

COMP242 Data Structure

Lectures Note: Sorting

Prepared by: Dr. Mamoun Nawahdah

2016/2017

2016/2017

Sorting

In Place vs. not in Place Sorting:

In place sorting algorithms are those, in which we sort the data array, without using any additional memory.

What about selection, bubble, insertion sort algorithms?

- Well, our implementation of these algorithms is IN PLACE.
- The thing is, if we use a constant amount of extra memory (like one temporary variable/s), the sorting is In-Place.

But in case extra memory (**merging** sort algorithm), which is **proportional** to the input data size, is used, then it is **NOT IN PLACE sorting**.

• But because memory these days is so cheap, that we usually don't bother about using extra memory, **if** it makes the program run faster.

Stable vs. Unstable Sort:

3	5	2	1	5'	10	Unsorted Array
1	2	3	5	5'	10	Stable sort
1	2	3	5'	5	10	Unstable Sort

Example: Insertion Sort Code:

```
public void sort(int[] data) {
    for (int i =0; i < data.length; i++) {</pre>
        int current = data[i];
        int j = i-1;
        while (j >=0 && data[j] > current)
             data[j+1] = data[j];
             j--;
        data[j+1] = current;
    }
public void sort(int[] data) {
    for (int i =0; i < data.length; i++) {</pre>
        int current = data[i];
        int j = i-1;
        while (j >=0 && data[j] >= current)
            data[j+1] = data[j];
            j--;
        data[j+1] = current;
                                 dm
    }
```

2016/2017

Unsorted Array

Name	Age
Bob	25
Kevin	24
Stuart	21
Kevin	28

2) Sorted By Name (Stable)

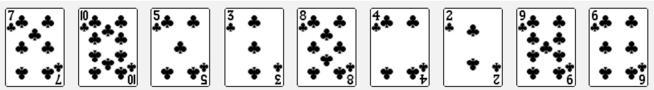
INA	me (Stable)	
Name	Age	
Bob	25	
Kevin	24	
Kevin	28	
Stuart	21	

NameAgeStuart21Kevin24Bob25Kevin28

1) Sorted By Age

 Sorted By Name (Unstable)

Name	Age
Bob	25
Kevin	28
Kevin	24
Stuart	21


http://www.sorting-algorithms.com/

0	0	0	0	0	0	0	0	0
	Insertion	Selection	Bubble	Shell	Merge	Heap	Quick	Quick3
2 Random								
C Nearly Sorted								
C Reversed								
C Few Unique								

- In iteration *i*, find index *min* of smallest remaining entry. •
- Swap *a[i]* and *a[min]*. •

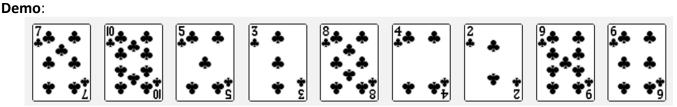
Demo:

Java implementation:

```
public class Selection
  public static void sort(Comparable[] a)
      int N = a.length;
      for (int i = 0; i < N; i++)
      {
         int min = i;
         for (int j = i+1; j < N; j++)
            if (less(a[j], a[min]))
               min = j;
         exch(a, i, min);
      }
   }
   private static boolean less(Comparable v, Comparable w)
  { /* as before */ }
   private static void exch(Comparable[] a, int i, int j)
   { /* as before */ }
3
```

Mathematical analysis:

Selection sort uses $(N-1) + (N-2) + ... + 1 + 0 \approx N^2/2$ compares and N exchanges. •


Trace of selection sort:

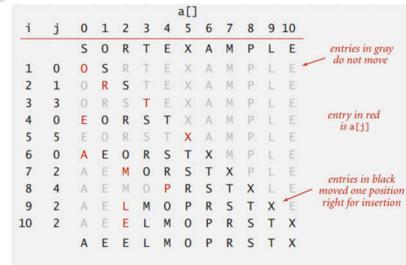
- Running time insensitive • to input: Quadratic time, even if input is sorted.
- Data movement is minimal: Linear number of exchanges.

							a[]						entries in black
i	min	0	1	2	3	4	5	6	7	8	9	10	are examined to fin
		S	0	R	т	Е	х	Α	М	Ρ	L	Е	the minimum
0	6	S	0	R	Т	Ε	х	Α	М	Ρ	L	E	
1	4	A	0	R	т	Ε	х	S	М	Ρ	L	Е	entries in red are a[min]
2	10	A	E	R	т	0	х	S	М	Ρ	L	E	ure almini
3	9	A	E	E	т	0	Х	S	М	Ρ	L	R	
4	7	A	E	Е	Ľ.	0	х	S	М	Ρ	Т	R	
5	7	A	Ε	Ε	E.	М	Х	S	0	Ρ	Т	R	
6	8	A	Ε	E	L	М	0	S	х	Ρ	т	R	
7	10	A	Ε	E	L	М	0	Ρ	х	S	т	R	
8	8	A	E	Е	L	М	0	Ρ	R	S	т	x	
9	9	A	E	Ε	L	М	0	P	R	S	т	x	entries in gray are in final position
10	10	Α	Ε	E	L	М	0	Р	R	S	Т	X	
		Α	Ε	Е	L	М	0	Ρ	R	S	Т	х	

Trace of selection sort (array contents just after each exchange)

In iteration *i*, swap *a[i]* with each larger entry to its left.

