th

[s.

an

Iy

We
or.

{er
1ts

it -

ed
red

nd
for

st
ced
his
'se,
111,
ent

wad

fi

3.2. THE ADT

Sl 52 53 54

7
-C1 /|

C2 _ LA

Yy / N
N

L | L L= o _

57

Figure 3.27 Mululjst implementation for
registration problem

3 28 Cursor Implementation of Linked Lists

Many languages, such as Basic and FORTRAN, do not support pointers. If linked lists
are required and pointers are not available, then an alternative implementation must
be used. The method we will describe is known ds a cursor implementation.

The two important features present in a pointer implementation of linked lists
are as follows:

1. The data are stored in a collection of structures. Each structure contains
data and a pointer to the next structure.

2. A new structure can be obtained from the system’s global memory by a call
to mnalloc and released by a call to free.

Our cursor implementation must be able to simulate this. The logical way to sansfy
condition 1 is to have a global array of structures. For any cell in the array, its array
index can be used in place of an address. Figure 3.28 gives the declarations for a
cursor implementation of linked lists.

We must now simulate condition 2 by allowing the equivalent of malloc and
free for cells in the CursorSpace array. To do this, we will keep a list (the freelist)
of cells that are not in any list. The list will use cell 0 as a header. The inital
configuration is shown in Figure 3.29.

A value of O for Next is the equivalent of a NULL pointer) The initialization of
CursorSpace is a straightforward loop, which we leave as an exercise. To perform a

mallos, the first element (afrec the header) is removed from rhe freglist. To pesform

CHAPTER 3/LISTS, STACKS, AND QUEUES

#ifndef _Cursor_H

typedef int PtrToNode;
typedef PtrToNode List;
typedef PtrToNode Position:

void InitializeCursorSpace(void b [

List MakeEmpty(List L);

int IsEmpty(const List L);:

int IsLast(const Position P, const List L
Position Find(ElementType X, const List L
void Delete(ElementType X, List L)i
Position FindPrevious(ElementType X, const List L)
void Insert(ElementType X, List L, Position P }:
void Deletelist(List L);

Position Header(const List L);

Position First(const List L):

Position Advance(const Position P);

ElementType Retrieve(const Position P Iz

)
);7

#endit /¥ _Cursor_H */

/* Place in the implementation file =/
struct Node :

{

ElementType Element; i
Position Next;

E

struct Node CursorSpace[SpaceSize }:

Figure 3.28 Declarations for cursor implementation -
of linked lists

a free, we place the cell ar the front of the freelist. Figure 3.30 shows the cursor
implementation of mailoc and free. Notice that if there is no space available, our

routine does the correct thing by setting P = 0. This indicates that there are no more

cells left, and also makes the second line of CursorAlloc a nonoperation (ng-op).-

Given this, the cursor implementation of linked lists is straightforu;ard_.-For
consistency, we will implement our lists with a header node. As an example, in
~ Figure 3.31, if the value oand the value of’ﬁ@ then L represents the list
\ a, b, €) and M represents the listlc, d,) B

To write the functions for a cursor implementation of linked lists, we must pass
and return the identical parameters as the pointer implementation. The routines
are straightforward. Figure 3.32 implements a function to test whether a list
is empty. Figure 3.33 implements the test of whether the curreni position i the

Stot : Element Next

0 1

1 2

2 3

B 4

4 5

: 5 6
a ! 6 7
7 8

8 9

2 ! 10

10 0

' Figure 3.29 An initialized CursorSpa.fse

static Position
CursorAlloc(void)

59

SOr
ur
ore

‘or
n
ist

1SS
es
st

&
o3

{
Position—P
"P = CursorSpace[0].Next;
CursorSpace[0].Next = CursorSpace[P].Next;
return P;

} .

static void
CursorfFree(Position P)

{

CursorSpace[0].Next;
P

CursorSpace[P].Next
CursorSpace[0].Next

}

Figure 3.30 Routines: CursorAlloc and CursorFree

last in a linked list. The function Find in Figure 3.34 returns the position of X in list
L. The code to implement deletion is shown in Figure 3.35. Again, the interface for
the cursor implementation is identical to the pointer implementation. Finally, Figure
3.36 shows a cursor implementation of Insert.

