
lecture 4

Algorithms and Data Structures

Lecture 4:

Recursion,

Dynamic programming,

Divide & Conquer
Sequence Alignment, Quicksort

Verónica Gaspes

veronica.gaspes@ide.hh.se

www.hh.se/staff/vero/itads

– p.1/36 lecture 4

Tower of Hanoi

Tower of Hanoi puzzle,
marketed in 1883 by
Professor N. CLAUS (DE
SIAM), an anagram
pseudonym for Professor
Édouard LUCAS
(D’AMEINS).

The game consists of de-
molishing the tower level
by level, and reconstruct-
ing it in a neighboring
place, conforming to the
rules given.

– p.2/36

lecture 4

Tower of Hanoi

Move all plates from peg A to peg C

Plates can be moved one by one from one peg to another
peg

At no stages should a smaller plate come below a bigger
plate

An extra peg B can be used.

– p.3/36 lecture 4

Tower of Hanoi

– p.4/36

lecture 4

Recursion

A recursive method is a method that directly or indirectly
makes a call to itself.

void hanoi(int n, char from, char to, char h){
if(n>0){
hanoi(n-1,from,h,to);
System.out.println(from+" --> "+to);
hanoi(n-1,h,to,from);

}
}

The recursive calls on values closer to 0.

– p.5/36 lecture 4

Recursion

void hanoi(int n, char from, char to, char help){

if(n>0){

hanoi(n-1,from,help,to);

System.out.println(from+" --> "+to);

hanoi(n-1,help,to,from);

}

}

The Base Case. Allways have at least one case that is
solved without recursion. In hanoi, 0 and all negative
integers are base cases: do nothing!

Progress towards the base case. All recursive calls must
be done with arguments that get closer to the base
case. In hanoi, when calling with a positive integer x,
the recursive calls are with x-1

You gotta believe! Always assume that the recursive calls
work . And complete the solution for the actual value! – p.6/36

lecture 4

Fibonacci numbers

Consider the following sequence of numbers
1 1 1+1 2 1+2 3 2+3 5 3+5 8 5+8 13 8+13 2

Strange as it seems it has very nice properties, it occurrs
in many places and has magazines dedicated to it!

We can define the n− th element of the sequence:

fib(n) =

{
1 if n = 0 or n = 1

fib(n− 1) + fib(n− 2) if n ≥ 2

– p.7/36 lecture 4

Fibonacci numbers

A program that computes the n− th fibonacci number:

int fib(int n){
if(n==0||n==1)
return 1;

else

return fib(n-1) + fib(n-2);
}

– p.8/36

lecture 4

Fibonacci numbers

Nice, all the rules are followed (base cases, progression,
belief!)

BUT! The recursive calls are overlapping:
To compute fib(5) we call fib(4) and fib(3)
To compute fib(4) we call fib(3) and fib(2)
to compute fib(3) we call fib(2) and fib(1)
To compute fib(2) we call fib(1) and fib(0)

This leads to very inefficient programs!

More about this later today, first
a good use of recursion . . .

– p.9/36 lecture 4

Divide and Conquer

A problem solving technique that leads to recursive
solutions.

A divide and conquer algorithm is an efficient recursive

algorithm that consists of 2 parts:
Divide: Smaller problems are solved recursively
(except the base cases!)

Conquer : The solution to the original problem is
formed from the solutions to the subproblems.

Hopefully all subproblems are much smaller than the
original one and the subproblems do not overlap!

– p.10/36

lecture 4

Divide & Conquer and Sorting

Sort an array using Divide and Conquer :

To sort an array of size N .

Divide the array into two halves.

Recursively sort the two parts.

Put together the sorted parts to a sorted whole.

What to do for putting together depends on how we

choose to divide

– p.11/36 lecture 4

Quicksort

To sort an array of size 10.

13 81 92 43 31 65 57 26 75 0

Divide the array in two halves.

13 81 92 43 31 65 57 26 75 0 Pivot?

Partition

13 0 26 43 57 31 65 92 75 81

Recursively sort the two parts. (Believe! Quicksort)

0 13 26 31 43 57 65 75 81 92

Put together the sorted parts.
– p.12/36

lecture 4

Quicksort

Auxiliary methods

1. Find a good pivot. An element in the array that has
more or less as many elements smaller as it has larger
in the array.
Find it in constant time!
Median of 3 among a[low], a[mid] and a[high]

2. Partition. All smaller than the pivot to the left, all larger
to the right.
Loop through the array from low upwards and from
high downwards.

Stop on elements that are on the wrong half.
Exchange elements when needed and continue
looping until all elements are in the proper half.

– p.13/36 lecture 4

Quicksort

void quicksort(T [] a, int low, int high){
if(small array)

insertionSort(a, low, high);
else{

int middle = (low + high) / 2;
sort low, middle, high

partition
quicksort(a, low, i - 1);

// Pivot at i
quicksort(a, i + 1, high);

}
}

– p.14/36

lecture 4

Quicksort

Small array

low + CUTOFF > high

where CUTOFF can be around 10.