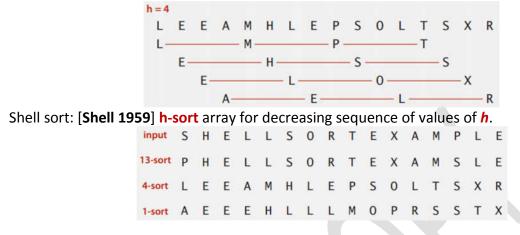
Java implementation:


```
public class Insertion
{
    public static void sort(Comparable[] a)
    {
        int N = a.length;
        for (int i = 0; i < N; i++)
            for (int j = i; j > 0; j--)
                if (less(a[j], a[j-1]))
                    exch(a, j, j-1);
                    else break;
    }
    private static boolean less(Comparable v, Comparable w)
    { /* as before */ }
    private static void exch(Comparable[] a, int i, int j)
        { /* as before */ }
}
```

Mathematical analysis:

- To sort a randomly-ordered array with distinct keys, insertion sort uses $\approx \frac{1}{N^2}$ compares and $\approx \frac{1}{N^2}$ exchanges on average.
- Expect each entry to move halfway back.

Trace of insertion sort:


- Best case: If the array is in ascending order, insertion sort makes N-1 compares and O exchanges.
- Worst case: If the array is in descending order (and no duplicates), insertion sort makes ≈ ½N² compares and ≈ ½N² exchanges.
- For partially-sorted arrays, insertion sort runs in linear time.

Trace of insertion sort (array contents just after each insertion)

3- Shell Sort:

Idea: Move entries more than one position at a time by **h-sorting** the array. an **h-sorted** array is **h** interleaved sorted subsequences:

How to *h-sort* an array? Insertion sort, with stride length *h*.

3-s	ortin	g an	arra	ıy				U		
М	0	L	Ε	Ε	x	Α	S	Ρ	R	т
Ε	0	L	М	E	Х	Α	S	P	R	T
Ε	Е	L	M	0	Х	A	S	P	R	Ŧ
Ε	Ε		М	0	Х	Α	S	P	R	T
Α	E	L,	Ε	0	Х	Μ	S	P	R	Т
A		L.	E		Х	Μ	S	P	R	T
A	E		Ε	0	Ρ	М	S	Х	R	Т
Α	E	Ľ.					S	Х	R	Т
Α	Ε	Ĺ.	E					Х	R	Т
Α	Ε	L	Ε	0	Ρ	М	S	х	R	т

Shell sort example: increments 7, 3, 1

inp	ut																				
S		R	т	Ε	x	A	м	Ρ	L	Е											
7-5	ort																				
s		R	т	E	x	A	м	Р	ï	Е	1-	sort									
1	0	R	÷	E	X	A	S	P	Ĩ.	E	Α	Е	L	Е	0	Ρ	м	S	х	R	
i	0	R	Ť	E	x	A	S	P	- î	E	A	Е	L	E	0	P	М	S	X	R	
ŝ	Ő	1	÷	E	X	A	ŝ	P	R	E	A		L	E	0	P	М	S	X	R	
i	0	1	E	E	X	A	S	P	R	т	A		Ε	L	0	P	М	S	X	R	
			-				_				A	E	E		0	P	М	S	X	R	
											A	E	E	L	0	P	М	5	X	R	
3-s	ort										A	Ë	E		М	0	Р	S	X	R	
М	0	L	Ε	Ε	Х	Α	S	Ρ	R	т	A	E	E	1	M	0		S	X	R	
Е	0	L	Μ	E	X	A	S	Ρ	R	T	A	E	E	1	М	0	P	S	x	R	
	Ε	L	М	0	Х	A	S	Ρ	R	Т	A	E	E	1	М	0		R	s	x	
Ε	E		М	0	Х	Α	S	Ρ	R	Т	A	E	E	Ĩ.	M	0	P	R	S	Т	
A	E	L	Ε	0	Х	Μ	S	Ρ	R	Т											
A		L	E		Х	М	S	Р	R	T											
A	E		E	0	Ρ	M	S	Х	R	T											
A	E	L					S	Х	R	T	res	ult									
A	E	L	E					Х	R	Т	Α	Е	Ε	L	Μ	0	Ρ	R	S	Т	

Data Structure: Sorting 2016/2017

Shell sort: which increment sequence to use?
Powers of two: 1, 2, 4, 8, 16, 32, ...

