
 Data Structure: Sorting 2016/2017 Prepared by: Dr. Mamoun Nawahdah

1

COMP242

Data Structure

Lectures Note: Sorting

Prepared by: Dr. Mamoun Nawahdah

2016/2017

 Data Structure: Sorting 2016/2017 Prepared by: Dr. Mamoun Nawahdah

2

Sorting

In Place vs. not in Place Sorting:

In place sorting algorithms are those, in which we sort the data array, without using any

additional memory.
What about selection, bubble, insertion sort algorithms?

 Well, our implementation of these algorithms is IN PLACE.

 The thing is, if we use a constant amount of extra memory (like one temporary
variable/s), the sorting is In-Place.

But in case extra memory (merging sort algorithm), which is proportional to the input data size, is

used, then it is NOT IN PLACE sorting.
 But because memory these days is so cheap, that we usually don't bother about using

extra memory, if it makes the program run faster.

Stable vs. Unstable Sort:

3 5 2 1 5’ 10 Unsorted Array

1 2 3 5 5’ 10 Stable sort

1 2 3 5’ 5 10 Unstable Sort

Example: Insertion Sort Code:

 Data Structure: Sorting 2016/2017 Prepared by: Dr. Mamoun Nawahdah

3

Example:

Unsorted Array 1) Sorted By Age

Name Age Name Age

Bob 25 Stuart 21

Kevin 24 Kevin 24

Stuart 21 Bob 25

Kevin 28 Kevin 28

2) Sorted By

Name (Stable)
 3) Sorted By Name

(Unstable)

Name Age Name Age

Bob 25 Bob 25

Kevin 24 Kevin 28

Kevin 28 Kevin 24

Stuart 21 Stuart 21

http://www.sorting-algorithms.com/

 Data Structure: Sorting 2016/2017 Prepared by: Dr. Mamoun Nawahdah

4

1- Selection Sort:

 In iteration i, find index min of smallest remaining entry.

 Swap a[i] and a[min].

Demo:

Java implementation:

Mathematical analysis:

 Selection sort uses (N – 1) + (N – 2) + ... + 1 + 0 ≈ N2/2 compares and N exchanges.

Trace of selection sort:

 Running time insensitive
to input: Quadratic

time, even if input is
sorted.

 Data movement is

minimal: Linear
number of
exchanges.

 Data Structure: Sorting 2016/2017 Prepared by: Dr. Mamoun Nawahdah

5

2- Insertion Sort:

 In iteration i, swap a[i] with each larger entry to its left.
Demo:

Java implementation:

Mathematical analysis:

 To sort a randomly-ordered array with distinct keys, insertion sort uses ≈ ¼N2 compares and
≈ ¼N2 exchanges on average.

 Expect each entry to move halfway back.

Trace of insertion sort:

 Best case: If the array is
in ascending order,
insertion sort makes N-1
compares and 0
exchanges.

 Worst case: If the array is
in descending order (and
no duplicates), insertion
sort makes ≈ ½N2
compares and ≈ ½N2
exchanges.

 For partially-sorted
arrays, insertion sort runs
in linear time.

 Data Structure: Sorting 2016/2017 Prepared by: Dr. Mamoun Nawahdah

6

3- Shell Sort:

Idea: Move entries more than one position at a time by h-sorting the array.
an h-sorted array is h interleaved sorted subsequences:

Shell sort: [Shell 1959] h-sort array for decreasing sequence of values of h.

How to h-sort an array? Insertion sort, with stride length h.

Shell sort example: increments 7, 3, 1

 Data Structure: Sorting 2016/2017 Prepared by: Dr. Mamoun Nawahdah

7

Shell sort: which increment sequence to use?

 Powers of two: 1, 2, 4, 8, 16, 32, ... No

 Powers of two minus one: 1, 3, 7, 15, 31, 63, … Maybe

 3x+1: 1, 4, 13, 40, 121, 364, … OK. Easy to compute

Java implementation

Analysis

 The worst-case number of compares used by shell sort with the 3x+1 increments is O(N3/2).

 Data Structure: Sorting 2016/2017 Prepared by: Dr. Mamoun Nawahdah

8

4- Merge Sort

 Divide array into two halves.

 Recursively sort each half.

 Merge two halves.

Java implementation:
Merging:

 Data Structure: Sorting 2016/2017 Prepared by: Dr. Mamoun Nawahdah

9

Java implementation:
Merge Sort:

Merge Sort: trace

Merge Sort: Empirical Analysis

 Good algorithms are better than supercomputers.

 Data Structure: Sorting 2016/2017 Prepared by: Dr. Mamoun Nawahdah

10

Divide-and-conquer recurrence: number of compares

Merge Sort analysis: memory (array accesses)

 Merge sort uses extra space proportional to N.

 The array aux[] needs to be of size N for the last merge.

Practical Improvements:
I. Use insertion sort for small subarrays:

o Merge sort has too much overhead for tiny subarrays.
o Cutoff to insertion sort for ≈ 7 items.

II. Stop if already sorted:
o If biggest item in first half ≤ smallest item in second half?
o Helps for partially-ordered arrays.

