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1.1 Algorithms

Introduction

This chapter will familiarize you with the framework we shall use through
out the book to think about the design and analysis of algorithms. It is
self-contained, but it does include several references to material that will
be introduced in Part 1.

We begin with a discussion of computational problems in general and
of the algorithms needed to solve them, with the problem of sorting as our
running example. We introduce a "pseudocode" that should be familiar
to readers who have done computer programming to show how we shall
specify our algorithms. Insertion sort, a simple sorting algorithm, serves
as an initial example. We analyze the running time of insertion sort, intro
ducing a notation that focuses on how that time increases with the number
of items to be sorted. We also introduce the divide-and-conquer approach
to the design of algorithms and use it to develop an algorithm called merge
sort. We end with a comparison of the two sorting algorithms.

Informally, an algorithm is any well-defined computational procedure that
takes some value, or set of values, as input and produces some value, or
set of values, as output. An algorithm is thus a sequence of computational
steps that transform the input into the output.

We can also view an algorithm as a tool for solving a well-specified com
putationalproblem. The statement of the problem specifies in general terms
the desired input/output relationship. The algorithm describes a specific
computational procedure for achieving that input/output relationship.

We begin our study of algorithms with the problem of sorting a sequence
of numbers into nondecreasing order. This problem arises frequently in
practice and provides fertile ground for introducing many standard design
techniques and analysis tools. Here is how we formally define the sorting
problem:
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Input: A sequence of n numbers (at,a2, ... ,an).

Output: A permutation (reordering) (a~, al,...,a~) of the input sequence
such that a~ ::; al ::; ... ::; a~.

Given an input sequence such as (31,41,59,26,41,58), a sorting algorithm
returns as output the sequence (26,31,41,41,58,59). Such an input se
quence is called an instance of the sorting problem. In general, an instance
0/a problem consists of all the inputs (satisfying whatever constraints are
imposed in the problem statement) needed to compute a solution to the
problem.

Sorting is a fundamental operation in computer science (many programs
use it as an intermediate step), and as a result a large number of good
sorting algorithms have been developed. Which algorithm is best for a
given application depends on the number of items to be sorted, the extent
to which the items are already somewhat sorted, and the kind of storage
device to be used: main memory, disks, or tapes.

An algorithm is said to be correct if, for every input instance, it halts
with the correct output. We say that a correct algorithm solves the given
computational problem. An incorrect algorithm might not halt at all on
some input instances, or it might halt with other than the desired answer.
Contrary to what one might expect, incorrect algorithms can sometimes be
useful, if their error rate can be controlled. We shall see an example of this
in Chapter 33 when we study algorithms for finding large prime numbers.
Ordinarily, however, we shall be concerned only with correct algorithms.

An algorithm can be specified in English, as a computer program, or
even as a hardware design. The only requirement is that the specification
must provide a precise description of the computational procedure to be
followed.

In this book, we shall typically describe algorithms as programs written
in a pseudocode that is very much like C, Pascal, or AlgoL If you have
been introduced to any of these languages, you should have little trouble
reading our algorithms. What separates pseudocode from "real" code is
that in pseudocode, we employ whatever expressive method is most clear
and concise to specify a given algorithm. Sometimes, the clearest method
is English, so do not be surprised if you come across an English phrase
or sentence embedded within a section of "real" code. Another differ
ence between pseudocode and real code is that pseudocode is not typically
concerned with issues of software engineering. Issues of data abstraction,
modularity, and error handling are often ignored in order to convey the
essence of the algorithm more concisely.

Insertion sort

We start with insertion sort, which is an efficient algorithm for sorting a
small number of elements. Insertion sort works the way many people sort
a bridge or gin rummy hand. We start with an empty left hand and the
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Figure 1.1 Sorting a hand of cards using insertion son .

3

cards face down on the table. We then remove one ca rd at a time from the
table and insert it into the correct posi tio n in the left hand . To find the
correct posi tio n fo r a card, we compare it with each of the cards already
in the hand, from right to left , as illustrated in Figure 1.1.

Our pseu docode for insert ion sort is present ed as a procedure called
INSERTION-SoRT, which takes as a parameter an array All .. n ) containing
a sequence of length n that is to be sorted . (In the code, the number n
of elements in A is denoted by lenglh[A] .) The input num bers are sorted
in place: the numbers are rearranged within the array A , with at most
a constant number of them stored ou tside the array at any time. The
input array A contains the sorted output sequence when INSERTION-SORT
is finished .

INSERTtON-SORT(A)

I for j - 2 10 length[A]
2 do key - Ali]
3 l> Insert A(j] into the sorted sequence AI I .. j - I).
4 i -j - l
5 while i > 0 and Ali] > key
6 do Ali + I] r- Ali]
7 i -i - I
8 A[i + l ] _key

Figure 1.2 shows how this algorithm works for A = (5, 2, 4, 6, 1. 3). The
index j indica tes the "current card" be ing inserted into the hand. Array
elements A[I .. j - I) constitute the curren tly sorted hand, and eleme nts
A U + I . . n] correspond to the pile of cards still on the table. The index j
moves left to right through the array. At each iteration of the "outer" for
loop, the element AU) is picked out of the array (line 2). Th en, starting in
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~
4 6 3

2 t 5 cy 6 3

2 4 5 @ 3

t 2 4 5 6 SP 3

2 t 4 5 6 cp
2 3 4 5 6 done

Figure 1.2 The operation of INSERTION-SORT on the array A = (5,2,4,6, I, 3).
The position of index j is indicated by a circle.

posinon j 1, elements are successively moved one position to the right
until the proper position for A[j] is found (lines 4-7), at which point it is
inserted (line 8).

Pseudocode conventions

We use the following conventions in our pseudocode.

1. Indentation indicates block structure. For example, the body of the
for loop that begins on line 1 consists of lines 2-8, and the body of
the while loop that begins on line 5 contains lines 6-7 but not line 8.
Our indentation style applies to if-then-else statements as well. Using
indentation instead of conventional indicators of block structure, such
as begin and end statements, greatly reduces clutter while preserving, or
even enhancing, clarity. I

2. The looping constructs while, for, and repeat and the conditional con
structs if, then, and else have the the same interpretation as in Pascal.

3. The symbol "[>" indicates that the remainder of the line is a comment.

4. A multiple assignment of the form i f- j f- e assigns to both variables
i and j the value of expression e; it should be treated as equivalent to
the assignment j +- e followed by the assignment i f- j.

5. Variables (such as i, i. and key) are local to the given procedure. We
shall not use global variables without explicit indication.

I In real programming languages, it is generally not advisable to use indentation alone to
indicate block structure, since levels of indentation are hard to determine when code is split
across pages.
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6. Array elements are accessed by specifying the array name followed by
the index in square brackets. For example, A[i] indicates the ith element
of the array A. The notation "'.." is used to indicate a range of values
within an array. Thus, A{ I .. j] indicates the subarray of A consisting
of elements A[ I], A[2], . . . , A[j].

7. Compound data are typically organized into objects, which are com
prised of attributes or fields. A particular field is accessed using the field
name followed by the name of its object in square brackets. For exam
ple, we treat an array as an object with the attribute length indicating
how many elements it contains. To specify the number of elements in
an array A, we write length[A]. Although we use square brackets for
both array indexing and object attributes, it will usually be clear from
the context which interpretation is intended.
A variable representing an array or object is treated as a pointer to the
data representing the array or object. For all fields f of an object x,
setting y - x causes fry] = fIx]. Moreover, if we now set fIx] - 3,
then afterward not only is fIx] = 3, but fry] = 3 as well. In other
words, x and y point to ("are") the same object after the assignment
y-x.
Sometimes, a pointer will refer to no object at all. In this case, we give
it the special value NIL.

8. Parameters are passed to a procedure by value: the called procedure
receives its own copy of the parameters, and if it assigns a value to a
parameter, the change is not seen by the calling routine. When objects
are passed, the pointer to the data representing the object is copied, but
the object's fields are not. For example, if x is a parameter of a called
procedure, the assignment x <- y within the called procedure is not
visible to the calling procedure. The assignment fIx] <- 3, however, is
visible.

Exercises

1.1-1
Using Figure 1.2 as a model, illustrate the operation of INSERTION-SORT
on the array A = (31,41,59,26,41,58).

1.1-2
Rewrite the INSERTION-SORT procedure to sort into nonincreasing instead
of nondecreasing order.

1.1-3
Consider the searching problem:
Input: A sequence of n numbers A = (al,a2, ... ,an ) and a value v.

Output: An index i such that v A[i] or the special value NIL if v does
not appear in A.
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Write pseudocode for linear search, which scans through the sequence,
looking for v.

1.1-4
Consider the problem of adding two n-bit binary integers, stored in two
n-element arrays A and B. The sum of the two integers should be stored
in binary form in an (n + I)-element array C. State the problem formally
and write pseudocode for adding the two integers.

1.2 Analyzing algorithms

Analyzing an algorithm has come to mean predicting the resources that the
algorithm requires. Occasionally, resources such as memory, communica
tion bandwidth, or logic gates are of primary concern, but most often it is
computational time that we want to measure. Generally, by analyzing sev
eral candidate algorithms for a problem, a most efficient one can be easily
identified. Such analysis may indicate more than one viable candidate, but
several inferior algorithms are usually discarded in the process.

Before we can analyze an algorithm, we must have a model of the imple
mentation technology that will be used, including a model for the resources
of that technology and their costs. For most of this book, we shall assume a
generic one-processor, random-access machine (RAM) model of computa
tion as our implementation technology and understand that our algorithms
will be implemented as computer programs. In the RAM model, instruc
tions are executed one after another, with no concurrent operations. In
later chapters, however, we shall have occasion to investigate models for
parallel computers and digital hardware.

Analyzing even a simple algorithm can be a challenge. The mathematical
tools required may include discrete combinatorics, elementary probability
theory, algebraic dexterity, and the ability to identify the most significant
terms in a formula. Because the behavior of an algorithm may be different
for each possible input, we need a means for summarizing that behavior
in simple, easily understood formulas.

Even though we typically select only one machine model to analyze a
given algorithm, we still face many choices in deciding how to express
our analysis. One immediate goal is to find a means of expression that is
simple to write and manipulate, shows the important characteristics of an
algorithm's resource requirements, and suppresses tedious details.

Analysis of insertion sort

The time taken by the INSERTION-SORT procedure depends on the input:
sorting a thousand numbers takes longer than sorting three numbers. More
over, INSERTION-SORT can take different amounts of time to sort two input
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sequences of the same size depending on how nearly sorted they already
are. In general, the time taken by an algorithm grows with the size of the
input, so it is traditional to describe the running time of a program as a
function of the size of its input. To do so, we need to define the terms
"running time" and "size of input" more carefully.

The best notion for inputsizedepends on the problem being studied. For
many problems, such as sorting or computing discrete Fourier transforms,
the most natural measure is the number ofitems in the input-s-iot example,
the array size n for sorting. For many other problems, such as multiplying
two integers, the best measure of input size is the total number 0/ bits
needed to represent the input in ordinary binary notation. Sometimes, it
is more appropriate to describe the size of the input with two numbers
rather than one. For instance, if the input to an algorithm is a graph, the
input size can be described by the numbers of vertices and edges in the
graph. We shall indicate which input size measure is being used with each
problem we study.

The running time of an algorithm on a particular input is the number
of primitive operations or "steps" executed. It is convenient to define the
notion of step so that it is as machine-independent as possible. For the
moment, let us adopt the following view. A constant amount of time
is required to execute each line of our pseudocode. One line may take
a different amount of time than another line, but we shall assume that
each execution of the ith line takes time ci, where Ci is a constant. This
viewpoint is in keeping with the RAM model, and it also reflects how the
pseudocode would be implemented on most actual computers.?

In the following discussion, our expression for the running time of
INSERTION-SORT will evolve from a messy formula that uses all the state
ment costs c, to a much simpler notation that is more concise and more
easily manipulated. This simpler notation will also make it easy to deter
mine whether one algorithm is more efficient than another.

We start by presenting the INSERTION-SORT procedure with the time
"cost" of each statement and the number of times each statement is ex
ecuted. For each j = 2,3, ... , n, where n = length[A], we let tj be the
number of times the while loop test in line 5 is executed for that value
of j. We assume that comments are not executable statements, and so
they take no time.

2There are some subtleties here. Computational steps that we specify in English are often
variants of a procedure that requires more than just a constant amount of time. For example,
later in this book we might say "sort the points by x-coordinate, n which, as we shall see, takes
more than a constant amount of time, Also, note that a statement that calls a subroutine takes
constant time, though the subroutine, once invoked, may take more. That is, we separate
the process of ctlUin8 the subroutine-passing parameters to it, etc.-from the process of
eucllting the subroutine.
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INSERTION-SORT(A) cost

1 for j +- 2 to length[A] CI
2 do key +- AU] C2
3 e- Insert A[j] into the sorted

t> sequence A[l .. j - 1]. 0
4 i +- j - I C4
5 while i > 0 and A[i] > key C5
6 do AU + I] +- A[i] C6
7 i +- i-I C7

8 A[i + 1] +- key C8

times

n
n - I

n-l
n-l

L~=;2 t,
L~=2(tJ - 1)
Lj=2(tj - I)
n 1

The running time of the algorithm is the sum of running times for each
statement executed; a statement that takes c, steps to execute and is exe
cuted n times will contribute c.n to the total running time.' To compute
T(n), the running time of INSERTION-SORT, we sum the products of the
cost and times columns, obtaining

n n

T(n) = cln + c2(n 1) + c4(n - 1) + C5 L tj + C6 LUj 1)
j=2 j=2

n

+ C7 L (t j - 1) + C8(n 1).
j=2

Even for inputs of a given size, an algorithm's running time may depend
on which input of that size is given. For example, in INSERTION-SORT, the
best case occurs if the array is already sorted. For each j 2,3, ... , n, we
then find that AU] :::; key in line 5 when i has its initial value of j - 1.
Thus t, = 1 for j = 2,3, ... , n, and the best-case running time is

T(n) cln+c2(n-l)+c4(n 1)+c5(n-I)+cg(n-l)

= (CI + C2 + C4 + C5 + cg)n - (C2 + C4 + C5 + C8) .

This running time can be expressed as an + b for constants a and b that
depend on the statement costs Ci; it is thus a linear function of n.

If the array is in reverse sorted order-that is, in decreasing order-the
worst case results. We must compare each element AU] with each element
in the entire sorted subarray A[I .. j - 1], and so tj = j for j = 2,3, ... , n.
Noting that

~ j = n(n + 1) _ I
L....J 2
]=2

and

3This characteristic does not necessarily hold for a resource such as memory. A statement
that references m words of memory and is executed n times does not necessarily consume
mn words of memory in total.
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n

:L(j 1) = -'-::,...---;-
j=2

9

=

T(n) =

(we shall review these summations in Chapter 3), we find that in the worst
case, the running time of INSERTION-SORT is

cln +c2(n -1) +c4(n - 1) +C5 (n(n 2+ 1) -1)

+C6 (n(n
2
- 1) ) +C7 (n(n

2
- 1)) +c8(n 1)

(
C5 C6 C7) 2 ( C5 C6 C7 )2" + 2" + 2" n + CI + C2 + C4 + 2" - 2" - 2" + C8 n

- (C2 + C4 + C5 + C8) •

This worst-case running time can be expressed as an2+bn+c for constants
a, b, and c that again depend on the statement costs Ci; it is thus a quadratic
function of n.

Typically, as in insertion sort, the running time of an algorithm is fixed
for a given input, although in later chapters we shall see some interesting
"randomized" algorithms whose behavior can vary even for a fixed input.

Worst-case and average-case analysis

In our analysis of insertion sort, we looked at both the best case, in which
the input array was already sorted, and the worst case, in which the input
array was reverse sorted. For the remainder of this book, though, we shall
usually concentrate on finding only the worst-case running time, that is, the
longest running time for any input of size n. We give three reasons for
this orientation.

• The worst-case running time of an algorithm is an upper bound on the
running time for any input. Knowing it gives us a guarantee that the
algorithm will never take any longer. We need not make some educated
guess about the running time and hope that it never gets much worse.

• For some algorithms, the worst case occurs fairly often. For example, in
searching a database for a particular piece of information, the searching
algorithm's worst case will often occur when the information is not
present in the database. In some searching applications, searches for
absent information may be frequent.

• The "average case" is often roughly as bad as the worst case. Suppose
that we randomly choose n numbers and apply insertion sort. How long
does it take to determine where in subarray A[I .. j I] to insert element
A[j]? On average, half the elements in A[I .. j I] are less than AU],
and half the elements are greater. On average, therefore, we check half
of the subarray A[I .. j 1], so tj j12. If we work out the resulting
average-case running time, it turns out to be a quadratic function of the
input size, just like the worst-case running time.
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In some particular cases, we shall be interested in the average-case or
expected running time of an algorithm. One problem with performing
an average-case analysis, however, is that it may not be apparent what
constitutes an "average" input for a particular problem. Often, we shall
assume that all inputs of a given size are equally likely. In practice, this
assumption may be violated, but a randomized algorithm can sometimes
force it to hold.

Order of growth

We have used some simplifying abstractions to ease our analysis of the
INSERTION-SORT procedure. First, we ignored the actual cost of each state
ment, using the constants c, to represent these costs. Then, we observed
that even these constants give us more detail than we really need: the
worst-case running time is an2 + bn + c for some constants a, b, and c
that depend on the statement costs c.. We thus ignored not only the actual
statement costs, but also the abstract costs c..

We shall now make one more simplifying abstraction. It is the rate
of growth, or order of growth, of the running time that really interests
us. We therefore consider only the leading term of a formula (e.g., an 2 ) ,

since the lower-order terms are relatively insignificant for large n. We also
ignore the leading term's constant coefficient, since constant factors are less
significant than the rate of growth in determining computational efficiency
for large inputs. Thus, we write that insertion sort, for example, has a
worst-case running time of a(n2 ) (pronounced "theta of n-squared"). We
shall use a-notation informally in this chapter; it will be defined precisely
in Chapter 2.

We usually consider one algorithm to be more efficient than another if
its worst-case running time has a lower order of growth. This evaluation
may be in error for small inputs, but for large enough inputs a a(n 2 )

algorithm, for example, will run more quickly in the worst case than a
8(n 3 ) algorithm.

Exercises

1.2-1
Consider sorting n numbers stored in array A by first finding the smallest
element of A and putting it in the first entry of another array B. Then
find the second smallest element of A and put it in the second entry of B.
Continue in this manner for the n elements of A. Write pseudocode for
this algorithm, which is known as selection sort. Give the best-case and
worst-case running times of selection sort in a-notation.
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1.2-2
Consider linear search again (see Exercise 1.1-3). How many elements of
the input sequence need to be checked on the average, assuming that the
element being searched for is equally likely to be any element in the array?
How about in the worst case? What are the average-case and worst-case
running times of linear search in a-notation? Justify your answers.

1.2-3
Consider the problem of determining whether an arbitrary sequence (Xl,
X2, ••• , xn ) of n numbers contains repeated occurrences of some number.
Show that this can be done in 8(n lgn) time, where 19 n stands for IOg2 n.

1.2-4
Consider the problem of evaluating a polynomial at a point. Given n
coefficients ao,al,.'" an-l and a real number X, we wish to compute
'L7:o1 a.x', Describe a straightforward 8(n2)-time algorithm for this prob
lem. Describe a 8(nj-time algorithm that uses the following method
(called Horner's rule) for rewriting the polynomial:

n-I
L a.x' = (... (an-Ix + an-2)x + ... + adx + ao .
i=O

1.2-5
Express the function n3/ 1000 100n2 lOOn + 3 in terms of a-notation.

1.2-6
How can we modify almost any algorithm to have a good best-case running
time?

1.3 Designing algorithms

There are many ways to design algorithms. Insertion sort uses an incremen
tal approach: having sorted the subarray A[ I .. j I), we insert the single
element AU] into its proper place, yielding the sorted subarray A[I .. j).

In this section, we examine an alternative design approach, known as
"divide-and-conquer." We shall use divide-and-conquer to design a sorting
algorithm whose worst-case running time is much less than that of insertion
sort. One advantage of divide-and-conquer algorithms is that their running
times are often easily determined using techniques that will be introduced
in Chapter 4.
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1.3.1 The divide-and-conquer approach

Many useful algorithms are recursive in structure: to solve a given problem,
they call themselves recursively one or more times to deal with closely re
lated subproblems. These algorithms typically follow a divide-and-conquer
approach: they break the problem into several subproblems that are similar
to the original problem but smaller in size, solve the subproblems recur
sively, and then combine these solutions to create a solution to the original
problem.

The divide-and-conquer paradigm involves three steps at each level of
the recursion:

Divide the problem into a number of subproblems.

Conquer the subproblems by solving them recursively. If the subprob
lem sizes are small enough, however, just solve the subproblems in a
straightforward manner.

Combine the solutions to the subproblems into the solution for the original
problem.

The merge sort algorithm closely follows the divide-and-conquer para
digm. Intuitively, it operates as follows.

Divide: Divide the n-element sequence to be sorted into two subsequences
of nl2 elements each.

Conquer: Sort the two subsequences recursively using merge sort.

Combine: Merge the two sorted subsequences to produce the sorted an-
swer.

We note that the recursion "bottoms out" when the sequence to be sorted
has length 1, in which case there is no work to be done, since every se
quence of length 1 is already in sorted order.

The key operation of the merge sort algorithm is the merging of two
sorted sequences in the "combine" step. To perform the merging, we use
an auxiliary procedure MERGE(A,p, q, r), where A is an array and p, q,
and r are indices numbering elements of the array such that p S; q < r.
The procedure assumes that the subarrays A[p .. q] and A[q + I .. r] are in
sorted order. It merges them to form a single sorted subarray that replaces
the current subarray A[p .. r].

Although we leave the pseudocode as an exercise (see Exercise 1.3-2), it
is easy to imagine a MERGE procedure that takes time 8(n), where n =
r p + 1 is the number of elements being merged. Returning to our card
playing motif, suppose we have two piles of cards face up on a table. Each
pile is sorted, with the smallest cards on top. We wish to merge the two
piles into a single sorted output pile, which is to be face down on the table.
Our basic step consists of choosing the smaller of the two cards on top of
the face-up piles, removing it from its pile (which exposes a new top card),
and placing this card face down onto the output pile. We repeat this step
until one input pile is empty, at which time we just take the remaining
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input pile and place it face down onto the output pile. Computationally,
each basic step takes constant time, since we are checking just two top
cards. Since we perform at most n basic steps, merging takes 8(n) time.

We can now use the MERGE procedure as a subroutine in the merge sort
algorithm. The procedure MERGE-SORT(A,p, r) sorts the elements in the
subarray A[p .. r]. If p ~ r, the subarray has at most one element and is
therefore already sorted. Otherwise, the divide step simply computes an
index q that partitions A[p .. r] into two subarrays: A[p .. q], containing
rn/21 elements, and A[q + 1 .. r], containing Ln/2J elements."

MERGE-SORT(A,p, r)

1 ifp<r
2 then q <- L(p+ r)/2J
3 MERGE-SORT(A,p, q)
4 MERGE-SORT(A, q + 1, r)
5 MERGE(A,p,q, r)

To sort the entire sequence A (A[1], A[2], ... , A[n]), we call MERGE
SORT(A, 1, length[A]), where once again length[A] n. If we look at the
operation of the procedure bottom-up when n is a power of two, the al
gorithm consists of merging pairs of l-item sequences to form sorted se
quences of length 2, merging pairs of sequences of length 2 to form sorted
sequences of length 4, and so on, until two sequences of length n /2 are
merged to form the final sorted sequence of length n. Figure 1.3 illustrates
this process.

1.3.2 Analyzing divide-and-conquer algorithms

When an algorithm contains a recursive call to itself, its running time can
often be described by a recurrence equation or recurrence, which describes
the overall running time on a problem of size n in terms of the running
time on smaller inputs. We can then use mathematical tools to solve the
recurrence and provide bounds on the performance of the algorithm.

A recurrence for the running time of a divide-and-conquer algorithm is
based on the three steps of the basic paradigm. As before, we let T(n)
be the running time on a problem of size n, If the problem size is small
enough, say n ~ c for some constant c, the straightforward solution takes
constant time, which we write as 8( I). Suppose we divide the problem
into a subproblems, each of which is 1/b the size of the original. If we
take D(n) time to divide the problem into subproblems and C(n) time to
combine the solutions to the subproblems into the solution to the original
problem, we get the recurrence

4The expression [x] denotes the least integer greater than or equal to x, and lxJ denotes the
greatest integer less than or equal to x. These notations are defined in Chapter 2.
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Figure 1.3 The operation of merge sort on the array A (5,2, 4, 6, I, 3, 2, 6). The
lengths of the sorted sequences being merged increase as the algorithm progresses
from bottom to top.

{
8 ( 1)

T(n) = aT(nlb) + D(n) + C(n)
if n ::::; c ,
otherwise.

In Chapter 4, we shall see how to solve common recurrences of this form.

Analysis of merge sort

Although the pseudocode for MERGE-SORT works correctly when the num
ber of elements is not even, our recurrence-based analysis is simplified if
we assume that the original problem size is a power of two. Each divide
step then yields two subsequences of size exactly n12. In Chapter 4, we
shall see that this assumption does not affect the order of growth of the
solution to the recurrence.

We reason as follows to set up the recurrence for T(n), the worst-case
running time of merge sort on n numbers. Merge sort on just one element
takes constant time. When we have n > I elements, we break down the
running time as follows.

Divide: The divide step just computes the middle of the subarray, which
takes constant time. Thus, D(n) = 8(1).

Conquer: We recursively solve two subproblems, each of size n12, which
contributes 2T(nI2) to the running time.

Combine: We have already noted that the MERGE procedure on an n
element subarray takes time 8(n), so C(n) = 8(n).
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When we add the functions D(n) and C(n) for the merge sort analysis,
we are adding a function that is 8(n) and a function that is 8( 1). This
sum is a linear function of n, that is, 8(n). Adding it to the 2T(n/2) term
from the "conquer" step gives the recurrence for the worst-case running
time T(n) of merge sort:

{
8( 1) if n = 1 ,

T(n) 2T(n/2) + 8(n) if n > 1 .

In Chapter 4, we shall show that T(n) is 8(nlgn), where Ign stands for
10g2 n. For large enough inputs, merge sort, with its e(n 19n) running time,
outperforms insertion sort, whose running time is 8(n 2 ) , in the worst case.

Exercises

1.3-1
Using Figure 1.3 as a model, illustrate the operation of merge sort on the
array A = (3,41,52,26,38,57,9,49).

1.3-2
Write pseudocode for MERGE(A,p, q, r).

1.3-3
Use mathematical induction to show that the solution of the recurrence

T(n) = {;T(n/2) + n

is T(n) = n 19n.

if n = 2,
if n = 2k,k > 1

1.3-4
Insertion sort can be expressed as a recursive procedure as follows. In
order to sort A [1 .. n], we recursively sort A [1 .. n 1] and then insert A [n]
into the sorted array A[ 1.. n 1]. Write a recurrence for the running time
of this recursive version of insertion sort.

1.3-5
Referring back to the searching problem (see Exercise 1.1-3), observe that
if the sequence A is sorted, we can check the midpoint of the sequence
against v and eliminate half of the sequence from further consideration.
Binary search is an algorithm that repeats this procedure, halving the size
of the remaining portion of the sequence each time. Write pseudocode,
either iterative or recursive, for binary search. Argue that the worst-case
running time of binary search is 8(lg n).

1.3-6
Observe that the while loop of lines 5-7 of the INSERTION-SORT procedure
in Section 1.1 uses a linear search to scan (backward) through the sorted
subarray A[ 1.. j - 1]. Can we use a binary search (see Exercise 1.3-5)
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instead to improve the overall worst-case running time of insertion sort to
8(nlgn)?

1.3-7 *
Describe a 8(n 19n)-time algorithm that, given a set S of n real numbers
and another real number x, determines whether or not there exist two
elements in S whose sum is exactly x.

A good algorithm is like a sharp knife-it does exactly what it is supposed
to do with a minimum amount of applied effort. Using the wrong algo
rithm to solve a problem is like trying to cut a steak with a screwdriver:
you may eventually get a digestible result, but you will expend consider
ably more effort than necessary, and the result is unlikely to be aesthetically
pleasing.

Algorithms devised to solve the same problem often differ dramatically
in their efficiency. These differences can be much more significant than
the difference between a personal computer and a supercomputer. As an
example, let us pit a supercomputer running insertion sort against a small
personal computer running merge sort. They each must sort an array of
one million numbers. Suppose the supercomputer executes 100 million
instructions per second, while the personal computer executes only one
million instructions per second. To make the difference even more dra
matic, suppose that the world's craftiest programmer codes insertion sort
in machine language for the supercomputer, and the resulting code re
quires 2n2 supercomputer instructions to sort n numbers. Merge sort, on
the other hand, is programmed for the personal computer by an average
programmer using a high-level language with an inefficient compiler, with
the resulting code taking 50n 19 n personal computer instructions. To sort
a million numbers, the supercomputer takes

2 . (106 f instructions
108 . . / d = 20,000 seconds ss 5.56 hours,mstructions secon

while the personal computer takes

50· 1061g 106 instructions .
106 . • / d::::; 1,000 seconds se 16.67 minutes .

instructions secon

By using an algorithm whose running time has a lower order of growth,
even with a poor compiler, the personal computer runs 20 times faster
than the supercomputer!

This example shows that algorithms, like computer hardware, are a tech
nology. Total system performance depends on choosing efficient algorithms
as much as on choosing fast hardware. Just as rapid advances are being
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Problems

made in other computer technologies, they are being made in algorithms
as well.

Exercises

1.4-1
Suppose we are comparing implementations of insertion sort and merge
sort on the same machine. For inputs of size n, insertion sort runs in
8n2 steps, while merge sort runs in 64n lg n steps. For which values of n
does insertion sort beat merge sort? How might one rewrite the merge sort
pseudocode to make it even faster on small inputs?

1.4-2
What is the smallest value of n such that an algorithm whose running time
is 100n 2 runs faster than an algorithm whose running time is 2n on the
same machine?

1-1 Comparison of running times
For each function !(n) and time t in the following table, determine the
largest size n of a problem that can be solved in time t, assuming that the
algorithm to solve the problem takes !(n) microseconds.

1 1 1 1 1 1 1
second minute hour day month year century

lg n

vn
n

nlgn

n2

n3

2n

n!

1-2 Insertion sort on small arrays in merge sort
Although merge sort runs in 8(n lgn) worst-case time and insertion sort
runs in 8(n 2 ) worst-case time, the constant factors in insertion sort make it
faster for small n. Thus, it makes sense to use insertion sort within merge
sort when subproblems become sufficiently small. Consider a modification
to merge sort in which nIk sublists of length k are sorted using insertion
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sort and then merged using the standard merging mechanism, where k is
a value to be determined.

a. Show that the n / k sublists, each of length k, can be sorted by insertion
sort in 8(nk) worst-case time.

b. Show that the sublists can be merged in 8(n Ig(n/k)) worst-case time.

c. Given that the modified algorithm runs in 8(nk + n 19(n / k)) worst-case
time, what is the largest asymptotic (8-notation) value of k as a function
of n for which the modified algorithm has the same asymptotic running
time as standard merge sort?

d. How should k be chosen in practice?

1-3 Inversions
Let A[l .. nJ be an array of n distinct numbers. If i < j and A[iJ > A[j],
then the pair (i, j) is called an inversion of A.

a. List the five inversions of the array (2,3,8,6, I}.

b. What array with elements from the set {I, 2, ... , n} has the most inver
sions? How many does it have?

c. What is the relationship between the running time of insertion sort and
the number of inversions in the input array? Justify your answer.

d. Give an algorithm that determines the number of inversions in any
permutation on n elements in 8(nlgn) worst-case time. (Hint: Modify
merge sort.)

There are many excellent texts on the general topic of algorithms, including
those by Aho, Hopcroft, and Ullman [4, 5J, Baase [14J, Brassard and Brat
ley [33J, Horowitz and Sahni [105J, Knuth [121, 122, 123], Manber [142],
Mehlhorn [144, 145, 146], Purdom and Brown [164], Reingold, NievergeIt,
and Deo [167], Sedgewick [175], and Wilf [201]. Some of the more prac
tical aspects of algorithm design are discussed by Bentley [24, 25J and
Gonnet [90J.

In 1968, Knuth published the first of three volumes with the general
title The Art of Computer Programming [121, 122, 123J. The first vol
ume ushered in the modern study of computer algorithms with a focus on
the analysis of running time, and the full series remains an engaging and
worthwhile reference for many of the topics presented here. According to
Knuth, the word "algorithm" is derived from the name "al-Khowarizmi,"
a ninth-century Persian mathematician.
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Aho, Hopcroft, and Ullman [4] advocated the asymptotic analysis of
algorithms as a means of comparing relative performance. They also pop
ularized the use of recurrence relations to describe the running times of
recursive algorithms.

Knuth [123] provides an encyclopedic treatment of many sorting algo
rithms. His comparison of sorting algorithms (page 381) includes exact
step-counting analyses, like the one we performed here for insertion sort.
Knuth's discussion of insertion sort encompasses several variations of the
algorithm. The most important of these is Shell's sort, introduced by D. L.
Shell, which uses insertion sort on periodic subsequences of the input to
produce a faster sorting algorithm.

Merge sort is also described by Knuth. He mentions that a mechanical
collator capable of merging two decks of punched cards in a single pass was
invented in 1938. J. von Neumann, one of the pioneers of computer sci
ence, apparently wrote a program for merge sort on the EDVAC computer
in 1945.



I Mathematical Foundations



Introduction

The analysis of algorithms often requires us to draw upon a body of math
ematical tools. Some of these tools are as simple as high-school algebra,
but others, such as solving recurrences, may be new to you. This part of
the book is a compendium of the methods and tools we shall use to analyze
algorithms. It is organized primarily for reference, with a tutorial flavor
to some of the topics.

We suggest that you not try to digest all of this mathematics at once.
Skim the chapters in this part to see what material they contain. You can
then proceed directly to the chapters that focus on algorithms. As you
read those chapters, though, refer back to this part whenever you need
a better understanding of the tools used in the mathematical analyses.
At some point, however, you will want to study each of these chapters
in its entirety, so that you have a firm foundation in the mathematical
techniques.

Chapter 2 precisely defines several asymptotic notations, an example of
which is the a-notation that you met in Chapter 1. The rest of Chapter 2
is primarily a presentation of mathematical notation. Its purpose is more
to ensure that your use of notation matches that in this book than to teach
you new mathematical concepts.

Chapter 3 offers methods for evaluating and bounding summations,
which occur frequently in the analysis of algorithms. Many of the for
mulas in this chapter can be found in any calculus text, but you will find
it convenient to have these methods compiled in one place.

Methods for solving recurrences, which we used to analyze merge sort in
Chapter 1 and which we shall see many times again, are given in Chapter 4.
One powerful technique is the "master method," which can be used to
solve recurrences that arise from divide-and-conquer algorithms. Much
of Chapter 4 is devoted to proving the correctness of the master method,
though this proof may be skipped without harm.
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Chapter 5 contains basic definitions and notations for sets, relations,
functions, graphs, and trees. This chapter also gives some basic properties
of these mathematical objects. This material is essential for an under
standing of this text but may safely be skipped if you have already had a
discrete mathematics course.

Chapter 6 begins with elementary principles of counting: permutations,
combinations, and the like. The remainder of the chapter contains defini
tions and properties of basic probability. Most of the algorithms in this
book require no probability for their analysis, and thus you can easily omit
the latter sections of the chapter on a first reading, even without skimming
them. Later, when you encounter a probabilistic analysis that you want
to understand better, you will find Chapter 6 well organized for reference
purposes.



2 Growth of Functions

The order of growth of the running time of an algorithm, defined in Chap
ter I, gives a simple characterization of the algorithm's efficiency and also
allows us to compare the relative performance of alternative algorithms.
Once the input size n becomes large enough, merge sort, with its 8(n 19 n)
worst-case running time, beats insertion sort, whose worst-case running
time is 8(n 2 ) . Although we can sometimes determine the exact running
time of an algorithm, as we did for insertion sort in Chapter I, the ex
tra precision is not usually worth the effort of computing it. For large
enough inputs, the multiplicative constants and lower-order terms of an
exact running time are dominated by the effects of the input size itself.

When we look at input sizes large enough to make only the order of
growth of the running time relevant, we are studying the asymptotic ef
ficiency of algorithms. That is, we are concerned with how the running
time of an algorithm increases with the size of the input in the limit, as the
size of the input increases without bound. Usually, an algorithm that is
asymptotically more efficient will be the best choice for all but very small
inputs.

This chapter gives several standard methods for simplifying the asymp
totic analysis of algorithms. The next section begins by defining several
types of "asymptotic notation," of which we have already seen an example
in 8-notation. Several notational conventions used throughout this book
are then presented, and finally we review the behavior of functions that
commonly arise in the analysis of algorithms.

2.1 Asymptotic notation

The notations we use to describe the asymptotic running time of an al
gorithm are defined in terms of functions whose domains are the set of
natural numbers N = {a, 1,2, ...}. Such notations are convenient for de
scribing the worst-case running-time function T(n), which is usually de
fined only on integer input sizes. It is sometimes convenient, however,
to abuse asymptotic notation in a variety of ways. For example, the no
tation is easily extended to the domain of real numbers or, alternatively,



24 Chapter 2 Growth ofFunctions

restricted to a subset of the natural numbers. It is important, however, to
understand the precise meaning of the notation so that when it is abused,
it is not misused. This section defines the basic asymptotic notations and
also introduces some common abuses.

a-notation

In Chapter 1, we found that the worst-case running time of insertion sort
is T(n) = 8(n2). Let us define what this notation means. For a given
function g(n), we denote by 8(g(n)) the set offunctions

8(g(n)) = {j(n) : there exist positive constants c\, C2, and no such that
0:::; clg(n) :::; j(n) :::; c2g(n) for all n 2:: no} .

A function j(n) belongs to the set 8(g(n)) if there exist positive constants
C, and C2 such that it can be "sandwiched" between cjg(n) and c2g(n), for
sufficiently large n. Although 8(g(n)) is a set, we write "j(n) = 8(g(n))"
to indicate that j(n) is a member of 8(g(n)), or "j(n) E 8(g(n))." This
abuse of equality to denote set membership may at first appear confusing,
but we shall see later in this section that it has advantages.

Figure 2.1(a) gives an intuitive picture of functions j(n) and g(n), where
j(n) = 8(g(n)). For all values of n to the right of no, the value of j(n)
lies at or above c,g(n) and at or below c2g(n). In other words, for all
n 2:: no, the function j( n) is equal to g(n) to within a constant factor. We
say that g(n) is an asymptotically tight bound for j(n).

The definition of 8(g(n)) requires that every member of 8(g(n)) be
asymptotically nonnegative, that is, that j(n) be nonnegative whenever n is
sufficiently large. Consequently, the function g(n) itself must be asymp
totically nonnegative, or else the set 8(g(n)) is empty. We shall therefore
assume that every function used within 8-notation is asymptotically non
negative. This assumption holds for the other asymptotic notations defined
in this chapter as well.

In Chapter 1, we introduced an informal notion of 8-notation that
amounted to throwing away lower-order terms and ignoring the leading
coefficient of the highest-order term. Let us briefly justify this intuition by
using the formal definition to show that !n2 3n 8(n2). To do so, we
must determine positive constants c" C2, and no such that

2 1 2 2
cln :::;in -3n:::;c2n

for all n 2:: no. Dividing by n2 yields

1 3
c, < - -:::; C2 •- 2 n

The right-hand inequality can be made to hold for any value of n 2:: 1
by choosing C2 2:: 1/2. Likewise, the left-hand inequality can be made to
hold for any value of n 2:: 7 by choosing CI :::; 1/14. Thus, by choosing
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j(n)

no j(n) =Q(g(n»

(c)

'----------- n

cg(n)

no j(n) O(g(n»

(b)

'---~------- n

('2 g(n)

j(n) =8(g(n»

(a)

'------'-------- n

Figure 2.1 Graphic examples of the a, 0, and n notations. In each part, the
value of no shown is the minimum possible value; any greater value would also
work. (a) a-notation bounds a function to within constant factors. We write
j(n) = a(g(n)) if there exist positive constants no, Ch and C2 such that to the
right of no, the value of j(n) always lies between clg(n) and c2g(n) inclusive.
(b) O-notation gives an upper bound for a function to within a constant factor.
We write j(n) = O(g(n)) if there are positive constants no and C such that to the
right of no, the value of j(n) always lies on or below cg(n). (e) n-notation gives a
lower bound for a function to within a constant factor. We write j(n) = n(g(n))
if there are positive constants no and c such that to the right of no, the value of
j(n) always lies on or above cg(n).

c[ = 1/14, C2 = 1/2, and no = 7, we can verify that !n 2 3n = 8(n 2) .

Certainly, other choices for the constants exist, but the important thing is
that some choice exists. Note that these constants depend on the function
!n 2 3n; a different function belonging to 8(n2) would usually require
different constants.

We can also use the formal definition to verify that 6n3 :f:. 8(n2). Sup
pose for the purpose of contradiction that C2 and no exist such that 6n3 ~

C2n2 for all n 2:: no- But then n ~ C2/6, which cannot possibly hold for
arbitrarily large n, since C2 is constant.

Intuitively, the lower-order terms of an asymptotically positive function
can be ignored in determining asymptotically tight bounds because they
are insignificant for large n. A tiny fraction of the highest-order term is
enough to dominate the lower-order terms. Thus, setting C1 to a value that
is slightly smaller than the coefficient of the highest-order term and setting
C2 to a value that is slightly larger permits the inequalities in the definition
of 8-notation to be satisfied. The coefficient of the highest-order term can
likewise be ignored, since it only changes C1 and C2 by a constant factor
equal to the coefficient.

As an example, consider any quadratic function fen) an 2 + bn + c,
where a, b, and c are constants and a > O. Throwing away the lower
order terms and ignoring the constant yields fen) 8(n2 ) . Formally, to
show the same thing, we take the constants C1 = a/4, C2 = 7a/4, and
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no = 2· max((lbl fa), )(Icl fa)). The reader may verify that °~ CI n2 ~

an? + bn + C ~ C2n2 for all n 2: no. In general, for any polynomial p(n) =

,£1=0 a.n', where the a, are constants and ad > 0, we have p(n) = 8(nd)
(see Problem 2-1).

Since any constant is a degree-O polynomial, we can express any constant
function as 8(nO), or 8( 1). This latter notation is a minor abuse, however,
because it is not clear what variable is tending to infinity. 1 We shall often
use the notation 8( 1) to mean either a constant or a constant function
with respect to some variable.

O-notation

The 8-notation asymptotically bounds a function from above and below.
When we have only an asymptotic upper bound, we use O-notation. For a
given function g(n), we denote by O(g(n)) the set of functions

O(g(n)) = {j(n) : there exist positive constants C and no such that°~ j(n) ~ cg(n) for all n 2: no} .

We use O-notation to give an upper bound on a function, to within a
constant factor. Figure 2.1(b) shows the intuition behind O-notation. For
all values n to the right of no, the value of the function f( n) is on or below
g(n).

To indicate that a function f(n) is a member of O(g(n)), we write f(n) =
O(g(n)). Note that j(n) = 8(g(n)) implies j(n) = O(g(n)), since 8
notation is a stronger notion than O-notation. Written set-theoretically,
we have 8(g(n)) ~ O(g(n)). Thus, our proof that any quadratic function
ani-i-bn-s-c, where a > 0, is in 8(n 2 ) also shows that any quadratic function
is in O(n2). What may be more surprising is that any linear function an-s b
is in O(n2), which is easily verified by taking c = a + jbl and no = 1.

Some readers who have seen O-notation before may find it strange that
we should write, for example, n = O(n2). In the literature, O-notation is
sometimes used informally to describe asymptotically tight bounds, that
is, what we have defined using 8-notation. In this book, however, when we
write f(n) = O(g(n)), we are merely claiming that some constant multiple
of g(n) is an asymptotic upper bound on f(n), with no claim about how
tight an upper bound it is. Distinguishing asymptotic upper bounds from
asymptotically tight bounds has now become standard in the algorithms
literature.

Using O-notation, we can often describe the running time of an algo
rithm merely by inspecting the algorithm's overall structure. For example,

-----------------~.---- -----

I The real problem is that our ordinary notation for functions does not distinguish functions
from values. In A-calculus, the parameters to a function are clearly specified: the function n2

could be written as An.n2 , or even ;.r.r2 . Adopting a more rigorous notation, however, would
complicate algebraic manipulations, and so we choose to tolerate the abuse.
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the doubly nested loop structure of the insertion sort algorithm from Chap
ter 1 immediately yields an O(n 2 ) upper bound on the worst-case running
time: the cost of the inner loop is bounded from above by O(1) (constant),
the indices i and j are both at most n, and the inner loop is executed at
most once for each of the n2 pairs of values for i and j.

Since O·notation describes an upper bound, when we use it to bound
the worst-case running time of an algorithm, by implication we also bound
the running time of the algorithm on arbitrary inputs as well. Thus, the
O(n 2 ) bound on worst-case running time of insertion sort also applies to its
running time on every input. The 8(n2 ) bound on the worst-case running
time of insertion sort, however, does not imply a 8(n 2 ) bound on the
running time of insertion sort on every input. For example, we saw in
Chapter 1 that when the input is already sorted, insertion sort runs in
8(n) time.

Technically, it is an abuse to say that the running time of insertion
sort is O(n 2) , since for a given n, the actual running time depends on
the particular input of size n. That is, the running time is not really a
function of n. What we mean when we say "the running time is O(n2 )"

is that the worst-case running time (which is a function of n) is O(n2 ) , or
equivalently, no matter what particular input of size n is chosen for each
value of n, the running time on that set of inputs is O(n 2 ) .

{l-notation

Just as O-notation provides an asymptotic upper bound on a function, Q
notation provides an asymptotic lower bound. For a given function g(n),
we denote by Q(g(n)) the set of functions

Q(g(n)) = {j(n) : there exist positive constants c and no such that
o~ cg(n) ~ j(n) for all n ~ no} .

The intuition behind Q-notation is shown in Figure 2.1(c). For all values
n to the right of no, the value of j(n) is on or above g(n).

From the definitions of the asymptotic notations we have seen thus far,
it is easy to prove the following important theorem (see Exercise 2.1-5).

Theorem 2.1
For any two functions j(n) and g(n), j(n) =8(g(n)) if and only if j(n) =
O(g(n)) and j(n) = Q(g(n)). _

As an example of the application of this theorem, our proof that an? +
bn + c = 8(n 2) for any constants a, b, and c, where a > 0, immediately
implies that an 2 + bn + c = Q(n2 ) and an? + bn + c = O(n 2 ) . In prac
tice, rather than using Theorem 2.1 to obtain asymptotic upper and lower
bounds from asymptotically tight bounds, as we did for this example, we
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usually use it to prove asymptotically tight bounds from asymptotic upper
and lower bounds.

Since Q-notation describes a lower bound, when we use it to bound the
best-case running time of an algorithm, by implication we also bound the
running time of the algorithm on arbitrary inputs as well. For example,
the best-case running time of insertion sort is Q(n), which implies that the
running time of insertion sort is Q(n).

The running time of insertion sort therefore falls between Q(n) and
O(n 2 ) , since it falls anywhere between a linear function of n and a qua
dratic function of n. Moreover, these bounds are asymptotically as tight
as possible: for instance, the running time of insertion sort is not Q(n 2 ) ,

since insertion sort runs in 8(n) time when the input is already sorted. It
is not contradictory, however, to say that the worst-case running time of
insertion sort is Q(n 2 ) , since there exists an input that causes the algorithm
to take Q(n 2 ) time. When we say that the running time (no modifier) of
an algorithm is Q(g(n)), we mean that no matter what particular input of
size n is chosen for each value ofn, the running time on that set of inputs
is at least a constant times g(n), for sufficiently large n.

Asymptotic notation in equations

We have already seen how asymptotic notation can be used within math
ematical formulas. For example, in introducing O-notation, we wrote
"n O(n 2 ) ." We might also write 2n 2 + 3n + 1 = 2n 2 + 8(n). How
do we interpret such formulas?

When the asymptotic notation stands alone on the right-hand side of
an equation, as in n = O(n 2) , we have already defined the equal sign to
mean set membership: n E O(n 2 ) . In general, however, when asymptotic
notation appears in a formula, we interpret it as standing for some anony
mous function that we do not care to name. For example, the formula
2n 2 + 3n + 1 = 2n2 + 8(n) means that 2n 2 + 3n + 1 = 2n2 + j(n), where
f(n) is some function in the set 8(n). In this case, j(n) = 3n + 1, which
indeed is in 8(n).

Using asymptotic notation in this manner can help eliminate inessential
detail and clutter in an equation. For example, in Chapter 1 we expressed
the worst-case running time of merge sort as the recurrence

T(n) = 2T(nj2) + 8(n) .

If we are interested only in the asymptotic behavior of T(n), there is no
point in specifying all the lower-order terms exactly; they are all understood
to be included in the anonymous function denoted by the term 8(n).

The number of anonymous functions in an expression is understood to
be equal to the number of times the asymptotic notation appears. For
example, in the expression
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n

LOU) ,
i=1
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there is only a single anonymous function (a function of i). This expression
is thus not the same as 0(1) + 0(2) + ... + O(n), which doesn't really have
a clean interpretation.

In some cases, asymptotic notation appears on the left-hand side of an
equation, as in

We interpret such equations using the following rule: No matter how the
anonymous functions are chosen on the left of the equal sign, there is a
way to choose the anonymous functions on the right of the equal sign to
make the equation valid. Thus, the meaning of our example is that for
any function f(n) E 8(n), there is some function g(n) E 8(n2 ) such that
2n2 + f(n) = g(n) for all n. In other words, the right-hand side of an
equation provides coarser level of detail than the left-hand side.

A number of such relationships can be chained together, as in

2n2+3n+l = 2n 2+8(n)

= 8(n2 ) .

We can interpret each equation separately by the rule above. The first
equation says that there is some function f( n) E 8(n) such that 2n 2 +
3n + 1 = 2n 2 + f(n) for all n. The second equation says that for any
function g(n) E 8(n) (such as the f(n) just mentioned), there is some
function h(n) E 8(n2 ) such that 2n 2 + g(n) = h(n) for all n. Note that
this interpretation implies that 2n 2 + 3n + I = 8(n2 ) , which is what the
chaining of equations intuitively gives us.

o-notation

The asymptotic upper bound provided by O-notation mayor may not be
asymptotically tight. The bound 2n 2 = 0(n2 ) is asymptotically tight, but
the bound 2n = 0(n2) is not. We use o-notation to denote an upper bound
that is not asymptotically tight. We formally define o(g(n)) ("little-oh of
g of n") as the set

o(g(n)) = {f(n): for any positive constant c > 0, there exists a constant
no> 0 such that 0 :::; f(n) < cg(n) for all n 2: no} .

For example, 2n = a(n2 ) , but 2n 2 f. a(n2 ) .

The definitions of O-notation and a-notation are similar. The main
difference is that in f(n) = O(g(n)), the bound 0 :::; f(n) :::; cg(n) holds for
same constant c > 0, but in f(n) = o(g(n)), the bound 0 :::; f(n) < cg(n)
holds for all constants c > O. Intuitively, in the o-nctation, the function
f( n) becomes insignificant relative to g(n) as n approaches infinity; that is,
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limj(n)=o. (2.1)
n---+oo g(n)

Some authors use this limit as a definition of the o-notation; the definition
in this book also restricts the anonymous functions to be asymptotically
nonnegative.

By analogy, w-notation is to Q-notation as o-notation is to O-notation. We
use w-notation to denote a lower bound that is not asymptotically tight.
One way to define it is by

j(n) E w(g(n)) if and only if g(n) E o(f(n» .

Formally, however, we define w(g(n» ("little-omega of g of n") as the set

w(g(n» = {f(n) : for any positive constant c > 0, there exists a constant
no> 0 such that 0 ~ cg(n) < j(n) for all n 2:: no} .

For example, n2/2 = w(n), but n2/2 =j:. w(n 2 ) . The relation j(n) =
w(g(n» implies that

. j(n)
hm -(-) = 00,
n-oo g n

if the limit exists. That is, j(n) becomes arbitrarily large relative to g(n)
as n approaches infinity.

Comparison of functions

Many of the relational properties of real numbers apply to asymptotic
comparisons as well. For the following, assume that j(n) and g(n) are
asymptotically positive.

Transitivity:

j(n) = 8(g(n» and g(n) = 8(h(n» imply j(n) = 8(h(n» ,

j(n) = O(g(n» and g(n) O(h(n» imply j(n) = O(h(n» ,

j(n) = Q(g(n» and g(n) = Q(h(n» imply j(n) = Q(h(n» ,

j(n) = o(g(n» and g(n) = o(h(n» imply j(n) = o(h(n» ,

j(n) w(g(n» and g(n) w(h(n» imply j(n) = w(h(n» .

Reflexivity:

j(n) = 8(j(n» ,

j(n) = O(f(n» ,

j(n) = Q(f(n».

Symmetry:

j(n) = 8(g(n» if and only if g(n) = 8(j(n» .



2.1 Asymptotic notation 31

Transpose symmetry:

j(n) = O(g(n)) if and only if g(n) = Q(f(n)) ,

j(n) = o(g(n)) if and only if g(n) = w(j(n)) .

Because these properties hold for asymptotic notations, one can draw
an analogy between the asymptotic comparison of two functions j and g
and the comparison of two real numbers a and b:

j(n) = O(g(n)) :::::: a '5:. b,

j(n) = Q(g(n)) :::::: a >b ,
j(n) = 8(g(n)) :::::: a = b ,
j(n) = o(g(n)) :::::: a < b ,
j(n) = w(g(n)) :::::: a> b.

One property of real numbers, however, does not carry over to asymp
totic notation:

Trichotomy: For any two real numbers a and b, exactly one of the following
must hold: a < b, a = b, or a> b.

Although any two real numbers can be compared, not all functions are
asymptotically comparable. That is, for two functions j(n) and g(n), it
may be the case that neither j(n) = O(g(n)) nor j(n) = Q(g(n)) holds.
For example, the functions nand n I +sin n cannot be compared using asymp
totic notation, since the value of the exponent in n I -isin n oscillates between
oand 2, taking on all values in between.

Exercises

2.1-1
Let j(n) and g(n) be asymptotically nonnegative functions. Using the
basic definition of 8-notation, prove that max(f(n), g(n)) = 8(f(n) +
g(n)).

2.1-2
Show that for any real constants a and b, where b > 0,

(2.2)

2.1-3
Explain why the statement, "The running time of algorithm A is at least
O(n2) ," is content-free.

2.1-4
Is 2M 1 = O(2n )? Is 22n = O(2n )?

2.1-5
Prove Theorem 2.1.
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2.1-6
Prove that the running time of an algorithm is 8(g(n)) if and only if
its worst-case running time is O(g(n)) and its best-case running time is
Q(g(n)).

2.1-7
Prove that o(g(n)) n w(g(n)) is the empty set.

2.1-8
We can extend our notation to the case of two parameters nand m that
can go to infinity independently at different rates. For a given function
g(n, m), we denote by O(g(n, m)) the set of functions

O(g(n, m)) = {f(n, m) : there exist positive constants c, no, and mo
such that 0 ::; fen, m) ::; cg(n, m)
for all n 2:: no and m 2:: mo} .

Give corresponding definitions for Q(g(n, m)) and 8(g(n, m)).

2.2 Standard notations and common functions

This section reviews some standard mathematical functions and notations
and explores the relationships among them. It also illustrates the use of
the asymptotic notations.

Monotonicity

A function fen) is monotonically increasing if m ::; n implies f(m) ::; fen).
Similarly, it is monotonically decreasing if m ::; n implies f(m) 2:: fen). A
function fen) is strictly increasing if m < n implies f(m) < fen) and
strictly decreasing if m < n implies f(m) > fen).

Floors and ceilings

For any real number x, we denote the greatest integer less than or equal to
x by LxJ (read "the floor of x") and the least integer greater than or equal
to x by rx1 (read "the ceiling of x"), For all real x,

x - I < LxJ ::; x ::; [x] < x + 1 .

For any integer n,

fn/21 + Ln/2J = n ,

and for any integer n and integers a =I- 0 and b =I- 0,

rfn/al/bl = rn/abl (2.3)



2.2 Standard notations and common functions

and

LLn/aj /bj = Ln/abj

The floor and ceiling functions are monotonically increasing.

Polynomials

33

(2.4)

(2.5)

Given a positive integer d, a polynomial in n 0/degree d is a function p (n)
of the form

d

p(n) = L a.n! ,
1=0

where the constants ao, a" . . . , ad are the coefficients of the polynomial and
ad ::j:. O. A polynomial is asymptotically positive if and only if ad > O. For
an asymptotically positive polynomial p(n) of degree d, we have p(n) =

8(nd ) . For any real constant a 2:: 0, the function nG is monotonically
increasing, and for any real constant a ~ 0, the function n" is monoton
ically decreasing. We say that a function j(n) is polynomially bounded if
j(n) = n°(l), which is equivalent to saying that j(n) = O(nk ) for some
constant k (see Exercise 2.2-2).

Exponentials

For all real a ::j:. 0, m, and n, we have the following identities:

aO = 1 ,

a l a ,
a-I = i]a ,

(am)n = amn ,
(am)n (an)m ,

aman = am+n.

For all n and a 2:: 1, the function an is monotonically increasing in n.
When convenient, we shall assume 0° = 1.

The rates of growth of polynomials and exponentials can be related by
the following fact. For all real constants a and b such that a > 1,

b
I· n 01m ,

n-oo an

from which we can conclude that

nb = o(an ) .

Thus, any positive exponential function grows faster than any polynomial.
Using e to denote 2.71828 ... , the base of the natural logarithm function,

we have for all real x,
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x 2 x 3
eX = I + x + - + - + ...

2! 3!
(2.6)

where "!" denotes the factorial function defined later in this section. For
all real x, we have the inequality

(2.7)

(2.8)

where equality holds only when x = O. When [xI ~ I, we have the approx
imation

1+ x ~ e' ~ 1 + x + x 2
•

When x -+ 0, the approximation of e' by 1 + x is quite good:

eX 1 +x+8(x2) .

(In this equation, the asymptotic notation is used to describe the limiting
behavior as x -+ 0 rather than as x -+ 00.) We have for all x,

Logarithms

We shall use the following notations:

19 n IOg2 n (binary logarithm) ,

In n = log, n (natural logarithm) ,

19k n (lg n)k (exponentiation),

19l9n = Ig(lgn) (composition).

An important notational convention we shall adopt is that logarithm func
tions will apply only to the next term in the formula, so that lg n + k will
mean (lgn) + k and not Ig(n +k). For n > 0 and b > 1, the function log, n
is strictly increasing.

For all real a > 0, b > 0, C > 0, and n,

a b108/> a ,
logc(ab) = log, a + loge b ,

log, an = n log, a ,

log, a =
logea
loge b '

log, ( Ija) = -Iogba,

log, a
1

= logab '
a108/> n n108/> a . (2.9)

Since changing the base of a logarithm from one constant to another
only changes the value of the logarithm by a constant factor, we shall
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often use the notation "lg n" when we don't care about constant factors,
such as in O-notation. Computer scientists find Z to be the most natural
base for logarithms because so many algorithms and data structures involve
splitting a problem into two parts.

There is a simple series expansion for In(1 + x) when [x] < 1:

x 2 x 3 x 4 x 5
In(1 + x) = x + +

We also have the following inequalities for x > -1:
x
+x ~ In(1 +x) ~ x, (Z.lO)

where equality holds only for x = O.
We say that a function [(n) is polylogarithmically bounded if [(n) =

Ig°(l) n. We can relate the growth of polynomials and polylogarithms by
substituting Ig.n for nand za for a in equation (2.5), yielding

lim II n = lim 19
b

n = 0 .
nr-rcx: 2alg n n-eoc n«

From this limit, we can conclude that

19b n = o(na )

for any constant a > O. Thus, any positive polynomial function grows
faster than any polylogarithmic function.

Factorials

The notation n! (read "n factorial") is defined for integers n ~ 0 as

{
I if n = 0 ,

n!
n . (n I)! if n > 0 .

Thus, n! = 1 . 2 . 3· .. n.
A weak upper bound on the factorial function is n! ~ n", since each of

the n terms in the factorial product is at most n, Stirling's approximation,

(Z.11)

(2.12)

where e is the base of the natural logarithm, gives us a tighter upper bound,
and a lower bound as well. Using Stirling's approximation, one can prove

n! = o(nn) ,

n! w(2 n ) ,

Ig(n!) 8(n Ign) .

The following bounds also hold for all n:

JZ7tn (~r s n! s JZ7tn (~r+(1/12n)
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The iterated logarithm function

We use the notation 19* n (read "log star of n") to denote the iterated
logarithm, which is defined as follows. Let the function 19(i) n be defined
recursively for nonnegative integers i as

{

n if i = 0,
19(i) n = Ig(lgU-I) n) if i > 0 and 19(i-I)n > 0 ,

undefined if i > 0 and 19(i-I)n$.O or 19(i-I)n is undefined.

Be sure to distinguish 19(i) n (the logarithm function applied i times in
succession, starting with argument n) from 19i n (the logarithm of n raised
to the ith power). The iterated logarithm function is defined as

lg" n = min {i 2:: 0: Ig(i) n $. I} .

The iterated logarithm is a very slowly growing function:

Ig* 2 1 ,

lg"4 = 2,

Ig* 16 3,

Ig* 65536 = 4 ,
19* (265536) = 5 .

Since the number of atoms in the observable universe is estimated to be
about 1080, which is much less than 265536, we rarely encounter a value of
n such that 19* n > 5.

Fibonacci numbers

The Fibonacci numbers are defined by the following recurrence:

Fo = 0,

F1 I , (2.13)

Fi = Fi- I + Fi-2 for i 2:: 2 .

Thus, each Fibonacci number is the sum of the two previous ones, yielding
the sequence

0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, ., ..

(2.14)4> =

Fibonacci numbers are related to the golden ratio 4> and to its conjugate ¢,
which are given by the following formulas:

1 +V5

= 1.61803 ...

4>
1- V5

=

= -.61803 ...
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Specifically, we have

¢/ ;j;i
po - -'----=-1- v'5
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(2.15)

which can be proved by induction (Exercise 2.2-7). Since I~I < 1, we
have l~il/v'5 < I/v'5 < 1/2, so that the ith Fibonacci number F, is equal
to ¢JiIv'5 rounded to the nearest integer. Thus, Fibonacci numbers grow
exponentially.

Exercises

2.2-1
Show that if j(n) and g(n) are monotonically increasing functions, then
so are the functions j(n) + g(n) and j(g(n)), and if f(n) and g(n) are in
addition nonnegative, then j(n) . g(n) is monotonically increasing.

2.2-2
Use the definition of O-notation to show that T(n) = nO(I) if and only if
there exists a constant k > 0 such that T(n) = O(n k ) .

2.2-J
Prove equation (2.9).

2.2-4
Prove that Ig(n!) = 8(n 19n) and that n! = oin").

2.2-5 *
Is the function [lgnl! polynomially bounded? Is the function [lglgn1!
polynomially bounded?

2.2-6 *
Which is asymptotically larger: lgflg" n) or lg"(lgn)?

2.2-7
Prove by induction that the ith Fibonacci number satisfies the equality
Fi = (¢Ji - ;j;i)/v'5, where ¢J is the golden ratio and ~ is its conjugate.

2.2-8
Prove that for i 2 0, the (i + 2)nd Fibonacci number satisfies Fi+2 2 ¢Ji.
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Problems

Chapter 2 Growth ofFunctions

2-1 Asymptotic beha,ior ofpolynomials
Let

d

p(n) = Laini ,
i=O

where ad > 0, be a degree-a polynomial in n, and let k be a constant.
Use the definitions of the asymptotic notations to prove the following
properties.

a. If k ;:::: d, then p(n) = O(n k ) .

b. If k ::; d, then p(n) Q(nk ) .

c. If k = d, then p(n) = 8(nk ) .

d. If k > d, then p(n) = o(nk ).

e. If k < d, then p(n) = w(n k ) .