No Maybe

OK. Easy to compute

- **Powers of two minus one**: 1, 3, 7, 15, 31, 63, ...
- **3x+1**: 1, 4, 13, 40, 121, 364, ...

```
Java implementation
```

```
public class Shell
{
   public static void sort(Comparable[] a)
   Ł
      int N = a.length;
      int h = 1;
                                                                             3x+1 increment
      while (h < N/3) h = 3*h + 1; // 1, 4, 13, 40, 121, 364, ...
                                                                             sequence
      while (h \ge 1)
      { // h-sort the array.
         for (int i = h; i < N; i++)
                                                                             insertion sort
         {
            for (int j = i; j \ge h \&\& less(a[j], a[j-h]); j = h)
                exch(a, j, j-h);
         }
                                                                             move to next
         h = h/3;
                                                                             increment
      }
   }
   private static boolean less(Comparable v, Comparable w)
   { /* as before */ }
   private static void exch(Comparable[] a, int i, int j)
   { /* as before */ }
}
```

Analysis

• The worst-case number of compares used by shell sort with the 3x+1 increments is $O(N^{3/2})$.

Data Structure: Sorting4- Merge Sort				2016,	/2017	7				Prepa	ared	by:	Dr. N	lamo	oun N	awahdah
 Divide array into Recursively sort e Merge two halve 	each															
input	М	Е	R	G	Е	S	0	R	т	Е	Х	Α	М	Ρ	L	E
sort left half	Е	Е	G	Μ	0	R	R	S	Т	Е	X	A	М	Ρ	L	E
sort left half sort right half	Ε	Е	G	Μ	0	R	R	S	Α	Е	Е	L	М	Ρ	Т	Х
merge results	Α	Е	Е	Е	Е	G	L	М	М	0	Ρ	R	R	S	т	Х
					Mer	rges	ort o	verv	view							
Java implementatior Merging:	1:															
private static void mer	ge(Comp	ara	ble[[] a	, Co	ompar	rab1	e[]	aux	, i	nt 1	lo, '	int	mid,	, int hi)
<pre>{ assert isSorted(a, 1 assert isSorted(a, m </pre>	id+	1, h	i);	//	-											
for (int k = lo; k < aux[k] = a[k];	= h	i; k	.++)											col	ру	_
<pre>int i = lo, j = mid+ for (int k = lo; k < { if (i > mid) else if (j > hi) else if (less(aux))</pre>	= h				a[k] a[k]] =] =		[i++ [j++];];					mer	rge	
else }					a[k]] =	aux[[i++];							
<pre>assert isSorted(a, 1 }</pre>	ο,	hi);		//	/ pos	stco	ondit	tion	: a	[10.	.hi] so	orte	d		
	0				i		mid					j			hi	
aux[]	٨	0		10	0		1000	1 1					and the second se			
	M	G		L	C)	R		H	I		М	S	;	Т	

I L M

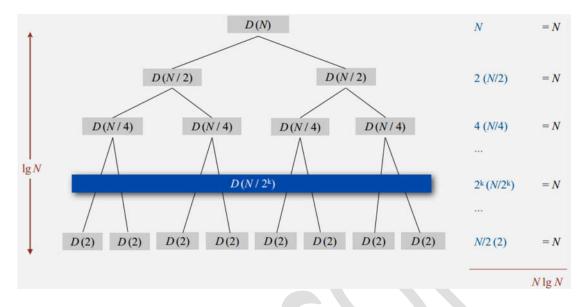
a[] A G H

Ħ

Java implementation:

```
Merge Sort:
  public class Merge
  {
     private static void merge(...)
     { /* as before */ }
     private static void sort(Comparable[] a, Comparable[] aux, int lo, int hi)
        if (hi <= lo) return;</pre>
        int mid = lo + (hi - lo) / 2;
        sort(a, aux, lo, mid);
        sort(a, aux, mid+1, hi);
        merge(a, aux, lo, mid, hi);
     }
     public static void sort(Comparable[] a)
     {
        aux = new Comparable[a.length];
        sort(a, aux, 0, a.length - 1);
     }
  }
```

