) exch(1l, 7)
sink(1, 8) Ei‘SEEi ?% (P) O

sink(1, 6)
) E) () @}@
(M) L ©® ® (A) L P
R

exch(l, 6) exch(l, 5) exch(1, 4) e
sink(1, 5) 4 sink(1, 4) sink(1, 3) G

@/ 0 ®/ M L

1
A
h(l, 2 Q)
exch(1, 3) ® Siket 33

sink(l. 2)@/ 2E 3E
E E

4L 5 M 6 7

ER 95 IDT 11x

result (sorted)

10

Data Structure: Heaps 2016/2017 Prepared by: Dr. Mamoun Nawahdah
Heapsort: trace

ali]

N k 0O 1 2 3 4 5 6 7 8 91011
initial values S O RTEXA AMUPL E
11 5 L E E
11 4 T M P

11 3 X R A

11 2 T P L M O

11 1 X T S R A
heap-ordered X T S P L RAMUOE E
10 1 T P S O L M E X
9 1 S P R E A 1]

8 1 R P E E A S

7 1 P O E M L R

6 1 O M E A L P

5 1 M L E A E O

4 1 L E E A M

3 1 E A E L

2 1 E. ‘A E

1 1 A E

sorted result A EELMOWPRISTX

Heapsort trace (array contents just after each sink)

Heapsort: mathematical analysis
e Heap construction uses £ 2 N compares and exchanges.
e Heapsort uses <2 N Ig N compares and exchanges.

Heapsort Significance: In-place sorting algorithm with N log N worst-case.
Heapsort is optimal for both time and space, but it makes poor use of cache memory and not stable.

Data Structure: Heaps 2016/2017
Heapsort: Java implementation

int N = a.length-1;

for (int k = N/2; k >= 1; k-)
sink(a, k, N);

while (N > 1)

{
exch(a, 1, N);
sink(a, 1, --N);

Prepared by: Dr. Mamoun Nawahdah

12

E Data Structure: Heaps 2016/2017 Prepared by: Dr. Mamoun Nawahdah

FINISHED STIIIIYING?

13