– p.15/36 lecture 4

Quicksort

sort low, middle, high

if(a[middle].compareTo(a[low]) < 0)
swapReferences(a, low, middle);

if(a[high].compareTo(a[low]) < 0)
swapReferences(a, low, high);

if(a[high].compareTo(a[middle]) < 0)
swapReferences(a, middle, high);

– p.16/36

lecture 4

Quicksort

Partition
// Place pivot at position high - 1
swapReferences(a, middle, high - 1);
T pivot = a[high - 1];
// Begin partitioning
int i, j;
for(i = low, j = high - 1; ;){

while(a[++i].compareTo(pivot) < 0);
while(pivot.compareTo(a[--j]) < 0);
if(i >= j) break;
swapReferences(a, i, j);

}
// Restore pivot
swapReferences(a, i, high - 1);

– p.17/36 lecture 4

Quicksort - analysis

T (N) time to sort an array of size N

Divide it into two halves takes O(c) to pick the pivot and

O(N) to partition. So division is O(N).

Recursively sort the two parts will take
T (Nsmall) + T (Nlarge)

Put together the solutions do nothing!

So

T (N) = T (Nsmall) + T (Nlarge) +O(N)

– p.18/36

lecture 4

Quicksort - analysis

T (N) = T (Nsmall) + T (Nlarge) +O(N)

If we manage to divide the array in equal sized parts we
will get

T (N) = 2T (N
2) + N = 4T (N

4) + 2N
2 + N = . . .

= NT (1) + Nlog(N)

T (N) is O(Nlog(N)) if we manage to find a good pivot in

constant time!

Compare with O(N2) for insertion sort!

– p.19/36 lecture 4

Fibonacci’s problem

Look once more at the definition of fib(n):

fib(n) =

{
1 if n = 0 or n = 1

fib(n− 1) + fib(n− 2) if n ≥ 2

An obvious java program
int fib(int n){
if(n==0||n==1)
return 1;

else
return fib(n-1) + fib(n-2);

}
leads to an explosion of recursive calls with values
being computed once and again!

– p.20/36

lecture 4

The Problem

fib(8)
fib(7)

fib(6)

fib(5)

fib(4)

fib(3)

fib(4)

fib(3)

fib(2)

fib(5)

fib(4)

fib(3)

fib(2)

fib(3)

fib(2)

fib(1)

fib(6)

fib(5)

fib(4)

fib(3)

fib(2)

fib(3)

fib(2)

fib(1)

fib(4)

fib(3)

fib(2)

fib(1)

fib(2)

fib(1)

fib(0)

and it is not over . . . – p.21/36 lecture 4

Memoaization

Whenever we have to compute a value, check in a memo
whether we already have computed it!

This means that when we compute a value for the first
time, we have to record it in a memo!

BigInteger [] memo;

BigInteger fib(int n){
if(n == 0 || n == 1)

memo[n]=BigInteger.ONE;
else

if(memo[n].equals(BigInteger.ZERO))
memo[n]=fib(n-2).add(fib(n-1));

return memo[n];
}

– p.22/36

lecture 4

Bottom-up: Dynamic programming

It is easy to realize that we can fill the array from the base
cases and forward! And that we only need 2 values any
point!

BigInteger fibIt(int n){
BigInteger fn_1 = BigInteger.ONE;
BigInteger fn_2 = BigInteger.ZERO;
while(n-- > 0){
fn_1 = fn_1.add(fn_2);
fn_2 = fn_1.subtract(fn_2);

}
return fn_1;

}

In short from a recursive formulation of the problem to an
iterative program that recalls computed values that are
further needed – p.23/36 lecture 4

Sequence Comparison

A more advanced application of dynamic programming
A widely applied topic: file comparisson, spelling
correction, information retrieval and searching for
similarities among biosequences.

How similar are the strings VERONICA and MARTIN?

How similar are spinach and rice? (according to peptide

sequences of Triosephosphate Isomerase):
CNGTKESITKLVSDLNSATLEAD__VDVVVAPPFVYIDQVKSSLTGRVEISA

CNGTTDQVDKIVKILNEGQIASTDVVEVVVSPPYVFLPVVKSQLRPEIQVAA

And monkeys and humans?
MNGRKQNLGELIGTLNAAKVPAD__TEVVCAPPTAYIDFARQKLDPKIAVAA

MNGRKQSLGELIGTLNAAKVPAD__TEVVCAPPTAYIDFARQKLDPKIAVAA

– p.24/36

lecture 4

Minimal Edit Distance

One such string comparison problem can be stated as
Align two strings in such a way that the number of
commands needed to transform one into the other is

minimal.
VERONICA
MARTIN__

requires 7 changes (editing commands)
while

VERONICA
MART_IN_

requires only 6!
as well as

VERONICA
MAR_TIN_

– p.25/36 lecture 4

Minimal Edit Distance

Or, more formally
Given 2 strings compute an alignment that minimizes the

edit distance between them
For strings a and b, the distance δ(a, b) is

δ(a, b) = Σδ(ai, bi)

for the aligned strings (possibly with gaps) where

δ(ai, bi) =

{
0 if ai = bi

1 if ai #= bi

– p.26/36

lecture 4

Minimal Edit Distance

First attempt

Enumerate all alignments and their distances and choose
an alignment with minimum distance.

