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Priority Queues (Heaps) 

A priority queue is a data structure that allows at least the following two operations:  

 Insert: which does the obvious thing;  

 deleteMin (or deleteMax): which finds, returns, and removes the minimum (or maximum) element in 
the priority queue. 

Simple Implementations: 

 Unsorted Linked list, performing insertions at the front in O(1) and traversing the list, which 
requires O(N) time, to delete the minimum/maximum. 

 Sorted Linked list, performing insertions in O(N) and O(1) to delete the minimum/maximum. 

 Binary search tree: this gives an O(log N) average running time for both operations. 

 
Binary Heap 

A heap is a binary tree that is completely filled, with the possible exception of the bottom level, which 
is filled from left to right.  
Such a tree is known as a complete binary tree. 

 

A complete binary tree of height h has between  

2h
 and 2h+1–1 nodes.  

 
 

As complete binary tree is so regular, therefore, it can be represented as an array: 

 
・Parent of node at i is at i/2. 

・Children of node at i are at 2i (left child) and 2i+1 (right child). 
 

 

Heap-order property:  
 In a min heap, for every node X, the key in the parent of X is smaller than (or equal to) the key 

in X, with the exception of the root (which has no parent). Therefore, the minimum element 
can always be found at the root.  

 In a max heap, for every node X, the key in the parent of X is larger than (or equal to) the key 

in X, with the exception of the root (which has no parent). Therefore, the maximum element 
can always be found at the root.  
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Interface for the max-heap  

 
An Array to Represent a Heap 

           
 
Promotion (ترفیع) in a max heap  

Scenario: Child's key becomes larger than its parent's key. 
To eliminate the violation: 

・Exchange key in child with key in parent. 

・Repeat until heap order restored. 
Example:  

              
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Insertion in a max heap 
Insert: Add node at end, then swim it up. 
Cost: At most 1 + log N compares. 
Example 1: insert  S 

         

 
Example 2: insert  85 

 
Method 1: The steps in adding 85 to the previous max-heap  

 

Method 2: A revision of the steps shown in the previous figure, to avoid swaps: 
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The following figures shows array representation of the steps in the previous figures: 
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Demotion ( رتبة إنزال ) in a max heap 

Scenario: Parent's key becomes smaller than one (or both) of its children's. 
To eliminate the violation: 

・Exchange key in parent with key in larger child. 

・Repeat until heap order restored. 
Example 1:   

                              

 
 

Delete the maximum in a max heap (Removing the root) 
Delete max: Exchange root with node at end, and then sink it down. 
Cost: At most 2 log N compares. 
Example 1: delete T 

   

 
  



  Data Structure:  Heaps                        2016/2017                                Prepared by:  Dr. Mamoun Nawahdah 

7 

 

Example 2: delete  root (max) 

 
 

                     

                      
Creating a Heap 

The steps in adding 20, 40, 30, 10, 90, and 70 to an initially empty heap 
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Binary heap: Java implementation 
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HeapSort 
Basic plan: 

・Create max heap with all N keys. 

・Repeatedly remove the maximum key. 
 

Heapsort demo: 
 First pass. Build heap using bottom-up method: 

Array in arbitrary (random) order 

    N=11 
 

 
 

          

           

           
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 Second pass: 
o Remove the maximum, one at a time. 
o Leave in array, instead of nulling out. 
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Heapsort: trace 

 
Heapsort: mathematical analysis 

 Heap construction uses ≤ 2 N compares and exchanges. 

 Heapsort uses ≤ 2 N lg N compares and exchanges. 
 
Heapsort Significance:  In-place sorting algorithm with N log N worst-case. 
Heapsort is optimal for both time and space, but it makes poor use of cache memory and not stable. 
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Heapsort: Java implementation 
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