
1

Splay Trees

CSE 326
Data Structures

Lecture 8

Splay Trees - Lecture 8 2

Readings and References

• Reading
› Sections 4.5-4.7

Splay Trees - Lecture 8 3

Self adjustment for better
living

• Ordinary binary search trees have no balance
conditions
› what you get from insertion order is it

• Balanced trees like AVL trees enforce a
balance condition when nodes change
› tree is always balanced after an insert or delete

• Self-adjusting trees get reorganized over time
as nodes are accessed

Splay Trees - Lecture 8 4

Splay Trees

• Splay trees are tree structures that:
› Are not perfectly balanced all the time

› Data most recently accessed is near the root.

• The procedure:
› After node X is accessed, perform “splaying”

operations to bring X to the root of the tree.
› Do this in a way that leaves the tree more

balanced as a whole

Splay Trees - Lecture 8 5

• Let X be a non-root node with ≥ 2 ancestors.
• P is its parent node.
• G is its grandparent node.

P

G

X

G

P

X

G

P

X

G

P

X

Splay Tree Terminology

Splay Trees - Lecture 8 6

Zig-Zig and Zig-Zag

4

G 5

1 P Zig-zag

G

P 5

X 2

Zig-zig

X

Parent and grandparent
in same direction.

Parent and grandparent
in different directions.

2

Splay Trees - Lecture 8 7

1. Helpful if nodes contain a parent pointer.

2. When X is accessed, apply one of six rotation routines.
• Single Rotations (X has a P (the root) but no G)

ZigFromLeft, ZigFromRight

• Double Rotations (X has both a P and a G)
ZigZigFromLeft, ZigZigFromRight
ZigZagFromLeft, ZigZagFromRight

Splay Tree Operations

parent

rightleft
element

Splay Trees - Lecture 8 8

Zig at depth 1
• “Zig” is just a single rotation, as in an AVL tree
• Let R be the node that was accessed (e.g. using

Find)

• ZigFromLeft moves R to the top →faster access
next time

ZigFromLeft

Splay Trees - Lecture 8 9

Zig at depth 1

• Suppose Q is now accessed using Find

• ZigFromRight moves Q back to the top

ZigFromRight

Splay Trees - Lecture 8 10

Zig-Zag operation

• “Zig-Zag” consists of two rotations of the
opposite direction (assume R is the node that
was accessed)

(ZigFromRight) (ZigFromLeft)

ZigZagFromLeft

Splay Trees - Lecture 8 11

Zig-Zig operation

• “Zig-Zig” consists of two single rotations
of the same direction (R is the node that
was accessed)

(ZigFromLeft) (ZigFromLeft)

ZigZigFromLeft

Splay Trees - Lecture 8 12

Find Operation

• Find operation
› Do a normal find in the binary search tree
› Splay the the node found to the root by a

series of zig-zig and zig-zag operations
with an additional zig at the end if the
length of the path to the node is odd.

› If nothing found splay the last node visited
to the root.

3

Splay Trees - Lecture 8 13

Decreasing depth -
"autobalance"

Find(T) Find(R)

Splay Trees - Lecture 8 14

Details of SplayFind
SplayFind(p: node pointer,x: key): node pointer {
r,s : node pointer;
r := Find(p,x); //if x is not in the tree then

//the last node visited is returned
while r.parent ≠ null do {

s := r.parent.parent;
case {
s = nil:

if r.parent.right = r then ZigFromRight(r.parent) ;
else ZigFromLeft(r.parent);

s.right.right = r: ZigZigFromRight(s);
s.left.left = r: ZigZigFromLeft(s);
s.right.left = r: ZigZagFromRight(s);
s.left.right = r: ZigZagFromLeft(s);
}

return r //r contains x if it is in the tree
}

Splay Trees - Lecture 8 15

ZigFromLeft

ZigFromLeft(s: node pointer): {
c: node pointer;
c := s.left;
s.left := c.right;
if s.left ≠ null then s.left.parent := s;
c.parent := s.parent;
if c.parent ≠ null then

if c.parent.right = s then c.parent.right := c;
else c.parent.left := c;

s.parent := c;
c.right := s;
}

s

Splay Trees - Lecture 8 16

Try ZigZigFromLeft

• Design ZigZigFromLeft
s

ZigZigFromLeft(s: node pointer) {
???
}

Splay Trees - Lecture 8 17

Splay Tree Insert

• Insert x
› Insert x as normal then splay x to root.

Splay Trees - Lecture 8 18

Example Insert

• Inserting in order 1,2,3,…,8
• Without self-adjustment

1

2

3

4

5

6

7

8

O(n2) time

4

Splay Trees - Lecture 8 19

With Self-Adjustment

1

2

1 2

1

ZigFromRight

2

1 3

ZigFromRight
2

1

3

1

2

3

Splay Trees - Lecture 8 20

With Self-Adjustment

ZigFromRight2

1

34

4

2

1

3

4

O(n) time!!

Splay Trees - Lecture 8 21

Splay Tree Deletion

• Delete
› Splay x to root and remove it. Two trees

remain, right subtree and left subtree.
› Splay the max in the left subtree to the root

› Attach its right subtree to the new root of
the left subtree and return it. The
predecessor of x becomes the root.

Splay Trees - Lecture 8 22

Example Deletion
10

155

201382

96

10

15

5

2013

8

2 96

splay

10

15

5

2013

2 96

remove

10

15

5

2013

2 9

6
splay

attach

Splay Trees - Lecture 8 23

Practice Delete
10

155

201382

96

Splay Trees - Lecture 8 24

Analysis of Splay Trees

• Splay trees tend to be balanced
› M operations takes time O(M log N) for M > N

operations on N items.
› Amortized O(log n) time.

• Splay trees have good “locality” properties
› Recently accessed items are near the root of the

tree.
› Items near an accessed node are pulled toward

the root.

5

Splay Trees - Lecture 8 25

Solution to First Exercise

ZigZigFromLeft(s: node pointer) {
c: node pointer;
c := s.left;
ZigFromLeft(s);
ZigFromLeft(c);
}

s

Splay Trees - Lecture 8 26

Solution to Second Exercise
10

155

201382

96

10

15

5 20138

2 9

6

10

15

5

2013

8

2
9

6

ZigZagFromRight

ZigFromLeft

Remove
FindMax
Attach10

15

5

2013

8

2

9

