Lecture 10:

Recursion

Analysis &
Binary Search

PIC 10B
Todd Wittman

Recursion Analysis

Analyzing the running time T of a recursive algorithm is
generally harder than analyzing a non-recursive one.

The most common strategy is to write the run time as a
function of N: T(N). This indicates the time needed to
process N items.

By tracing carefully through the recursion, we can write
down a recurrence relation for the algorithm. For example,

T(N) = T(N-1) + 1
Then we repeat the recurrence
T(N) = [T(N-2)+1] +1 = T(N-2) + 2
T(N) = [T(N-3)+1] + 2 =T(N-3) + 3
Look for a pattern: T(N) = T(N-k) + k
By tracing the pattern all the way to the base case T(1), we
can determine the running time of the algorithm.
T(N) = O(N)

Analyzing the Factorial

e Last class, we computed the factorial recursively.
int factorial (int N) {
if (N==0) return 1;
return N*factorial(N-1);

¥
e Checking the if statement and multiplying by N is
O(1) operation.
Time for factorial(N) = Time for factorial(N-1) + O(1)
e Dropping the Big O for the moment, we get the
recurrence:

T(N) = T(N-1) + 1

Analyzing the Factorial

e Repeatedly plug in the recurrence.
T(N) = T(N-1) + 1
=T(N-2) + 1 +1=T(N-2) + 2
=T(N-3) + 1+ 2=T(N-3) + 3
e So the pattern is:
T(N) = T(N-k) + k
e Let k = N.
T(N) =T(0) + N
e T(0) is the time to compute the base case
factorial(0), which is just O(1).
T(N) =1+ N = O(N)
e The non-recursive version also runs in O(N) time.

Analyzing the Palindrome

e Last class we saw the algorithm for checking for
palindromes like "racecar".

bool isPalindrome (string s) {
if (s.length() <= 1) return true;
return (s[0]==s[s.length()-1])
&& isPalindrome(s.substr(1,s.length()-2));
b
e What is the recurrence for T(N) with N=#letters?
T(N) = T(N-2) + 1
e What's the pattern?
T(N) = T(N-2k) + k
e Letting k = N/2, we get T(N) = O(N).

Sec 10.6: Fibonacci's Rabbits

e Last class we showed how to compute the Nth
Fibonacci number.

int Fibonacci (int N) {
if (N==1) return 1;
if (N==2) return 1;
return Fibonacci(N-1) + Fibonacci(N-2);

by

e What's the recurrence?
T(N) = T(N-1) + T(N-2) + 1
e The time recurrence looks just like the Fibonacci
recurrence relation!

Fibonacci's Rabbits

e Sometimes we can't write out the full pattern,
but we can still figure out how many
computations we're making.

T(N) = T(N-1) + T(N-2) + 1

= [T(N-2)+T(N-3)+1]+[T(N-3)+T(N-4)+1]+1

= T(N-2) + T(N-3) + T(N-3) + T(N-4) + 3
If we repeat the recurrence, we're going to get 8
T's on level 3. Then 16, 32, and so on...
So we get 2k T's at level k.

To get down T(N-1) to the base case T(2), we'll
need to go to level k = N-2.

We'll have 2N-2 T's there, so T(N) = O(2N).

Permutations

e Ready for the monster?
vector<string> permute (string word) {
vector<string> result;
if (word.length() == 1) {
0(1) result.push_back(word);
return result;

¥
for (int i=0; i<word.length(); i++) {
Loops N times/ string shorter = word.substr(0,i)
+ word.substr(i+1,word.length()-i-1);
T(N-1) —— vector<string> shortWords = permute(shorter);
for (int j=0; j<shortWords.size(); j++) {
size=(N-1)!/ string longer = word[i]+shortWords[j];
result.push_back(longer);
¥
¥

, return result; T(N) =N T(N-l) + NI+1

Permutations

e Repeat the recurrence...

T(N) = NT(N-1) + NI + 1
= N[(N-1) T(N-2) + (N-1)! + 1]+ NI + 1
=N (N-1) T(N-2) + 2 N! + 2

e Repeat once more....

