Binary Trees, Binary Search
Trees

Trees

* Linear access time of linked lists is prohibitive
* Does there exist any simple data structure for which the running time of
most operations (search, insert, delete) is O(log N)?
* Trees
* Basic concepts
* Tree traversal
* Binary tree
* Binary search tree and its operations

04/4/2017

Trees

* A tree is a collection of nodes
* The collection can be empty (the root (T) is NULL)

* (recursive definition) If not empty, a tree consists of a distinguished node T
(the root), and zero or more nonempty subtrees T,, T,,, T, each of whose
roots are connected by a directed edge from r

Figure 4.1 Generic tree

Some Terminologies

Figure 4.2 A tree

* Child and Parent
* Every node except the root has one parent
* A node can have an zero or more children
* Leaves
* Leaves are nodes with no children
* Sibling

* nodes with same parent

04/4/2017

More Terminologies

* Path
* A sequence of edges
* A path from n; to n,is defined as a sequence of nodes, n,, n,... n,. such
that n, is the parent of n,, for1 <1< k. ’
* Length of a path
* number of edges on the path
* Depth of a node
* length of the unique path from the root to that node

* Height of a node
* length of the longest path from that node to the deepest leaf
* all leaves are at height 0

*The helght of a tree = the height of the root = the depth of the deepest leaf
* Ancestor and descendant
* If there is a path from n1 to n2

* nlis an ancestor of n2, n2 is a descendant of n1
* Proper ancestor and proper descendant

Example: UNIX Directory

fusr*
mark* alex* bill*
book* course* junk junk work* course*
chlor ch2r ch3r cop3530% cop3|2]2*
fall98* sproo* sum99* fallog* fall9g+

| | |

syl.r sylr sylr grades progl.r progl.r prog2r progl.r
Figure 4.5 unix directory

grades

04/4/2017

Tree Implementation

class TreeNode

{ typedef struct TreeNode *PtrToNode;
Object element; struct TreeNode
TreeNode firstChild; {

ElementType Element;
PtrToNodé FirstChild;
ptrToNode NextSibling;

Treelode nextSibling;

Figure 4.3 MNode declarations for trees

Figure 4.4 First child/next sibling representation of the tree shown in Figure 4.2

Tree Traversal

* Used to print out the data in a tree in a certain order

* Pre-order traversal
* Print the data at the root
* Recursively print out all data in the left subtree
* Recursively print out all data in the right subtree

* In-order traversal
* Recursively print out all data in the left subtree
* Print the data at the root
* Recursively print out all data in the right subtree
* Post-order traversal
* Recursively print out all data in the left subtree
* Recursively print out all data in the right subtree
* Print the data at the root

04/4/2017

Preorder, Postorder and Inorder

* Preorder traversal * Inorder traversal * Postorder traversal
* root, left, right * left, root, right * left, right, root
* prefix expression * infix expression * postfix expression
* ++a*bc*+*defg s atb*c+d*e+f*g * abc*+de*f+g*+

Figure 4.14 Expressiontreefor (a + b *) + ((d * e + f) * g)

Tree Traversal ... Example O
U Preorder: Vvisits nodes as root 2> left - right preorder

O Inorder: Vvisits nodes as left = root - right /CP\
inorder

U Postorder: visits nodes as left = right = root O—o

7\
Q (A) postorder
\@

BB EBE

ABDECFG DBEAFCG DEBFGCA

Preorder Inorder Postorder

04/4/2017

2. then output key(z);

3. Preorder(left(z));

4. Preorder(right(=));
Algorithm Postorder(x) Algorithm Inorder(x)
Input: x is the root of a subtree. Input: = is the root of a subtree.
1. ifax# NULL 1. ifax 3 NULL

2
3.
4

Preorder, Postorder and Inorder Pseudo
Code

Algorithm Preorder(z)
Input: = is the root of a subtree.
1. ifx$ NULL

then Postorder(left(z)); 2. then Inorder(left(z));
Postorder(right(z)); 3. output key(z);
output kKey(z): 4. Inorder(right(z));

Binary Trees

* A tree in which each node has at most two children (0, 1, or
2)

Generic
binary tree

* The depth of an “average” binary tree is considerably smaller than N,
even though in the worst case, the depth can be as large as N — 1.

