BIRZEIT UNIVERSITY

Faculty of Engineering and Technology L 34 i3 2w tgtta us

Computer Science Department wigul sl o te 5 ,31s

Sorting Algorithms

Compiled and Prepared by:

Sorting

Sorting is a process that organizes a collection of data into either ascending or
descending order.

An internal sortrequires that the collection of data fit entirely in the
computer’s main memory.

We can use an external sort when the collection of data cannot fit in the
computer’s main memory all at once but must reside in secondary storage such
as on a disk.

We will analyze only internal sorting algorithms.

Any significant amount of computer output is generally arranged in some
sorted order so that it can be interpreted.

Sorting also has indirect uses. An initial sort of the data can significantly
enhance the performance of an algorithm.

Majority of programming projects use a sort somewhere, and in many cases,
the sorting cost determines the running time.

A comparison-based sorting algorithm makes ordering decisions only on the
basis of comparisons.

5/28/2017

Sorting Algorithms

» There are many sorting algorithms, such as:
— Selection Sort
— Insertion Sort
— Bubble Sort
— Merge Sort
— Quick Sort
— Shell Srot

Selection Sort

« The list is divided into two sublists, sorted and wnsorted,
which are divided by an imaginary wall.

» We find the smallest element from the unsorted sublist and
swap it with the element at the beginning of the unsorted
data.

« After each selection and swapping, the imaginary wall
between the two sublists move one element ahead,
increasing the number of sorted elements and decreasing
the number of unsorted ones.

» Each time we move one element from the unsorted sublist
to the sorted sublist, we say that we have completed a sort
pass.

« A list of 7 elements requires n-1 passes to completely
rearrange the data.

5/28/2017

5/28/2017

Sorted Unsorted

23 78 45 8 32 56

8 78 45 23 32 56

8 23 45 78 32 56

8 23 32 78 45 56
1

8 |23 [32 |4 |78 |56
|

8 23 32 45 56 78

Original List

After pass 1

After pass 2

After pass 3

After pass 4

After pass 5

Example

[elalololo]sfa)

[elofsla]ofe)e]

[elalolofe)s]e]

[elofslafe]o)

1]2]6]o]af3)s 12

3

4

6

8 ()

[elo]slofa)e]s]

[elofsafe]a]o]

Selection Sort (cont.)

template <class Item>
void selectionSort(Item al], int n) {

}

for (int i = 0; 1 < n-1; i++) {
int min = i;
for (int j = i+l; j < n; J++)
if (alj] < almin]) min = j;
swap(ali]l, almin]);

}

template < class Object>
void swap(Object &lhs, Object &rhs)
{

}

Object tmp = lhs;
lhs = rhs;
rhs tmp;

Selection Sort -- Analysis

In general, we compare keys and move items (or exchange items)
in a sorting algorithm (which uses key comparisons).

= So, to analyze a sorting algorithm we should count the
number of key comparisons and the number of moves.

« Ignoring other operations does not affect our final result.

In selectionSort function, the outer for loop executes n-1 times.

» We invoke swap function once at each iteration.

=>» Total Swaps: n-1

=>» Total Moves: 3*(n-1) (Each swap has three moves)

5/28/2017

5/28/2017

Selection Sort — Analysis (cont.)

« The inner for loop executes the size of the unsorted part minus 1
(from 1 to n-1), and in each iteration we make one key
comparison.

=>» # of key comparisons = 1+2+...+n-1 = n*(n-1)/2
=> So, Selection sort is O(n?)

« The best case, the worst case, and the average case of the
selection sort algorithm are same. =» all of them are O(n?)

— This means that the behavior of the selection sort algorithm does not depend on the
initial organization of data.

— Since O(n?) grows so rapidly, the selection sort algorithm is appropriate only for
small n.

— Although the selection sort algorithm requires O(n?) key comparisons, it only
requires O(n) moves.

— A selection sort could be a good choice if data moves are costly but key
comparisons are not costly (short keys, long records).

Comparison of N, logN and N\
N O(LogN) __ O(N?)
16 4 256
64 6 4K
256 8 64K
1,024 10 1M
16,384 14 256M
131,072 17 16G
262,144 18 6.87E+10
524,288 19 2.74E+11
1,048,576 20 1.09E+12
1,073,741,824 30 1.15E+18

10

Insertion Sort

* Insertion sort is a simple sorting algorithm that is
appropriate for small inputs.

— Most common sorting technique used by card players.

