Tutorial
AVL TREES

Binary search trees are designed for efficient accessto data. 1n some cases, however, abinary search treeis
degenerate or "almost degenerate” with most of the n elements descending as alinked list in one of the subtrees of a
node. The search efficiency of the tree becomes O(n). A complete binary treeisthe other extreme. Nodes are
uniformly distributed among left and right subtrees allowing the structure to store n elementsin atree of minimum
height. Thelongest path islog, n +1 and the search efficiency is O(log, n). Intuitively, a degenerate binary treeis
very "unbalanced" in the sense that all of the nodeslie in one of the subtrees of theroot. On the other hand, a
complete binary treeis "balanced" in the sense that nodes are equitably distributed between the two subtrees of a
node. ldeally, all binary search trees would be completetrees. Thisisnot possible with randomdata. The problem
istheinsert() and erase() algorithmsthat add or remove an element without any follow-up analysis to determine how
the action affects the overall balance of the tree. To address this problem, researchers Adelson, Velskii and Landis
defined the concept of height-balance for a node and developed new search tree insert and erase algorithms that
would reorder the elementsto maintain height-balance. The binary search trees with these new algorithms are
called AVL trees after their creators. Besidesthe usual search-ordering of nodesit thetree, an AVL treeisheight-
balanced. By this we mean that for each node inthe tree, the differencein height (depth) of its two subtreesis at
most 1.

Figure 1displays equivalent binary search and AVL treesthat store array data. The first example uses array
arrA, whose elements are in ascending order while the second example uses array arrB, whose elementsarein
random order.

arrA[5] = {1, 2,3, 4,5} arrB[8] = {20, 30, 80, 40, 10, 60, 50, 70}

Binary Search Tree AVL Tree

@
o

@) (2)
0 & ©
@ arA ={1,2,3,4,5}
©

o o7
o b &) @

@ arrB = {20,30,80,40,10,60,50,70}

FIGURE 1
Equivalent Binary Search and AVL Trees

The binary search tree for array arrA has aheight of 5, whereasthe AVL tree has aheight of 2. In general, the
height of an AVL tree never exceeds O(log, n). Thisfact makesan AVL tree an efficient search container when
rapid access to elements is demanded.

1 AVL Tree Nodes

AVL trees are modeled after binary search trees. The operations are identical although the action of the AVL tree
insert() and erase() functions are quite different since they must preserve the balance feature of the tree. To maintain
ameasure of balance, we define an avliTreeNode object with the integer balanceFactor as an additional field.

left nodeValue balanceFactor right

aviTreeNode
The value of thefield is the difference between the height of the right and | eft subtrees of the node.
bal anceFactor = height(right-subtree) - height(left-subtree)
If balanceFactor is negative, the nodeis "heavy on the left" since the height of the |eft subtree is greater than the

height of the right subtree. With balanceFactor positive, the nodeis"heavy ontheright." A balanced node has
balanceFactor = 0.

An AVL treeisabinary search treein which the
bal ance-factor of each nodeisintherange-1to 1.

Figure 2 describes three AV L trees with tags-1, 0, or +1 on each node to indicate its balance-factor (relative
height of the left and right subtrees).

-1: height of the left subtreeis one greater than the right subtree.

0: height of the left and right subtrees are equal.
+1: height of the right subtree is one greater than the | eft subtree.

@

FIGURE 2
AVL trees with balance-factor of each node in parentheses

80
(0)

The aviTreeNode classis similar to the tnode class for binary search trees. Four public data membersinclude
the data value, the left and right pointers, and the balance factor. The constructor is used to create a node for an
AVL tree and initialize the data members.

DECLARATION: aviTreeNode CLASS

[/l declares a tree node object for a binary tree
tenpl ate <typenane T>
cl ass avl Tr eeNode
{
publ i c:
// data in the node
T nodeVal ue;

[l pointers to the left and right children of the node
avl TreeNode<T> *| eft;
avl Tr eeNode<T> *ri ght;

i nt bal anceFact or;

/1 CONSTRUCTOR
avl TreeNode (const T& item avl TreeNode<T> *| ptr = NULL,
avl TreeNode<T> *rptr = NULL, int bal = 0):
nodeVal ue(item, left(lptr), right(rptr), bal anceFactor(bal)
{}
3

2 TheavlTree Class

The aviTree class with the same programmer-interface used by the stree. The class has both constant and non-
constant iterators, which can be used to scan thelist of elements. A non-constant version is supplied so that a
program can use the deference operator * to update the data value of anode. Thisfeature can be used when the AVL
trees stores records with akey and other data values and the update modifies only the datavalues. An attempt to
update the key could destroy the structure of the tree.