Merge Sort: trace


						a	[]									
lọ hi	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
$\lambda \neq I$	М	Е	R	G	Е	S	0	R	Т	Ε	Х	Α	М	Ρ	L	Е
merge(a, aux, 0, 0, 1)	Ε	Μ	R	G	E	S	0	R	Т	Е	Х	A	M	Ρ	11	E
merge(a, aux, 2, 2, 3)	E	Μ	G	R	E	S	0	R	Т	Ε	X	A	M	P	- L.,	E
merge(a, aux, <mark>0</mark> , 1, <mark>3</mark>)	Ε	G	Μ	R	E	S	0	R	Т	E	X	A	M	P	L	E
merge $(a, aux, 4, 4, 5)$	E	G	М	R	Ε	S	0	R	Т	Е	X	A	M	P	L	E
merge(a, aux, <mark>6</mark> , 6, 7)	E	G	Μ	R	E	S	0	R	Т	E	Х	A	М	P	L.	E
merge(a, aux, 4, 5, 7)	E	G	Μ	R	Ε	0	R	S	Т	E	Х	A	Μ	P	Ļ	E
merge(a, aux, <mark>0</mark> , 3, 7)	Ε	Ε	G	М	0	R	R	S	Т	Е	Х	A	Μ	P	L	E
merge(a, aux, 8, 8, 9)	E	E	G	М	0	R	R	S	Ε	Т	Х	A	Μ	P	L.	E
merge(a, aux, 10 , 10, 11)	E	E	G	Μ	0	R	R	S	E	Т	Α	Х	Μ	P	L.	E
merge(a, aux, <mark>8</mark> , 9, 11)	E	E	G	Μ	0	R	R	S	Α	Ε	Т	X	M	P	L	E
merge(a, aux, 12, 12, 13)	E	E	G	М	0	R	R	S	Α	E	Т	X	М	Ρ	Ľ.	E
merge(a, aux, 14, 14, 15)	E	Ε	G	Μ	0	R	R	S	A	E	Т	Х	М	P	E	L
merge(a, aux, 12, 13, 15)	E	Ε	G	М	0	R	R	S	Α	E	Т	X	E	L	Μ	Ρ
merge(a, aux, 8, 11, 15)	E	E	G	M	0	R	R	S	Α	Ε	E	L	Μ	Ρ	Т	X
merge(a, aux, 0, 7, 15)	Α	Ε	Ε	Ε	Е	G	L	Μ	Μ	0	Ρ	R	R	S	Т	X

Merge Sort: Empirical Analysis

	ins	sertion sort (N²)	mei	rgesort (N log] N)
computer	thousand	million	billion	thousand	million	billion
home	instant	2.8 hours	317 years	instant	1 second	18 min
super	instant	1 second	1 week	instant	instant	instant

Good algorithms are better than supercomputers.

Divide-and-conquer recurrence: number of compares

Merge Sort analysis: memory (array accesses)

- Merge sort uses extra space proportional to N.
- The array *aux[]* needs to be of size *N* for the last merge.

Practical Improvements:

- I. Use **insertion** sort for small subarrays:
 - Merge sort has too much overhead for tiny subarrays.
 - **Cutoff** to insertion sort for \approx **7** items.

```
private static void sort(Comparable[] a, Comparable[] aux, int lo, int hi)
{
    if (hi <= lo + CUTOFF - 1)
    {
        Insertion.sort(a, lo, hi);
        return;
    }
    int mid = lo + (hi - lo) / 2;
    sort (a, aux, lo, mid);
    sort (a, aux, mid+1, hi);
    merge(a, aux, lo, mid, hi);
}</pre>
```

- II. Stop if already sorted:
 - If biggest item in first half ≤ smallest item in second half?
 - Helps for partially-ordered arrays.

Data Structure: Sorting 2016/2017 Prepared by: Dr. Mamoun Nawahdah
private static void sort(Comparable[] a, Comparable[] aux, int lo, int hi)
{
 if (hi <= lo) return;
 int mid = lo + (hi - lo) / 2;
 sort (a, aux, lo, mid);
 sort (a, aux, mid+1, hi);
 if (!less(a[mid+1], a[mid])) return;
 merge(a, aux, lo, mid, hi);
}</pre>

III. Eliminate the copy to the auxiliary array. Save time (but not space) by switching the role of the input and auxiliary array in each recursive call.

```
private static void merge(Comparable[] a, Comparable[] aux, int lo, int mid, int hi)
{
   int i = lo, j = mid+1;
   for (int k = lo; k \le hi; k++)
   £
      if
               (i > mid)
                                   aux[k] = a[j++];
      else if (j > hi)
                                  aux[k] = a[i++];

    merge from a[] to aux[]

      else if (less(a[j], a[i])) aux[k] = a[j++];
      else
                                   aux[k] = a[i++];
   }
}
private static void sort(Comparable[] a, Comparable[] aux, int lo, int hi)
{
   if (hi <= lo) return;
   int mid = lo + (hi - lo) / 2;
   sort (aux, a, lo, mid);
   sort (aux, a, mid+1, hi);
                                             Note: sort(a) initializes aux[] and sets
   merge(a, aux, lo, mid, hi);
                                             aux[i] = a[i] for each i.
}
   switch roles of aux[] and a[]
```

Complexity of sorting

- Compares? Merge sort is optimal with respect to number compares.
- Space? Merge sort is not optimal with respect to space usage.