Unfortunately . . . there are too many!
For strings of lengths m and n there are

(m + n)!

m!n!

alignments and for n = m = 150 this is approximately 1090!

– p.27/36 lecture 4

Minimal Edit Distance

Second attempt

Based on the observation that Any prefix of the optimal
alignment is an optimal alignment of prefixes use the
recursion

µ(i, j) =






j for i = 0

i for j = 0

min






µ(i− 1, j) + 1

µ(i, j − 1) + 1

µ(i− 1, j − 1) + δ(ai−1, bj−1)

where µ(i, j) is the minimal cost of aligning the prefixes of a
and b of lengths i and j respectively. Base cases

correspond to empty prefixes, indexes in the strings are
0 . . . m− 1, 0 . . . n− 1.

– p.28/36

lecture 4

Minimal Edit Distance

Third attempt - Dynamic Programming

Each step of the recursion requires 3 values. Try to find a
way of recording the values in a bottom-up fashion.

” v e r o n i c a

” 0 1 2 3 4 5 6 7 8
m 1 1 2 3
a 2 2 2 3
r 3 3 3 2
t 4
i 5
n 6 ?

”

”

v

_

v e

_ _

v e r

_ _ _

v e r o

_ _ _ _

v e r o n

_ _ _ _ _

v e r o n i v e r o n i c v e r o n i c a
– p.29/36 lecture 4

Minimal Edit Distance

Dynamic Programming

The matrix can be filled in different ways so that the values
needed in the computation are available:

Row by row
. . .

Column by column . . .

Antidiagonal by antidiagonal

– p.30/36

lecture 4

Dynamic Programming

The problem is stated as an optimization problem.

Optimal values are defined recursively.

Efficient solutions are derived memorizing already
computed values (using dynamic porgramming)

In some problems, e.g. sequence alignment, not only
the optimal value is of interest, but also how it is
achieved.
>java SequenceAlignment1 veronica martin
6
veronica
mar-ti-n
In this case extra space must be used to trace it back

– p.31/36 lecture 4

Tracing back an alignment

When a value is chosen for µ(i, j) by taking

min






µ(i− 1, j) + 1

µ(i, j − 1) + 1

µ(i− 1, j − 1) + δ(ai−1, bj−1)

we record also the coordinates of the chosen alternative:

” v e r o n i c a

” 0 1 2 3 4 5 6 7 8
m 1 1 2 3
a 2 2 2 3

r 3 3 3 2

We record that for µ(3, 3) we come from cell (2, 2)
– p.32/36

lecture 4

Tracing back an alignment

We have to do this for each cell in the matrix, we need a
matrix of

class Coord{
int i, j;
Coord(int x, int y){
i=x;j=y;

}
}

We fill both matrices during the same traversal of all
possible alignments

The optimal alignment is then recovered by tracing the
coordinates back from the value corresponding to the
alignment of the complete strings.

– p.33/36 lecture 4

Sequence Alignment in Bioinformatics

DNA and proteins are built as long chains of chemichal
components (biosequences) conventionaly denoted by
letters
A G C T for ADN
A C D E F G H I K L M N P Q R S T V W Y
for proteins

Biosequences are compared in the hope that what holds
for a sequence also holds for similar sequences.

The way of comparing biosequences is by finding good
alignments

Alignments are good when they maximize similarity

– p.34/36

lecture 4

Sequence Alignment in Bioinformatics

Score matrices

Similarity between biosequences is built up from how
similar the letters are.

There is not only match/mismatch but matrices that
describe how similar each pair of letters is

This is related to how likely it is that a letter is the result of
a mutation from some ancestor

There are many! computed score matrices: (e.g. gonnet)
C S T P A G N D E

C 12 0 0 -3 0 -2 -2 -3 -3
S 0 2 2 0 1 0 1 0 0

. . .

. . .

– p.35/36 lecture 4

Sequence Alignment in Bioinformatics

Dynamic programming made sequence alignment feasible.

Many optimizations have been proposed: to minimize the
space required for computations; heuristics that reduce
the portion of µ that is explored

There are now search engines for huge databases: BLAST
the Basic Local Alignment Search Tool.

Original sources:
A general method appplicable to search for similarities

in the amino acid sequence of two proteins by
Needleman and Wunch, JBL 1970.

Identification of common molecular subsequences by
Smith and Waterman, JBL 1981.

Basic Local Alignment Search Tool by Altschul et al.,
JBL 1990.

– p.36/36