2-2 Relati,e asymptotic growths
Indicate, for each pair of expressions (A, B) in the table below, whether
A is 0, 0, Q, co, or e of B. Assume that k ;:::: 1, € > 0, and e > 1 are
constants. Your answer should be in the form of the table with "yes" or
"no" written in each box.

a.

b.

c.

d.

e.

f.

A B 0 0 Q co e
19k n n€

nk en

..[ii nsin n

2n 2n/2

nlg m mlg n

19(n!) 19(nn)

2-3 Ordering by asymptotic growth rates
a. Rank the following functions by order ofgrowth; that is, find an arrange

ment gl> g2, ... , g30 of the functions satisfying gl = Q(g2), g2 = Q(g3),
... , g29 = Q(g30). Partition your list into equivalence classes such that
j(n) and g(n) are in the same class if and only if j(n) = 8(g(n)).
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19(1g* n) 21g' n (V2)lgn n2 n! (lgn)!

(~ )11 n3 Ig2 n 19(n!) 22" nJ/lgn

Inln n 19* n n·2 11 nlglgll Inn 1

21gn (lgn)lgII en 41g n (n + I)! JIgn

lg"(Ign) 2~ n 2n nlgn 22" + 1

b. Give an example of a single nonnegative function j(n) such that for all
functions gj(n) in part (a), j(n) is neither O(gi(n» nor n(gi(n».

2-4 Asymptotic notation properties
Let j(n) and g(n) be asymptotically positive functions. Prove or disprove
each of the following conjectures.

a. j(n) = O(g(n» implies g(n) = O(f(n».

b. j(n) + g(n) = 8(min(j(n),g(n»).

c. j(n) = O(g(n» implies 19(f(n» O(lg(g(n»), where 19(9(n» > 0 and
j( n) 2:: 1 for all sufficiently large n.

d. j(n) = O(g(n» implies 2/ (11 ) =0 (2g (II) ) .

e. j(n) = O((f(n)f).

f. j(n) = O(g(n» implies g(n) = n(f(n».

g. j(n) = 8(f(nj2».

h. j(n) + o(j(n» = 8(f(n».

2-5 Variations on 0 and.n
Some authors define n in a slightly different way than we do; let's use Q
(read "omega infinity") for this alternative definition. We say that j(n) =
l1(g(n» if there exists a positive constant c such that j(n) 2:: cg(n) 2:: 0
for infinitely many integers n.

a. Show that for any two functions j(n) and g(n) that are asymptotically
nonnegative, either j(n) = O(g(n» or j(n) = l1(g(n» or both, whereas
this is not true if we use n in place of 11.

00

b. Describe the potential advantages and disadvantages of using n instead
of n to characterize the running times of programs.

Some authors also define 0 in a slightly different manner; let's use 0' for
the alternative definition. We say that j(n) = OI(g(n» if and only if
Ij(n)1 = O(g(n».

c. What happens to each direction of the "if and only if" in Theorem 2.1
under this new definition?
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Some authors define 0 (read "soft-oh") to mean 0 with logarithmic factors
ignored:

O(g(n» = {j(n) : there exist positive constants c, k, and no such that
o~ j(n) ~ cg(n)lgk(n) for all n::::: no} .

- -d. Define nand e in a similar manner. Prove the corresponding analog
to Theorem 2.1.

2-6 Iterated functions
The iteration operator "*" used in the lg" function can be applied to mono
tonically increasing functions over the reals. For a function j satisfying
j(n) < n, we define the function fli) recursively for nonnegative integers
i by

j U)( ) _ {j(jU-I)(n» if i > 0 ,
n - n if i = 0 .

For a given constant c E R, we define the iterated function t: by

J: (n) = min {i ::::: 0 : jU) (n) ~ c} ,

which need not be well-defined in all cases. In other words, the quantity
jt (n) is the number of iterated applications of the function j required to
reduce its argument down to c or less.

For each of the following functions j( n) and constants c, give as tight a
bound as possible on fc*(n).

Chapter notes

a.

b.
c.

d.

e.

f.
g.

h.

j(n) c i*(n)

19n 1

n - 1 0

nl2 I

nl2 2

Vii 2

Vii 1

n l / 3 2

n/lgn 2

Knuth [121] traces the origin of the O-notation to a number-theory text
by P. Bachmann in 1892. The a-notation was invented by E. Landau in
1909 for his discussion of the distribution of prime numbers. The nand
e notations were advocated by Knuth [124] to correct the popular, but
technically sloppy, practice in the literature of using O-notation for both
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upper and lower bounds. Many people continue to use the O-notation
where the a-notation is more technically precise. Further discussion of the
history and development of asymptotic notations can be found in Knuth
[121, 124] and Brassard and Bratley [33].

Not all authors define the asymptotic notations in the same way, al
though the various definitions agree in most common situations. Some of
the alternative definitions encompass functions that are not asymptotically
nonnegative, as long as their absolute values are appropriately bounded.

Other properties of elementary mathematical functions can be found in
any good mathematical reference, such as Abramowitz and Stegun [1] or
Beyer [27], or in a calculus book, such as Apostol [12] or Thomas and
Finney [192]. Knuth [121] contains a wealth of material on discrete math
ematics as used in computer science.



3 Summations

When an algorithm contains an iterative control construct such as a while
or for loop, its running time can be expressed as the sum of the times
spent on each execution of the body of the loop. For example, we found
in Section 1.2 that the jth iteration of insertion sort took time proportional
to j in the worst case. By adding up the time spent on each iteration, we
obtained the summation (or series)

n

Lj·
j=l

Evaluating this summation yielded a bound of 8(n 2 ) on the worst-case
running time of the algorithm. This example indicates the general impor
tance of understanding how to manipulate and bound summations. (As we
shall see in Chapter 4, summations also arise when we use certain methods
to solve recurrences.)

Section 3.1 lists several basic formulas involving summations. Sec
tion 3.2 offers useful techniques for bounding summations. The formulas
in Section 3.1 are given without proof, though proofs for some of them
are presented in Section 3.2 to illustrate the methods of that section. Most
of the other proofs can be found in any calculus text.

3.1 Summation formulas and properties

Given a sequence ai, a2, . . . of numbers, the finite sum al + a: + ... + an
can be written

n

Lak'
k=1

If n = 0, the value of the summation is defined to be O. If n is not an
integer, we assume that the upper limit is LnJ. Similarly, if the sum begins
with k = x, where x is not an integer, we assume that the initial value
for the summation is LxJ. (Generally, we shall put in floors and ceilings
explicitly.) The value of a finite series is always well defined, and its terms
can be added in any order.
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Given a sequence aI, a2,'" of numbers, the infinite sum al + a2 + ...
can be written

00

Lak'
k=1

which is interpreted to mean

n

lim """ ak .n-.oo L....i
k=1

If the limit does not exist, the series diverges; otherwise, it converges. The
terms of a convergent series cannot always be added in any order. We can,
however, rearrange the terms of an absolutely convergent series, that is, a
series l:k:l ak for which the series l:~=1 lakl also converges.

Linearity

For any real number c and any finite sequences aI, a2, ... .a; and b., bi,
... .b.;

11 11 n

L(cak + bk) = c Lak + Lbk •

k=1 k=1 k=l

The linearity property is also obeyed by infinite convergent series.
The linearity property can be exploited to manipulate summations in

corporating asymptotic notation. For example,

In this equation, the 8-notation on the left-hand side applies to the vari
able k, but on the right-hand side, it applies to n. Such manipulations can
also be applied to infinite convergent series.

Arithmetic series

The summation
n

Lk = I +2+ .. ·+n,
k=l

which came up when we analyzed insertion sort, is an arithmetic series and
has the value

I
"2n(n + I)

= 8(n2
) .

(3.1)

(3.2)
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Geometric series

For real x =1= 1, the summation
n

L x" 1+ x + x 2 + ... + x"
k=O

is a geometric or exponential series and has the value
n xn+1 _ 1
Lxk (3.3)
k=O

When the summation is infinite and Ixl < 1, we have the infinite decreasing
geometric series

Harmonic series

For positive integers n, the nth harmonic number is
1 1 1 1

H; 1 + 2" + 3" + '4 + ... + n

n 1
= L7(

k=1
In n + 0(1) .

Integrating and differentiating series

(3.4)

(3.5)

Additional formulas can be obtained by integrating or differentiating the
formulas above. For example, by differentiating both sides of the infinite
geometric series (3.4) and multiplying by x, we get
co
~ k x
LJkx = (1- X)2
k=O

Telescoping series

For any sequence ao,al, . . . ,an,

(3.6)

n

L(ak ak-l) = an - an , (3.7)
k=1

since each of the terms ai, a2,... , an_I is added in exactly once and sub
tracted out exactly once. We say that the sum telescopes. Similarly,
n-l

L(ak - ak+l) ao as .
k=O



3.1 Summation formulas and properties

As an example of a telescoping sum, consider the series

n-l 1

I: k(k + 1) .
k=l

Since we can rewrite each term as

1 1 I..,.-,-:,---..,.. =
k(k + 1) k - k + 1 '

we get

45

n-l 1

I: k(k + 1)
k=l

Products

n-l (I 1)
I: k-k+1
k=l

1= 1- -.
n

The finite product al a2 ... an can be written

n

II ai ,
k=l

If n = 0, the value of the product is defined to be 1. We can convert
a formula with a product to a formula with a summation by using the
identity

Ig (ga,) = t1ga, .

Exercises

3.1-1
Find a simple formula for r:.Z=1 (2k 1).

3.1-2 *
Show that r:.Z=1 1/(2k -1) = In(vn) +0(1) by manipulating the harmonic
series.

3.1-3 *
Show that r:.~o(k - 1)/2k = O.

3.1-4 *
Evaluate the sum r:.~l (2k + 1)X2k•

3.1-5
Use the linearity property of summations to prove that r:.Z= I O(fk (n)) =
o (r:.Z=1 fk(n)).
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3.1-6
Prove that E~l n(f(k)) n (E~l j(k)).

3.1-7
Evaluate the product IlZ=1 2· 4k

•

3.1-8 *
Evaluate the product IlZ=2(1 - l/k2 ) .

3.2 Bounding summations

There are many techniques available for bounding the summations that
describe the running times of algorithms. Here are some of the most
frequently used methods.

Mathematical induction

The most basic way to evaluate a series is to use mathematical induction.
As an example, let us prove that the arithmetic series EZ=I k evaluates to
~n(n + I). We can easily verify this for n = I, so we make the inductive
assumption that it holds for n and prove that it holds for n + I. We have

=

n

'Lk+(n+l)
k=l

I
in(n+I)+(n+l)

I
i(n + I)(n + 2) .

One need not guess the exact value of a summation in order to use
mathematical induction. Induction can be used to show a bound as well.
As an example, let us prove that the geometric series EZ=o 3k is O(3n).
More specifically, let us prove that EZ=o 3k ::; c3n for some constant c.
For the initial condition n = 0, we have E2=0 3k = I ::; c . I as long as
c ~ 1. Assuming that the bound holds for n, let us prove that it holds for
n + 1. We have

n

= 'L 3k + 3n+ 1

k=O

< c3n + 3n+ 1

(I 1) 3n+1- + - c
3 c

< c3n+ 1
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as long as (1/3 + lie) :::; lor, equivalently, C ~ 312. Thus, 2:::Z=o 3k

O(3n), as we wished to show.
We have to be careful when we use asymptotic notation to prove bounds

by induction. Consider the following fallacious proof that 2:::Z=1 k = O(n).

Certainly, 2:::k=1 k 0(1). Assuming the bound for n, we now prove it for
n + 1:

¢= wrong!!

n

2: k + (n + l )
k=1
O(n) + (n + 1)

= O(n + 1) .

n+l

2: k =
k=1

The bug in the argument is that the "constant" hidden by the "big-oh"
grows with n and thus is not constant. We have not shown that the same
constant works for all n.

Bounding the terms

Sometimes, a good upper bound on a series can be obtained by bounding
each term of the series, and it often suffices to use the largest term to
bound the others. For example, a quick upper bound on the arithmetic
series (3.1) is

n n

2: k < 2: n
k=1 k=1

= n2 •

In general, for a series 2:::Z=l ab if we let amax = maxlSkSn ai; then

n

2: ak :::; namax .

k=1

The technique of bounding each term in a series by the largest term is a
weak method when the series can in fact be bounded by a geometric series.
Given the series 2:::Z=Oab suppose that ak+l/ak :::; r for all k ~ 0, where
r < 1 is a constant. The sum can be bounded by an infinite decreasing
geometric series, since ak :::; aork , and thus

n 00

2: ak < 2: aork
k=O k=O

00

= ao2: rk

k=O
1

= -r
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We can apply this method to bound the summation "Lr:l(k/3k
) . The

first term is 1/ 3, and the ratio of consecutive terms is

(k + 1)/ 3k+11k + 1
=

k/3k 3' rt:
2

< 3
for all k ~ 1. Thus, each term is bounded above by (l/3)(2/3)k, so that

00 k 00 1 (2)kL 3k < L3 3
k=l k=1

1 1
= 3' 1-

= 1.

A common bug in applying this method is to show that the ratio of
consecutive terms is less than 1 and then to assume that the summation is
bounded by a geometric series. An example is the infinite harmonic series,
which diverges since

00 1 n I
LI )l.~LI
k=1 k=J

= lim 8(lgn)
n--oo
00 .

The ratio of the (k + I )st and kth terms in this series is k / (k + I) < I, but
the series is not bounded by a decreasing geometric series. To bound a
series by a geometric series, one must show that the ratio is bounded away
from I; that is, there must be an r < I, which is a constant, such that the
ratio of all pairs of consecutive terms never exceeds r, In the harmonic
series, no such r exists because the ratio becomes arbitrarily close to I.

Splitting summations

One way to obtain bounds on a difficult summation is to express the series
as the sum of two or more series by partitioning the range of the index and
then to bound each of the resulting series. For example, suppose we try
to find a lower bound on the arithmetic series "LZ=l k, which has already
been shown to have an upper bound of n2• We might attempt to bound
each term in the summation by the smallest term, but since that term is I,
we get a lower bound of n for the summation-far off from our upper
bound of n2•

We can obtain a better lower bound by first splitting the summation.
Assume for convenience that n is even. We have

n n/2 n

Lk Lk+ L k
k=1 k=l k=n/2+J
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nl2 n

> LO+ L (nI2)
k=l k=n/2+1

> (nj2)2

= Q(n2) ,

which is an asymptotically tight bound, since LZ=1 k = 0(n 2 ) .

For a summation arising from the analysis of an algorithm, we can
often split the summation and ignore a constant number of the initial
terms. Generally, this technique applies when each term ak in a summa
tion LZ=o ak is independent of n. Then for any constant ko > 0, we can
write

ko-l n

L ak + L ak
k=O k=ko

n

= 8(1) + L ak ,

k=ko

since the initial terms of the summation are all constant and there is a con
stant number of them. We can then use other methods to bound LZ=ko ai:
For example, to find an asymptotic upper bound on

00 k 2

L2k '
k=O

we observe that the ratio of consecutive terms is

(k + 1)2/2k+l

k2/2k =
(k + 1)2

2k2

8
9

if k ~ 3. Thus, the summation can be split into

2 k? 00 k 2

L 2k + L 2k
k=O k=3

9 00 (8)k
< 0(1) + 8" L "9

k=O

0(1) ,

since the second summation is a decreasing geometric series.
The technique of splitting summations can be used to determine asymp

totic bounds in much more difficult situations. For example, we can obtain
a bound of O(lgn) on the harmonic series (3.5):
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The idea is to split the range 1 to n into [lgnJpieces and upper bound the
contribution of each piece by 1. Thus,

n 1 LlgnJ 2/-1 1

LI < L L 2i +J
k=1 i=O )=0

[lgn] 2'_1 1

s LL 2i
i=Q )=0

LIgnJ

< L 1
i=O

< 19n + 1 .

Approximation by integrals

(3.8)

When a summation can be expressed as I:%=m f(k), where f(k) is a mono
tonically increasing function, we can approximate it by integrals:

t" n r:1m-I f(x) dx $ Ef(k) $ l; f(x) dx . (3.9)

(3.10)

The justification for this approximation is shown in Figure 3.1. The sum
mation is represented as the area of the rectangles in the figure, and the
integral is the shaded region under the curve. When f(k) is a monoton
ically decreasing function, we can use a similar method to provide the
bounds

i n

+

,

f(x) dx s t., f(k) s i~1 f(x) dx .

The integral approximation (3.10) gives a tight estimate for the nth har
monic number. For a lower bound, we obtain

> r: dx
11 x

= In(n + I) . (3.11 )

For the upper bound, we derive the inequality

r d x

II x

Inn,

which yields the bound

n 1
LI$lnn+1.
k=l

(3.12)
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Figure 3.1 Approximation of E:.mf (k ) b)' integrals. The area of each rectangle
is shown within the rectangle, and the total rectangle area represents the value of
the summation. The integral is represented by the shaded area under the curve.
8 )' comparing areas in (a) . we get J~_ I f (x )dx $ E:_mf (k ), and then by shifting

the rectangles one unit to the right. we get E:_mf (k ) $ J~+I f( x )dx in (b).
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Problems

Chapter notes

Chapter 3 Summations

Exercises

3.2-1
Show that :LZ=l IIk2 is bounded above by a constant.

3.2-2
Find an asymptotic upper bound on the summation

[lg nj

L fn/2kl
k=O

3.2-3
Show that the nth harmonic number is Q(lg n) by splitting the summation.

3.2-4
Approximate :LZ= 1 k 3 with an integral.

3.2-5
Why didn't we use the integral approximation (3.10) directly on :LZ=I Ilk
to obtain an upper bound on the nth harmonic number?

3-1 Bounding summations
Give asymptotically tight bounds on the following summations. Assume
that r ~ 0 and s ~ 0 are constants.

n

a. Lk'.
k=1

Knuth [121] is an excellent reference for the material presented in this
chapter. Basic properties of series can be found in any good calculus
book, such as Apostol [12] or Thomas and Finney [192].



(4.1)

4 Recurrences

As noted in Chapter I, when an algorithm contains a recursive call to itself,
its running time can often be described by a recurrence. A recurrence is
an equation or inequality that describes a function in terms of its value
on smaller inputs. For example, we saw in Chapter I that the worst-case
running time T(n) of the MERGE-SORT procedure could be described by
the recurrence

{
8 ( I) if n = I ,

T(n) = 2T(nj2) + 8(n) if n > I ,

whose solution was claimed to be T(n) = 8(nlgn).
This chapter offers three methods for solving recurrences-that is, for

obtaining asymptotic ••8''' or ··0" bounds on the solution. In the substi
tution method, we guess a bound and then use mathematical induction to
prove our guess correct. The iteration method converts the recurrence into
a summation and then relies on techniques for bounding summations to
solve the recurrence. The master method provides bounds for recurrences
of the form

T(n) = aT(njb) + j(n),

where a 2: I, b > I, and j(n) is a given function; it requires memorization
of three cases, but once you do that, determining asymptotic bounds for
many simple recurrences is easy.

Technicalities

In practice, we neglect certain technical details when we state and solve
recurrences. A good example of a detail that is often glossed over is the
assumption of integer arguments to functions. Normally, the running time
T(n) of an algorithm is only defined when n is an integer, since for most
algorithms, the size of the input is always an integer. For example, the
recurrence describing the worst-case running time of MERGE-SORT is really

{
8( I ) if n = 1 ,

T(n) = T(fnj21) + T(lnj2J) + 8(n) if n > 1 . (4.2)

Boundary conditions represent another class of details that we typically
ignore. Since the running time of an algorithm on a constant-sized input is
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a constant, the recurrences that arise from the running times of algorithms
generally have T( n) = 8( 1) for sufficiently small n. Consequently, for
convenience, we shall generally omit statements of the boundary conditions
of recurrences and assume that T(n) is constant for small n. For example,
we normally state recurrence (4.1) as

T(n) 2T(n/2) + 8(n) , (4.3)

without explicitly giving values for small n. The reason is that although
changing the value of T( I) changes the solution to the recurrence, the
solution typically doesn't change by more than a constant factor, so the
order of growth is unchanged.

When we state and solve recurrences, we often omit floors, ceilings,
and boundary conditions. We forge ahead without these details and later
determine whether or not they matter. They usually don't, but it is impor
tant to know when they do. Experience helps, and so do some theorems
stating that these details don't affect the asymptotic bounds of many re
currences encountered in the analysis of algorithms (see Theorem 4.1 and
Problem 4-5). In this chapter, however, we shall address some of these
details to show the fine points of recurrence solution methods.

4.1 The substitution method

The substitution method for solving recurrences involves guessing the form
of the solution and then using mathematical induction to find the constants
and show that the solution works. The name comes from the substitution
of the guessed answer for the function when the inductive hypothesis is
applied to smaller values. This method is powerful, but it obviously can
be applied only in cases when it is easy to guess the form of the answer.

The substitution method can be used to establish either upper or lower
bounds on a recurrence. As an example, let us determine an upper bound
on the recurrence

T(n) = 2T(ln/2j) + n , (4.4)

which is similar to recurrences (4.2) and (4.3). We guess that the solution
is T(n) = O(nlgn). Our method is to prove that T(n) $ enlgn for an
appropriate choice of the constant e > O. We start by assuming that this
bound holds for Ln/2j, that is, that T(ln/2j) $ e Ln/2j Ig(Ln/2j). Substi
tuting into the recurrence yields

T(n) < 2(e Ln/2j Ig(Ln/2j)) + n

< en Ig(n/2) + n

= enlgn en Ig2 + n

= en 19n - en + n

$ en lg n ,
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where the last step holds as long as e :::: 1.
Mathematical induction now requires us to show that our solution holds

for the boundary conditions. That is, we must show that we can choose
the constant e large enough so that the bound T(n) :::; en Ign works for
the boundary conditions as well. This requirement can sometimes lead to
problems. Let us assume, for the sake of argument, that T( 1) = I is the
sole boundary condition of the recurrence. Then, unfortunately, we can't
choose e large enough, since T( 1) :::; e l Ig 1 = O.

This difficulty in proving an inductive hypothesis for a specific bound
ary condition can be easily overcome. We take advantage of the fact that
asymptotic notation only requires us to prove T(n) :::; en 19n for n :::: no,
where no is a constant. The idea is to remove the difficult boundary con
dition T( 1) = 1 from consideration in the inductive proof and to include
n = 2 and n = 3 as part of the boundary conditions for the proof. We
can impose T(2) and T(3) as boundary conditions for the inductive proof
because for n > 3, the recurrence does not depend directly on T(l). From
the recurrence, we derive T(2) = 4 and T(3) = 5. The inductive proof that
T(n) :::; en 19n for some constant e:::: 2 can now be completed by choosing
e large enough so that T(2):::; e21g2 and T(3):::; e31g3. As it turns out,
any choice of e :::: 2 suffices. For most of the recurrences we shall examine,
it is straightforward to extend boundary conditions to make the inductive
assumption work for small n.

Making a good guess

Unfortunately, there is no general way to guess the correct solutions to
recurrences. Guessing a solution takes experience and, occasionally, cre
ativity. Fortunately, though, there are some heuristics that can help you
become a good guesser.

If a recurrence is similar to one you have seen before, then guessing a
similar solution is reasonable. As an example, consider the recurrence

T(n) = 2T(lnj2J + 17) + n ,

which looks difficult because of the added" 17" in the argument to T on the
right-hand side. Intuitively, however, this additional term cannot substan
tially affect the solution to the recurrence. When n is large, the difference
between T(lnj2J) and T(lnj2J + 17) is not that large: both cut n nearly
evenly in half. Consequently, we make the guess that T(n) = O(n Ign),
which you can verify as correct by using the substitution method (see Ex
ercise 4.1-5).

Another way to make a good guess is to prove loose upper and lower
bounds on the recurrence and then reduce the range of uncertainty. For
example, we might start with a lower bound of T(n) = Q(n) for the recur
rence (4.4), since we have the term n in the recurrence, and we can prove
an initial upper bound of T(n) = O(n2 ). Then, we can gradually lower the
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upper bound and raise the lower bound until we converge on the correct,
asymptotically tight solution of T(n) = 8(n 19n).

Subtleties

There are times when you can correctly guess at an asymptotic bound on
the solution of a recurrence, but somehow the math doesn't seem to work
out in the induction. Usually, the problem is that the inductive assumption
isn't strong enough to prove the detailed bound. When you hit such a snag,
revising the guess by subtracting a lower-order term often permits the math
to go through.

Consider the recurrence

T(n) = T(ln/2J) + T(fn/21) + 1 .

We guess that the solution is O(n), and we try to show that T(n) :::; en
for an appropriate choice of the constant c. Substituting our guess in the
recurrence, we obtain

T(n) :::; c Ln/2J + c fn/21 + I

= cn + I ,

which does not imply T(n) :::; en for any choice of c. It's tempting to try
a larger guess, say T(n) = O(n 2) , which can be made to work, but in fact,
our guess that the solution is T(n) O(n) is correct. In order to show
this, however, we must make a stronger inductive hypothesis.

Intuitively, our guess is nearly right: we're only off by the constant 1,
a lower-order term. Nevertheless, mathematical induction doesn't work
unless we prove the exact form of the inductive hypothesis. We overcome
our difficulty by subtracting a lower-order term from our previous guess.
Our new guess is T(n) :::; en - b, where b ~ 0 is constant. We now have

T(n) < (c Ln/2J - b) + (c fn/21 - b) + 1

= en 2b + I

:::; en - b ,

as long as b ~ 1. As before, the constant e must be chosen large enough
to handle the boundary conditions.

Most people find the idea of subtracting a lower-order term counterin
tuitive. After all, if the math doesn't work out, shouldn't we be increasing
our guess? The key to understanding this step is to remember that we
are using mathematical induction: we can prove something stronger for a
given value by assuming something stronger for smaller values.

Avoiding pitfalls

It is easy to err in the use of asymptotic notation. For example, in the
recurrence (4.4) we can falsely prove T(n) = O(n) by guessing T(n) :::; en
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and then arguing

T(n) < 2(e Ln/2J) + n

< en +n

= O( n) , {= wrong!!

since e is a constant. The error is that we haven't proved the exact form
of the inductive hypothesis, that is, that T(n) :::; en.

Changing variables

Sometimes, a little algebraic manipulation can make an unknown recur
rence similar to one you have seen before. As an example, consider the
recurrence

T(n) = 2T(lvnJ) + 19n ,

which looks difficult. We can simplify this recurrence, though, with a
change of variables. For convenience, we shall not worry about rounding
off values, such as vn, to be integers. Renaming m 19 n yields

T(2m ) = 2T(2m /2 ) + m .

We can now rename S(m) = T(2m ) to produce the new recurrence

S(m) 2S(m/2) + m ,

which is very much like recurrence (4.4) and has the same solution: S(m) =
O(m 19m). Changing back from S(m) to T(n), we obtain T(n) = T(2m ) =
S(m) = O(mlgm) = O(lgnlglgn).

Exercises

4.1-1
Show that the solution of T(n) = T(fn /21) + 1 is O(lg n).

4.1-1
Show that the solution of T( n) = 2T( Ln/2J) + n is Q( n 19 n). Conclude
that the solution is 8(n 19 n).

4.1-3
Show that by making a different inductive hypothesis, we can overcome the
difficulty with the boundary condition T( 1) = 1 for the recurrence (4.4)
without adjusting the boundary conditions for the inductive proof.

4.1-4
Show that 8(n 19 n) is the solution to the "exact" recurrence (4.2) for merge
sort.

4.1-5
Show that the solution to T(n) = 2T(ln/2J + 17) + n is O(nlgn).
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4.1-6
Solve the recurrence T(n) 2T(vn) + I by making a change of variables.
Do not worry about whether values are integral.

4.2 The iteration method

The method of iterating a recurrence doesn't require us to guess the answer,
but it may require more algebra than the substitution method. The idea is
to expand (iterate) the recurrence and express it as a summation of terms
dependent only on n and the initial conditions. Techniques for evaluating
summations can then be used to provide bounds on the solution.

As an example, consider the recurrence

T(n) = 3T(ln/4J) + n .

We iterate it as follows:

T(n) n + 3T(ln/4J)

= n + 3( In/4J + 3T(ln/ 16J))

n + 3(ln/4J + 3(ln/16J + 3T(ln/64J)))

n + 3ln/4J + 9ln/16J + 27T(ln/64J) ,

where lln/4J /4J In/16J and lln/16J /4J = In/64J follow from the
identity (2.4).

How far must we iterate the recurrence before we reach a boundary
condition? The zth term in the series is 3i In/4 iJ. The iteration hits n = 1
when In/4 iJ = lor, equivalently, when i exceeds log, n. By continuing the
iteration until this point and using the bound ln / 4iJ ::; n / 4i , we discover
that the summation contains a decreasing geometric series:

T(n) < n+3n/4+9n/16+27n/64+ .. ·+3Io~ne(l)

00 (3) i< nI: 4 + e(nIO~3)

1=0

4n + o(n)

O(n) .

Here, we have used the identity (2.9) to conclude that 31og4n = n1og4 3, and
we have used the fact that log43 < I to conclude that e(nlO~3) = o(n).

The iteration method usually leads to lots of algebra, and keeping ev
erything straight can be a challenge. The key is to focus on two parame
ters: the number of times the recurrence needs to be iterated to reach the
boundary condition, and the sum of the terms arising from each level of
the iteration process. Sometimes, in the process of iterating a recurrence,
you can guess the solution without working out all the math. Then, the
iteration can be abandoned in favor of the substitution method, which
usually requires less algebra.
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When a recurrence contains floor and ceiling functions, the math can be
come especially complicated. Often, it helps to assume that the recurrence
is defined only on exact powers of a number. In our example, if we had as
sumed that n = 4k for some integer k, the floor functions could have been
conveniently omitted. Unfortunately, proving the bound T(n) = O(n)
solely for exact powers of 4 is technically an abuse of the O-notation. The
definitions of asymptotic notation require that bounds be proved for all
sufficiently large integers, not just those that are powers of 4. We shall see
in Section 4.3 that for a large class of recurrences, this technicality can be
overcome. Problem 4-5 also gives conditions under which an analysis for
exact powers of an integer can be extended to all integers.

Recursion trees

A recursion tree is a convenient way to visualize what happens when a
recurrence is iterated, and it can help organize the algebraic bookkeep
ing necessary to solve the recurrence. It is especially useful when the re
currence describes a divide-and-conquer algorithm. Figure 4.1 shows the
derivation of the recursion tree for

T(n) = 2T(n/2) + n2 .

For convenience, we assume that n is an exact power of 2. Part (a) of the
figure shows T(n), which in part (b) has been expanded into an equivalent
tree representing the recurrence. The n2 term is the root (the cost at the
top level of recursion), and the two subtrees of the root are the two smaller
recurrences T(n/2). Part (c) shows this process carried one step further
by expanding T(n/2). The cost for each of the two subnodes at the second
level of recursion is (n/2)2. We continue expanding each node in the tree
by breaking it into its constituent parts as determined by the recurrence,
until a boundary condition is reached. Part (d) shows the resulting tree.

We now evaluate the recurrence by adding the values across each level
of the tree. The top level has total value n2, the second level has value
(n/2)2 + (n/2)2 = n2/2, the third level has value (n/4)2 + (n/4)2 + (n/4)2 +
(n/4)2 = n2/4, and so on. Since the values decrease geometrically, the
total is at most a constant factor more than the largest (first) term, and
hence the solution is 8(n2 ).

As another, more intricate example, Figure 4.2 shows the recursion tree
for

T(n) = T(n/3) + T(2n/3) + n .

(Again, we omit floor and ceiling functions for sirnplicity.) When we add
the values across the levels of the recursion tree, we get a value of n for
every level. The longest path from the root to a leaf is n .... (2/3)n ....
(2/3)2 n ........... L Since (2/3)k n = 1 when k = 1083/2 n, the height
of the tree is 10g3/2 n. Thus, the solution to the recurrence is at most
nlog3/2n = O(nlgn).
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T(n) 2 2
n n

/~ /~
T(i) T(i) (if (if

/ \ / \
T( i) T( i) T( i) T( i)
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n2 , .

/~
(if (if ,.
/\ /\

(ir (ir (ir (if ".
/\ /\ /\ /\

/ \/ \/ \/ \

2
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4
n

Total: e (i)
(d)

Figure 4.1 The construction of a recursion tree for the recurrence T(n) =
2T(n/2) + n 2

• Part (a) shows T(n), which is progressively expanded in (b)-(d) to
form the recursion tree. The fully expanded tree in part (d) has height Ign (it has
19 n + I levels).

Exercises

4.2-1
Determine a good asymptotic upper bound on the recurrence T(n)
3T(ln/2J) + n by iteration.

4.2-2
Argue that the solution to the recurrence T(n) = T(n/3) + T(2n/3) + n is
Q(n 19 n) by appealing to a recursion tree.
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2n 2n 4n ..··..·..·..·..·:1"·
9 9
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I \ I \

n

Total: O(n Ign)

Figure 4.2 A recursion tree for the recurrence T(n} = T(n/3) + T(2n/3) + n.

4.2-3
Draw the recursion tree for T(n) = 4T(Ln/2J) + n, and provide tight
asymptotic bounds on its solution.

4.2-4
Use iteration to-solve the recurrence T(n) = T(n - a) + T(a) + n, where
a ~ 1 is a constant.

4.2-5
Use a recursion tree to solve the recurrence T(n) T(o:n)+ T(( l-o:)n)+n,
where 0: is a constant in the range 0 < 0: < 1.

4.3 The master method

The master method provides a "cookbook" method for solving recurrences
of the form

T(n) = aT(n/b) + j(n) , (4.5)

where a ~ 1 and b > 1 are constants and j( n) is an asymptotically positive
function. The master method requires memorization of three cases, but
then the solution of many recurrences can be determined quite easily, often
without pencil and paper.

The recurrence (4.5) describes the running time of an algorithm that
divides a problem of size n into a subproblems, each of size nib, where
a and b are positive constants. The a subproblems are solved recursively,
each in time T(n/b). The cost of dividing the problem and combining
the results of the subproblems is described by the function j(n). (That is,
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using the notation from Section 1.3.2, j(n) = D(n) + C(n).) For example,
the recurrence arising from the MERGE-SORT procedure has a = 2, b = 2,
and j(n) = 8(n).

As a matter of technical correctness, the recurrence isn't actually well
defined because nib might not be an integer. Replacing each of the a terms
T(nlb) with either T(LnlbJ) or T(rnlbl) doesn't affect the asymptotic
behavior of the recurrence, however. (We'll prove this in the next section.)
We normally find it convenient, therefore, to omit the floor and ceiling
functions when writing divide-and-conquer recurrences of this form.

The master theorem

The master method depends on the following theorem.

Theorem 4.1 (Master theorem)
Let a ?: 1 and b > 1 be constants, let j(n) be a function, and let T(n) be
defined on the nonnegative integers by the recurrence

T(n) = aT(nlb) + j(n) ,

where we interpret nib to mean either LnlbJ or rnlbl. Then T(n) can be
bounded asymptotically as follows.

1. If j(n) = O(nIOgha-€) for some constant € > 0, then T(n) = 8(n1ogl, a ) .

2. If j(n) = 8(nlogha), then T(n) = 8(nlogba Ign).

3. If j(n) Q(nlogha+€) for some constant e > 0, and if aj(nlb) ~ cj(n)
for some constant c < I and all sufficiently large n, then T(n)
8(f(n)). •

Before applying the master theorem to some examples, let's spend a
moment trying to understand what it says. In each of the three cases, we
are comparing the function j(n) with the function n10gb a. Intuitively, the
solution to the recurrence is determined by the larger of the two functions.
If, as in case I, the function n10gh a is the larger, then the solution is T( n) =
8(nlogha). If, as in case 3, the function j(n) is the larger, then the solution
is T(n) = 8(j(n)). If, as in case 2, the two functions are the same size, we
multiply by a logarithmic factor, and the solution is T(n) = 8(n10gb a 19 n) =
8(j(n) 19n).

Beyond this intuition, there are some technicalities that must be under
stood. In the first case, not only must j( n) be smaller than n10gb a, it must
be polynomially smaller. That is, j( n) must be asymptotically smaller than
n10gh a by a factor of n' for some constant € > O. In the third case, not
only must j( n) be larger than n10gh a, it must be polynomially larger and
in addition satisfy the "regularity" condition that aj(nlb) ~ cj(n). This
condition is satisfied by most of the polynomially bounded functions that
we shall encounter.
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It is important to realize that the three cases do not cover all the pos
sibilities for f(n). There is a gap between cases 1 and 2 when f(n) is
smaller than n1og" a but not polynomially smaller. Similarly, there is a gap
between cases 2 and 3 when f( n) is larger than n1og" a but not polynomially
larger. If the function f(n) falls into one of these gaps, or if the regularity
condition in case 3 fails to hold, the master method cannot be used to
solve the recurrence.

Using the master method

To use the master method, we simply determine which case (if any) of the
master theorem applies and write down the answer.

As a first example, consider

T(n) = 9T(nj3) + n .

For this recurrence, we have a = 9, b = 3, f(n) = n, and thus n1og"a =
nlog39 = 8(n2 ) . Since f(n) = O(n1ogJ9-€), where € = 1, we can apply case 1
of the master theorem and conclude that the solution is T(n) = 8(n2 ) .

Now consider

T(n) = T(2nj3) + 1,

in which a = 1, b = 3j2, f(n) = 1, and nlogba = nlog3/2 I = nO = 1.
Case 2 applies, since f(n) = 8(nIOg" a) = 8(1), and thus the solution to the
recurrence is T(n) = 8(lgn).

For the recurrence

T(n) = 3T(nj4) + n 19n ,

we have a 3, b 4, f(n) = nlgn, and nlOgba = nlOg43 = O(nO.793 ) . Since
f(n) = Q(nlo~ 3+<), where f :;::::: 0.2, case 3 applies if we can show that the
regularity condition holds for f(n). For sufficiently large n, af(njb) =
3(nj4) Ig(nj4) ~ (3j4)n 19n = cf(n) for c = 3j4. Consequently, by case 3,
the solution to the recurrence is T(n) = 8(nlgn).

The master method does not apply to the recurrence

T(n) = 2T(nj2) + n 19 n,

even though it has the proper form: a = 2, b = 2, f(n) = n 19n, and
nlogba = n. It seems that case 3 should apply, since f(n) = n lg n is asymp
totically larger than n1og" a = n but not polynomially larger. The ratio
f(n)jn1og"a = (nlgn)jn = 19n is asymptotically less than n' for any pos
itive constant f. Consequently, the recurrence falls into the gap between
case 2 and case 3. (See Exercise 4.4-2 for a solution.)
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Exercises

4.3-1
Use the master method to give tight asymptotic bounds for the following
recurrences.

a. T(n) = 4T(nj2) + n.

b. T(n) = 4T(nj2) + n2•

C. T(n) 4T(nj2) + n3 .

4.3-2
The running time of an algorithm A is described by the recurrence T(n) =
7T(nj2) + n2• A competing algorithm A' has a running time of T'(n) =
a'I"(n j 4) + n2• What is the largest integer value for a such that A' is
asymptotically faster than A?

4.3-3
Use the master method to show that the solution to the recurrence T(n) =

T(nj2) + 8(1) of binary search (see Exercise 1.3-5) is T(n) = 8(1gn).

4.3-4 *
Consider the regularity condition aj(njb) ~ cj(n) for some constant
c < 1, which is part of case 3 of the master theorem. Give an example
of a simple function j(n) that satisfies all the conditions in case 3 of the
master theorem except the regularity condition.

* 4.4 Proof of the master theorem

This section contains a proof of the master theorem (Theorem 4.1) for
more advanced readers. The proof need not be understood in order to
apply the theorem.

The proof is in two parts. The first part analyzes the "master" recur
rence (4.5), under the simplifying assumption that T(n) is defined only on
exact powers of b > 1, that is, for n = 1, b, b2, •• " This part gives all the
intuition needed to understand why the master theorem is true. The sec
ond part shows how the analysis can be extended to all positive integers n
and is merely mathematical technique applied to the problem of handling
floors and ceilings.

In this section, we shall sometimes abuse our asymptotic notation slightly
by using it to describe the behavior of functions that are only defined over
exact powers of b. Recall that the definitions of asymptotic notations
require that bounds be proved for all sufficiently large numbers, not just
those that are powers of b. Since we could make new asymptotic notations
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(4.6)

that apply to the set {b l
: i = 0, I, ...}, instead of the nonnegative integers,

this abuse is minor.
Nevertheless, we must always be on guard when we are using asymptotic

notation over a limited domain so that we do not draw improper conclu
sions. For example, proving that T(n) = O(n) when n is an exact power
of 2 does not guarantee that T(n) = O(n). The function T(n) could be
defined as

T(n) = {n if n = ~,2,4,8, ... ,
n2 otherwise ,

in which case the best upper bound that can be proved is T(n) = O(n2 ) .

Because of this sort of drastic consequence, we shall never use asymptotic
notation over a limited domain without making it absolutely clear from
the context that we are doing so.

4.4.1 The proof for exact powers

The first part of the proof of the master theorem analyzes the master
recurrence (4.5),

T(n) = aT(njb) + j(n) ,

under the assumption that n is an exact power of b > 1, where b need not
be an integer. The analysis is broken into three lemmas. The first reduces
the problem of solving the master recurrence to the problem of evaluating
an expression that contains a summation. The second determines bounds
on this summation. The third lemma puts the first two together to prove
a version of the master theorem for the case in which n is an exact power
of b.

Lemma 4.2
Let a 2: 1 and b > 1 be constants, and let j(n) be a nonnegative function
defined on exact powers of b. Define T(n) on exact powers of b by the
recurrence

T( )_{8(1) ifn=l,
n - aT(njb) + f(n) if n = b' ,

where i is a positive integer. Then
log, 71-1

T(n) = 8(nlogba) + I: aj f(njb j
) •

j=O

Proof

T(n)

Iterating the recurrence yields

f(n) + aT(njb)

= f(n) + af(njb) + a2T(njb2
)

= j(n) + af(njb) + a2j(njb2 ) + ...
+ alOgb71-1 j(nj blOgb n-l) + a108b nT( 1) .
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Since a logb n n10gb a, the last term of this expression becomes

aIOgbnT(I) = 8(nlogba) ,

using the boundary condition T( I) = 8( I). The remaining terms can be
expressed as the sum

log, n-I

L a' f(n/b}) ;
}=o

thus,

log, n-I

T(n) = 8(nlogha) + L a! f(n/b J ) ,

i=O

which completes the proof.

The recursion tree

•

Before proceeding, let's try to develop some intuition by using a recursion
tree. Figure 4.3 shows the tree corresponding to the iteration of the re
currence in Lemma 4.2. The root of the tree has cost f(n), and it has a
children, each with cost f(n/b). (It is convenient to think of a as being an
integer, especially when visualizing the recursion tree, but the mathemat
ics does not require it.) Each of these children has a children with cost
f(n/b 2 ) , and thus there are a2 nodes that are distance 2 from the root.
In general, there are a} nodes that are distance j from the root, and each
has cost f(n/b}). The cost of each leaf is T(I) = 8(1), and each leaf is
distance log, n from the root, since n/ b10ghn = I. There are a log" n = n 1og" a

leaves in the tree.
We can obtain equation (4.6) by summing the costs of each level of the

tree, as shown in the figure. The cost for a level j of internal nodes is
a}f(n/b}), and so the total of all internal node levels is

log, n-I

L ai f(n/bi ) .
}=o

In the underlying divide-and-conquer algorithm, this sum represents the
costs of dividing problems into subproblems and then recombining the
subproblems. The cost of all the leaves, which is the cost of doing all
nlOgb a subproblems of size 1, is 8(n1ogh a).

In terms of the recursion tree, the three cases of the master theorem
correspond to cases in which the total cost of the tree is (1) dominated by
the costs in the leaves, (2) evenly distributed across the levels of the tree,
or (3) dominated by the cost of the root.

The summation in equation (4.6) describes the cost of the dividing and
combining steps in the underlying divide-and-conquer algorithm. The next
lemma provides asymptotic bounds on the summation's growth.
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Figure 4.3 The recursion tree generated by T(n) =aT(n/b) + f(n). The tree is a
complete a-ary tree with n1ogo a leaves and height log, a. The cost of each level is
shown at the right, and their sum is given in equation (4.6).

Lemma 4.3
Let a 2: 1 and b > 1 be constants, and let j(n) be a nonnegative function
defined on exact powers of b. A function g(n) defined over exact powers
of b by

logon-I

g(n) L ai j(njbi )
i=O

(4.7)

(4.8)

can then be bounded asymptotically for exact powers of b as follows.

1. If j(n) = O(nIOgoa-~) for some constant f > 0, then g(n) = O(nIOgha).

2. If j(n) = 8(nIOgha), then g(n) = 8(nlogba 19n).

3. If aj(njb) ~ cj(n) for some constant c < 1 and all n 2: b, then g(n) =
8(j(n)).

Proof For case 1, we have j(n) = O( nlogba-~ ), implying that j(n j bi ) =
O((njbi)logba-~). Substituting into equation (4.7) yields

g(n) 0 C~-l aj
(;)""'-') .
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We bound the summation within the O-notation by factoring out terms
and simplifying, which leaves an increasing geometric series:

(4.9)

Since band € are constants, the last expression reduces to n10gh
Q-( O( n') =

O(n1og/> Q). Substituting this expression for the summation in equation (4.8)
yields

g(n) = O(nIOghQ) ,

and case 1 is proved.
Under the assumption that fen) = 8(nloghQ) for case 2, we have that

f(n/b}) = 8«n/b})log/>Q). Substituting into equation (4.7) yields

(

10
8/> n-I . ( n ) log, a)

g(n) = 8 ~ a' b} .

We bound the summation within the 8 as in case 1, but this time we do
not obtain a geometric series. Instead, we discover that every term of the
summation is the same:

log, n-I .

n1og/,a '"' (_a_)J
~ blog/> a
}=o

108/> n-I

= nlog/>Q L 1
}=o

nlog
/> Q log, n .

Substituting this expression for the summation in equation (4.9) yields

g(n) 8(n1og
/> Q log, n)

= 8(nlog
/> Q19n) ,

and case 2 is proved.
Case 3 is proved similarly. Since fen) appears in the definition (4.7) of

g(n) and all terms of g(n) are nonnegative, we can conclude that g(n)
Q(f(n)) for exact powers of b. Under the assumption that af(n/b) ~

cf(n) for some constant c < 1 and all n 2: b, we have a}f(n/b}) ~ c!fen).
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Substituting into equation (4.7) and simplifying yields a geometric series,
but unlike the series in case 1, this one has decreasing terms:

10Sb n-l
g(n) < 2: a! j(n/b1)

1=0
10Sb n-l

< 2: C1j(n)
1=0

00

< j(n) 2:c1

1=0

= j(n) (A)
= O(j(n)) ,

since c is constant. Thus, we can conclude that g(n) = 8(f(n)) for exact
powers of b. Case 3 is proved, which completes the proof of the lemma. _

We can now prove a version of the master theorem for the case in which
n is an exact power of b.

Lemma 4.4
Let a 2: 1 and b > 1 be constants, and let j(n) be a nonnegative function
defined on exact powers of b. Define T(n) on exact powers of b by the
recurrence

T _ {8( 1) if n = 1 ,
(n) - aT(n/b) + j(n) if n = bi ,

where i is a positive integer. Then T(n) can be bounded asymptotically
for exact powers of b as follows.

1. If j(n) = O(nlo&a-t) for some constant E > 0, then T(n) = 8(nloSba).

2. If j(n) = 8(nIOSba), then T(n) = 8(nlOSba 19n).

3. If j(n) = Q(nJOSbaH) for some constant E > 0, and if af(n/b) :s; cj(n)
forsomeconstantc < 1 andallsufficientlylargen, then T(n) = 8(j(n)).

Proof We use the bounds in Lemma 4.3 to evaluate the summation (4.6)
from Lemma 4.2. For case 1, we have

T(n) 8(nIOSba) + O(nIOSba)

8(nloSba) ,

and for case 2,

T(n) = 8(nIOSba) + 8(n)OSb a19n)

= 8(n loSh a 19n) .
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For case 3, the condition af(njb) ~ cf(n) implies fen) = Q(n1og" a+f) (see
Exercise 4.4-3). Consequently,

T(n) 8(n1og
" a) + 8(f(n))

= 8(f(n)).

4.4.2 Floors and ceilings

To complete the proof of the master theorem, we must now extend our
analysis to the situation in which floors and ceilings are used in the master
recurrence, so that the recurrence is defined for all integers, not just exact
powers of b. Obtaining a lower bound on

T(n) = aT(rnjbl) + fen)

and an upper bound on

T(n) = aT(LnjbJ) + fen)

(4.10)

(4.11)

(4.12)

is routine, since the bound rn j b1:::: n j b can be pushed through in the first
case to yield the desired result, and the bound Ln j bJ ~ n j b can be pushed
through in the second case. Lower bounding the recurrence (4.11) requires
much the same technique as upper bounding the recurrence (4.10), so we
shall only present this latter bound.

We wish to iterate the recurrence (4.10), as was done in Lemma 4.2. As
we iterate the recurrence, we obtain a sequence of recursive invocations
on the arguments

n,

rnjbl ,

rrnjbl jbl ,

rrrnjbl jbl jbl ,

Let us denote the rth element in the sequence by n., where

{
n if i = 0,

n, = rni-ljbl if i > 0 .

Our first goal is to determine the number of iterations k such that nk is a
constant. Using the inequality rx1~ x + 1, we obtain

no < n,
n

nl < b + 1,

n 1
n2 < b2 + b + 1



4.4 Proofof the master theorem

nil
n3 -:; b3 + b2 + b + 1

In general,

n i-I 1
n, < bi + 2: bj

j=O

n b
< b i + b - 1 '

and thus, when i [log, nJ, we obtain n, -:; b + bj(b - 1) 0(1).
We can now iterate recurrence (4.10), obtaining

T(n) = f(no) + aT(nl)

f(no) + af(nd + a2T(nl)

< f(no) + af(nl) + a1f(n2) + ...
+ a [log, I1J -I f( nLlo8f, I1J _ d + a [log, I1J T(n L108bI1J)

L108h I1J-I
= 8(n108hG) + 2: a! f(nj) ,

j=O
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(4.13)

which is much the same as equation (4.6), except that n is an arbitrary
integer and not restricted to be an exact power of b.

We can now evaluate the summation

[log, I1J I

g(n) = 2: a! f(nj)
j=O

(4.14)

from (4.13) in a manner analogous to the proof of Lemma 4.3. Beginning
with case 3, if afUnjbl) -:; cf(n) for n > b + bj(b - 1), where c < 1
is a constant, then it follows that a! f(nj) -:; c1f(n). Therefore, the sum
in equation (4.14) can be evaluated just as in Lemma 4.3. For case 2,
we have f(n) = 8(nlogbG). If we can show that f(nj) = O(nlogbGjaj) =
O«njbj)logbG), then the proof for case 2 of Lemma 4.3 will go through.
Observe that j -:; [log, nJ implies b! [n -:; 1. The bound f(n) = 0(nI08bG)
implies that there exists a constant c > 0 such that for sufficiently large nj,

(
n b ) log, a

!(nj) < c bj + b1

c ( nl:~ a) (1 + (~ . b ~ 1))log, G

< c (nlOgba) (1 + _b_) 108b a
a! b - 1

(
nIOgbG)

< 0 . ,
aJ
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since c(l + bj(b l))IOgh u is a constant. Thus, case 2 is proved. The
proof of case I is almost identicaL The key is to prove the bound j( nj)
O( n10ghU-£), which is similar to the corresponding proof of case 2, though
the algebra is more intricate.

We have now proved the upper bounds in the master theorem for all
integers n. The proof of the lower bounds is similar.

Exercises

4.4-1 *
Give a simple and exact expression for n, in equation (4.12) for the case
in which b is a positive integer instead of an arbitrary real number.

4.4-2 *
Show that if j(n) = 8(nlOghU Igk n), where k: 2:: 0, then the master recur
rence has solution T(n) = 8(n1og

/l
u 19k+l n). For simplicity, confine your

analysis to exact powers of b.

4.4-3 *
Show that case 3 of the master theorem is overstated, in the sense that the
regularity condition aj(njb) ~ cj(n) for some constant c < 1 implies that
there exists a constant e > 0 such that j(n) Q( n10gh UH).

4-1 Recurrence examples
Give asymptotic upper and lower bounds for T( n) in each of the following
recurrences. Assume that T( n) is constant for n :::; 2. Make your bounds
as tight as possible, and justify your answers.

a. T(n) = 2T(nj2) + n3 •

b. T(n) = T(9njlO) + n.

c. T(n) = 16T(nj4) + n2•

d. T(n) = 7T(nj3) + n2•

e. T(n) = 7T(nj2) + n2•

f. T(n) = 2T(nj4) + yn.

g. T(n)=T(n-I)+n.

h. T(n) = T(yn) + 1.
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4-2 Finding the missing integer
An array A[l .. n] contains all the integers from 0 to n except one. It
would be easy to determine the missing integer in O( n) time by using an
auxiliary array B[O .. n] to record which numbers appear in A. In this
problem, however, we cannot access an entire integer in A with a single
operation. The elements of A are represented in binary, and the only
operation we can use to access them is "fetch the jth bit of A[i]," which
takes constant time.

Show that if we use only this operation, we can still determine the miss
ing integer in O(n) time.

4-3 Parameter-passing costs
Throughout this book, we assume that parameter passing during proce
dure calls takes constant time, even if an N-element array is being passed.
This assumption is valid in most systems because a pointer to the array
is passed, not the array itself. This problem examines the implications of
three parameter-passing strategies:

1. An array is passed by pointer. Time = 8( I).

2. An array is passed by copying. Time = 8(N), where N is the size of
the array.

3. An array is passed by copying only the subrange that might be accessed
by the called procedure. Time = 8(p - q + 1) if the subarray A[p .. q]
is passed.

a. Consider the recursive binary search algorithm for finding a number in
a sorted array (see Exercise 1.3-5). Give recurrences for the worst-case
running times of binary search when arrays are passed using each of the
three methods above, and give good upper bounds on the solutions of
the recurrences. Let N be the size of the original problem and n be the
size of a subproblem.

b. Redo part (a) for the MERGE-SORT algorithm from Section 1.3.1.

4-4 More recurrence examples
Give asymptotic upper and lower bounds for T( n) in each of the following
recurrences. Assume that T(n) is constant for n ~ 2. Make your bounds
as tight as possible, and justify your answers.

a. T(n) = 3T(nI2) + n 19n.

b. T(n) = 3T(n/3 + 5) + n12.

c. T(n) = 2T(nI2) + n/lgn.

d. T(n) = T(n - 1) + lIn.
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e. T(n) = T(n 1) + Ign.

f. T(n) = y'riT(y'ri) + n.

4-5 Sloppiness conditions
Often, we are able to bound a recurrence T( n) at exact powers of an
integral constant b. This problem gives sufficient conditions for us to
extend the bound to all real n > O.

a. Let T(n) and h(n) be monotonically increasing functions, and suppose
that T(n) :::; h(n) when n is an exact power of a constant b > I. More
over, suppose that h(n) is "slowly growing" in the sense that h(n) =
O(h(nlb)). Prove that T(n) = O(h(n)).

b. Suppose that we have the recurrence T(n) = aT(nlb) + j(n), where
a ~ 1, b > I, and j( n) is monotonically increasing. Suppose further that
the initial conditions for the recurrence are given by T(n) = g(n) for
n :::; no, where g(n) is monotonically increasing and g(no) :::; aT(nolb)+
j(no). Prove that T(n) is monotonically increasing.

c. Simplify the proof of the master theorem for the case in which j(n) is
monotonically increasing and slowly growing. Use Lemma 4.4.

4-6 Fibonacci numbers
This problem develops properties of the Fibonacci numbers, which are
defined by recurrence (2.13). We shall use the technique of generating
functions to solve the Fibonacci recurrence. Define the generatingfunction
(or formal power series) F as

00

F(z) = L Fiz i

i=O

0+ Z + Z2 + 2z3 + 3z4 + 5z5 + 8z6 + 13z7 + 21z8 + ...

a. Show that F(z) = z + zF(z) + Z2 F(z).

b. Show that

F(z) = z
1 - z - Z2

Z

(l-cPz)(l-

= I ( 1
IS 1 - cP z - 1

where

1+ IScP= 2 =1.61803 ...

and
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~ l-v'5
¢ = 2 = -0.61803 ...

c. Show that

F(z) = f ~(¢i - ;ji)Zi .
i=O V 5
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d. Prove that F, = ¢i I v'5 for i > 0, rounded to the nearest integer. (Hint:
I¢I < 1.)

e. Prove that Fi +2 ~ ¢i for i ~ O.

4-7 VLSI chip testing
Professor Diogenes has n supposedly identical VLSI1 chips that in princi
ple are capable oftesting each other. The professor's test jig accommodates
two chips at a time. When the jig is loaded, each chip tests the other and
reports whether it is good or bad. A good chip always reports accurately
whether the other chip is good or bad, but the answer of a bad chip cannot
be trusted. Thus, the four possible outcomes of a test are as follows:

Chip A says Chip B says Conclusion
B is good A is good both are good, or both are bad
B is good A is bad at least one is bad
B is bad A is good at least one is bad
B is bad A is bad at least one is bad

a. Show that if more than nl2 chips are bad, the professor cannot neces
sarily determine which chips are good using any strategy based on this
kind of pairwise test. Assume that the bad chips can conspire to fool
the professor.

b. Consider the problem of finding a single good chip from among n chips,
assuming that more than nl2 of the chips are good. Show that Lnl2J
pairwise tests are sufficient to reduce the problem to one of nearly half
the size.

c. Show that the good chips can be identified with 8(n) pairwise tests,
assuming that more than n / 2 of the chips are good. Give and solve the
recurrence that describes the number of tests.

1VLSI stands for "very-large-scale integration," which is the integrated-circuit chip technology
used to fabricate most microprocessors today.



76

Chapter notes
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Recurrences were studied as early as 1202 by L. Fibonacci, for whom
the Fibonacci numbers are named. A. De Moivre introduced the method
of generating functions (see Problem 4-6) for solving recurrences. The
master method is adapted from Bentley, Haken, and Saxe [26], which pro
vides the extended method justified by Exercise 4.4-2. Knuth [121] and
Liu [140] show how to solve linear recurrences using the method of gener
ating functions. Purdom and Brown [164] contains an extended discussion
of recurrence solving.
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5.1 Sets

Sets, Etc.

In earlier chapters, we touched on the elements of discrete mathematics.
This chapter reviews more completely the notations, definitions, and ele
mentary properties of sets, relations, functions, graphs, and trees. Readers
already well versed in this material need only skim this chapter.

A set is a collection of distinguishable objects, called its members or ele
ments. If an object x is a member of a set S, we write XES (read "x is a
member of S" or, more briefly, "x is in S"). If x is not a member of S, we
write x rt S. We can describe a set by explicitly listing its members as a
list inside braces. For example, we can define a set S to contain precisely
the numbers 1, 2, and 3 by writing S = {I, 2, 3}. Since 2 is a member of
the set S, we can write 2 E S, and since 4 is not a member, we have 4 (j. S.
A set cannot contain the same object more than once, and its elements are
not ordered. Two sets A and B are equal, written A = B, if they contain
the same elements. For example, {I, 2, 3, I} = {I, 2, 3} {3, 2, I}.

We adopt special notations for frequently encountered sets.

• 0 denotes the empty set, that is, the set containing no members.

• Z denotes the set of integers, that is, the set {... , - 2, 1,0, 1, 2, ...}.

• R denotes the set of real numbers.

• N denotes the set of natural numbers, that is, the set {O, 1,2, ...}.I

If all the elements of a set A are contained in a set B, that is, if x E A
implies x E B, then we write A <;;; B and say that A is a subset of B. A
set A is a proper subset of B, written A c B, if A <;;; B but A =1= B. (Some
authors use the symbol "c" to denote the ordinary subset relation, rather
than the proper-subset relation.) For any set A, we have A <;;; A. For two
sets A and B, we have A = B if and only if A <;;; Band B <;;; A. For any

I Some authors start the natural numbers with I instead of O. The modern trend seems to be
to start with O.
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three sets A, B, and C, if A ~ Band B ~ C, then A ~ C. For any set A,
we have 0 ~ A.

We sometimes define sets in terms of other sets. Given a set A, we
can define a set B ~ A by stating a property that distinguishes the el
ements of B. For example, we can define the set of even integers by
{x: x E Z and x/2 is an integer}. The colon in this notation is read "such
that." (Some authors use a vertical bar in place of the colon.)

Given two sets A and B, we can also define new sets by applying set
operations:

• The intersection of sets A and B is the set

An B = {x: x E A and x E B} .

• The union of sets A and B is the set

AU B = {x: x E A or x E B} .

• The difference between two sets A and B is the set

A B = {x : x E A and x rt. B} .

Set operations obey the following laws.

Empty set laws:

An0 = 0,
Au0 = A.

Idempotency laws:

AnA A,
AUA A.

Commutative laws:

AnB = BnA,
AUB = BUA.

Associative laws:

An (B n C) = (A n B) n C ,

Au (B u C) = (A U B) U C .

Distributive laws:
An (B U C) = (A n B) U (A n C) ,

Au (B n C) = (A U B) n (A U C) .

Absorption laws:

A n (A UB) = A,

A U (A nB) = A.

DeMorgan's laws:

A - (B n C) = (A - B) U (A - C) ,

A - (B U C) = (A - B) n (A - C) .

(5.1 )

(5.2)
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A (B nG) A - (B n C) = (A - B) u (A - C)

Figure 5.1 A Venn diagram illustrating the first of DeMorgan's laws (5.2). Each
of the sets A, B, and C is represe nted as a circle in the plane.

The fi rst of DeMorgan's laws is illustrated in Figure 5.1, using a Venn
diagram , a graphical pictu re in which sets are represented as regions of the
plan e.

Often, all the sets under consideration are subsets of some larger set U
called the universe. For example, if we are considering various sets mad e
up only of integers, the set Z of integers is an appropriate universe. Given
a universe U, we defi ne the complement of a set A as A = U - A. For any
set A S; U , we have the following laws:

A = A ,

A nA = o,
AUA = U .

DeMorgan's laws (5.2) can be rewritten with complements. For any two
sets A,B ~ U, we have

A nD = A uD ,
A uB = A n B .

Two sets A and B are disjoint if they have no elements in common, that
is, if A n B = 0. A collection S = {Si } of nonempty sets fo rms a partition
of a set S if

• the sets are pairwise disjoint, that is, Si ,Sj E S and ; =1= j imply Sj n Sj =
0, and

their union is S . that is,

s = U S; .
S ,ES

In other words, S forms a partition of S if each element of S appears in
exactly one Si E S.

The number of elements in a set is called the cardinality (or site) of the
set, denoted lSI. Two sets have the same cardinality if their elements can
be put into a one-to-one cor respondence. The card inality of the empty set
is 101 = o. If the cardinality of a set is a natural num ber, we say the set is
finite; otherwise, it is infinite. An infi nite set that can be put into a one
to-one correspondence with the natural numbers N is countably infinite;
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otherwise, it is uncountable. The integers Z are countable, but the reals R
are uncountable.

For any two finite sets A and B, we have the identity

IA UBI = IAI + IBI-IA n BI ,
from which we can conclude that

(5.3)

IA UBI:s IAI + IBI .

If A and B are disjoint, then IA n BI = 0 and thus IA UBI = IAI + IBI. If
A ~ B, then IAI :s IBI·

A finite set of n elements is sometimes called an n-set. A l-set is called
a singleton. A subset of k elements of a set is sometimes called a k-subset.

The set of all subsets of a set S, including the empty set and the set S
itself, is denoted 2s and is called the power set of S. For example, 2{a,b} =

{0, {a} , {b } , {a, b}}. The power set of a finite set S has cardinality 21SI•
We sometimes care about setlike structures in which the elements are

ordered. An ordered pair of two elements a and b is denoted (a, b) and
can be defined formally as the set (a,b) = {a, {a,b}}. Thus, the ordered
pair (a,b) is not the same as the ordered pair (b,a).

The Cartesian product of two sets A and B, denoted A x B, is the set of
all ordered pairs such that the first element of the pair is an element of A
and the second is an element of B. More formally,

A x B = {(a, b) : a E A and b E B} .