Worst-case
binary tree

04/4/2017

Full and Complete Binary Tree

There are two common forms of binary trees:

1. Full binary tree: a binary tree T is full if each node is either a leaf or possesses

exactly two child nodes.

4.
Figure 1: Full Binary Tree w
Full Binary Tree

Full and Complete Binary Tree

A complete binary tree: is a binary tree, which is
completely filled, with the possible exception of the bottom
level, which is filled from left to right.

root _@\® root 7@\

£° 7O ERS

04/4/2017

Full and Complete Binary Tree

Neither complete nor full Complete but not full
Full but not complete Complete and full

Lo R K

Node class/struct of Binary Tree

* Possible operations on the Binary Tree ADT
* Parent, left_child, right_child, sibling, root, etc
* Implementation
* Because a binary tree has at most two children, we can keep direct pointers

to them
struct TreeNode
class BinaryMode El ementType Element;
: eft;
// Friendly data; accessible by other package SearChTree L . h ! .
Object element; /[The data in the node Sea rchTr‘ee R g t;
BinaryNode left; /[Left child }.
BinaryNode right; /{ Right child '_

1
!

Figure 4.13 Binary tree node class

04/4/2017

Binary Tree Representation

A
left |right
child | child
Each node is B C
"".‘tbheled as being Teft [right Teft [right
either child | child child | child
a left child or
aright child f \
D E B E
left |right left |right left |right
child | child child | child child | child

L1/

N

/oA

4 Maximum number of children
for each node is 2

B ©
®© ® ©®

Binary Tree Representation

| @D €y @
Nu
Max number of node in each Tree D CED
level <= 22L where
L=0,1,2,...,L-1 (a) (b) (c) (d)
D A
OO O
<00 Lo
Vel OO
. o< ©) 0
/’r \\ ‘ < 2 o
/\ Ja s GO
- @y, -y,

(@

(h)

04/4/2017

Example: Expression Trees

Figure 414 Expressiontreefor (a + b * o) + ((d *e + f) * g)

* Leaves are operands (constants or variables)
* The internal nodes contain operators
* Will not be a binary tree if some operators are not binary

Constructing an Expression Tree

* An algorithm to convert a postfix expression into an
expression tree

* Read the expression one symbol at a time.

* If the symbol is an operand, create a one-node tree and push it onto a
stack.

* If the symbol is an operator, pop two trees T1 and T2 from the stack (71
is popped first) and

* Form a new tree whose root is the operator and whose
left and right children are T2 and T1, respectively. This
new tree is then pushed onto the stack.

04/4/2017

10

Example

* Suppose the input is
ab+cde+** ‘ | ‘ | ‘ ‘ ‘ ‘

* The first two symbols are operands, so we create one-node trees and
push them onto a stack.

* Next, a + is read, so two trees are popped, a new tree is formed, and
it is pushed onto the stack. T
|

Example ..

* Next, ¢, d, and e are read, and for each a one-node tree.js creat
and the corresponding tree is pushed onto the stack.
+) © @ (o

A

Z \2

-

* Now a + is read, so two trees are merged.

NN

~

(+) (c) (+)
\/\/\V N /\
e N ‘d)

4 &) W

@) &)

04/4/2017

11

* Continuing, a * is read, so we pop two trees and form a new tree
with a * as root.

* Finally, the last symbol is read, two trees are merged, and the final
tree is left on the stack.

What about the time?

* Search ?
* |Insert?
* Delete?

04/4/2017

12

Binary Search Trees (BST)

* A data structure for efficient searching,
insertion and deletion

*Binary search tree property

*For every node X 1

* All the keys in its left X
subtree are smaller than wj ®
the key value in X ANVAN

* All the keys in its right __,,.f"f /0 \
subtree are larger than the S/ N

for any node y in this subtree for any node z in this subtree
key(y) < key(x) keyiz) > keyix)

key value in X

Binary Search Trees

Abinary search tree Not a binary search tree

04/4/2017

13

Binary Search Trees

The same set of keys may have different BSTs

- |
=

() A
IP, ':\
N

ol

% (Y

'
.