T Data Structure: Sorting

5- Bottom-up Merge Sort

Basic plan:

- Pass through array, merging subarrays of size 1.
- Repeat for subarrays of size 2, 4, 8, 16,

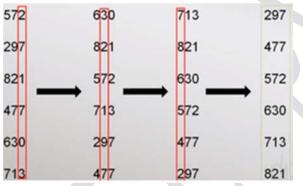
										a	[i]									
					0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
sz = 1					М	Е	R	G	Ε	S	0	R	Т	Ε	Х	Α	М	Ρ	L	Ε
merge(a,	aux,	0,	0,	1)	E	Μ	R	G	E	S	0	R	Т	E	X	A	Μ	Ρ	L	E
merge(a,	aux,	2,	2,	3)	Ε	Μ	G	R	E	S	0	R	Т	E	X	A	M	Ρ	L	Ε
merge(a,			4,	5)	E	М	G	R	Ε	S	0	R	Т	E	X	A	Μ	P	L	Ε
merge(a,	aux,	6,	6,	7)	E	M	G	R	E	S	0	R	Т	Ε	X	A	M	P	L	E
merge(a,	aux,	8,	8,	9)	E	M	G	R	E	S	0	R	E	Т	X	A	M	Ρ	L	E
merge(a,	aux,	10,	10,	11)	E	М	G	R	E	S	0	R	Ε	Т	Α	X	M	P	L	Ε
merge(a,	aux,	12,	12,	13)	Ε	Μ	G	R	E	S	0	R	Ε	Т	A	X	М	Ρ	L	E
merge(a,	and the second sec				Ε	Μ	G	R	E	S	0	R	Ε	T	A	X	М	Ρ	Ε	L
sz = 2																				
merge(a,	aux,	0,	1,	3)	Ε	G	м	R	E	S	0	R	Ε	T	A	X	M	P	Ε	L
merge(a,	aux,	4,	5,	7)	Ε	G	Μ	R	Е	0	R	S	E	T	A	X	М	P	E	L
merge(a,	aux,	8,	9,	11)	E	G	M	R	E	0	R	S	Α	Ε	Т	X	М	P	E	L
merge(a,	aux,	12,	13,	15)	Ε	G	Μ	R	Е	0	R	S	Α	Е	Т	Х	Ε	L	Μ	Ρ
sz = 4																				
merge(a,					E	E	G	М	0	R	R	S	A	E	T	X	E	L	Μ	Р
merge(a,	aux,	8,	11,	15)	E	E	G	М	0	R	R	S	Α	E	E	L	М	Ρ	Т	X
<pre>sz=8 merge(a,</pre>	aux,	0,	7,	15)	A	Е	Е	Е	Е	G	L	м	м	0	Ρ	R	R	s	т	x

Java implementation:

```
public class MergeBU
{
    private static void merge(...)
    { /* as before */ }
    public static void sort(Comparable[] a)
    {
        int N = a.length;
        Comparable[] aux = new Comparable[N];
        for (int sz = 1; sz < N; sz = sz+sz)
            for (int lo = 0; lo < N-sz; lo += sz+sz)
            merge(a, aux, lo, lo+sz-1, Math.min(lo+sz+sz-1, N-1));
    }
}</pre>
```

6- Radix Sort

What is Radix? The radix (or base) is the number of unique digits, including zero, used to represent numbers in a positional numeral system.


For example, for the decimal system: radix is **10**, Binary system: radix is **2**.

Example Radix Sort:

- Step 1: take the least significant digits (*LSD*) of the values to be sorted.
- Step 2: sort the list of elements based on that digit.

Step 3: take the 2nd *LSD* and repeat step 2.

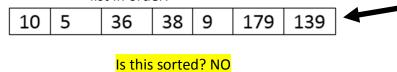
Then the 3rd *LSD* and so on.

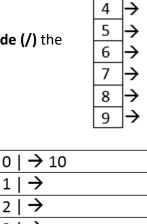
Radix Sort Algorithm using linked lists:

• Consider the following array:

Α	9	179	139	38	10	5	36

- Create an array of 10 linked lists as follow:
 - 0 to 9 refer to actual numbers.
 - With input numbers, we will start with mod (%) 10 then divide (/) the resulted number by 1.


