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Lecture 10: Lecture 10: 
Recursion Recursion 
Analysis & Analysis & 
Binary SearchBinary Search

PIC 10BPIC 10B

Todd WittmanTodd Wittman

Recursion AnalysisRecursion Analysis
• Analyzing the running time T of a recursive algorithm is 

generally harder than analyzing a non-recursive one.

• The most common strategy is to write the run time as a 
function of N:  T(N).  This indicates the time needed to 
process N items.

• By tracing carefully through the recursion, we can write 
down a recurrence relation for the algorithm.  For example,

T(N) = T(N-1) + 1

• Then we repeat the recurrence

T(N) = [T(N-2)+1] +1 = T(N-2) + 2

T(N) = [T(N-3)+1] + 2 = T(N-3) + 3

• Look for a pattern:   T(N) = T(N-k) + k

• By tracing the pattern all the way to the base case T(1), we 
can determine the running time of the algorithm.

T(N) = O(N)
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Analyzing the FactorialAnalyzing the Factorial

• Last class, we computed the factorial recursively.

int factorial (int N) {

if (N==0) return 1;

return N*factorial(N-1);

}

• Checking the if statement and multiplying by N is 
O(1) operation.

Time for factorial(N) = Time for factorial(N-1) + O(1)

• Dropping the Big O for the moment, we get the 
recurrence:

T(N) = T(N-1) + 1

Analyzing the FactorialAnalyzing the Factorial

• Repeatedly plug in the recurrence.

T(N) = T(N-1) + 1

= T(N-2) + 1 + 1 = T(N-2) + 2

= T(N-3) + 1 + 2 = T(N-3) + 3

• So the pattern is:

T(N) = T(N-k) + k

• Let k = N.

T(N) = T(0) + N

• T(0) is the time to compute the base case 
factorial(0), which is just O(1).

T(N) = 1 + N = O(N)

• The non-recursive version also runs in O(N) time.
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Analyzing the PalindromeAnalyzing the Palindrome

• Last class we saw the algorithm for checking for 
palindromes like "racecar".

bool isPalindrome (string s)  { 

if (s.length() <= 1)  return true;

return (s[0]==s[s.length()-1]) 

&& isPalindrome(s.substr(1,s.length()-2));

} 

• What is the recurrence for T(N) with N=#letters?

T(N) = T(N-2) + 1

• What's the pattern?

T(N) = T(N-2k) + k

• Letting k = N/2, we get T(N) = O(N).

Sec 10.6Sec 10.6: : Fibonacci'sFibonacci's RabbitsRabbits

• Last class we showed how to compute the Nth 
Fibonacci number.

int Fibonacci (int N) {

if (N==1) return 1;

if (N==2) return 1;

return Fibonacci(N-1) + Fibonacci(N-2);

}

• What's the recurrence?

T(N) = T(N-1) + T(N-2) + 1

• The time recurrence looks just like the Fibonacci 
recurrence relation!
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Fibonacci'sFibonacci's RabbitsRabbits

• Sometimes we can't write out the full pattern, 
but we can still figure out how many 
computations we're making.

T(N) = T(N-1) + T(N-2) + 1

= [T(N-2)+T(N-3)+1]+[T(N-3)+T(N-4)+1]+1

= T(N-2) + T(N-3) + T(N-3) + T(N-4) + 3

• If we repeat the recurrence, we're going to get 8 
T's on level 3.  Then 16, 32, and so on...

• So we get 2k T's at level k.

• To get down T(N-1) to the base case T(2), we'll 
need to go to level k = N-2.  

• We'll have 2N-2 T's there, so T(N) = O(2N).

Lvl1

Lvl2

PermutationsPermutations
• Ready for the monster?

vector<string> permute (string word) {

vector<string> result;

if (word.length() == 1) {

result.push_back(word);

return result;

}

for (int i=0; i<word.length(); i++) {

string shorter = word.substr(0,i) 

+ word.substr(i+1,word.length()-i-1);

vector<string> shortWords = permute(shorter);

for (int j=0; j<shortWords.size(); j++) {

string longer = word[i]+shortWords[j];

result.push_back(longer);

}

}

return result;

}

O(1)

T(N-1)

Loops N times

size=(N-1)!

T(N) = N T(N-1) + N!+1
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PermutationsPermutations
• Repeat the recurrence...

T(N) = N T(N-1) + N! + 1

= N [ (N-1) T(N-2) + (N-1)! + 1] + N! + 1

= N (N-1) T(N-2) + 2 N! + 2

• Repeat once more....