T(N) = N (N-1) [(N-2) T(N-3) + (N-2)! + 1] + 2 NI + 2
= N (N-1) (N-2) T(N-3) + 3 NI + 3

e So the pattern is...

T(N) = N (N-1)...(N-k+1) T(N-k) + k N! + k

e Let k=N to get down to base case N=0 letters.

T(N) =N (N-1)...1 T(O) + NN + N=N!'+ NN! + N

e Run time T(N) = O(N*N!)

e If you think about how many letters we have to print out,

this is the bare minimum running time.

Sec 11.6: Linear Search

e Suppose we want to find the position of the first
occurrence of a value in a integer vector.

e Let's return -1 if the number is not found.
int search (vector<int> v, int val) {
for (int i=0; i < v.size(); i++)
if (v[i] == val)
return i;
return -1;

by

e If there are N items in the list, this is an O(N)
algorithm.

e This is called a linear or sequential search.
e If the list is unsorted, this is the best we can do.

Sec 11.7: Binary Search

e But what if the list is sorted?

e Certainly we don't have to check every word in the
dictionary to look up a word.

e A basic strategy is to repeatedly halve our search
range until we find the value: binary search.

e For example, look for 5 in the list of 9 #s below.
v=1135810183342
e We would first start in the middle: 8

e Since 5<8, we know we can look at just the first
half: 1135

e Looking at the middle # again, narrow down to 3 5
e Then we stop when we're down to one #: 5

Sec 11.7: Binary Search

e So if we're searching in the range [a,b], first look
at the middle position: mid = (a+b)/2
| | |
from a mid to b

If val > v[mid], look at right half [mid+1,b].
\ || |

mid from mid+1 fo b

a
If val < v[mid], look at left half [a,mid-1]
| | | \

from a to mid-1 n‘wid b
We've found val when we see val==v[mid].

If val is not in the list, we'll see the endpoints cross.
| | | |
| to from |

Sec 11.7: Binary Search

e There is a recursive procedure here.
int search (vector<int> v, int from, int to, int val) {
if (from>to) return -1; //val not found
int mid = (from+to)/2;
if (v[mid] == val)
return mid;
else if (val > v[mid])
return search(v,mid+1,to,val);
else
return search(v,from,mid-1,val);

by

e Call function: int pos = search(v,0,v.size()-1,val);

Sec 11.7: Binary Search

Recursion eats up memory because it has to create
local copies of all the parameters.

We have to pass parameters by value if they change
at the recursion step.

But does our dictionary vector v ever change?

Changing it to pass by reference introduces a
significant speed-up.
int search (const vector<int>& v, int from, int to, int val) {

e For this week's HW, I want you to figure out just how much
speed-up you get with this little trick.

Sec 11.7: Binary Search

e Let's analyze the run time.

e It takes O(1) time to do the comparisons, then it cuts
the search range in half.

T(N) = T(N/2) + 1
e Repeat the recurrence...
T(N) = T(N/4) + 2
= T(N/8) + 3

o= T(N/2K) + k
e Round up N to nearest power of 2: N<2m,
T(N) < T(2m/2%)+k
e Letk =m.
T(N) < T(2™/2™)+m = T(1)+m = 14+m = O(m)
e If N=2™, then m=log N. So T(N) = O(log N)

Non-Recursive Binary Search

int non_recursive_binary_search (vector<int> v, int val) {

int from = 0;
int to = v.size()-1;
int mid;
while (from <= to) {
mid = (from+to)/2; This version's running time is
if (val == v[mid]) also O(logN), but it should be
return mid; much faster than the recursive

version of binary search.

else if (val > v[mid])
from = mid+1;
else
to = mid-1;
b

return -1;

For your HW...

The binary search algorithm is easy to template. So you can
search a vector of ints, doubles, strings, etc.

For your HW, you have to write the isInDictionary() function for
the text parsing routine.

A linear search would be very slow: O(N).
A binary search should be faster: O(logN).

Theoretically, the binary searches are both O(logN) and the
linear search is O(N). But Big O hides the constants.

Should we use the recursive or non-recursive binary search?
The search comparison program is online to help you decide.