Code:


- $m=10 \rightarrow mod operation$
- n=1 ➔ find the specific digit at that column

*****9 / n = 9

- In this case add **A[0]** to the **10th linked list**
- Repeat for remaining array elements.
 - If we reach the end of array: make a new array by removing data from the head of each linked list in order:

 \rightarrow 1 |

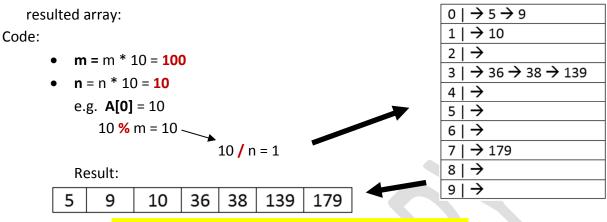
 \rightarrow 2 |

 $5 \mid \rightarrow 5$

7 | →

 $6 \mid \rightarrow 36$

 $8 \rightarrow 38$


 $9 \rightarrow 9 \rightarrow 179 \rightarrow 139$

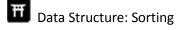
3 | \rightarrow \rightarrow 4 |

0

T Data Structure: Sorting

• Next step: consider the 2nd significant digit from the previous

Is this sorted? Yes, in this case but we are not done yet


• **Next step:** consider the **3rd** significant digit from the previous array:

c	~	Ч	~
L	υ	u	e

e:	$0 \mid \rightarrow 5 \rightarrow 9 \rightarrow 10 \rightarrow 36 \rightarrow 38$
• m = m * 10 = 1000	1 → 139 → 179
• n = n * 10 = 100	2 →
	3 →
e.g. A[0] = 5	$4 \mid \rightarrow$
5 % m = 5	5 →
5 / n = 0	6 →
	7 →
Result:	8 →
5 9 10 36 38 139 179	9 →
3 3 10 30 30 133 175	

Is this sorted? What is the time complexity?

HW: implement Radix sort using Doubly Linked List

7- Quick Sort

Basic plan:

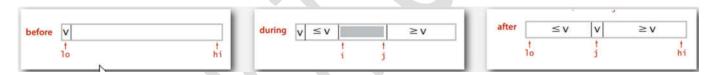
- Shuffle the array. (shuffle needed for performance guarantee)
- Partition so that, for some j
 - entry **A**[j] is in place
 - no larger entry to the left of *j*
 - no smaller entry to the right of j
- Sort each piece recursively.

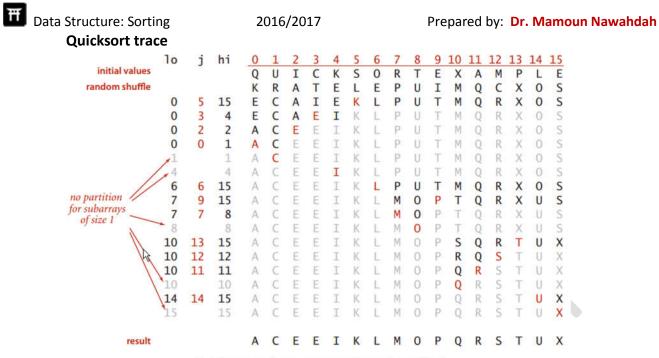
input	Q	U	I	С	Κ	S	0	R	Т	Ε	х	Α	М	Ρ	L	E
shuffle	Κ	R	Α	Т	Е	L	E P U I M Q C X O S partitioning item L P U T M Q R X O S not less L P U T M Q R X O S L P U T M Q R X O S L M O P Q R S T U X									
					-		7	pa	rtitie	oning	g iten	2				
partition	E	С	Α	I	Е	ĸ	L	Ρ	U	т	М	Q	R	х	0	S
		not greater not less														
sort left	Α	С	Е	Е	I	К	L	Ρ	U	Т	М	Q	R	Х	0	S
sort right	A	С	Е	Е	Ι	К	L	М	0	Ρ	Q	R	S	т	U	х
result	Α	С	Е	Ε	I	K	L	М	0	Ρ	Q	R	S	Т	U	х

	the second s
	and the second
	A CONTRACT OF A
	public static void quicksort(char() items, int left, int right)
	int i, i: chor x, y;
R	i = left; j = right; x = itema[(left + right) / 2];
	do (
	while $((tens(i) < s) \& i < r(pht) i + s)$ while $(i < (tens(i)) \& i > iett) -s$;
1	#6 <= H
	y = items[i]: items[i] = items[i]:
	itera[]] = y; i++; }-;
) while (<=);
	if (left < ∂ quicksont)items, left, ∂; if (i < right) quicksont(items, i, right);
A DOWN	1
the second s	
100 -	
	Quicksort t-shirt

Quicksort partitioning demo

Repeat until *i* and *j* pointers cross.