T(N) = N (N-1) [(N-2) T(N-3) + (N-2)! + 1] + 2 N! + 2

= N (N-1) (N-2) T(N-3) + 3 N! + 3

• So the pattern is...

T(N) = N (N-1)...(N-k+1) T(N-k) + k N! + k

• Let k=N to get down to base case N=0 letters.

T(N) = N (N-1)...1 T(0) + N N! + N = N! + N N! + N

• Run time T(N) = O( N*N! )

• If you think about how many letters we have to print out, 
this is the bare minimum running time.

Sec 11.6Sec 11.6:  Linear Search:  Linear Search
• Suppose we want to find the position of the first 
occurrence of a value in a integer vector.

• Let's return -1 if the number is not found.

int search (vector<int> v, int val) {

for (int i=0; i < v.size(); i++)

if (v[i] == val)

return i;

return -1;

}

• If there are N items in the list, this is an O(N) 
algorithm.

• This is called a linear or sequential search.

• If the list is unsorted, this is the best we can do.
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Sec 11.7Sec 11.7:  Binary Search:  Binary Search

• But what if the list is sorted?

• Certainly we don't have to check every word in the 
dictionary to look up a word.

• A basic strategy is to repeatedly halve our search 
range until we find the value: binary search.

• For example, look for 5 in the list of 9 #s below.

v = 1 1 3 5 8 10 18 33 42

• We would first start in the middle: 8

• Since 5<8, we know we can look at just the first 
half:   1 1 3 5

• Looking at the middle # again, narrow down to 3 5

• Then we stop when we're down to one #:  5

Sec 11.7Sec 11.7:  Binary Search:  Binary Search

• So if we're searching in the range [a,b], first look 
at the middle position:  mid = (a+b)/2

If val > v[mid], look at right half [mid+1,b].

If val < v[mid], look at left half [a,mid-1]

We've found val when we see val==v[mid].

If val is not in the list, we'll see the endpoints cross.

from a                         mid                              to b

from a             to mid-1  mid                                 b

to           from

a                         mid   from mid+1               to b
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Sec 11.7Sec 11.7:  Binary Search:  Binary Search

• There is a recursive procedure here.

int search (vector<int> v, int from, int to, int val) {

if (from>to) return -1;   //val not found

int mid = (from+to)/2;

if (v[mid] == val) 

return mid;

else if (val > v[mid])

return search(v,mid+1,to,val); 

else

return search(v,from,mid-1,val);

}

• Call function: int pos = search(v,0,v.size()-1,val);

Sec 11.7Sec 11.7: Binary Search: Binary Search

• Recursion eats up memory because it has to create 
local copies of all the parameters.

• We have to pass parameters by value if they change 
at the recursion step.

• But does our dictionary vector v ever change?  

• Changing it to pass by reference introduces a 
significant speed-up.

int search (const vector<int>& v, int from, int to, int val) {

• For this week's HW, I want you to figure out just how much 
speed-up you get with this little trick.
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• Let's analyze the run time.

• It takes O(1) time to do the comparisons, then it cuts 
the search range in half.

T(N) = T(N/2) + 1

• Repeat the recurrence...

T(N) = T(N/4) + 2

= T(N/8) + 3

... = T(N/2k) + k

• Round up N to nearest power of 2:  N≤2m.

T(N) ≤ T(2m/2k)+k

• Let k = m.

T(N) ≤ T(2m/2m)+m = T(1)+m = 1+m = O(m)

• If N=2m, then m=log N.  So T(N) = O(log N)

Sec Sec 11.711.7:  Binary Search:  Binary Search

NonNon--Recursive Binary SearchRecursive Binary Search
int non_recursive_binary_search (vector<int> v, int val) {

int from = 0;

int to = v.size()-1;

int mid;

while (from <= to) {

mid = (from+to)/2;

if (val == v[mid])

return mid;

else if (val > v[mid])

from = mid+1;

else

to = mid-1;

}

return -1;

}

This version's running time is 
also O(logN), but it should be 
much faster than the recursive 
version of binary search.
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For your HW...For your HW...
• The binary search algorithm is easy to template.  So you can 

search a vector of ints, doubles, strings, etc.

• For your HW, you have to write the isInDictionary() function for 
the text parsing routine.

• A linear search would be very slow: O(N).

• A binary search should be faster: O(logN).

• Theoretically, the binary searches are both O(logN) and the 
linear search is O(N).  But Big O hides the constants.

• Should we use the recursive or non-recursive binary search?

• The search comparison program is online to help you decide.