For example, {a,b} x {a,b,c} = {(a, a), (a,b),(a,c),(b,a),(b,b),(b,c)}.
When A and B are finite sets, the cardinality of their Cartesian product is

IA x BI = IAI·IBI . (5.4)

The Cartesian product of n sets AI, A2, ... ,An is the set of n-tuples

AI XA2X ... xAn={(a.,a2, ... ,an):aiEAi,i= I,2, ... ,n},

whose cardinality is

if all sets are finite. We denote an n-fold Cartesian product over a single
set A by the set

An = A x A x ... x A ,

whose cardinality is IAnl = lAin if A is finite. An n-tuple can also be viewed
as a finite sequence of length n (see page 84).

Exercises

5.1-1
Draw Venn diagrams that illustrate the first of the distributive laws (5.1).
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5.1-2
Prove the generalization of DeMorgan's laws to any finite collection of
sets:

= U u···u

= AI nA2n .. ·nAn.

(all pairs)

(all triples)

5.2 Relations

5.1-3 *
Prove the generalization of equation (5.3), which is called the principle of
inclusion and exclusion:

IAluA2u· .. UAnl

IAII + IAll + ... + IAnl
IA I n A21 IAI n A31

+ IAI nA2 nA31 + ...

5.1-4
Show that the set of odd natural numbers is countable.

5.1-5
Show that for any finite set S, the power set 2s has 21 S1 elements (that is,
there are 21 s1 distinct subsets of S).

5.1-6
Give an inductive definition for an n-tuple by extending the set-theoretic
definition for an ordered pair.

A binary relation R on two sets A and B is a subset of the Cartesian
product A x B. If (a, b) E R, we sometimes write aRb. When we say that
R is a binary relation on a set A, we mean that R is a subset of Ax A.
For example, the "less than" relation on the natural numbers is the set
{(a,b): a.b E N and a < b}. An n-ary relation on sets AI,Az, ... ,An is a
subset of AI x Az x ... x An.

A binary relation R ~ A x A is reflexive if

aRa

for all a E A. For example, "=" and ":s;" are reflexive relations on N, but
"<" is not. The relation R is symmetric if

aRb implies bRa
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for all a, b E A. For example, "=" is symmetric, but"<" and "~" are not.
The relation R is transitive if

aRb and bRc imply aRc

for all a.b,c E A. For example, the relations "<;' " and "=" are
transitive, but the relation R = {(a, b) : a, bEN and a = b - 1} is not,
since 3R 4 and 4 R 5 do not imply 3 R 5.

A relation that is reflexive, symmetric, and transitive is an equivalence
relation. For example, "=" is an equivalence relation on the natural num
bers, but "<" is not. If R is an equivalence relation on a set A, then
for a E A, the equivalence class of a is the set [a] = {b E A : aRb}, that
is, the set of all elements equivalent to A. For example, if we define
R = {(a, b) : a, bEN and a + b is an even number}, then R is an equiva
lence relation, since a + a is even (reflexive), a + b is even implies b + a
is even (symmetric), and a + b is even and b + C is even imply a + c is
even (transitive). The equivalence class of 4 is [4] = {D, 2, 4,6, ... }, and
the equivalence class of 3 is [3] = {I, 3, 5, 7, ...}. A basic theorem of
equivalence classes is the following.

Theorem 5.1 (An equivalence relation is the same as a partition)
The equivalence classes of any equivalence relation R on a set A form a
partition of A, and any partition of A determines an equivalence relation
on A for which the sets in the partition are the equivalence classes.

Proof For the first part of the proof, we must show that the equivalence
classes of Rare nonempty, pairwise-disjoint sets whose union is A. Be
cause R is reflexive, a E [a], and so the equivalence classes are nonempty;
moreover, since every element a E A belongs to the equivalence class [a],
the union of the equivalence classes is A. It remains to show that the
equivalence classes are pairwise disjoint, that is, if two equivalence classes
[a] and [b] have an element c in common, then they are in fact the same
set. Now aRc and b R c, which by symmetry and transitivity imply aRb.
Thus, for any arbitrary element x E [a], we have x Ra implies x R b, and
thus [a] ~ [b]. Similarly, [b] ~ [a], and thus [a] = [b].

For the second part of the proof, let A = {Ai} be a partition of A, and
define R = {(a, b) : there exists i such that a E Ai and bEAd. We claim
that R is an equivalence relation on A. Reflexivity holds, since a E Ai
implies a R a. Symmetry holds, because if a Rb, then a and b are in the
same set Ai, and hence bRa. If aRb and b R c, then all three elements
are in the same set, and thus aRc and transitivity holds. To see that the
sets in the partition are the equivalence classes of R, observe that if a E Ai,
then x E [a] implies x E Ai, and x E Ai implies x E [a]. _

A binary relation R on a set A is antisymmetric if

aRb and bRa imply a = b .
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For example, the "~" relation on the natural numbers is antisymmetric,
since a ~ band b ~ a imply a b. A relation that is reflexive, anti
symmetric, and transitive is a partial order, and we call a set on which a
partial order is defined a partially ordered set. For example, the relation
"is a descendant of' is a partial order on the set of all people (if we view
individuals as being their own descendants).

In a partially ordered set A, there may be no single "maximum" element
x such that y R x for all YEA. Instead, there may several maximal ele
ments x such that for no YEA is it the case that x Ry. For example, in
a collection of different-sized boxes there may be several maximal boxes
that don't fit inside of any other box, yet no single "maximum" box into
which any other box will fit.

A partial order R on a set A is a total or linear order if for all a, b E A,
we have aRb or bRa, that is, if every pairing of elements of A can be
related by R. For example, the relation "~" is a total order on the natural
numbers, but the "is a descendant of' relation is not a total order on the
set of all people, since there are individuals neither of whom is descended
from the other.

Exercises

5.2-1
Prove that the subset relation "~" on all subsets of Z is a partial order but
not a total order.

5.2-2
Show that for any positive integer n, the relation "equivalent modulo n"
is an equivalence relation on the integers. (We say that a b (mod n)
if there exists an integer q such that a b = qn.) Into what equivalence
classes does this relation partition the integers?

5.2-3
Give examples of relations that are

a. reflexive and symmetric but not transitive,

b. reflexive and transitive but not symmetric,

c. symmetric and transitive but not reflexive.

5.2-4
Let S be a finite set, and let R be an equivalence relation on S x S. Show
that if in addition R is antisymmetric, then the equivalence classes of S
with respect to R are singletons.

5.2-5
Professor Narcissus claims that if a relation R is symmetric and transitive,
then it is also reflexive. He offers the following proof. By symmetry,
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aRb implies bRa. Transitivity, therefore, implies a R a. Is the professor
correct?

Given two sets A and B, a/unction 1 is a binary relation on A x B such
that for all a E A, there exists precisely one b E B such that (a,b) E f.
The set A is called the domain of I, and the set B is called the codomain
of I. We sometimes write I: A ---+ B; and if (a, b) E I, we write b = I(a),
since b is uniquely determined by the choice of a.

Intuitively, the function 1 assigns an element of B to each element of A.
No element of A is assigned two different elements of B, but the same
element of B can be assigned to two different elements of A. For example,
the binary relation

1 = {(a, b) : a EN and b = a mod 2}

is a function 1 : N ---+ {O, I}, since for each natural number a, there is
exactly one value b in {O, I} such that b = a mod 2. For this example,
0=/(0), 1 = 1(1),0 = 1(2), etc. In contrast, the binary relation

g {(a, b) : a E N and a + b is even}

is not a function, since (1,3) and (1,5) are both in g, and thus for the
choice a = I, there is not precisely one b such that (a, b) E g.

Given a function I: A - B, if b = I(a), we say that a is the argument
of 1 and that b is the value of 1 at a. We can define a function by stating
its value for every element of its domain. For example, we might define
I(n) = 2n for n EN, which means 1 {(n, 2n) : n EN}. Two functions
1 and g are equal if they have the same domain and codomain and if, for
all a in the domain, I(a) = g(a).

A finite sequence of length n is a function 1 whose domain is the set
{O, 1, ... .n - I}. We often denote a finite sequence by listing its values:
(/(0),/(1), ... , fIn -1)). An infinite sequence is a function whose domain
is the set N of natural numbers. For example, the Fibonacci sequence,
defined by (2.13), is the infinite sequence (0,1,1,2,3,5,8,13,21, ...).

When the domain of a function 1 is a Cartesian product, we often omit
the extra parentheses surrounding the argument of I. For example, if
I: Al x A2 x··· x An - B, we would write b = l(a"a2,'" ,an) instead of
b = I«a), a2, ... , an)). We also call each a, an argument to the function I,
though technically the (single) argument to 1 is the n-tuple (a), az, ... , an).

If I: A - B is a function and b = I(a), then we sometimes say that b
is the image of a under I. The image of a set A' £;;; A under 1 is defined by

I(A') = {b E B: b = I(a) for some a E A'} .
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The range of J is the image of its domain, that is, J(A). For example,
the range of the function J : N -... N defined by J(n) = 2n is J(N)
{m : m = 2n for some n EN}.

A function is a surjection if its range is its codomain. For example, the
function J(n) = lnl2J is a surjective function from N to N, since every
element in N appears as the value of J for some argument. In contrast,
the function J(n) = 2n is not a surjective function from N to N, since
no argument to J can produce 3 as a value. The function J(n) = 2n
is, however, a surjective function from the natural numbers to the even
numbers. A surjection J : A --+ B is sometimes described as mapping A
onto B. When we say that J is onto, we mean that it is surjective.

A function J : A -t B is an injection if distinct arguments to J produce
distinct values, that is, if a ::f. a' implies J(a) ::f. J(a'). For example, the
function J(n) = 2n is an injective function from N to N, since each even
number b is the image under J of at most one element of the domain,
namely b12. The function J(n) = Lnl2J is not injective, since the value I
is produced by two arguments: 2 and 3. An injection is sometimes called
a one-to-one function.

A function J : A --+ B is a bijection if it is injective and surjective. For
example, the function J(n) = (_1)n fnj21 is a bijection from N to Z:

0 --+ o,
I -t -1 ,
2 --+ 1 ,
3 -...
4 -... 2,

The function is injective, since no element of Z is the image of more than
one element of N. It is surjective, since every element of Z appears as the
image of some element of N. Hence, the function is bijective. A bijection
is sometimes called a one-to-onecorrespondence, since it pairs elements in
the domain and codomain. A bijection from a set A to itself is sometimes
called a permutation.

When a function J is bijective, its inverse J- I is defined as

J- I (b) = a if and only if J(a) = b .

For example, the inverse of the function J(n) = (_l)n fn121 is

J-1(m) = {2m
-2m -1

if m ~ 0,
if m < O.
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Exercises

5.3-1
Let A and B be finite sets, and let f : A -+ B be a function. Show that

a. if f is injective, then IAI ~ IBI;
b. if f is surjective, then IAI ;::: IBI.

5.3-2
Is the function f(x) = x + 1 bijective when the domain and the codomain
are N? Is it bijective when the domain and the codomain are Z?

5.3-3
Give a natural definition for the inverse of a binary relation such that if a
relation is in fact a bijective function, its relational inverse is its functional
inverse.

5.3-4 *
Give a bijection from Z to Z x Z.

This section presents two kinds of graphs: directed and undirected. The
reader should be aware that certain definitions in the literature differ from
those given here, but for the most part, the differences are slight. Sec
tion 23.1 shows how graphs can be represented in computer memory.

A directed graph (or digraph) G is a pair (V, E), where V is a finite set
and E is a binary relation on V. The set V is called the vertex set of G, and
its elements are called vertices (singular: vertex). The set E is called the
edge set of G, and its elements are called edges. Figure 5.2(a) is a pictorial
representation of a directed graph on the vertex set {I, 2, 3,4, 5, 6}. Ver
tices are represented by circles in the figure, and edges are represented by
arrows. Note that sel/-Ioops-edges from a vertex to itself-are possible.

In an undirected graph G (V, E), the edge set E consists of unordered
pairs of vertices, rather than ordered pairs. That is, an edge is a set {u, v},
where u, v E V and u i v. By convention, we use the notation tu, v)
for an edge, rather than the set notation {u,v}, and (u,v) and (v,u) are
considered to be the same edge. In an undirected graph, self-loops are
forbidden, and so every edge consists of exactly two distinct vertices. Fig
ure 5.2(b) is a pictorial representation of an undirected graph on the vertex
set {1,2,3,4,5,6}.

Many definitions for directed and undirected graphs are the same, al
though certain terms have slightly different meanings in the two contexts.
If (u, v) is an edge in a directed graph G = (V, E), we say that (u, v)
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Figure 5.2 Directed and undirected graphs. (a) A directed graph G = (V, E),
where V = {l,2,3,4,5,6} and E = {(l,2),(2,2),(2,4),(2,5),(4, 1),(4,5),(5,4),
(6,3)}. The edge (2,2) is a self-loop. (b) An undirected graph G = (V, E), where
V = {1,2,3,4,5,6} and E = {(1,2),(1,5),(2,5),(3,6)}. The vertex 4 is isolated.
(c) The subgraph of the graph in part (a) induced by the vertex set {I, 2, 3, 6}.

is incident from or leaves vertex u and is incident to or enters vertex v.
For example, the edges leaving vertex 2 in Figure 5.2(a) are (2,2), (2,4),
and (2,5). The edges entering vertex 2 are (1,2) and (2,2). If (u, v) is an
edge in an undirected graph G = (V,E), we say that (u,v) is incident on
vertices u and v. In Figure 5.2(b), the edges incident on vertex 2 are (1,2)
and (2,5).

If (u, v) is an edge in a graph G = (V, E), we say that vertex v is ad
jacent to vertex u. When the graph is undirected, the adjacency relation
is symmetric. When the graph is directed, the adjacency relation is not
necessarily symmetric. If v is adjacent to u in a directed graph, we some
times write u -4 v. In parts (a) and (b) of Figure 5.2, vertex 2 is adjacent
to vertex 1, since the edge (1,2) belongs to both graphs. Vertex 1 is not
adjacent to vertex 2 in Figure 5.2(a), since the edge (2, 1) does not belong
to the graph.

The degree of a vertex in an undirected graph is the number of edges
incident on it. For example, vertex 2 in Figure 5.2(b) has degree 2. In a
directed graph, the out-degree of a vertex is the number of edges leaving
it, and the in-degree of a vertex is the number of edges entering it. The
degree of a vertex in a directed graph is its in-degree plus its out-degree.
Vertex 2 in Figure 5.2(a) has in-degree 2, out-degree 3, and degree 5.

A path of length k from a vertex u to a vertex u' in a graph G (V, E)
is a sequence (vo, VI, V2, .. • , Vk) of vertices such that u va, u' ui; and
(Vi-hVi) E E for i = 1,2, ... .k, The length of the path is the number
of edges in the path. The path contains the vertices va, VI, •.. , Vk and the
edges (vo, vd, (VI, V2),'''' (Vk-I, Vk)' If there is a path p from u to u', we
say that u' is reachable from u via p, which we sometimes write as u ~ u'
if G is directed. A path is simple if all vertices in the path are distinct. In
Figure 5.2(a), the path (1,2,5,4) is a simple path of length 3. The path
(2, 5, 4, 5) is not simple.
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A subpath of path p (vo, VI, ... , Vk) is a contiguous subsequence of
its vertices. That is, for any 0 ::; i ::; j ::; k, the subsequence of vertices
(Vi,Vi+I, ... ,Vj) is a subpath of p.

In a directed graph, a path (vo, VI, ..• , Vk) forms a cycle if Vo = Vk and
the path contains at least one edge. The cycle is simple if, in addition,
VI, V2, . . . ,Vk are distinct. A self-loop is a cycle of length I. Two paths
(VO,VI,V2,,,,,Vk-J,VO) and (vb,v;,v~,,,,,vk_l'vb)form the same cycle if
there exists an integer j such that v; = VU+ j)modk for i = 0, I, ... .k: 1.
In Figure 5.2(a), the path (1,2,4,1) forms the same cycle as the paths
(2,4,1,2) and (4, 1,2,4). This cycle is simple, but the cycle (1,2,4,5,4,1)
is not. The cycle (2,2) formed by the edge (2,2) is a self-loop. A di
rected graph with no self-loops is simple. In an undirected graph, a path
(vo,V], ... ,vd forms a cycle if Vo = Vk and VI, V2, ... , Vk are distinct. For
example, in Figure 5.2(b), the path (I, 2, 5, I) is a cycle. A graph with no
cycles is acyclic.

An undirected graph is connected if every pair of vertices is connected by
a path. The connected components of a graph are the equivalence classes of
vertices under the "is reachable from" relation. The graph in Figure 5.2(b)
has three connected components: {l, 2, 5}, {3, 6}, and {4}. Every vertex
in {l , 2, 5} is reachable from every other vertex in {I, 2, 5}. An undirected
graph is connected if it has exactly one connected component, that is, if
every vertex is reachable from every other vertex.

A directed graph is strongly connected if every two vertices are reachable
from each other. The strongly connected components of a graph are the
equivalence classes of vertices under the "are mutually reachable" relation.
A directed graph is strongly connected if it has only one strongly connected
component. The graph in Figure 5.2(a) has three strongly connected com
ponents: {1,2,4,5}, {3}, and {6}. All pairs of vertices in {l,2,4,5} are
mutually reachable. The vertices {3,6} do not form a strongly connected
component, since vertex 6 cannot be reached from vertex 3.

Two graphs G (V,E) and G' (V',E') are isomorphic if there exists a
bijection f : V -t V' such that (u, v) E E if and only if (f(u), j(v)) EE'.
In other words, we can relabel the vertices of G to be vertices of G', main
taining the corresponding edges in G and G'. Figure 5.3(a) shows a pair of
isomorphic graphs G and G' with respective vertex sets V {I, 2, 3,4,5, 6}
and V' = {u, v, w,x,y, z}, The mapping from V to V' given by j(l) u,
j(2) = v,j(3) = w,j(4) = x,j(5) = y,j(6) = z is the required bijective
function. The graphs in Figure 5.3(b) are not isomorphic. Although both
graphs have 5 vertices and 7 edges, the top graph has a vertex of degree 4
and the bottom graph does not.

We say that a graph G' = (V', E ') is a subgraph of G = (V, E) if V' ~ V
and E ' ~ E. Given a set V' ~ V, the subgraph of G induced by Viis the
graph G' = (V', E '), where

E' = {(u, v) E E: u, V E V'} .
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G

G'

(a) (b)

Figure 5.3 (a) A pair of isomorphic graphs. The vertices of the top graph are
mapped to the vertices of the bottom graph by f(l) u,f(2) v,f(3) 'W,

f(4) x,f(5) y,f(6) z. (b) Two graphs that are not isomorphic, since the
top graph has a vertex of degree 4 and the bottom graph does not.

The subgraph induced by the vertex set {I, 2, 3, 6} in Figure 5.2(a) appears
in Figure 5.2(c) and has the edge set {(I, 2), (2, 2), (6, 3)}.

Given an undirected graph G = (V, E), the directed version of G is the
directed graph G' (V,E'), where (u,v) E E' if and only if (u,v) E E.
That is, each undirected edge (u, v) in G is replaced in the directed version
by the two directed edges (u, v) and (v, u). Given a directed graph G =

(V, E), the undirected version of G is the undirected graph G' = (V,E'),
where (u, v) E E' if and only if u 1= v and (u, v) E E. That is, the
undirected version contains the edges of G "with their directions removed"
and with self-loops eliminated. (Since (u, v) and (v, u) are the same edge in
an undirected graph, the undirected version of a directed graph contains it
only once, even if the directed graph contains both edges (u, v) and (v, u).)
In a directed graph G = (V, E), a neighbor of a vertex u is any vertex that
is adjacent to u in the undirected version of G. That is, v is a neighbor
of u if either (u, v) E E or (v, u) E E. In an undirected graph, u and v are
neighbors if they are adjacent.

Several kinds of graphs are given special names. A complete graph is an
undirected graph in which every pair of vertices is adjacent. A bipartite
graph is an undirected graph G = (V, E) in which V can be partitioned
into two sets VI and V2 such that (u, v) E E implies either u E Vi and
v E V2 or u E V2 and v E VI. That is, all edges go between the two sets Vi
and V2. An acyclic, undirected graph is a forest, and a connected, acyclic,
undirected graph is a (free) tree (see Section 5.5). We often take the first
letters of "directed acyclic graph" and call such a graph a dag.

There are two variants of graphs that you may occasionally encounter.
A multigraph' is like an undirected graph, but it can have both multiple
edges between vertices and self-loops. A hypergraph is like an undirected
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graph, but each hyperedge, rather than connecting two vertices, connects an
arbitrary subset of vertices. Many algorithms written for ordinary directed
and undirected graphs can be adapted to run on these graphlike structures.

Exercises

5.4-1
Attendees of a faculty party shake hands to greet each other, and each
professor remembers how many times he or she shook hands. At the
end of the party, the department head sums up the number of times that
each professor shook hands. Show that the result is even by proving the
handshaking lemma: if G = (V, E) is an undirected graph, then

I: degree(v) = 21EI
vEV

5.4-2
Show that in an undirected graph, the length of a cycle must be at least 3.

5.4-3
Show that if a directed or undirected graph contains a path between two
vertices u and v, then it contains a simple path between u and v. Show
that if a directed graph contains a cycle, then it contains a simple cycle.

5.4-4
Show that any connected, undirected graph G
IVI- l.

5.4-5
Verify that in an undirected graph, the "is reachable from" relation is
an equivalence relation on the vertices of the graph. Which of the three
properties of an equivalence relation hold in general for the "is reachable
from" relation on the vertices of a directed graph?

5.4-6
What is the undirected version of the directed graph in Figure 5.2(a)?
What is the directed version of the undirected graph in Figure 5.2(b)?

5.4-7 *
Show that a hypergraph can be represented by a bipartite graph if we let
incidence in the hypergraph correspond to adjacency in the bipartite graph.
(Hint: Let one set of vertices in the bipartite graph correspond to vertices
of the hypergraph, and let the other set of vertices of the bipartite graph
correspond to hyperedges.)
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5.5 Trees

As with graphs, there are many related, but slightly different, notions of
trees. This section presents definitions and mathematical properties of
several kinds of trees. Sections 11.4 and 23.1 describe how trees can be
represented in a computer memory.

5.5.1 Free trees

As defined in Section 5.4, a free tree is a connected, acyclic, undirected
graph. We often omit the adjective "free" when we say that a graph is
a tree. If an undirected graph is acyclic but possibly disconnected, it is
a forest. Many algorithms that work for trees also work for forests. Fig
ure 5.4(a) shows a free tree, and Figure 5.4(b) shows a forest. The forest
in Figure 5.4(b) is not a tree because it is not connected. The graph in
Figure 5.4(c) is neither a tree nor a forest, because it contains a cycle.

The following theorem captures many important facts about free trees.

Theorem 5.2 (Properties offree trees)
Let G = (V, E) be an undirected graph. The following statements are
equivalent.

I. G is a free tree.

2. Any two vertices in G are connected by a unique simple path.

3. G is connected, but if any edge is removed from E, the resulting graph
is disconnected.

4. G is connected, and lEI = IVI - 1.

5. G is acyclic, and lEI = WI - 1.

6. G is acyclic, but if any edge is added to E, the resulting graph contains
a cycle.

Proof (I) =} (2): Since a tree is connected, any two vertices in G are
connected by at least one simple path. Let u and v be vertices that are

\
1\

(a) (b) (c)

Figure 5.4 (a) A free tree. (b) A forest. (c) A graph that contains a cycle and is
therefore neither a tree nor a forest.
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Figure 5.5 A step in the proof of Theorem 5.2: if (I) G is a free tree, then (2) any
two vertices in G are connected by a unique simple path. Assume for the sake of
contradiction that vertices u and v are connected by two distinct simple paths PI
and P2. These paths first diverge at vertex w, and they first reconverge at vertex z.
The path p' concatenated with the reverse of the path »" forms a cycle, which
yields the contradiction.

connected by two distinct simple paths PI and P2, as shown in Figure 5.5.
Let w be the vertex at which the paths first diverge; that is, w is the first
vertex on both PI and P2 whose successor on PI is x and whose successor on
P2 is y, where x -:f y. Let z be the first vertex at which the paths reconverge;
that is, z is the first vertex following w on PI that is also on P2. Let p'
be the subpath of PI from w through x to z, and let p" be the subpath of
P2 from w through y to z. Paths p' and p" share no vertices except their
endpoints. Thus, the path obtained by concatenating p' and the reverse of
p" is a cycle. This is a contradiction. Thus, if G is a tree, there can be at
most one path between two vertices.

(2) =? (3): If any two vertices in G are connected by a unique simple
path, then G is connected. Let (u, v) be any edge in E. This edge is a
path from u to v, and so it must be the unique path from u to v. If we
remove (u, v) from G, there is no path from u to v, and hence its removal
disconnects G.

(3) =? (4): By assumption, the graph G is connected, and by Exer
cise 5.4-4, we have lEI 2: IVI-I. We shall prove lEI ::s: IVI-l by induction.
A connected graph with n = 1 or n = 2 vertices has n - 1 edges. Suppose
that G has n 2: 3 vertices and that all graphs satisfying (3) with fewer than
n vertices also satisfy lEI ::s: IVII. Removing an arbitrary edge from G
separates the graph into k 2: 2 connected components (actually k 2).
Each component satisfies (3), or else G would not satisfy (3). Thus, by
induction, the number of edges in all components combined is at most
WI k::s: WI - 2. Adding in the removed edge yields lEI ::s: WI 1.

(4) =? (5): Suppose that G is connected and that lEI WI - 1. We
must show that G is acyclic. Suppose that G has a cycle containing k
vertices v), V2, • . • , ui: Let Gk = (~, Ek ) be the subgraph of G consisting
of the cycle. Note that I~ I = IEk I= k. If k < WI, there must be a vertex
Vk+1 E V - ~ that is adjacent to some vertex Vi E Vb since G is connected.
Define Gk +1 = (~+I,Ek+dtobethesubgraphofGwith ~+I = ~u{Vk+d

and Ek+1 = EkU{(vj, Vk+1 n. Note that I~+" = IEk+11 = k+ 1. If k+ 1 < n,
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we can continue, defining Gk+2 in the same manner, and so' forth, until
we obtain G; = (Vrt,En), where n lVI, Vrl V, and IEnl IVnl IVI.
Since G; is a subgraph of G, we have En ~ E, and hence lEI ~ IVI, which
contradicts the assumption that lEI = IVI - 1. Thus, G is acyclic.

(5) => (6): Suppose that G is acyclic and that lEI IVI 1. Let k be
the number of connected components of G. Each connected component
is a free tree by definition, and since (1) implies (5), the sum of all edges
in all connected components of G is IVI- k. Consequently, we must have
k 1, and G is in fact a tree. Since (1) implies (2), any two vertices in
G are connected by a unique simple path. Thus, adding any edge to G
creates a cycle.

(6) => (I): Suppose that G is acyclic but that if any edge is added to
E, a cycle is created. We must show that G is connected. Let u and v be
arbitrary vertices in G. If u and v are not already adjacent, adding the
edge (u, v) creates a cycle in which all edges but (u, v) belong to G. Thus,
there is a path from u to v, and since u and v were chosen arbitrarily, G
is connected. _

5.5.2 Rooted and ordered trees

A rooted tree is a free tree in which one of the vertices is distinguished
from the others. The distinguished vertex is called the root of the tree. We
often refer to a vertex of a rooted tree as a node: of the tree. Figure 5.6(a)
shows a rooted tree on a set of 12 nodes with root 7.

Consider a node x in a rooted tree T with root r. Any node y on the
unique path from r to x is called an ancestor of x. If y is an ancestor
of x, then x is a descendant of y. (Every node is both an ancestor and a
descendant of itself.) If y is an ancestor of x and x =f y, then y is a proper
ancestor of x and x is a proper descendant of y. The subtree rooted at x
is the tree induced by descendants of x, rooted at x. For example, the
subtree rooted at node 8 in Figure 5.6(a) contains nodes 8, 6, 5, and 9.

If the last edge on the path from the root r of a tree T to a node x is
(y, x), then y is the parent of x, and x is a child of y. The root is the only
node in T with no parent. If two nodes have the same parent, they are
siblings. A node with no children is an external node or leaf A nonleaf
node is an internal node.

2The term "node" is often used in the graph theory literature as a synonym for "vertex." We
shall reserve the term "node" to mean a vertex of a rooted tree.
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1

depth 0

depth 1

h';1 ~46
depth 2

depth 3

depth 4
(a) (b)

Figure 5.6 Rooted and ordered trees. (a) A rooted tree with height 4. The tree is
drawn in a standard way: the root (node 7) is at the top, its children (nodes with
depth I) are beneath it, their children (nodes with depth 2) are beneath them, and
so forth. If the tree is ordered, the relative left-to-right order of the children of a
node matters; otherwise it doesn't. (b) Another rooted tree. As a rooted tree, it is
identical to the tree in (a), but as an ordered tree it is different, since the children
of node 3 appear in a different order.

The number of children of a node x in a rooted tree T is called the
degree of x.' The length of the path from the root r to a node x is the
depth of x in T. The largest depth of any node in T is the height of T.

An ordered tree is a rooted tree in which the children of each node are
ordered. That is, if a node has k children, then there is a first child, a
second child, ... , and a kth child. The two trees in Figure 5.6 are different
when considered to be ordered trees, but the same when considered to be
just rooted trees.

5.5.3 Binary and positional trees

Binary trees are best described recursively. A binary tree T is a structure
defined on a finite set of nodes that either

• contains no nodes, or

• is comprised of three disjoint sets of nodes: a root node, a binary tree
called its left subtree, and a binary tree called its right subtree.

The binary tree that contains no nodes is called the empty tree or null tree,
sometimes denoted NIL. If the left subtree is nonempty, its root is called
the left child of the root of the entire tree. Likewise, the root of a nonnull
right subtree is the right child of the root of the entire tree. If a subtree is

--_._-_.__ ...._-

3Notice that the degree of a node depends on whether T is considered to be a rooted tree or
a free tree. The degree of a vertex in a free tree is. as in any undirected graph, the number
of adjacent vertices. In a rooted tree, however, the degree is the number of children-the
parent of a node does not count toward its degree.
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Figure 5.7 Binary trees. (a) A binary tree drawn in a standard way. The left
child of a node is drawn beneath the node and to the left. The right child is drawn
beneath and to the right. (b) A binary tree different from the one in (a). In (a),
the left child of node 7 is 5 and the right child is absent. In (b), the left child of
node 7 is absent and the right child is 5. As ordered trees, these trees are the same,
but as binary trees, they are distinct. (c) The binary tree in (a) represented by the
internal nodes of a full binary tree: an ordered tree in which each internal node
has degree 2. The leaves in the tree are shown as squares.

the null tree NIL, we say that the child is absent or missing. Figure 5.7(a)
shows a binary tree.

A binary tree is not simply an ordered tree in which each node has degree
at most 2. For example, in a binary tree, if a node has just one child,
the position of the child-whether it is the left child or the right child
matters. In an ordered tree, there is no distinguishing a sole child as being
either left or right. Figure 5.7(b) shows a binary tree that differs from the
tree in Figure 5.7(a) because of the position of one node. Considered as
ordered trees, however, the two trees are identical.

The positioning information in a binary tree can be represented by the
internal nodes of an ordered tree, as shown in Figure 5.7(c). The idea
is to replace each missing child in the binary tree with a node having no
children. These leaf nodes are drawn as squares in the figure. The tree
that results is a full binary tree: each node is either a leaf or has degree
exactly 2. There are no degree-I nodes. Consequently, the order of the
children of a node preserves the position information.

The positioning information that distinguishes binary trees from ordered
trees can be extended to trees with more than 2 children per node. In a
positional tree, the children of a node are labeled with distinct positive
integers. The ith child of a node is absent if no child is labeled with
integer i. A k-ary tree is a positional tree in which for every node, all
children with labels greater than k are missing. Thus, a binary tree is a
k-ary tree with k = 2.

A complete k-ary tree is a k-ary tree in which all leaves have the same
depth and all internal nodes have degree k, Figure 5.8 shows a complete
binary tree of height 3. How many leaves does a complete k-ary tree of
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depth 0

depth I

depth 2

depth 3

Figure 5.8 A complete binary tree of height 3 with 8 leaves and 7 internal nodes.

height h have? The root has k children at depth 1, each of which has
k children at depth 2, etc. Thus, the number of leaves at depth h is k",
Consequently, the height of a complete k-ary tree with n leaves is log, n.
The number of internal nodes of a complete k-ary tree of height h is

1+k+k2+·.·+kh- 1

by equation (3.3). Thus, a complete binary tree has 2h - 1 internal nodes.

Exercises

5.5-1
Draw all the free trees composed of the 3 vertices A, B, and C. Draw all
the rooted trees with nodes A, B, and C with A as the root. Draw all the
ordered trees with nodes A, B, and C with A as the root. Draw all the
binary trees with nodes A, B, and C with A as the root.

5.5-2
Show that for n 2: 7, there exists a free tree on n nodes such that picking
each of the n nodes as a root results in a different rooted tree.

5.5-3
Let G = (V, E) be a directed acyclic graph in which there is a vertex Va E V
such that there exists a unique path from Va to every vertex V E V. Prove
that the undirected version of G forms a tree.

5.5-4
Show by induction that the number of degree-2 nodes in any binary tree
is 1 less than the number of leaves.

5.5-5
Show by induction that a binary tree with n nodes has height at least L19 nJ.
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5.5-6 *
The internal path length of a full binary tree is the sum, taken over all
internal nodes of the tree, of the depth of each node. Likewise, the external
path length is the sum, taken over all leaves of the tree, of the depth of
each leaf. Consider a full binary tree with n internal nodes, internal path
length i, and external path length e. Prove that e i + 2n.

5.5-7 *
Let us associate a "weight" w(x) = 2-d with each leaf x of depth d in a
binary tree T. Prove that Lx w(x) ::; 1, where the sum is taken over all
leaves x in T. (This is known as the Kraft inequality.)

5.5-8 *
Show that every binary tree with L leaves contains a subtree having be
tween L/3 and 2L/3 leaves, inclusive.

Problems

....................................................•........•_._...._----------

5-1 Graph coloring
A k -coloring of an undirected graph G = (V, E) is a function c : V ->

{O, 1, ... , k - I} such that c(u) =f. c(v) for every edge (u, v) E E. In other
words, the numbers 0, 1, ... , k I represent the k colors, and adjacent
vertices must have different colors.

a. Show that any tree is 2-colorable.

b. Show that the following are equivalent:

1. G is bipartite.

2. G is 2-colorable.

3. G has no cycles of odd length.

c. Let d be the maximum degree of any vertex in a graph G. Prove that G
can be colored with d + 1 colors.

d. Show that if G has 0(1VI) edges, then G can be colored with O( JIVT)
colors.

5-2 Friendly graphs
Reword each of the following statements as a theorem about undirected
graphs, and then prove it. Assume that friendship is symmetric but not
reflexive.

a. In any group of n ~ 2 people, there are two people with the same number
of friends in the group.
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b. Every group of six people contains either three mutual friends or three
mutual strangers.

c. Any group of people can be partitioned into two subgroups such that at
least half the friends of each person belong to the subgroup of which
that person is not a member.

d. If everyone in a group is the friend of at least half the people in the
group, then the group can be seated around a table in such a way that
everyone is seated between two friends.

5-3 Bisecting trees
Many divide-and-conquer algorithms that operate on graphs require that
the graph be bisected into two nearly equal-sized subgraphs by removing
a small number of edges. This problem investigates bisections of trees.

a. Show that by removing a single edge, we can partition the vertices of
any n-vertex binary tree into two sets A and B such that IAI :::; 3n/4 and
IBI :::; 3n/4.

b. Show that the constant 3/4 in part (a) is optimal in the worst case by
giving an example of a simple tree whose most evenly balanced partition
upon removal of a single edge has IAI 3n/4.

c. Show that by removing at most O(lg n) edges, we can partition the ver
tices of any n-vertex tree into two sets A and B such that IAI = Ln/2J
and IBI = fn/2l

G. Boole pioneered the development of symbolic logic, and he introduced
many of the basic set notations in a book published in 1854. Modern
set theory was created by G. Cantor during the period 1874-1895. Can
tor focused primarily on sets of infinite cardinality. The term "function"
is attributed to G. W. Leibnitz, who used it to refer to several kinds of
mathematical formulas. His limited definition has been generalized many
times. Graph theory originated in 1736, when L. Euler proved that it was
impossible to cross each of the seven bridges in the city of Konigsberg
exactly once and return to the starting point.

A useful compendium of many definitions and results from graph theory
is the book by Harary [94].
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6.1 Counting

Counting and Probability

This chapter reviews elementary combinatorics and probability theory. If
you have a good background in these areas, you may want to skim the
beginning of the chapter lightly and concentrate on the later sections. Most
of the chapters do not require probability, but for some chapters it is
essential.

Section 6.1 reviews elementary results in counting theory, including stan
dard formulas for counting permutations and combinations. The axioms
of probability and basic facts concerning probability distributions are pre
sented in Section 6.2. Random variables are introduced in Section 6.3,
along with the properties of expectation and variance. Section 6.4 inves
tigates the geometric and binomial distributions that arise from studying
Bernoulli trials. The study of the binomial distribution is continued in
Section 6.5, an advanced discussion of the "tails" of the distribution. Fi
nally, Section 6.6 illustrates probabilistic analysis via three examples: the
birthday paradox, tossing balls randomly into bins, and winning streaks.

Counting theory tries to answer the question "How many?" without ac
tually enumerating how many. For example, we might ask, "How many
different n-bit numbers are there?" or "How many orderings of n distinct
elements are there?" In this section, we review the elements of counting
theory. Since some of the material assumes a basic understanding of sets,
the reader is advised to start by reviewing the material in Section 5.1.

Rules of sum and product

A set of items that we wish to count can sometimes be expressed as a union
of disjoint sets or as a Cartesian product of sets.

The rule 0/ sum says that the number of ways to choose an element
from one of two disjoint sets is the sum of the cardinalities of the sets.
That is, if A and B are two finite sets with no members in common, then
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IA UBI IAI + IBI, which follows from equation (5.3). For example,
each position on a car's license plate is a letter or a digit. The number of
possibilities for each position is therefore 26 + 10 = 36, since there are 26
choices if it is a letter and 10 choices if it is a digit.

The rule ofproduct says that the number of ways to choose an ordered
pair is the number of ways to choose the first element times the number
of ways to choose the second element. That is, if A and B are two finite
sets, then IA x BI IAI·IBI, which is simply equation (5.4). For example,
if an ice-cream parlor offers 28 flavors of ice cream and 4 toppings, the
number of possible sundaes with one scoop of ice cream and one topping
is28·4=1l2.

Strings

A string over a finite set S is a sequence of elements of S. For example,
there are 8 binary strings of length 3:

000,001,010,011,100,101,110, III .

We sometimes call a string of length k a k-strlng. A substring s' of a
string s is an ordered sequence of consecutive elements of s. A k-substring
of a string is a substring of length k: For example, 010 is a 3-substring
of 01101001 (the 3-substring that begins in position 4), but III is not a
substring of 01101001.

A k-string over a set S can be viewed as an element of the Cartesian
product Sk of k-tuples; thus, there are ISlk strings of length k. For ex
ample, the number of binary k-strings is 2k • Intuitively, to construct a
k-string over an n-set, we have n ways to pick the first element; for each
of these choices, we have n ways to pick the second element; and so forth
k times. This construction leads to the k-fold product n . n ... n = nk as
the number of k-strings.

Permutations

A permutation of a finite set S is an ordered sequence of all the elements of
S, with each element appearing exactly once. For example, if S {a, b, c},
there are 6 permutations of S:

abc, acb, bac, bca, cab, cba .

There are n! permutations of a set of n elements, since the first element of
the sequence can be chosen in n ways, the second in n 1 ways, the third
in n - 2 ways, and so on.

A k-permutation of S is an ordered sequence of k elements of S, with no
element appearing more than once in the sequence. (Thus, an ordinary per
mutation is just an n-permutation of an n-set.) The twelve 2-perrnutations
of the set {a,b,c,d} are
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ab, ac, ad, ba, be, bd.ca, cb, cd, da.db.dc .

The number of k-permutations of an n-set is

101

n(n
n!

1)(n - 2)··· (n - k + 1) = ---(n------:-k.,....".)! ' (6.1 )

(6.2)

since there are n ways of choosing the first element, n- I ways of choosing
the second element, and so on until k elements are selected, the last being
a selection from n - k + 1 elements.

Combinations

A k-combination of an n-set S is simply a k-subset of S. There are six
2-combinations of the 4-set {a,b,e,d}:

ab.ac.ad.bc.bd.cd ,

(Here we use the shorthand of denoting the 2-set {a, b} by ab, and so
on.) We can construct a k-combination of an n-set by choosing k distinct
(different) elements from the n-set.

The number of k-combinations of an n-set can be expressed in terms of
the number of k-permutations of an n-set. For every k-combination, there
are exactly k! permutations of its elements, each of which is a distinct k
permutation of the n-set. Thus, the number of k-combinations of an n-set
is the number of k-permutations divided by k!; from equation (6.1), this
quantity is

n!
k!(n-k)!'

For k = 0, this formula tells us that the number of ways to choose 0
elements from an n-set is 1 (not 0), since O! = I.

Binomial coefficients

We use the notation (Z) (read "n choose k") to denote the number of
k-combinations of an n-set. From equation (6.2), we have

n!
k! (n - k)! .

This formula is symmetric in k and n - k:

(6.3)

(6.4)

(6.5)

These numbers are also known as binomial coejJicients, due to their ap
pearance in the binomial expansion:

(x + y)n t (Z)Xky n- k .
k=O
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A special case of the binomial expansion occurs when x y I:

2
n

= t (Z) .
k=O

This formula corresponds to counting the 2n binary n-strings by the num
ber of l 's they contain: there are (Z) binary n-strings containing exactly k
I's, since there are (Z) ways to choose k out of the n positions in which to
place the 1's.

There are many identities involving binomial coefficients. The exercises
at the end of this section give you the opportunity to prove a few.

Binomial bounds

We sometimes need to bound the size of a binomial coefficient. For I ~
k ~ n, we have the lower bound

>

n(n-I) .. ·(n-k+ I)
k(k - I) .. · I

(I)(Z_~)···(n-7+1)

(I)k . (6.7)

(6.10)

Taking advantage of the inequality k! ~ (kje)k derived from Stirling's
formula (2.12), we obtain the upper bounds

(Z) n(n-I) .. ·(n-k+l)
k(k - 1) ... 1

<
nk

(6.8)
k!

< (e:t (6.9)

For all 0 ~ k ~ n, we can use induction (see Exercise 6.1-12) to prove the
bound

(
n) nn
k ~ kk(n - k)n-k '

where for convenience we assume that 00

o~ A~ I, this bound can be rewritten as
1. For k An, where

(An)An«1 - A)n)(I-A)n

W)'(AtJ (6.11)

(6.12)

where
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H(J..) = -AlgA (I - A)lg(I A)
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(6.13)

is the (binary) entropy function and where, for convenience, we assume
that OlgO = 0, so that H(O) = H(I) = O.

Exercises

6.1-1
How many k-substrings does an n-string have? (Consider identical k
substrings at different positions as different.) How many substrings does
an n-string have in total?

6.1-2
An n-input, m-output boolean function is a function from {TRUE, FALSE}n

to {TRUE, FALSE}"', How many n-input, l-output boolean functions are
there? How many n-input, m-output boolean functions are there?

6.1-3
In how many ways can n professors sit around a circular conference table?
Consider two seatings to be the same 'if one can be rotated to form the
other.

6.1-4
In how many ways can three distinct numbers be chosen from the set
{I, 2, ... , lOO} so that their sum is even?

6.1-5
Prove the identity

(6.14)

for 0 < k ::; n.

6.1-6
Prove the identity

for 0 ::; k < n.

6.1-7
To choose k objects from n, you can make one of the objects distinguished
and consider whether the distinguished object is chosen. Use this approach
to prove that
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6.1-8
Using the result of Exercise 6.1-7, make a table for n 0, 1,... ,6 and
o ::; k ::; n of the binomial coefficients (Z) with (g) at the top, (b) andmon the next line, and-so forth. Such a table of binomial coefficients is
called Pascal's triangle.

6.1-9
Prove that

6.1-10
Show that for any n ~ 0 and 0 ::; k ::; n, the maximum value of (Z) is
achieved when k = In/2J or k = fn/2l

6.1-11 *
Argue that for any n ~ 0, j ~ 0, k ~ 0, and j + k ::; n,

(6.15)

Provide both an algebraic proof and an argument based on a method for
choosing j + k items out of n. Give an example in which equality does
not hold.

6.1-12 *
Use induction on k ::; n/2 to prove inequality (6.10), and use equa
tion (6.4) to extend it to all k ::; n.

6.1-13 *
Use Stirling's approximation to prove that

(
2n ) 22n
n = y'7ili" (1 + O( 1/ n)) . (6.16)

6.2 Probability

6.1-14 *
By differentiating the entropy function H(A), show that it achieves its max
imum value at A= 1/2. What is H(1/2)?

Probability is an essential tool for the design and analysis of probabilistic
and randomized algorithms. This section reviews basic probability theory.

We define probability in terms of a samplespace S, which is a set whose
elements are called elementary events. Each elementary event can be viewed



6.2 Probability 105

as a possible outcome of an experiment. For the experiment of flipping
two distinguishable coins, we can view the sample space as consisting of
the set of all possible 2-strings over {H,T}:

S = {HH,HT, TH, TT} .

An event is a subset' of the sample space S. For example, in the experi
ment of flipping two coins, the event of obtaining one head and one tail is
{HT, TH}. The event S is called the certain event, and the event 0 is called
the null event. We say that two events A and B are mutually exclusive if
A nB = 0. We sometimes treat an elementary event S E S as the event {s}.
By definition, all elementary events are mutually exclusive.

Axioms of probability

A probability distribution Pr {} on a sample space S is a mapping from
events of S to real numbers such that the following probability axioms are
satisfied:

1. Pr {A} 20 for any event A.

2. Pr {S} 1.

3. Pr{A U B} = Pr{A} + Pr{B} for any two mutually exclusive events A
and B. More generally, for any (finite or countably infinite) sequence
of events A I, A2, ... that are pairwise mutually exclusive,

pr{yA;} ~ ~pr{Atl .
We call Pr {A} the probability of the event A. We note here that axiom 2
is a normalization requirement: there is really nothing fundamental about
choosing 1 as the probability of the certain event, except that it is natural
and convenient.

Several results follow immediately from these axioms and basic set the
ory (see Section 5.1). The null event 0 has probability Pr {0} = O. If
A ~ B, then Pr {A} :s. Pr {B}. Using A to denote the event S - A (the
complement of A), we have Pr {A} = 1 - Pr {A}. For any two events A
and B,

Pr{AUB} Pr{A}+Pr{B}-Pr{AnB}

< Pr {A} + Pr {B} .

(6.17)

(6.18)

I For a general probability distribution, there may be some subsets of the sample space S that
are not considered to be events. This situation usually arises when the sample space is un
countably infinite. The main requirement is that the set of events of a sample space be closed
under the operations of taking the complement of an event, forming the union of a finite or
countable number of events, and taking the intersection of a finite or countable number of
events. Most of the probability distributions we shall see are over finite or countable sample
spaces, and we shall generally consider all subsets of a sample space to be events. A notable
exception is the continuous uniform probability distribution, which will be presented shortly.



106 Chapter 6 Counting and Probability

In our coin-flipping example, suppose that each of the four elementary
events has probability 1/4. Then the probability of getting at least one
head is

Pr {HH, HT, TH} Pr{HH} + Pr{HT} + Pr{TH}

3/4.

Alternatively, since the probability of getting strictly less than one head is
Pr {TT} = 1/4, the probability of getting at least one head is 1- 1/4 = 3/4.

Discrete probability distributions

A probability distribution is discrete if it is defined over a finite or count
ably infinite sample space. Let S be the sample space. Then for any
event A,

Pr {A} = I: Pr {s} ,
sEA

since elementary events, specifically those in A, are mutually exclusive. If
S is finite and every elementary event s E S has probability

Pr{s} = I/ISI ,

then we have the uniform probability distribution on S. In such a case the
experiment is often described as "picking an element of S at random."

As an example, consider the process of flipping a/air coin, one for which
the probability of obtaining a head is the same as the probability of ob
taining a tail, that is, 1/2. If we flip the coin n times, we have the uniform
probability distribution defined on the sample space S = {H, T}", a set of
size 2n• Each elementary event in S can be represented as a string of length
n over {H,T}, and each occurs with probability 1/2n• The event

A = {exactly k heads and exactly n - k tails occur}

is a subset of S of size IA I = (Z), since there are (Z) strings of length n
over {H,T} that contain exactly k H'S. The probability of event A is thus
Pr {A} = (k) 12n•

Continuous uniform probability distribution

The continuous uniform probability distribution is an example of a prob
ability distribution in which all subsets of the sample space are not con
sidered to be events. The continuous uniform probability distribution is
defined over a closed interval [a, b] of the reals, where a < b. Intuitively,
we want each point in the interval [a, b] to be "equally likely." There is an
uncountable number of points, however, so if we give all points the same fi
nite, positive probability, we cannot simultaneously satisfy axioms 2 and 3.
For this reason, we would like to associate a probability only with some
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of the subsets of S in such a way that the axioms are satisfied for these
events.

For any closed interval [c, d], where a ~ c ~ d ~ b, the continuous
uniform probability distribution defines the probability of the event [c, d]
to be

d-e
Pr{[e,d]} = -b- .-a
Note that for any point x = [x, x], the probability of x is O. If we remove
the endpoints of an interval [e,d], we obtain the open interval (e,d). Since
[e,d] = [e,e]u(e, d)U[d, d], axiom 3 gives us Pr He, d]} = Pr {(e, d)}. Gen
erally, the set of events for the continuous uniform probability distribution
is any subset of [a, b] that can be obtained by a finite or countable union
of open and closed intervals.

Conditional probability and independence

Sometimes we have some prior partial knowledge about the outcome of an
experiment. For example, suppose that a friend has flipped two fair coins
and has told you that at least one of the coins showed a head. What is the
probability that both coins are heads? The information given eliminates
the possibility of two tails. The three remaining elementary events are
equally likely, so we infer that each occurs with probability 1/3. Since
only one of these elementary events shows two heads, the answer to our
question is 1/3.

Conditional probability formalizes the notion of having prior partial
knowledge of the outcome of an experiment. The conditional probability
of an event A given that another event B occurs is defined to be

P {A IB} = Pr{A n B} (6.19)
r Pr{B}

whenever Pr{B} :f. O. (We read "Pr{A IB}" as "the probability of A
given B.") Intuitively, since we are given that event B occurs, the event
that A also occurs is A n B. That is, A n B is the set of outcomes in
which both A and B occur. Since the outcome is one of the elementary
events in B, we normalize the probabilities of all the elementary events
in B by dividing them by Pr {B}, so that they sum to 1. The conditional
probability of A given B is, therefore, the ratio of the probability of event
An B to the probability of event B. In the example above, A is the event
that both coins are heads, and B is the event that at least one coin is a
head. Thus, Pr{A IB} = (1/4)/(3/4) = 1/3.

Two events are independent if

Pr {A n B} = Pr {A} Pr {B} ,

which is equivalent, if Pr {B} :f. 0, to the condition

Pr{A IB} = Pr{A} .
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For example, suppose that two fair coins are flipped and that the outcomes
are independent. Then the probability of two heads is (1/2)(1/2) = 1/4.
Now suppose that one event is that the first coin comes up heads and the
other event is that the coins come up differently. Each of these events
occurs with probability 1/2, and the probability that both events occur
is 1/4; thus, according to the definition of independence, the events are
independent-even though one might think that both events depend on
the first coin. Finally, suppose that the coins are welded together so that
they both fall heads or both fall tails and that the two possibilities are
equally likely. Then the probability that each coin comes up heads is 1/2,
but the probability that they both come up heads is 1/2 ¥- (1/2)(1/2).
Consequently, the event that one comes up heads and the event that the
other comes up heads are not independent.

A collection AI, A 2, ... , An of events is said to be pairwise independent if

Pr{Ai n Aj} = Pr{Ad Pr{A j }

for all 1 :::; i < j :::; n. We say that they are (mutually) independent if
every k-subset Ail' Ail" .. ,Ah of the collection, where 2 :::; k < nand
1 :::; i, < i: < .,. < ik :::; n, satisfies

Pr{A i l n A i2n··· n Ai,} = Pr{A;j Pr{Ai2}· .. Pr{Ad .

For example, suppose we flip two fair coins. Let AI be the event that the
first coin is heads, let A2 be the event that the second coin is heads, and
let A 3 be the event that the two coins are different. We have

Pr{Ad = 1/2,

Pr{A2} 1/2,

Pr{A3} 1/2,

Pr {AI n A2} 1/4,

Pr{A I n A3} 1/4,

Pr{A2nA3} = 1/4,

Pr{A I nA2 nA3} O.

Since for 1:::; i < i s. 3, we have Pr{AinAj} = Pr{AtJPr{A j } = 1/4,
the events AI. A2, and A3 are pairwise independent. The events are
not mutually independent, however, because Pr{A I n A2 n A 3 } = 0 and
Pr{AI}Pr{A2}Pr{A3} = 1/8 ¥- O.

Bayes's theorem

From the definition of conditional probability (6.19), it follows that for
two events A and B, each with nonzero probability,

Pr {A n B} = Pr {B} Pr {A IB}

= Pr {A} Pr {B IA}

Solving for Pr{A IB}, we obtain

(6.20)
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Pr{A IB}
Pr{A} Pr{B IA}

Pr{B}
(6.21)

which is known as Bayes's theorem. The denominator Pr{B} is a normal
izing constant that we can reexpress as follows. Since B = (BnA)U(BnA)
and B n A and B n A are mutually exclusive events,

Pr {B} = Pr {B n A} + Pr {B n A}

= Pr {A} Pr {B IA} + Pr {A} Pr {B IA} .

Substituting into equation (6.21), we obtain an equivalent form of Bayes's
theorem:

Pr{A IB} = Pr{A}Pr{B IA}
Pr {A} Pr {B IA} + Pr {A} Pr {B IA}

(1/2)· I + 0/2)· (1/4)
= 4/5.

Pr{A I B}

Bayes's theorem can simplify the computing of conditional probabilities.
For example, suppose that we have a fair coin and a biased coin that always
comes up heads. We run an experiment consisting of three independent
events: one of the two coins is chosen at random, the coin is flipped once,
and then it is flipped again. Suppose that the chosen coin comes up heads
both times. What is the probability that it is biased?

We solve this problem using Bayes's theorem. Let A be the event that the
biased coin is chosen, and let B be the event that the coin comes up heads
both times. We wish to determine Pr{A IB}. We have Pr{A} = 1/2,
Pr{B IA} = 1, Pr{A} = 1/2, and Pr{B IA} = 1/4; hence,

(1/2)·1

Exercises

6.2-1
Prove Boote's inequality: For any finite or countably infinite sequence of
events AI. Al, ... ,

(6.22)

6.2-2
Professor Rosencrantz flips one fair coin. Professor Guildenstern flips
two fair coins. What is the probability that Professor Rosencrantz obtains
more heads than Professor Guildenstern?

6.2-3
A deck of 10 cards, each bearing a distinct number from 1 to 10, is shuffled
to mix the cards thoroughly. Three cards are removed one at a time from
the deck. What is the probability that the three cards are selected in sorted
(increasing) order?
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6.2-4 *
You are given a biased coin, that when flipped, produces a head with
(unknown) probability p, where 0 < p < 1. Show how a fair "coin flip"
can be simulated by looking at multiple flips. (Hint: Flip the coin twice
and then either output the result of the simulated fair flip or repeat the
experiment.) Prove that your answer is correct.

6.2-5 *
Describe a procedure that takes as input two integers a and b such that
o< a < b and, using fair coin flips, produces as output heads with prob
ability alb and tails with probability (b - a)lb. Give a bound on the
expected number of coin flips, which should be polynomial in 19b.

6.2-6
Prove that

Pr {A IB} + Pr {A IB} = I .

6.2-7
Prove that for any collection of events AI, A2, ••• , An,

Pr{A I n A2 n··· nAn} = Pr{Ad' Pr{A2 1 Ad· Pr{A3 I AI n A2}'"

Pr{AnIAjnA2n···nAn_l} .

6.2-8 *
Show how to construct a set of n events that are pairwise independent but
such that any subset of k > 2 of them are not mutually independent.

6.2-9 *
Two events A and B are conditionally independent, given C, if

Pr{A n B I C} = Pr{A I C}· Pr{B I C} .

Give a simple but nontrivial example of two events that are not indepen
dent but are conditionally independent given a third event.

6.2-10 *
You are a contestant in a game show in which a prize is hidden behind one
of three curtains. You will win the prize if you select the correct curtain.
After you have picked one curtain but before the curtain is lifted, the
emcee lifts one of the other curtains, revealing an empty stage, and asks
if you would like to switch from your current selection to the remaining
curtain. How will your chances change if you switch?

6.2-11 *
A prison warden has randomly picked one prisoner among three to go
free. The other two will be executed. The guard knows which one will
go free but is forbidden to give any prisoner information regarding his
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status. Let us call the prisoners X, Y, and Z. Prisoner X asks the guard
privately which of Y or Z will be executed, arguing that since he already
knows that at least one of them must die, the guard won't be revealing
any information about his own status. The guard tells X that Y is to be
executed. Prisoner X feels happier now, since he figures that either he or
prisoner Z will go free, which means that his probability of going free is
now 1/2. Is he right, or are his chances still 1/3? Explain.

6.3 Discrete random variables

A (discrete) random variable X is a function from a finite or countably in
finite sample space S to the real numbers. It associates a real number with
each possible outcome of an experiment, which allows us to work with the
probability distribution induced on the resulting set of numbers. Random
variables can also be defined for uncountably infinite sample spaces, but
they raise technical issues that are unnecessary to address for our purposes.
Henceforth, we shall assume that random variables are discrete.

For a random variable X and a real number x, we define the event X x
to be {s E S : X(s) = x}; thus,

PriX = x} = L Pr{s}
{sES:X(sl=x}

The function

!(x) = PriX = x}

is the probability density function of the random variable X. From the
probability axioms, Pr {X = x} 2 0 and LxPr {X x} = 1.

As an example, consider the experiment of rolling a pair of ordinary,
6-sided dice. There are 36 possible elementary events in the sample space.
We assume that the probability distribution is uniform, so that each ele
mentary event s E S is equally likely: Pr{s} = 1/36. Define the random
variable X to be the maximum of the two values showing on the dice.
We have PriX 3} = 5/36, since X assigns a value of 3 to 5 of the 36
possible elementary events, namely, (1,3), (2,3), (3,3), (3,2), and (3, I).

It is common for several random variables to be defined on the same
sample space. If X and Yare random variables, the function

!(x,y) = PriX = x and Y = y}

is the joint probability density function of X and Y. For a fixed value y,

Pr {Y = y} = L Pr {X = x and Y = y} ,
x

and similarly, for a fixed value x,

PriX x} LPr{X = x and Y y}.
y
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Using the definition (6.19) of conditional probability, we have

Pr {X x and Y = y}
Pr{Y = y}

We define two random variables X and Y to be independent if for all x
and y, the events X = x and Y yare independent or, equivalently, if
for all x and y, we have Pr{X = x and Y y} = Pr{X = x} Pr{Y = y}.

Given a set of random variables defined over the same sample space, one
can define new random variables as sums, products, or other functions of
the original variables.

Expected value of a random variable

The simplest and most useful summary of the distribution of a random
variable is the "average" of the values it takes on. The expected value (or,
synonymously, expectation or mean) of a discrete random variable X is

E[X] = LX Pr{X = x} ,
x

(6.23)

which is well defined if the sum is finite or converges absolutely. Sometimes
the expectation of X is denoted by flx or, when the random variable is
apparent from context, simply by fl.

Consider a game in which you flip two fair coins. You earn $3 for each
head but lose $2 for each tail. The expected value of the random variable
X representing your earnings is

E[X] = 6· Pr{2 H'S} + 1· Pr{l H, 1 T} - 4· Pr{2 T'S}

= 6(1/4) + 1(1/2) 4(1/4)

1 .

The expectation of the sum of two random variables is the sum of their
expectations, that is,

E[X+Y] E[X]+E[Y] , (6.24)

whenever E [X] and E [Y] are defined. This property extends to finite and
absolutely convergent summations of expectations.

If X is any random variable, any function g(x) defines a new random
variable g(X). If the expectation of g(X) is defined, then

E[g(X)] = L g(x) Pr{X = x} .
x

Letting g(x) = ax, we have for any constant a,

E[aX] = aE[X] . (6.25)

Consequently, expectations are linear: for any two random variables X
and Y and any constant a,
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E{aX + Y] aE[X] + E[Y] .

JJ3

(6.26)

When two random variables X and Yare independent and each has a
defined expectation,

E{XY] 2: 2: xyPr{X = x and Y =y}
x y

2:2: xy Pr {X = x} Pr {Y = y}
x y

~ (~X PriX ~ Xl) (~Y Pr{Y ~ Yl)
= E{X]E[Y].

In general, when n random variables XI, X2, .. . , Xn are mutually indepen
dent,

(6.27)

When a random variable X takes on values from the natural numbers
N = {O, 1,2, ...}, there is a nice formula for its expectation:

00

E{X] = 2:iPr{X=i}
i=O

2: i(Pr{X 2: i} Pr{X ~ i + l})
i=O

= 2: Pr {X 2: i} ,
i=1

(6.28)

since each term Pr {X 2: i} is added in i times and subtracted out i I
times (except Pr{X 2: O}, which is added in 0 times and not subtracted
out at all).

Variance and standard deviation

The variance of a random variable X with mean E [X] is

VarIX] E [(X - E[X])2]

= E [X 2 - 2XE{X] + E2 [X]]

= E [X 2] - 2E[XE[X]] + E2 [X]

E [X 2] - 2E2 [X] + E2 [X]

E [X2
] E2 [X] . (6.29)

The justification for the equalities E [E2 [X]] = E2 [X] and E [XE [X]] =
E2 [X] is that E [X] is not a random variable but simply a real number,
which means that equation (6.25) applies (with a = E [Xl). Equation
(6.29) can be rewritten to obtain an expression for the expectation of the
square of a random variable:
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(6.30)

The variance of a random variable X and the variance of aX are related:

Var [aX] = a2Var [X] .

When X and Yare independent random variables,

Var[X + Y] = Var[X] + Var[Y] .

In general, if n random variables Xl, X2, . . . , Xn are pairwise independent,
then

n

L:Var[Xil
i=1

(6.31)

The standard deviation of a random variable X is the positive square root
of the variance of X. The standard deviation of a random variable X is
sometimes denoted ax or simply a when the random variable X is under
stood from context. With this notation, the variance of X is denoted (j2.

Exercises

6.3-1
Two ordinary, 6-sided dice are rolled. What is the expectation of the sum
of the two values showing? What is the expectation of the maximum of
the two values showing?

6.3-2
An array A[l .. n] contains n distinct numbers that are randomly ordered,
with each permutation of the n numbers being equally likely. What is the
expectation of the index of the maximum element in the array? What is
the expectation of the index of the minimum element in the array?

6.3-3
A carnival game consists of three dice in a cage. A player can bet a dollar
on any of the numbers 1 through 6. The cage is shaken, and the payoff is
as follows. If the player's number doesn't appear on any of the dice, he
loses his dollar. Otherwise, if his number appears on exactly k of the three
dice, for k = 1,2,3, he keeps his dollar and wins k more dollars. What is
his expected gain from playing the carnival game once?

6.3-4 *
Let X and Y be independent random variables. Prove that f(X) and g(Y)
are independent for any choice of functions f and g.

6.3-5 *
Let X be a nonnegative random variable, and suppose that E [X] is well
defined. Prove Markov's inequality:



6.4 The geometric and binomial distributions

Pr{X ~ t} s E[X] It

for all t > O.
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(6.32)

6.3-6 *
Let S be a sample space, and let X and X' be random variables such that
X(s) ~ X'(s) for all s E S. Prove that for any real constant t,

Pr {X ~ t} ~ Pr {X' ~ t}

6.3-7
Which is larger: the expectation of the square of a random variable, or the
square of its expectation?