- Scan i from left to right so long as (A[i] < A[lo]).
- Scan j from right to left so long as (A[j] > A[lo]).
- Exchange A[i] with A[j].


• Exchange A[lo] with A[j].

Quicksort: Java code for partitioning

```
private static int partition(Comparable[] a, int lo, int hi)
{
   int i = lo, j = hi+1;
   while (true)
   {
      while (less(a[++i], a[lo]))
                                             find item on left to swap
          if (i == hi) break;
    I while (less(a[lo], a[--j]))
                                            find item on right to swap
          if (j == lo) break;
      if (i >= j) break;
                                              check if pointers cross
      exch(a, i, j);
                                                             swap
   }
   exch(a, lo, j);
                                          swap with partitioning item
   return j;
                           return index of item now known to be in place
}
```



```
public class Quick
{
  private static int partition(Comparable[] a, int lo, int hi)
  { /* see previous slide */ }
  public static void sort(Comparable[] a)
   £
     StdRandom.shuffle(a);
     sort(a, 0, a.length - 1);
  }
  private static void sort(Comparable[] a, int lo, int hi)
     if (hi <= lo) return;
     int j = partition(a, lo, hi);
     sort(a, lo, j-1);
     sort(a, j+1, hi);
 }
}
```


Quicksort trace (array contents after each partition)

Quicksort: Empirical Analysis

	ins	ertion sort (N ²)	mer	gesort (N log	g N)	quicksort (N log N)				
computer	thousand	million	billion	thousand	million	billion	thousand	million	billion		
home	instant	2.8 hours	317 years	instant	1 second	18 min	instant	0.6 sec	12 min		
super	instant	1 second	1 week	instant	instant	instant	instant	instant	instant		

Quicksort: Compare analysis

Best case: Number of compares is $\approx N \log N$

										a	[]						
lo	j	hi	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14
initi	rl vali	ues	н	Α	С	в	F	Ε	G	D	L	1	к	J	Ν	м	0
	~	huffle	н	A	с	в	F	Ε	G	D	L	1	к	J	Ν	м	0
0	7	14	D	А	С	В	F	Ε	G	н	L	1	к	J	Ν	м	0
0	3	6	В	А	С	D	F	Ε	G	Н	ţ.	j.	K	3	Ν	М	0
0	1	2	А	В	С	D	F	Ε	G	Н	E	1	K	J.	Ν	М	0
0		0	A	В	С	D	E	Ε	G	Н	L.	1	K	9	N	М	0
2		2	A	B	С	D	F	Ε	G	Н	ł,	1	K	J	N	М	0
4	5	6	A.	B	C	D	Ε	F	G	Н	Ē	1	ĸ	j.	N	\mathbb{M}	0
4		4	A	В	С	D	Ε	F	G	н	L	1	ĸ	j,	Ν	М	0
6		6	Ă,	8	С	D	E	F	G	Н	L	1	к	J.	Ν	М	0
8	11	14	A.	В	С	D	ε	F	G	Н	J	T	к	L	Ν	м	0
8	9	10	A	8	С	D	E	F	G	н	I.	J	к	I,	Ν	М	0
8		8	A	8	С	D	E	F	G	Н	I	J	K	١.,	N	М	0
10		10	A.	В	С	D	Ε	F	G	Н	I.	1	к	l.	Ν	М	0
12	13	14	A	8	С	D	Ε	F	G	Н	I.	J	К	L	м	Ν	0
12		12	A	В	С	D	Ε	F	G	Н	I.	J	K	L	М	Ν	0
14		14	A	8	C	D	E	F	G	Н	1	j	К	L	M	N	0
		A	В	С	D	Е	F	G	н	1	J	к	L	М	N	0	