« The list is divided into two parts: sorted and
unsorted.

* In each pass, the first element of the unsorted part
Is picked up, transferred to the sorted sublist, and
inserted at the appropriate place.

A list of nelements will take at most 77-1 passes to
sort the data.

11

Sorted Unsorted
23 78 45 8 32 56 Original List
23 78 45 8 32 56 After pass 1
23 45 78 8 32 56 After pass 2

8 23 45 78 32 56 Alter pass 3

8 23 32 45 78 56 After pass 4

8 23 |32 |45 |56 |78 Afterpass S

12

5/28/2017

Insertion Sort ... Example

. 4

13

Insertion Sort

input array

5 2 4 6 1 3

at each iteration, the array is divided in two sub-arrays:

left sub-array right sub-array
2 “i‘ @ 6 1 3
sorted) unsorted

14

5/28/2017

Insertion Sort... Example

(3) GE Excaaey
512 4 6 | 3 =% LA LR RN K
\ -/ - 4
Nl B .U N
/.—.\ 2 3 5 o
2 51(04) 6 1 3 [2ls[4]e[t[3]
_ ____>'/ \W
) J
, ("\ 1 2 3 415 6
2 4 1) 1T 3 BLTsehTs]
N N
(\\ 12 3 4 .fi|c»
2 4 5 6 |£§i/ 3 2[a[s]e|1[3
R TN ,
1 2 - 4 5 6 I\§_ J 1 4 5 '(j,wl
~__ | DT
T [CRACRY,
1 2 3 4 5 6
15
Insertion Sort Algorithm
void insertionSort (Item a[], int n)
{
for (int i = 1; 1 < n; i++)
{
Item tmp = a[i];
for (int j=i; j>0 && tmp < al[j-11; Jj--)
aljl = alj-11;
aljl = tmp;
}
}
16

5/28/2017

Insertion Sort — Analysis

Running time depends on not only the size of the array but also
the contents of the array.
Best-case: = O(n)

— Aurray is already sorted in ascending order.
— Inner loop will not be executed.

— The number of moves: 2*(n-1) = 0O(n)
— The number of key comparisons: (n-1) =» O(n)
Worst-case: = O(n?)

— Array is in reverse order:
— Inner loop is executed i-1 times, fori=2,3,...,n
— The number of moves: 2*(n-1)+(1+2+...+n-1)= 2*(n-1)+ n*(n-1)/2 = 0(n?)
— The number of key comparisons: (1+2+...+n-1)= n*(n-1)/2 > O(n?)
Average-case: = O(n?)
— We have to look at all possible initial data organizations.
So, Insertion Sort is O(n?)

Analysis of insertion sort

* Which running time will be used to characterize this

algorithm?
— Best, worst or average?

* Worst:

— Longest running time (this is the upper limit for the algorithm)
— Itis guaranteed that the algorithm will not be worse than this.

» Sometimes we are interested in average case. But there are

some problems with the average case.

— Itis difficult to figure out the average case. i.e. what is average
input?

— Are we going to assume all possible inputs are equally likely?
— In fact for most algorithms average case is same as the worst case.

18

5/28/2017

Bubble Sort

The list is divided into two sublists: sorted and
unsorted.

The smallest element is bubbled from the unsorted
list and moved to the sorted sublist.

After that, the wall moves one element ahead,
increasing the number of sorted elements and
decreasing the number of unsorted ones.

Each time an element moves from the unsorted
part to the sorted part one sort pass is completed.

Given a list of n elements, bubble sort requires up
to n-1 passes to sort the data.

19

Bubble Sort

23 78 45 8 32 56 Original List

8 23 78 45 32 56 After pass 1

8 23 32 78 45 56 After pass 2

8 23 32 45 78 56 Alter pass 3

8 23 32 45 56 78 After pass 4

20

5/28/2017

10

Bubble Sort Algorithm

template <class Item>
void bubleSort (Item a[], int n)
{

bool sorted = false;

int last = n-1;

for (int 1 = 0; (1 < last) && !sorted; i++)
sorted = true;
for (int j=last; j > 1i; j--)
if (alj-11 > aljl{
swap(aljl,alj-11);
sorted = false; // signal exchange

{

21

Bubble Sort — Analysis

Best-case: = O(n)

— Array is already sorted in ascending order.

— The number of moves: 0 = 0(1)
— The number of key comparisons: (n-1) =» O(n)

Worst-case: = O(n?)