 Data Structure: Sorting 2016/2017 Prepared by: Dr. Mamoun Nawahdah

11

III. Eliminate the copy to the auxiliary array. Save time (but not space) by switching the role of the
input and auxiliary array in each recursive call.

Complexity of sorting

・ Compares? Merge sort is optimal with respect to number compares.

・ Space? Merge sort is not optimal with respect to space usage.

 Data Structure: Sorting 2016/2017 Prepared by: Dr. Mamoun Nawahdah

12

5- Bottom-up Merge Sort

Basic plan:
o Pass through array, merging subarrays of size 1.
o Repeat for subarrays of size 2, 4, 8, 16,

Java implementation:

 Data Structure: Sorting 2016/2017 Prepared by: Dr. Mamoun Nawahdah

13

6- Radix Sort

What is Radix? The radix (or base) is the number of unique digits, including zero, used to represent

numbers in a positional numeral system.

For example, for the decimal system: radix is 10, Binary system: radix is 2.

Example Radix Sort:

Step 1: take the least significant digits (LSD) of the values to be sorted.

Step 2: sort the list of elements based on that digit.

Step 3: take the 2nd LSD and repeat step 2.

Then the 3rd LSD and so on.

Radix Sort Algorithm using linked lists:
 Consider the following array:

A

 Create an array of 10 linked lists as follow:

 0 to 9 refer to actual numbers.

 With input numbers, we will start with mod (%) 10 then divide (/) the
resulted number by 1.

Code:

 m=10 mod operation

 n=1 find the specific digit at that column
e.g. A[0] = 9
 9 % m = 9
 9 / n = 9

 In this case add A[0] to the 10th linked list

 Repeat for remaining array elements.

 If we reach the end of array: make a new array
by removing data from the head of each linked
list in order:

Is this sorted? NO

 Data Structure: Sorting 2016/2017 Prepared by: Dr. Mamoun Nawahdah

14

 Next step: consider the 2nd significant digit from the previous

resulted array:

Code:

 m = m * 10 = 100

 n = n * 10 = 10

e.g. A[0] = 10

10 % m = 10

 10 / n = 1

Result:

Is this sorted? Yes, in this case but we are not done yet

 Next step: consider the 3rd significant digit from the previous array:

Code:

 m = m * 10 = 1000

 n = n * 10 = 100

e.g. A[0] = 5

5 % m = 5

 5 / n = 0

Result:

Is this sorted? What is the time complexity?

HW: implement Radix sort using Doubly Linked List

 Data Structure: Sorting 2016/2017 Prepared by: Dr. Mamoun Nawahdah

15

7- Quick Sort

Basic plan:
o Shuffle the array. (shuffle needed for performance guarantee)
o Partition so that, for some j

– entry A[j] is in place
– no larger entry to the left of j
– no smaller entry to the right of j

o Sort each piece recursively.

Quicksort t-shirt

Quicksort partitioning demo
Repeat until i and j pointers cross.

・ Scan i from left to right so long as (A[i] < A[lo]).

・ Scan j from right to left so long as (A[j] > A[lo]).

・ Exchange A[i] with A[j] .

When pointers (i and j)cross.

・ Exchange A[lo] with A[j] .

 Data Structure: Sorting 2016/2017 Prepared by: Dr. Mamoun Nawahdah

16

Quicksort: Java code for partitioning

 Data Structure: Sorting 2016/2017 Prepared by: Dr. Mamoun Nawahdah

17

Quicksort trace

Quicksort: Empirical Analysis

Quicksort: Compare analysis

Best case: Number of compares is ≈ N log N

 Data Structure: Sorting 2016/2017 Prepared by: Dr. Mamoun Nawahdah

18

Worst case: Number of compares is ≈ ½N2

Average-case analysis: Complicated 2N log N

Quicksort: summary of performance characteristics

Worst case: Number of compares is quadratic.

・ N + (N - 1) + (N - 2) + … + 1 ≈ ½ N2

・ but this rarely to happen.
Average case: Number of compares is ≈ 1.39 N log N

・ 39% more compares than Merge sort

・ But faster than Merge sort in practice because of less data movement.
Random shuffle

・ Probabilistic guarantee against worst case.
Quicksort is an in-place sorting algorithm.
Quicksort is not stable.

 Data Structure: Sorting 2016/2017 Prepared by: Dr. Mamoun Nawahdah

19

Quicksort: practical improvements
I. Insertion sort small subarrays:

・ Even quicksort has too much overhead for tiny subarrays.

・ Cutoff to insertion sort for ≈ 10 items.

・ Note: could delay insertion sort until one pass at end.

II. Median of sample:

・ Best choice of pivot item = median.

・ Estimate true median by taking median of sample.

 Data Structure: Sorting 2016/2017 Prepared by: Dr. Mamoun Nawahdah

20

8- Counting Sort

If we know some information about data to be sorted (e.g. students’ marks [Range 55 to 99]), we can
achieve linear time sorting

Example: assume data range from 1 to 10

Time analysis:

Note: K is typically small comparing to n

Bad Situation: what if K is larger than n ??

 Data Structure: Sorting 2016/2017 Prepared by: Dr. Mamoun Nawahdah

21

