
 Data Structure: Heaps 2016/2017 Prepared by: Dr. Mamoun Nawahdah

1

COMP242

Data Structure

Lectures Note: Heaps

Prepared by: Dr. Mamoun Nawahdah

2016/2017

 Data Structure: Heaps 2016/2017 Prepared by: Dr. Mamoun Nawahdah

2

Priority Queues (Heaps)

A priority queue is a data structure that allows at least the following two operations:

 Insert: which does the obvious thing;

 deleteMin (or deleteMax): which finds, returns, and removes the minimum (or maximum) element in
the priority queue.

Simple Implementations:

 Unsorted Linked list, performing insertions at the front in O(1) and traversing the list, which
requires O(N) time, to delete the minimum/maximum.

 Sorted Linked list, performing insertions in O(N) and O(1) to delete the minimum/maximum.

 Binary search tree: this gives an O(log N) average running time for both operations.

Binary Heap

A heap is a binary tree that is completely filled, with the possible exception of the bottom level, which
is filled from left to right.
Such a tree is known as a complete binary tree.

A complete binary tree of height h has between

2h
 and 2h+1–1 nodes.

As complete binary tree is so regular, therefore, it can be represented as an array:

・Parent of node at i is at i/2.

・Children of node at i are at 2i (left child) and 2i+1 (right child).

Heap-order property:
 In a min heap, for every node X, the key in the parent of X is smaller than (or equal to) the key

in X, with the exception of the root (which has no parent). Therefore, the minimum element
can always be found at the root.

 In a max heap, for every node X, the key in the parent of X is larger than (or equal to) the key

in X, with the exception of the root (which has no parent). Therefore, the maximum element
can always be found at the root.

 Data Structure: Heaps 2016/2017 Prepared by: Dr. Mamoun Nawahdah

3

Interface for the max-heap

An Array to Represent a Heap

Promotion (ترفیع) in a max heap

Scenario: Child's key becomes larger than its parent's key.
To eliminate the violation:

・Exchange key in child with key in parent.

・Repeat until heap order restored.
Example:

 

 Data Structure: Heaps 2016/2017 Prepared by: Dr. Mamoun Nawahdah

4

Insertion in a max heap
Insert: Add node at end, then swim it up.
Cost: At most 1 + log N compares.
Example 1: insert S

 

Example 2: insert 85

Method 1: The steps in adding 85 to the previous max-heap

Method 2: A revision of the steps shown in the previous figure, to avoid swaps:

 Data Structure: Heaps 2016/2017 Prepared by: Dr. Mamoun Nawahdah

5

The following figures shows array representation of the steps in the previous figures:

 Data Structure: Heaps 2016/2017 Prepared by: Dr. Mamoun Nawahdah

6

Demotion (رتبة إنزال) in a max heap

Scenario: Parent's key becomes smaller than one (or both) of its children's.
To eliminate the violation:

・Exchange key in parent with key in larger child.

・Repeat until heap order restored.
Example 1:

 

Delete the maximum in a max heap (Removing the root)
Delete max: Exchange root with node at end, and then sink it down.
Cost: At most 2 log N compares.
Example 1: delete T

 

 Data Structure: Heaps 2016/2017 Prepared by: Dr. Mamoun Nawahdah

7

Example 2: delete root (max)

Creating a Heap

The steps in adding 20, 40, 30, 10, 90, and 70 to an initially empty heap

 Data Structure: Heaps 2016/2017 Prepared by: Dr. Mamoun Nawahdah

8

Binary heap: Java implementation

 Data Structure: Heaps 2016/2017 Prepared by: Dr. Mamoun Nawahdah

9

HeapSort
Basic plan:

・Create max heap with all N keys.

・Repeatedly remove the maximum key.

Heapsort demo:
 First pass. Build heap using bottom-up method:

Array in arbitrary (random) order

 N=11

  

  

 

 Data Structure: Heaps 2016/2017 Prepared by: Dr. Mamoun Nawahdah

10

 Second pass:
o Remove the maximum, one at a time.
o Leave in array, instead of nulling out.

 Data Structure: Heaps 2016/2017 Prepared by: Dr. Mamoun Nawahdah

11

Heapsort: trace

Heapsort: mathematical analysis

 Heap construction uses ≤ 2 N compares and exchanges.

 Heapsort uses ≤ 2 N lg N compares and exchanges.

Heapsort Significance: In-place sorting algorithm with N log N worst-case.
Heapsort is optimal for both time and space, but it makes poor use of cache memory and not stable.

 Data Structure: Heaps 2016/2017 Prepared by: Dr. Mamoun Nawahdah

12

Heapsort: Java implementation

 Data Structure: Heaps 2016/2017 Prepared by: Dr. Mamoun Nawahdah

13

