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Many languages, such as BASIC and FORTRAN, do not support pointers.  If linked lists are required and 

pointers are not available, then an alternate implementation must be used.  The alternate method we will 

describe is known as a cursor implementation.    

  

The two important items present in a pointer implementation of linked lists are  

  

1. The data is stored in a collection of structures.  Each structure contains the data and a pointer to the 

next structure.  

  

2. A new structure can be obtained from the system's global memory by a call to malloc and released 

by a call to free.  

  

Our cursor implementation must be able to simulate this.  The logical way to satisfy condition 1 is to have 

a global array of structures.  For any cell in the array, its array index can be used in place of an address.  

Figure 1 gives the type declarations for a cursor implementation of linked lists.  

  

We must now simulate condition 2 by allowing the equivalent of malloc and free for cells in the 

CURSOR_SPACE array.  To do this, we will keep a list (the freelist) of cells that are not in any list.  The 

list will use cell 0 as a header.  The initial configuration is shown in Figure 2.  

  

A value of 0 for next is the equivalent of a pointer.  The initialization of CURSOR_SPACE is a 

straightforward loop, which we leave as an exercise.  To perform an malloc, the first element (after the 

header) is removed from the freelist.  

  

typedef unsigned int node_ptr;  

 

 struct node  

 { 

  element_type element;  

node_ptr next;  

 };   

 typedef node_ptr LIST;  

 typedef node_ptr position;  

 struct node CURSOR_SPACE[ SPACE_SIZE ];  

  

Figure 1 Declarations for cursor implementation of linked lists  

  

 

Figure 2 An initialized CURSOR_SPACE  

  

To perform a free, we place the cell at the front of the freelist.  Figure 3 shows 

the cursor implementation of malloc and free.  Notice that if there is no space 

available, our routine does the correct thing by setting p = 0.  This indicates that 

there are no more cells left, and also makes the second line of cursor_new a 

nonoperation (no-op).     

Slot Element Next 

0 ? 1 

1 ? 2 

2 ? 3 

3 ? 4 

4 ? 5 

5 ? 6 

6 ? 7 

7 ? 8 

8 ? 9 

9 ? 10 

10 ? 0 



Given this, the cursor implementation of linked lists is straightforward.  For consistency, we will implement 

our lists with a header node.   

 

position cursor_alloc( void ){ 

  position p; 

  p = CURSOR_SPACE[O].next; 

  CURSOR_SPACE[0].next = CURSOR_SPACE[p].next; 

  return p; 

 } 

 void cursor_free( position p){ 

CURSOR_SPACE[p].next = CURSOR_SPACE[O].next; 

  CURSOR_SPACE[O].next = p; 

 } 
Figure 3 Routines: cursor-alloc and cursor-free  

  

As an example, in Figure 4, if the value of L is 5 and the value of M is 3, then L represents the list a, b, e, 

and M represents the list c, d, f.  

 

Slot Element Next 

0 - 6 

1 b 9 

2 f 0 

3 header 7 

4 - 0 

5 header 10 

6 - 4 

7 c 8 

8 d 2 

9 e 0 

10 a 1 

 

Figure 4 Example of a cursor implementation of linked lists  

  

 

To write the functions for a cursor implementation of linked lists, we must pass and return the identical 

parameters as the pointer implementation.  The routines are straightforward.  Figure 5 implements a 

function to test whether a list is empty.  Figure 6 implements the test of whether the current position is the 

last in a linked list.     

  

The function find in Figure 7 returns the position of x in list L.    

  

The code to implement deletion is shown in Figure 8.  Again, the interface for the cursor implementation is 

identical to the pointer implementation.  Finally, Figure 9 shows a cursor implementation of insert.     

  

The rest of the routines are similarly coded.  The crucial point is that these routines follow the ADT 

specification.  They take specific arguments and perform specific operations.  The implementation is 



transparent to the user.  The cursor implementation could be used instead of the linked list implementation, 

with virtually no change required in the rest of the code.  

 
  int is_empty( LIST L ){ /* using a header node */  

  return( CURSOR_SPACE[L].next == 0  

  } 

Figure 5 Function to test whether a linked list is empty--cursor implementation  

    
int is_last( position p, LIST L){ /* using a header node */  

 

  return( CURSOR_SPACE[p].next == 0  

 } 

Figure 6 Function to test whether p is last in a linked list--cursor implementation  

  
position find( element_type x, LIST L) /* using a header node */ 

 { 

  position p; 

  /*1*/ p = CURSOR_SPACE[L].next; 

  /*2*/ while( p && CURSOR_SPACE[p].element != x ) 

  /*3*/  p = CURSOR_SPACE[p].next; 

  /*4*/ return p; 

 } 

Figure 7 Find routine--cursor implementation  

  
void delete( element_type x, LIST L ) 

 { 

  position p, tmp_cell; 

  p = find_previous( x, L ); 

  if( !is_last( p, L) ) 

  { 

   tmp_cell = CURSOR_SPACE[p].next; 

   CURSOR_SPACE[p].next = CURSOR_SPACE[tmp_cell].next; 

   cursor_free( tmp_cell ); 

  } 

 } 

Figure 8 Deletion routine for linked lists--cursor implementation  

  
void insert( element_type x, LIST L, position p ) 

 { 

  position tmp_cell; 

  /*1*/ tmp_cell = cursor_alloc( ) 

  /*2*/ if( tmp_cell ==0 ) 

  /*3*/  fatal_error("Out of space!!!"); 

     else 

     { 

  /*4*/  CURSOR_SPACE[tmp_cell].element = x; 

/*5*/  CURSOR_SPACE[tmp_cell].next = CURSOR_SPACE[p].next; 

  /*6*/  CURSOR_SPACE[p].next = tmp_cell; 

     } 

 } 

Figure 9 Insertion routine for linked lists--cursor implementation  

The freelist represents an interesting data structure in its own right.  The cell that is removed from the 

freelist is the one that was most recently placed there by virtue of free.   Thus, the last cell placed on the 

freelist is the first cell taken off.  The data structure that also has this property is known as a stack.  