Like BinSTree iterators, AVL iterators are forward iterators but with an important limitation. Since a tree may
need to be rebalanced when an item is added or removed , the insert() and erase() operations invalidate all iterators.
To be used again, theiterators must be reset to the start of the list with begin().

The following isadeclaration of the programmer-interface for the aviTree class. Weimplement only the
insert() method and do not discuss the erase() methods. The method clear() is added to remove all of the nodesin
thetree. In the stree class, clear is executed by calling erase() with the iterator range [begin(), end()). The memory
management functions are not included We will expand the declaration to include the private member functions
when we discuss the implementation of the class.

DECLARATION: aviTree CLASS (Programmer -Interface

tenpl ate <typenane T>
cl ass avl Tree

{
/1 CONSTRUCTORS, DESTRUCTOR, ASSI GNVENT

/1l constructor. initialize root to NULL and size to O
avl Tree();
/1l constructor. insert n elenments fromrange of T* pointers

avl Tree(T *first, T *last);

/'l search for item if found, return an iterator pointing
// at it in the tree; otherwi se, return end()
iterator find(const T& item;

/1l search for item if found, return an iterator pointing
/[l at it in the tree; otherwi se, return end()
const _iterator find(const T& item const;

[l indicate whether the tree is enpty

int enpty() const;

/'l return the nunmber of data itens in the tree
int size() const;

/1l give a vertical display of the tree .
voi d di splayTree(int nmaxCharacters) const;

// insert iteminto the tree
[l pair<iterator, bool> insert(const T& item;

/'l insert a new node using the basic List operation and format
pair<iterator, bool> insert(const T& iten);

/] delete all the nodes in the tree
void clear();

[l constant versions
iterator begin();
iterator end();

const _iterator begin() const;
const _iterator end() const;

b

The function displayTree() issimilar to displayTree() in the stree class. It includes both the label and the
balance-factor for each node in the format <label> : <balanceFactor>

EXAMPLE 1
The exampleillustrates the use of the avlTree operations.

1. Declare anavlTree object avitreeA that stores integers and an object avliTreeB that stores real numbers with
initial valuesfrom array arrB.

/1 avlTreeA is enpty tree of integers
avl Tree<i nt > avl Tr eeA;

/Il avlTreeB is a tree of reals with 6 initial val ues

double arrB[6] = {2.8, 3.9, -2.0, 4.9, 8.6, -12.8};
avl Tree<doubl e> avltreeB(arrB, arrB+6);

2. Aloopinitializes avliTreeA with integers 0to 9. Thetreeis displayed with displayTree()

for (i =1; i < 10; i++)

avl TreeA.insert (i);
aviTreeA .displayTree(2);

1: 0 7:0
0:0 2:0 5:0 8:1
4:0 6: 0 9:0

3. Determine whether 8.6 and 1.6 are elementsinavl TreeB.
avl Tree<doubl e>::iterator dbllter;

if ((dbllter = avlTreeB.find(8.6)) != avlTreeB.end())
cout << "Elenent " << *dbllter
<< " is an elenent in AVL tree" << endl;

if ((dbllter = avl TreeB.find(1.6)) == avl TreeB. end())
cout << "Elenent 1.6 is not an elenment in AVL tree"
<< endl;

Solution: Elenent 8.6 is an elenent in AVL tree
Elenent 1.6 is not an elenment in AVL tree

3 Application: Updating Character Counts

An AVL treeis most effective in situations where the data statically resides in the tree and the application primarily
searches for items and updates their value. A simple example declares objects of type charCount that contain a
character and its frequency (count) as data members. The class has a constructor that with a char argument that
initializes the data member and sets the count to 1. The class also provides overloaded versions of the comparison
operators < and == along with overloaded version of the << operator. The comparison operators allow charCount to
be used as the template type for avl Tree objects and their implementation compares only at the char value of the
operands. The << operator outputs the character and its count in the form <char>(<count>).

In the example, we count the number of occurrences of the letters 'a’ to 'z' in the 25000+ word dictionary

"words.dat". For each character in the dictionary, we search for the corresponding charCount object and update the
count using the member function incCount().