— Array is in reverse order:

— Outer loop is executed n-1 times,

— The number of moves: 3*(1+2+...+n-1) = 3 * n*(n-1)/2

— The number of key comparisons: (1+2+...+n-1)= n*(n-1)/2
Average-case: = O(n?)

— We have to look at all possible initial data organizations.

So, Bubble Sort is O(n?)

> o(n)
> o(n?)

5/28/2017

11

Mergesort
Mergesort algorithm is one of two important divide-and-conquer
sorting algorithms (the other one is quicksort).
It is a recursive algorithm.
— Divides the list into halves,
— Sort each halve separately, and
— Then merge the sorted halves into one sorted array.

23

Mergesort - Example

theArray: | 8 | 1 | 4 | 3 | 2 | Divide the array in half

| 1 l 4 I 8 | I 2 | 3 | Sort the halves

Merge the halves:
a.1<2,50move 1from left half to tempArray
b. 4 > 2, so move 2 from right half to tempArray
¢ 4 >3, so move 3 from right half to tempArray
d. Right half is finished, so move rest of left
half to tempArray

Temporary array

tempArray: | 1 | 2 | 3 I 4 | 8 |
Copy temporary array back into
original array
Y Y Y | A
theArray: | 1 | 2 | 3 | 4 | 8 |

24

5/28/2017

12

Mergesort - Example

63915472

~zerge

45

merge

— 2497

Merge

const int MAX SIZE = maximum-number-of-items—-in-array;

void merge (DataType theArray([], int first, int mid, int last)
{

DataType tempArray[MAX SIZE]; // temporary array
int firstl = first; // beginning of first subarray
int lastl = mid; // end of first subarray
int first2 = mid + 1; // beginning of second subarray
int last2 = last; // end of second subarray
int index = firstl; // next available location in tempArray
for (; (firstl <= lastl) && (first2 <= last2); ++index) {
if (theArray([firstl] < theArray[first2]) {
tempArray[index] = theArray[firstl];
++firstl;
}
else {

tempArray[index] = theArray[first2];
++first2;

5/28/2017

13

Merge (cont.)

// finish off the first subarray, if necessary
for (; firstl <= lastl; ++firstl, ++index)
tempArray[index] = theArray[firstl];

// finish off the second subarray, if necessary
for (; first2 <= last2; ++first2, ++index)
tempArray[index] = theArray[first2];

// copy the result back into the original array
for (index = first; index <= last; ++index)
theArray[index] = tempArray[index];
} // end merge

Mergesort
void mergesort (DataType theArray[], int first, int last) {
if (first < last) {
int mid = (first + last)/2; // index of midpoint

mergesort (theArray, first, mid);

mergesort (theArray, mid+l, last);

// merge the two halves
merge (theArray, first, mid, last);
}

} // end mergesort

5/28/2017

14

5/28/2017

Mergesort — Example2

|38 |16 [27]39] 12| 27] N

> Recursive calls to mergesort

> Merge steps

| 12 | 16]3; |f2’7’| 38 | 39 |

~

29

Mergesort — Analysis of Merge

A worst-case instance of the merge step in mergesort

first mid last

theArray: ’ 1 | 2 ’ 8 l I 4 l 5 | 6 I Merge the halves:

a. 1<4,somaove 1 from theArray[first..mid] to tempArray

b. 2 <4, so move 2 from theArray[first..mid] t0 tempArray

€. 8 >4, 50 move 4 from theArray [mid+1..last] {0 tempArray

d. 8> 5, so move 5 from theArray [mid+1..last] t0 tempArray

R b c d oY f e. 8> 6, 50 move 6 from theaArray [mid+1..last] to tempArray
v f. theArray [mid+1..last] isfinished, so move 8 to tempArray

temparray: [1 [2 [4|5)6 8]

30

15

Mergesort — Analysis of Merge (cont.)
0 k-1 0 k-1

Merging two sorted arrays of size &

» Best-case:

— All the elements in the first array are smaller (or larger) than all the
elements in the second array.