The rest of the routines are similarly coded. The crucial point is that these
foutines follow the apT specification. They take specific arguments and per-
orm specific operations. The implementation is transparent to the user. The
Cursor implementation could be used instead of the linked list implementation,
With virtually no change required in the rest of the code. If relatively few Finds are

CHAPTEH 3/LISTS, STACKS,

\ (Slot Element
.) 0 -
L% TP /
; 6
eader)!

y o

=

| —

[E;eaaég"z
—

/ i
o p 7 | e
s »;’{ X 0) by o
A v \O - = b 9 €
v e 10
| o i :

/7/-""'\Figure 3,31 Example of a cursor implementation of linked lists

/* Return true if L is empty #*

int
IsEmpty(List L)
{ ,

}

return CursorSpace[L].Next == 0;

Figure 3.32 Function to test whether a linked list is
empty—cursor implementation

/* Return true if P is the last position in list L */
parameter L is unused in this implementation */

*

int
Islast(Position P, List L)
{
return CursorSpace[P].Next == 0;
}

Figure 3.33 Function to test whether P is last in a
linked list—cursor implementation

3.2. THE LIST ant

/#* Return Position of X in.L; 0 if not found */
/¥ Uses a header node */

pPosition

Find(ElementType X, List L)

{

. Position P;

y2e1% /) P - EursorSpace{ L].Nékt;
Jx 2%/ while(P &&_CursorSpace[P].Element != X)
/* 3%/ P = CursorSpace[P-].Next;
/* 4*/ return P;

}

Figure 3.34 Find routine—cursor implementation

/* Delete first occurrence of X from a list */

61

/*‘ﬁSSQME‘USE*0¥—a—hE&dEF—HBde—i/

void: =
Delete(ElementType X, List L) -

{
Position P, TmpCell;

P = FindPrevious(X, L);

1F¢ 1IsLastl P; L)) /* Assumption of header use L
{ /* X is found; delete it */

TmpCell = CursorSpace[P].Next;
CursorSpace[P J.Next = CursorSpace[TmpCell].Next;

Cursorfree(TmpCell);

}

Figure 3.35 Deletion routine for linked listss—cursor
implementation

performed, the cursor implementation could be significantly faster because of the

lad(ofnunnoryrnanagmnentroudnes. ;
The freelist represents an interesting data structure in its own right. The ceil
that is removed from the freelist is the one that was most recently placed there by

CHAPTER 3/LISTS, STACKS, AND QUEUES : '
—

_f__/ﬁ_#____——__
/= Insert (after legal position P) wyf |

/
/* Header iniplementation assumed */
/* Parameter L 15 unused in this implementation */

void
Insert(ElementType X, List L, Position P)

1
Position TmpCell;

/= 1%/ TmpCell = cursorAltoc();

/5 2%/ i F(TmpCell == 0)

fe 35S catalError("Out of space! e

= 4%/ CursorSpace[TmpCell 1.ETement = X;

= 5%/ CursorSpacel TipCell].Next = CursorSpace[P].Next;
Ve CursorSpace[P J.Next = TmpCel1;

}
#_ﬁr_ﬁ—_ff_f_!_rf
Figure 3.36 Insertion routine for linked iists—cursor

implementation

the freelist is the first cell taken off. The

virtue of free. Thus, the last cell placed on
known as a stack, and is the topic of the

data structure that also has this property is
next section.

3.3. 'The Stack ADT

3.3.1. Stack Model
nd deletions can be performed
" called the top. The fundamental
¥ealent to an insert, and Pop, which
#The most recently inserted element can
y use of the Top routine. A Pop or Top on
an error in the stack ADT. On the other hand,
ing a Push is an implementation error.but not an

A stack is a list with the restriction that inse
in only one position, namely, the end of
operations on a stack are Push, whic
deletes the most recently inserted
be examined prior to performin
an empty stack is generally ¢
running out of space whe
ADT €rror.

Stacks are so
in Figure 3.37 s}

% known as LIFO (last in, first out) lists. The model depicted
% only that Pushes are input operations and Pops and Tops are
operations to make empty stacks and test for emptiness are piart
e, but essentially all that you can do to a stack is Push and Pop.

% 38 shows an abstract stack after several operations. The general model
e is some element that is at the top of the stack, and it is the only element

that is visible.