DECLARATION: charCount CLASS

/'l object contains character and its frequency (count)
cl ass char Count
{
publi c:
/[l initialize character and count with count = 1
char Count (char ch);

/'l overl oaded conpari son operators
friend bool operator < (const charCount& a, const charCount & b);
friend bool operator == (const charCount& a, const charCounté& b);

/! overl oaded output and increnment operators

friend ostream& operator

11

b

<< (ostream& ostr, const char Counté& cc);

i ncrenent the count nmenber of the object
voi d i ncCount ();
private:
char character;
i nt count;

PROGRAM 1 COUNTING LETTERS

The program illustrates the AV L tree search efficiency by declaring an avlTree<charCount> object and an iterator.

A loopinputs wordsin the dictionary " charct.dat” asstrings. For each character in aword, we attempt to insert the

corresponding charCount object in the tree. Theinsert() operation returns apair. If the object is already in the tree,

boolean value of the pair isfalse and a call to intCount() using the iterator part of the pair and the dereference

operator * increments the count for the character. Otherwise, the charCount object enters the tree for the first time

with count = 1. An iterator scans the elementsin the tree and outputs the letters (in ascending order) and their counts

with six items per line.

#i ncl ude
#i ncl ude
#i ncl ude
#i ncl ude
#i ncl ude
#i ncl ude
#i ncl ude

<i ostreanp

<i omani p>
<fstreanr
<utility>
<string>
"d_avl.h"
"char Count . h"

usi ng namespace std,;

int main()

{

/!l AVL tree and iterator for charCount
avl Tr ee<char Count > avl Char Tr ee

avl Tree<char Count>::iterator iter

pai r <avl Tree<char Count >: : i terat or, bool > p;

/1 used for input and output
string word;

ifstreamfin;

i nt out put Count = 0, wdlen;

/1 open the file
fin.open("charct.dat");

// extract words to end of file

whi | e

(true)

obj ects

fin >> word;
if ('fin)
br eak;

/1l use a loop to extract each character fromthe word
wdl en = word. | ength();
for (i =0; i < wdlen; i++)

{
/1 try to insert charCount object
p = avl CharTree.insert(charCount(word[i]));
/1l if already present, call incCount()
if (p.second == false)
(*(p.first)).incCount();
}
}
/1 output routine with 6 entries per line
for (iter = avl CharTree. begin(); iter !'= avl CharTree.end();
{
/1 counter to identify 6 charCount objects per line
out put Count ++;
cout << *iter;
/1 after each multiple of 6 output statenents,
/1l insert a newine
i f(outputCount %6 == 0)
cout << endl;
}

cout << endl;

return O;

}

iter++)

<l nput: charct. dat>

pet er pi per picked a peck of pickled peppers

a peck of pickled peppers peter piper picked

if peter piper picked a peck of pickled peppers
where is the peck that peter piper picked

<Qut put >

a(4) c(11) d(7) e(32) f(4) h(3)
i(13) k(11) I(3) o(3) p(32) r(12)
s(C 4 t(7)) w 1)

4 Implementing the aviTree Class

AVL trees are special types of binary search treesin which each node satisfies the balance condition. The creation
and maintenance of an AVL treeisthe responsibility of theinsert() operation. The algorithm must not only add an
element but must reorder the nodes so that the balance can be maintained. The reordering isreferred to as
rebalancing the tree and the process is new code that is added to the implementation of the avl Tree class.

Thefollowing isalisting of the private members of the class along with utility functions that are used to

rebalance the tree.

DECLARATION: avlTree Class (Private M embers)
/] constants to indicate the bal ance factor of a node
const int |eftheavy = -1;

const int bal anced = O;

const int rightheavy = 1;

tenpl ate <typenane T>
cl ass avl Tree

{

private:
/'l pointer to tree root
avl Tr eeNode<T> *r oot ;
/'l nunber of elenents in the tree
int treeSize;

/1 allocate a new tree node and return a pointer to it
avl TreeNode<T> *get avl TreeNode(const T& item
avl TreeNode<T> *| ptr, avl TreeNode<T> *rptr);
/'l used by copy constructor and assi gnment operat or
avl Tr eeNode<T> *copyTree(avl TreeNode<T> *t);
/'l delete the storage occupied by a tree node
voi d freeavl TreeNode(avl Tr eeNode<T> *p);
/1l used by destructor, assignnent operator and clear()
voi d del eteTree(avl TreeNode<T> *t);