* Average depth of a node is O(log N) &)
* Maximum depth of a node is O(N)

Constructing a Binary Search Tree

Exercise. Given a sequence of numbers:

11, 6, 8, 19, 4, 10, 5, 17, 43, 49,

31

04/4/2017

14

Inorder Traversal of BST

* Inorder traversal of BST prints out all the keys in sorted order

(),
//’/ \\
o})
/AN /"
" '< >’ ™ o~ “\f =
[a3} {7) (17} 20
N R / S
g
/ \ h
OJORNO
D
o)

Inorder: 2, 3,4,6,7,9, 13, 15,17, 18, 20

BST Implementation

public BinarySearchTree()
{ root = null; }

public void makeEmpty()
{ root = null; }

public boolean isEmpty()
{ return root == null; }

04/4/2017

15

BST Implementation

struct TreeNode; o
typedef struct TreeNode *Position;
typedef struct TreeNode *SearchTree;

SearchTree :
MakeEmpty{ SearchTree T)

y d
struct TreeNode FFC T '= NULL)

{ Elementlype E1ement; { -
Searchfree Left; MakeEmpty(T—>Lgft),.
SearchTree Right; MakeEmpty(T->Right)

b _ free(T);

return NULL;

Searching BST

* If we are searching for 15, then we are done.

* If we are searching for a key < 15, then we should search in the left
subtree.

* |f we are searching for a key > 15, then we should search in the right
subtree.

-~ root
o
L15)
/ \\\
A
.f ! ."'. \
£ FAN
fels PSRN
! b

04/4/2017

16

Searching (Find)

Example: Search for 9 ...

Search for 9:

. compare 9:15(the root), go to left subtree;
compare 9:6, go to right subtree;

compare 9:7, go to right subtree;

compare 9:13, go to left subtree;

compare 9:9, found it!

U A S

Searching (Find)

* Find X: return a pointer to the node that has key X, or NULL if there is no

such node

private boolean contains(AnyType x, BinaryNode<AnyType> t)

{

t

if(& == null)
return false;

int compareResult = x.comparelo(t.element);

if{ compareResult = 0)

return contains(x, t.left);
glse if(compareResult = 0)

return contains(x, t.right };
else

return true; Jf Match

* Time complexity: O(height of the tree)

04/4/2017

17

Searching (Find)

Position
Find(ElementType X, SearchTree T)

ifC T == NULL)

.return NULL;
if(X < T->Element)
return Find(X, T->Left);
elsé . ’
if(X > T->Element }

return Find(X, T->Right J;
else

return T;

findMin/ findMax

¢ Goal: return the node containing the smallest (largest) key in the tree

* Algorithm: Start at the root and go left (right) as long as there is a left
(right) child. The stopping point is the smallest (largest) element

Recursive implementation of findMin:

private BinaryNode<AnyType> findMin(BinaryNode<AnyType> t)
{
if(£t ==null)
return null;
else if(t.left == null)
return t;
return findMin(t.left);
1

Non-recursive implementation of findMax:

private BinaryNode<AnyType> findMax(BinaryNode<AnyType> t)
{
if(t = null)
while(t.right != null)
t = t.right;

return t;

Time complexity = O(height of the tree)

04/4/2017

18

findMin/ findMax

* Goal: return the node containing the smallest (largest) key in the tree
« Algorithm: Start at the root and go left (right) as long as there is a left
(right) child. The stopping point is the smallest (largest) element

Recursive implementation Non-recursive implementation of findMax:

of findMin:
Position Position
f‘"de(SearchTree 1) FindMax{ SearchTree T)
FF(T == NULL) { .]
return NULL; if(T I= NULL).
else vhile(T->Right 1= NULL)
if(T->Left == NULL) T = T—)R'ight;
return T; .
else return T;

return FindMin{ T->Left);

Time complexity = O(height of the tree)

Insert

* The insertion procedure is quite similar to searching.
« Start at the root and recursively go down the tree searching for a location in
a BST to insert a new node.
* If the element to be inserted is already in the tree, we are done (we do not
insert duplicates). The new node will always replace a NULL reference.