6.3-8
Show that for any random variable X that takes on only the values 0 and I,
we have Var[X] = E[X] E [1 - X].

6.3-9
Prove that Var[aX] = a2Var[x] from the definition (6.29) of variance.

6.4 The geometric and binomial distributions

A coin flip is an instance of a Bernoulli trial, which is defined as an ex
periment with only two possible outcomes: success, which occurs with
probability p, and/ailure, which occurs with probability q = I - p, When
we speak of Bernoulli trials collectively, we mean that the trials are mu
tually independent and, unless we specifically say otherwise, that each has
the same probability p for success. Two important distributions arise from
Bernoulli trials: the geometric distribution and the binomial distribution.

The geometric distribution

Suppose we have a sequence of Bernoulli trials, each with a probability p
of success and a probability q = 1 - p of failure. How many trials occur
before we obtain a success? Let the random variable X be the number of
trials needed to obtain a success. Then X has values in the range {I, 2, ...},
and for k ~ I,

Pr{X = k} =«:» , (6.33)

since we have k - 1 failures before the one success. A probability dis
tribution satisfying equation (6.33) is said to be a geometric distribution.
Figure 6.1 illustrates such a distribution.
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Figure 6.1 A geometric distribution with probability p = J/ 3 of success and a
probabi lity q = 1 - p of failu re. The expectation of the distr ibution is l i p = 3.

Assuming p < I, the expectation of a geom etric di stribution can be
calculated using ide ntit y (3.6):

00

EI X) ~ L kq ' - Ip

'-1
00

~ eL k q'
q .1: _0

P q
~

q)'q ( I
~ l jp . (6.34)

Thus, on average , it takes l i p trials before we obtain a success, an intuitive
result. The varia nce, which can be calculated similarly, is

VarIX) = qjp' . (6.35)

As an example, suppose we repeatedly roll two dice until we obtain either
a seven or an eleven . Of the 36 possible outcomes. 6 yield a seven and 2
yield an eleven. Thus, the probabi lity of success is p = 8/36 = 2/9, and
we mu st rolli / p = 9/ 2 = 4.5 times on average to obtain a seven or eleven.
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b(,t : 15, 113)
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Figure 6.2 The binomial distribution b(k ; 15, 1/ 3) resulting from n :: 15 Ber
noulli tria ls, each with probability p :: 1/ 3 of success. The expectat ion of the
dis tribution is np :: 5.

T he binomial di stribution

How many successes occur during n Bernoulli trials. where a success occurs
with probability p and a fai lure with probabil ity q = I - p? Define the
random variable X to be the number of successes in n trials. Then X has
values in the range {O. I , ... •n }. an d for k = 0•. ..• n ,

(6.36)

since th ere a re (:) ways to pick which k of the n tri als are successes. and the
probability that each occurs is pkq n- k. A probabil ity distribution satisfying
equatio n (6.36) is said to be a binomial diJtriblltiolt. For convenience, we
define the family of binomi al dis tributions using the notati on

(6.37)

Figure 6.2 illustrates a bin omi al d istribution . The nam e "binomial" comes
from the fac t that (6.37) is the k th term of the expansion of (p + q)" .
Consequently. since p + q = I.

"
L b(k ;n, p) = I ,
' .0

(6.38)

as is required by axio m 2 of the probability axiom s.
We can compute the expec tation of a random variable having a binomial

d istribution from equations (6. 14) and (6.38 ). Let X be a rand om variable
tha t follows the binomia l distribution b(k;n ,p ), and let q = 1 - p. By the
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definition of expectation, we have
n

E[X] = Lkb(k;n,p)
k=O

tk(Z)pkqn-k
k=l

n ( I)= np L Z_1 pk-lqn-k
k=l

n-I ( I)np L n ~ pkq(n-lJ-k

k=O
n-l

= np L b(k; n I,p)
k=O

np . (6.39)

By using the linearity of expectation, we can obtain the same result with
substantially less algebra. Let Xi be the random variable describing the
number of successes in the rth trial. Then E [Xil = p . 1 + q ·0 = p, and
by linearity of expectation (6.26), the expected number of successes for n
trials is

E[X] E [~Xi]

i=l

i=l

= np.

The same approach can be used to calculate the variance of the distribu
tion. Using equation (6.29), we have Var[Xd = E [Xl] - E2 [XiJ. Since Xi
only takes on the values 0 and I, we have E [Xl] = E [X;] = p, and hence

Var[Xd p p2 = pq . (6.40)

To compute the variance of X, we take advantage of the independence
of the n trials; thus, by equation (6.31),

VarIX] ~ Var [t,Xi ]

n

LVar[X;J
i=l
n

= Lpq
i=1

= npq. (6.41)
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(6.42)

=

=

As can be seen from Figure 6.2, the binomial distribution b(k;n,p)
increases as k runs from 0 to n until it reaches the mean np, and then
it decreases. We can prove that the distribution always behaves in this
manner by looking at the ratio of successive terms:

btk; n,p) (Z)pkqn-k
=

b(k 1; n,p) (k~l)pk-lqn-k+1

n!(k - 1)!(n - k + l)!p
k!(n - k)!n!q

(n-k+l)p
kq

1
(n + l)p k

= + kq

This ratio is greater than I precisely when (n + l)p - k is positive. Con
sequently, btk; n,p) > b(k - 1;n,p) for k < (n + l)p (the distribution
increases), and b(k;n,p) < b(k-l;n,p) for k > (n+ l)p (the distribution
decreases). If k = (n + l)p is an integer, then b(k;n,p) = b(k - l;n,p),
so the distribution has two maxima: at k = (n + l)p and at k - 1 =
(n + l)p - 1 = np - q. Otherwise, it attains a maximum at the unique
integer k that lies in the range np - q < k < (n + I )p.

The following lemma provides an upper bound on the binomial distri
bution.

Lemma 6.1
Let n ~ 0, let 0 < p < 1, let q = 1 p, and let 0::; k ::; n. Then

bik; n,p) ::; crf (n~qkr-
k

•

Proof Using equation (6.10), we have

btk; n,p) (~)pkqn-k

(!! )k(_n_)n-k k n-k
< k n k pq

= s:(n~kr-
k

• •

Exercises

6.4-1
Verify axiom 2 of the probability axioms for the geometric distribution.

6.4-2
How many times on average must we flip 6 fair coins before we obtain 3
heads and 3 tails?
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6.4-3
Show that bik; n,p) ben k; n, q), where q = I - p,

6.4-4
Show that value of the maximum of the binomial distribution b(k;n,p) is
approximately 1/-.j2nnpq, where q == I - p.

6.4-5 *
Show that the probability of no successes in n Bernoulli trials, each with
probability p lin, is approximately lie. Show that the probability of
exactly one success is also approximately lie.

6.4-6 *
Professor Rosencrantz flips a fair coin n times, and so does Professor
Guildenstern. Show that the probability that they get the same number of
heads is en

n)/ 4n• (Hint: For Professor Rosencrantz, call a head a success;
for Professor Guildenstern, call a tail a success.) Use your argument to
verify the identity

6.4-7 *
Show that for 0 :::; k :::; n,

btk; n, 1/2):::; 2n H (k j n )- n ,

where H(x) is the entropy function (6.13).

6.4-8 *
Consider n Bernoulli trials, where for i = 1,2, ... .n, the ith trial has
probability Pi of success, and let X be the random variable denoting the
total number of successes. Let p 2: Pi for all i = 1,2, ... , n. Prove that for
I :::; k :::; n,

k-l

Pr{X < k}:::; Lb(i;n,p).
;=0

6.4-9 *
Let X be the random variable for the total number of successes in a set
A of n Bernoulli trials, where the ith trial has a probability Pi of success,
and let X' be the random variable for the total number of successes in a
second set A' of n Bernoulli trials, where the ith trial has a probability
p; ~ Pi of success. Prove that for 0 :::; k :::; n,

Pr{X' ~ k} ~ Pr{X 2: k} .

(Hint: Show how to obtain the Bernoulli trials in A' by an experiment
involving the trials of A, and use the result of Exercise 6.3-6.)
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The probability of having at least, or at most, k successes in n Bernoulli
trials, each with probability p of success, is often of more interest than the
probability of having exactly k successes. In this section, we investigate
the tails of the binomial distribution: the two regions of the distribution
b(k; n,p) that are far from the mean np, We shall prove several important
bounds on (the sum of all terms in) a tail.

We first provide a bound on the right tail of the distribution b(k; n,p).
Bounds on the left tail can be determined by inverting the roles of successes
and failures.

Theorem 6.2
Consider a sequence of n Bernoulli trials, where success occurs with prob
ability p. Let X be the random variable denoting the total number of
successes. Then for 0 ~ k ~ n, the probability of at least k successes is

n

Pr{X ~ k} = L b(i; n,p)
i=k

Proof We make use of the inequality (6.15)

We have
n

Pr{X ~ k} = L b(i; n,p)
i=k

n-k
= L b(k + i;n,p)

i=O

= I: ( n .)pk+i(1 _ pt-(k+i)
i=O k + I

< I: (~) (n i k)pk+i(l _ p)n-(k+i)
/=0

(Z)pkE(" j k)p'(l - p),"-kHI

(~)pkI: bti; n - k,p)
/=0

= (~)pk,
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since 'L7:ok b(i; n k,p) 1 by equation (6.38). •
The following corollary restates the theorem for the left tail of the bino

mial distribution. In general, we shall leave it to the reader to adapt the
bounds from one tail to the other.

Corollary 6.3
Consider a sequence of n Bernoulli trials, where success occurs with proba
bility p. If X is the random variable denoting the total number of successes,
then for 0 ::; k ::; n, the probability of at most k successes is

k

Pr {X::; k} = L b(i; n,p)
i=O

( n )(I_P)Il-k
n-k

(Z)(l- p)ll-k . •

Our next bound focuses on the left tail of the binomial distribution.
Far from the mean, the number of successes in the left tail diminishes
exponentially, as the following theorem shows.

Theorem 6.4
Consider a sequence of n Bernoulli trials, where success occurs with prob
ability p and failure with probability q = 1 p. Let X be the random
variable denoting the total number of successes. Then for 0 < k < np ; the
probability of fewer than k successes is

k-I

Pr{X < k} = Lb(i;n,p)
i=O

<
kq

-":"""-k b(k;n,p) .
np

Proof We bound the series 'L7:01 b(i; n,p) by a geometric series using
the technique from Section 3.2, page 47. For i = 1,2, ... , k ; we have from
equation (6.42),

b(i - l;n,p)
bii; n,p)

< (n~i) (~)

< (n~k)(~)
If we let
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x= (n ~ k) (~) < 1 ,

it follows that

b(i - l;n,p) < xb(i;n,p)

for 0 < i ~ k. Iterating, we obtain

bti; n,p) < Xk- i bik; n,p)

for 0 ~ i < k, and hence

k-I k-l

L b(i; n,p) < L Xk-ib(k; n,p)
[=0 i=O

00

< b(k;n,p) LXi
i=1

X
b(k;n,p)

X

kq
---=-b(k;n,p) .
np-

123

•

When k ~ npl2, we have kq/(np - k) ~ 1, which means that b(k;n,p)
bounds the sum of all terms smaller than k. As an example, suppose we
flip n fair coins. Usingp = 1/2 and k = n14, Theorem 6.4 tells us that the
probability ofobtaining fewer than nl4 heads is less than the probability of
obtaining exactly n14heads. Furthermore, for any r ~ 4, the probability of
obtaining fewer than nI r heads is less than that of obtaining exactly nI r
heads. Theorem 6.4 can also be quite useful in conjunction with upper
bounds on the binomial distribution, such as Lemma 6.1.

A bound on the right tail can be determined similarly.

Corollary 6.5
Consider a sequence of n Bernoulli trials, where success occurs with prob
ability p. Let X be the random variable denoting the total number of
successes. Then for np < k < n, the probability of more than k suc
cesses is

n

Pr{X > k} = L b(i; n,p)
i=k+1

< (z - k)p b(k; n,p) . •np

The next theorem considers n Bernoulli trials, each with a probability
Pi of success, for iI, 2, ... , n. As the subsequent corollary shows, we
can use the theorem to provide a bound on the right tail of the binomial
distribution by setting Pi = P for each trial.
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Theorem 6.6
Consider a sequence of n Bernoulli trials, where in the ith trial, for i
1,2, ... , n, success occurs with probability Pi and failure occurs with prob
ability qi = I - Pi. Let X be the random variable describing the total
number of successes, and let /1 E [X]. Then for r > /1,

Pr {X - /1 ~ r} ~ (/1
r
er.

Proof Since for any 0: > 0, the function en x is strictly increasing in x,

PriX /1 ~ r} = Pr{en (X - I1) ~ en r
} ,

where 0: will be determined later. Using Markov's inequality (6.32), we
obtain

(6.43)

(6.44)

The bulk of the proof consists of bounding E [en(X -11)J and substituting a
suitable value for 0: in inequality (6.43). First, we evaluate E [en (.r - I1)] . For
i = 1,2, ... , n, let Xi be the random variable that is I if the ith Bernoulli
trial is a success and 0 if it is a failure. Thus,

and
n

X - /1 = I)Xi - Pi) .
i=1

Substituting for X /1, we obtain

E [IT en(xr- p, ) ]

1=1
nIT E [en(Xi-PI!]

i=1

which follows from (6.27), since the mutual independence of the random
variables Xi implies the mutual independence of the random variables
e,,(X,-pl! (see Exercise 6.3-4). By the definition of expectation,

E [en(X,-Ptl] = en( I-pI!Pi + e",(O-Pi) qi

Pie"q, + qie-np,

< Pie" + I

< exp(Pie" ) ,

where exp(x) denotes the exponential function: exp(x) = ex. (Inequal
ity (6.44) follows from the inequalities 0: > 0, q ~ 1, e"q ~ eft, and
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e-np ::; I, and the last line follows from inequality (2.7)). Consequently,
n

E [en(X-t/J] s IT exp(Pi en)
i=1

expuze") ,

since,u 'L,7=1 pi, Hence, from inequality (6.43), it follows that

Pr{X -,u:2: r}::; exp(,ue u or) . (6.45)

Choosing Q = In(rj,u) (see Exercise 6.5-6), we obtain

Pr{X-,u:2:r} ::; exp(,ue1n(Y/t/J-rln(rj,u))

exp(r rln(rj,u))
eY

(rj ,u)'

(,urer -
When applied to Bernoulli trials in which each trial has the same proba

bility of success, Theorem 6.6 yields the following corollary bounding the
right tail of a binomial distribution.

Corollary 6.7
Consider a sequence of n Bernoulli trials, where in each trial success occurs
with probability P and failure occurs with probability q = I - p. Then for
r » np,

n

Pr{X - no > r} L b(k;n,p)
k=fnp+rl

< (n~er·

Proof For a binomial distribution, equation (6.39) implies that ,u =
E[X] = np. _

Exercises

6.5-1 *
Which is less likely: obtaining no heads when you flip a fair coin n times,
or obtaining fewer than n heads when you flip the coin 4n times?

6.5-2 *
Show that

k-I ( ) kL ~ a
i < (a + l)n na _ k(a + I) b(k;n,aj(a + 1))

1=0

for all a > 0 and all k such that 0 < k < n.
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6.5-3 *
Prove that if 0 < k < np; where °< P < I and q

~ i nr-i < kq (np)k c ::
LJP q np - k k n - k
i=O

p, then

6.5-4 *
Show that the conditions of Theorem 6.6 imply that

Pr{.u - X 2: r}:::; en ~.u)ey .

Similarly, show that the conditions of Corollary 6.7 imply that

Pr{np X2:r}:::;(n;er

6.5-5 *
Consider a sequence of n Bernoulli trials, where in the ith trial, for i
1,2, ... , n, success occurs with probability Pi and failure occurs with prob
ability qi = 1 Pi. Let X be the random variable describing the total
number of successes, and let u = E [Xl. Show that for r 2: 0,

Pr{X .u2:r}:::;e- r 2
/
2n .

(Hint: Prove that Pieaq, + qie-np, :::; e-,,2/2. Then follow the outline of the
proof of Theorem 6.6, using this inequality in place of inequality (6.44).)

6.5-6 *
Show that choosing a = In(r/.u) minimizes the right-hand side of inequal
ity (6.45).

6.6 Probabilistic analysis

This section uses three examples to illustrate probabilistic analysis. The
first determines the probability that in a room of k people, some pair shares
the same birthday. The second example examines the random tossing of
balls into bins. The third investigates "streaks" of consecutive heads in
coin flipping.

6.6.1 The birthday paradox

A good example to illustrate probabilistic reasoning is the classical birthday
paradox. How many people must there be in a room before there is a good
chance two of them were born on the same day of the year? The answer
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is surprisingly few. The paradox is that it is in fact far fewer than the
number of days in the year, as we shall see.

To answer the question, we index the people in the room with the inte
gers 1,2, ... , k, where k is the number of people in the room. We ignore
the issue of leap years and assume that all years have n = 365 days. For
i = 1,2, ... , k, let bi be the day of the year on which i's birthday falls,
where I ::; b, ::; n. We also assume that birthdays are uniformly distributed
across the n days of the year, so that Pr{bi = r} = lin for i 1,2, ... .k
and r = 1,2, ... ,n.

The probability that two people i and j have matching birthdays depends
on whether the random selection of birthdays is independent. If birthdays
are independent, then the probability that i'e birthday and j's birthday
both fall on day r is

Pr{bi = rand b, = r} = Pr{bi = r} Pr{bj = r}

IIn2
•

Thus, the probability that they both fall on the same day is

n

Pr{b i bj } = LPr{bi randbj=r}
r=l

n

= L{1ln 2)
r=l

lin.

More intuitively, once b, is chosen, the probability that b, is chosen the
same is IIn. Thus, the probability that i and j have the same birthday is
the same as the probability that the birthday of one of them falls on a given
day. Notice, however, that this coincidence depends on the assumption
that the birthdays are independent.

We can analyze the probability of at least 2 out of k people having
matching birthdays by looking at the complementary event. The proba
bility that at least two of the birthdays match is I minus the probability
that all the birthdays are different. The event that k people have distinct
birthdays is

k-I

s, = nAi,
i=l

where Ai is the event that person (i + l)'s birthday is different from person
j's for all j ::; i, that is,

Ai = {b i+ I I- b, : j = 1,2 ... , i} .

Since we can write Bk = Ak - 1n Bi:«, we obtain from equation (6.20) the
recurrence

Pr{Bd = Pr{Bk-dPr{Ak - 1 I Bk-d , (6.46)
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where we take Pr {B 1} = 1 as an initial condition. In other words, the
probability that b., bx, . . . ,bk are distinct birthdays is the probability that
bl , bi, ,bk - I are distinct birthdays times the probability that bk i b, for
i = 1,2, , k - 1, given that b., b2, ... , bk - I are distinct.

If bl , b2 , ,bk _I are distinct, the conditional probability that bk i b,
for i = 1,2, , k 1 is (n k + 1)ln, since out of the n days, there are
n (k 1) that are not taken. By iterating the recurrence (6.46), we obtain

Pr{Bd = Pr{Bt}Pr{A1 IBI}Pr{A21 B2}···Pr{Ak_ 1 I Bk-d

= 1.(n~I)(n~2) ... (n-~+I)

= 1'(l_*)(I_~)"'(I_k~l)

The inequality (2.7), 1 + x :s; e", gives us

Pr{Bd < e-llne-2In .. ·e-(k-Ijln

=
,",'-II
L.it:.:.:.1 I n

e-k(k-I in«

< 1/2

when -k(k - 1)/2n :s; In(1/2). The probability that all k birthdays are
distinct is at most 1/2 when k(k - 1) ~ 2nln2 or, solving the quadratic
equation, when k ~ (1 + Jl + (8In2)n)/2. For n = 365, we must have
k ~ 23. Thus, if at least 23 people are in a room, the probability is at
least 1/2 that at least two people have the same birthday. On Mars, a year
is 669 Martian days long; it therefore takes 31 Martians to get the same
effect.

Another method of analysis

We can use the linearity of expectation (equation (6.26)) to provide a
simpler but approximate analysis of the birthday paradox. For each pair
(i, j) of the k people in the room, let us define the random variable Xu'
for 1 :s; i < j :s; k, by

X _ {I if person i and person j have the same birthday,
I) - 0 otherwise.

The probability that two people have matching birthdays is lin, and thus
by the definition of expectation (6.23),

E [Xu] = 1· (11 n) + 0 . (1 11n )

lin.

The expected number of pairs of individuals having the same birthday
is, by equation (6.24), just the sum of the individual expectations of the
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pairs, which is

k i-I

LLE[Xij]
i=2 )=1

129

k(k - 1)

2n

When k (k - 1) 2: 2n, therefore, the expected number of pairs of birthdays
is at least 1. Thus, if we have at least ..[fii individuals in a room, we can
expect at least two to have the same birthday. For n = 365, if k = 28, the
expected number of pairs with the same birthday is (28·27)/(2· 365) ~
1.0356. Thus, with at least 28 people, we expect to find at least one match
ing pair of birthdays. On Mars, where a year is 669 Martian days long, we
need at least 38 Martians.

The first analysis determined the number of people required for the
probability to exceed 112 that a matching pair of birthdays exists, and the
second analysis determined the number such that the expected number of
matching birthdays is 1. Although the numbers of people differ for the
two situations, they are the same asymptotically: 8(vn).

6.6.2 Balls and bins

Consider the process of randomly tossing identical balls into b bins, num
bered I, 2, ... , b. The tosses are independent, and on each toss the ball
is equally likely to end up in any bin. The probability that a tossed ball
lands in any given bin is 1lb. Thus, the ball-tossing process is a sequence
of Bernoulli trials with a probability 1Ib of success, where success means
that the ball falls in the given bin. A variety of interesting questions can
be asked about the ball-tossing process.

How many balls fall in a given bin? The number of balls that fall in
a given bin follows the binomial distribution bik; n, 1Ib). If n balls are
tossed, the expected number of balls that fall in the given bin is nib.

How many balls must one toss, on the average, until a given bin contains
a ball? The number of tosses until the given bin receives a ball follows the
geometric distribution with probability 1Ib, and thus the expected number
of tosses until success is 1I (1Ib) b.

How many balls must one toss until every bin contains at least one ball?
Let us call a toss in which a ball falls into an empty bin a "hit." We want
to know the average number n of tosses required to get b hits.

The hits can be used to partition the n tosses into stages. The ith stage
consists of the tosses after the (i 1)st hit until the ith hit. The first stage
consists of the first toss, since we are guaranteed to have a hit when all
bins are empty. For each toss during the ith stage, there are i 1 bins that
contain balls and b - i + 1 empty bins. Thus, for all tosses in the ith stage,
the probability of obtaining a hit is (b - i + 1)lb.
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Let n, denote the number of tosses in the ith stage. Thus, the number
of tosses required to get b hits is n = E~=, n.. Each random variable n,
has a geometric distribution with probability of success (b i + 1)/ b, and
therefore

b
E[ntl=b . I-l+
By linearity of expectation,

Ernl ~ E [t,"
b

= 'LE[ntl
1

b b

'L b- i + 1
i=1

b

b'L+
i=1

< b(lnb + 0(1)) .

The last line follows from the bound (3.5) on the harmonic series. It
therefore takes approximately bin b tosses before we can expect that every
bin has a ball.

6.6.3 Streaks

Suppose you flip a fair coin n times. What is the longest streak of consec
utive heads that you expect to see? The answer is 8(lg n), as the following
analysis shows.

We first prove that the expected length of the longest streak of heads
is O(lg n). Let A ik be the event that a streak of heads of length at least
k begins with the ith coin flip or, more precisely, the event that the k
consecutive coin flips i, i+ 1, ... , i+k-I yield only heads, where 1 ~ k ~ n
and 1 ~ i ~ n - k + I. For any given event Aik' the probability that all k
flips are heads has a geometric distribution with p = q = 1/2:

Pr{Aid = 1/2k
•

For k = 2 [lgn],

P {A } = 1/22pgnlr i,2 rignl
< 1/221gn

l/n 2
,

and thus the probability that a streak of heads of length at least f2lg n1
begins in position i is quite small, especially considering that there are at
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most n positions (actually n 2 [lgn] + I) where the streak can begin. The
probability that a streak of heads of length at least r21g n1begins anywhere
is therefore

{

n- 2pgn1+1 } n

Pr ~ Ai,2Dgnl S tt I/n
2

= lin,

since by Boole's inequality (6.22), the probability of a union of events
is at most the sum of the probabilities of the individual events. (Note
that Boole's inequality holds even for events such as these that are not
independent. )

The probability is therefore at most lin that any streak has length at least
2 rign1; hence, the probability is at least I - IIn that the longest streak
has length less than 2 rign1- Since every streak has length at most n, the
expected length of the longest streak is bounded above by

(2 rlgnl)(1 - lin) + n(l/n) = O(lgn) .

The chances that a streak of heads exceeds r [lgn1flips diminish quickly
with r. For r ~ 1, the probability that a streak of r pgnl heads starts in
position i is

Pr {Ai,rrlgnl} = 1/2,r1g nl

s lin'.

Thus, the probability is at most nInr II nr- 1 that the longest streak is at
least r rign1, or equivalently, the probability is at least 1 II n,-l that the
longest streak has length less than r rign1.

As an example, for n = 1000 coin flips, the probability of having a streak
of at least 2 rign1= 20 heads is at most lin = II 1000. The chances of hav
ing a streak longer than 3 [lgn1= 30 heads is at most IIn2 = II I, 000, 000.

We now prove a complementary lower bound: the expected length of
the longest streak of heads in n coin flips is n(lg n). To prove this bound,
we look for streaks of length Llgnj 12. From equation (6.47), we have

Pr{Ai,Llgnj/2} = 1/2l1gnj/2

~ I/vn.
The probability that a streak of heads of length at least [lgnj 12 does not
begin in position i is therefore at most I - 11.;n. We can partition the
n coin flips into at least L2nl [lgnj] groups of [lgn] 12 consecutive coin
flips. Since these groups are formed from mutually exclusive, independent
coin flips, the probability that every one of these groups fails to be a streak
of length [lgn] 12 is

(I Ilvn) L2n/Llgnjj < (1 _ I/vn)2n/lg n- l

< e-(2n/lgn-lj/.../ii

< e- 1gn

< lin.
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For this argument, we used inequality (2.7), I+x ::; e", and the fact, which
you might want to verify, that (2nllgn 1)/Vii ~ Ign for n ~ 2. (For
n I, the probability that every group fails to be a streak is trivially at
most lIn 1.)

Thus, the probability that the longest streak exceeds [lgnJ 12 is at least
I - I In. Since the longest streak has length at least 0, the expected length
of the longest streak is at least

(llgnJ 12)(1 lIn) +0· (lIn) n(lgn).

Exercises

6.6-1
Suppose that balls are tossed into b bins. Each toss is independent, and
each ball is equally likely to end up in any bin. What is the expected
number of ball tosses before at least one of the bins contains two balls?

6.6-2 *
For the analysis of the birthday paradox, is it important that the birthdays
be mutually independent, or is pairwise independence sufficient? Justify
your answer.

6.6-3 *
How many people should be invited to a party in order to make it likely
that there are three people with the same birthday?

6.6-4 *
What is the probability that a k-string over a set of size n is actually a
k-permutation? How does this question relate to the birthday paradox?

6.6-5 *
Suppose that n balls are tossed into n bins, where each toss is independent
and the ball is equally likely to end up in any bin. What is the expected
number of empty bins? What is the expected number of bins with exactly
one ball?

6.6-6 *
Sharpen the lower bound on streak length by showing that in n flips of
a fair coin, the probability is less than lIn that no streak longer than
19n - 2lglgn consecutive heads occurs.
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6-1 Balls and bins
In this problem, we investigate the effect of various assumptions on the
number of ways of placing n balls into b distinct bins.

a. Suppose that the n balls are distinct and that their order within a bin
does not matter. Argue that the number of ways of placing the balls in
the bins is b",

b. Suppose that the balls are distinct and that the balls in each bin are
ordered. Prove that the number of ways of placing the balls in the bins
is (b + n - 1)!/(b - I)!. (Hint: Consider the number of ways of arranging
n distinct balls and b - 1 indistinguishable sticks in a row.)

c. Suppose that the balls are identical, and hence their order within a bin
does not matter. Show that the number of ways of placing the balls in
the bins is (b+~-l). (Hint: Of the arrangements in part (b), how many
are repeated if the balls are made identical?)

d. Suppose that the balls are identical and that no bin may contain more
than one ball. Show that the number of ways of placing the balls is (~).

e. Suppose that the balls are identical and that no bin may be left empty.
Show that the number of ways of placing the balls is e:=:).

6-:2 Analysis ofmax program
The following program determines the maximum value in an unordered
array A[l .. n].

I max--oo
2 for i-I to n
3 do l> Compare A [i] to max.
4 if A[i] > max
5 then max - A[i]

We want to determine the average number of times the assignment in
line 5 is executed. Assume that all numbers in A are randomly drawn from
the interval [0, I].

a. If a number x is randomly chosen from a set of n distinct numbers,
what is the probability that x is the largest number in the set?

b. When line 5 of the program is executed, what is the relationship between
A[i] and AU] for 1 ~ j ~ i?

c. For each i in the range 1 < i ~ n, what is the probability that line 5 is
executed?
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d. Let SI,S2, ••• .s; be n random variables, where s, represents the number
of times (0 or 1) that line 5 is executed during the ith iteration of the
for loop. What is E [sil?

e. Let s = SI + S2 + ... + s; be the total number of times that line 5 is
executed during some run of the program. Show that E [s] = 8(lgn).

6-3 Hiring problem
Professor Dixon needs to hire a new research assistant. She has arranged
interviews with n applicants and would like to base her decision solely
on their qualifications. Unfortunately, university regulations require that
after each interview she immediately reject or offer the position to the
applicant.

Professor Dixon decides to adopt the strategy of selecting a positive inte
ger k < n, interviewing and then rejecting the first k applicants, and hiring
the first applicant thereafter who is better qualified than all preceding appli
cants. If the best-qualified applicant is among the first k interviewed, then
she will hire the nth applicant. Show that Professor Dixon maximizes her
chances of hiring the best-qualified applicant by choosing k approximately
equal to n /e and that her chances of hiring the best-qualified applicant are
then approximately 1/e.

6-4 Probabilistic counting
With a r-bit counter, we can ordinarily only count up to 2/ 1. With R.
Morris's probabilistic counting, we can count up to a much larger value at
the expense of some loss of precision.

We let a counter value of i represent a count of n, for i 0, 1, ... , 2/ 1,
where the ni form an increasing sequence of nonnegative values. We as
sume that the initial value of the counter is 0, representing a count of
no = O. The INCREMENT operation works on a counter containing the
value i in a probabilistic manner. If i = 2/ - 1, then an overflow er
ror is reported. Otherwise, the counter is increased by 1 with probability
1/(ni+1 - nj), and it remains unchanged with probability l-l/(ni+1 - ni)'

If we select n, = i for all i ~ 0, then the counter is an ordinary one.
More interesting situations arise if we select, say, n, = 2i- 1 for i > 0 or
n, = F, (the ith Fibonacci number-see Section 2.2).

For this problem, assume that n21-1 is large enough that the probability
of an overflow error is negligible.

a. Show that the expected value represented by the counter after n INCRE

MENT operations have been performed is exactly n.

b. The analysis of the variance of the count represented by the counter
depends on the sequence of the ni. Let us consider a simple case: n,
100i for all i ~ O. Estimate the variance in the value represented by the
register after n INCREMENT operations have been performed.
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The first general methods for solving probability problems were discussed
in a famous correspondence between B. Pascal and P. de Fermat, which
began in 1654, and in a book by C. Huygens in 1657. Rigorous probability
theory began with the work of J. Bernoulli in 1713 and A. De Moivre
in 1730. Further developments of the theory were provided by P. S. de
Laplace, S.-D. Poisson, and C. F. Gauss.

Sums of random variables were originally studied by P. L. Chebyshev
and A. A. Markov. Probability theory was axiomatized by A. N. Kol
mogorov in 1933. Bounds on the tails of distributions were provided by
Chernoff [40] and Hoeffding [99]. Seminal work in random combinatorial
structures was done by P. Erdos.

Knuth [121] and Liu [140] are good references for elementary combi
natorics and counting. Standard textbooks such as Billingsley [28], Chung
[41], Drake [57], Feller [66], and Rozanov [171] offer comprehensive in
troductions to probability. Bollobas [30], Hofri [100], and Spencer [179]
contain a wealth of advanced probabilistic techniques.
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Introduction

This part presents several algorithms that solve the following sorting prob
lem:

Input: A sequence of n numbers (a" ai, . .. ,an).

Output: A permutation (reordering) (a~,a;, ... ,a~) of the input sequence
such that a~ ~ a; ~ ... ~ a~.

The input sequence is usually an n-element array, although it may be rep
resented in some other fashion, such as a linked list.

The structure of the data

In practice, the numbers to be sorted are rarely isolated values. Each is
usually part of a collection of data called a record. Each record contains
a key, which is the value to be sorted, and the remainder of the record
consists of satellite data, which are usually carried around with the key. In
practice, when a sorting algorithm permutes the keys, it must permute the
satellite data as welL If each record includes a large amount of satellite
data, we often permute an array of pointers to the records rather than the
records themselves in order to minimize data movement.

In a sense, it is these implementation details that distinguish an algo
rithm from a full-blown program. Whether we sort individual numbers or
large records that contain numbers is irrelevant to the method by which
a sorting procedure determines the sorted order. Thus, when focusing on
the problem of sorting, we typically assume that the input consists only
of numbers. The translation of an algorithm for sorting numbers into a
program for sorting records is conceptually straightforward, although in
a given engineering situation there may be other subtleties that make the
actual programming task a challenge.
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Sorting algorithms

We introduced two algorithms that sort n real numbers in Chapter 1. In
sertion sort takes 8(n 2) time in the worst case. Because its inner loops are
tight, however, it is a fast in-place sorting algorithm for small input sizes.
(Recall that a sorting algorithm sorts in place if only a constant number of
elements of the input array are ever stored outside the array.) Merge sort
has a better asymptotic running time, 8(n 19n), but the MERGE procedure
it uses does not operate in place.

In this part, we shall introduce two more algorithms that sort arbitrary
real numbers. Heapsort, presented in Chapter 7, sorts n numbers in place
in O(n Ign) time. It uses an important data structure, called a heap, to
implement a priority queue.

Quicksort, in Chapter 8, also sorts n numbers in place, but its worst
case running time is 8(n2 ) . Its average-case running time is 8(n Ign),
though, and it generally outperforms heapsort in practice. Like insertion
sort, quicksort has tight code, so the hidden constant factor in its running
time is small. It is a popular algorithm for sorting large input arrays.

Insertion sort, merge sort, heapsort, and quicksort are all comparison
sorts: they determine the sorted order of an input array by comparing ele
ments. Chapter 9 begins by introducing the decision-tree model in order to
study the performance limitations of comparison sorts. Using this model,
we prove a lower bound of Q( n lgn) on the worst-case running time of any
comparison sort on n inputs, thus showing that heapsort and merge sort
are asymptotically optimal comparison sorts.

Chapter 9 then goes on to show that we can beat this lower bound of
Q( n lgn) if we can gather information about the sorted order of the input
by means other than comparing elements. The counting sort algorithm,
for example, assumes that the input numbers are in the set {I, 2, ... , k}.
By using array indexing as a tool for determining relative order, counting
sort can sort n numbers in O( k +n) time. Thus, when k = O( n), counting
sort runs in time that is linear in the size of the input array. A related
algorithm, radix sort, can be used to extend the range of counting sort.
If there are n integers to sort, each integer has d digits, and each digit
is in the set {I, 2, ... , k }, radix sort can sort the numbers in O(d (n + k) )
time. When d is a constant and k is O(n), radix sort runs in linear time.
A third algorithm, bucket sort, requires knowledge of the probabilistic
distribution of numbers in the input array. It can sort n real numbers
uniformly distributed in the half-open interval [0,1) in average-case O(n)
time.

Order statistics

The ith order statistic of a set of n numbers is the ith smallest number
in the set. One can, of course, select the ith order statistic by sorting the
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input and indexing the ith element of the output. With no assumptions
about the input distribution, this method runs in Q( n 19 n) time, as the
lower bound proved in Chapter 9 shows.

In Chapter 10, we show that we can find the ith smallest element in O(n)
time, even when the elements are arbitrary real numbers. We present an
algorithm with tight pseudocode that runs in O(n2) time in the worst case,
but linear time on average. We also give a more complicated algorithm
that runs in O(n) worst-case time.

Background

Although most of this part does not rely on difficult mathematics, some
sections do require mathematical sophistication. In particular, the average
case analyses of quicksort, bucket sort, and the order-statistic algorithm
use probability, which is reviewed in Chapter 6. The analysis of the worst
case linear-time algorithm for the order statistic involves somewhat more
sophisticated mathematics than the other worst-case analyses in this part.
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7.1 Heaps

Heapsort

In this chapter, we introduce another sorting algorithm. Like merge sort,
but unlike insertion sort, heapsort's running time is O(n 19n). Like inser
tion sort, but unlike merge sort, heapsort sorts in place: only a constant
number of array elements are stored outside the input array at any time.
Thus, heapsort combines the better attributes of the two sorting algorithms
we have already discussed.

Heapsort also introduces another algorithm design technique: the use of
a data structure, in this case one we call a "heap," to manage information
during the execution of the algorithm. Not only is the heap data structure
useful for heapsort, it also makes an efficient priority queue. The heap
data structure will reappear in algorithms in later chapters.

We note that the term "heap" was originally coined in the context of
heapsort, but it has since come to refer to "garbage-collected storage,"
such as the programming language Lisp provides. Our heap data structure
is not garbage-collected storage, and whenever we refer to heaps in this
book, we shall mean the structure defined in this chapter.

The (binary) heap data structure is an array object that can be viewed as
a complete binary tree (see Section 5.5.3), as shown in Figure 7.1. Each
node of the tree corresponds to an element of the array that stores the value
in the node. The tree is completely filled on all levels except possibly the
lowest, which is filled from the left up to a point. An array A that represents
a heap is an object with two attributes: length[A}, which is the number of
elements in the array, and heap-size[A}, the number of elements in the heap
stored within array A. That is, although A[l . . length[AJJ may contain valid
numbers, no element past A[heap-size[A]], where heap-size[A} ~ length[A},
is an element of the heap. The root of the tree is A[l], and given the index
i of a node, the indices of its parent PARENT(i), left child LEFTU), and
right child RIGHT( i) can be computed simply:
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1 2 3 4 5 6 7 8 9 10

(b)

Figure 7.1 A heap viewed as (a) a binary tree and (b) an array. The number
within the circle at each node in the tree is the value stored at that node. The
number next to a node is the corresponding index in the array.

PARENT(i)
return Li/2J

LEFT(i)

return 2i

RIGHT(i)

return 2i + I

On most computers, the LEFT procedure can compute 2i in one instruc
tion by simply shifting the binary representation of i left one bit position.
Similarly, the RIGHT procedure can quickly compute 2i + I by shifting
the binary representation of i left one bit position and shifting in a I as
the low-order bit. The PARENT procedure can compute Li/2J by shifting i
right one bit position. In a good implementation of heapsort, these three
procedures are often implemented as "macros" or "in-line" procedures.

Heaps also satisfy the heap property: for every node i other than the
root,

A[PARENT(i)] ~ A[i] , (7.1)

that is, the value of a node is at most the value of its parent. Thus, the
largest element in a heap is stored at the root, and the subtrees rooted at
a node contain smaller values than does the node itself.

We define the height of a node in a tree to be the number of edges
on the longest simple downward path from the node to a leaf, and we
define the height of the tree to be the height of its root. Since a heap of
n elements is based on a complete binary tree, its height is 8(lgn) (see
Exercise 7.1-2). We shall see that the basic operations on heaps run in
time at most proportional to the height of the tree and thus take O(lg n)
time. The remainder of this chapter presents five basic procedures and
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shows how they are used in a sorting algorithm and a priority-queue data
structure.

• The HEAPIFY procedure, which runs in O(lgn) time, is the key to main
taining the heap property (7.1).

• The BUILD-HEAP procedure, which runs in linear time, produces a heap
from an unordered input array.

• The HEAPSORT procedure, which runs in O(n Ign) time, sorts an array
in place.

• The EXTRACT-MAX and INSERT procedures, which run in O(lgn) time,
allow the heap data structure to be used as a priority queue.

Exercises

7.1-1
What are the minimum and maximum numbers of elements in a heap of
height h?

7.1-2
Show that an n-element heap has height LlgnJ.

7.1-3
Show that the largest element in a subtree of a heap is at the root of the
subtree.

7.1-4
Where in a heap might the smallest element reside?

7.1-5
Is an array that is in reverse sorted order a heap?

7.1-6
Is the sequence (23, 17, 14,6, 13, 10, 1,5, 7, 12) a heap?

7.2 Maintaining the heap property

HEAPIFY is an important subroutine for manipulating heaps. Its inputs
are an array A and an index i into the array. When HEAPIFY is called, it is
assumed that the binary trees rooted at LEFT(i) and RIGHT(i) are heaps,
but that A[i] may be smaller than its children, thus violating the heap
property (7.1). The function of HEAPIFY is to let the value at AU] "float
down" in the heap so that the subtree rooted at index i becomes a heap.
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Figure 7.2 The action of HEAPIFy(A, 2), where heap-size[A] = 10. (a) The initial
configuration of the heap, with A[2] at node i = 2 violating the heap property
since it is not larger than both children. The heap property is restored for node 2
in (b) by exchanging A[2] with A[4], which destroys the heap property for node 4.
The recursive call HEAPIFy(A,4) now sets i = 4. After swapping A[4] with A[9],
as shown in (e), node 4 is fixed up, and the recursive call HEAPIFY(A, 9) yields no
further change to the data structure.

HEAPIFy(A, i)

1 I <- LEFT(i)
2 r <- RIGHT( i)
3 if I ~ heap-size[A] and A[l] > A[i]
4 then largest <- I
5 else largest <- i
6 if r ~ heap-size[A] and A[r] > A[largest]
7 then largest <- r
8 if largest =f. i
9 then exchange A[i] f-' A[/argest]

10 HEAPIFy(A, largest)

Figure 7.2 illustrates the action of HEAPIFY. At each step, the largest
of the elements A[i], A[LEFT(i)], and A[RIGHT(i)] is determined, and its
index is stored in largest. If A[i] is largest, then the subtree rooted at node i
is a heap and the procedure terminates. Otherwise, one of the two children
has the largest element, and A[i] is swapped with A[/argest], which causes
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node i and its children to satisfy the heap property. The node largest,
however, now has the original value A[i], and thus the subtree rooted at
largest may violate the heap property. Consequently, HEAPIFY must be
called recursively on that subtree.

The running time of HEAPIFY on a subtree of size n rooted at given
node i is the 8( I) time to fix up the relationships among the elements
A[i], A[LEFT(i)], and A[RIGHT(i)], plus the time to run HEAPIFY on a
subtree rooted at one of the children of node i. The children's subtrees
each have size at most 2nj3-the worst case occurs when the last row of
the tree is exactly half full-and the running time of HEAPIFY can therefore
be described by the recurrence

T(n):5 T(2nj3) +9(1) .

The solution to this recurrence, by case 2 of the master theorem (Theo
rem 4.1), is T(n) = O(lgn). Alternatively, we can characterize the running
time of HEAPIFY on a node of height h as O(h).

Exercises

7.2-1
Using Figure 7.2 as a model, illustrate the operation of HEAPIFY(A, 3) on
the array A = (27,17,3,16,13,10,1,5,7,12,4,8,9,0).

7.2-2
What is the effect of calling HEAPIFY(A, i) when the element AU] is larger
than its children?

7.2-3
What is the effect of calling HEAPIFY(A, i) for i > heap-size[A]j2?

7.2-4
The code for HEAPIFY is quite efficient in terms of constant factors, except
possibly for the recursive call in line 10, which might cause some compil
ers to produce inefficient code. Write an efficient HEAPIFY that uses an
iterative control construct (a loop) instead of recursion.

7.2-5
Show that the worst-case running time of HEAPIFY on a heap of size n
is Q(lgn). (Hint: For a heap with n nodes, give node values that cause
HEAPIFY to be called recursively at every node on a path from the root
down to a leaf.)
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(7.2)

We can use the procedure HEAPIFY in a bottom-up manner to convert
an array A[l .. n], where n length[A], into a heap. Since the elements
in the subarray A[(Ln/2J + 1) .. n] are all leaves of the tree, each is a 1
element heap to begin with. The procedure BUILD-HEAP goes through the
remaining nodes of the tree and runs HEAPIFY on each one. The order
in which the nodes are processed guarantees that the subtrees rooted at
children of a node i are heaps before HEAPIFY is run at that node.

BUILD-HEAP(A)

1 heap-size[A] +- length[A]
2 for i +- Llength[A]/2J downto 1
3 do HEAPIFY(A, i)

Figure 7.3 shows an example of the action of BUILD-HEAP.
We can compute a simple upper bound on the running time of BUILD

HEAP as follows. Each call to HEAPIFY costs O(lg n) time, and there are
O(n) such calls. Thus, the running time is at most O(n 19n). This upper
bound, though correct, is not asymptotically tight.

We can derive a tighter bound by observing that the time for HEAPIFY
to run at a node varies with the height of the node in the tree, and the
heights of most nodes are small. Our tighter analysis relies on the property
that in an n-element heap there are at most rn/2h+ 1l nodes of height h
(see Exercise 7.3-3).

The time required by HEAPIFY when called on a node of height h is
O(h), so we can express the total cost of BUILD-HEAP as

[lg n] n ( [lg n] h)Er2h+1l O(h) = 0 n E2h •

The last summation can be evaluated by substituting x = 1/2 in the for
mula (3.6), which yields

00 h
L 2h
h=O

1/2
=

(1 - 1/2)2

2.

Thus, the running time of BUILD-HEAP can be bounded as

(

[lg n] h )
o n L 21z

h=O
~ o(n~;h)
= O(n).

Hence, we can build a heap from an unordered array in linear time.
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Figure 7.3 The operation of BUILD-HEAP, showing the data structure before the
call to HEAPIFY in line 3 of BUILD-HEAP. (a) A to-element input array A and the
binary tree it represents. The figure shows that the loop index i points to node 5
before the can HEAPIFY(A, i). (b) The data structure that results. The loop index i
for the next iteration points to node 4. (c)-(e) Subsequent iterations of the for
loop in BUILD-HEAP. Observe that whenever HEAPIFY is caned on a node, the two
subtrees of that node are both heaps. (f) The heap after BUILD-HEAP finishes.



7.4 The heapsort algorithm

Exercises

147

7.3-1
Using Figure 7.3 as a model, illustrate the operation of BUILD-HEAP on
the array A = (5,3,17,10,84, 19,6,22,9).

7.3-2
Why do we want the loop index i in line 2 of BUILD-HEAP to decrease
from llength[A]/2J to 1 rather than increase from 1 to llength[A]/2J?

7.3-3
Show that there are at most rn/2h+1l nodes of height h in any n-element
heap.

7.4 The heapsort algorithm

The heapsort algorithm starts by using BUILD-HEAP to build a heap on the
input array A[l .. n], where n = length [A]. Since the maximum element
of the array is stored at the root A[ I], it can be put into its correct final
position by exchanging it with A[n]. If we now "discard" node n from the
heap (by decrementing heap-size[A]), we observe that A[I .. (n - I)] can
easily be made into a heap. The children of the root remain heaps, but the
new root element may violate the heap property (7.1). All that is needed
to restore the heap property, however, is one call to HEAPIFY(A, 1), which
leaves a heap in A[I .. (n - I)]. The heapsort algorithm then repeats this
process for the heap of size n - 1 down to a heap of size 2.

HEAPSORT(A)

I BUILD-HEAP(A)

2 for i t- length[A] downto 2
3 do exchange A[l] +-+ A[i]
4 heap-size[A] t- heap-size[A]
5 HEAPIFY(A, 1)

Figure 7.4 shows an example of the operation of heapsort after the heap
is initially built. Each heap is shown at the beginning of an iteration of
the for loop in line 2.

The HEAPSORT procedure takes time O(n lgn), since the call to BUILD

HEAP takes time O(n) and each of the n I calls to HEAPIFY takes time
O(lgn).
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7.4-1
Using Figure 7.4 as a model, illustrate the operation of HEAPSORT on the
array A (5,13,2,25,7,17,20,8, 4).

7.4-2
What is the running time of heapsort on an array A of length n that is
already sorted in increasing order? What about decreasing order?

7.4-3
Show that the running time of heapsort is Q( n 19 n).

----------- -----------------~------------------------

7.5 Priority queues

Heapsort is an excellent algorithm, but a good implementation of quick
sort, presented in Chapter 8, usually beats it in practice. Nevertheless, the
heap data structure itself has enormous utility. In this section, we present
one of the most popular applications of a heap: its use as an efficient
priority queue.

A priority queue is a data structure for maintaining a set S of elements,
each with an associated value called a key. A priority queue supports the
following operations.

INSERT(S,X) inserts the element x into the set S. This operation could be
written as S +- S U {x}.

MAXIMUM(S) returns the element of S with the largest key.

EXTRACT-MAX(S) removes and returns the element of S with the largest
key.

One application of priority queues is to schedule jobs on a shared com
puter. The priority queue keeps track of the jobs to be performed and
their relative priorities. When a job is finished or interrupted, the highest
priority job is selected from those pending using EXTRACT-MAX. A new
job can be added to the queue at any time using INSERT.

A priority queue can also be used in an event-driven simulator. The
items in the queue are events to be simulated, each with an associated
time of occurrence that serves as its key. The events must be simulated
in order of their time of occurrence, because the simulation of an event
can cause other events to be simulated in the future. For this application,
it is natural to reverse the linear order of the priority queue and support
the operations MINIMUM and EXTRACT-MIN instead of MAXIMUM and
EXTRACT-MAX. The simulation program uses EXTRACT-MIN at each step
to choose the next event to simulate. As new events are produced, they
are inserted into the priority queue using INSERT.
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Not surprisingly, we can use a heap to implement a priority queue. The
operation HEAP-MAXIMUM returns the maximum heap element in 8( 1)
time by simply returning the value A[I] in the heap. The HEAP-ExTRACT
MAX procedure is similar to the for loop body (lines 3-5) of the HEAPSORT
procedure:

HEAP-Ex TRAcT-MAx (A)

1 if heap-size[A] < 1
2 then error "heap underflow"
3 max f- A[I]
4 A[I] f- A[heap-size[A]]
5 heap-size[A] f- heap-size[A] - I
6 HEAPIFV(A, I)
7 return max

The running time of HEAP-ExTRACT-MAX is O(lg n), since it performs
only a constant amount of work on top of the O(lg n) time for HEAPIFY.

The HEAP-INSERT procedure inserts a node into heap A. To do so,
it first expands the heap by adding a new leaf to the tree. Then, in a
manner reminiscent of the insertion loop (lines 5-7) of INSERTION-SORT
from Section 1.1, it traverses a path from this leaf toward the root to find
a proper place for the new element.

HEAP-INSERT(A, key)

1 heap-size[A] f- heap-size[A] + 1
2 i f- heap-size[A]
3 while i > 1 and A[PARENTU)] < key
4 do A[i] f- A[PARENT(i)]
5 i f- PARENT( i)
6 AU] f- key

Figure 7.5 shows an example of a HEAP-INSERT operation. The running
time of HEAP-INSERT on an n-element heap is O(lg n), since the path traced
from the new leaf to the root has length O(lg n).

In summary, a heap can support any priority-queue operation on a set
of size n in O(lg n) time.

Exercises

7.5-1
Using Figure 7.5 as a model, illustrate the operation of HEAP-INSERT(A, 3)
on the heap A = (15,13,9,5,12,8,7,4,0,6,2,1).

7.5-2
Illustrate the operation of HEAP-ExTRACT-MAx on the heap A = (15, 13,
9,5,12,8,7,4,0,6,2,1).
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(a)

(c)
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(b)

(d)

Figure 7.5 The operation of HEAP-INSERT. (a) The heap of Figure 7.4(a) before
we insert a node with key 15. (b) A new leaf is added to the tree. (c) Values on
the path from the new leaf to the root are copied down until a place for the key 15
is found. (d) The key 15 is inserted.

7.5-3
Show how to implement a first-in, first-out queue with a priority queue.
Show how to implement a stack with a priority queue. (FIFO's and stacks
are defined in Section 11.1.)

7.5-4
Give an O(lgn)-time implementation of the procedure HEAP-INCREASE

KEY(A, i, k), which sets A[i] - max(A[i], k) and updates the heap struc
ture appropriately.

7.5-5
The operation HEAP-DELETE(A, i) deletes the item in node i from heap A.
Give an implementation of HEAP-DELETE that runs in O(lgn) time for an
n-element heap.

7.5-6
Give an O(n Igk)-time algorithm to merge k sorted lists into one sorted
list, where n is the total number of elements in all the input lists. (Hint:
Use a heap for k-way merging.)
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Problems

Chapter Dotes

Chapter 7 Heapsort

7-1 Building a heap using insertion
The procedure BUILD-HEAP in Section 7.3 can be implemented by repeat
edly using HEAP-INSERT to insert the elements into the heap. Consider the
following implementation:

BUILD-HEAP'(A)

1 heap-size[A] +- 1
2 for i +- 2 to length[A]
3 do HEAP-INSERT(A, A[iD

a. Do the procedures BUILD-HEAP and BUILD-HEAP' always create the
same heap when run on the same input array? Prove that they do,
or provide a counterexample.

b. Show that in the worst case, BUILD-HEAP' requires 8(n 19 n) time to
build an n-element heap.

7-2 Analysis 0/ d -ary heaps
A d -ary heap is like a binary heap, but instead of 2 children, nodes have
d children.

a. How would you represent a d-ary heap in an array?

b. What is the height of a d-ary heap of n elements in terms of nand d?

c. Give an efficient implementation of EXTRACT-MAX. Analyze its run
ning time in terms of d and n.

d. Give an efficient implementation of INSERT. Analyze its running time
in terms of d and n.

e. Give an efficient implementation ofHEAP-INCREASE-KEy(A, i,k), which
sets A[i] +- max(A[i], k) and updates the heap structure appropriately.
Analyze its running time in terms of d and n.

The heapsort algorithm was invented by Williams [202], who also de
scribed how to implement a priority queue with a heap. The BUILD-HEAP
procedure was suggested by Floyd [69].
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Quicksort is a sorting algorithm whose worst-case running time is 8(n 2 )

on an input array of n numbers. In spite of this slow worst-case running
time, quicksort is often the best practical choice for sorting because it is
remarkably efficient on the average: its expected running time is 8(n 19n),
and the constant factors hidden in the 8(n 19n) notation are quite small.
It also has the advantage of sorting in place (see page 3), and it works well
even in virtual memory environments.

Section 8.1 describes the algorithm and an important subroutine used by
quicksort for partitioning. Because the behavior of quicksort is complex,
we start with an intuitive discussion of its performance in Section 8.2 and
postpone its precise analysis to the end of the chapter. Section 8.3 presents
two versions of quicksort that use a random-number generator. These
"randomized" algorithms have many desirable properties. Their average
case running time is good, and no particular input elicits their worst-case
behavior. One of the randomized versions of quicksort is analyzed in
Section 8.4, where it is shown to run in O(n 2 ) time in the worst case and
in O( n lg n) time on average.

8.1 Description of quicksort

Quicksort, like merge sort, is based on the divide-and-conquer paradigm
introduced in Section 1.3.1. Here is the three-step divide-and-conquer
process for sorting a typical subarray A[p .. r].

Divide: The array A[p .. r] is partitioned (rearranged) into two nonempty
subarrays A[p .. q] and A[q + 1.. r] such that each element of A[p .. q]
is less than or equal to each element of A[q + I .. r]. The index q is
computed as part of this partitioning procedure.

Conquer: The two subarrays A[p .. q] and A[q + 1.. r] are sorted by recur
sive calls to quicksort.

Combine: Since the subarrays are sorted in place, no work is needed to
combine them: the entire array A[p .. r] is now sorted.

The following procedure implements quicksort.
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QUICKSORT(A,p, r)

I ifp<r
2 then q +- PARTITION(A,p, r)
3 QUICKSORT(A,p, q)
4 QUICKSORT(A,q + I,r)

To sort an entire array A, the initial call is QUICKSORT(A, I, length[A]).

Partitioning the array

The key to the algorithm is the PARTITION procedure, which rearranges
the subarray A[p .. r] in place.

PARTITION(A,p, r)

I x +- A[P]
2 j+-p-I

3 )+-r+1
4 while TRUE

5 do repeat j +- j - I
6 until A [j] ::; x
7 repeat j +- i + I
8 until A[i] 2 x
9 if i < j

10 then exchange A[i] +-t A[j]
I I else return j

Figure 8.1 shows how PARTITION works. It first selects an element x = A [P]
from A[p .. r] as a "pivot" element around which to partition A[p .. r]. It
then grows two regions A[p .. i] and A[j ., r] from the top and bottom of
A[p .. r], respectively, such that every element in A[p .. i] is less than or
equal to x and every element in AU.. r] is greater than or equal to x.
Initially, [. = p I and j r + I, so the two regions are empty.

Within the body of the while loop, the index j is decremented and the
index i is incremented, in lines 5-8, until A[i] 2 x 2 A[j]. Assuming that
these inequalities are strict, A[i] is too large to belong to the bottom region
and A[j] is too small to belong to the top region. Thus, by exchanging A[i]
and A[j] as is done in line 10, we can extend the two regions. (If the
inequalities are not strict, the exchange can be performed anyway.)

The body of the while loop repeats until i 2 i, at which point the entire
array A[p .. r] has been partitioned into two subarrays A[p .. q] and A[q + I
.. r], where p ::; q < r, such that no element of A[p .. q] is larger than any
element of A[q + I .. r]. The value q = j is returned at the end of the
procedure.

Conceptually, the partitioning procedure performs a simple function:
it puts elements smaller than x into the bottom region of the array and
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Flgure 8.1 The operation of PARTITION on a sample array. Lightly shaded array
elements have been placed into the correct partitions , and heavily shaded elements
are not yet in their partitions. (a) The input array, with the initial values of i and j
just off the left and right ends of the array. We partiti on aro und x "" AlP] = 5.
(b) The positions of i and j at line 9 of the first iteration of the "hil~ loop. (c) The
result of exchanging the elements pointed to by i and j in line 10. (d) The positions
of i and j at line 9 of the second iteration of the whlle loop. (~) The positions of
i and j at line 9 of the third and last iteration of the while loop. The procedure
term inates because i ~ t . and the value q = j is returned. Array elements up to
and including AU) are less than or equal to x = 5, and array elements afte r AU)
are greater tha n or equal to x = S.

elements larger than x into the top region. Th ere are technicalities that
make the pseudocode of PARTITION a little tri cky, however. For example,
the indices i and j never index the subarray A[p .. r) out of bounds, but th is
isn' t entirely apparent from the code. As ano ther example, it is important
that A[P] be used as the pivot element x. If A[r ) is used instead and it
happens that A[r ] is also the largest element in the subarray A [p . . r ], then
PARTITION returns to QUICKSORT the value Q = r, and QUICKSORT loops
forever. Prob lem 8-1 asks you to prove PARTITION correct.

The running time of PARTITION on an array A[p .. r] is 9 (n ), where
n = r - p + I (see Exercise 8. 1-3).

Exercises

8./-/
Using Figure 8.1 as a model, illustrate the operation of PARTITION on the
array A = (13, 19, 9, 5, 12, 8, 7, 4, 11, 2, 6, 21).

8./-1
What value of Q does PARTITION return when all elements in the amy
A[p . . r ] have the same value'!
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8.1-3
Give a brief argument that the running time of PARTITION on a subarray
of size n is 6(n).

8.1-4
How would you modify QUICKSORT to sort in nonincreasing order?

-----------------------~--~----~-----~--~---

8.2 Performance of quicksort

The running time of quicksort depends on whether the partitioning is bal
anced or unbalanced, and this in turn depends on which elements are used
for partitioning. If the partitioning is balanced, the algorithm runs asymp
totically as fast as merge sort. If the partitioning is unbalanced, however,
it can run asymptotically as slow as insertion sort. In this section, we shall
informally investigate how quicksort performs under the assumptions of
balanced versus unbalanced partitioning.

Worst-case partitioning

The worst-case behavior for quicksort occurs when the partitioning-routine
produces one region with n - I elements and one with only 1 element.
(This claim is proved in Section 8.4.1.) Let us assume that this unbalanced
partitioning arises at every step of the algorithm. Since partitioning costs
6(n) time and T (1) = 6( I), the recurrence for the running time is

T(n) = T(n - 1) + 6(n) .

To evaluate this recurrence, we observe that T( I) = 6( 1) and then iter
ate:

T(n) T(n - 1) + 6(n)
n

= 2: 6 (k )
k=1

= 6(n 2 ) .

We obtain the last line by observing that L:Z=I k is the arithmetic se
ries (3.2). Figure 8.2 shows a recursion tree for this worst-case execution
of quicksort. (See Section 4.2 for a discussion of recursion trees.)

Thus, if the partitioning is maximally unbalanced at every recursive
step of the algorithm, the running time is 6(n 2) . Therefore the worst
case running time of quicksort is no better than that of insertion sort.
Moreover, the 6(n2 ) running time occurs when the input array is already
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Figure 8.2 A recursion tree for QUICKSORT in which the PARTITION procedure
always puts only a single element on one side of the partition (the worst case). The
resulting running time is 8(n 2 ) .

completely sorted-a common situation in which insertion sort runs in
O(n) time.

Best-case partitioning

If the partitioning procedure produces two regions of size n /2, quicksort
runs much faster. The recurrence is then

T(n) = 2T(n/2) + 8(n) ,

which by case 2 of the master theorem (Theorem 4.1) has solution T( n) =
8(n Ign). Thus, this best-case partitioning produces a much faster algo
rithm. Figure 8.3 shows the recursion tree for this best-case execution of
quicksort.

Balanced partitioning

The average-case running time of quicksort is much closer to the best case
than to the worst case, as the analyses in Section 8.4 will show. The key
to understanding why this might be true is to understand how the balance
of the partitioning is reflected in the recurrence that describes the running
time.

Suppose, for example, that the partitioning algorithm always produces a
9-to-l proportional split, which at first blush seems quite unbalanced. We
then obtain the recurrence

T(n) = T(9n/l0) + T(n/lO) + n

on the running time of quicksort, where we have replaced 8(n) by n for
convenience. Figure 8.4 shows the recursion tree for this recurrence. No-
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tice that every level of the tree has cost n, until a boundary condition is
reached at depth 10glO n = eOg n), and then the levels have cost at most n.
The recursion terminates at depth IOgIO/9 n = e(lgn). The total cost of
quicksort is therefore 8(n lg n). Thus, with a 9-to-l proportional split at
every level of recursion, which intuitively seems quite unbalanced, quick
sort runs in 8(n Ign) time-asymptotically the same as if the split were
right down the middle. In fact, even a 99-to-l split yields an O(n Ign) run
ning time. The reason is that any split of constant proportionality yields
a recursion tree of depth 8(lg n), where the cost at each level is O(n).
The running time is therefore e(n 19 n) whenever the split has constant
proportionality.

Intuition for the average case

To develop a clear notion of the average case for quicksort, we must make
an assumption about how frequently we expect to encounter the various in
puts. A common assumption is that all permutations of the input numbers
are equally likely. We shall discuss this assumption in the next section, but
first let's explore its ramifications.

When we run quicksort on a random input array, it is unlikely that
the partitioning always happens in the same way at every level, as our
informal analysis has assumed. We expect that some of the splits will
be reasonably well balanced and that some will be fairly unbalanced. For
example, Exercise 8.2-5 asks to you show that about 80 percent of the time
PARTITION produces a split that is more balanced than 9 to I, and about
20 percent of the time it produces a split that is less balanced than 9 to 1.