/'l locate a node itemand its parent in tree. used by find()
avl TreeNode<T> *fi ndNode(const T& item
avl TreeNode<T>* & parent) const;

[/l menber functions to insert and erase a node
voi d singl eRot ateLeft (avl TreeNode<T>* &p);
voi d si ngl eRot at eRi ght (avl TreeNode<T>* &p);
voi d doubl eRot at eLeft (avl TreeNode<T>* &p);
voi d doubl eRot at eRi ght (avl TreeNode<T>* &p);
voi d updat eLeftTree (avl TreeNode<T>* &tree,
bool &revi seBal anceFactor);
voi d updat eRi ght Tree (avl TreeNode<T>* &tr ee,
bool &revi seBal anceFactor);

/'l class specific versions of the general insert and

5TheavliTreelnsart Function

The implementation of insert() uses the recursive function AV LInsert() to store the new element. Wefirst givethe
code for insert() and then focus on the recursive function AVLInsert(). Theinsert() function is passed an item of
template type T asitsargument. A check usingfind() determines whether the item isalready in thetree. If so,
insert()returns with a pair(iter, false) whereiter is the iterator returned by find(). Otherwise, the function allocates a
new node with item asthe data value. It also declares anaviTreeNode pointer treeNode that isinitially set to the
AVL treeroot along with the boolean flag reviseBalanceFactor. The local variables treeNode and
reviseBalanceFactor are passed as reference arguments along with the new node to AVLInsert(). During the

recursive scan down a search path, treeNode identifies the root of each subtree. Since rebalancing may be needed,
the root of the subtree may change and treeNode is updated. The return from insert() is a pair with an iterator
referencing the new node and the boolean value true.

insert():

tenpl ate <typenanme T>

pair<iterator, bool> insert(const T& iten)

{
avl Tree<T>::iterator iter;
/1 quietly return if itemis already in the tree
if ((iter = find(item) !'= end())

return pair<iterator, bool >(iter,false);

/'l declare AVL tree node pointers.
avl TreeNode<T> *treeNode = root, *newNode;

/'l flag used by AVLInsert to rebal ance nodes
bool reviseBal anceFactor = fal se;

/1 get a new AVL tree node with enpty pointer fields
newNode = getavl TreeNode(item NULL, NULL) ;

/'l call recursive routine to actually insert the el ement
avl I nsert (treeNode, newNode, reviseBal anceFactor);

/'l assign new values to data nmenbers root, size and current
root = treeNode;

treeSi ze++;

return pair<iterator, bool> (iterator(newNode), true);

}

The adding of anew nodeis carried out by the recursive functionavlinsert(). It traversesthe left subtreeif item
isless than the node value and the right subtreeif item is greater than the node value. The scan terminates at an
empty subtree. The function has an argument called treeNode, which maintains arecord of the current node in the
scan, the new nodeto insert in the tree, and aflag called revisebalancefactor. Aswe scan the left or right subtree of
anode, the flag notifies usif any balance factors in the subtree have been changed. If so, we must check that the
AVL balance condition isvalid at the node. If the insertion of the new node disrupts the equilibrium of the tree and
distorts a balance factor, we must reestablish AVL balance.

The avllnsert Algorithm

The avlinsert algorithm visits each node in the search path from the root to the new entry. Since the processis
recursive, we have access to the nodesin reverse order and can update the balance factor in a parent node after
learning the effect of adding the new node in one of its subtrees. At each node in the search path, we determine if an
update is necessary. We are confronted with three possible situations. In two cases, the node maintains AVL
balance and no rebalancing of subtreesis necessary. Only the balance factor of the node must be updated. The third
case unbalances the tree and requires us to perform asingle or double rotation of nodes to rebalance the tree.

Case 1: A node on the search path isinitially balanced (balanceFactor = 0). After adding a new item in a subtree,
the node becomes heavy on the left or the right, depending on which of its subtrees stores the new item. We update
balancefactor to- 1 if theitemis stored in the left subtree and 1 if stored in the right subtree.

10

For instance, assume 55 is the new value which must be added to the search path 40 - 50 - 60. Node 40 meets
the condition of case 1. The node with value 55 is added in the right subtree of 40 and the balance factor must be
updated to +1 which still satisfies the balance criteria. The balance factors are also updated during the recursive
scan down the search path (Figure 3).