Example: insert (7)

before insertion after insertion

04/4/2017

19

Insertion ... Example

Time complexity = O(height of the tree)

private BinaryNode<AnyType> insert(AnyType x, BinaryNode<AnyType> t)
{
if(t == null)
return new BinaryNode<=(x, null, null);

int compareResult = x.compareTo(t.element);

if(compareResult <0)

t.left = insert(x, t.left);
else if(compareResult = 0)

t.right = insert(x, t.right);
else

: // Duplicate; do nothing
return t;

04/4/2017

20

04/4/2017

SearchTree
Tnsert(ElementType X, SearchTree T)

if(7 == NULL D

: /* Create and return a one-node tree */
« T = malloc(sizeof(struct TreeNode))
HFC T == NULL) . L
FatalError{ "Out of spacal!! 3
else '
T->Element = X;, -
T->Left = T->Right = NQLL:
} ’ g
}
else

if(X < T-»Element)
T->Left = Insert(X, T-»Left J;
Talse
if(X > T->Element) (X, T-sRight)
T-»Right = Insert , T->Right- E i
/* Else X is in tha tree already; we 11 do nothing */

return T: /* Do not forget this line!! */ .

}

Deletion

* When we delete a node, we need to consider how we take care of
the children of the deleted node.

* This has to be done such that the property of the search tree is maintained.
- Deletion is somewhat more tricky than insertion.
- There are several cases to consider. A node to be deleted may be:
1.not in a tree;
2.is a leaf;
3.has only one child;
4.has two children.

21

Deletion under Different Cases

¢ Case 1: the node is a leaf
* Delete it immediately

¢ Case 2: the node has one child

* The procedure of deletion is identical to deleting a node from a linked list -
Adjust a pointer from the parent to bypass that node

Figure 4.24 Deletion of a node {4} with one child, before and after

Case 2: Example

before deletion after deletion

04/4/2017

22

Deletion Case 3

e Case 3: the node has 2 children

* Replace the key of that node with the minimum element at the right subtree

* Delete that minimum element

* Has either no child or only right child because if it has a left child, that left child would
be smaller and would have been chosen. So invoke case 1 or 2.

.

ey

PN

Figure 4.25 Deletion of a node (2} with two children, before and after

* Time complexity = O(height of the tree)

Case 3: Example

before deletion

after deletion

04/4/2017

23

Delete implementation

private Node<T> delete (Node<T> p, T toDelete)

if (p == null) throw new RuntimeException("can
else
if (compare (toDelete, p.data) < 0)
p.left = delete (p.left, toDelete);
else
if (compare(toDelete, p.data) > 0)
p.right = delete (p.right, toDelete);

else
{
if (p.left == null) return p.right;
else
if (p.right == null) return p.left;
else
{

// get data from the rightmost node in the left subtree
p.data = retrieveData(p.left);

// delete the rightmost node in the left subtree

p.left = delete(p.left, p.data) ;

}

return p;

SearchTree' -
pelete(ElementType X, SearchTree T D

Position TmpCell;

if¢ T == NULL) .
Error(“"Element not found);'
“elsé N
if¢ X < T->Element) /* Go left *
T->Lefr = Delete(-X, T->Left);
else : o
if{ X » T->Element) /* Go right */
T->Right = Delete(’ X, T->Left); .
else /* Found element ToO be de1eted» / .
if(T->Left && T->Right) /% Twp children */
{ /® Replace with smallest in right subtree */
’ TmpCell = FindMin(Tf>R1ght b
T->ETement = TmpCell->Element; -)
T->Right = Delete(T->Element, T->Right J;

L1se /* One or zero children */
S e S chitdrén =/
Cell = T; .]
I?? $—>Left == NULL) /* Also handles 0 children */
T = T-»Right;
else iF(T->Right == NULL)
F = T-»Left;
free{ TmpCell J;
}
réturn T;

04/4/2017

24

