
4/4/2017

1

Binary Trees, Binary Search
Trees

Trees

• Linear access time of linked lists is prohibitive
• Does there exist any simple data structure for which the running time of

most operations (search, insert, delete) is O(log N)?

• Trees
• Basic concepts

• Tree traversal

• Binary tree

• Binary search tree and its operations

4/4/2017

2

Trees

• A tree is a collection of nodes
• The collection can be empty (the root (T) is NULL)

• (recursive definition) If not empty, a tree consists of a distinguished node T
(the root), and zero or more nonempty subtrees T1, T2,, Tk, each of whose
roots are connected by a directed edge from r

Some Terminologies

• Child and Parent
• Every node except the root has one parent

• A node can have an zero or more children

• Leaves
• Leaves are nodes with no children

• Sibling
• nodes with same parent

4/4/2017

3

More Terminologies

• Path
• A sequence of edges
• A path from n1 to nk is defined as a sequence of nodes, n1, n2 … nk; such

that ni is the parent of ni+1 for 1 ≤ I < k.

• Length of a path
• number of edges on the path

• Depth of a node
• length of the unique path from the root to that node

• Height of a node
• length of the longest path from that node to the deepest leaf
• all leaves are at height 0

• The height of a tree = the height of the root = the depth of the deepest leaf

• Ancestor and descendant
• If there is a path from n1 to n2
• n1 is an ancestor of n2, n2 is a descendant of n1
• Proper ancestor and proper descendant

Example: UNIX Directory

4/4/2017

4

Tree Implementation

Tree Traversal

• Used to print out the data in a tree in a certain order

• Pre-order traversal
• Print the data at the root

• Recursively print out all data in the left subtree

• Recursively print out all data in the right subtree

• In-order traversal
• Recursively print out all data in the left subtree

• Print the data at the root

• Recursively print out all data in the right subtree

• Post-order traversal
• Recursively print out all data in the left subtree

• Recursively print out all data in the right subtree

• Print the data at the root

4/4/2017

5

Preorder, Postorder and Inorder

• Preorder traversal
• root, left, right

• prefix expression

• ++a*bc*+*defg

• Postorder traversal
• left, right, root

• postfix expression

• abc*+de*f+g*+

• Inorder traversal
• left, root, right

• infix expression

• a+b*c+d*e+f*g

Tree Traversal … Example

Tuesday, April 4, 2017 Abdallah Karakra

 Preorder: visits nodes as root  left  right

 Inorder: visits nodes as left  root  right

 Postorder: visits nodes as left  right  root

A

B C

D E F G

A

B C

D E F G

A

B C

D E F G

A B D E C F G D B E A F C G D E B F G C A

Preorder Inorder Postorder

4/4/2017

6

Preorder, Postorder and Inorder Pseudo
Code

Binary Trees

• A tree in which each node has at most two children (0, 1, or
2)

• The depth of an “average” binary tree is considerably smaller than N,
even though in the worst case, the depth can be as large as N – 1.

Generic

binary tree

Worst-case

binary tree

4/4/2017

7

Full and Complete Binary Tree

Tuesday, April 4, 2017 Abdallah Karakra

There are two common forms of binary trees:

1. Full binary tree: a binary tree T is full if each node is either a leaf or possesses

exactly two child nodes.

Full and Complete Binary Tree

Tuesday, April 4, 2017 Abdallah Karakra

A complete binary tree: is a binary tree, which is

completely filled, with the possible exception of the bottom

level, which is filled from left to right.

4/4/2017

8

Full and Complete Binary Tree

Tuesday, April 4, 2017 Abdallah Karakra

Node class/struct of Binary Tree

• Possible operations on the Binary Tree ADT
• Parent, left_child, right_child, sibling, root, etc

• Implementation
• Because a binary tree has at most two children, we can keep direct pointers

to them

4/4/2017

9

Binary Tree Representation

Tuesday, April 4, 2017 Abdallah Karakra

Each node is

labeled as being

either

a left child or

a right child

 Maximum number of children

for each node is 2

Binary Tree Representation

Tuesday, April 4, 2017 Abdallah Karakra

Null

TreeMax number of node in each

level <= 2^L where

L=0,1,2,…,L-1

4/4/2017

10

Example: Expression Trees

• Leaves are operands (constants or variables)

• The internal nodes contain operators

• Will not be a binary tree if some operators are not binary

Constructing an Expression Tree

•An algorithm to convert a postfix expression into an
expression tree
• Read the expression one symbol at a time.