In the average case, PARTITION produces a mix of "good" and "bad"
splits. In a recursion tree for an average-case execution of PARTITION, the
good and bad splits are distributed randomly throughout the tree. Suppose
for the sake of intuition, however, that the good and bad splits alternate
levels in the tree, and that the good splits are best-case splits and the bad
splits are worst-case splits. Figure 8.5(a) shows the splits at two consecutive
levels in the recursion tree. At the root of the tree, the cost is n for
partitioning and the subarrays produced have sizes n - I and 1: the worst
case. At the next level, the subarray of size n-1 is best-case partitioned into
two subarrays of size (n - 1)/2. Let's assume that the boundary-condition
cost is 1 for the subarray of size 1.

The combination of the bad split followed by the good split produces
three subarrays of sizes 1, (n - 1)/2, and (n - 1)/2 at a combined cost
of 2n - 1 = 8(n). Certainly, this situation is no worse than that in Fig
ure 8.5(b), namely a single level of partitioning that produces two subarrays
of sizes (n - 1)/2 + 1 and (n 1)/2 at a cost of n 8(n). Yet this latter
situation is very nearly balanced, certainly better than 9 to 1. Intuitively,
the e(n) cost of the bad split can be absorbed into the 8(n) cost of the
good split, and the resulting split is good. Thus, the running time of quick-
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(n-l)/2 + 1

(b)

(n-l)/2

Figure 8.5 (a) Two levels of a recursion tree for quicksort. The partitioning at
the root costs n and produces a "bad" split: two subarrays of sizes 1 and n - 1.
The partitioning of the subarray of size n - 1 costs n - I and produces a "good"
split: two subarrays of size (n 1)/2. (b) A single level of a recursion tree that is
worse than the combined levels in (a), yet very well balanced.

sort, when levels alternate between good and bad splits, is like the running
time for good splits alone: still O(n 19n), but with a slightly larger constant
hidden by the O-notation. We shall give a rigorous analysis of the average
case in Section 8.4.2.

Exercises

8.2-1
Show that the running time of QUICKSORT is 8(n 19 n) when all elements
of array A have the same value.

8.2-2
Show that the running time of QUICKSORT is 8(n 2 ) when the array A is
sorted in nonincreasing order.

8.2-3
Banks often record transactions on an account in order of the times of
the transactions, but many people like to receive their bank statements
with checks listed in order by check number. People usually write checks
in order by check number, and merchants usually cash them with reason
able dispatch. The problem of converting time-of-transaction ordering to
check-number ordering is therefore the problem of sorting almost-sorted
input. Argue that the procedure INSERTION-SORT would tend to beat the
procedure QUICKSORT on this problem.

8.2-4-
Suppose that the splits at every level of quicksort are in the proportion
I - a to a, where 0 < a :::; 112 is a constant. Show that the minimum
depth of a leaf in the recursion tree is approximately 19 n119 a and the
maximum depth is approximately 19 n] 19( I a). (Don't worry about
integer round-off.)
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8.2-5 *
Argue that for any constant 0 < a :::; 1/2, the probability is approximately
I 2a that on a random input array, PARTITION produces a split more
balanced than 1 - a to a. For what value of a are the odds even that the
split is more balanced than less balanced?

8.3 Randomized versions of quicksort

In exploring the average-case behavior of quicksort, we have made an as
sumption that all permutations of the input numbers are equally likely.
When this assumption on the distribution of the inputs is valid, many
people regard quicksort as the algorithm of choice for large enough in
puts. In an engineering situation, however, we cannot always expect it
to hold. (See Exercise 8.2-3.) This section introduces the notion of a
randomized algorithm and presents two randomized versions of quicksort
that overcome the assumption that all permutations of the input numbers
are equally likely.

An alternative to assuming a distribution of inputs is to impose a distri
bution. For example, suppose that before sorting the input array, quicksort
randomly permutes the elements to enforce the property that every permu
tation is equally likely. (Exercise 8.3-4 asks for an algorithm that randomly
permutes the elements of an array of size n in time O(n).) This modifica
tion does not improve the worst-case running time of the algorithm, but it
does make the running time independent of the input ordering.

We call an algorithm randomized if its behavior is determined not only
by the input but also by values produced by a random-number genera
tor. We shall assume that we have at our disposal a random-number gen
erator RANDOM. A call to RANDoM(a, b) returns an integer between a
and b, inclusive, with each such integer being equally likely. For example,
RANDOM(0, 1) produces a 0 with probability 1/2 and a I with probabil
ity 1/2. Each integer returned by RANDOM is independent of the inte
gers returned on previous calls. You may imagine RANDOM as rolling a
(b a + I )-sided die to obtain its output. (In practice, most programming
environments offer a pseudorandom-number generator: a deterministic al
gorithm that returns numbers that "look" statistically random.)

This randomized version of quicksort has an interesting property that
is also possessed by many other randomized algorithms: no particular in
put elicits its worst-case behavior. Instead, its worst case depends on the
random-number generator. Even intentionally, you cannot produce a bad
input array for quicksort, since the random permutation makes the input
order irrelevant. The randomized algorithm performs badly only if the
random-number generator produces an unlucky permutation to be sorted.
Exercise 13.4-4 shows that almost all permutations cause quicksort to per-
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form nearly as well as the average case: there are very few permutations
that cause near-worst-case behavior.

A randomized strategy is typically useful when there are many ways in
which an algorithm can proceed but it is difficult to determine a way that
is guaranteed to be good. If many of the alternatives are good, simply
choosing one randomly can yield a good strategy. Often, an algorithm
must make many choices during its execution. If the benefits of good
choices outweigh the costs of bad choices, a random selection of good and
bad choices can yield an efficient algorithm. We noted in Section 8.2 that
a mixture of good and bad splits yields a good running time for quicksort,
and thus it makes sense that randomized versions of the algorithm should
perform well.

By modifying the PARTITION procedure, we can design another random
ized version of quicksort that uses this random-choice strategy. At each
step of the quicksort algorithm, before the array is partitioned, we ex
change element A[Pl with an element chosen at random from A[p .. rl.
This modification ensures that the pivot element x = A[Pl is equally likely
to be any of the r - P + 1 elements in the subarray. Thus, we expect the
split of the input array to be reasonably well balanced on average. The
randomized algorithm based on randomly permuting the input array also
works well on average, but it is somewhat more difficult to analyze than
this version.

The changes to PARTITION and QUICKSORT are small. In the new parti
tion procedure, we simply implement the swap before actually partitioning:

RANDOMIZED-PARTITION(A,p, r)

Ii+-- RANDOM(p, r)
2 exchange A[P] ...... A[i]
3 return PARTITION(A,p, r)

We now make the new quicksort call RANDOMIZED-PARTITION in place of
PARTITION:

RANDOMIZED-QUICKSORT(A,p, r)

1 ifp < r
2 then q +-- RANDOMIZED-PARTITION(A,p, r)
3 RANDOMIZED-QUICKSORT(A,p, q)
4 RANDOMIZED-QUICKSORT(A,q + l,r)

We analyze this algorithm in the next section.

Exercises

8.3-1
Why do we analyze the average-case performance of a randomized algo
rithm and not its worst-case performance?
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8.3-2
During the running of the procedure RANDOMIZED-QUICKSORT, how many
calls are made to the random-number generator RANDOM in the worst case?
How does the answer change in the best case?

8.3-3 *
Describe an implementation of the procedure RANDOM (a, b) that uses only
fair coin flips. What is the expected running time of your procedure?

8.3-4 *
Give a 8(n j-time, randomized procedure that takes as input an array
A[l .. n] and performs a random permutation on the array elements.

8.4 Analysis of quicksort

Section 8.2 gave some intuition for the worst-case behavior of quicksort
and for why we expect it to run quickly. In this section, we analyze the
behavior of quicksort more rigorously. We begin with a worst-case analy
sis, which applies to either QUICKSORT or RANDOMIZED-QUICKSORT, and
conclude with an average-case analysis of RANDOMIZED-QUICKSORT.

8.4.1 Worst-case analysis

We saw in Section 8.2 that a worst-case split at every level of recursion in
quicksort produces a 8(n2) running time, which, intuitively, is the worst
case running time of the algorithm. We now prove this assertion.

Using the substitution method (see Section 4.1), we can show that the
running time of quicksort is O(n 2). Let T(n) be the worst-case time for
the procedure QUICKSORT on an input of size n. We have the recurrence

T(n) = max (T(q) + T(n - q)) + 8(n) ,
ISqSn-!

(8.1)

where the parameter q ranges from 1 to n 1 because the procedure PAR

TITION produces two regions, each having size at least 1. We guess that
T(n) ~ cn2 for some constant c. Substituting this guess into (8.1), we
obtain

T(n) < max (cq2 + c(n q)2) + 8(n)
ISqSn-1

c- max (q2+(n-q)2)+8(n).
ISqSn-!

The expression q2+ (n - q)2 achieves a maximum over the range 1 ~ q ~

n - 1 at one of the endpoints, as can be seen since the second derivative of
the expression with respect to q is positive (see Exercise 8.4-2). This gives
us the bound maX1SqSn-l(q2+ (n - q)2) ~ 12 + (n - 1)2 = n2 - 2(n - 1).
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Continuing with our bounding of T(n), we obtain

T(n) < en? 2c(n I) + 8(n)

< cn 2 ,

since we can pick the constant c large enough so that the 2c( n - 1) term
dominates the 8(n) term. Thus, the (worst-case) running time of quicksort
is 8(n 2 ) .

8.4.2 Average-case analysis

We have already given an intuitive argument why the average-case run
ning time of RANDOMIZED-QUICKSORT is 8(n Ign): if the split induced
by RANDOMIZED-PARTITION puts any constant fraction of the elements on
one side of the partition, then the recursion tree has depth 8(lg n) and
8(n) work is performed at 8(lgn) of these levels. We can analyze the
expected running time of RANDOMIZED-QUICKSORT precisely by first un
derstanding how the partitioning procedure operates. We can then develop
a recurrence for the average time required to sort an n-element array and
solve this recurrence to determine bounds on the expected running time.
As part of the process of solving the recurrence, we shall develop tight
bounds on an interesting summation.

Analysis of partitioning

We first make some observations about the operation of PARTITION. When
PARTITION is called in line 3 of the procedure RANDOMIZED-PARTITION,

the element A[P] has already been exchanged with a random element in
A[p .. r]. To simplify the analysis, we assume that all input numbers are
distinct. If all input numbers are not distinct, it is still true that quick
sort's average-case running time is O(n lg n), but a somewhat more intricate
analysis than we present here is required.

Our first observation is that the value of q returned by PARTITION de
pends only on the rank of x A[P] among the elements in A[p .. r]. (The
rank of a number in a set is the number of elements less than or equal to
it.) If we let n r - p + I be the number of elements in A[p .. r], swapping
A[P] with a random element from A[p .. r] yields a probability lin that
rank(x) i for i = 1,2, ... , n.

We next compute the likelihoods of the various outcomes of the par
titioning. If rank(x) I, then the first time through the while loop in
lines 4-11 of PARTITION, index i stops at i = p and index j stops at j = p.
Thus, when q j is returned, the "low" side of the partition contains the
sole element A[P]. This event occurs with probability lin since that is the
probability that rank(x) = 1.

If rank(x) 22, then there is at least one element smaller than x = A[p].
Consequently, the first time through the while loop, index i stops at i = p
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but j stops before reaching p. An exchange with A[P] is then made to
put A[P] in the high side of the partition. When PARTITION terminates,
each of the rank(x) - 1 elements in the low side of the partition is strictly
less than x. Thus, for each i = 1,2, ... , n - 1, when rank(x) ~ 2, the
probability is 1/n that the low side of the partition has i elements.

Combining these two cases, we conclude that the size q - p + 1 of the
low side of the partition is 1 with probability 2/n and that the size is i
with probability 1/n for i = 2, 3, ... , n I.

A recurrence for the average case

We now establish a recurrence for the expected running time of RAN

DOMIZED-QUICKSORT. Let T(n) denote the average time required to sort
an n-element input array. A call to RANDOMIZED-QUICKSORT with a 1
element array takes constant time, so we have T( I) = 8( I). A call to
RANDOMIZED-QUICKSORT with an array A[I .. n] of length n uses time
8(n) to partition the array. The PARTITION procedure returns an index q,
and then RANDOMIZED-QUICKSORT is called recursively with subarrays of
length q and n q, Consequently, the average time to sort an array of
length n can be expressed as

T(n) = *(T(I) + T(n - I) +~ (T(q) + T(n - q))) +ern) . (8.2)

The value of q has an almost uniform distribution, except that the value
q I is twice as likely as the others, as was noted above. Using the facts
that T(I) 8(1) and T(n I) O(n 2 ) from our worst-case analysis, we
have

I
-(T(I) + T(n - 1))
n

!(8(1) + O(n2 ) )
n

= O(n),

and the term 8(n) in equation (8.2) can therefore absorb the expression
*(T( 1) + T(n - I )). We can thus restate recurrence (8.2) as

T(n)
1 n-l

n L (T(q) + T(n q)) + 8(n) .
q=l

(8.3)

Observe that for k = 1,2, ... , n - 1, each term T( k) of the sum occurs
once as T(q) and once as T(n - q). Collapsing the two terms of the sum
yields

T(n)
2 n-l

n LT(k) +8(n).
k=l

(8.4)
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Solving the recurrence

We can solve the recurrence (8.4) using the substitution method. Assume
inductively that T( n) ::; an lg n + b for some constants a > 0 and b > 0 to
be determined. We can pick a and b sufficiently large so that an 19 n + b
is greater than T(l). Then for n > 1, we have by substitution

n-l

T(n) = ~ L T(k) + 8(n)
k=l

2 n-l

< nL(ak Igk + b) + 8(n)
k=l

2a n-l 2b- L k 19 k + - (n I) + 8(n) .
n n

k=l

We show below that the summation in the last line can be bounded by

n-l I I
Lklgk::; 2n2lgn - Sn2. (8.5)
k=1

Using this bound, we obtain

T(n) < 2a (I J I I 2) 2b (n 2W gn Sn + n n

a
< anlgn-"4n + 2b + 8(n)

an lg n + b + (8(n) + b : n)

< anlgn + b ,

since we can choose a large enough so that ~n dominates 8(n) + b. We
conclude that quicksort's average running time is O(n 19n).

Tight bounds on the key summation

It remains to prove the bound (8.5) on the summation

n-l

Lklgk.
k=l

Since each term is at most n 19 n, we have the bound
n-l

L k lg k::;n2Ign,

k=l

which is tight to within a constant factor. This bound is not strong enough
to solve the recurrence as T(n) = O(nlgn), however. Specifically, we need
a bound of 1n21gn Q(n 2 ) for the solution of the recurrence to work out.

We can get this bound on the summation by splitting it into two parts,
as discussed in Section 3.2 on page 48. We obtain
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n-I rn/21-1 n-I

I: k lg k = I: k lgk + I: k Igk .
k=1 k=1 k=fn/21
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The lgk in the first summation on the right is bounded above by Ig(n j 2) =
lg n - I. The 19 k in the second summation is bounded above by lg n. Thus,

n-I

I: k Igk
k=1

rn/21-1 n-I

< (lgn - 1) I: k + lg n I: k
k=1 k=fn/21

rn/21 I

I: k
hi k=1

< ! n(n - 1) 19 n - ! (:: - 1) ::
2 2 2 2
I 2 I 2

< "in lgn - gn

if n 2:: 2. This is the bound (8.5).

Exercises

8.4-1
Show that quicksort's best-case running time is Q(n lga).

8.4-2
Show that q2 + (n q)2 achieves a maximum over q = I, 2, ... , n - I when
q = I or q n 1.

8.4-3
Show that RANDOMIZED-QUICKSORT'S expected running time is Q(nlgn).

8.4-4
The running time of quicksort can be improved in practice by taking ad
vantage of the fast running time of insertion sort when its input is "nearly"
sorted. When quicksort is called on a subarray with fewer than k elements,
let it simply return without sorting the subarray. After the top-level call to
quicksort returns, run insertion sort on the entire array to finish the sort
ing process. Argue that this sorting algorithm runs in Oink + n 19(njk))
expected time. How should k be picked, both in theory and in practice?

8.4-5 *
Prove the identity

Jx In x dx ~x 2 In x ~x 2
,

and then use the integral approximation method to give a tighter upper
bound than (8.5) on the summation L:Z:: k 19k.
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8.4-6 *
Consider modifying the PARTITION procedure by randomly picking three
elements from array A and partitioning about their median. Approximate
the probability of getting at worst an o:-to-(1 - 0:) split, as a function of 0:

in the range 0 < 0: < 1.

if i < r
then return i
else return i

---~---------------~----~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~-~~---~-~~-- ~- --------- -----

Problems

8-1 Partition correctness
Give a careful argument that the procedure PARTITION in Section 8.1 is
correct. Prove the following:

a. The indices i and j never reference an element of A outside the interval
[p . .r].

b. The index j is not equal to r when PARTITION terminates (so that the
split is always nontrivial).

c. Every element of A[p .. j] is less than or equal to every element of AU+1
.. r] when PARTITION terminates.

8-2 Lomuto's partitioning algorithm
Consider the following variation of PARTITION, due to N. Lomuto. To
partition A[p .. r], this version grows two regions, A[p .. i] and A[i + 1 .. j],
such that every element in the first region is less than or equal to x = A[r]
and every element in the second region is greater than x.

LOMUTO-PARTITION(A,p, r)

1 x <- A[r]
2 i <- P 1
3 for j <- p to r
4 do if A[j] ~ x
5 then i <- i + 1
6 exchange A[i] ...... AU]
7
8
9

a. Argue that LOMUTO-PARTITION is correct.

b. What are the maximum numbers of times that an element can be moved
by PARTITION and by LoMUTO-PARTITION?

c. Argue that LOMUTO-PARTITION, like PARTITION, runs in 8(n) time on
an n-element subarray,
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I> Round down.
I> First two-thirds.
I> Last two-thirds.
I> First two-thirds again.

d. How does replacing PARTITION by LOMUTO-PARTITION affect the run
ning time of QUICKSORT when all input values are equal?

e. Define a procedure RANDOMIZED-LoMUTO-PARTITION that exchanges
A[r] with a randomly chosen element in A[p .. r] and then calls LOMUTO
PARTITION. Show that the probability that a given value q is returned
by RANDOMIZED-LoMUTO-PARTITION is equal to the probability that
p + r - q is returned by RANDOMIZED-PARTITION.

8-3 Stooge sort
Professors Howard, Fine, and Howard have proposed the following "ele
gant" sorting algorithm:

STOOGE-SORT(A, i, j)

I if A[i] > A[j]
2 then exchange A[i] ~ A[j]
3 ifi+l2::j
4 then return
5 k +- LU i + 1)/3J
6 STOOGE-SORT(A, t.i - k)
7 STOOGE-SORT(A, i + k, j)
8 STOOGE-SORT(A, i.] - k)

a. Argue that STOOGE-SORT(A, I, length[A]) correctly sorts the input array
A[1 .. n], where n = length[A].

b. Give a recurrence for the worst-case running time of STOOGE-SORT and
a tight asymptotic (a-notation) bound on the worst-case running time.

c. Compare the worst-case running time of STOOGE-SORT with that of in
sertion sort, merge sort, heapsort, and quicksort. Do the professors
deserve tenure?

8-4 Stack depth for quicksort
The QUICKSORT algorithm of Section 8.1 contains two recursive calls to it
self. After the call to PARTITION, the left subarray is recursively sorted and
then the right subarray is recursively sorted. The second recursive call in
QUICKSORT is not really necessary; it can be avoided by using an iterative
control structure. This technique, called tail recursion, is provided auto
matically by good compilers. Consider the following version of quicksort,
which simulates tail recursion.
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QUICKSORT'(A,p, r)

I while P < r
2 do l> Partition and sort left subarray
3 q +- PARTITION(A,p, r)
4 QUICKSORT'(A,p,q)
5 p+-q+1

a. Argue that QUICKSORT' (A, I, length[A)) correctly sorts the array A.

Compilers usually execute recursive procedures by using a stack that con
tains pertinent information, including the parameter values, for each re
cursive call. The information for the most recent call is at the top of the
stack, and the information for the initial call is at the bottom. When a
procedure is invoked, its information is pushed onto the stack; when it ter
minates, its information is popped. Since we assume that array parameters
are actually represented by pointers, the information for each procedure
call on the stack requires O( I) stack space. The stack depth is the maximum
amount of stack space used at any time during a computation.

b. Describe a scenario in which the stack depth of QUICKSORT' is 8(n) on
an n-element input array.

c. Modify the code for QUICKSORT' so that the worst-case stack depth is
8(lgn).

8-5 Median-of-3 partition
One way to improve the RANDOMIZED-QUICKSORT procedure is to par
tition around an element x that is chosen more carefully than by pick
ing a random element from the subarray, One common approach is the
median-of-B method: choose x as the median (middle element) of a set of
3 elements randomly selected from the subarray. For this problem, let us
assume that the elements in the input array A[I .. n] are distinct and that
n 2': 3. We denote the sorted output array by A'[I .. n]. Using the median
of-3 method to choose the pivot element x, define Pi Pr {x A'[i]}.

a. Give an exact formula for Pi as a function of nand i for i = 2,3, ... ,
n 1. (Note that PI = Pn = 0.)

b. By what amount have we increased the likelihood of choosing x
A'[l(n + 1)/2J], the median of A[I .. n], compared to the ordinary im
plementation? Assume that n -> 00, and give the limiting ratio of these
probabilities.

c. [fwe define a "good" split to mean choosing x = A'[i], where n/3 :s: i:S:
2n/3, by what amount have we increased the likelihood of getting a good
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Chapter notes

split compared to the ordinary implementation? (Hint: Approximate the
sum by an integral.)

d. Argue that the median-of-3 method affects only the constant factor in
the Q( n 19 n) running time of quicksort.

The quicksort procedure was invented by Hoare [98J. Sedgewick [174]
provides a good reference on the details of implementation and how they
matter. The advantages of randomized algorithms were articulated by
Rabin [165].



9 Sorting in Linear Time

We have now introduced several algorithms that can sort n numbers in
O(n lgn) time. Merge sort and heapsort achieve this upper bound in the
worst case; quicksort achieves it on average. Moreover, for each of these
algorithms, we can produce a sequence of n input numbers that causes the
algorithm to run in n(n lg n) time.

These algorithms share an interesting property: the sorted order they
determine is based only on comparisons between the input elements. We
call such sorting algorithms comparison sorts. All the sorting algorithms
introduced thus far are comparison sorts.

In Section 9.1, we shall prove that any comparison sort must make
n(n lgn) comparisons in the worst case to sort a sequence of n elements.
Thus, merge sort and heapsort are asymptotically optimal, and no com
parison sort exists that is faster by more than a constant factor.

Sections 9.2, 9.3, and 9.4 examine three sorting algorithms-counting
sort, radix sort, and bucket sort-that run in linear time. Needless to say,
these algorithms use operations other than comparisons to determine the
sorted order. Consequently, the n(n 19n) lower bound does not apply to
them.

------------------ --------._---- -

9.1 Lower bounds for sorting

In a comparison sort, we use only comparisons between elements to gain
order information about an input sequence (ai, ai, . . . , an). That is, given
two elements a, and aj, we perform one of the tests a, < aj, a, :s ai,
a, aj, a, 2:: aj , or a, > a, to determine their relative order. We may not
inspect the values of the elements or gain order information about them
in any other way.

In this section, we assume without loss of generality that all of the input
elements are distinct. Given this assumption, comparisons of the form
a, = aj are useless, so we can assume that no comparisons of this form are
made. We also note that the comparisons a, :s a], a, 2:: aj, a, > a., and
a, < a, are all equivalent in that they yield identical information about
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Figure 9.1 The decision tree for insertion sort operating on three elements. There
are 3! = 6 possible permutations of the input elements, so the decision tree must
have at least 6 leaves.

the relative order of aj and aj. We therefore assume that all comparisons
have the form a, ~ a..

The decision-tree model

Comparison sorts can be viewed abstractly in terms of decision trees. A
decision tree represents the comparisons performed by a sorting algorithm
when it operates on an input of a given size. Control, data movement,
and all other aspects of the algorithm are ignored. Figure 9.1 shows the
decision tree corresponding to the insertion sort algorithm from Section 1.1
operating on an input sequence of three elements.

In a decision tree, each internal node is annotated by a, : aj for some i
and j in the range 1 ~ i, j ~ n, where n is the number of elements in the
input sequence. Each leaf is annotated by a permutation (n( 1), n(2), ... ,
n(n)). (See Section 6.1 for background on permutations.) The execution
of the sorting algorithm corresponds to tracing a path from the root of
the decision tree to a leaf. At each internal node, a comparison a, ~ aj is
made. The left subtree then dictates subsequent comparisons for a, ~ a.,
and the right subtree dictates subsequent comparisons for a, > ai- When
we come to a leaf, the sorting algorithm has established the ordering a1f ( 1) ~

a1f(2 ) ~ .•• ~ a1f( n ) ' Each of the n! permutations on n elements must appear
as one of the leaves of the decision tree for the sorting algorithm to sort
properly.

A lower bound for the worst case

The length of the longest path from the root of a decision tree to any
of its leaves represents the worst-case number of comparisons the sorting
algorithm performs. Consequently, the worst-case number of comparisons
for a comparison sort corresponds to the height of its decision tree. A
lower bound on the heights of decision trees is therefore a lower bound on
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the running time of any comparison sort algorithm. The following theorem
establishes such a lower bound.

Theorem 9.1
Any decision tree that sorts n elements has height O(n 19n).

Proof Consider a decision tree of height h that sorts n elements. Since
there are n! permutations of n elements, each permutation representing a
distinct sorted order, the tree must have at least n! leaves. Since a binary
tree of height h has no more than 211 leaves, we have

n!:::; 2h ,

which, by taking logarithms, implies

h 2:: 19(n!) ,

since the lg function is monotonically increasing. From Stirling's approx
imation (2.11), we have

n!>(~r '
where e = 2.71828 ... is the base of natural logarithms; thus

h > 19(~r
n Ign n Ige

= O(n 19n) .

Corollary 9.2
Heapsort and merge sort are asymptotically optimal comparison sorts.

•

Proof The O(n Ign) upper bounds on the running times for heapsort
and merge sort match the O(n 19 n) worst-case lower bound from Theo
rem 9.1. •

Exercises

9.1-1
What is the smallest possible depth of a leaf in a decision tree for a sorting
algorithm?

9.1-2
Obtain asymptotically tight bounds on 19(n!) without using Stirling's ap
proximation. Instead, evaluate the summation L:Z=t Igk using techniques
from Section 3.2.
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9.1-3
Show that there is no comparison sort whose running time is linear for at
least half of the n! inputs of length n. What about a fraction of I j n of the
inputs of length n? What about a fraction 1j2 fl ?

9.1-4
Professor Solomon claims that the Q(n 19n) lower bound for sorting n
numbers does not apply to his computer environment, in which the control
flow of a program can split three ways after a single comparison a, : aj,
according to whether a, < aj> a, aj, or a, > a.. Show that the professor
is wrong by proving that the number of three-way comparisons required
to sort n elements is still Q( n 19 n).

9.1-5
Prove that 2n - 1 comparisons are necessary in the worst case to merge
two sorted lists containing n elements each.

9.1-6
You are given a sequence of n elements to sort. The input sequence con
sists of nfk subsequences, each containing k elements. The elements in
a given subsequence are all smaller than the elements in the succeeding
subsequence and larger than the elements in the preceding subsequence.
Thus, all that is needed to sort the whole sequence of length n is to sort
the k elements in each of the n j k subsequences. Show an Q( n 19 k) lower
bound on the number of comparisons needed to solve this variant of the
sorting problem. (Hint: It is not rigorous to simply combine the lower
bounds for the individual subsequences.)

9.2 Counting sort

Counting sort assumes that each of the n input elements is an integer in
the range 1 to k, for some integer k. When k = O(n), the sort runs in
O(n) time.

The basic idea of counting sort is to determine, for each input element x,
the number of elements less than x. This information can be used to place
element x directly into its position in the output array. For example, if
there are 17 elements less than x, then x belongs in output position 18.
This scheme must be modified slightly to handle the situation in which
several elements have the same value, since we don't want to put them all
in the same position.

In the code for counting sort, we assume that the input is an array
A[l .. n], and thus length[A] = n. We require two other arrays: the array
B[l .. n] holds the sorted output, and the array C[l .. k] provides tempo
rary working storage.
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Figure 9.2 The operation of COUNTING-SORT on an input array A[ I .. 8], where
each element of A is a positive integer no larger than k = 6. (a) The array A and
the auxiliary array C after line 4. (b) The array C after line 7. (c)-(e) The output
array B and the auxiliary array C after one, two, and three iterations of the loop
in lines 9-11, respectively. Only the lightly shaded elements of array B have been
filled in. (f) The final sorted output array B.

COUNTING-SORT(A, B, k)

1 for i +- I to k
2 do C[i] +- 0
3 for j +- 1 to length[A]
4 do C[A[j]] +- C[A[j]] + I
5 I> C[i] now contains the number of elements equal to i.
6 for i +- 2 to k
7 do C[i] +- C[i] + C[i - I]
8 I> C[i] now contains the number of elements less than or equal to i.
9 for j +- length[A] downto 1

10 do B[C[A[j]]] +- A[j]
11 C[A[j]] +- C[A[j]] 1

Counting sort is illustrated in Figure 9.2. After the initialization in
lines 1-2, we inspect each input element in lines 3-4. If the value of an
input element is i, we increment C[i]. Thus, after lines 3-4, C[i] holds
the number of input elements equal to i for each integer i = 1,2, ... , k. In
lines 6-7, we determine for each i = 1,2, ... , k, how many input elements
are less than or equal to i; this is done by keeping a running sum of the
array C.

Finally, in lines 9-11, we place each element A[j] in its correct sorted
position in the output array B. If all n elements are distinct, then when
we first enter line 9, for each A[j], the value C[A[j]] is the correct final
position of A[j] in the output array, since there are C[A[j]] elements less
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than or equal to A(j]. Because the elements might not be distinct, we
decrement C[A[j]] each time we place a value A[j] into the B array; this
causes the next input element with a value equal to A[j], if one exists, to
go to the position immediately before A[j] in the output array.

How much time does counting sort require? The for loop of lines 1-2
takes time O(k), the for loop of lines 3-4 takes time O(n), the for loop of
lines 6-7 takes time O(k), and the for loop of lines 9-11 takes time O( n).
Thus, the overall time is O(k + n). In practice, we usually use counting
sort when we have k O(n), in which case the running time is O(n).

Counting sort beats the lower bound of Q(n Ign) proved in Section 9.1
because it is not a comparison sort. In fact, no comparisons between input
elements occur anywhere in the code. Instead, counting sort uses the actual
values of the elements to index into an array. The Q( n lg n) lower bound
for sorting does not apply when we depart from the comparison-sort model.

An important property of counting sort is that it is stable: numbers with
the same value appear in the output array in the same order as they do in
the input array. That is, ties between two numbers are broken by the rule
that whichever number appears first in the input array appears first in the
output array. Of course, the property of stability is important only when
satellite data are carried around with the element being sorted. We shall
see why stability is important in the next section.

Exercises

9.2-1
Using Figure 9.2 as a model, illustrate the operation of COUNTING-SORT
on the array A = (7, 1,3, 1,2,4,5,7,2,4,3).

9.2-2
Prove that COUNTING-SORT is stable.

9.2-3
Suppose that the for loop in line 9 of the COUNTING-SORT procedure is
rewritten:

9 for j f- I to /ength[A]

Show that the algorithm still works properly. Is the modified algorithm
stable?

9.2-4
Suppose that the output of the sorting algorithm is a data stream such as a
graphics display. Modify COUNTING-SORT to produce the output in sorted
order without using any substantial additional storage besides that in A
and C. (Hint: Link elements of A that have the same key into lists. Where
is a "free" place to keep the pointers for the linked list?)
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9.2-5
Describe an algorithm that, given n integers in the range 1 to k, prepro
cesses its input and then answers any query about how many of the n
integers fall into a range [a .. b] in 0(1) time. Your algorithm should use
O( n + k) preprocessing time.

Radix sort is the algorithm used by the card-sorting machines you now find
only in computer museums. The cards are organized into 80 columns, and
in each column a hole can be punched in one of 12 places. The sorter can
be mechanically "programmed" to examine a given column of each card
in a deck and distribute the card into one of 12 bins depending on which
place has been punched. An operator can then gather the cards bin by
bin, so that cards with the first place punched are on top of cards with the
second place punched, and so on.

For decimal digits, only 10 places are used in each column. (The other
two places are used for encoding nonnumeric characters.) A d-digit num
ber would then occupy a field of d columns. Since the card sorter can look
at only one column at a time, the problem of sorting n cards on ad-digit
number requires a sorting algorithm.

Intuitively, one might want to sort numbers on their most significant
digit, sort each of the resulting bins recursively, and then combine the
decks in order. Unfortunately, since the cards in 9 of the 10 bins must be
put aside to sort each of the bins, this procedure generates many interme
diate piles of cards that must be kept track of. (See Exercise 9.3-5.)

Radix sort solves the problem of card sorting counterintuitively by sort
ing on the least significant digit first. The cards are then combined into a
single deck, with the cards in the 0 bin preceding the cards in the 1 bin
preceding the cards in the 2 bin, and so on. Then the entire deck is sorted
again on the second least-significant digit and recombined in a like man
ner. The process continues until the cards have been sorted on all d digits.
Remarkably, at that point the cards are fully sorted on the d-digit num
ber. Thus, only d passes through the deck are required to sort. Figure 9.3
shows how radix sort operates on a "deck" of seven 3-digit numbers.

It is essential that the digit sorts in this algorithm be stable. The sort
performed by a card sorter is stable, but the operator has to be wary about
not changing the order of the cards as they come out of a bin, even though
all the cards in a bin have the same digit in the chosen column.

In a typical computer, which is a sequential random-access machine,
radix sort is sometimes used to sort records of information that are keyed
by multiple fields. For example, we might wish to sort dates by three keys:
year, month, and day. We could run a sorting algorithm with a compar-
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Figure 9.3 The operation of radix sort on a list of seven 3-digit numbers. The
first column is the input. The remaining columns show the list after successive
sorts on increasingly significant digit positions. The vertical arrows indicate the
digit position sorted on to produce each list from the previous one.

ison function that, given two dates, compares years, and if there is a tie,
compares months, and if another tie occurs, compares days. Alternatively,
we could sort the information three times with a stable sort: first on day,
next on month, and finally on year.

The code for radix sort is straightforward. The following procedure
assumes that each element in the n-element array A has d digits, where
digit 1 is the lowest-order digit and digit d is the highest-order digit.

RADIX-SORT(A, d)

1 for i +- 1 to d
2 do use a stable sort to sort array A on digit i

The correctness of radix sort follows by induction on the column being
sorted (see Exercise 9.3-3). The analysis of the running time depends on
the stable sort used as the intermediate sorting algorithm. When each digit
is in the range 1 to k, and k is not too large, counting sort is the obvious
choice. Each pass over n d-digit numbers then takes time 8(n + k). There
are d passes, so the total time for radix sort is 8(dn + kd). When d is
constant and k = O(n), radix sort runs in linear time.

Some computer scientists like to think of the number of bits in a com
puter word as being 8(lg n). For concreteness, let's say that dig n is the
number of bits, where d is a positive constant. Then, if each number to
be sorted fits in one computer word, we can treat it as a d-digit number
in radix-a notation. As a concrete example, consider sorting 1 million
64-bit numbers. By treating these numbers as four-digit, radix-Z!" num
bers, we can sort them in just four passes using radix sort. This compares
favorably with a typical 8(n Ign) comparison sort, which requires approx
imately lgn = 20 operations per number to be sorted. Unfortunately, the
version of radix sort that uses counting sort as the intermediate stable sort
does not sort in place, which many of the 8(n lgn) comparison sorts do.
Thus, when primary memory storage is at a premium, an algorithm such
as quicksort may be preferable.
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Exercises

9.3-1
Using Figure 9.3 as a model, illustrate the operation of RADIX-SORT on
the following list of English words: COW, DOG, SEA, RUG, ROW, MOB,
BOX, TAB, BAR, EAR, TAR, DIG, BIG, TEA, NOW, FOX.

9.3-2
Which of the following sorting algorithms are stable: insertion sort, merge
sort, heapsort, and quicksort? Give a simple scheme that makes any sorting
algorithm stable. How much additional time and space does your scheme
entail?

9.3-3
Use induction to prove that radix sort works. Where does your proof need
the assumption that the intermediate sort is stable?

9.3-4
Show how to sort n integers in the range I to n2 in O(n) time.

9.3-5 *
In the first card-sorting algorithm in this section, exactly how many sorting
passes are needed to sort d-digit decimal numbers in the worst case? How
many piles of cards would an operator need to keep track of in the worst
case?

Bucket sort runs in linear time on the average. Like counting sort, bucket
sort is fast because it assumes something about the input. Whereas count
ing sort assumes that the input consists of integers in a small range, bucket
sort assumes that the input is generated by a random process that dis
tributes elements uniformly over the interval [0, I). (See Section 6.2 for a
definition of uniform distribution.)

The idea of bucket sort is to divide the interval [0, 1) into n equal-sized
subintervals, or buckets, and then distribute the n input numbers into the
buckets. Since the inputs are uniformly distributed over [0, I), we don't
expect many numbers to fall into each bucket. To produce the output, we
simply sort the numbers in each bucket and then go through the buckets
in order, listing the elements in each.

Our code for bucket sort assumes that the input is an n-element array A
and that each element A[i] in the array satisfies 0 ~ A(i] < 1. The code
requires an auxiliary array B[O .. n - I] of linked lists (buckets) and as-
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Figure 9.4 The operation of BUCKET-SORT. (a) The input array A[l .. l O]. (b)
The array B[O . . 9] of sorted lists (buckets) after line 5 of the algorithm. Bucket i
holds values in the interval [i/10,(i + 1)/10). The sorted output consists of a
concatenation in order of the lists B[O], B[ I], ... , B[9].

sumes that there is a mechanism for maintaining such lists. (Section 11.2
describes how to implement basic operations on linked lists.)

BUCKET-SORT(A)

1 n f- length[A]
2 for i f- 1 to n
3 do insert A[i] into list B[lnA[i]J]
4 for i f- 0 to n I
5 do sort list B[i] with insertion sort
6 concatenate the lists B[O], B[ 1], ... , B[n 1] together in order

Figure 9.4 shows the operation of bucket sort on an input array of 10
numbers.

To see that this algorithm works, consider two elements A[i] and A[)].
If these elements fall in the same bucket, they appear in the proper relative
order in the output sequence because their bucket is sorted by insertion
sort. Suppose they fall into different buckets, however. Let these buckets
be B[i/] and B[j/], respectively, and assume without loss of generality that
i' < j'. When the lists of B are concatenated in line 6, elements of bucket
B[i'] come before elements of B[j'], and thus A[i] precedes A[j] in the
output sequence. Hence, we must show that A[i] ::; A[j]. Assuming the
contrary, we have

r = LnA[i]J

> LnA[j]J
'1] ,

which is a contradiction, since i' < j', Thus, bucket sort works.
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To analyze the running time, observe that all lines except line 5 take
O( n) time in the worst case. The total time to examine all buckets in
line 5 is O(n), and so the only interesting part of the analysis is the time
taken by the insertion sorts in line 5.

To analyze the cost of the insertion sorts, let n, be the random variable
denoting the number of elements placed in bucket B[i]. Since insertion
sort runs in quadratic time (see Section 1.2), the expected time to sort the
elements in bucket B[i] is E [O(nt)] = O(E [nrD. The total expected time
to sort all the elements in all the buckets is therefore

(9.1)

In order to evaluate this summation, we must determine the distribution
of each random variable n.. We have n elements and n buckets. The
probability that a given element falls into bucket B[i] is lin, since each
bucket is responsible for lin of the interval [0,1). Thus, the situation is
analogous to the ball-tossing example of Section 6.6.2: we have n balls
(elements) and n bins (buckets), and each ball is thrown independently
with probability p = 1In of falling into any particular bucket. Thus, the
probability that n, = k follows the binomial distribution b(k; n,p), which
has mean E[nj] = np = 1 and variance Var[nj] = np(1 - p) = 1 - lin.
For any random variable X, equation (6.30) gives

E [nf] = Var[n;] + E2 [nil

= 1 _ 1 + 12
n
1

2- -
n

= e(l).

Using this bound in equation (9.1), we conclude that the expected time
for insertion sorting is O(n). Thus, the entire bucket sort algorithm runs
in linear expected time.

Exercises

9.4-1
Using Figure 9.4 as a model, illustrate the operation of BUCKET-SORT on
the array A = (.79, .13, .16, .64, .39, .20, .89, .53, .71, .42).

9.4-2
What is the worst-case running time for the bucket-sort algorithm? What
simple change to the algorithm preserves its linear expected running time
and makes its worst-case running time O( n 19 n)?
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9.4-3 *
We are given n points in the unit circle, Pi (Xi,Yi), such that 0 <
xl + YT ~ I for i = 1,2, ... , n. Suppose that the points are uniformly
distributed; that is, the probability of finding a point in any region of the
circle is proportional to the area of that region. Design a 8(n) expected-

time algorithm to sort the npoints by their distances d, = JxT + YT from
the origin. (Hint: Design the bucket sizes in BUCKET-SORT to reflect the
uniform distribution of the points in the unit circle.)

9.4-4 *
A probability distribution/unction P(x) for a random variable X is defined
by P(x) = Pr{X ~ x}. Suppose a list of n numbers has a continuous
probability distribution function P that is computable in O( I) time. Show
how to sort the numbers in linear expected time.

~__n _

Problems

9-1 Average-case lower bounds on comparison sorting
In this problem, we prove an Q( n 19 n) lower bound on the expected run
ning time of any deterministic or randomized comparison sort on n inputs.
We begin by examining a deterministic comparison sort A with decision
tree TA • We assume that every permutation of A's inputs is equally likely.

a. Suppose that each leaf of TA is labeled with the probability that it is
reached given a random input. Prove that exactly n! leaves are labeled
I j n! and that the rest are labeled O.

b. Let D(T) denote the external path length of a tree T; that is, D(T) is
the sum of the depths of all the leaves of T. Let T be a tree with k > I
leaves, and let RT and LT be the right and left subtrees of T. Show
that D(T) D(RT) + D(LT) + k.

c. Let d(m) be the minimum value of D(T) over all trees T with m leaves.
Show that d(k) = minl:9~k {d(i) + d(k - i) + k}. (Hint: Consider a
tree T with k leaves that achieves the minimum. Let i be the number
of leaves in RT and k - i the number of leaves in LT.)

d. Prove that for a given value of k, the function i 19 i + (k - i) 19(k - i) is
minimized at i = kj2. Conclude that d(k) = Q(klgk).

e. Prove that D(TA ) = Q(n! 19(n!)) for TA , and conclude that the expected
time to sort n elements is Q(n 19n).

Now, consider a randomized comparison sort B. We can extend the
decision-tree model to handle randomization by incorporating two kinds
of nodes: ordinary comparison nodes and "randomization" nodes. A ran-
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domization node models a random choice of the form RANDoM( I , r) made
by algorithm B; the node has r children, each of which is equally likely to
be chosen during an execution of the algorithm.

/. Show that for any randomized comparison sort B, there exists a de
terministic comparison sort A that makes no more comparisons on the
average than B does.

9-2 Sorting in place in linear time
a. Suppose that we have an array of n data records to sort and that the key

of each record has the value 0 or 1. Give a simple, linear-time algorithm
for sorting the n data records in place. Use no storage of more than
constant size in addition to the storage provided by the array.

b. Can your sort from part (a) be used to radix sort n records with b-bit
keys in O(bn) time? Explain how or why not.

c. Suppose that the n records have keys in the range from I to k, Show
how to modify counting sort so that the records can be sorted in place
in O(n + k) time. You may use O(k) storage outside the input array.
(Hint: How would you do it for k = 3?)

The decision-tree model for studying comparison sorts was introduced by
Ford and Johnson [72]. Knuth's comprehensive treatise on sorting [123]
covers many variations on the sorting problem, including the information
theoretic lower bound on the complexity of sorting given here. Lower
bounds for sorting using generalizations of the decision-tree model were
studied comprehensively by Ben-Or [23].

Knuth credits H. H. Seward with inventing counting sort in 1954, and
also with the idea of combining counting sort with radix sort. Radix sorting
by the least-significant digit first appears to be a folk algorithm widely used
by operators of mechanical card-sorting machines. According to Knuth,
the first published reference to the method is a 1929 document by L. J.
Comrie describing punched-card equipment. Bucket sorting has been in
use since 1956, when the basic idea was proposed by E. J. Isaac and R. C.
Singleton.
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The ith order statistic of a set of n elements is the ith smallest element.
For example, the minimum of a set of elements is the first order statistic
(i = 1), and the maximum is the nth order statistic (i = n). A median,
informally, is the "halfway point" of the set. When n is odd, the median
is unique, occurring at i = (n + I )/2. When n is even, there are two
medians, occurring at i = nl2 and i = nl2 + 1. Thus, regardless of the
parity of n, medians occur at i = L(n + 1)/2J and i = f(n + 1)/21-

This chapter addresses the problem of selecting the ith order statistic
from a set of n distinct numbers. We assume for convenience that the set
contains distinct numbers, although virtually everything that we do extends
to the situation in which a set contains repeated values. The selection
problem can be specified formally as follows:

Input: A set A of n (distinct) numbers and a number i, with 1 ::; i::; n.

Output: The element x E A that is larger than exactly i-I other elements
of A.

The selection problem can be solved in O(n lg n) time, since we can sort
the numbers using heap sort or merge sort and then simply index the ith
element in the output array. There are faster algorithms, however.

In Section 10.1, we examine the problem of selecting the minimum and
maximum of a set of elements. More interesting is the general selection
problem, which is investigated in the subsequent two sections. Section 10.2
analyzes a practical algorithm that achieves an O(n) bound on the running
time in the average case. Section 10.3 contains an algorithm of more
theoretical interest that achieves the O(n) running time in the worst case.

--------------------------------~

10.1 Minimum and maximum

How many comparisons are necessary to determine the minimum of a set
of n elements? We can easily obtain an upper bound of n 1 comparisons:
examine each element of the set in turn and keep track of the smallest
element seen so far. In the following procedure, we assume that the set
resides in array A, where length[A] = n.
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MINIMUM(A)

I min.- A[I]
2 for i .- 2 to length[A]
3 do if min> A[i]
4 then min »- A[i]
5 return min

Finding the maximum can, of course, be accomplished with n - I com
parisons as well.

Is this the best we can do? Yes, since we can obtain a lower bound of
n - 1 comparisons for the problem of determining the minimum. Think
of any algorithm that determines the minimum as a tournament among
the elements. Each comparison is a match in the tournament in which the
smaller of the two elements wins. The key observation is that every element
except the winner must lose at least one match. Hence, n - I comparisons
are necessary to determine the minimum, and the algorithm MINIMUM is
optimal with respect to the number of comparisons performed.

An interesting fine point of the analysis is the determination of the ex
pected number of times that line 4 is executed. Problem 6-2 asks you to
show that this expectation is 8(lgn).

Simultaneous minimum and maximum

In some applications, we must find both the minimum and the maximum
of a set of n elements. For example, a graphics program may need to
scale a set of (x,y) data to fit onto a rectangular display screen or other
graphical output device. To do so, the program must first determine the
minimum and maximum of each coordinate.

It is not too difficult to devise an algorithm that can find both the min
imum and the maximum of n elements using the asymptotically optimal
Q(n) number of comparisons. Simply find the minimum and maximum
independently, using n - I comparisons for each, for a total of 2n - 2
comparisons.

In fact, only 3 rnj21 comparisons are necessary to find both the min
imum and the maximum. To do this, we maintain the minimum and
maximum elements seen thus far. Rather than processing each element
of the input by comparing it against the current minimum and maximum,
however, at a cost of two comparisons per element, we process elements in
pairs. We compare pairs of elements from the input first with each other,
and then compare the smaller to the current minimum and the larger to the
current maximum, at a cost of three comparisons for every two elements.
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10.1-1
Show that the second smallest of n elements can be found with n+ [lg n1- 2
comparisons in the worst case. (Hint: Also find the smallest element.)

10.1-2 *
Show that f3n/21 - 2 comparisons are necessary in the worst case to find
both the maximum and minimum of n numbers. (Hint: Consider how
many numbers are potentially either the maximum or minimum, and in
vestigate how a comparison affects these counts.)

10.2 Selection in expected linear time

The general selection problem appears more difficult than the simple prob
lem of finding a minimum, yet, surprisingly, the asymptotic running time
for both problems is the same: 8(n). In this section, we present a divide
and-conquer algorithm for the selection problem. The algorithm RAN
DOMIZED-SELECT is modeled after the quicksort algorithm of Chapter 8.
As in quicksort, the idea is to partition the input array recursively. But
unlike quicksort, which recursively processes both sides of the partition,
RANDOMIZED-SELECT only works on one side of the partition. This differ
ence shows up in the analysis: whereas quicksort has an expected running
time of 8(n 19 n), the expected time of RANDOMIZED-SELECT is 8(n).

RANDOMIZED-SELECT uses the procedure RANDOMIZED-PARTITION in
troduced in Section 8.3. Thus, like RANDOMIZED-QUICKSORT, it is a ran
domized algorithm, since its behavior is determined in part by the output
of a random-number generator. The following code for RANDOMIZED
SELECT returns the ith smallest element of the array A[p .. r].

RANDOMIZED-SELECT(A,p, r, i)

1 ifp=r
2 then return A[P]
3 q +- RANDOMIZED-PARTITION(A,p, r)
4 k+-q-p+l
5 ifiS,k
6 then return RANDOMIZED-SELECT(A,p,q, i)
7 else return RANDOMIZED-SELECT(A, q + 1,r, i - k)

After RANDOMIZED-PARTITION is executed in line 3 of the algorithm, the
array A[p .. r] is partitioned into two nonempty subarrays A[p .. q] and
A[q + 1 .. r] such that each element of A[p .. q] is less than each element of
A[q + 1 .. r]. Line 4 of the algorithm computes the number k of elements
in the subarray A[p .. q]. The algorithm now determines in which of the
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two subarrays A[p .. q] and A[q + 1 .. r] the ith smallest element lies. If
i S k, then the desired element lies on the low side of the partition, and
it is recursively selected from the subarray in line 6. If i > k, however,
then the desired element lies on the high side of the partition. Since we
already know k values that are smaller than the ith smallest element of
A[p .. r]-namely, the elements of A[p .. q]-the desired element is the
(i - k)th smallest element of A[q + 1 .. r], which is found recursively in
line 7.

The worst-case running time for RANDOMIZED-SELECT is 8(n 2 ) , even
to find the minimum, because we could be extremely unlucky and always
partition around the largest remaining element. The algorithm works well
in the average case, though, and because it is randomized, no particular
input elicits the worst-case behavior.

We can obtain an upper bound T(n) on the expected time required by
RANDOMIZED-SELECT on an input array of n elements as follows. We
observed in Section 8.4 that the algorithm RANDOMIZED-PARTITION pro
duces a partition whose low side has 1 element with probability 21n and i
elements with probability 1In for i = 2,3, ... .n - 1. Assuming that T( n)
is monotonically increasing, in the worst case RANDOMIZED-SELECT is al
ways unlucky in that the ith element is determined to be on the larger side
of the partition. Thus, we get the recurrence

T(n) S; 1 ( n-IIi T(max(l, n - 1)) +ET(max(k, n

I ( n-I)S; Ii T (n - 1) + 2 I: T (k) + O( n )
k=rn/21

2 n-I
= - I: T(k) + O(n) .n

k=rn/21

k))) + O(n)

The second line follows from the first since max( 1, n - 1) = n - 1 and

max(k,n k) = {~ if k ~ fn/21 ,
k ifk<fn/21.

If n is odd, each term T(fn/21), T(fn /21 + 1), ... , T( n - 1) appears twice
in the summation, and if n is even, each term T(fn/21 + 1), T(fn/21 + 2),
... , T(n - 1) appears twice and the term T(fn/21) appears once. In either
case, the summation of the first line is bounded from above by the sum
mation of the second line. The third line follows from the second since
in the worst case T(n - 1) = O(n2 ) , and thus the term ~T(n 1) can be
absorbed by the term O(n).

We solve the recurrence by substitution. Assume that T(n) S; en for
some constant c that satisfies the initial conditions of the recurrence. Using
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this inductive hypothesis, we have

2 n-I

T(n) ::; n L ek + O(n)
k=rn/21

2 (n-l rn/21- 1 )
< : t; k - t; k + O( n)

= ~ (~(n - l)n - ~ Uil- 1) ril) + O(n)

< e(n 1) ~ (i -1) (i) +O(n)

c (ln - ~) + O( n)

< en,
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since we can pick e large enough so that e(n/4+ 1/2) dominates the O(n)
term.

Thus, any order statistic, and in particular the median, can be deter
mined on average in linear time.

Exercises

10.2-1
Write an iterative version of RANDOMIZED-SELECT.

10.2-2
Suppose we use RANDOMIZED-SELECT to select the minimum element of
the array A = (3,2,9,0,7,5,4,8,6,1). Describe a sequence of partitions
that results in a worst-case performance of RANDOMIZED-SELECT.

10.2-3
Recall that in the presence of equal elements, the RANDOMIZED-PARTITION
procedure partitions the subarray A[p .. r] into two nonempty subarrays
A[p .. q] and A[q + 1 .. r] such that each element in A[p .. q] is less than or
equal to every element in A[q + 1 .. r]. If equal elements are present, does
the RANDOMIZED-SELECT procedure work correctly?

10.3 Selection in worst-case linear time

We now examine a selection algorithm whose running time is O(n) in the
worst case. Like RANDOMIZED-SELECT, the algorithm SELECT finds the de
sired element by recursively partitioning the input array. The idea behind
the algorithm, however, is to guarantee a good split when the array is par
titioned. SELECT uses the deterministic partitioning algorithm PARTITION
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figure 10.1 Analysis of the algori thm SELECT. The n elements are represented
by sma ll circles , and each group occupies a column . The med ians of the groups
are whitened, and the median-of-medians x is labeled. Arrows are draw n fro m
large r elements to smaller, from wh ich it can be seen that 3 out of every gro up
of 5 elements to the right of x are greater tha n x, and 3 out of every group of 5
elements to the left of x are less than x . The elements greater than x are shown
on a shaded background.

from quicksort (see Section 8. 1), modified to take the element to part ition
around as an input parameter.

The S ELECT algor ithm determi nes the ith smallest of an input array of
n elements by executing the following steps.

1. Divide the n elements of the input array into Ln/5J groups of 5 elements
each and at most one group made up of the remaining n mod 5 elements.

2. Find the median of each of the rn/51 groups by insert ion sort ing the
elements of each group (of which there are 5 at most) and taking its
middle element. (If the group has an even number of elements, take the
larger of the two medians.)

3. Use SELECT recursively to find the median x of the rn/51 medians found
in step 2.

4. Partition the input array around the median-of-medians x using a mod
ified version of P ARTITION. Let k be the num ber of elements on the
low side of the partition , so that n - k: is the number of elements on the
high side .

5. Use S ELECT recursively to fi nd the ith smallest element on the low side
if i S k , or the (i - k)th smallest element on the high side if i > k ,

To analyze the runn ing time of SELECT , we first determine a lower bound
on th e number of elements that are greate r than the parti tioni ng element x.
Figure 10.1 is helpful in visualizing this bookkeeping. At least half of
the medians found in step 2 are greater than or equal to the median-of
med ians x. Thus, at least half of the rn/ 51 groups con tribute 3 elements
that are greater than x, except for the one group that has fewer than 5
elements if 5 does not d ivide n exactly, and the one group containing x
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itself. Discounting these two groups, it follows that the number of elements
greater than x is at least

Similarly, the number of elements that are less than x is at least 3n/10- 6.
Thus, in the worst case, SELECT is called recursively on at most 7n/10 + 6
elements in step 5.

We can now develop a recurrence for the worst-case running time T(n)
of the algorithm SELECT. Steps I, 2, and 4 take O(n) time. (Step 2 consists
of O(n) calls of insertion sort on sets of size O( I).) Step 3 takes time
T(rn/51), and step 5 takes time at most T(7njlO + 6), assuming that Tis
monotonically increasing. Note that 7n/1O + 6 < n for n > 20 and that
any input of 80 or fewer elements requires 0(1) time. We can therefore
obtain the recurrence

T(n) < {e(l) if n ::::; 80 ,
- T(fn/51) + T(7n/1O + 6) + O(n) if n > 80.

We show that the running time is linear by substitution. Assume that
T(n) ::::; en for some constant e and all n ::::; 80. Substituting this inductive
hypothesis into the right-hand side of the recurrence yields

T(n) < C rn/51 + c(7n/1O + 6) + O(n)

< en/5 + e+ 7en/1O + 6c + O(n)

< 9cnjlO + 7c + O(n)

< en,

since we can pick c large enough so that c(n/IO - 7) is larger than the
function described by the O( n) term for all n > 80. The worst-case running
time of SELECT is therefore linear.

As in a comparison sort (see Section 9.1), SELECT and RANDOMIZED
SELECT determine information about the relative order of elements only
by comparing elements. Thus, the linear-time behavior is not a result of
assumptions about the input, as was the case for the sorting algorithms in
Chapter 9. Sorting requires Q( n lg n) time in the comparison model, even
on average (see Problem 9-1), and thus the method of sorting and indexing
presented in the introduction to this chapter is asymptotically inefficient.

Exercises

10.3-1
In the algorithm SELECT, the input elements are divided into groups of 5.
Will the algorithm work in linear time if they are divided into groups of 7?
How about groups of 3'1
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10.3-2
Analyze SELECT to show that the number of elements greater than the
median-of-medians x and the number of elements less than x is at least
rn/41 if n ~ 38.

10.3-3
Show how quicksort can be made to run in O(n lg n) time in the worst
case.

10.3-4 *
Suppose that an algorithm uses only comparisons to find the ith smallest
element in a set of n elements. Show that it can also find the i-I smaller
elements and the n - i larger elements without performing any additional
comparisons.

10.3-5
Given a "black-box" worst-case linear-time median subroutine, give a sim
ple, linear-time algorithm that solves the selection problem for an arbitrary
order statistic.

10.3-6
The kth quantiles of an n-element set are the k - I order statistics that
divide the sorted set into k equal-sized sets (to within I). Give an O(n Igk)
time algorithm to list the kth quantiles of a set.

10.3-7
Describe an O(n)-time algorithm that, given a set S of n distinct numbers
and a positive integer k ~ n, determines the k numbers in S that are
closest to the median of S.

10.3-8
Let X[I .. n] and Y[l .. n] be two arrays, each containing n numbers al
ready in sorted order. Give an O(lg n j-time algorithm to find the median
of all 2n elements in arrays X and Y.

10.3-9
Professor Olay is consulting for an oil company, which is planning a large
pipeline running east to west through an oil field of n wells. From each
well, a spur pipeline is to be connected directly to the main pipeline along
a shortest path (either north or south), as shown in Figure 10.2. Given x
and y-coordinates of the wells, how should the professor pick the optimal
location of the main pipeline (the one that minimizes the total length of
the spurs)? Show that the optimal location can be determined in linear
time.
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Problems

Figure 10.2 We want to determine the position of the east-west oil pipeline that
minimizes the total length of the north-south spurs.

10-1 Largest l numbers in sorted order
Given a set of n numbers, we wish to find the i largest in sorted order
using a comparison-based algorithm. Find the algorithm that implements
each of the following methods with the best asymptotic worst-case running
time, and analyze the running times of the methods in terms of nand i,

a. Sort the numbers and list the i largest.

b. Build a priority queue from the numbers and call EXTRACT-MAX i
times.

c. Use an order-statistic algorithm to find the ith largest number, partition,
and sort the i largest numbers.

10-2 Weighted median
For n distinct elements Xl, X2, .•. .x; with positive weights Wl, W2, •• , .ui;

such that :L7=1 ui, 1, the weighted median is the element Xk satisfying

1L W i :::; 2
X,<Xk

and
1L W i :::; 2: '

XI>X.

a. Argue that the median of Xl, X2, .•. .x; is the weighted median of the Xi

with weights Wi = lin for i = 1,2, ... , n,
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b. Show how to compute the weighted median of n elements in O(n lgn)
worst-case time using sorting.

c. Show how to compute the weighted median in 8(n) worst-case time
using a linear-time median algorithm such as SELECT from Section 10.3.

The post-office location problem is defined as follows. We are given n
points PI,P2, .•. .p; with associated weights WI,W2, ••. ,Wn . We wish to
find a point P (not necessarily one of the input points) that minimizes the
sum 2:7=1 ui, d(P,Pi), where d(a, b) is the distance between points a and b.

d. Argue that the weighted median is a best solution for the l-dimensional
post-office location problem, in which points are simply real numbers
and the distance between points a and b is dia, b) = la bl.

e. Find the best solution for the 2-dimensional post-office location prob
lem, in which the points are (x,y) coordinate pairs and the distance
between points a (xJ,Yd and b = (X2,Y2) is the Manhattan distance:
dia, b) IXI x21 + IYI - Y21·

10-3 Small order statistics
The worst-case number T(n) of comparisons used by SELECT to select the
ith order statistic from n numbers was shown to satisfy T(n) = 8(n), but
the constant hidden by the 8-notation is rather large. When i is small
relative to n, we can implement a different procedure that uses SELECT as
a subroutine but makes fewer comparisons in the worst case.

a. Describe an algorithm that uses Ui(n) comparisons to find the ith small
est of n elements, where i :::; nl2 and

U(n) - {T(n) if n :::; 2i ,
I - nj2 + Ui(nj2) + T(2i) otherwise.

(Hint: Begin with Lnj2J disjoint pairwise comparisons, and recurse on
the set containing the smaller element from each pair.)

b. Show that Ui(n) = n + O(T(2i) 19(nji)).

c. Show that if i is a constant, then Ui(n) = n + O(lgn).

d. Show that if i nfk for k 2': 2, then Ui(n) = n + O(T(2njk) Igk).

The worst-case median-finding algorithm was invented by Blum, Floyd,
Pratt, Rivest, and Tarjan [29J. The fast average-time version is due to
Hoare [97]. Floyd and Rivest [70] have developed an improved average
time version that partitions around an element recursively selected from a
small sample of the elements.
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Introduction

Sets are as fundamental to computer science as they are to mathematics.
Whereas mathematical sets are unchanging, the sets manipulated by al
gorithms can grow, shrink, or otherwise change over time. We call such
sets dynamic. The next five chapters present some basic techniques for
representing finite dynamic sets and manipulating them on a computer.

Algorithms may require several different types of operations to be per
formed on sets. For example, many algorithms need only the ability to
insert elements into, delete elements from, and test membership in a set.
A dynamic set that supports these operations is called a dictionary. Other
algorithms require more complicated operations. For example, priority
queues, which were introduced in Chapter 7 in the context of the heap
data structure, support the operations of inserting an element into and
extracting the smallest element from a set. Not surprisingly, the best way
to implement a dynamic set depends upon the operations that must be
supported.

Elements of a dynamic set

In a typical implementation of a dynamic set, each element is represented
by an object whose fields can be examined and manipulated if we have a
pointer to the object. (Chapter 11 discusses the implementation of objects
and pointers in programming environments that do not contain them as
basic data types.) Some kinds of dynamic sets assume that one of the
object's fields is an identifying key field. If the keys are all different, we
can think of the dynamic set as being a set of key values. The object may
contain satellite data, which are carried around in other object fields but
are otherwise unused by the set implementation. It may also have fields
that are manipulated by the set operations; these fields may contain data
or pointers to other objects in the set.



/98 Part III Data Structures

Some dynamic sets presuppose that the keys are drawn from a totally
ordered set, such as the real numbers, or the set of all words under the
usual alphabetic ordering. (A totally ordered set satisfies the trichotomy
property, defined on page 31.) A total ordering allows us to define the
minimum element of the set, for example, or speak of the next element
larger than a given element in a set.

Operations on dynamic sets

Operations on a dynamic set can be grouped into two categories: queries,
which simply return information about the set, and modifying operations,
which change the set. Here is a list of typical operations. Any specific
application will usually require only a few of these to be implemented.

SEARCH(S,k) A query that, given a set S and a key value k, returns a
pointer x to an element in S such that key[x] k, or NIL if no such
element belongs to S.