— The number of moves: 2k + 2k
— The number of key comparisons: k
» Worst-case:
— The number of moves: 2k + 2k
— The number of key comparisons: 2k-1

31

Mergesort - Analysis
Levels of recursive calls to mergesort, given an array of eight items

Level 0: mergesort 8 items
Level 1: 2 calls to mergesort with 4
items each

Level 2: 4 calls to mergesort with 2
items each

Level 3: 8 calls to mergesort with 1
item each

32

5/28/2017

16

Mergesort - Analysis

2m level 0 : 1 merge (size 2m71)

_ m-1
2m 2 level 1 : 2 merges (size 2™2)

level 2 : 4 merges (size 2M3)
2m-2 2m-2 2m-2 2m-2

level m-1 : 2™ merges (size 2°)
0
ZOD DZ level m

33

Mergesort - Analysis

» Worst-case -

The number of key comparisons:
= 20%(2%2m-1-1) + 21%(2*%2m-2-1) + ., + 2m-1%(2%20-1)
=(@2m-1)+(2m-2) + ... + (2m—2m1) (mterms)

=m*2m — ni?
=m*2m-2m-1
Using m = log n

=n*log,n-n-1

= O (n *log,n)

34

5/28/2017

17

Mergesort — Analysis

» Mergesort is extremely efficient algorithm with respect

to time.
— Both worst case and average cases are O (n * log,n)

 But, mergesort requires an extra array whose size
equals to the size of the original array.

« If we use a linked list, we do not need an extra array
— But, we need space for the links
— And, it will be difficult to divide the list into half (O(n))

35

Shellsort Examples

Sort:18 32 12 5 38 33 16 2

8 Numbers to be sorted, Shell’s increment will be floor(n/2)

*floor(8/2) =» floor(4) =4
increment4: 1 2 3 4 (visualize underlining)

18 32 12 5 38 33 16 2

Step 1) Only look at 18 and 38 and sort in order ;
18 and 38 stays at its current position because they are in order.

Step 2) Only look at 32 and 33 and sort in order ;
32 and 33 stays at its current position because they are in order.

5/28/2017

18

Shellsort Examples

Sort:18 32 12 5 38 33 16 2

8 Numbers to be sorted, Shell’s increment will be floor(n/2)

*floor(8/2) = floor(4) = 4
increment 4. 1 2 3 4 (visualize underlining)

18 32 12 5 38 33 16 2

Step 3) Only look at 12 and 16 and sort in order ;
12 and 16 stays at its current position because they are in order.

Step 4) Only look at 5 and 2 and sort in order ;
2 and 5 need to be switched to be in order.

Shellsort Examples (con’t)

Sort:18 32 12 5 38 33 16 2
Resulting numbers after increment 4 pass:

18 32 12 2 38 33 16 5
* floor(4/2) =» floor(2) =2

increment2: 1 2

18 32 12 2 38 33 16 5
Step 1) Look at 18, 12, 38, 16 and sort them in their appropriate location:

12 32 16 2 18 33 38 5
Step 2) Look at 32, 2, 33, 5 and sort them in their appropriate location:
12 2 16 5 18 32 38 33

5/28/2017

19

Shellsort Examples (con’t)

Sort:18 32 12 5 38 33 16 2

2 5 12 16 18 32 33 38

The last increment or phase of Shellsort is basically an Insertion
Sort algorithm.

Shell Sort Code

int j, p, gap; comparable tmp;
for (gap = N/2; gap > 0; gap = gap/2)
for (p = gap; p < N ; p++)

{
tmp = a[pl’

for (j = p; j>=gap && tmp<a[j-gapl; j=j-gap)
al j 1 =al j - gap 1

af[j] = tmp;
}

5/28/2017

20

Increment Sequences (How to calculate The Gap)
1. Shell’s original sequence:

N/2,N/4, ..., 1 (repeatedly divide by 2).
2. Hibbard's increments:

1, 3, 7, .., 2x-1; k=1,2,...
3. Knuth's increments:

1, 4, 13,..,(3%-1)/2:k=1,2, ...
4. Sedgewick's increments:

1,5,19,41,109,...k=0,1, 2, ...
Interleaving 9 (4k—2K) + 1 and 2k*2 (2k*2 _3) + 1,

Shell Sort Analysis

Shellsort's worst-case performance using Hibbard's increments is
O(rP2).

The average performance is thought to be about O(7754)

The exact complexity of this algorithm is still being debated

for mid-sized data : nearly as well if not better than the faster (n
log n) sorts.

Animations:

5/28/2017

21

http://www.sorting-algorithms.com/shell-sort
http://www.cs.pitt.edu/~kirk/cs1501/animations/Sort2.html

Comparison of Sorting Algorithms

Selection sort
Bubble sort
Insertion sort
Mergesort
Quicksort
Radix sort
Treesort
Heapsort

Worst case

Average case

43

5/28/2017

22