Data Structure: Sorting

2016/2017

Worst case: Number of compares is $\approx \frac{1}{N}N^2$

										a							
lo	j	hi	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14
initi	al valu	Jes	А	В	С	D	Е	F	G	н	I	J	к	L	М	Ν	0
rand	lom sl	nuffle	А	В	С	D	Ε	F	G	н	I	J	к	L	М	Ν	0
0	0	14	A	В	С	D	Е	F	G	н	I	J	к	L	М	Ν	0
1	1	14	AB	В	С	D	Е	F	G	н	T	J	к	L	М	Ν	0
2	2	14	A	В	С	D	Е	F	G	н	T	J	к	L	М	Ν	0
3	3	14	А	В	С	D	Е	F	G	н	1	J	к	L	М	Ν	0
4	4	14	А	В	С	D	Е	F	G	н	1	J	к	L	М	Ν	0
5	5	14	А	В	С	D	E	F	G	н	T	J	к	L	М	Ν	0
6	6	14	А	В	С	D	Ε	F	G	н	I	J	к	L	М	Ν	0
7	7	14	А	В	С	D	Ε	F	G	н	T	J	к	L	М	Ν	0
8	8	14	А	В	С	D	E	F	G	H.	1	J	к	L	М	Ν	0
9	9	14	А	В	С	D	Е	F	G	Н	I	J	к	L	М	Ν	0
10	10	14	А	В	С	D	Ε	F	G	н	1	J	к	L	М	Ν	0
11	11	14	А	В	С	D	Ε	F	G	н	ĩ	J	К	L	М	Ν	0
12	12	14	А	В	С	D	Ε	F	G	H.	ł	J	К	L	М	Ν	0
13	13	14	А	В	С	D	Ε	F	G	H	I	J	К	L	М	Ν	0
14		14	А	В	С	D	Е	F	G	Н	Ĭ.	J	К	L	M	Ν	0
			А	В	С	D	Е	F	G	н	L	J	к	L	м	Ν	0

Average-case analysis: Complicated
> 2N log N

Quicksort: summary of performance characteristics

Worst case: Number of compares is quadratic.

- $N + (N 1) + (N 2) + ... + 1 \approx \frac{1}{2} N^2$
- but this **rarely** to happen.

Average case: Number of compares is ≈ 1.39 N log N

- 39% more compares than Merge sort
- But faster than Merge sort in practice because of less data movement.

Random shuffle

• Probabilistic guarantee against worst case.

Quicksort is an in-place sorting algorithm.

Quicksort is **not stable**.

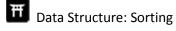
2016/2017

Quicksort: practical improvements

Insertion sort small subarrays: Ι.

- Even quicksort has too much overhead for tiny subarrays.
- **Cutoff** to insertion sort for ≈ 10 items.
- Note: could delay insertion sort until one pass at end.
- private static void sort(Comparable[] a, int lo, int hi)

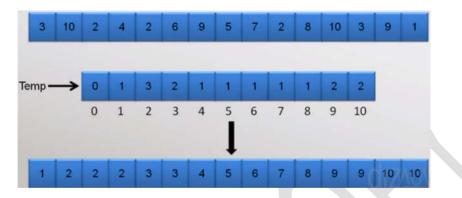
```
{
```

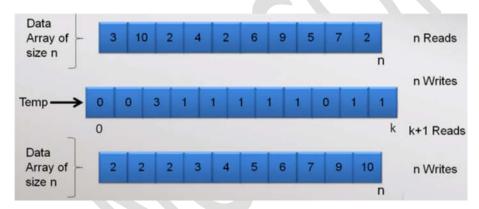

```
if (hi <= lo + CUTOFF - 1)
{
   Insertion.sort(a, lo, hi);
   return;
}
int j = partition(a, lo, hi);
sort(a, lo, j-1);
sort(a, j+1, hi);
```

Π. Median of sample:

}

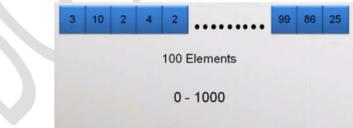
Best choice of pivot item = median.


```
• Estimate true median by taking median of sample.
private static void sort(Comparable[] a, int lo, int hi)
{
  [if (hi <= lo) return;</pre>
   int m = medianOf3(a, lo, lo + (hi - lo)/2, hi);
   swap(a, lo, m);
   int j = partition(a, lo, hi);
   sort(a, lo, j-1);
   sort(a, j+1, hi);
}
```

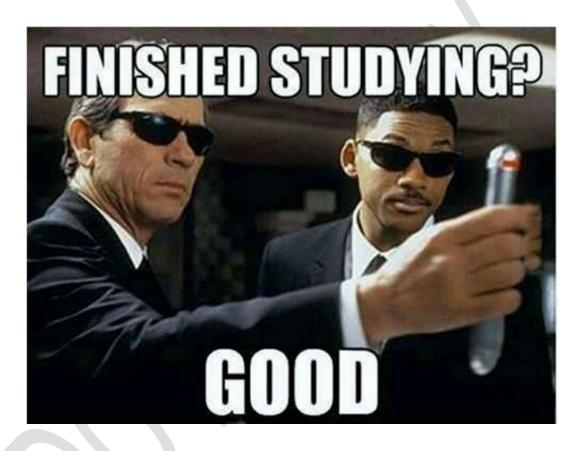


8- Counting Sort

If we know some information about data to be sorted (e.g. students' marks [Range 55 to 99]), we can achieve linear time sorting

Example: assume data range from 1 to 10



Time analysis:



Note: <u>K</u> is typically small comparing to <u>n</u>

Bad Situation: what if <u>K</u> is larger than <u>n</u>??

Create a temporary array of size 1000??