FIGURE 3
Node on Search Path |s Balanced

Before Insert of 55 After Insert of 55

B @@

%a

Case 2: A node on the path is weighted to the left or right subtree and the new item is stored in the other (lighter)
subtree. The node then becomes balanced. For instance, the value 55 is added to the right (lighter) subtree of node
40 which isinitially unbalanced ("heavy on the left"). After the insert, node 40 becomes balanced (Figure4).

Before Insert of 55 After Insert of 55

FIGURE 4
Node on Search Path |s Balanced by Insert

Case 3: A node on the path is weighted to aleft or right subtree and the new item is positioned in the same (heavier)
subtree. Theresulting node violatesthe AVL balance condition since balanceFactor isnot intherange -1to1. The
algorithm directs us to rotate nodes to restore balance.

Figure 5 illustrates case 3. The trees become unbalanced to the left and are rebalanced with rotate right
operations. The operations are symmetric when the tree becomes unbalanced to the right.

Before Update After Update

Before Update After Update

Double Rotation Right

Single Rotation Right

FIGURE 5
Unbalanced Trees

The avllnsert() Function

While traversing down the search path to insert the new item node, the recursive function identifies the three cases
that wereillustrated in the previous section. When case 3 occurs, the AV L balance condition isviolated and we are
forced to rebalance nodes. The operations are i mplemented by the functionsupdatel eftTree() and
updateRightTree(). Wefirst give the code for avlinsert().

avlinsert():
tenpl ate <typenane T>
voi d avl Tree<T>:: avl I nsert (avl TreeNode<T>* & tree,
avl Tr eeNode<T>* newNode, bool & revi seBal anceFact or)
{

/'l flag indicates change node's bal anceFactor w |l occur
bool rebal anceCurr Node;

/'l scan reaches an enpty tree; tinme to insert the new node
if (tree == NULL)

/'l update the parent to point at newNode

11

tree = newNode;

/'l assign bal anceFactor = 0 to new node
t ree- >bal anceFact or = bal anced;

/'l broadcast nessage; bal anceFactor value is nodified
revi seBal anceFactor = true;

}
/'l recursively nove left if new data < current data
el se if (newNode->nodeVal ue < tree->nodeVal ue)
{
avl I nsert(tree->l eft, newNode, r ebal anceCur r Node) ;
/'l check if bal anceFactor mnust be updated.
i f (rebal anceCurr Node)
{
/'l case 3: went left fromnode that is already heavy
/1 on the left. violates AVL condition; rotatate
if (tree->bal anceFactor == | eftheavy)
updat eLeft Tree(tree, revi seBal anceFactor) ;
/'l case 1: nmoving |eft from bal anced node. resulting
/'l node will be heavy on left
else if (tree->bal anceFactor == bal anced)
{
tree- >bal anceFactor = | eftheavy;
revi seBal anceFactor = true;
}
/'l case 2: scanning |left from node heavy on the
/'l right. node will be bal anced
el se
{
tree- >bal anceFact or = bal anced,;
revi seBal anceFactor = true;
}
}
el se
/1 no bal anci ng occurs; do not ask previous nodes
revi seBal anceFactor = fal se;
}
/'l otherw se recursively nove right
el se
{

avl I nsert(tree->right, newNode, rebal anceCurr Node);
/'l check if bal anceFactor nust be updat ed.
i f (rebal anceCurr Node)

{

/] case 2: node becones bal anced

if (tree->bal anceFactor == | eftheavy)

{
/1 scanning right subtree. node heavy on |eft.
/1 the node will becone bal anced
tree->bal anceFact or = bal anced,;
revi seBal anceFactor = fal se;

}

/'l case 1: node is initially bal anced

13

else if (tree->bal anceFactor == bal anced)
/'l node is balanced; will becone heavy on right
t ree->bal anceFactor = ri ght heavy;
revi seBal anceFactor = true;
}
el se
/'l case 3: need to update node
/1l scanning right froma node already heavy on
/1 the right. this violates the AVL condition
/1l and rotations are needed
updat eRi ght Tree(tree, revi seBal anceFactor);
}
el se

revi seBal anceFactor = fal se;

}

With case 3, avllnsert() uses updatel eftTree() and updateR! ghtTree() to carry out the rebalancing. These
functions sel ect the appropriate single or double rotation to balance a node and then set the flag reviseBal anceFactor
to falseto notify the parent that the subtree is balanced. We give the code for updatel eftTree() before illustrating
the details for the rotations.