INSERT(S,X) A modifying operation that augments the set S with the
element pointed to by x. We usually assume that any fields in element x
needed by the set implementation have already been initialized.

DELETE(S,X) A modifying operation that, given a pointer x to an ele-
ment in the set S, removes x from S. (Note that this operation uses a
pointer to an element x, not a key value.)

MINIMUM(S) A query on a totally ordered set S that returns the element
of S with the smallest key.

MAXIMUM(S) A query on a totally ordered set S that returns the element
of S with the largest key.

SUCCESSOR(S, x) A query that, given an element x whose key is from a
totally ordered set S, returns the next larger element in S, or NIL if x is
the maximum element.

PREDECESSOR(S, X) A query that, given an element x whose key is from
a totally ordered set S, returns the next smaller element in S, or NIL if
x is the minimum element.

The queries SUCCESSOR and PREDECESSOR are often extended to sets with
nondistinct keys. For a set on n keys, the normal presumption is that a
call to MINIMUM followed by n 1 calls to SUCCESSOR enumerates the
elements in the set in sorted order.

The time taken to execute a set operation is usually measured in terms of
the size of the set given as one of its arguments. For example, Chapter 14
describes a data structure that can support any of the operations listed
above on a set of size n in time O(1g n).
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Chapters 11-15 describe several data structures that can be used to imple
ment dynamic sets; many of these will be used later to construct efficient
algorithms for a variety of problems. Another important data structure
the heap-has already been introduced in Chapter 7.

Chapter 11 presents the essentials of working with simple data structures
such as stacks, queues, linked lists, and rooted trees. It also shows how
objects and pointers can be implemented in programming environments
that do not support them as primitives. Much of this material should be
familiar to anyone who has taken an introductory programming course.

Chapter 12 introduces hash tables, which support the dictionary oper
ations INSERT, DELETE, and SEARCH. In the worst case, hashing requires
8(n) time to perform a SEARCH operation, but the expected time for hash
table operations is O(1). The analysis of hashing relies on probability, but
most of the chapter requires no background in the subject.

Binary search trees, which are covered in Chapter 13, support all the
dynamic-set operations listed above. In the worst case, each operation
takes 8(n) time on a tree with n elements, but on a randomly built binary
search tree, the expected time for each operation is O(lgn). Binary search
trees serve as the basis for many other data structures.

Red-black trees, a variant of binary search trees, are introduced in Chap
ter 14. Unlike ordinary binary search trees, red-black trees are guaranteed
to perform well: operations take O(lg n) time in the worst case. A red
black tree is a balanced search tree; Chapter 19 presents another kind of
balanced search tree, called a B-tree. Although the mechanics of red-black
trees are somewhat intricate, you can glean most of their properties from
the chapter without studying the mechanics in detail. Nevertheless, walk
ing through the code can be quite instructive.

In Chapter 15, we show how to augment red-black trees to support op
erations other than the basic ones listed above. First, we augment them so
that we can dynamically maintain order statistics for a set of keys. Then,
we augment them in a different way to maintain intervals of real numbers.
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In this chapter, we examine the representation of dynamic sets by simple
data structures that use pointers. Although many complex data structures
can be fashioned using pointers, we present only the rudimentary ones:
stacks, queues, linked lists, and rooted trees. We also discuss a method by
which objects and pointers can be synthesized from arrays.

11.1 Stacks and queues

Stacks and queues are dynamic sets in which the element removed from the
set by the DELETE operation is prespecified. In a stack, the element deleted
from the set is the one most recently inserted: the stack implements a last
in, first-out, or LIFO, policy. Similarly, in a queue, the element deleted is
always the one that has been in the set for the longest time: the queue
implements a first-in, first-out, or FIFO, policy. There are several efficient
ways to implement stacks and queues on a computer. In this section we
show how to use a simple array to implement each.

Stacks

The INSERT operation on a stack is often called PUSH, and the DELETE
operation, which does not take an element argument, is often called POP.

These names are allusions to physical stacks, such as the spring-loaded
stacks of plates used in cafeterias. The order in which plates are popped
from the stack is the reverse of the order in which they were pushed onto
the stack, since only the top plate is accessible.

As shown in Figure 11.1, we can implement a stack of at most n el
ements with an array S[ 1.. n]. The array has an attribute top[ S] that
indexes the most recently inserted element. The stack consists of elements
S[l .. top[S]], where S[ I] is the element at the bottom of the stack and
S[top[S]] is the element at the top.

When top[S] = 0, the stack contains no elements and is empty. The stack
can be tested for emptiness by the query operation STACK-EMPTY. If an
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Figu.re 11.1 An array implementation of a stack S . Stack elements appear only
in th e lightly shaded positions. (a) Stack S has 4 elements. The top element
is 9. (b) Stack S afte r the calls PUSHeS, 11) and PUSHeS, J). (c) Stack S after the
call popeS) has returned the element J, which is the one most recently pushed.
Altho ugh element J still appears in the array, it is no longer in the stack; the top
is element 11.

empty stack is popped, we say the stack "lUkrjlowl. which is normally
an error. If top(S ] exceeds n , the stack Oonrjlowl. (In our pseudocode
implementation, we don 't worry abo ut stack overflow.)

The stack operations can each be implemented with a few lines of code.

STACK·EMPTY(S)

I if /op(SJ= 0
2 tben return TRUE
3 else return FALS E

PUSH(S, X)

I IOP(SJ - IOP(SJ+ 1
2 S[/op(SJI - .x

Pop(S)

I if STACK·EMPTV(S )
2 then error "underflow"
3 else IOp[SJ - loplSJ- I
4 return Sf/optS] + I J

Figure 11.1 shows the effects of the modifying operat ions PUSH and POP.
Each of the three stack operations takes O(1) time.

Queues

We call the INSERT operation on a queue ENQUEUE, and we call the DELETE
operation DEQUEUE; like the stack operation PoP, DEQUEUE takes no el
ement argument. The FIFO property of a queue causes it to opera te like
a line of people in the regist rar' s office. The queue has a Iu4d and a t"iI.
When an element is enqueued, it takes its place at the tail of the queue,
like a newly arriving student takes a place at the end of the line. The ele-
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Figure 11.2 A Queue implemented using an array Q( I . . 12). Queue elements
appear only in the lightly shaded positions. <a) The queue has 5 elements, in loca
tions Q[7 .. I I]. (b) The configuration of the Queue afte r the ca lls ENQUEUE(Q , 17),
ENQUEUE(Q, 3), and ENQUEUE(Q, 5). (c) Th e configuration of the Queue after the
call DEQUEuE(Q) returns the key value 15 formerly at the head of the queue. The
new head has key 6.

ment dequeued is always the one at the head of the queue, like the student
at the head of the line who has waited the longest . (Fortunately. we don' t
have to worry abo ut computational elements cutt ing into line.)

Figure 11.2 shows one way to implement a queue of at most n - I ele
ments using an array Q( I .. n]. The queue has an attribute head[Q] that
indexes, or points to, its head. Th e attribute [aU[Q] indexes the next loca
tion at which a newly arriving element will be inserted into the queue. The
elements in the queue are in locations head [Q), head[Q]+ I, ... , taU[Q] -I ,
where we "wrap around" in the sense that location I immed iately follows
location n in a circular orde r. When head(Q ] = taU(Q], the queue is
empty. Initially, we have head(Q] = tail( Q] = I. When the queue is
empty, an attempt to deq ueue an element causes the queue to underflow.
When head[QJ = taU(Q ] + I, the queue is full, and an attempt to enqueue
an element causes the qu eue to overflow.

In our procedu res ENQUEUE and DEQUEUE, the erro r checking for unde r
flow and overflow has been omitted. (Exercise 11.1-4 asks you to supply
code that checks for these two error conditions.)

ENQUEUE(Q, X)

I QUaillQlI - x
2 if lail[QJ~ /englh[QI
J Ihen ,ail[QI - I
4 else ,ail[QJ- lail lQJ+ 1
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DEQUEUE(Q)

1 x +- Q[head[Q]]
2 if head[Q] = length[Q]
3 then head[Q] +- I
4 else head[Q] +- head[Q] + 1
5 return x
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Figure 11.2 shows the effects of the ENQUEUE and DEQuEuE operations.
Each operation takes O( 1) time.

Exercises

11.1-1
Using Figure 11.1 as a model, illustrate the result of each of the operations
PUSHeS, 4), PUSHeS, I), PUSHeS, 3), PopeS), PUSHeS, 8), and PopeS) on an
initially empty stack S stored in array S[ I .. 6].

11.1-1
Explain how to implement two stacks in one array A[l .. n] in such a way
that neither stack overflows unless the total number of elements in both
stacks together is n. The PUSH and POP operations should run in O( 1)
time.

11.1-3
Using Figure 11.2 as a model, illustrate the result of each of the op
erations ENQuEuE(Q,4), ENQuEuE(Q, 1), ENQUEUE(Q,3), DEQuEuE(Q),
ENQuEuE(Q,8), and DEQuEuE(Q) on an initially empty queue Q stored
in array Q[I .. 6].

11.1-4
Rewrite ENQUEUE and DEQUEUE to detect underflow and overflow of a
queue.

11.1-5
Whereas a stack allows insertion and deletion of elements at only one
end, and a queue allows insertion at one end and deletion at the other
end, a deque (double-ended queue) allows insertion and deletion at both
ends. Write four O( 1j-time procedures to insert elements into and delete
elements from both ends of a deque constructed from an array.

11.1-6
Show how to implement a queue using two stacks. Analyze the running
time of the queue operations.
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11.1-7
Show how to implement a stack using two queues. Analyze the running
time of the stack operations.

11.2 Linked lists

A linked list is a data structure in which the objects are arranged in a linear
order. Unlike an array, though, in which the linear order is determined
by the array indices, the order in a linked list is determined by a pointer
in each object. Linked lists provide a simple, flexible representation for
dynamic sets, supporting (though not necessarily efficiently) all the opera
tions listed on page 198.

As shown in Figure 11.3, each element of a doubly linked list L is an
object with a key field and two other pointer fields: next and prey. The
object may also contain other satellite data. Given an element x in the
list, next[x] points to its successor in the linked list, and prev[x] points to
its predecessor. If prev[x] = NIL, the element x has no predecessor and
is therefore the first element, or head, of the list. If next[x] NIL, the
element x has no successor and is therefore the last element, or tail, of
the list. An attribute head[L] points to the first element of the list. If
head[L] NIL, the list is empty.

A list may have one of several forms. It may be either singly linked or
doubly linked, it may be sorted or not, and it may be circular or not. If a
list is singly linked, we omit the prey pointer in each element. If a list is
sorted, the linear order of the list corresponds to the linear order of keys
stored in elements of the list; the minimum element is the head of the list,
and the maximum element is the tail. If the list is unsorted, the elements
can appear in any order. In a circular list, the prey pointer of the head
of the list points to the tail, and the next pointer of the tail of the list
points to the head. The list may thus be viewed as a ring of elements. In
the remainder of this section, we assume that the lists with which we are
working are unsorted and doubly linked.

Searching a linked list

The procedure LIST-SEARCH(L, k) finds the first element with key k in
list L by a simple linear search, returning a pointer to this element. If no
object with key k appears in the list, then NIL is returned. For the linked
list in Figure 11.3(a), the call LIST-SEARCH(L,4) returns a pointer to the
third element, and the call LIST-SEARCH(L, 7) returns NIL.
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(b) head[L]

(c) head[L]

Figure 11.3 (a) A doubly linked list L representing the dynamic set {l, 4, 9, 16}.
Each element in the list is an object with fields for the key and pointers (shown by
arrows) to the next and previous objects. The next field of the tail and the prev field
of the head are NIL, indicated by a diagonal slash. The attribute head[L] points to
the head. (b) Following the execution of LIST-INSERT(L, x), where key[x] = 25, the
linked list has a new object with key 25 as the new head. This new object points to
the old head with key 9. (c) The result of the subsequent call LIST-DELETE(L, x),
where x points to the object with key 4.

LIST-SEARCH(L, k)

1 X - head[L]
2 while x :j:. NIL and key[x] :j:. k

3 do x - next[x]
4 return x

To search a list of n objects, the LIST-SEARCH procedure takes Sen) time
in the worst case, since it may have to search the entire list.

Inserting into a linked list

Given an element x whose key field has already been set, the LIST-INSERT

procedure "splices" x onto the front of the linked list, as shown in Fig
ure 11.3(b).

LIST-INSERT(L, x)

1 next[x] - head[L]
2 if head[L] :j:. NIL

3 then prev[head[L]] - x
4 head[L] - x
5 prev[x] - NIL

The running time for LIST-INSERT on a list of n elements is 0(1).
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Deleting from a linked list

The procedure LIST-DELETE removes an element x from a linked list L.
It must be given a pointer to x, and it then "splices" x out of the list by
updating pointers. If we wish to delete an element with a given key, we
must first call LIST-SEARCH to retrieve a pointer to the element.

LIST-DELETE(L,x)

1 if prev[x] -I NIL
2 then next[prev[x]] f-- next[x]
3 else head[L] f-- next[x]
4 if next[x] -I NIL
5 then prev[next[x]] f-- prev[x]

Figure 11.3(c) shows how an element is deleted from a linked list. LIST
DELETE runs in O( 1) time, but if we wish to delete an element with a
given key, 8(n) time is required in the worst case because we must first
call LIST-SEARCH.

Sentinels

The code for LIST-DELETE would be simpler if we could ignore the bound
ary conditions at the head and tail of the list.

LIST-DELETE'(L, x)

I next[prev[x]] f-- next[x]
2 prev[next[x]] f-- prev[x]

A sentinel is a dummy object that allows us to simplify boundary condi
tions. For example, suppose that we provide with list L an object nil[L]
that represents NIL but has all the fields of the other list elements. Wher
ever we have a reference to NIL in list code, we replace it by a reference
to the sentinel ni/[L]. As shown in Figure 11.4, this turns a regular dou
bly linked list into a circular list, with the sentinel nil[L] placed between
the head and tail; the field next[nil[L]] points to the head of the list, and
prev[nil[L]] points to the tail. Similarly, both the next field of the tail and
the prey field of the head point to ni/[L). Since next[nil[L]] points to the
head, we can eliminate the attribute head[L] altogether, replacing refer
ences to it by references to next[nil[L]]. An empty list consists of just the
sentinel, since both next[nil[L]] and prev[nil[L]] can be set to nil[L].

The code for LIST-SEARCH remains the same as before, but with the
references to NIL and head[L] changed as specified above.
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Figure 11.4 A linked list L thai uses a sentinel nU[L] (heavily shaded) is the
regular doubl y linked list turned into a circular list with nil[L ] appearing between
the head and tail. The att ribute head[L ] is no longer needed, since we can access
the head of the list by nexr[nil [L JJ . (a) An empty Jist . (b) The linked list from
Figure I I.3(a), with key 9 at the head and key 1 at the tail . (c) The list after
executing LIST-INSERT'(L, x ), where keJi x ] = 25. The new object becomes the
head of the list. (d) The list after deleting the object with key I. The new tail is
the object with key 4.

LIST·SEARCH' (L, k )

I x ..... nexI[ni/[L)J

2 while X" nitlL] and key(x ) " k
3 do x ..... next( x )
4 ret urn x

We use the two-line procedure lIsT·D ELETE' to delete an eleme nt from the
list. We use th e following procedure to insert an eleme nt into the list.

LIST· INSERT(L, x )

I next[x] ..... next[ni/ [L])
2 prev(next[ni/ [L ])] +- X

3 next lnit l L II - x
4 pm)x ] - nitlL )

Figure 11 .4 shows the effects of LIST-INSERT' and LIST· DELETE' on a sam
pIe list.

Se ntinels rarely reduce the asympto tic time boun ds of data struc ture
operations, but they can reduce constan t factors. The gain from using sen
tinels within loops is usuall y a ma tter of clarity of code ra ther tha n speed;
the linked list code, for example, is simplified by the use of sen tinels, but
we save only 0( 1) time in the LIST· INSERT and u ST·D ELETE' procedures.
In o ther si tuations, however , th e use of sentinels helps to tigh ten the code
in a loop, thus red uci ng th e coe fficient of, say, n or n2 in the ru nni ng time.

Sentinels should not be used indiscri mina tely. If there are ma ny small
lists, the extra storage used by the ir sentinels ca n represen t significant
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wasted memory. In this book, we only use sentinels when they truly sim
plify the code.

Exercises

11.2-1
Can the dynamic-set operation INSERT be implemented on a singly linked
list in O( I) time? How about DELETE?

11.2-2
Implement a stack using a singly linked list L. The operations PUSH and
POP should still take O( 1) time.

11.2-3
Implement a queue by a singly linked list L. The operations ENQUEUE and
DEQUEUE should still take O( 1) time.

11.2-4
Implement the dictionary operations INSERT, DELETE, and SEARCH using
singly linked, circular lists. What are the running times of your procedures?

11.2-5
The dynamic-set operation UNION takes two disjoint sets 8, and 82 as
input, and it returns a set 8 = 8, U82 consisting of all the elements of 8,
and 8 2• The sets 8 1 and 82 are usually destroyed by the operation. Show
how to support UNION in O( 1) time using a suitable list data structure.

11.2-6
Write a procedure that merges two singly linked, sorted lists into one singly
linked, sorted list without using sentinels. Then, write a similar procedure
using a sentinel with key 00 to mark the end of each list. Compare the
simplicity of code for the two procedures.

11.2-7
Give a 8(n)-time nonrecursive procedure that reverses a singly linked list
of n elements. The procedure should use no more than constant storage
beyond that needed for the list itself.

11.2-8 *
Explain how to implement doubly linked lists using only one pointer value
np[x] per item instead of the usual two (next and prev). Assume that
all index values can be interpreted as k-bit integers, and define np[x] to
be np[x] = next[xJ XOR prev[x], the k-bit "exclusive-or" of next[x] and
prev[x]. (The value NIL is represented by 0.) Be sure to describe what
information is needed to access the head of the list. Show how to imple
ment the SEARCH, INSERT, and DELETE operations on such a list. Also
show how to reverse such a list in O( I) time.
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How do we implement pointers and objects in languages, such as Fortran,
that do not provide them? In this section, we shall see two ways of imple
menting linked data structures without an explicit pointer data type. We
shall synthesize objects and pointers from arrays and array indices.

A multiple-array representation or objects

We can represent a collection of objects that have the same fields by using
an array for each fie ld. As an example, Figure 11.5 shows how we can
implement the linked list of Figure 11.3(a) with three arrays. Th e array
key holds the values of the keys curre ntly in the dynam ic set, and the
pointers are stored in the arrays next and prev. For a given array index x,
keY[x ], next{x ), and prev[x ] rep resent an object in the linked list. Under
th is interpretation, a pointer x is simply a common ind ex into the key.
next, and prev arrays.

In Figure 11 .3(a), the object with key 4 follows the object with key 16 in
the linked list. In Figure-II .5, key 4 appears in key[2] , and key 16 appears
in key[5 ], so we have nexl{5] = 2 and prev(2) = 5. Alth ough the constant
NIL appears in the next field o f the tail and the prev field of the head , we
usuall y use an integer (such as 0 or - I) that cannot possibly represent an
actua l index into the arrays. A variable L holds the ind ex of the head of
the list.

In our pseudocode, we have been using square brackets to denote both
the indexing of an array and the selection of a field (att ribute) of an object.
Either way, the meanings of keY(x ], next{x), and prev{x] are consistent with
implementation practice.

L 1

nest

"y
prev

123 4j678

Filare 11.5 The linked list of Figure 11.3(a) represented by the arrays key, next,
and prev. Each vertical slice of the arrays represents a single object. Stored pointers
correspond to the array indicesshown at the tOPi the arrowsshow how 10 interpret
them. lightly shaded object positions contain list elements. The variable L keeps
the index of the head .
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I 2 3 4 S 6 7 8 9 10 1\ 12 13 14 U 16 17 18 19 20 21 22 23 24

A

Figure 11.6 The linked list of Figures I I.3(a) and 11.5 represented in a single
array A. Each list element is an object that occupies a cc ruigucus subarray of
length 3 within the arra y. The three fi elds key, next, and prev correspond to the
offsets 0, 1, and 2, respectively. A pointer to an object is an index of the first
element of the object. Objects containing list elements are lightly shaded, and
arrows show the list ordering.

A single-array representation of objects

The words in a compute r memory are typically addressed by integers from
o to M - I , where M is a suitably large integer. In man y programming
languages, an object occupies a contiguo us set of loca tio ns in the computer
memory. A pointer is simply the address of the first memory locatio n of
the object, and other memory locat ions within the object can be ind exed
by adding an olfset to the poin ter.

We can use the same strategy for implementing objects in programming
environments that do not provide explicit pointer data types. For example,
Figure 11 .6 shows how a single array A can be used to store the linked list
from Figures 11.3(a) and 11.5. An object occupies a contiguous suba rray
AU .. k ]. Each field of the object corresponds to an offset in the range fro m
oto k - i . and a pointe r to the object is the index j . In Figure 11.6, the
offsets corresponding to key , next, and prev are 0, I, and 2, respectively.
To read the value of prev{i], given a pointer i , we add the value i of the
pointer to the olfset 2, thus reading A [ i + 2).

The single-array representati on is flexible in that it permi ts objects of
different length s to be stored in the same array. The problem of manag
ing such a heterogeneous collectio n of objects is more difficult than the
problem of managing a homogeneou s collection , where all objec ts have
the same fields. Since most of the da ta structures we shall consider are
composed of homogeneou s elements, it will be sufficient for our purposes
to use the mult iple-array represent ati on of objects.

Allocating and freeing objects

To insert a key in to a dynam ic set represent ed by a doubly linked list,
we must allocat e a pointer to a curren tly unused object in the linked
list representa tion . Thus , it is useful to manage the storage of objects not
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Flarure 11.7 The effect of the ALLOCAU..QBJECT and FREE-QBJECT procedures.
(a) The list of Figure 11 .5 (lightly shaded ) and a free list (heav ily shaded). Arrows
show the free-list structure. (b) The result of calling ALLOCATE..QBJECTO (which
returns index 4), setting kt'}f4] to 25, and calling LIST-INSERT(L, 4). The new free
list head is object 8, which had bee n nex tf 4] on the free list. (c) After executi ng
LIST-DELEU(L,5), we call FREE-QBJ ECT(5). Object 5 becomes the new free-list
head, with object 8 following it on the free Jist .

currently used in the linked-list representation so that one can be allocated.
In some systems, a g.TlHzge coll«toT is responsible for determining which
objects are unused. Many applicat ions, however, are simple enough that
they can bear responsib ility for returning an unused object to a storage
manager. We shall now explore the problem of allocating and freeing (or
deallocating) homogeneous objects using the example of a doubly linked
list represented by multipl e arrays.

Suppose that the arrays in the multiple-array representat ion have length
m and that at some moment the dynamic set contains n :5 m elements.
Then n objects represent elements currently in the dynamic set, and the
remain ing m - n objects are free; the free objects can be used to represent
elements inserted into the dynam ic set in the future.

We keep the free objects in a singly linked list, which we call the free
lh t. The free list uses only the next array, which stores the next pointers
within the list. The head of the free list is held in the global variable free.
When the dynamic set represen ted by linked list L is ncnempty, the free
list may be intertwined with list L , as shown in Figure 11.7. Note that
each object in the representation is either in list L or in the free list, but
not in both.

The free list is a stack: the next object allocated is the last one freed.
We can use a list implementation of the stack operations P U SH and P OP to
implement the procedures for allocat ing and freeing objects, respectively.
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ILy
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r. D PJiI , 11,1 '..
Figure 11.8 Two linked lists, L1 (lightly shad ed) and L2 (heavily shaded), and a
free list (darkened) intertwined.

We assume that the global variable free used in the following procedures
points to the first element of the free list.

ALLOCAU-OBJECT O

I if free = N IL

2 then error "out of space"
3 else x 0- free
4 fr ee -- next[x]
5 return x

FREE· O BJECT(X )

I nexr[x ]- free
2 free-« .x

The free list initially contai ns all n unallocated objects. When the free
list has been exhausted, the ALLOCATE-OBJECT procedure signals an error.
It is common to use a single free list to service several linked lists. Fig
ure 11.8 shows three link ed lists and a free list intertwined through key,
nex/, and prev arrays.

The two procedures run in 0 (1) time, which makes them Quite practical.
They can be modified to work for any homogeneous collection of objects
by lett ing anyone of the fields in the object act like a nex t field in the free
list .

Exercises

1J.J-l
Draw a picture of the seq uence (13, 4, 8, 19,5, II ) stored as a doubly linked
list using the multiple-array representation. Do the same for the single
array representation.

11.3-2
Write the procedures ALLOCATE-OBJECT and F REE..()BJECT for a homoge
neous collection of objects implemented by the single-array representation.
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11.3-3
Why don't we need to set or reset the prev fields of objects in the imple
mentation of the ALLOCATE-OBJECT and FREE-OBJECT procedures?

11.3-4
It is often desirable to keep all elements of a doubly linked list compact in
storage, using, for example, the first m index locations in the multiple-array
representation. (This is the case in a paged, virtual-memory computing
environment.) Explain how the procedures ALLOCATE-OBJECT and FREE
OBJECT can be implemented so that the representation is compact. Assume
that there are no pointers to elements of the linked list outside the list itself.
(Hint: Use the array implementation of a stack.)

11.3-5
Let L be a doubly linked list of length m stored in arrays key, prev, and
next of length n. Suppose that these arrays are managed by ALLOCATE
OBJECT and FREE-OBJECT procedures that keep a doubly linked free list F.
Suppose further that of the n items, exactly m are on list Land n - mare
on the free list. Write a procedure COMPACTIFY-LIST(L, F) that, given the
list L and the free list F, moves the items in L so that they occupy array
positions 1,2, ... , m and adjusts the free list F so that it remains correct,
occupying array positions m + 1, m + 2, ... , n. The running time of your
procedure should be 8(m), and it should use only a constant amount of
extra space. Give a careful argument for the correctness of your procedure.

11.4 Representing rooted trees

The methods for representing lists given in the previous section extend
to any homogeneous data structure. In this section, we look specifically
at the problem of representing rooted trees by linked data structures. We
first look at binary trees, and then we present a method for rooted trees in
which nodes can have an arbitrary number of children.

We represent each node of a tree by an object. As with linked lists, we
assume that each node contains a key field. The remaining fields of interest
are pointers to other nodes, and they vary according to the type of tree.

Binary trees

As shown in Figure 11.9, we use the fields p, left, and right to store pointers
to the parent, left child, and right child of each node in a binary tree T.
If p[x] NIL, then x is the root. If node x has no left child, then left[x] =

NIL, and similarly for the right child. The root of the entire tree T is
pointed to by the attribute root[T]. If root[T] = NIL, then the tree is
empty.
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Figure 11.9 The representation of a binary tree T. Each node x has the fields
p[x] (top), lefi[x] (lower left), and right[x] (lower right). The key fields are not
shown.

Rooted trees with unbounded branching

The scheme for representing a binary tree can be extended to any class
of trees in which the number of children of each node is 'at most some
constant k: we replace the left and right fields by child I, childs, ... , childs,
This scheme no longer works when the number of children of a node is
unbounded, since we do not know how many fields (arrays in the multiple
array representation) to allocate in advance. Moreover, even if the number
of children k is bounded by a large constant but most nodes have a small
number of children, we may waste a lot of memory.

Fortunately, there is a clever scheme for using binary trees to represent
trees with arbitrary numbers of children. It has the advantage of using
only O(n) space for any n-node rooted tree. The left-child, right-sibling
representation is shown in Figure 11.10. As before, each node contains
a parent pointer p, and root[T] points to the root of tree T. Instead of
having a pointer to each of its children, however, each node x has only
two pointers:

1. left-child[x] points to the leftmost child of node x, and

2. right-sibling[x] points to the sibling of x immediately to the right.

If node x has no children, then left-child[x] = NIL, and if node x is the
rightmost child of its parent, then right-sibling[x] = NIL.

Other tree representations

We sometimes represent rooted trees in other ways. In Chapter 7, for
example, we represented a heap, which is based on a complete binary
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Figure 11.10 The left-child, right-sibling representation of a tree T. Each node x
has fields p[x] (top), left-childixi (lower left), and right-sibling[x] (lower right).
Keys are not shown.

tree, by a single array plus an index. The trees that appear in Chapter 22
are only traversed toward the root, so only the parent pointers are present;
there are no pointers to children. Many other schemes are possible. Which
scheme is best depends on the application.

Exercises

11.4-1
Draw the binary tree rooted at index 6 that is represented by the following
fields.
index key left right

I 12 7 3
2 15 8 NIL
3 4 10 NIL
4 10 5 9
5 2 NIL NIL
6 18 I 4
7 7 NIL NIL
8 14 6 2
9 21 NIL NIL
10 5 NIL NIL

11.4-2
Write an O( nj-time recursive procedure that, given an n-node binary tree,
prints out the key of each node in the tree.
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11.4-3
Write an O(n)-time non recursive procedure that, given an n-node binary
tree, prints out the key of each node in the tree. Use a stack as an auxiliary
data structure.

11.4-4
Write an O( n j-time procedure that prints all the keys of an arbitrary rooted
tree with n nodes, where the tree is stored using the left-child, right-sibling
representation.

11.4-5 *
Write an O(n)-time nonrecursive procedure that, given an n-node binary
tree, prints out the key of each node. Use no more than constant extra
space outside of the tree itself and do not modify the tree, even temporar
ily, during the procedure.

11.4-6 *
The left-child, right-sibling representation of an arbitrary rooted tree uses
three pointers in each node: left-child, right-sibling, and parent. From
any node, the parent and all the children of the node can be reached and
identified. Show how to achieve the same effect using only two pointers
and one boolean value in each node.

11-1 Comparisons among lists
For each of the four types of lists in the following table, what is the asymp
totic worst-case running time for each dynamic-set operation listed?

unsorted, sorted, unsorted, sorted,
singly singly doubly doubly
linked linked linked linked

SEARCH(L, k)

INsERT(L,x)

DELETE(L, x)

SUCCESSOR(L, x)

PREDECESSOR(L, x)

MINIMUM(L)

MAXIMUM(L)
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11-2 Mergeoble heaps using linked lists
A mergeable heap supports the following operations: MAKE-HEAP (which
creates an empty mergeable heap), INSERT, MINIMUM, EXTRACT-MIN, and
UNION. Show how to implement mergeable heaps using linked lists in each
of the following cases. Try to make each operation as efficient as possible.
Analyze the running time of each operation in terms of the size of the
dynamic set(s) being operated on.

a. Lists are sorted.

b. Lists are unsorted.

c. Lists are unsorted, and dynamic sets to be merged are disjoint.

11-3 Searching a sorted compact list
Exercise 11.3-4 asked how we might maintain an n-element list compactly
in the first n positions of an array. We shall assume that all keys are distinct
and that the compact list is also sorted, that is, key[i] < key[next[i]] for
all i = 1,2, ... , n such that next[i] -=1= NIL. Under these assumptions, we
expect that the following randomized algorithm can be used to search the
list much faster than linear time.

COMPACT-LIST-SEARCH(L, k)

1 i <- head[L]
2 n <- length[L]
3 while i i= NIL and key[ i] < k
4 do j <- RANDoM(I,n)
5 if key [i] < key[j] and key[j] < k
6 then i +- j
7 i +- next[ i]
8 if key[i] = k
9 then return i

10 return NIL

If we ignore lines 4-6 of the procedure, we have the usual algorithm for
searching a sorted linked list, in which index i points to each position of
the list in turn. Lines 4-6 attempt to skip ahead to a randomly chosen
position j. Such a skip is beneficial if key[j] is larger than key[i] and
smaller than k; in such a case, j marks a position in the list that i would
have to pass by during an ordinary list search. Because the list is compact,
we know that any choice of j between 1 and n indexes some object in the
list rather than a slot on the free list.

a. Why do we assume that all keys are distinct in COMPACT-LIST-SEARCH?
Argue that random skips do not necessarily help asymptotically when
the list contains repeated key values.

We can analyze the performance of COMPACT-LIST-SEARCH by breaking its
execution into two phases. During the first phase, we discount any progress
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toward finding k that is accomplished by lines 7-9. That is, phase 1 con
sists of moving ahead in the list by random skips only. Likewise, phase 2
discounts progress accomplished by lines 4-6, and thus it operates like
ordinary linear search.

Let Xl be the random variable that describes the distance in the linked
list (that is, through the chain of next pointers) from position I to the
desired key k after t iterations of phase 1.

b. Argue that the expected running time of COMPACT-LIST-SEARCH is O(t+
E[XIJ) for all t 2:: O.

c. Show that E [Xtl ::; I:~=l (l - rln)'. (Hint: Use equation (6.28).)

d. Show that I:~~d r' ::; n'+l/(t + 1).

e. Prove that E [Xtl ::; n/(t + 1), and explain why this formula makes
intuitive sense.

f. Show that COMPACT-LIST-SEARCH runs in O( Vii) expected time.

Aho, Hopcroft, and Ullman [5] and Knuth [121] are excellent references
for elementary data structures. Gonnet [90] provides experimental data
on the performance of many data structure operations.

The origin of stacks and queues as data structures in computer science is
unclear, since corresponding notions already existed in mathematics and
paper-based business practices before the introduction of digital comput
ers. Knuth [121] cites A. M. Turing for the development of stacks for
subroutine linkage in 1947.

Pointer-based data structures also seem to be a folk invention. Accord
ing to Knuth, pointers were apparently used in early computers with drum
memories. The A-I language developed by G. M. Hopper in 1951 repre
sented algebraic formulas as binary trees. Knuth credits the IPL-II lan
guage, developed in 1956 by A. Newell, J. C. Shaw, and H. A. Simon,
for recognizing the importance and promoting the use of pointers. Their
IPL-III language, developed in 1957, included explicit stack operations.
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Many applications require a dynamic set that supports only the dictionary
operations INSERT, SEARCH, and DELETE. For example, a compiler for a
computer language maintains a symbol table, in which the keys of elements
are arbitrary character strings that correspond to identifiers in the language.
A hash table is an effective data structure for implementing dictionaries.
Although searching for an element in a hash table can take as long as
searching for an element in a linked list-6(n) time in the worst case-in
practice, hashing performs extremely well. Under reasonable assumptions,
the expected time to search for an element in a hash table is O( I).

A hash table is a generalization of the simpler notion of an ordinary
array. Directly addressing into an ordinary array makes effective use of
our ability to examine an arbitrary position in an array in O( 1) time.
Section 12.1 discusses direct addressing in more detail. Direct addressing
is applicable when we can afford to allocate an array that has one position
for every possible key.

When the number of keys actually stored is small relative to the total
number of possible keys, hash tables become an effective alternative to
directly addressing an array, since a hash table typically uses an array of
size proportional to the number of keys actually stored. Instead of using
the key as an array index directly, the array index is computed from the
key. Section 12.2 presents the main ideas, and Section 12.3 describes how
array indices can be computed from keys using hash functions. Several
variations on the basic theme are presented and analyzed; the "bottom
line" is that hashing is an extremely effective and practical technique: the
basic dictionary operations require only O( I) time on the average.

12.1 Direct-address tables

Direct addressing is a simple technique that works well when the uni
verse U of keys is reasonably small. Suppose that an application needs
a dynamic set in which each element has a key drawn from the universe
U = {O, 1,... .m - I}, where m is not too large. We shall assume that no
two elements have the same key.
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Figure 12.1 Implement ing a dynam ic set by a direct-add ress table T . Each key
in the universe U = to, I, . .. , 9} corresponds to an index in the table. The set
K = {2. 3, 5. 8} of actual keys determin es the slots in the table that contain pointers
to elements. The other slots, heavily shaded, contain NIL.

To represent the dynami c set, we use an array, or direct-address tab/~t

T [O. . m - II, in which each position, or slot. corresponds to a key in
the universe U. Figure 12.1 illustrates the approach; slot k poin ts to an
element in the set with key k. If the set contains no element with key k,
then T [k ] = N IL .

The dictionary operations are trivial to implement.

D IRECT-ADDRESS-S EARC H( T,k )

return T [k ]

D IRECT-A o DR ESS- INSERT (T,x )

T (key(x J] - x

D IRECT-A o ORESS-D ELET E(T,x )

T[key(x J] - NIL

Each of these operations is fast: only O{ I) time is requ ired ,
For some applications, the elements in the dynam ic set can be stored in

the direct-address table it self. Th at is, rath er than storing an element' s key
and satellite data in an object external to the direct-address table, with a
pointer fro m a slot in the table to the object, we ca n sto re the object in the
slot itself, thus saving space. Moreover, it is often unnecessary to store the
key field of the object, since if we have the index of an object in the table,
we have its key. If keys are not stored, however, we must have some way
to tell if the slot is empty.
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Exercises
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12.1-1
Consider a dynamic set S that is represented by a direct-address table T
of length m. Describe a procedure that finds the maximum element of S.
What is the worst-case performance of your procedure?

12.1-2
A bit vector is simply an array of bits (O'sand 1's). A bit vector of length m
takes much less space than an array of m pointers. Describe how to use a
bit vector to represent a dynamic set of distinct elements with no satellite
data. Dictionary operations should run in O( I) time.

12.1-3
Suggest how to implement a direct-address table in which the keys of stored
elements do not need to be distinct and the elements can have satellite data.
All three dictionary operations (INSERT, DELETE, and SEARCH) should run
in O( 1) time. (Don't forget that DELETE takes as an argument a pointer
to an object to be deleted, not a key.)

12.1-4 *
We wish to implement a dictionary by using direct addressing on a huge
array. At the start, the array entries may contain garbage, and initializing
the entire array is impractical because of its size. Describe a scheme for
implementing a direct-address dictionary on a huge array. Each stored
object should use O( 1) space; the operations SEARCH, INSERT, and DELETE
should take O( 1) time each; and the initialization of the data structure
should take O( 1) time. (Hint: Use an additional stack, whose size is the
number of keys actually stored in the dictionary, to help determine whether
a given entry in the huge array is valid or not.)

12.2 Hash tables

The difficulty with direct addressing is obvious: if the universe V is large,
storing a table T of size IVI may be impractical, or even impossible, given
the memory available on a typical computer. Furthermore, the set K of
keys actually stored may be so small relative to V that most of the space
allocated for T would be wasted.

When the set K of keys stored in a dictionary is much smaller than the
universe V of all possible keys, a hash table requires much less storage
than a direct-address table. Specifically, the storage requirements can be
reduced to 8(IKI), even though searching for an element in the hash table
still requires only O( 1) time. (The only catch is that this bound is for
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T

FiJllrt 12.2 Using a hash function h 10 map key1; to hash-table slots. Keys k1

and k~ map to the same slot, 50 they collide.

the average lime, whereas for direct addressing it holds for the worst-case
time.)

With direct addressing, an element with key k is stored in slot k , With
hashing, this element is sto red in slot h(k ); that is, a htuh function h is
used to compute the slot from the key k , Here h maps the universe U of
keys into the slots of a ItIUII table T IO. . m - I]:

h : U - (O.I .. ... m - l} .

We say tha t an element with key k luultu to slot h(k ); we also say that
h(k ) is the 114111 .,a1l1e of key k . Figure 12.2 illustrates the basic idea. The
point of the hash function is to reduce the range of array indices that need
to be handl ed. Instead o f lUI values, we need to bandle only m values.
Sto rage requirements are correspondingly reduced.

The Ily in the ointmen t of this beautifu l idea is that two keys may hash
to the same slot- a collision. Fortunatel y, there are effective techniques
for resolving the conflict created by collisions.

Of course, the ideal solution would be to avoid collisions altogether. We
might try to achieve this goal by choosing a suitable hash function h. One
idea is to make h appear to be "random," thu s avo iding collisions or at
least mini mizing their number. The very tenn "to hash," evoking images
of random mixing and chopping, captures the spiri t of thi s approach. (Of
course, a hash function h must be determinist ic in that a given input k
should always produce the same output h(k ).) Since lUI> m, however,
there must be two keys that have the same hash value; avoiding collisions
altogether is therefore impossible. Thus, while a well-designed , "random"
looking hash function can minimize the number of collisions, we still need
a method for resolving the collisions that do occur.

The remai nder of this section present s the simplest collision resolut ion
technique, called chaining. Section 12.4 introd uces an alternative method
for resolving collisions, called open add ressing.
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Fiaurt 12.3 Collision resolutio n by chaining. Each hash-tab le slot TUl contains
a linked list of all the keys whose hash value is j . For example, h(kd = h(Jc. ) and
h(k, ) ~ h(k, ) ~ h(k, ).

Collisi on resolution by chai ning

In d";II;lIg, we put all the elements that hash to the same slot in a linked
list, as shown in Figure 12.3. Slot j conta ins a pointer to the head of the
list of all sto red elements that hash to i . if there are no such elements,
slot j contains N IL.

Th e dictionary operations on a hash table T are easy to implement when
collisio ns are resolved by chaining.

C H A IN ED-H ASH- I N sERT ( T,x )

insert x at the head of list T[h (keY{x J)]

C H A IN ED- H ASH-SEARCH ( T,k )

search for an element with key k in list T [h(k ))

C H A INED-HASH-D ELETE( T, x )

delete x from the list T [h (key{x ])]

T he worst-case running time for insertion is O( I ). For searching, the
worst-case runn ing time is proportional to the lengt h of the list; we shall
analyze this more closely below. Deletion of an element x can be accom
plished in O( I ) time if the lists are doubly linked. (If the lists are singly
linked, we must first fi nd x in the list T [h(key(x])J, 50 that the next link
of x 's predecessor can be pro perly set to splice x out; in th is case, deletion
and searching have essentially the same runnin g time.)
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Analysis of hashing with chaining

How well does hashing with chaining perform? In particular, how long
does it take to search for an element with a given key?

Given a hash table T with m slots that stores n elements, we define the
load/actor a for T as njm, that is, the average number of elements stored
in a chain. Our analysis will be in terms of a; that is, we imagine a staying
fixed as nand m go to infinity. (Note that a can be less than, equal to, or
greater than 1.)

The worst-case behavior of hashing with chaining is terrible: all n keys
hash to the same slot, creating a list of length n. The worst-case time for
searching is thus 8(n) plus the time to compute the hash function-no
better than if we used one linked list for all the elements. Clearly, hash
tables are not used for their worst-case performance.

The average performance of hashing depends on how well the hash func
tion h distributes the set of keys to be stored among the m slots, on the
average. Section 12.3 discusses these issues, but for now we shall assume
that any given element is equally likely to hash into any of the m slots,
independently of where any other element has hashed to. We call this the
assumption of simple uniform hashing.

We assume that the hash value h(k) can be computed in 0(1) time, so
that the time required to search for an element with key k depends linearly
on the length of the list T[h(k )]. Setting aside the O( I) time required
to compute the hash function and access slot h(k), let us consider the
expected number of elements examined by the search algorithm, that is,
the number of elements in the list T[h(k)] that are checked to see if their
keys are equal to k. We shall consider two cases. In the first, the search is
unsuccessful: no element in the table has key k. In the second, the search
successfully finds an element with key k.

Theorem 12.1
In a hash table in which collisions are resolved by chaining, an unsuccessful
search takes time 8( 1+a), on the average, under the assumption of simple
uniform hashing.

Proof Under the assumption of simple uniform hashing, any key k is
equally likely to hash to any of the m slots. The average time to search
unsuccessfully for a key k is thus the average time to search to the end of
one of the m lists. The average length of such a list is the load factor a
njm. Thus, the expected number of elements examined in an unsuccessful
search is 0:, and the total time required (including the time for computing
h (k » is 8( 1 + 0:). •
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Theorem 12.2
In a hash table in which collisions are resolved by chaining, a successful
search takes time 8( 1+a), on the average, under the assumption of simple
uniform hashing.

Proof We assume that the key being searched for is equally likely to be
any of the n keys stored in the table. We also assume that the CHAINED

HASH-INSERT procedure inserts a new element at the end of the list instead
of the front. (By Exercise 12.2-3, the average successful search time is the
same whether new elements are inserted at the front of the list or at the
end.) The expected number of elements examined during a successful
search is 1 more than the number of elements examined when the sought
for element was inserted (since every new element goes at the end of the
list). To find the expected number of elements examined, we therefore
take the average, over the n items in the table, of 1 plus the expected
length of the list to which the ith element is added. The expected length
of that list is (i 1)Im, and so the expected number of elements examined
in a successful search is

1 n
1+-~(i-l)nm L..J

i=1

=

=

1 + (n~) en -; l)n)
a 1

1+"2 Lm '

Thus, the total time required for a successful search (including the time
for computing the hash function) is 8(2 + a/2 - 112m) = 8(1 + a). -

What does this analysis mean? If the number of hash-table slots is at
least proportional to the number of elements in the table, we have n =

O(m) and, consequently, a = n[m = O(m)lm = 0(1). Thus, searching
takes constant time on average. Since insertion takes O(1) worst-case time
(see Exercise 12.2-3), and deletion takes O(1) worst-case time when the

"lists are doubly linked, all dictionary operations can be supported in O( 1)
time on average.

Exercises

12.2-1
Suppose we use a random hash function h to hash n distinct keys into an
array T of length m. What is the expected number of collisions? More
precisely, what is the expected cardinality of {(x,Y) : h(x) = h(y)}?
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12.2-2
Demonstrate the insertion of the keys 5,28, 19, 15,20,33, 12, 17, 10 into a
hash table with collisions resolved by chaining. Let the table have 9 slots,
and let the hash function be h(k) = k mod 9.

12.2-3
Argue that the expected time for a successful search with chaining is the
same whether new elements are inserted at the front or at the end of a list.
(Hint: Show that the expected successful search time is the same for any
two orderings of any list.)

12.2-4
Professor Marley hypothesizes that substantial performance gains can be
obtained if we modify the chaining scheme so that each list is kept in sorted
order. How does the professor's modification affect the running time for
successful searches, unsuccessful searches, insertions, and deletions?

12.2-5
Suggest how storage for elements can be allocated and deallocated within
the hash table itself by linking all unused slots into a free list. Assume
that one slot can store a flag and either one element plus a pointer or
two pointers. All dictionary and free-list operations should run in O( 1)
expected time. Does the free list need to be doubly linked, or does a
singly linked free list suffice?

12.2-6
Show that if IVI > nm, there is a subset of U of size n consisting of keys
that all hash to the same slot, so that the worst-case searching time for
hashing with chaining is 8(n).

12.3 Hash functions

In this section, we discuss some issues regarding the design of good hash
functions and then present three schemes for their creation: hashing by
division, hashing by multiplication, and universal hashing.

What makes a good hash function?

A good hash function satisfies (approximately) the assumption of simple
uniform hashing: each key is equally likely to hash to any of the m slots.
More formally, let us assume that each key is drawn independently from U
according to a probability distribution P; that is, P(k) is the probability
that k is drawn. Then the assumption of simple uniform hashing is that
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L P(k) = ~
k:h(k)=J

for j = 0, 1, ... , rn - 1 .
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(12.1)

Unfortunately, it is generally not possible to check this condition, since P
is usually unknown.

Sometimes (rarely) we do know the distribution P. For example, sup
pose the keys are known to be random real numbers k independently and
uniformly distributed in the range 0 ::; k < 1. In this case, the hash
function

h(k) = LkrnJ

can be shown to satisfy equation (12.1).
In practice, heuristic techniques can be used to create a hash function

that is likely to perform well. Qualitative information about P is some
times useful in this design process. For example, consider a compiler's
symbol table, in which the keys are arbitrary character strings representing
identifiers in a program. It is common for closely related symbols, such as
pt and pts, to occur in the same program. A good hash function would
minimize the chance that such variants hash to the same slot.

A common approach is to derive the hash value in a way that is expected
to be independent of any patterns that might exist in the data. For exam
ple, the "division method" (discussed further below) computes the hash
value as the remainder when the key is divided by a specified prime num
ber. Unless that prime is somehow related to patterns in the probability
distribution P, this method gives good results.

Finally, we note that some applications of hash functions might require
stronger properties than are provided by simple uniform hashing. For
example, we might want keys that are "close" in some sense to yield hash
values that are far apart. (This property is especially desirable when we
are using linear probing, defined in Section 12.4.)

Interpreting keys as natural numbers

Most hash functions assume that the universe of keys is the set N =
{O, 1,2, ...} of natural numbers. Thus, if the keys are not natural numbers,
a way must be found to interpret them as natural numbers. For example,
a key that is a character string can be interpreted as an integer expressed
in suitable radix notation. Thus, the identifier pt might be interpreted as
the pair of decimal integers (112, 116), since p 112 and t 116 in the
ASCII character set; then, expressed as a radix-128 integer, pt becomes
(112 . 128) + 116 14452. It is usually straightforward in any given ap
plication to devise some such simple method for interpreting each key as
a (possibly large) natural number. In what follows, we shall assume that
the keys are natural numbers.
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12.3.1 The division method

In the division method for creating hash functions, we map a key k into
one of m slots by taking the remainder of k divided by m. That is, the
hash function is

h(k) = k mod m .

For example, if the hash table has size m = 12 and the key is k = 100,
then h(k) = 4. Since it requires only a single division operation, hashing
by division is quite fast.

When using the division method, we usually avoid certain values of m.
For example, m should not be a power of 2, since if m = 2P, then h(k)
is just the p lowest-order bits of k. Unless it is known a priori that the
probability distribution on keys makes all low-order p-bit patterns equally
likely, it is better to make the hash function depend on all the bits of the
key. Powers of 10 should be avoided if the application deals with decimal
numbers as keys, since then the hash function does not depend on all the
decimal digits of k. Finally, it can be shown that when m = 2P - I and k
is a character string interpreted in radix 2P, two strings that are identical
except for a transposition of two adjacent characters will hash to the same
value.

Good values for m are primes not too close to exact powers of 2. For
example, suppose we wish to allocate a hash table, with collisions resolved
by chaining, to hold roughly n = 2000 character strings, where a character
has 8 bits. We don't mind examining an average of 3 elements in an
unsuccessful search, so we allocate a hash table of size m = 70I. The
number 701 is chosen because it is a prime near a = 2000/3 but not near
any power of 2. Treating each key k as an integer, our hash function would
be

h(k) = k mod 701 .

As a precautionary measure, we could check how evenly this hash function
distributes sets of keys among the slots, where the keys are chosen from
"real" data.

12.3.2 The multiplication method

The mUltiplication method for creating hash functions operates in two
steps. First, we multiply the key k by a constant A in the range 0 < A < 1
and extract the fractional part of k A. Then, we multiply this value by m
and take the floor of the result. In short, the hash function is

h(k) Lm(kAmodl)J,

where "k: A mod I" means the fractional part of k A, that is, k A - LkAJ.
An advantage of the multiplication method is that the value of m is not

critical. We typically choose it to be a power of 2-m = 2P for some
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~ extract p bits

Figure 12.4 The multiplication method of hashing. The w-bit representation of
the key k is multiplied by the w-bit value lA . 2'"J, where 0 < A < I is a suitable
constant. The p highest-order bits of the lower w-bit half of the product form the
desired hash value h(k).

integer p-since we can then easily implement the function on most com
puters as follows. Suppose that the word size of the machine is w bits and
that k fits into a single word. Referring to Figure 12.4, we first multiply k
by the w-bit integer LA· 2W J. The result is a 2w-bit value rl2

w + ro, where
rl is the high-order word of the product and ro is the low-order word of
the product. The desired p-bit hash value consists of the p most significant
bits of roo

Although this method works with any value of the constant A, it works
better with some values than with others. The optimal choice depends on
the characteristics of the data being hashed. Knuth [123] discusses the
choice of A in some detail and suggests that

A::::: (15- 1)/2 = 0.6180339887 ... ( 12.2)

is likely to work reasonably well.
As an example, if we have k = 123456, m = 10000, and A as in equa

tion (12.2), then

h(k) L10000·(123456·0.61803 mod I)J

= L10000· (76300.0041151 mod I)J

L10000· 0.0041151 ...J
L41.151 ...J

== 41.

12.3.3 Universal hashing

If a malicious adversary chooses the keys to be hashed, then he can choose
n keys that all hash to the same slot, yielding an average retrieval time
of 8(n). Any fixed hash function is vulnerable to this sort of worst-case
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behavior; the only effective way to improve the situation is to choose the
hash function randomly in a way that is independent of the keys that are
actually going to be stored. This approach, called universal hashing, yields
good performance on the average, no matter what keys are chosen by the
adversary.

The main idea behind universal hashing is to select the hash function
at random at run time from a carefully designed class of functions. As in
the case of quicksort, randomization guarantees that no single input will
always evoke worst-case behavior. Because of the randomization, the al
gorithm can behave differently on each execution, even for the same input.
This approach guarantees good average-case performance, no matter what
keys are provided as input. Returning to the example of a compiler's sym
bol table, we find that the programmer's choice of identifiers cannot now
cause consistently poor hashing performance. Poor performance occurs
only if the compiler chooses a random hash function that causes the set
of identifiers to hash poorly, but the probability of this occurring is small
and is the same for any set of identifiers of the same size.

Let H be a finite collection of hash functions that map a given universe U
of keys into the range {O, 1, ... , m - I}. Such a collection is said to be
universal if for each pair of distinct keys x,y E U, the number of hash
functions h E H for which h(x) = h(y) is precisely IHllm. In other
words, with a hash function randomly chosen from H, the chance of a
collision between x and y when x ::j:. y is exactly 1[m, which is exactly the
chance of a collision if h(x) and h(y) are randomly chosen from the set
{O, 1, ... , m - I}.

The following theorem shows that a universal class of hash functions
gives good average-case behavior.

Theorem 12.3
If h is chosen from a universal collection of hash functions and is used to
hash n keys into a table of size m, where n ::; m, the expected number of
collisions involving a particular key x is less than 1.

Proof For each pair y, z of distinct keys, let cyz be a random variable
that is 1 if h(y) = h(z) (i.e., if y and z collide using h) and 0 otherwise.
Since, by definition, a single pair of keys collides with probability 1I m, we
have

E [cyzl = 11m.

Let C, be the total number of collisions involving key x in a hash table T
of size m containing n keys. Equation (6.24) gives

E[Cxl = L E[cxyl
yET
Yix

n
=

m
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Since n ::; m, we have E [ex] < 1.
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-
But how easy is it to design a universal class of hash functions? It is

quite easy, as a little number theory will help us prove. Let us choose our
table size m to be prime (as in the division method). We decompose a
key x into r+ I bytes (i.e., characters, or fixed-width binary substrings), so
that x = (xo, Xl> ... , x.); the only requirement is that the maximum value
of a byte should be less than m. Let a = (ao, al,"" ar) denote a sequence
of r + 1 elements chosen randomly from the set {a, 1, ... .m - I}. We
define a corresponding hash function ha E 1t:

r

ha(x) = La,x, mod m.
'=0

With this definition,

a

has m'r' members.

(12.3)

(12.4)

Theorem 12.4
The class 1t defined by equations (12.3) and (12.4) is a universal class of
hash functions.

Proof Consider any pair of distinct keys x,y. Assume that Xo :f:. Yo. (A
similar argument can be made for a difference in any other byte position.)
For any fixed values of a" a2, ... , a., there is exactly one value of ao that
satisfies the equation h(x) = h(y); this ao is the solution to

r

ao(xo - Yo) == - L ai(x, - y,) (mod m) .
'=1

To see this property, note that since m is prime, the nonzero quantity
Xo - Yo has a multiplicative inverse modulo m, and thus there is a unique
solution for ao modulo m. (See Section 33.4.) Therefore, each pair of
keys X and y collides for exactly m' values of a, since they collide exactly
once for each possible value of (at, a2, ... , ar) (i.e., for the unique value of
ao noted above). Since there are m r+ 1 possible values for the sequence a,
keys x and y collide with probability exactly m' / m'" t = 1/ m. Therefore,
'H is universaL _

Exercises

12.3-1
Suppose we wish to search a linked list of length n, where each element
contains a key k along with a hash value h(k). Each key is a long character
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string. How might we take advantage of the hash values when searching
the list for an element with a given key?

12.3-2
Suppose a string of r characters is hashed into m slots by treating it as a
radix-l28 number and then using the division method. The number m is
easily represented as a 32-bit computer word, but the string of r characters,
treated as a radix-128 number, takes many words. How can we apply the
division method to compute the hash value of the character string without
using more than a constant number of words of storage outside the string
itself?

12.3-3
Consider a version of the division method in which h(k) = k mod m,
where m = 2P - 1 and k is a character string interpreted in radix 2P• Show
that if string x can be derived from string y by permuting its characters,
then x and y hash to the same value. Give an example of an application
in which this property would be undesirable in a hash function.

12.3-4
Consider a hash table of size m = 1000 and the hash function h(k)
lm (k A mod I)J for A = (v'3 1)/2. Compute the locations to which the
keys 61, 62, 63, 64, and 65 are mapped.

12.3-5
Show that if we restrict each component a, of a in equation (12.3) to
be nonzero, then the set 1i = {ha } as defined in equation (12.4) is not
universal. (Hint: Consider the keys x = 0 and y = 1.)

12.4 Open addressing

In open addressing, all elements are stored in the hash table itself. That
is, each table entry contains either an element of the dynamic set or NIL.

When searching for an element, we systematically examine table slots until
the desired element is found or it is clear that the element is not in the
table. There are no lists and no elements stored outside the table, as there
are in chaining. Thus, in open addressing, the hash table can "fill up"
so that no further insertions can be made; the load factor a can never
exceed 1.

Of course, we could store the linked lists for chaining inside the hash
table, in the otherwise unused hash-table slots (see Exercise 12.2-5), but the
advantage of open addressing is that it avoids pointers altogether. Instead
of following pointers, we compute the sequence of slots to be examined.
The extra memory freed by not storing pointers provides the hash table
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with a larger number of slots for the same amount of memory, potentially
yielding fewer collisions and faster retrieval.

To perform insertion using open addressing, we successively examine,
or probe, the hash table until we find an empty slot in which to put the
key. Instead of being fixed in the order 0,1, ... , m 1 (which requires B(n)
search time), the sequence of positions probed depends upon the key being
inserted. To determine which slots to probe, we extend the hash function
to include the probe number (starting from 0) as a second input. Thus,
the hash function becomes

h: U x {O, 1, .. . .m I} -> {O, l , ... .m I}.

With open addressing, we require that for every key k, the probe sequence

(h(k, 0), h(k, 1), ... , h(k, m - 1))

be a permutation of (0, 1, ... , m - 1), so that every hash-table position is
eventually considered as a slot for a new key as the table fills up. In the
following pseudocode, we assume that the elements in the hash table T
are keys with no satellite information; the key k is identical to the element
containing key k, Each slot contains either a key or NIL (if the slot is
empty).

HASH-INSERT(T, k)

1 i +- 0
2 repeat j +- h(k, i)
3 if T[j] NIL
4 then T[j] +- k
5 return j
6 else i +- i + 1
7 until i m
8 error "hash table overflow"

The algorithm for searching for key k probes the same sequence of slots
that the insertion algorithm examined when key k was inserted. Therefore,
the search can terminate (unsuccessfully) when it finds an empty slot, since
k would have been inserted there and not later in its probe sequence. (Note
that this argument assumes that keys are not deleted from the hash table.)
The procedure HASH-SEARCH takes as input a hash table T and a key k ,
returning j if slot j is found to contain key k , or NIL if key k is not present
in table T.
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HASH-SEARCH(T, k)

1 i +- °
2 repeat j +- h(k, i)
3 if T[j] = k
4 then return j
5 i+-i+l
6 until T[j] = NIL or i = m
7 return NIL

Deletion from an open-address hash table is difficult. When we delete a
key from slot i, we cannot simply mark that slot as empty by storing NIL in
it. Doing so might make it impossible to retrieve any key k during whose
insertion we had probed slot i and found it occupied. One solution is to
mark the slot by storing in it the special value DELETED instead of NIL.
We would then modify the procedure HASH-SEARCH so that it keeps on
looking when it sees the value DELETED, while HASH-INSERT would treat
such a slot as if it were empty so that a new key can be inserted. When
we do this, though, the search times are no longer dependent on the load
factor Q:, and for this reason chaining is more commonly selected as a
collision resolution technique when keys must be deleted.

In our analysis, we make the assumption of uniform hashing: we assume
that each key considered is equally likely to have any of the m! permuta
tions of {O, 1,... , m - I} as its probe sequence. Uniform hashing general
izes the notion of simple uniform hashing defined earlier to the situation
in which the hash function produces not just a single number, but a whole
probe sequence. True uniform hashing is difficult to implement, however,
and in practice suitable approximations (such as double hashing, defined
below) are used.

Three techniques are commonly used to compute the probe sequences re
quired for open addressing: linear probing, quadratic probing, and double
hashing. These techniques all guarantee that (h(k, 1),h(k,2), ... ,h(k,m))
is a permutation of (0, 1,... , m - 1) for each key k, None of these tech
niques fulfills the assumption of uniform hashing, however, since none
of them is capable of generating more than m2 different probe sequences
(instead of the m! that uniform hashing requires). Double hashing has the
greatest number of probe sequences and, as one might expect, seems to
give the best results.

Linear probing

Given an ordinary hash function hi : U -t {O, I, ... , m l}, the method
of linear probing uses the hash function

h(k, i) = (h'(k) + i) mod m
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for i 0,1, ... , m 1. Given key k, the first slot probed is T[h'(k)J.
We next probe slot T[h'(k) + 1], and so on up to slot T[m - IJ. Then we
wrap around to slots T[O], T[I], ..., until we finally probe slot T[h'(k) 1].
Since the initial probe position determines the entire probe sequence, only
m distinct probe sequences are used with linear probing.

Linear probing is easy to implement, but it suffers from a problem known
as primary clustering. Long runs of occupied slots build up, increasing the
average search time. For example, if we have n = ml2 keys in the table,
where every even-indexed slot is occupied and every odd-indexed slot is
empty, then the average unsuccessful search takes 1.5 probes. If the first
n = ml2 locations are the ones occupied, however, the average number of
probes increases to about nl4 = m18. Clusters are likely to arise, since if
an empty slot is preceded by i full slots, then the probability that the empty
slot is the next one filled is (i + 1)/m, compared with a probability of 1[m
if the preceding slot was empty. Thus, runs of occupied slots tend to get
longer, and linear probing is not a very good approximation to uniform
hashing.

Quadratic probing

Quadratic probing uses a hash function of the form

hik, i) (h'(k) + CI i + C2i2) mod m , (12.5)

where (as in linear probing) h' is an auxiliary hash function, CI and C2 =1= 0
are auxiliary constants, and i = 0, 1, ... , m - 1. The initial position probed
is T[h' (k) J; later positions probed are offset by amounts that depend in
a quadratic manner on the probe number i. This method works much
better than linear probing, but to make full use of the hash table, the
values of CI, C2, and m are constrained. Problem 12-4 shows one way
to select these parameters. Also, if two keys have the same initial probe
position, then their probe sequences are the same, since hik», 0) = h(k2 , 0)
implies htk», i) h(k2, i). This leads to a milder form of clustering, called
secondary clustering. As in linear probing, the initial probe determines the
entire sequence, so only m distinct probe sequences are used.

Double hashing

Double hashing is one of the best methods available for open addressing
because the permutations produced have many of the characteristics of
randomly chosen permutations. Double hashing uses a hash function of
the form

htk, i) = (hi (k) + ih2(k)) mod m ,

where hi and h2 are auxiliary hash functions. The initial position probed is
T[h1(k)]; successive probe positions are offset from previous positions by
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Figure 12.5 Insertion by double hashing. Here we have a hash table of size 13
with hl(k) = k mod 13 and h2(k) 1+ (k mod II). Since 14 == I mod 13 and
14 == 3 mod 11, the key 14 will be inserted into empty slot 9, after slots 1 and 5
have been examined and found to be already occupied.

the amount h2(k), modulo m. Thus, unlike the case of linear or quadratic
probing, the probe sequence here depends in two ways upon the key k,
since the initial probe position, the offset, or both, may vary. Figure 12.5
gives an example of insertion by double hashing.

The value h2(k) must be relatively prime to the hash-table size m for the
entire hash table to be searched. Otherwise, if m and h2(k) have greatest
common divisor d > I for some key k, then a search for key k would
examine only (Ijd)th of the hash table. (See Chapter 33.) A convenient
way to ensure this condition is to let m be a power of 2 and to design hi so
that it always produces an odd number. Another way is to let m be prime
and to design h2 so that it always returns a positive integer less than m.
For example, we could choose m prime and let

k modm,

1 + (k mod m') ,

where m' is chosen to be slightly less than m (say, m 1 or m 2).
For example, if k = 123456 and m = 701, we have hI (k) = 80 and
h2(k) 257, so the first probe is to position 80, and then every 257th slot
(modulo m) is examined until the key is found or every slot is examined.