• If the symbol is an operand, create a one-node tree and push it onto a
stack.

• If the symbol is an operator, pop two trees T1 and T2 from the stack (T1
is popped first) and

• Form a new tree whose root is the operator and whose
left and right children are T2 and T1, respectively. This
new tree is then pushed onto the stack.

4/4/2017

11

Example

• Suppose the input is

a b + c d e + * *

• The first two symbols are operands, so we create one-node trees and
push them onto a stack.

• Next, a + is read, so two trees are popped, a new tree is formed, and
it is pushed onto the stack.

Example cont…

• Next, c, d, and e are read, and for each a one-node tree is created
and the corresponding tree is pushed onto the stack.

• Now a + is read, so two trees are merged.

4/4/2017

12

• Continuing, a * is read, so we pop two trees and form a new tree
with a * as root.

• Finally, the last symbol is read, two trees are merged, and the final
tree is left on the stack.

What about the time?

• Search ?

• Insert?

• Delete?

• …

4/4/2017

13

Binary Search Trees (BST)

•A data structure for efficient searching,
insertion and deletion

•Binary search tree property
•For every node X
•All the keys in its left

subtree are smaller than
the key value in X
•All the keys in its right

subtree are larger than the
key value in X

Binary Search Trees

A binary search tree Not a binary search tree

4/4/2017

14

Binary Search Trees

• Average depth of a node is O(log N)

• Maximum depth of a node is O(N)

The same set of keys may have different BSTs

Constructing a Binary Search Tree

Exercise. Given a sequence of numbers:

11, 6, 8, 19, 4, 10, 5, 17, 43, 49, 31

4/4/2017

15

Inorder Traversal of BST

• Inorder traversal of BST prints out all the keys in sorted order

Inorder: 2, 3, 4, 6, 7, 9, 13, 15, 17, 18, 20

BST Implementation

4/4/2017

16

BST Implementation

Searching BST

• If we are searching for 15, then we are done.

• If we are searching for a key < 15, then we should search in the left
subtree.

• If we are searching for a key > 15, then we should search in the right
subtree.

4/4/2017

17

Searching (Find)

Searching (Find)
• Find X: return a pointer to the node that has key X, or NULL if there is no

such node

• Time complexity: O(height of the tree)

4/4/2017

18

Searching (Find)

findMin/ findMax

• Goal: return the node containing the smallest (largest) key in the tree

• Algorithm: Start at the root and go left (right) as long as there is a left
(right) child. The stopping point is the smallest (largest) element

Recursive implementation of findMin:

Non-recursive implementation of findMax:

Time complexity = O(height of the tree)

4/4/2017

19

findMin/ findMax

• Goal: return the node containing the smallest (largest) key in the tree

• Algorithm: Start at the root and go left (right) as long as there is a left
(right) child. The stopping point is the smallest (largest) element

Recursive implementation

of findMin:

Time complexity = O(height of the tree)

Non-recursive implementation of findMax:

Insert

• The insertion procedure is quite similar to searching.
• Start at the root and recursively go down the tree searching for a location in

a BST to insert a new node.

• If the element to be inserted is already in the tree, we are done (we do not
insert duplicates). The new node will always replace a NULL reference.

Example: insert (7)

4/4/2017

20

Time complexity = O(height of the tree)

Insertion … Example

4/4/2017

21

Deletion

• When we delete a node, we need to consider how we take care of
the children of the deleted node.
• This has to be done such that the property of the search tree is maintained.

• Deletion is somewhat more tricky than insertion.

• There are several cases to consider. A node to be deleted may be:
1.not in a tree;
2.is a leaf;
3.has only one child;
4.has two children.

4/4/2017

22

Deletion under Different Cases

• Case 1: the node is a leaf
• Delete it immediately

• Case 2: the node has one child
• The procedure of deletion is identical to deleting a node from a linked list -

Adjust a pointer from the parent to bypass that node

Case 2: Example

4/4/2017

23

Deletion Case 3

• Case 3: the node has 2 children
• Replace the key of that node with the minimum element at the right subtree

• Delete that minimum element
• Has either no child or only right child because if it has a left child, that left child would

be smaller and would have been chosen. So invoke case 1 or 2.

• Time complexity = O(height of the tree)

Case 3: Example

4/4/2017

24

Delete implementation