updateLeft Tree():
tenpl ate <typenane T>
voi d avl Tree<T>: :updateLeft Tree (avl TreeNode<T>* &p,
bool &revi seBal anceFact or)

{
avl Tr eeNode<T> *| c;
lc = p->left; /1 left subtree is also heavy
if (Ic->balanceFactor == |eftheavy)
{
si ngl eRot at eRi ght (p) ; /'l need a single rotation
revi seBal anceFactor = fal se;
}
/1l is right subtree heavy?
else if (Ic->balanceFactor == rightheavy)
/1 make a double rotation
doubl eRot at eRi ght (p) ;
// root is now bal anced
revi seBal anceFactor = fal se;
}
}

Rotations Rotations are necessary when the parent node P becomes unbalanced. A single right rotation occurs
when both the parent node (P) and the |eft child (L C) become heavy on the |eft after inserting the node at position X.
We rotate the nodes so that L C replacesthe parent, which becomes aright child. Inthe process, we take the nodes
in the right subtree of LC (ST) and attach them as aleft subtree of P. This maintains the ordering since nodesin ST
are greater than or equal to L C but less than P. The rotation balances both the parent and | eft child.

st St

singleRotateRight():
/'l rotate clockw se about node p; make |c the new pivot
tenpl ate <typenane T>
voi d avl Tree<T>::si ngl eRot at eRi ght (avl TreeNode<T>* & p)
{
/1l the left subtree of p is heavy
avl TreeNode<T> *| c;

/1 assign the left subtree to Ic
lc = p->left;

/'l update the balance factor for parent and left child
p- >bal anceFact or = bal anced,;
| c- >bal anceFact or = bal anced;

/1 any right subtree of |Ic nust continue as right subtree
/1 of Ic. do this by making it a left subtree of p
p->left = lc->right;

/'l rotate p (larger node) into right subtree of Ic
/1 make | c the pivot node
lc->right = p;
p =1lc;
}

Inthe following AVL tree, an attempt to insert 5 causes node 30 to violate the AVL condition. At the same
time, the left subtree of node 15 (L C) becomes heavy and we call singleRotateRight()to reorder the nodes. Inthe
process, the parent node (node 30) becomes balanced and node 10 becomes heavy on the left.

Initial List Insert 5 Gives Balance

. . After Insert of 5
Factors without Rotation

A doubleright rotation occurs when the parent node (P) becomes heavy on the left and the left child (LC)
become heavy on theright. NPistheroot of the heavy right subtree of LC. We rotate the nodes so that NP replaces
the parent node. In the following diagrams, we describe two cases where the new nodeisinserted as achild of NP.
In each case, NP becomes the parent node and the original parent P rotates to the right subtree of NP.

oy

Xy

X1

In thefirst diagram, we see the shift of node X, after it isinserted in the left subtree of NP. The second diagram
illustrates the repositioning of X, after itsinsertion in the right subtree of NP.

Xz

X2

doubl eRot at eRi ght () :
/1 double rotation right about node p
tenpl ate <typenane T>
voi d avl Tree<T>:: doubl eRot at eRi ght (avl TreeNode<T>* &p)

{

// two subtrees that are rotated
avl TreeNode<T> *lc, *np

/1 in the tree, node(lc) < nodes(np) < node(p)
lc = p->left; /1 1c is left child of parent
np = lc->right; /1 npis right child of Ic

/'l update bal ance factors for p, Ic, and np

i f (np->bal anceFactor == rightheavy)
{
p- >bal anceFact or = bal anced,;
| c- >bal anceFactor = | eftheavy;
el se if (np->bal anceFactor == bal anced)
{
p- >bal anceFact or = bal anced,;
| c- >bal anceFact or = bal anced;
}
el se
{ |
p- >bal anceFactor = rightheavy;
| c- >bal anceFact or = bal anced;
}

np- >bal anceFact or = bal anced;

/'l before np replaces the parent p, take care of subtrees

/'l detach old children and attach new children
[c->right = np->left;

np->left = Ilc;

p->left = np->right;

np->right = p;

p = np;

16

17

Thefollowing treesillustrate double rotation. An attempt to insert 25 unbalances the root node 50. In this case,
node 20 (LC) has a heavy right subtree and adouble rotation isrequired. The new parent node (NP) becomes node
40. Theoriginal parent rotates to the right subtree and attaches node 45, which also rotates from the | eft side of the
tree.

Before Inserting 25 Before Inserting 25