Double hashing represents an improvement over linear or quadratic
probing in that S(m2 ) probe sequences are used, rather than Scm), since
each possible (h I (k), h2 (k)) pair yields a distinct probe sequence, and as
we vary the key, the initial probe position hi (k) and the offset h2(k) may
vary independently. As a result, the performance of double hashing ap-
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pears to be very close to the performance of the "ideal" scheme of uniform
hashing.

Analysis of open-address hashing

Our analysis of open addressing, like our analysis of chaining, is expressed
in terms of the load factor 0: of the hash table, as nand m go to infinity.
Recall that if n elements are stored in a table with m slots, the average
number of elements per slot is 0: = nlm. Of course, with open addressing,
we have at most one element per slot, and thus n ~ m, which implies
0: ~ 1.

We assume that uniform hashing is used. In this idealized scheme, the
probe sequence (h(k, 0), h(k, 1), ... ,h(k, m - 1)) for each key k is equally
likely to be any permutation on (O, 1, ... , m - 1). That is, each possible
probe sequence is equally likely to be used as the probe sequence for an
insertion or a search. Of course, a given key has a unique fixed probe
sequence associated with it; what is meant here is that, considering the
probability distribution on the space of keys and the operation of the hash
function on the keys, each possible probe sequence is equally likely.

We now analyze the expected number of probes for hashing with open
addressing under the assumption of uniform hashing, beginning with an
analysis of the number of probes made in an unsuccessful search.

Theorem 12.5
Given an open-address hash table with load factor 0: nIm < 1, the
expected number of probes in an unsuccessful search is at most 1/(1 - 0:),
assuming uniform hashing.

Proof In an unsuccessful search, every probe but the last accesses an
occupied slot that does not contain the desired key, and the last slot probed
is empty. Let us define

Pi = Pr {exactly i probes access occupied slots}

for i = 0, 1,2, .... For i > n, we have Pi 0, since we can find at most n
slots already occupied. Thus, the expected number of probes is

00

1 + L i p, ,
i=O

To evaluate equation (12.6), we define

qi = Pr {at least i probes access occupied slots}

for i 0, 1,2, .... We can then use identity (6.28):

00 00

LiPi = Lqi.
i=O i=1

(12.6)
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What is the value of qi for i ~ I? The probability that the first probe
accesses an occupied slot is n / m; thus,

n
ql =-.m

With uniform hashing, a second probe, if necessary, is to one of the re
maining m 1 unprobed slots, n 1 of which are occupied. We make a
second probe only if the first probe accesses an occupied slot; thus,

In general, the ith probe is made only if the first i-I probes access occupied
slots, and the slot probed is equally likely to be any of the remaining
m - i + 1 slots, n - i + 1 of which are occupied. Thus,

qi =

<

(!!-)(~) ... (n - i.+ 1)
m m-l m-l+l

(:r
for i = 1,2, ... , n, since (n - j)/(m j) ~ n[m if n ~ m and j ~ O. After
n probes, all n occupied slots have been seen and will not be probed again,
and thus qi = 0 for i > n.

We are now ready to evaluate equation (12.6). Given the assumption
that a < 1, the average number of probes in an unsuccessful search is

00

1 +~ to,
i=O

<

=

00

1 + ~qi
i=1

1+ a + a 2 + 0:
3 + ...

1
(12.7)

Equation (12.7) has an intuitive interpretation: one probe is always made,
with probability approximately a a second probe is needed, with probabil
ity approximately a 2 a third probe is needed, and so on. _

If 0: is a constant, Theorem 12.5 predicts that an unsuccessful search
runs in O(1) time. For example, if the hash table is half full, the average
number of probes in an unsuccessful search is 1/(1 .5) = 2. If it is 90
percent full, the average number of probes is 1/(1 .9) = 10.

Theorem 12.5 gives us the performance of the HASH-INSERT procedure
almost immediately.

Corollary 12.6
Inserting an element into an open-address hash table with load factor a

requires at most 1/( 1 - 0:) probes on average, assuming uniform hashing.
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Proof An element is inserted only if there is room in the table, and
thus 00 < 1. Inserting a key requires an unsuccessful search followed by
placement of the key in the first empty slot found. Thus, the expected
number of probes is 11(1 - a). _

Computing the expected number of probes for a successful search re
quires a little more work.

Theorem 12.7
Given an open-address hash table with load factor 00 < 1, the expected
number of probes in a successful search is at most

1 I 1
In--+

a 1-00 a'

assuming uniform hashing and assuming that each key in the table is
equally likely to be searched for.

Proof A search for a key k follows the same probe sequence as was
followed when the element with key k was inserted. By Corollary 12.6, if
k was the (i + I )st key inserted into the hash table, the expected number
of probes made in a search for k is at most 1/(1 ilm) mftm i).
Averaging over all n keys in the hash table gives us the average number of
probes in a successful search:

1 n-I m
nLmi

i=O

=
m n-I 1

n L m - i
i=O

1 tn; )H m - Il ,
a

where Hi EJ= I 11j is the ith harmonic number (as defined in equa
tion (3.5». Using the bounds In i ::; Hi ::; In i + 1 from equations (3.11)
and (3.12), we obtain

1 1
-(Hm - H m - Il ) < (lnm + 1 -In(m n»
a 00

1 m 1
-In--+
a m n a
1 1 1
-In +-
a -a a

for a bound on the expected number of probes in a successful search. _

If the hash table is half full, the expected number of probes is less than
3.387. If the hash table is 90 percent full, the expected number of probes
is less than 3.670.
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Exercises

12.4-1
Consider inserting the keys 10,22,31,4, 15,28, 17,88,59 into a hash table
of length m = 11 using open addressing with the primary hash function
hi (k) = k mod m. Illustrate the result of inserting these keys using linear
probing, using quadratic probing with CI = I and cz = 3, and using double
hashing with hz(k) = I + (k mod (m - 1)).

12.4-2
Write pseudocode for HASH-DELETE as outlined in the text, and modify
HASH-INSERT and HASH-SEARCH to incorporate the special value DELETED.

12.4-3 *
Suppose that we use double hashing to resolve collisions; that is, we use
the hash function h(k, i) = (hi (k) + ih2(k)) mod m. Show that the probe
sequence (h(k, 0), h(k, 1), ... , hik, m - 1)) is a permutation of the slot se
quence (0, 1, ... , m - 1) if and only if hz(k) is relatively prime to m. (Hint:
See Chapter 33.)

12.4-4
Consider an open-address hash table with uniform hashing and a load
factor a = 1/2. What is the expected number of probes in an unsuccessful
search? What is the expected number of probes in a successful search?
Repeat these calculations for the load factors 3/4 and 7/8.

12.4-5 *
Suppose that we insert n keys into a hash table of size m using open ad
dressing and uniform hashing. Let p(n, m) be the probability that no col
lisions occur. Show that p(n, m) :::; e-n(n-I)/Zm. (Hint: See equation (2.7).)
Argue that when n exceeds Viii, the probability of avoiding collisions goes
rapidly to zero.

12.4-6 *
The bound on the harmonic series can be improved to

E
Hn = In n + r + 2n ' (12.8)

where r = 0.5772156649 ... is known as Euler's constant and f satisfies
o< t < 1. (See Knuth [121] for a derivation.) How does this improved
approximation for the harmonic series affect the statement and proof of
Theorem 12.7?

12.4-7 *
Consider an open-address hash table with a load factor Q. Find the nonzero
value a for which the expected number of probes in an unsuccessful search
equals twice the expected 'number of probes in a successful search. Use
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the estimate (11a) In( 11 (1 a)) for the number of probes required for a
successful search.

12-1 Longest-probe bound for hashing
A hash table of size m is used to store n items, with n ~ m12. Open
addressing is used for collision resolution.

a. Assuming uniform hashing, show that for i = 1,2, ... , n, the probability
that the ith insertion requires strictly more than k probes is at most 2- k .

b. Show that for i = 1,2, ... , n, the probability that the ith insertion re-
quires more than 21gn probes is at most IIn2•

Let the random variable Xi denote the number of probes required by the
ith insertion. You have shown in part (b) that Pr {Xi> 21gn} ~ 11n2 .

Let the random variable X = maxl:s;i:Sn XI denote the maximum number
of probes required by any of the n insertions.

c. Show that Pr{X > 2lgn} ~ lin.

d. Show that the expected length of the longest probe sequence is E [X] =
O(lgn).

12-2 Searching a static set
You are asked to implement a dynamic set of n elements in which the keys
are numbers. The set is static (no INSERT or DELETE operations), and the
only operation required is SEARCH. You are given an arbitrary amount of
time to preprocess the n elements so that SEARCH operations run quickly.

a. Show that SEARCH can be implemented in O(lg n) worst-case time using
no extra storage beyond what is needed to store the elements of the set
themselves.

b. Consider implementing the set by open-address hashing on m slots, and
assume uniform hashing. What is the minimum amount of extra storage
m - n required to make the average performance of an unsuccessful
SEARCH operation be at least as good as the bound in part (a)? Your
answer should be an asymptotic bound on m - n in terms of n.

12-3 Slot-size bound for chaining
Suppose that we have a hash table with n slots, with collisions resolved by
chaining, and suppose that n keys are inserted into the table. Each key is
equally likely to be hashed to each slot. Let M be the maximum number
of keys in any slot after all the keys have been inserted. Your mission is to
prove an O(lg nI 19 lg n) upper bound on E [M], the expected value of M.
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a. Argue that the probability Qk that k keys hash to a particular slot is
given by

(
1 ) k ( 1 ) n-k (n)

Qk = - 1 - k l 'n n

b. Let Pk be the probability that M = k, that is, the probability that the
slot containing the most keys contains k keys. Show that Pk ::; nQk'

c. Use Stirling's approximation, equation (2.11), to show that Qk < ek / k":

d. Show that there exists a constant c > 1 such that Qko < l/n3 for ko =
clgn/lglgn. Conclude that Pko < l/n 2 for ko = clgn/lglgn.

e. Argue that

E [M] < Pr {M > clg n } . n + Pr {M < clg n } . clg n .
- 19 19 n - 19l9n 19 lg n

Conclude that E [M] = O(lg n / 19 lg n).

11-4 Quadratic probing
Suppose that we are given a key k to search for in a hash table with posi
tions 0, I, ... , m - I, and suppose that we have a hash function h mapping
the key space into the set {O, 1, ... , m I}. The search scheme is as fol
lows.

1. Compute the value i +- h(k), and set j +- 0.

2. Probe in position i for the desired key k. If you find it, or if this position
is empty, terminate the search.

3. Set j +- (j + I) mod m and i +- (i + j) mod m, and return to step 2.

Assume that m is a power of 2.

a. Show that this scheme is an instance of the general "quadratic prob
ing" scheme by exhibiting the appropriate constants c\ and C2 for equa
tion (12.5).

b. Prove that this algorithm examines every table position in the worst
case.

11-5 k-universal hashing
Let 'H = {h} be a class of hash functions in which each h maps the uni
verse U of keys to {O, 1, ... , m I}. We say that H is k-universal if, for
every fixed sequence of k distinct keys (XI,X2,'" ,Xk) and for any h cho
sen at random from 'H, the sequence (h(xd, h(X2), ... ,h(xd) is equally
likely to be any of the mk sequences of length k with elements drawn
from {O, 1, ... .m -l}.

a. Show that if 1i is 2-universal, then it is universal.

b. Show that the class 'H defined in Section 12.3.3 is not 2-universal.
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Chapter notes

c. Show that if we modify the definition of1i in Section 12.3.3 so that each
function also contains a constant term b, that is, if we replace h(x) with

ha,b(x)=a.x+b,

then 'H is 2-universal.

Knuth [123] and Gonnet [90] are excellent references for the analysis of
hashing algorithms. Knuth credits H. P, Luhn (1953) for inventing hash
tables, along with the chaining method for resolving collisions. At about
the same time, G. M. Amdahl originated the idea of open addressing.
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Search trees are data structures that support many dynamic-set operations,
including SEARCH, MINIMUM, MAXIMUM, PREDECESSOR, SUCCESSOR, IN
SERT, and DELETE. Thus, a search tree can be used both as a dictionary
and as a priority queue.

Basic operations on a binary search tree take time proportional to the
height of the tree. For a complete binary tree with n nodes, such operations
run in 8(lg n) worst-case time. If the tree is a linear chain of n nodes,
however, the same operations take 8(n) worst-case time. We shall see
in Section 13.4 that the height of a randomly built binary search tree is
O(lgn), so that basic dynamic-set operations take 8(lg n) time.

In practice, we can't always guarantee that binary search trees are built
randomly, but there are variations of binary search trees whose worst-case
performance on basic operations can be guaranteed to be good. Chapter 14
presents one such variation, red-black trees, which have height O(lgn).
Chapter 19 introduces Bstrees, which are particularly good for maintaining
data bases on random-access, secondary (disk) storage.

After presenting the basic properties of binary search trees, the following
sections show how to walk a binary search tree to print its values in sorted
order, how to search for a value in a binary search tree, how to find the
minimum or maximum element, how to find the predecessor or successor
of an element, and how to insert into or delete from a binary search tree.
The basic mathematical properties of trees were introduced in Chapter 5.

13.1 What is a binary search tree?

A binary search tree is organized, as the name suggests, in a binary tree,
as shown in Figure 13.1. Such a tree can be represented by a linked data
structure in which each node is an object. In addition to a key field, each
node contains fields left, right, and p that point to the nodes corresponding
to its left child, its right child, and its parent, respectively. If a child or the
parent is missing, the appropriate field contains the value NIL. The root
node is the only node in the tree whose parent field is NIL.
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(a)
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(b)

Figure 13.1 Binary search trees. For any node x, the keys in the left subtree of
x are at most key[x], and the keys in the right subtree of x are at least key[x].
Different binary search trees can represent the same set of values. The worst-case
running time for most search-tree operations is proportional to the height of the
tree. (a) A binary search tree on 6 nodes with height 2. (b) A less efficient binary
search tree with height 4 that contains the same keys.

The keys in a binary search tree are always stored in such a way as to
satisfy the binary-search-tree property:

Let x be a node in a binary search tree. If y is a node in the left
subtree of x, then key[y] :::; key[x]. If y is a node in the right subtree
of x, then key[x] :::; key[y].

Thus, in Figure 13.I(a), the key of the root is 5, the keys 2,3, and 5 in its
left subtree are no larger than 5, and the keys 7 and 8 in its right subtree
are no smaller than 5. The same property holds for every node in the tree.
For example, the key 3 in Figure 13.I(a) is no smaller than the key 2 in
its left subtree and no larger than the key 5 in its right subtree.

The binary-search-tree property allows us to print out all the keys in a
binary search tree in sorted order by a simple recursive algorithm, called
an inordertree walk. This algorithm derives its name from the fact that the
key of the root of a subtree is printed between the values in its left subtree
and those in its right subtree. (Similarly, a preorder tree walk prints the
root before the values in either subtree, and a postorder tree walk prints
the root after the values in its subtrees.) To use the following procedure
to print all the elements in a binary search tree T, we call INORDER-TREE
WALK(root[T]).

INORDER-TREE-WALK(x)

1 if x :f. NIL

2 then INORDER-TREE-WALK(leji[x]}
3 print key[x]
4 INORDER-TREE-WALK(right[x]}
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As an example, the inorder tree walk prints the keys in each of the two
binary search trees from Figure l3.1 in the order 2,3,5,5, 7,8. The cor
rectness of the algorithm follows by induction directly from the binary
search-tree property. It takes 8(n) time to walk an n-node binary search
tree, since after the initial call, the procedure is called recursively exactly
twice for each node in the tree-once for its left child and once for its
right child.

Exercises

13.1-1
Draw binary search trees of height 2, 3, 4, 5, and 6 on the set of keys
{1,4,5, 10, 16, 17,21}.

13.1-2
What is the difference between the binary-search-tree property and the
heap property (7.1)? Can the heap property be used to print out the keys
of an n-node tree in sorted order in O(n) time? Explain how or why not.

13.1-3
Give a nonrecursive algorithm that performs an inorder tree walk. (Hint:
There is an easy solution that uses a stack as an auxiliary data structure and
a more complicated but elegant solution that uses no stack but assumes
that two pointers can be tested for equality.)

13.1-4
Give recursive algorithms that perform preorder and postorder tree walks
in 8(n) time on a tree of n nodes.

13.1-5
Argue that since sorting n elements takes Q( n lg n) time in the worst case in
the comparison model, any comparison-based algorithm for constructing
a binary search tree from an arbitrary list of n elements takes Q(n Ign)
time in the worst case.

13.2 Querying a binary search tree

The most common operation performed on a binary search tree is search
ing for a key stored in the tree. Besides the SEARCH operation, binary
search trees can support such queries as MINIMUM, MAXIMUM, SUCCES

SOR, and PREDECESSOR. In this section, we shall examine these operations
and show that each can be supported in time O(h) on a binary search tree
of height h.
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20

Figure 13.2 Queries on a binary search tree. To search for the key 13 in the tree,
the path 15 6 -t 7 -t 13 is followed from the root. The minimum key in the tree
is 2, which can be found by following left pointers from the root. The maximum
key 20 is found by following right pointers from the root. The successor of the
node with key 15 is the node with key 17, since it is the minimum key in the right
subtree of 15. The node with key 13 has no right subtree, and thus its successor is
its lowest ancestor whose left child is also an ancestor. In this case, the node with
key 15 is its successor.

Searching

We use the following procedure to search for a node with a given key
in a binary search tree. Given a pointer to the root of the tree and a
key k, TREE-SEARCH returns a pointer to a node with key k if one exists;
otherwise, it returns NIL.

TREE-SEARCH(X, k)

I if x = NIL or k key[x]
2 then return x
3 if k < key[x]
4 then return TREE-SEARcH(leji[x], k)
5 else return TREE-SEARcH(right[x], k)

The procedure begins its search at the root and traces a path downward
in the tree, as shown in Figure 13.2. For each node x it encounters, it
compares the key k with key[x]. If the two keys are equal, the search
terminates. If k is smaller than key[x] , the search continues in the left
subtree of x, since the binary-search-tree property implies that k could not
be stored in the right subtree. Symmetrically, if k is larger than key[k], the
search continues in the right subtree. The nodes encountered during the
recursion form a path downward from the root of the tree, and thus the
running time of TREE-SEARCH is O(h), where h is the height of the tree.

The same procedure can be written iteratively by "unrolling" the recur
sion into a while loop. On most computers, this version is more efficient.
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ITERATIVE-TREE-SEARCH(X, k)

I while x ::/- NIL and k ::/- key[x]
2 do if k < key[x]
3 then x +- left[x]
4 else x+- right[x]
5 return x

Minimum and maximum

An element in a binary search tree whose key is a minimum can always be
found by following left child pointers from the root until a NIL is encoun
tered, as shown in Figure 13.2. The following procedure returns a pointer
to the minimum element in the subtree rooted at a given node x.

TREE-MINIMUM (x)

I while left[x] ::/- NIL
2 do x+- left[x]
3 return x

The binary-search-tree property guarantees that TREE-MINIMUM is correct.
If a node x has no left subtree, then since every key in the right subtree
of x is at least as large as key[x], the minimum key in the subtree rooted
at x is key[x]. If node x has a left subtree, then since no key in the right
subtree is smaller than key[x] and every key in the left subtree is not larger
than key[x], the minimum key in the subtree rooted at x can be found in
the subtree rooted at left[x].

The pseudocode for TREE-MAXIMUM is symmetric.

TREE-MAXIMUM(X)

1 while right[x] ::/- NIL
2 do x+- right[x]
3 return x

Both of these procedures run in O(h) time on a tree of height h, since they
trace paths downward in the tree.

Successor and predecessor

Given a node in a binary search tree, it is sometimes important to be able to
find its successor in the sorted order determined by an inorder tree walk. If
all keys are distinct, the successor of a node x is the node with the smallest
key greater than key[x]. The structure of a binary search tree allows us
to determine the successor of a node without ever comparing keys. The
following procedure returns the successor of a node x in a binary search
tree if it exists, and NIL if x has the largest key in the tree.
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TREE-SUCCESSOR(X)

1 if right[x] '" NIL
2 then return TREE-MINIMuM(right[x])
3 y <- p[x]
4 while y '" NIL and x = right[y]
5 dox<-y
6 y <- p[y]
7 return y

The code for TREE-SUCCESSOR is broken into two cases. If the right
subtree of node x is nonempty, then the successor of x is just the left
most node in the right subtree, which is found in line 2 by calling TREE
MINIMuM(right[x]). For example, the successor of the node with key 15
in Figure 13.2 is the node with key 17.

On the other hand, if the right subtree of node x is empty and x has a
successor y, then y is the lowest ancestor of x whose left child is also an
ancestor of x. In Figure 13.2, the successor of the node with key 13 is the
node with key 15. To find y, we simply go up the tree from x until we
encounter a node that is the left child of its parent; this is accomplished
by lines 3-7 of TREE-SUCCESSOR.

The running time of TREE-SUCCESSOR on a tree of height his O(h), since
we either follow a path up the tree or follow a path down the tree. The
procedure TREE-PREDECESSOR, which is symmetric to TREE-SUCCESSOR,
also runs in time O(h).

In summary, we have proved the following theorem.

Theorem 13.1
The dynamic-set operations SEARCH, MINIMUM, MAXIMUM, SUCCESSOR,
and PREDECESSOR can be made to run in O(h) time on a binary search
tree of height h. •

Exercises

13.2·1
Suppose that we have numbers between 1 and 1000 in a binary search tree
and want to search for the number 363. Which of the following sequences
could not be the sequence of nodes examined?

a. 2, 252, 401, 398, 330, 344, 397, 363.

~ 924,220,911,244,898,258,362,363.

~ 925,202,911,240,912,245,363.

d. 2, 399, 387, 219, 266, 382, 381,278,363.

~ 935, 278, 347, 621, 299, 392, 358, 363.
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13.2-2
Professor Bunyan thinks he has discovered a remarkable property of binary
search trees. Suppose that the search for key k in a binary search tree ends
up in a leaf. Consider three sets: A, the keys to the left of the search path;
B, the keys on the search path; and C, the keys to the right of the search
path. Professor Bunyan claims that any three keys a E A, b E B, and C E C
must satisfy a ~ b ~ c. Give a smallest possible counterexample to the
professor's claim.

13.2-3
Use the binary-search-tree property to prove rigorously that the code for
TREE-SUCCESSOR is correct.

13.2-4
An inorder tree walk of an n-node binary search tree can be implemented
by finding the minimum element in the tree with TREE-MINIMUM and then
making n - I calls to TREE-SUCCESSOR. Prove that this algorithm runs in
6(n) time.

13.2-5
Prove that no matter what node we start at in a height-h binary search
tree, k successive calls to TREE-SUCCESSOR take O(k + h) time.

13.2-6
Let T be a binary search tree, let x be a leaf node, and let y be its parent.
Show that key[y] is either the smallest key in T larger than key[x] or the
largest key in the tree smaller than key[x].

13.3 Insertion and deletion

The operations of insertion and deletion cause the dynamic set represented
by a binary search tree to change. The data structure must be modified to
reflect this change, but in such a way that the binary-search-tree property
continues to hold. As we shall see, modifying the tree to insert a new
element is relatively straightforward, but handling deletion is somewhat
more intricate.

Insertion

To insert a new value v into a binary search tree T, we use the procedure
TREE-INSERT. The procedure is passed a node z for which key[z] = v,
le!t[ z] = NIL, and right[z] = NIL. It modifies T and some of the fields of z
in such a way that z is inserted into an appropriate position in the tree.
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TREE-INSERT(T, z)

1 y +- NIL
2 X+- root[T]
3 while x -:f; NIL
4 do y +- x
5 if key[z] < key[x]
6 then x +- left[x]
7 else x +- right[x]
8 p[z] +- Y
9 if y = NIL

10 then root[ T] +- z
11 else if key[ z] < key[y]
12 then left[y] +- z
13 else right[y] +- z

Figure 13.3 shows how TREE-INSERT works. Like the procedures TREE
SEARCH and ITERATIVE-TREE-SEARCH, TREE-INSERT begins at the root of
the tree and traces a path downward. The pointer x traces the path, and
the pointer y is maintained as the parent of x. After initialization, the
while loop in lines 3-7 causes these two pointers to move down the tree,
going left or right depending on the comparison of key[z] with key[x],
until x is set to NIL. This NIL occupies the position where we wish to place
the input item z, Lines 8-13 set the pointers that cause z to be inserted.

Like the other primitive operations on search trees, the procedure TREE
INSERT runs in O(h) time on a tree of height h.

Deletion

The procedure for deleting a given node z from a binary search tree takes
as an argument a pointer to z. The procedure considers the three cases
shown in Figure 13.4. If z has no children, we modify its parent p[z]
to replace z with NIL as its child. If the node has only a single child,
we "splice out" z by making a new link between its child and its parent.
Finally, if the node has two children, we splice out z's successor y, which
has no left child (see Exercise 13.3-4) and replace the contents of z with
the contents of y.

The code for TREE-DELETE organizes these three cases a little differently.
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•Figure 13.3 Insert ing an item with key 13 into a binary search tree. Lightly
shaded nodes ind icat e the path from Ihe root down to the posit ion where the item
is inserted . The dashed line indicates the link in th e tree th ai is added 10 insert
the item.

Figure 13.4 Deleting a node z fro m a binary search tree. In each case, the node
actua lly removed is lightly shaded. (a ) If z has no child ren, we ju st remove it.
(b) If z has only one child , we splice QUI z . (c) If z has two children, we splice out
its successo r y , which has at most one child , and then rep lace the co ntents of z
with the co ntents of y .
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TREE-DELETE(T, z)

1 if left[ z] = NIL or right[ z] = NIL
2 then y +- z
3 else y +- TREE-SUCCESSOR( z)
4 if left[y] =f. NIL
5 then x +- left[y]
6 else x +- right[y]
7 if x =f. NIL
8 then p[x] +- pry]
9 if ply] = NIL

10 then root[T] +- x
11 else if y = left[p[y]]
12 then left[p [y]] +- x
13 else rightip [y]] +- x
14 if y =f. Z

15 then key[ z] +- key[y]
16 l> If y has other fields, copy them, too.
17 return y

In lines 1-3, the algorithm determines a node y to splice out. The node y
is either the input node z (if z has at most 1 child) or the successor of z (if
z has two children). Then, in lines 4-6, x is set to the non-NIL child of y,
or to NIL if y has no children. The node y is spliced out in lines 7-13 by
modifying pointers in p[y] and x. Splicing out y is somewhat complicated
by the need for proper handling of the boundary conditions, which occur
when x NIL or when y is the root. Finally, in lines 14-16, if the successor
of z was the node spliced out, the contents of z are moved from y to z;
overwriting the previous contents. The node y is returned in line 17 so
that the calling procedure can recycle it via the free list. The procedure
runs in O(h) time on a tree of height h.

In summary, we have proved the following theorem.

Theorem 13.2
The dynamic-set operations INSERT and DELETE can be made to run in
O(h) time on a binary search tree of height h. •

Exercises

13.3-1
Give a recursive version of the TREE-INSERT procedure.

13.3-2
Suppose that a binary search tree is constructed by repeatedly inserting
distinct values into the tree. Argue that the number of nodes examined in
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searching for a value in the tree is one plus the number of nodes examined
when the value was first inserted into the tree.

13.3-3
We can sort a given set of n numbers by first building a binary search
tree containing these numbers (using TREE-INSERT repeatedly to insert the
numbers one by one) and then printing the numbers by an inorder tree
walk. What are the worst-case and best-case running times for this sorting
algorithm?

13.3-4
Show that if a node in a binary search tree has two children, then its
successor has no left child and its predecessor has no right child.

13.3-5
Suppose that another data structure contains a pointer to a node y in a
binary search tree, and suppose that y's predecessor z is deleted from the
tree by the procedure TREE-DELETE. What problem can arise? How can
TREE-DELETE be rewritten to solve this problem?

13.3-6
Is the operation of deletion "commutative" in the sense that deleting x
and then y from a binary search tree leaves the same tree as deleting y and
then x? Argue why it is or give a counterexample.

13.3-7
When node z in TREE-DELETE has two children, we could splice out its
predecessor rather than its successor. Some have argued that a fair strategy,
giving equal priority to predecessor and successor, yields better empirical
performance. How might TREE-DELETE be changed to implement such a
fair strategy?

* 13.4 Randomly built binary search trees

We have shown that all the basic operations on a binary search tree run in
O(h) time, where h is the height of the tree. The height of a binary search
tree varies, however, as items are inserted and deleted. In order to analyze
the behavior of binary search trees in practice, it is reasonable to make
statistical assumptions about the distribution of keys and the sequence of
insertions and deletions.

Unfortunately, little is known about the average height of a binary search
tree when both insertion and deletion are used to create it. When the tree
is created by insertion alone, the analysis becomes more tractable. Let us
therefore define a randomly built binary search tree on n distinct keys as
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one that arises from inserting the keys in random order into an initially
empty tree, where each of the n! permutations of the input keys is equally
likely. (Exercise 13.4-2 asks you to show that this notion is different from
assuming that every binary search tree on n keys is equally likely.) The
goal of this section is to show that the expected height of a randomly built
binary search tree on n keys is O(lgn).

We begin by investigating the structure of binary search trees that are
built by insertion alone.

Lemma 13.3
Let T be the tree that results from inserting n distinct keys k), ka. ... , kn
(in order) into an initially empty binary search tree. Then k, is an ancestor
of k, in T, for 1 ::; i < j ::; n, if and only if

k, = min {k, : 1 ::; I ::; i and k, > k j }

or

Proof :::}: Suppose that k j is an ancestor of k]. Consider the tree T, that
results after the keys k l , ka. . . . .k, have been inserted. The path in T, from
the root to k, is the same as the path in T from the root to k.. Thus,
if k, were inserted into Ti, it would become either the left or the right
child of k.. Consequently (see Exercise 13.2-6), k, is either the smallest
key among k), k2, ••• , k, that is larger than k, or the largest key among
k), k2, ••• , k, that is smaller than kj .

<¢=: Suppose that k j is the smallest key among k l , ka, ... ,k j that is larger
than kj • (The case in which k, is the largest key among k l , ka. ... ,k, that is
smaller than k j is handled symmetrically.) Comparing k j to any ofthe keys
on the path in T from the root to k j yields the same results as comparing
k, to the keys. Hence, when kj is inserted, it follows a path through k, and
is inserted as a descendant of k.. •

As a corollary of Lemma 13.3, we can precisely characterize the depth
of a key based on the input permutation.

Corollary 13.4
Let T be the tree that results from inserting n distinct keys k«, k2, ••• , k«
(in order) into an initially empty binary search tree. For a given key k j ,

where 1 ::; j ::; n, define

G, = {k j : 1 ::; i < j and k, > k; > k j for alII < i such that k, > k j }

and

L j {ki : 1 ::; i < j and k, < k, < k j for alii < i such that k[ < k j } •

Then the keys on the path from the root to k, are exactly the keys in
G, U L j , and the depth in T of any key k, is
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•
Figure 13.5 illustrates the two sets G, and L]. The set G, contains any

key k, inserted before kj such that k, is the smallest key among k1, k2, ... , k,
that is larger than k j . (The structure of L, is symmetric.) To better un
derstand the set G], let us explore a method by which we can enumerate
its elements. Among the keys k1, k2 , • • • , kj - 1, consider in order those that
are larger than kJ • These keys are shown as Gj in the figure. As each key
is considered in turn, keep a running account of the minimum. The set G]
consists of those elements that update the running minimum.

Let us simplify this scenario somewhat for the purpose of analysis. Sup
pose that n distinct numbers are inserted one at a time into a dynamic set.
If all permutations of the numbers are equally likely, how many times on
average does the minimum of the set change? To answer this question,
suppose that the ith number inserted is k i , for i = 1,2, ... , n. The proba
bility is 1/i that k, is the minimum of the first i numbers, since the rank
of k, among the first i numbers is equally likely to be any of the i possible
ranks. Consequently, the expected number of changes to the minimum of
the set is

where H; = In n + O( 1) is the nth harmonic number (see equation (3.5)
and Problem 6-2).

We therefore expect the number of changes to the minimum to be ap
proximately In n, and the following lemma shows that the probability that
it is much greater is very small.

Lemma 13.5
Let kv, k 2, ••• , k; be a random permutation of n distinct numbers, and let
lSI be the random variable that is the cardinality of the set

S = {ki : 1 :::; i :::; nand k, > ki for all I < i} . (13.1 )

Then Pr {lSI;::: (P + 1)Hn } :::; 1/n2 , where H; is the nth harmonic number
and P~ 4.32 satisfies the equation (InPI)P 2.

Proof We can view the cardinality of the set S as being determined
by n Bernoulli trials, where a success occurs in the ith trial when k, is
smaller than the elements k" k2 , ... , k.:», Success in the ith trial occurs
with probability 1/i. The trials are independent, since the probability that
ki is the minimum of k r , k-, ... ,k, is independent of the relative ordering
of k..k». ... .ki.:«.

We can use Theorem 6.6 to bound the probability that lSI;::: (P + 1)Hn.

The expectation of lSI is J.l = H; ;::: In n. Since P > 1, Theorem 6.6 yields
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Figure 13.5 Illustr ati ng the two sets GJ and LJ that compri se the keys on a pat h
from the root of a binary search tree to a key kJ "" 17. (a) The nodes with keys in Gj
are black, and the nod es wit h keys in L j are white. All o ther nodes are shaded . The
path from the root down to the node with key kJ is shaded. Keys to th e left of th e
dashed line are less than kj, an d keys to the right a re greate r. T he tree is co nstructed
by insening the keys shown in the topm ost list in (b). T he set Gj "" {2 1,25, 19, 29}
consi sts of th ose eleme nts that are inserted befo re 17 and are grea ter than 17. T he
set Gj "" {21, 19} consists of those elem en ts that update a running mi nimum of
the eleme nts in Gj . Thus, the key 2 1 is in GJ> since it is the first eleme nt. The
key 25 is not in Gj, since il is larger tha n the running minimum 2 1. The key 19 is
in Gj, since it. is smaller than the running m in imum 2 1. The key 29 is not in Gj,
since it is larger than the running min imum 19. The structures of L j a nd L j a re
symme tric.
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Pr{ISI ~ (P + I)Hn } Pr{ISI - /1 ~ PHn }

< (eHn )f3H
n

PHn
= e(l-In fJ)/3Hn

< e-(lnP-l)/3lnn

n-(ln/3-I)/3

= 11n2 ,

which follows from the definition of p. •
We now have the tools to bound the height of a randomly built binary

search tree.

Theorem 13.6
The average height of a randomly built binary search tree on n distinct
keys is O(lg n).

Proof Let k, k2, .•• .k; be a random permutation on the n keys, and let
T be the binary search tree that results from inserting the keys in order
into an initially empty tree. We first consider the probability that the
depth dik], T) of a given key kj is at least t, for an arbitrary value t. By
the characterization of d ik], T) in Corollary 13.4, if the depth of k j is at
least t, then the cardinality of one of the two sets Gj and L, must be at
least t12. Thus,

Pr {d(kj, T) ~ t} :::; Pr {IGjl ~ t12} + Pr {ILjl ~ t12}

Let us examine Pr{IGjl ~ t12} first. We have

Pr{IGjl ~ t12}

= Pr {I{ki : 1 :::; i < j and k, > ki > k, for alll < i}1 ~ t12}

< Pr{l{ki : i:::; nand k, > k, for alll < i}1 ~ t12}

= Pr {lSI ~ t12} ,

(13.2)

where S is defined as in equation (13.1). To justify this argument, note
that the probability does not decrease if we extend the range of i from
i < j to i :::; n, since more elements are added to the set. Likewise, the
probability does not decrease if we remove the condition that k i > kj,
since we are substituting a random permutation on possibly fewer than n
elements (those ki that are greater than kj ) for a random permutation on
n elements.

Using a symmetric argument, we can prove that
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Problems

Pr{IL j l 2:: t12} s Pr{lSI2:: t12} ,

and thus, by inequality (13.2), we obtain

Pr {d(k j , T) 2:: t} s 2 Pr {lSI 2:: t12} .

If we choose t = 2(P + I)Hn , where H; is the nth harmonic number and
P~ 4.32 satisfies (In P- I)P = 2, we can apply Lemma 13.5 to conclude
that

Pr{d(kj , T) 2:: 2(P + I)Hn } :::; 2Pr{ISI2:: (P + I)Hn }

:::; 21n2 •

Since there are at most n nodes in a randomly built binary search tree,
the probability that any node's depth is at least 2(P + 1)Hn is therefore, by
Boole's inequality (6.22), at most n(2In2 ) = 21n. Thus, at least 1 - 21n
of the time, the height of a randomly built binary search tree is less than
2(P + l)Hn , and at most 21n of the time, it is at most n. The expected
height is therefore at most (2(P + l)Hn)(1 - 21n) + n(2In) = O(lgn). _

Exercises

13.4-1
Describe a binary search tree on n nodes such that the average depth of a
node in the tree is S(lg n) but the height of the tree is w(lg n). How large
can the height of an n-node binary search tree be if the average depth of
a node is S(lg n)?

13.4-2
Show that the notion of a randomly chosen binary search tree on n keys,
where each binary search tree of n keys is equally likely to be chosen, is
different from the notion of a randomly built binary search tree given in
this section. (Hint: List the possibilities when n 3.)

13.4-3 *
Given a constant r 2:: I, determine t such that the probability is less than
lin' that the height of a randomly built binary search tree is at least tHn •

13.4-4 *
Consider RANDOMIZED-QUICKSORT operating on a sequence of n input
numbers. Prove that for any constant k > 0, all but O( 1Ink) of the n!
input permutations yield an O( n lg n) running time.

13-1 Binary search trees with equal keys
Equal keys pose a problem for the implementation of binary search trees.
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a. What is the asymptotic performance of TREE-INSERT when used to insert
n items with identical keys into an initially empty binary search tree?

We propose to improve TREE-INSERT by testing before line 5 whether or
not key[z] = key[x] and by testing before line II whether or not key[z] =

key[y]. If equality holds, we implement one of the following strategies. For
each strategy, find the asymptotic performance of inserting n items with
identical keys into an initially empty binary search tree. (The strategies are
described for line 5, in which we compare the keys of z and x. Substitute
y for x to arrive at the strategies for line II.)

b. Keep a boolean flag b[x] at node x, and set x to either left[x] or right[x]
based on the value of b[x], which alternates between FALSE and TRUE
each time the node is visited during TREE-INSERT.

c. Keep a list of nodes with equal keys at x, and insert z into the list.

d. Randomly set x to either left[x] or right[x]. (Give the worst-case per
formance and informally derive the average-case performance.)

13-2 Radix trees
Given two strings a = aOa\ ... ap and b = bob\ ... bq , where each ai and
each b, is in some ordered set of characters, we say that string a is lexico
graphically less than string b if either

L there exists an integer j, 0 :::; j :::; min(p, q), such that a, = b, for all
i=O,l, ... ,j-l andaj<bj , or

2. p < q and a, bi for all i O,l, ... .p.

For example, if a and b are bit strings, then 10100 < 10110 by rule I
(letting j = 3) and 10100 < 101000 by rule 2. This is similar to the
ordering used in English-language dictionaries.

The radix tree data structure shown in Figure 13.6 stores the bit strings
lOll, 10, Oil, 100, and O. When searching for a key a = aOal .. , ap , we
go left at a node of depth i if ai = 0 and right if a, = 1. Let S be a
set of distinct binary strings whose lengths sum to n. Show how to use
a radix tree to sort S lexicographically in 8(n) time. For the example in
Figure 13.6, the output of the sort should be the sequence 0, 0 II, 10, 100,
1011.

13-3 Average node depth in a randomly built binary search tree
In this problem, we prove that the average depth of a node in a randomly
built binary search tree with n nodes is O(lgn). Although this result is
weaker than that of Theorem 13.6, the technique we shall use reveals a
surprising similarity between the building of a binary search tree and the
running of RANDOMIZED-QUICKSORT from Section 8.3.

We start by recalling from Chapter 5 that the internal path length P( T)
of a binary tree T is the sum, over all nodes x in T, of the depth of node x,
which we denote by d(x, T).
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Figure 13.6 A radix tree storing the bit strings 10II, 10, 011, 100, and 0. Each
node's key can be determined by traversing the path from the root to that node.
There is no need, therefore, to store the keys in the nodes; the keys are shown here
for illustrative purposes only. Nodes are heavily shaded if the keys corresponding
to them are not in the tree; such nodes are present only to establish a path to other
nodes.

«; Argue that the average depth of a node in Tis

1 "'" dtx, T) = .!P(T) .n L..t n
xET

Thus, we wish to show that the expected value of P(T) is O(n 19n).

b. Let TL and TR denote the left and right subtrees of tree T, respectively.
Argue that if T has n nodes, then

P(T) = P(Tr) + P(TR) + n - 1 .

c. Let P(n) denote the average internal path length of a randomly built
binary search tree with n nodes. Show that

1 n-I

P(n) = n2:(P(i) + P(n - i-I) + n - 1) .
i=O

d. Show that P( n) can be rewritten as

2 n-I

P(n) = n2: P(k) + 9(n) .
k=1

e. Recalling the analysis of the randomized version of quicksort, conclude
that P(n) = O(nlgn).

At each recursive invocation of quicksort, we choose a random pivot ele
ment to partition the set of elements being sorted. Each node of a binary
search tree partitions the set of elements that fall into the subtree rooted
at that node.
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Chapter notes

Chapter 13 Binary Search Trees

f. Describe an implementation of quicksort in which the comparisons to
sort a set of elements are exactly the same as the comparisons to insert
the elements into a binary search tree. (The order in which comparisons
are made may differ, but the same comparisons must be made.)

13-4 Number ofdifferent binary trees
Let b; denote the number of different binary trees with n nodes. In this
problem, you will find a formula for b; as well as an asymptotic estimate.

a. Show that bo = 1 and that, for n 2:: 1,
n-I

bn L bkbn- 1- k .
k=O

b. Let B(x) be the generating function
00

B(x) = Lbnxn
n=O

(see Problem 4-6 for the definition of generating functions). Show that
B(x) = xB(xf + 1 and hence

B (x) = 2~ (I vi1 - 4x) .

The Taylor expansion of f(x) around the point x = a is given by
00

f (x) L "---'-:--:--"-(X a) k ,

k=O

where f'kl(X) is the kth derivative of f evaluated at x.

c. Show that

b= _1 (2n)
n n + 1 n

(the nth Catalan number) by using the Taylor expansion of vI - 4x
around x = O. (If you wish, instead of using the Taylor expansion,
you may use the generalization of the binomial expansion (6.5) to non
integral exponents n, where for any real number n and integer k, we
interpret (Z) to be n(n - 1)··· (n - k + l)jk! if k 2:: 0, and 0 otherwise.)

d. Show that
4n

b; = ../iin3/ 2 (1 + O(Ijn»

Knuth [123] contains a good discussion of simple binary search trees as
well as many variations. Binary search trees seem to have been indepen
dently discovered by a number of people in the late 1950's.
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Chapter 13 showed that a binary search tree of height h can implement
any of the basic dynamic-set operations-such as SEARCH, PREDECESSOR,
SUCCESSOR, MINIMUM, MAXIMUM, INSERT, and DELETE-in O(h) time.
Thus, the set operations are fast if the height of the search tree is small;
but if its height is large, their performance may be no better than with a
linked list. Red-black trees are one of many search-tree schemes that are
"balanced" in order to guarantee that basic dynamic-set operations take
O(lg n1time in the worst case.

14.1 Properties of red-black trees

A red-black tree is a binary search tree with one extra bit of storage per
node: its color, which can be either RED or BLACK. By constraining the
way nodes can be colored on any path from the root to a leaf, red-black
trees ensure that no such path is more than twice as long as any other, so
that the tree is approximately balanced.

Each node of the tree now contains the fields color, key, left, right, and p,
If a child or the parent of a node does not exist, the corresponding pointer
field of the node contains the value NIL. We shall regard these NIL'S as
being pointers to external nodes (leaves) of the binary search tree and the
normal, key-bearing nodes as being internal nodes of the tree.

A binary search tree is a red-black tree if it satisfies the following red
black properties:

1. Every node is either red or black.

2. Every leaf (NIL) is black.

3. If a node is red, then both its children are black.

4. Every simple path from a node to a descendant leaf contains the same
number of black nodes.

An example of a red-black tree is shown in Figure 14.1.
We call the number of black nodes on any path from, but not including, a

node x to a leaf the black-height of the node, denoted bh(x). By property 4,
the notion of black-height is well defined, since all descending paths from
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)

) 17

Figure 14.1 A red-black tree with black nodes dark ened and red nodes shaded.
Every node in a red-black tree is either red or black, every leaf (NIL) is black, the
children of a red node are both black, and every simple path from a node to a
descendant leaf contains the same number of black nodes. Each non -NIL node is
marked with its blac k-heigh t: NIL'S ha ve black-height O.

the node have the same number of black nodes. We define the black-height
of a red-black {fee to be the black-h eight of its root.

The following lemma shows why red-black trees mak e good search trees.

u mma 14.1
A red-black tree with II internal nodes has height at most 2 1g(n + I).

Proof We first show that the subtree rooted at any node x conta ins at
least 2bh(x ) - 1 intern al nodes. We prove thi s claim by induct ion on the
height of x . If the height of x is 0, then x mu st be a leaf (NIL), and the
subtree rooted at x ind eed con tains at least 2bh(.r j - I = 2° - I = 0 internal
nod es. For the inductive step, conside r a node x that has posi tive height
and is an intern al node with two children. Each child has a black-height
of either bh (x ) or bh (x ) - I, depending on whether its color is red or
black, respecti vely. Since the height of a child of x is less than the height
of x itself, we ca n apply the inductive hypoth esis to conclude that each
child has at least 2bh(.r j - 1 - I inte rnal nodes. T hus, the subtree rooted at x
contains at least (2bh(xj-I _ I)+(2bh(xj-I_ I)+ 1 = 2bh(X) _ 1 interna l nodes,
which proves the claim.

To complete the proo f of the lemma, let h be th e height of the tree.
According to property 3, at least half the nodes on any simple pa th fro m
the root to a leaf, not including the root , must be black. Conseq uently, the
black-height of the root mu st be a t least h j2; thus,

!l ~2hI2 _ 1

Moving the I to the left-ha nd sid e and taking logari thms on both sides
yields Ig(" + I) ~ h j 2, or h :$ 2Ig (" + I). •
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14.2 Rotations

An immediate consequence of this lemma is that the dynamic-set oper
ations SEARCH, MINIMUM, MAXIMUM, SUCCESSOR, and PREDECESSOR can
be implemented in O(lg n) time on red-black trees, since they can be made
to run in O(h) time on a search tree of height h (as shown in Chapter 13)
and any red-black tree on n nodes is a search tree with height O(lg n). Al
though the algorithms TREE-INSERT and TREE-DELETE from Chapter 13
run in O(lg n) time when given a red-black tree as input, they do not di
rectly support the dynamic-set operations INSERT and DELETE, since they
do not guarantee that the modified binary search tree will be a red-black
tree. We shall see in Sections 14.3 and 14.4, however, that these two
operations can indeed be supported in O(lgn) time.

Exercises

14.1-1
Draw the complete binary search tree of height 3 on the keys {1, 2, ... , 15}.
Add the NIL leaves and color the nodes in three different ways such that
the black-heights of the resulting red-black trees are 2, 3, and 4.

14.1-2
Suppose that the root of a red-black tree is red. If we make it black, does
the tree remain a red-black tree?

14.1-3
Show that the longest simple path from a node x in a red-black tree to a
descendant leaf has length at most twice that of the shortest simple path
from node x to a descendant leaf.

14.1-4
What is the largest possible number of internal nodes in a red-black tree
with black-height k? What is the smallest possible number?

14.1-5
Describe a red-black tree on n keys that realizes the largest possible ratio
of red internal nodes to black internal nodes. What is this ratio? What
tree has the smallest possible ratio, and what is the ratio?

The search-tree operations TREE-INSERT and TREE-DELETE, when run on a
red-black tree with n keys, take O(lg n) time. Because they modify the tree,
the result may violate the red-black properties enumerated in Section 14.1.
To restore these properties, we must change the colors of some of the nodes
in the tree and also change the pointer structure.
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~r
a f3

RrGHT.RoTATE(T, y)
•.••.·•···· ••··•· ••••.· ··i1l l v

·111:·· ·•• ·..· •
LEFT.RoTATE(T, x) ~

f3 r

t> Set y.
t> Turn y's left subtree into x's right subtree.

Figure 14.2 The rotation operations on a binary search tree. The operation
RIGHT·RoTATE( T, x) transforms the configuration of the two nodes on the left
into the configuration on the right by changing a constant number of pointers. The
configuration on the right can be transformed into the configuration on the left by
the inverse operation LEFT-RoTATE(T,Y). The two nodes might occur anywhere
in a binary search tree. The letters a, p, and )/ represent arbitrary subtrees. A
rotation operation preserves the inorder ordering of keys: the keys in a precede
key[x] , which precedes the keys in p, which precede key[y] , which precedes the
keys in )/.

We change the pointer structure through rotation, which is a local oper
ation in a search tree that preserves the inorder key ordering. Figure 14.2
shows the two kinds of rotations: left rotations and right rotations. When
we do a left rotation on a node x, we assume that its right child y is non
NIL. The left rotation "pivots" around the link from x to y. It makes y
the new root of the subtree, with x as y's left child and y's left child as
x's right child.

The pseudocode for LEFT-RoTATE assumes that right[x] :f:. NIL.

LEFT-RoTATE(T,x)
1 y - right[x]
2 right[x] -left[y]
3 if left[y] :f:. NIL

4 then p[left[y]] - x
5 pry] - p[x] t> Link x's parent to y.
6 if p[x] = NIL

7 then root[ T] - Y
8 else if x left[p[x]]
9 then left[p[x]] - y

10 else right[p[x]] - y
11 lefi[y] - x t> Put x on y's left.
12 p[x] - y

Figure 14.3 shows how LEFT-RoTATE operates. The code for RIGHT
ROTATE is similar. Both LEFT-ROTATE and RIGHT-ROTATE run in 0(1)
time. Only pointers are changed by a rotation; all other fields in a node
remain the same.
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Figure 14.3 An example of how the procedure LEFT-RoTAT£(T,x) modifies a
binary search tree. The NIL leavesare omitted. Inorder tree walks of the input tree
and the modified tree produce the same listing of key values.

Exercises

14.1-1
Draw the red-black tree that result s aft er TREE-I NSERT is cal led on the tree
in Figure 14.1 with key 36. If the inserted node is colored red, is the
result ing tree a red-black tree? What if it is colored black?

14.1-1
Write pseudocode for RIGHT-RoTATE.

10 -3
Argue that rotation preserves the inorder key ordering of a binary tree.

14.1-4
Let a, b, and c be arb itrary nodes in subtrees 0', P. and y, respect ively, in
the left tree of Figure 14.2. How do the depth s of a, b, and c change when
a left rotation is performed on node x in the figure?

14.1-5
Show that any arbitrary n-node tree can be transformed into any othe r
arbitrary n-node tree using O(n) rotations. (H int: First show that at most
n - I right rotations suffice to transform any tree into a right-going chain.)
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14.3 Insertion

Insertion of a node into an n-node red-black tree can be accomplished in
O(1g n) time. We use the TREE-INSERT procedure (Section 13.3) to insert
node x into the tree T as if it were an ordinary binary search tree, and then
we color x red. To guarantee that the red-black properties are preserved,
we then fix up the modified tree by recoloring nodes and performing rota
tions. Most of the code for RB-INSERT handles the various cases that can
arise as we fix up the modified tree.

RB-INSERT(T,x)

1 TREE-INSERT(T, x)
2 color[x] +- RED
3 while x f root[T] and color[p[x]] = RED
4 do if p[x] left[p[p[x]]]
5 then y +- right[p[p[x]]]
6 if color[y] RED
7 then color[p[x]] +- BLACK
8 color[y] +- BLACK
9 color[p[p[x]]] +- RED

10 x +- p[P[x]]
11 else if x right[p[x]]
12 then x +- p[x]
13 LEFT-RoTATE(T, x)
14 color[p[x]] +- BLACK
15 color[p[p[x]] +- RED
16 RIGHT-RoTATE(T,p[P[x]])
17 else (same as then clause

with "right" and "left" exchanged)
18 color[root[T]] +- BLACK

The code for RB-INSERT is less imposing than it looks. We shall break
our examination of the code into three major steps. First, we shall deter
mine what violations of the red-black properties are introduced in lines 1-2
when the node x is inserted and colored red. Second, we shall examine
the overall goal of the while loop in lines 3-17. Finally, we shall explore
each of the three cases into which the while loop is broken and see how
they accomplish the goal. Figure 14.4 shows how RB-INSERT operates on
a sample red-black tree.

Which of the red-black properties can be violated after lines 1-2? Prop
erty 1 certainly continues to hold, as does property 2, since the newly
inserted red node has NIL'S for children. Property 4, which says that the
number of blacks is the same on every path from a given node, is satisfied
as well, because node x replaces a (black) NIL, and node x is red with NIL
children. Thus, the only property that might be violated is property 3,



14.1 Insertion 169

J>

l'
r

8 r

t Case 2

~(oj

.!. Case 3

11

(dJ

(b)

(0)

Figure 14.4 The operation of RB· INSERT . (a) A node x after insert ion. Since x
and its parent p [x ] are both red, a violation of propert y 3 occurs. Since x 's uncle y
is red, case I in the code can be applied. Nodes are recolored and the pointer x is
moved up the tree, resulting in the tree sho wn in (b). Once again, x and its parent
are both red, but x's uncle y is black. Since x is the right child of p(x l. case 2 can
be applied. A left rotation is performed, and the tree that results is shown in (e).
Now x is the left child of its parent , and case 3 can be app lied. A right rotation
yields the tree in (d), which is a legal red-black tree.
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which says that a red node cannot have a red child. Specifically, prop
erty 3 is violated if x's parent is red, since x is itself colored red in line 2.
Figure 14.4(a) shows such a violation after the node x has been inserted.

The goal of the while loop in lines 3-17 is to move the one violation of
property 3 up the tree while maintaining property 4 as an invariant. At the
beginning of each iteration of the loop, x points to a red node with a red
parent-the only violation in the tree. There are two possible outcomes
of each iteration of the loop: the pointer x moves up the tree, or some
rotations are performed and the loop terminates.

There are actually six cases to consider in the while loop, but three of
them are symmetric to the other three, depending on whether x's par
ent p[x] is a left child or a right child of x's grandparent p[P[x]], which
is determined in line 4. We have given the code only for the situation in
which p[x] is a left child. We have made the important assumption that
the root of the tree is black-a property we guarantee in line 18 each time
we terminate-so that p[x) is not the root and p[P[x]] exists.

Case 1 is distinguished from cases 2 and 3 by the color of x's parent's
sibling, or "uncle." Line 5 makes y point to x's uncle right[p[p[x]]], and
a test is made in line 6. If y is red, then case 1 is executed. Otherwise,
control passes to cases 2 and 3. In all three cases, x's grandparent p[P[x]] is
black, since its parent p[x] is red, and property 3 is violated only between
x and p[x].

The situation for case 1 (lines 7-10) is shown in Figure 14.5. Case 1
is executed when both p[x] and yare red. Since p[P[x]] is black, we can
color both p[x) and y black, thereby fixing the problem of x and p[x) both
being red, and color p[P[x)] red, thereby maintaining property 4. The only
problem that might arise is that p[P[x)) might have a red parent; hence,
we must repeat the while loop with p[P[x]] as the new node x.

In cases 2 and 3, the color of x's uncle y is black. The two cases are
distinguished by whether x is a right or left child of p[x). Lines 12-13
constitute case 2, which is shown in Figure 14.6 together with case 3. In
case 2, node x is a right child of its parent. We immediately use a left
rotation to transform the situation into case 3 (lines 14-16), in which
node x is a left child. Because both x and p[x) are red, the rotation affects
neither the black-height of nodes nor property 4. Whether we enter case 3
directly or through case 2, x's uncle y is black, since otherwise we would
have executed case 1. We execute some color changes and a right rotation,
which preserve property 4, and then, since we no longer have two red nodes
in a row, we are done. The body of the while loop is not executed another
time, since p[x) is now black.

What is the running time of RB-INSERT? Since the height of a red
black tree on n nodes is O(lgn), the call to TREE-INSERT takes O(lgn)
time. The while loop only repeats if case 1 is executed, and then the
pointer x moves up the tree. The total number of times the while loop can
be executed is therefore O(lgn). Thus, RB-INSERT takes a total of O(lgn)
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Figure 14.5 Case I of the procedure RB- INSERT . Property 3 is violated, since x
and its parent pix ] are both red. The same action is taken whether (a) X is a right
child or (b) x is a left child. Each of the subtrees 0, p, y, 6, and £ has a black
root , and each has the same black-height. The code for case ) changes the colors of
some nodes, preserving property 4: all downward paths from a node to a leaf have
the same number of blacks. The while loop continues with node x 's grandparent
plPlxll as the new x . Any violation of property 3 can now occur only between the
new x , which is red, and its parent , if it is red as well.

y

Case 2
m ....n ... n .. :~ ' .

y

Case 3
....................n ....... :~ ' .

a r s

Figure 14.6 Cases 2 and 3 of the procedure RB· INSERT . As in case I, property 3 is
violated in either case 2 or case 3 because x and its parent pix) are both red. Each
of tbe subtrees Q , P, y, and 6 has a black rOOI, and each has the same black-height .
Case 2 is transformed into case 3 by a left rotation, which preserves property 4:
all downward path s from a node 10 a leaf have the same number of blacks. Case 3
causes some color changes and a right rota tion, which also preserve property 4.
The while loop then terminates, because property 3 is satisfied: there are no longer
two red nodes in a row.
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time. Interestingly, it never performs more than two rotations, since the
while loop terminates if case 2 or case 3 is executed.

Exercises

14.3-1
In line 2 of RB-INSERT, we set the color of the newly inserted node x to
red. Notice that if we had chosen to set x's color to black, then property 3
of a red-black tree would not be violated. Why didn't we choose to set x's
color to black?

14.3-2
In line 18 of RB-INSERT, we set the root's color to black. What is the
advantage of doing so?

14.3-3
Show the red-black trees that result after successively inserting the keys
41,38,31,12,19,8 into an initially empty red-black tree.

14.3-4
Suppose that the black-height of each of the subtrees a, p, ),,0, e in Fig
ures 14.5 and 14.6 is k. Label each node in each figure with its black-height
to verify that property 4 is preserved by the indicated transformation.

14.3-5
Consider a red-black tree formed by inserting n nodes with RB-INSERT.
Argue that if n > 1, the tree has at least one red node.

14.3-6
Suggest how to implement RB-INSERT efficiently if the representation for
red-black trees includes no storage for parent pointers.

Like the other basic operations on an n-node red-black tree, deletion of
a node takes time O(lgn). Deleting a node from a red-black tree is only
slightly more complicated than inserting a node.

In order to simplify boundary conditions in the code, we use a sentinel
to represent NIL (see page 206). For a red-black tree T, the sentinel nil[T]
is an object with the same fields as an ordinary node in the tree. Its color
field is BLACK, and its other fields-p, left, right, and key-can be set to
arbitrary values. In the red-black tree, all pointers to NIL are replaced by
pointers to the sentinel nil[T].
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We use sentinels so that we can treat a NIL child of a node x as an
ordinary node whose parent is x. We could add a distinct sentinel node
for each NIL in the tree, so that the parent of each NIL is well defined,
but that would waste space. Instead, we use the one sentinel nil[T] to
represent all the NIL'S. When we wish to manipulate a child of a node x,
however, we must be careful to set p[nil[T]] to x first.

The procedure RB-DELETE is a minor modification of the TREE-DELETE
procedure (Section 13.3). After splicing out a node, it calls an auxiliary
procedure RB-DELETE-FIXUP that changes colors and performs rotations
to restore the red-black properties.

RB-DELETE( T, z)

I if lefl[z] = nil[T] or right[z] = nil[T]
2 then y +- z
3 else y +- TREE-SUCCESSOR(Z)
4 if lefl[y] #- nil[T]
5 then x +- lefl[y]
6 else x +- right[y]
7 p[x] +- pry]
8 if p[y] = nil[T]
9 then root[ T] +- x

10 else if y = lefl[p[y]]
II then lefl[p[y]] +- x
12 else right[p[y]] +- x
13 ify#-z
14 then key[ z] +- key[y]
15 l> If y has other fields, copy them, too.
16 if color[y] = BLACK

17 then RB-DELETE-FIXUp(T, x)
18 return y

There are three differences between the procedures TREE-DELETE and
RB-DELETE. First, all references to NIL in TREE-DELETE have been re
placed by references to the sentinel nil[T] in RB-DELETE. Second, the
test for whether x is NIL in line 7 of TREE-DELETE has been removed,
and the assignment p[x] +- p[y] is performed unconditionally in line 7 of
RB-DELETE. Thus, if x is the sentinel nil[T], its parent pointer points to
the parent of the spliced-out node y. Third, a call to RB-DELETE-FIXUP
is made in lines 16-17 if y is black. If y is red, the red-black proper
ties still hold when y is spliced out, since no black-heights in the tree have
changed and no red nodes have been made adjacent. The node x passed to
RB-DELETE-FIXUP is the node that was y's sole child before y was spliced
out if y had a non-NIL child, or the sentinel nil[T] if y had no children.
In the latter case, the unconditional assignment in line 7 guarantees that
x's parent is now the node that was previously y's parent, whether x is a
key-bearing internal node or the sentinel nil[T].
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We can now examine how the procedure RB-DELETE-FIXUP restores the
red-black properties to the search tree.

RB-DELETE-FIXUP( T, x)

1 while x ::f. root[T] and color[x] = BLACK

2 do if x = leji[p[xJ]
3 then w +- right[p[xJ]
4 if color[w] = RED

5 then color[w] +- BLACK t> Case 1
6 color[p[xlJ +- RED l> Case 1
7 LEFT-RoTATE(T,p[xJ) t> Case 1
8 w +- right[p[x]] c- Case 1
9 if color[leji[wlJ = BLACK and color[right[wlJ = BLACK

10 then color[w] +- RED t> Case 2
11 x +- p[x] e- Case 2
12 else if color[right[wlJ = BLACK

13 then color[leji[wJ] +- BLACK

14 color[w] +- RED

15 RIGHT-RoTATE(T,w)

16 w +- right[p[xJ]
17 color[w] +- color[p[xlJ
18 color[p[x]] +- BLACK

19 color[right[wlJ +- BLACK

20 LEFT-RoTATE(T,p[xJ)
21 x+- root[T]
22 else (same as then clause

with "right" and "left" exchanged)
23 color[x] +- BLACK

If the spliced-out node y in RB-DELETE is black, its removal causes any
path that previously contained node y to have one fewer black node. Thus,
property 4 is now violated by any ancestor of y in the tree. We can correct
this problem by thinking of node x as having an "extra" black. That is,
if we add I to the count of black nodes on any path that contains x, then
under this interpretation, property 4 holds. When we splice out the black
node y, we "push" its blackness onto its child. The only problem is that
now node x may be "doubly black," thereby violating property 1.

The procedure RB-DELETE-FIXUP attempts to restore property 1. The
goal of the while loop in lines 1-22 is to move the extra black up the tree
until (I) x points to a red node, in which case we color the node black in
line 23, (2) x points to the root, in which case the extra black can be simply
"removed," or (3) suitable rotations and recolorings can be performed.

Within the while loop, x always points to a nonroot black node that
has the extra black. We determine in line 2 whether x is a left child or a
right child of its parent p[x]. (We have given the code for the situation in
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which x is a left child; the situation in which x is a right child-line 22-is
symmetric.) We maintain a pointer w to the sibling of x. Since node x is
doubly black, node w cannot be nil[T]; otherwise, the number of blacks
on the path from p[x] to the NIL leaf w would be smaller than the number
on the path from p[x] to x.

The four cases in the code are illustrated in Figure 14.7. Before examin
ing each case in detail, let's look more generally at how we can verify that
the transformation in each of the cases preserves property 4. The key idea
is that in each case the number of black nodes from (and including) the
root of the subtree shown to each of the subtrees a, B, ... " is preserved
by the transformation. For example, in Figure 14.7(a), which illustrates
case 1, the number of black nodes from the root to either subtree a or p
is 3, both before and after the transformation. (Remember, the pointer x
adds an extra black.) Similarly, the number of black nodes from the root
to any of y, f5, e, and' is 2, both before and after the transformation. In
Figure 14.7(b), the counting must involve the color c, which can be either
red or black. If we define counuasn) = 0 and coununtxcx) 1, then
the number of black nodes from the root to a is 2 + count(c), both before
and after the transformation. The other cases can be verified similarly
(Exercise 14.4-5).

Case 1 (lines 5-8 of RB-DELETE-FIxup and Figure 14.7(a» occurs when
node ui, the sibling of node x, is red. Since w must have black children,
we can switch the colors of wand p[x] and then perform a left-rotation
on p[x] without violating any of the red-black properties. The new sibling
of x, one of w's children, is now black, and thus we have converted case 1
into case 2, 3, or 4.

Cases 2, 3, and 4 occur when node w is black; they are distinguished
by the colors of w's children. In case 2 (lines 10-11 of RB-DELETE-FIXUP
and Figure 14.7(b», both of w's children are black. Since w is also black,
we take one black off both x and w, leaving x with only one black and
leaving w red, and add an extra black to p[x]. We then repeat the while
loop with p[x] as the new node x. Observe that if we enter case 2 through
case 1, the color c of the new node x is red, since the original p[x] was
red, and thus the loop terminates when it tests the loop condition.

Case 3 (lines 13-16 and Figure 14.7(c» occurs when w is black, its left
child is red, and its right child is black. We can switch the colors of w
and its left child left[w] and then perform a right rotation on w without
violating any of the red-black properties. The new sibling w of x is now
a black node with a red right child, and thus we have transformed case 3
into case 4.

Case 4 (lines 17-21 and Figure 14.7(d» occurs when node x's sibling
w is black and w's right child is red. By making some color changes and
performing a left rotation on p[x], we can remove the extra black on x
without violating any of the red-black properties. Setting x to be the root
causes the while loop to terminate when it tests the loop condition.
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Figure 14.7 Th e cases in the while loop of the procedu re RB-D ELETE. Darkened
nodes are black, heavily shaded nodes are red, and lightly shaded nodes, which may
be either red or black, are represented by c and c'. Th e letters Q . p,. . .., represent
a rbitra ry subtrees. In each case, the configura tio n on the left is transfonned into the
configuration on the right by changing some colors and/or perfonning a rotat ion .
A node poi nted to by x has an extra black. The only case that causes the loop to
repeat is case 2. (a) Case I is transformed to case 2, 3, or 4 by exchanging the
colors of nodes B and D and perfo rmi ng a left rota tion . (b) In case 2, the extra
black represe nted by the pointer x is moved up the tree by coloring node D red
and setti ng x to point to node B. If we ente r case 2 th rough case I, the while
loop terminates, since the color c is red. (c) Case 3 is transform ed to case 4 by
exchanging the colors of nodes C and D and performing a right rotat ion . (d) In
case 4, the extra black represented by x can be removed by changing some colors
and performing a left rota tion (without violating the red-black propert ies), and the
loop term inates.
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What is the running time of RB-DELETE? Since the height of a red
black tree of n nodes is O(lg n), the total cost of the procedure without the
call to RB-DELETE-FIXUP takes O(lgn) time. Within RB-DELETE-FIXUP,
cases 1, 3, and 4 each terminate after performing a constant number of
color changes and at most three rotations. Case 2 is the only case in which
the while loop can be repeated, and then the pointer x moves up the tree at
most O(lg n) times and no rotations are performed. Thus, the procedure
RB-DELETE-FIXUP takes O(lgn) time and performs at most three rotations,
and the overall time for RB-DELETE is therefore also O(lg n).

Exercises

14.4-1
Argue that the root of the red-black tree is always black after RB-DELETE
executes.

14.4-2
In Exercise 14.3-3, you found the red-black tree that results from succes
sively inserting the keys 41,38,31, 12, 19,8 into an initially empty tree.
Now show the red-black trees that result from the successive deletion of
the keys in the order 8, 12, 19,31,38,41.

14.4-3
In which lines of the code for RB-DELETE-FIXUP might we examine or
modify the sentinel nil[T]?

14.4-4
Simplify the code for LEFT-RoTATE by using a sentinel for NIL and another
sentinel to hold the pointer to the root.

14.4-5
In each of the cases of Figure 14.7, give the count of black nodes from the
root of the subtree shown to each of the subtrees a, p,... ,,, and verify
that each count remains the same after the transformation. When a node
has a color c or c', use the notation count(c) or count(c') symbolically in
your count.

14.4-6
Suppose that a node x is inserted into a red-black tree with RB-INSERT
and then immediately deleted with RB-DELETE. Is the resulting red-black
tree the same as the initial red-black tree? Justify your answer.
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Problems

Chapter 14 Red-Black Trees

14-1 Persistent dynamic sets
During the course of an algorithm, we sometimes find that we need to
maintain past versions of a dynamic set as it is updated. Such a set is called
persistent. One way to implement a persistent set is to copy the entire set
whenever it is modified, but this approach can slow down a program and
also consume much space. Sometimes, we can do much better.

Consider a persistent set 8 with the operations INSERT, DELETE, and
SEARCH, which we implement using binary search trees as shown in Fig
ure 14.8(a). We maintain a separate root for every version of the set. In
order to insert the key 5 into the set, we create a new node with key 5.
This node becomes the left child of a new node with key 7, since we cannot
modify the existing node with key 7. Similarly, the new node with key 7
becomes the left child of a new node with key 8 whose right child is the
existing node with key 10. The new node with key 8 becomes, in turn,
the right child of a new root r' with key 4 whose left child is the existing
node with key 3. We thus copy only part of the tree and share some of the
nodes with the original tree, as shown in Figure 14.8(b).

a. For a general persistent binary search tree, identify the nodes that need
to be changed to insert a key k or delete a node y.

b. Write a procedure PERSISTENT-TREE-INSERT that, given a persistent
tree T and a key k to insert, returns a new persistent tree T' that is
the result of inserting k into T. Assume that each tree node has the
fields key, left, and right but no parent field. (See also Exercise 14.3-6.)

c. If the height of the persistent binary search tree T is h, what are the
time and space requirements of your implementation of PERSISTENT
TREE-INSERT? (The space requirement is proportional to the number
of new nodes allocated.)

d. Suppose that we had included the parent field in each node. In this case,
PERSISTENT-TREE-INSERT would need to perform additional copying.
Prove that PERSISTENT-TREE-INSERT would then require Q(n) time and
space, where n is the number of nodes in the tree.

e. Show how to use red-black trees to guarantee that the worst-case running
time and space is O(lgn) per insertion or deletion.

14-2 Join operation on red-black trees
The join operation takes two dynamic sets 8 1 and 82 and an element x
such that for any XI E 8 1 and X2 E 82 , we have key[xd :s; key[x] :s; key[x2].
It returns a set 8 = 8 1 U {x} U82• In this problem, we investigate how to
implement the join operation on red-black trees.
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Figure 14.8 (a) A binary search tree with keys 2.3, 4,7, 8,10. (b) The persistent
binary search tree that results from the insertion of key 5. The most recent version
of the set consists of the nodes reachable fro m the root r' , and the previous version
consists of the nodes reachable from r, Heavily shaded nodes are added when key 5
is inserted.

a. G iven a red-black tree T , we store its black-height as the field bh[T ].
Argue that thi s field can be maintained by RB·I NsERT and RB-DELETE
without requiring extra storage in the tree and without increasing the
asymptotic run ning times. Show that while descendi ng th rough T, we
can determine the black-height of each node we visit in O( I ) tim e per
node visited.

We wish to implement the operation RB-JOIN(Tl. x , T2), which dest roys
T] and T2 and returns a red-black tree T = T1 U {x } U T2• Let n be the
total num ber of nodes in T[ and T2•

b. Assume without loss of generality that bh[Td ?: bh[T2]. Describe an
O(lgn)-time algorithm that fi nds a black node y in T[ with the largest
key from among those nodes whose black-height is bh[T2J.

c. Let T" be the subtree rooted at y. Describe how T" can be replaced
by T" U {x} UT2 in 0 (1) time without destroying the binary-search-tree
property.

d. What color should we make x so that red-black properties 1, 2, and 4
are maintai ned? Describe how property 3 can be enfo rced in O(lgn )
time.

e. Argue tha t the run ning time of RB-JOIN is O(lgn).



280

Chapter notes

Chapter 14 Red-Black Trees

The idea of balancing a search tree is due to Adel'son-Vel'skii and Lan
dis [2J, who introduced a class of balanced search trees called"AVL trees"
in 1962. Balance is maintained in AVL trees by rotations, but as many as
8(lg n) rotations may be required after an insertion to maintain balance in
an n-node tree. Another class of search trees, called "2-3 trees," was intro
duced by J. E. Hopcroft (unpublished) in 1970. Balance is maintained in a
2-3 tree by manipulating the degrees of nodes in the tree. A generalization
of 2-3 trees introduced by Bayer and McCreight [18], called Bstrees, is the
topic of Chapter 19.

Red-black trees were invented by Bayer [17J under the name "symmetric
binary Bvtrees." Guibas and Sedgewick [93] studied their properties at
length and introduced the red/black color convention.

Of the many other variations on balanced binary trees, perhaps the most
intriguing are the "splay trees" introduced by Sleator and Tarjan [l77J,
which are "self-adjusting." (A good description of splay trees is given by
Tarjan [188J.) Splay trees maintain balance without any explicit balance
condition such as color. Instead, "splay operations" (which involve rota
tions) are performed within the tree every time an access is made. The
amortized cost (see Chapter 18) of each operation on an n-node tree is
O(lgn).



15 Augmenting Data Structures

There are some engineering situations that require no more than a "text
book" data structure-such as a doubly linked list, a hash table, or a binary
search tree-but many others require a dash of creativity. Only in rare
situations will you need to create an entirely new type of data structure,
though. More often, it will suffice to augment a textbook data structure
by storing additional information in it. You can then program new opera
tions for the data structure to support the desired application. Augmenting
a data structure is not always straightforward, however, since the added
information must be updated and maintained by the ordinary operations
on the data structure.

This chapter discusses two data structures that are constructed by aug
menting red-black trees. Section 15.1 describes a data structure that sup
ports general order-statistic operations on a dynamic set. We can then
quickly find the ith smallest number in a set or the rank of a given ele
ment in the total ordering of the set. Section 15.2 abstracts the process of
augmenting a data structure and provides a theorem that can simplify the
augmentation of red-black trees. Section 15.3 uses this theorem to help
design a data structure for maintaining a dynamic set of intervals, such as
time intervals. Given a query interval, we can then quickly find an interval
in the set that overlaps it.

15.1 Dynamic order statistics

Chap' ....r 10 introduced the notion of an order statistic. Specifically, the
ith order statistic of a set of n elements, where i E {I, 2, ... , n}, is simply
the element in the set with the ith smallest key. We saw that any order
statistic could be retrieved in O(n) time from an unordered set. In this
section, we shall see how red-black trees can be modified so that any order
statistic can be determined in O(lg n) time. We shall also see how the rank
of an element-its position in the linear order of the set-can likewise be
determined in O(lgn) time.

A data structure that can support fast order-statistic operations is shown
in Figure 15.1. An order-statistic tree T is simply a red-black tree with
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I'
s

Figure 15.1 An order-statistic tree. which is an augmented red-black t ree. Shaded
nodes are red. and darke ned nodes are black. In add ition to its usual fields, each
node x has a fi eld size{x ), which is the number of nodes in the subtree rooted at x.

additional information stored in each node. Besides the usual red-black
tree fields key{x l. colorfxl, p(x), left [x ], a nd right[x] in a node x , we have
another field size[x]. This field contains the number of (internal) nodes in
the subtree rooted at x (including x itself) , that is. the size of the subtree.
If we define SiZe(NIL] to be O. then we have the ide nti ty

size[x ] = size(leji[x )) + size(righl(x]] + I .

(To handl e the boundary conditio n for NIL properly, an actual implemen
tation might test explicitly for NIL each time tbe size field is accessed or,
more simply, as in Section 14.4, use a sentinel ni/[T] to represen t NIL,
where size{ni /(Tl ) = 0.)

Retrieving an element with a given rank

Before we show how to main tain th is size information duri ng insertion and
deletion , let us examine the imp lemen tation of two orde r-statistic queries
that use thi s additio nal information. We begin with an operation that
retrieves an element with a given rank . The procedure OS~SELECT(X , i)
returns a pointer to the node containing the fth smallest key in the subtree
rooted at x. To find the fth smallest key in an order-statistic tree T , we
call OS-SELECT(rool[T], f ).

O S-SELECT(X, f )

I r - sizellejilxJJ+l
2 if i = r
3 then return x
4 else lf i < r
5 then return OS-SELECT(leji[xl , i)
6 else return OS-SELECT(rfghl[x ], i - r )

The idea behind OS-SELECT is similar to that of the selection algorithms
in Chapter 10. The value of sfze{le[t(x]] is the number of nodes tha t
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come before x in an inorder tree walk of the subtree rooted at x. Thus,
size[left[x]] + 1 is the rank of x within the subtree rooted at x.

In line 1 of OS-SELECT, we compute r, the rank of node x within the
subtree rooted at x. If i r, then node x is the ith smallest element, so
we return x in line 3. If i < r, then the ith smallest element is in x's left
subtree, so we recurse on left[x] in line 5. If i > r, then the ith smallest
element is in x's right subtree. Since there are r elements in the subtree
rooted at x that come before x's right subtree in an inorder tree walk, the
ith smallest element in the subtree rooted at x is the (i - r)th smallest
element in the subtree rooted at right[x]. This element is determined
recursively in line 6.

To see how OS-SELECT operates, consider a search for the 17th smallest
element in the order-statistic tree of Figure 15.1. We begin with x as the
root, whose key is 26, and with i = 17. Since the size of 26's left subtree
is 12, its rank is 13. Thus, we know that the node with rank 17 is the
17 - 13 4th smallest element in 26's right subtree. After the recursive
call, x is the node with key 41, and i 4. Since the size of 41's left
subtree is 5, its rank within its subtree is 6. Thus, we know that the node
with rank 4 is in the 4th smallest element in 41's left subtree. After the
recursive call, x is the node with key 30, and its rank within its subtree
is 2. Thus, we recurse once again to find the 4 - 2 = 2nd smallest element
in the subtree rooted at the node with key 38. We now find that its left
subtree has size 1, which means it is the second smallest element. Thus, a
pointer to the node with key 38 is returned by the procedure.

Because each recursive call goes down one level in the order-statistic
tree, the total time for OS-SELECT is at worst proportional to the height of
the tree. Since the tree is a red-black tree, its height is O(lg n), where n is
the number of nodes. Thus, the running time of OS-SELECT is O(lg n) for
a dynamic set of n elements.

Determining the rank of an element

Given a pointer to a node x in an order-statistic tree T, the procedure
OS-RANK returns the position of x in the linear order determined by an
inorder tree walk of T.

OS-RANK(T,x)

1 r f- size[left[x]] + 1
2 y ...... x
3 while y i- root[ T]
4 do if y right[p[yJ]
5 then r f- r + size[left[p[y]]] + 1
6 y f- p[y]
7 return r
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The procedure works as follows. The rank of x can be viewed as the
number of nodes preceding x in an inorder tree walk, plus 1 for x itself.
The following invariant is maintained: at the top of the while loop of
lines 3-6, r is the rank of key[x] in the subtree rooted at node y. We
maintain this invariant as follows. In line 1, we set r to be the rank of
key[x] within the subtree rooted at x. Setting y +- x in line 2 makes the
invariant true the first time the test in line 3 executes. In each iteration of
the while loop, we consider the subtree rooted at ply]' We have already
counted the number of nodes in the subtree rooted at node y that precede x
in an inorder walk, so we must add the nodes in the subtree rooted at
y's sibling that precede x in an inorder walk, plus 1 for pry] if it, too,
precedes x. If y is a left child, then neither pry] nor any node in p[y]'s
right subtree precedes x, so we leave r alone. Otherwise, y is a right child
and all the nodes in p[y]'s left subtree precede x, as does pry] itself. Thus,
in line 5, we add size[left[y]] + 1 to the current value of r. Setting y +- pry]
makes the invariant true for the next iteration. When y = root[T], the
procedure returns the value of r, which is now the rank of key[x].

As an example, when we run OS-RANK on the order-statistic tree of
Figure 15.1 to find the rank of the node with key 38, we get the following
sequence of values of key[y] and r at the top of the while loop:

iteration key[y] r
1 38 2
2 30 4
3 41 4
4 26 17

The rank 17 is returned.
Since each iteration of the while loop takes O( 1) time, and y goes up

one level in the tree with each iteration, the running time of OS-RANK
is at worst proportional to the height of the tree: O(lgn) on an n-node
order-statistic tree.

Maintaining subtree sizes

Given the size field in each node, OS-SELECT and OS-RANK can quickly
compute order-statistic information. But unless these fields can be effi
ciently maintained by the basic modifying operations on red-black trees,
our work will have been for naught. We shall now show that subtree sizes
can be maintained for both insertion and deletion without affecting the
asymptotic running times of either operation.

We noted in Section 14.3 that insertion into a red-black tree consists of
two phases. The first phase goes down the tree from the root, inserting the
new node as a child of an existing node. The second phase goes up the
tree, changing colors and ultimately performing rotations to maintain the
red-black properties.
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Figure 15.2 Updating subtree sizes during rotations. The two size fields that
need to be updated are the ones incident on the link around which the rotation is
performed. The updates are local, requiring only the size information stored in x,
y, and the roots of the subtrees shown as triangles.

To maintain the subtree sizes in the first phase, we simply increment
size[x] for each node x on the path traversed from the root down toward
the leaves. The new node added gets a size of 1. Since there are O(lg n)
nodes on the traversed path, the additional cost of maintaining the size
fields is O(lg n).

In the second phase, the only structural changes to the underlying red
black tree are caused by rotations, of which there are at most two. More
over, a rotation is a local operation: it invalidates only the two size fields
in the nodes incident on the link around which the rotation is performed.
Referring to the code for LEFT-RoTATE(T,x) in Section 14.2, we add the
following lines:

13 size[y] +- size[x]
14 size[x] +- size[left[x]] + size[right[x]] + I

Figure 15.2 illustrates how the fields are updated. The change to RIGHT
ROTATE is symmetric.

Since at most two rotations are performed during insertion into a red
black tree, only O( 1) additional time is spent updating size fields in the
second phase. Thus, the total time for insertion into an n-node order
statistic tree is O(lgn)-asymptotically the same as for an ordinary red
black tree.

Deletion from a red-black tree also consists of two phases: the first
operates on the underlying search tree, and the second causes at most three
rotations and otherwise performs no structural changes. (See Section 14.4.)
The first phase splices out one node y. To update the subtree sizes, we
simply traverse a path from node y up to the root, decrementing the size
field of each node on the path. Since this path has length O(lg n) in an
n-node red-black tree, the additional time spent maintaining size fields
in the first phase is O(lgn). The O( 1) rotations in the second phase of
deletion can be handled in the same manner as for insertion. Thus, both
insertion and deletion, including the maintenance of the size fields, take
O(lg n) time for an n-node order-statistic tree.
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Exercises

15.1-1
Show how OS-SELECT(T,lO) operates on the red-black tree T of Fig
ure 15.2.

15.1-2
Show how OS-RANK(T, x) operates on the red-black tree T of Figure 15.2
and the node x with key[x] = 35.

15.1-3
Write a nonrecursive version of OS-SELECT.

15.1-4
Write a recursive procedure OS-KEY-RANK(T, k) that takes as input an
order-statistic tree T and a key k and returns the rank of k in the dynamic
set represented by T. Assume that the keys of T are distinct.

15.1-5
Given an element x in an n-node order-statistic tree and a natural num
ber i, how can the rth successor of x in the linear order of the tree be
determined in O(lgn) time?

15.1-6
Observe that whenever the size field is referenced in either OS-SELECT or
OS-RANK, it is only used to compute the rank of x in the subtree rooted
at x. Accordingly, suppose we store in each node its rank in the subtree of
which it is the root. Show how this information can be maintained during
insertion and deletion. (Remember that these two operations can cause
rotations. )

15.1-7
Show how to use an order-statistic tree to to count the number of inversions
(see Problem 1-3) in an array of size n in time O(n 19n).

15.1-8 *
Consider n chords on a circle, each defined by its endpoints. Describe an
O(n Ignj-time algorithm for determining the number of pairs of chords
that intersect inside the circle. (For example, if the n chords are all diam
eters that meet at the center, then the correct answer is G).) Assume that
no two chords share an endpoint.
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The process of augmenting a basic data structure to support additional
functionality occurs quite frequently in algorithm design. It will be used
again in the next section to design a data structure that supports operations
on intervals. In this section, we shall examine the steps involved in such
augmentation. We shall also prove a theorem that allows us to augment
red-black trees easily in many cases.

Augmenting a data structure can be broken into four steps:

1. choosing an underlying data structure,

2. determining additional information to be maintained in the underlying
data structure,

3. verifying that the additional information can be maintained for the
basic modifying operations on the underlying data structure, and

4. developing new operations.

As with any prescriptive design method, you should not blindly follow the
steps in the order given. Most design work contains an element of trial
and error, and progress on all steps usually proceeds in parallel. There is
no point, for example, in determining additional information and devel
oping new operations (steps 2 and 4) if we will not be able to maintain
the additional information efficiently. Nevertheless, this four-step method
provides a good focus for your efforts in augmenting a data structure, and
it is also a good way to organize the documentation of an augmented data
structure.

We followed these steps in Section 15.1 to design our order-statistic trees.
For step 1, we chose red-black trees as the underlying data structure. A
clue to the suitability of red-black trees comes from their efficient sup
port of other dynamic-set operations on a total order, such as MINIMUM,
MAXIMUM, SUCCESSOR, and PREDECESSOR.

For step 2, we provided the size fields, which in each node x stores
the size of the subtree rooted at x. Generally, the additional information
makes operations more efficient. For example, we could have implemented
OS-SELECT and OS-RANK using just the keys stored in the tree, but they
would not have run in O(lgn) time. Sometimes, the additional information
is pointer information rather than data, as in Exercise 15.2-1.

For step 3, we ensured that insertion and deletion could maintain the size
fields while still running in O(lg n) time. Ideally, a small number ofchanges
to the data structure should sufficeto maintain the additional information.
For example, if we simply stored in each node its rank in the tree, the OS
SELECT and OS-RANK procedures would run quickly, but inserting a new
minimum element would cause a change to this information in every node
of the tree. When we store subtree sizes instead, inserting a new element
causes information to change in only O(lg n) nodes.
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For step 4, we developed the operations OS-SELECT and OS-RANK. Af
ter all, the need for new operations is why we bother to augment a data
structure in the first place. Occasionally, rather than developing new oper
ations, we use the additional information to expedite existing ones, as in
Exercise 15.2-1.

Augmenting red-black trees

When red-black trees underlie an augmented data structure, we can prove
that certain kinds of additional information can always be efficiently main
tained by insertion and deletion, thereby making step 3 very easy. The
proof of the following theorem is similar to the argument from Section 15.1
that the size field can be maintained for order-statistic trees.

Theorem 15.1 (Augmenting a red-black tree)
Let f be a field that augments a red-black tree T of n nodes, and suppose
that the contents of f for a node x can be computed using only the infor
mation in nodes x, left[x], and right[x], including f[left[x]] and f[right[x]].
Then, we can maintain the values of f in all nodes of T during insertion
and deletion without asymptotically affecting the O(lgn) performance of
these operations.

Proof The main idea of the proof is that a change to an f field in a
node x propagates only to ancestors of x in the tree. That is, changing
f[x] may require f[P[x]] to be updated, but nothing else; updating f[P[x]]
may require f[P[P[x]]] to be updated, but nothing else; and so on up the
tree. When f[root[T]] is updated, no other node depends on the new
value, so the process terminates. Since the height of a red-black tree is
O(lg n), changing an f field in a node costs O(lg n) time in updating nodes
dependent on the change.

Insertion of a node x into T consists of two phases. (See Section 14.3.)
During the first phase, x is inserted as a child of an existing node p[xJ.
The value for f[x] can be computed in O( 1) time since, by supposition,
it depends only on information in the other fields of x itself and the in
formation in x's children, but x's children are both NIL. Once f[x] is
computed, the change propagates up the tree. Thus, the total time for
the first phase of insertion is O(lg n). During the second phase, the only
structural changes to the tree come from rotations. Since only two nodes
change in a rotation, the total time for updating the f fields is O(lgn) per
rotation. Since the number of rotations during insertion is at most two,
the total time for insertion is O(lg n).

Like insertion, deletion has two phases. (See Section 14.4.) In the first
phase, changes to the tree occur if the deleted node is replaced by its
successor, and then again when either the deleted node or its successor is
spliced out. Propagating the updates to f caused by these changes costs
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at most O(lg n) since the changes modify the tree locally. Fixing up the
red-black tree during the second phase requires at most three rotations,
and each rotation requires at most O(lg n) time to propagate the updates
to f. Thus, like insertion, the total time for deletion is O(lgn). _

In many cases, such as maintenance of the size fields in order-statistic
trees, the cost of updating after a rotation is O( I ), rather than the O(lg n)
derived in the proof of Theorem 15.1. Exercise 15.2-4 gives an example.

Exercises

15.2-1
Show how the dynamic-set queries MINIMUM, MAXIMUM, SUCCESSOR, and
PREDECESSOR can each be supported in O( I) worst-case time on an aug
mented order-statistic tree. The asymptotic performance of other opera
tions on order-statistic trees should not be affected.

15.2-2
Can the black-heights of nodes in a red-black tree be maintained as fields
in the nodes of the tree without affecting the asymptotic performance of
any of the red-black tree operations? Show how, or argue why not.

15.2-3
Can the depths of nodes in a red-black tree be efficiently maintained as
fields in the nodes of the tree? Show how, or argue why not.

15.2-4 *
Let ® be an associative binary operator, and let a be a field maintained
in each node of a red-black tree. Suppose that we want to include in each
node x an additional field f such that ![x] = a[xd ® a[x2] ® ... ® a[xm ],

where XI, X2, ••• ,Xm is the inorder listing of nodes in the subtree rooted
at x. Show that the f fields can be properly updated in O( 1) time after
a rotation. Modify your argument slightly to show that the size fields in
order-statistic trees can be maintained in O( I) time per rotation.

15.2-5 *
We wish to augment red-black trees with an operation RB-ENUMERATE(X,
a, b) that outputs all the keys k such that a ~ k ~ b in a red-black tree
rooted at x. Describe how RB-ENUMERATE can be implemented in 8(m +
lgn) time, where m is the number of keys that are output and n is the
number of internal nodes in the tree. (Hint: There is no need to add new
fields to the red-black tree.)
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15.3 Interval trees

In this section, we shall augment red-black trees to support operations
on dynamic sets of intervals. A closed interval is an ordered pair of
real numbers [tl, t2], with tl ::; tz- The interval [t), t2] represents the set
{t E R: tl ::; t::; t2}' Open and half-open intervals omit both or one of the
endpoints from the set, respectively. In this section, we shall assume that
intervals are closed; extending the results to open and half-open intervals
is conceptually straightforward.

Intervals are convenient for representing events that each occupy a con
tinuous period of time. We might, for example, wish to query a database
of time intervals to find out what events occurred during a given interval.
The data structure in this section provides an efficient means for main
taining such an interval database.

We can represent an interval [tl, t2] as an object i, with fields fow[i] = t)

(the low endpoint) and high[i] = ti (the high endpoint). We say that in
tervals i and i' overlap if i n i' i- 0, that is, if fow[i] ::; high[i'] and
fow[i'] ::; high[i]. Any two intervals i and i' satisfy the interval trichotomy;
that is, exactly one of the following three properties holds:

a. i and i' overlap,

b. high[i] < fow[i'],

c. high[i'] < fow[i].

Figure 15.3 shows the three possibilities.
An interval tree is a red-black tree that maintains a dynamic set of el

ements, with each element x containing an interval int[x]. Interval trees
support the following operations.

INTERvAL-INsERT(T, x ) adds the element x, whose int field is assumed to
contain an interval, to the interval tree T .

. ,
I

(a)

.,
I

(b) (c)

Figure 15.3 The interval trichotomy for two closed intervals i and i', (a) If i and i'
overlap, there are four situations; in each, low[i] $ high[i'] and low[i'] $ high[i].
(b) high[i] < low[i']. (c) high[i'] < low[i].
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Figure 15.4 An interval tree . (a) A set of 10 intervals, shown sortied bottom to
top by left endpoint. (b) The interval tree that represents them. An inorder tree
walk of the tree lists the nodes in sorted order by left end point.

INTERVAL-D ELETE( T , x ) removes the element x from the interval tree T .

INTERVAL-SEARCH( T , i ) returns a pointer to an element x in the interval
tree T such that in t[x] overlaps interval i, or NIL if no such elemen t is
in the set.

Figure 15.4 shows how an interval tree represents a set of intervals . We
shall track the four-step method from Section 15.2 as we review the design
of an interval tree and the operations that run on it.

Step I: Underlying data structure

We choose a red-black tree in which each node x contai ns an interval int[x ]
and the key of x is the low endpoint, low{int[x )), of the interval. Thus, an
inorder tree walk of the data stru cture lists the intervals in sorted order by
low endpoi nt.
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Step 2: Additional information

In addition to the intervals themselves, each node x contains a value
max{x], which is the maximum value of any interval endpoint stored in the
subtree rooted at x. Since any interval's high endpoint is at least as large
as its low endpoint, max[x] is the maximum value of all right endpoints
in the subtree rooted at x.

Step 3: Maintaining the information

We must verify that insertion and deletion can be performed in O(lg n)
time on an interval tree of n nodes. We can determine max[x] given
interval int[x] and the max values of node x's children:

max[x] max(high[int[x]], max[left[x]], max[right[x]]) .

Thus, by Theorem 15.1, insertion and deletion run in O(lg n) time. In
fact, updating the max fields after a rotation can be accomplished in O( 1)
time, as is shown in Exercises 15.2-4 and 15.3-1.

Step 4: Developing new operations

The only new operation we need is INTERVAL-SEARCH(T, i), which finds
an interval in tree T that overlaps interval i. If there is no interval that
overlaps i in the tree, NIL is returned.

INTERVAL-SEARCH(T, i)

I x+- root[T]
2 while x ::j; NIL and i does not overlap int[x]
3 do if lefi[x] ::j; NIL and max[lefi[x]] ~ low[i]
4 then x +- lefi[x]
5 else x +- right[x]
6 return x

The search for an interval that overlaps i starts with x at the root of the
tree and proceeds downward. It terminates when either an overlapping
interval is found or x becomes NIL. Since each iteration of the basic loop
takes O( 1) time, and since the height of an n-node red-black tree is O(lg n),
the INTERVAL-SEARCH procedure takes O(lg n) time.

Before we see why INTERVAL-SEARCH is correct, let's examine how it
works on the interval tree in Figure 15.4. Suppose we wish to find an
interval that overlaps the interval i = [22,25]. We begin with x as the root,
which contains [16,21] and does not overlap i. Since max[left[x]] = 23
is greater than low[i] = 22, the loop continues with x as the left child of
the root-the node containing [8,9], which also does not overlap i, This
time, max[left[x]] = 10 is less than low[i] = 22, so the loop continues with
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the right child of x as the new x. The interval [15,23] stored in this node
overlaps i, so the procedure returns this node.

As an example of an unsuccessful search, suppose we wish to find an
interval that overlaps i = [11, 14] in the interval tree of Figure 15.4. We
once again begin with x as the root. Since the root's interval [16, 21] does
not overlap i, and since max[lefl[x]] 23 is greater than low[i] = 11, we go
left to the node containing [8, 9]. (Note that no interval in the right subtree
overlaps i-we shall see why later.) Interval [8, 9] does not overlap i, and
max[lefl[x]] = 10 is less than low[i] = 11, so we go right. (Note that no
interval in the left subtree overlaps i.) Interval [15,23] does not overlap i,
and its left child is NIL, so we go right, the loop terminates, and NIL is
returned.

To see why INTERVAL-SEARCH is correct, we must understand why it
suffices to examine a single path from the root. The basic idea is that at
any node x, if int[x] does not overlap i, the search always proceeds in a
safe direction: an overlapping interval will definitely be found if there is
one in the tree. The following theorem states this property more precisely.

Theorem 15.2
Consider any iteration of the while loop during the execution OfINTERVAL
SEARCH(T, i).

1. If line 4 is executed (the search goes left), then x's left subtree contains
an interval that overlaps i or no interval in x's right subtree overlaps i.

2. If line 5 is executed (the search goes right), then x's left subtree contains
no interval that overlaps i.

Proof The proof of both cases depend on the interval trichotomy. We
prove case 2 first, since it is simpler. Observe that if line 5 is executed,
then because of the branch condition in line 3, we have lefl[x] = NIL, or
max[lefl[x]] < low[i]. If lefl[x] NIL, the subtree rooted at lefl[x] clearly
contains no interval that overlaps i, because it contains no intervals at all.
Suppose, therefore, that lefl[x] =1= NIL and max[lefl[x]] < low[i]. Let i' be
an interval in x's left subtree. (See Figure 15.5(a).) Since max[lefl[x]] is
the largest endpoint in x's left subtree, we have

high[i'] < max[lefl[x]]

< low[i] ,

and thus, by the interval trichotomy, i' and i do not overlap, which com
pletes the proof of case 2.

To prove case I, we may assume that no intervals in x's left subtree
overlap i (since if any do, we are done), and thus we need only prove that
no intervals in x's right subtree overlap i under this assumption. Observe
that if line 4 is executed, then because of the branch condition in line 3,
we have max[lefl[x]] ~ low[i]. Moreover, by definition of the max field,
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Figure 15.5 Intervals in the proof of Theorem 15.2. The value of max[lefi[x]]
is shown in each case as a dashed line. (a) Case 2: the search goes right. No
interval i' can overlap i. (b) Case I: the search goes left. The left subtree of x
contains an interval that overlaps i (situation not shown), or there is an interval i'
in x's left subtree such that high[i'] max[lefi[x]]. Since i does not overlap i',
neither does it overlap any interval i" in x's right subtree, since low[i'] S; fow[i").

there must be some interval i ' in x's left subtree such that

high[i'] = max[left[xll

> low[i].

(Figure 15.5(b) illustrates the situation.) Since i and i' do not overlap,
and since it is not true that high[i'] < low[i], it follows by the interval
trichotomy that high[i] < low[i']. Interval trees are keyed on the low
endpoints of intervals, and thus the search-tree property implies that for
any interval i" in x's right subtree,

high[i] < low[i']

< low[i"].

By the interval trichotomy, i and i" do not overlap. •
Theorem 15.2 guarantees that if INTERVAL-SEARCH continues with one

of x's children and no overlapping interval is found, a search starting with
x's other child would have been equally fruitless.

Exercises

15.3-1
Write pseudocode for LEFT-ROTATE that operates on nodes in an interval
tree and updates the max fields in O( I) time.

15.3-2
Rewrite the code for INTERVAL-SEARCH so that it works properly when all
intervals are assumed to be open.
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Problems

15.3-3
Describe an efficient algorithm that, given an interval i, returns an inter
val overlapping i that has the minimum low endpoint, or NIL if no such
interval exists.

15.3-4
Given an interval tree T and an interval i, describe how all intervals in T
that overlap i can be listed in O(min(n, k 19 n)) time, where k is the number
of intervals in the output list. (Optional: Find a solution that does not
modify the tree.)

15.3-5
Suggest modifications to the interval-tree procedures to support the opera
tion INTERVAL-SEARCH-ExACTLY(T, i), which returns a pointer to a node x
in interval tree T such that low[int[x]] low[i] and high[int[x]] high[i],
or NIL if T contains no such node. All operations, including INTERVAL
SEARCH-EXACTLY, should run in O(lg n) time on an n-node tree.

15.3-6
Show how to maintain a dynamic set Q of numbers that supports the
operation MIN-GAP, which gives the magnitude of the difference of the
two closest numbers in Q. For example, if Q = {l, 5, 9, 15, 18,22}, then
MIN-GAP(Q) returns 18 - 15 = 3, since 15 and 18 are the two closest
numbers in Q. Make the operations INSERT, DELETE, SEARCH, and MIN
GAP as efficient as possible, and analyze their running times.

15.3-7 *
VLSI databases commonly represent an integrated circuit as a list of rect
angles. Assume that each rectangle is rectilinearly oriented (sides parallel
to the x- and y-axis), so that a representation of a rectangle consists of its
minimum and maximum x- and j-coordinates. Give an O(n lgnj-time al
gorithm to decide whether or not a set of rectangles so represented contains
two rectangles that overlap. Your algorithm need not report all intersect
ing pairs, but it must report that an overlap exists if one rectangle entirely
covers another, even if the boundary lines do not intersect. (Hint: Move a
"sweep" line across the set of rectangles.)

15-1 Point ofmaximum overlap
Suppose that we wish to keep track of a point of maximum overlap in a
set of intervals-a point that has the largest number of intervals in the
database overlapping it. Show how the point of maximum overlap can be
maintained efficiently while intervals are inserted and deleted.
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15-2 Josephus permutation
The Josephus problem is defined as follows. Suppose that n people are ar
ranged in a circle and that we are given a positive integer m ~ n. Beginning
with a designated first person, we proceed around the circle, removing ev
ery mth person. After each person is removed, counting continues around
the circle that remains. This process continues until all n people have
been removed. The order in which the people are removed from the cir
cle defines the (a, m)-Josephus permutation of the integers 1,2, ... , n. For
example, the (7, 3)-Josephus permutation is (3,6,2, 7, 5,1,4).

a. Suppose that m is a constant. Describe an O( n)-time algorithm that,
given an integer n, outputs the (n, m)-Josephus permutation.

b. Suppose that m is not a constant. Describe an O( n lgn j-time algorithm
that, given integers nand m, outputs the (n, m)-Josephus permutation.

-------------------------------_..._----_.

Chapter notes

Preparata and Shamos [160] describe several of the interval trees that ap
pear in the literature. Among the more important theoretically are those
due independently to H. Edelsbrunner (1980) and E. M. McCreight (1981),
which, in a database of n intervals, allow all k intervals that overlap a given
query interval to be enumerated in O(k + 19 n) time.
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Introduction

This part covers three important techniques for the design and analysis
of efficient algorithms: dynamic programming (Chapter 16), greedy algo
rithms (Chapter 11), and amortized analysis (Chapter 18). Earlier parts
have presented other widely applicable techniques, such as divide-and
conquer, randomization, and the solution of recurrences. The new tech
niques are somewhat more sophisticated, but they are essential for effec
tively attacking many computational problems. The themes introduced in
this part will recur later in the book.

Dynamic programming typically applies to optimization problems in
which a set of choices must be made in order to arrive at an optimal
solution. As choices are made, subproblems of the same form often arise.
Dynamic programming is effective when a given subproblem may arise
from more than one partial set of choices; the key technique is to store,
or "rnemoize," the solution to each such subproblem in case it should
reappear. Chapter 16 shows how this simple idea can easily transform
exponential-time algorithms into polynomial-time algorithms.

Like dynamic-programming algorithms, greedy algorithms typically ap
ply to optimization problems in which a set of choices must be made in
order to arrive at an optimal solution. The idea of a greedy algorithm is to
make each choice in a locally optimal manner. A simple example is coin
changing: to minimize the number of U.S. coins needed to make change
for a given amount, it suffices to select repeatedly the largest-denomination
coin that is not larger than the amount still owed. There are many such
problems for which a greedy approach provides an optimal solution much
more quickly than would a dynamic-programming approach. It is not al
ways easy to tell whether a greedy approach will be effective, however.
Chapter 11 reviews matroid theory, which can often be helpful in making
such a determination.

Amortized analysis is a tool for analyzing algorithms that perform a se
quence of similar operations. Instead of bounding the cost of the sequence
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of operations by bounding the actual cost of each operation separately, an
amortized analysis can be used to provide a bound on the actual cost of
the entire sequence. One reason this idea can be effective is that it may be
impossible in a sequence of operations for all of the individual operations
to run in their known worst-case time bounds. While some operations are
expensive, many others might be cheap. Amortized analysis is not just
an analysis tool, however; it is also a way of thinking about the design of
algorithms, since the design of an algorithm and the analysis of its running
time are often closely intertwined. Chapter 18 introduces three equivalent
ways to perform an amortized analysis of an algorithm.
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Dynamic programming, like the divide-and-conquer method, solves prob
lems by combining the solutions to subproblems. ("Programming" in this
context refers to a tabular method, not to writing computer code.) As
we saw in Chapter I, divide-and-conquer algorithms partition the prob
lem into independent subproblems, solve the subproblems recursively, and
then combine their solutions to solve the original problem. In contrast, dy
namic programming is applicable when the subproblems are not indepen
dent, that is, when subproblems share subsubproblems. In this context, a
divide-and-conquer algorithm does more work than necessary, repeatedly
solving the common subsubproblems. A dynamic-programming algorithm
solves every subsubproblem just once and then saves its answer in a ta
ble, thereby avoiding the work of recomputing the answer every time the
subsubproblem is encountered.

Dynamic programming is typically applied to optimization problems. In
such problems there can be many possible solutions. Each solution has a
value, and we wish to find a solution with the optimal (minimum or max
imum) value. We call such a solution an optimal solution to the problem,
as opposed to the optimal solution, since there may be several solutions
that achieve the optimal value.

The development of a dynamic-programming algorithm can be broken
into a sequence of four steps.

1. Characterize the structure of an optimal solution.

2. Recursively define the value of an optimal solution.

3. Compute the value of an optimal solution in a bottom-up fashion.

4. Construct an optimal solution from computed information.

Steps 1-3 form the basis of a dynamic-programming solution to a prob
lem. Step 4 can be omitted if only the value of an optimal solution is
required. When we do perform step 4, we sometimes maintain additional
information during the computation in step 3 to ease the construction of
an optimal solution.

The sections that follow use the dynamic-programming method to solve
some optimization problems. Section 16.1 asks how we can multiply a
chain of matrices so that the fewest total scalar multiplications are per-
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formed. Given this example of dynamic programming, Section 16.2 dis
cusses two key characteristics that a problem must have for dynamic pro
gramming to be a viable solution technique. Section 16.3 then shows how
to find the longest common subsequence of two sequences. Finally, Sec
tion 16.4 uses dynamic programming to find an optimal triangulation of
a convex polygon, a problem that is surprisingly similar to matrix-chain
multiplication.

16.1 Matrix-chain multiplication

Our first example of dynamic programming is an algorithm that solves the
problem of matrix-chain multiplication. We are given a sequence (chain)
(A (, A2, ... , An) of n matrices to be multiplied, and we wish to compute
the product

(16.1)

We can evaluate the expression (16.1) using the standard algorithm for
multiplying pairs of matrices as a subroutine once we have parenthesized
it to resolve all ambiguities in how the matrices are multiplied together.
A product of matrices is fully parenthesized if it is either a single matrix
or the product of two fully parenthesized matrix products, surrounded by
parentheses. Matrix multiplication is associative, and so all parenthesiza
tions yield the same product. For example, if the chain of matrices is
(AI,A2,A3,A4) , the product A IA 2A3A4 can be fully parenthesized in five
distinct ways:

(AI (A2(A3A4 ) ) ) ,

(AI «A2A3)A4 ) ) ,

«A,A2)(A3A4)) ,
«AI (A2A3))A 4 ) ,

«(A IA 2)A3)A4 ) •

The way we parenthesize a chain of matrices can have a dramatic im
pact on the cost of evaluating the product. Consider first the cost of mul
tiplying two matrices. The standard algorithm is given by the following
pseudocode. The attributes rows and columns are the numbers of rows
and columns in a matrix.
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MATRIX-MULTIPLy(A, B)

I if columns[A] ¥ rows[B]
2 then error "incompatible dimensions"
3 else for i +- I to rows[A]
4 do for j +- I to columns[B]
5 do C[i,}];- a
6 for k ;- 1 to columns[A]
7 do C[i,j]+-C[i,j]+A[i,k].B[k,}]
8 return C

We can multiply two matrices A and B only if the number of columns of A
is equal to the number of rows of B. If A is a p x q matrix and B is a q x r
matrix, the resulting matrix C is a p x r matrix. The time to compute C is
dominated by the number of scalar multiplications in line 7, which is p qr.
In what follows, we shall express running times in terms of the number of
scalar multiplications.

To illustrate the different costs incurred by different parenthesizations of
a matrix product, consider the problem of a chain (A I, A2,A3) of three ma
trices. Suppose that the dimensions of the matrices are lax 100, 100 x 5,
and 5 x 50, respectively. If we multiply according to the parenthesization
((AIA2)A3), we perform 10·100·5 = 5000 scalar multiplications to com
pute the lax 5 matrix product A I A 2, plus another 10· 5 . 50 = 2500 scalar
multiplications to multiply this matrix by A3, for a total of 7500 scalar
multiplications. If instead we multiply according to the parenthesization
(AI (A2A3)), we perform 100· 5·50 = 25,000 scalar multiplications to com
pute the 100 x 50 matrix product A2A3, plus another 10· 100·50 = 50,000
scalar multiplications to multiply A I by this matrix, for a total of 75,000
scalar multiplications. Thus, computing the product according to the first
parenthesization is 10 times faster.

The matrix-chain multiplication problem can be stated as follows: given
a chain (AI>A2, ... , An) of n matrices, where for i 1,2, ... , n, matrix Ai
has dimension Pi-I x Pi, fully parenthesize the product AIA2" ·An in a
way that minimizes the number of scalar multiplications.

Counting the number of parenthesizations

Before solving the matrix-chain multiplication problem by dynamic pro
gramming, we should convince ourselves that exhaustively checking all
possible parenthesizations does not yield an efficient algorithm. Denote
the number of alternative parenthesizations of a sequence of n matrices
by P(n). Since we can split a sequence of n matrices between the kth and
(k + 1)st matrices for any k = 1,2, ... , n - 1 and then parenthesize the two
resulting subsequences independently, we obtain the recurrence
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pen) ~ {~p(k)p(n _ k)

if n = 1 ,

if n ~ 2 .

Problem 13-4 asked you to show that the solution to this recurrence is the
sequence of Catalan numbers:

P(n) = C(n 1),

where

n + ( 2nn)C(n) =

= n(4n /n3
/
2

) •

The number of solutions is thus exponential in n, and the brute-force
method of exhaustive search is therefore a poor strategy for determining
the optimal parenthesization of a matrix chain.

The structure of an optimal parenthesization

The first step of the dynamic-programming paradigm is to characterize the
structure of an optimal solution. For the matrix-chain multiplication prob
lem, we can perform this step as follows. For convenience, let us adopt
the notation Ai ..i for the matrix that results from evaluating the prod
uct AiAi+1 •• ·Aj. An optimal parenthesization of the product A 1A2'" An
splits the product between Ak and Ak +1 for some integer k in the range
I ::; k < n, That is, for some value of k, we first compute the matri
ces A I..k and Ak+l..n and then multiply them together to produce the final
product A I..n. The cost of this optimal parenthesization is thus the cost
of computing the matrix Al..k, plus the cost of computing Ak+l..n> plus the
cost of multiplying them together.

The key observation is that the parenthesization of the "prefix" subchain
A 1A2··· Ak within this optimal parenthesization of A 1A2··· An must be an
optimal parenthesization of A I A2 ... Ak. Why? If there were a less costly
way to parenthesize A I A2... Ak, substituting that parenthesization in the
optimal parenthesization of A I A2 ... An would produce another parenthe
sization of A I A2 ... An whose cost was lower than the optimum: a contra
diction. A similar observation holds for the the parenthesization of the
subchain Ak+I Ak+2 ... An in the optimal parenthesization of A I A2... An:
it must be an optimal parenthesization of Ak+IAk+2··· An.

Thus, an optimal solution to an instance of the matrix-chain multiplica
tion problem contains within it optimal solutions to subproblem instances.
Optimal substructure within an optimal solution is one of the hallmarks of
the applicability of dynamic programming, as we shall see in Section 16.2.
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(16.2)

The second step of the dynamic-programming paradigm is to define the
value of an optimal solution recursively in terms of the optimal solutions
to subproblems. For the matrix-chain multiplication problem, we pick
as our subproblems the problems of determining the minimum cost of a
parenthesization of AiAi+l ... Aj for 1 sis j S n. Let m[i,j] be the
minimum number of scalar multiplications needed to compute the matrix
Ai ..j ; the cost of a cheapest way to compute Al..n would thus be m[l, n].

We can define m[i, j] recursively as follows. If i i, the chain consists
of just one matrix Au Ai> so no scalar multiplications are necessary to
compute the product. Thus, m[i, i] 0 for i 1,2, ... , n. To compute
m[i,)] when i < i, we take advantage of the structure of an optimal so
lution from step 1. Let us assume that the optimal parenthesization splits
the product AiAi+ 1 ... A j between Ak and Ak+1> where i S k «: j. Then,
m[i,)] is equal to the minimum cost for computing the subproducts Au
and Ak+l..j, plus the cost of multiplying these two matrices together. Since
computing the matrix product A i..kAk+ l..j takesPi_IPkPj scalar multiplica
tions, we obtain

m[i,)] = m[i, k] + m[k + 1,)] +Pi-IPkPj .

This recursive equation assumes that we know the value of k, which
we don't. There are only) - i possible values for k, however, namely
k = i, i + 1, ... ,) - 1. Since the optimal parenthesization must use one of
these values for k, we need only check them all to find the best. Thus, our
recursive definition for the minimum cost of parenthesizing the product
AiA i+ 1 ••• Ai becomes

.. {O if i =) ,
m[I,J] = min {m[i, k] + m[k + 1,)] +Pi-1PkPj} if i <) .

t$k<]

The m[i,)] values give the costs of optimal solutions to subproblems.
To help us keep track of how to construct an optimal solution, let us define
s[i,)] to be a value of k at which we can split the product AiAi+1 ... A j to
obtain an optimal parenthesization. That is, s[ i,)] equals a value k such
that m[i,)] m[i, k] + m[k + 1,)] +Pi-IPkPj.

Computing the optimal costs

At this point, it is a simple matter to write a recursive algorithm based on
recurrence (16.2) to compute the minimum cost m[ 1, n] for multiplying
A 1A2 · • ·An • As we shall see in Section 16.2, however, this algorithm takes
exponential time-no better than the brute-force method of checking each
way of parenthesizing the product.

The important observation that we can make at this point is that we
have relatively few subproblems: one problem for each choice of i and)
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satisfying 1 :::: i :::: j :::: n, or G) + n = 8(n 2 ) total. A recursive algorithm
may encounter each subproblem many times in different branches of its
recursion tree. This property of overlapping subproblems is the second
hallmark of the applicability of dynamic programming.

Instead of computing the solution to recurrence (16.2) recursively, we
perform the third step of the dynamic-programming paradigm and com
pute the optimal cost by using a bottom-up approach. The following pseu
docode assumes that matrix Ai has dimensions Pi-I x Pi for i = 1,2, ... , n.
The input is a sequence (Po, PI, ... , Pn), where length[p] = n + 1. The pro
cedure uses an auxiliary table m[l .. n, 1.. n] for storing the m[i,j] costs
and an auxiliary table s[ 1.. n, 1.. n] that records which index of k achieved
the optimal cost in computing m[i,j].

MATRIX-CHAIN-ORDER(p)

1 n +- length[p] 1
2 for i +- 1 to n
3 do m[i,i] +- 0
4 for 1+-2 to n
5 do for i +- 1 to n I + 1
6 do j +- i + I 1
7 m[i, j] +- 00

8 for k +- i to j - I
9 do q +- m[i, k] + m[k + 1,j] +Pi-IPkPj

10 if a < m [i, j]
11 then m[i, j] +- q
12 s[i,j]+-k
13 return m and s

The algorithm fills in the table m in a manner that corresponds to solving
the parenthesization problem on matrix chains of increasing length. Equa
tion (16.2) shows that the cost m[i, j] of computing a matrix-chain product
of j - i + 1 matrices depends only on the costs of computing matrix-chain
products of fewer than j - i + 1 matrices. That is, for k = i, i + I, ... , j - 1,
the matrix Au is a product of k - i + 1 < j ~ i + 1 matrices and the matrix
Ak+l..j is a product of j - k < j - i + 1 matrices.

The algorithm first computes m[i, i] +- 0 for i = 1,2, ... I n (the min
imum costs for chains of length 1) in lines 2-3. It then uses recur
rence (16.2) to compute m[i,i + 1] for i = 1,2, ... .n - 1 (the minimum
costs for chains of length I = 2) during the first execution of the loop in
lines 4-12. The second time through the loop, it computes m[i, i + 2] for
i = 1,2, ... , n - 2 (the minimum costs for chains of length I = 3), and so
forth. At each step, the m[i,j] cost computed in lines 9-12 depends only
on table entries m[i, k] and m[k + 1,j] already computed.

Figure 16.1 illustrates this procedure on a chain of n = 6 matrices.
Since we have defined m[i,j] only for i :::: j, only the portion of the ta
ble m strictly above the main diagonal is used. The figure shows the table
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Figure 16.1 The m and s tables computed by MATRiX-CHAIN-ORDER for n = 6
and the following mat rix dimensions:

matrix dimension
30 x 35
35 x 15
15 x 5
5 x 10
10 x 20
20 x 25

The tables are rotated so that the main diagonal runs horizontall y. Only the main
diagonal and upper triangle are used in the m table, and only the upper triangle
is used in the s table. The minimum num ber of scalar multiplicatio ns to multiply
the 6 mat rices is m{l,6] = 15,125. Of the lightly shaded entries, the pair s that
have the same shad ing are taken together in line 9 when computing

{

m12. 2) + m[ 3, 5] + P1P2PS = 0 + 2500 + 35 . 15 · 20 = 13000 .

m[2, 5] = min m{2 , 3] + m(4, 51+ PIPJPS = 2625 + 1000 + 35·5·20 = 7125 ,

m [2, 4] + m15, 5)+ PIP4P, = 4375 + 0 + 35 · 10 ·20 = 11375
= 7125 .

rotat ed to make the main diagonal run horizont ally. Th e matrix chain
is listed along the bottom . Using this layout , the minimum cost m[ i ,J]
for multi plying a subchain AiA i+l · · · A j of matrices can be found at the
intersection of lines runn ing northeast from A i and northwest from A j .
Each horizon tal row in the table contains the entries for matrix chains of
the same length. M AT RIX·CHAIN-ORDER computes the rows from bottom
to top and from left to right with in each row. An entry m[ i , J] is com
puted using the prod ucts Pi- 1PkPj for k = i, i + 1, . .. , j - 1 and all entries
southwest and southeast from m[i,JJ.

A simple inspection of the nested loop structure of M AT RIX·CHAIN

O RDE R yields a running time of O(n J ) fo r the algorithm. The loops are
nested three deep, and each loop index (/, i, and k ) takes on at most n
values. Exercise 16.1·3 asks you to show that the running time of th is at-
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gorithm is in fact also Q(n 3) . The algorithm requires 8(n 2 ) space to store
the m and s tables. Thus, MATRIX-CHAIN-ORDER is much more efficient
than the exponential-time method of enumerating all possible parenthe
sizations and checking each one.

Constructing an optimal solution

Although MATRIX-CHAIN-ORDER determines the optimal number of scalar
multiplications needed to compute a matrix-chain product, it does not
directly show how to multiply the matrices. Step 4 of the dynamic-pro
gramming paradigm is to construct an optimal solution from computed
information.

In our case, we use the table s[ 1 .. n, 1 .. n] to determine the best way to
multiply the matrices. Each entry s[i, j] records the value of k such that
the optimal parenthesization of AiA i+ I·· ·Aj splits the product between Ak

and Ak+ I. Thus, we know that the final matrix multiplication in comput
ing Al..n optimally is Al..s[I,nIAs[l,nl+l..n. The earlier matrix multiplications
can be computed recursively, since s[l,s[l,n]] determines the last matrix
multiplication in computing Al..s[I,n], and s[s[l, n] + I, n] determines the
last matrix multiplication in computing A s[l,n]+l..n. The following recur
sive procedure computes the matrix-chain product ALj given the matrices
A = (AI> A2, ... ,An), the s table computed by MATRIX-CHAIN-ORDER, and
the indices i and}. The initial call is MATRIX-CHAIN-MuLTlPLy(A, s, I, n).

MATRIX-CHAIN-MuLTIPLy(A,s, i,})

1 if}>i
2 then X b- MATRIX-CHAIN-MuLTIPLy(A,s, i,s[i,j])
3 Y <- MATRIX-CHAIN-MuLTlPLy(A,s,s[i,}] + I,j)
4 return MATRIX-MuLTlPLY(X, Y)
5 else return Ai

In the example of Figure 16.1, the call MATRIX-CHAIN-MuLTIPLy(A,s,

1,6) computes the matrix-chain product according to the parenthesization

(16.3)

Exercises

16.1-1
Find an optimal parenthesization of a matrix-chain product whose se
quence of dimensions is (5,10,3,12,5,50,6).

16.1-2
Give an efficient algorithm PRINT-OPTIMAL-PARENS to print the optimal
parenthesization of a matrix chain given the table S computed by MATRIX

CHAIN-ORDER. Analyze your algorithm.
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16.1-3
Let RU,j) be the number of times that table entry m[i,j] is referenced by
MATRIX-CHAIN-ORDER in computing other table entries. Show that the
total number of references for the entire table is

n n 3

2: 2:R(i,j) = n ~ n .
i=1 j=i

(Hint: You may find the identity 2:7=1 i 2 = n(n + 1)(2n + 1)/6 useful.)

16.1-4
Show that a full parenthesization of an n-element expression has exactly
n - 1 pairs of parentheses.

16.2 Elements of dynamic programming

Although we have just worked through an example of the dynamic-pro
gramming method, you might still be wondering just when the method
applies. From an engineering perspective, when should we look for a
dynamic-programming solution to a problem? In this section, we exam
ine the two key ingredients that an optimization problem must have for
dynamic programming to be applicable: optimal substructure and overlap
ping subproblems. We also look at a variant method, called memoization,
for taking advantage of the overlapping-subproblems property.

Optimal substructure

The first step in solving an optimization problem by dynamic programming
is to characterize the structure of an optimal solution. We say that a
problem exhibits optimal substructure if an optimal solution to the problem
contains within it optimal solutions to subproblems. Whenever a problem
exhibits optimal substructure, it is a good clue that dynamic programming
might apply. (It also might mean that a greedy strategy applies, however.
See Chapter 17.)

In Section 16.1, we discovered that the problem of matrix-chain mul
tiplication exhibits optimal substructure. We observed that an optimal
parenthesization of AIA2 ... An that splits the product between Ak and
Ak+1 contains within it optimal solutions to the problems of parenthesiz
ing A1A2'" Ak and Ak +IAk+2'" An. The technique that we used to show
that subproblems have optimal solutions is typical. We assume that there
is a better solution to the subproblem and show how this assumption con
tradicts the optimality of the solution to the original problem.

The optimal substructure of a problem often suggests a suitable space of
subproblems to which dynamic programming can be applied. Typically,
there are several classes of subproblems that might be considered "natural"
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for a problem. For example, the space of subproblems that we considered
for matrix-chain multiplication contained all subchains of the input chain.
We could equally well have chosen as our space of subproblems arbitrary
sequences of matrices from the input chain, but this space of subproblems
is unnecessarily large. A dynamic-programming algorithm based on this
space of subproblems solves many more problems than it has to.

Investigating the optimal substructure of a problem by iterating on sub
problem instances is a good way to infer a suitable space of subproblems
for dynamic programming. For example, after looking at the structure
of an optimal solution to a matrix-chain problem, we might iterate and
look at the structure of optimal solutions to subproblems, subsubprob
lems, and so forth. We discover that all subproblems consist of subchains
of (A 1,A2, ... ,An ) . Thus, the set of chains of the form (Ai,Ai+1, ... ,AJ )

for 1 ~ i ~ j ~ n makes a natural and reasonable space of subproblems to
use.

Overlapping subproblems

The second ingredient that an optimization problem must have for dy
namic programming to be applicable is that the space of subproblems
must be "small" in the sense that a recursive algorithm for the problem
solves the same subproblems over and over, rather than always generating
new subproblems. Typically, the total number of distinct subproblems is
a polynomial in the input size. When a recursive algorithm revisits the
same problem over and over again, we say that the optimization problem
has overlapping subproblems. In contrast, a problem for which a divide
and-conquer approach is suitable usually generates brand-new problems
at each step of the recursion. Dynamic-programming algorithms typically
take advantage of overlapping subproblems by solving each subproblem
once and then storing the solution in a table where it can be looked up
when needed, using constant time per lookup.

To illustrate the overlapping-subproblems property, let us reexamine the
matrix-chain multiplication problem. Referring back to Figure 16.1, ob
serve that MATRIX-CHAIN-ORDER repeatedly looks up the solution to sub
problems in lower rows when solving subproblems in higher rows. For
example, entry m[3,4] is referenced 4 times: during the computations of
m[2,4], m[1, 4], m[3,5], and m[3,6]. If m[3,4] were recomputed each
time, rather than just being looked up, the increase in running time would
be dramatic. To see this, consider the following (inefficient) recursive pro
cedure that determines m[i, j], the minimum number of scalar multipli
cations needed to compute the matrix-chain product Ai..) = AiAi+ I ... Ai'
The procedure is based directly on the recurrence (16.2).
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1..3 4..4

/1
1..1 2•.3 1..2 3..3

/l~
2..2 3..3 1..1 2..23..3 4..4 2..2 3.3
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-------=:::~~~:::::::--------
1..1 2..4 1..2 3..4

.r-. /\ /\
2..2 3..4 2..3 4..4 1..1 2..2 3..3 4..4

/l~
Figure 16.2 The recursion tree for the co mputa tion of RECUIlSIVE·MATRIX
C HAIN(P, 1, 4). Each node contains the parameters i and j . Th e co mputations
performed in a shaded subt ree are replaced by a single table lookup in MEMOIZED
MATIlIX-CHA1 N(P, 1,4).

RECURSIVE·MATRIX·CHAtN(P, i, j)

, if i = j
2 then return 0
3 m[i , j ) -- oo
4 for k -- ito j -I
5 do q -- RECURSlvE-MATRIX·CHAIN(P, i , k )

+ REc uRsIVE·MATRlx·CHAt N(p , k + ' , j ) + P,'-IPkPj
6 if q < m [i , j J
7 then m[i, j) -- q
8 return m(i , j ]

Figure 16.2 shows the recursion tree produced by the call RECURSIVE·
MATRI X·CHAIN(p, 1,4). Each node is labeled by the values of the param
eters i and j. Observe that som e pairs of values occur many times.

In fact, we can show that the running time T (n ) to compute m[I ,n] by
th is recursive procedure is at least exponential in n. Let us assume that
the execution of lines 1-2 and of lines 6-7 each take at least unit time.
Inspection of the procedure yields the recurrence

T ( 1) ~ 1 ,
,-,

T (n ) ~ 1+ L;(T (k ) + T (n - k ) + 1),., for n > , .

Not ing that for i = 1, 2, ... , n - L each term T(i ) appears once as T (k ) and
once as T (n - k ), and collecting the n - I Fs in the sum ma tion togeth er
with the l out front, we can rewrite th e recu rre nce as

,-I
T (n) ~ 2L; r uv-:« .,.,

(16.4)
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We shall prove that T(n) = Q(2n ) using the substitution method. Specif
ically, we shall show that T(n) 2: 2n- 1 for all n 2: 1. The basis is easy,
since T( 1) 2: 1 = 20 . Inductively, for n 2: 2 we have

n-I

T(n) > 22: 1+ n
i=1

n-2

= 22:2i +n
i=O

2(2n- 1 - 1) + n

(2n - 2) + n
> 2n- l ,

which completes the proof. Thus, the total amount of work performed by
the call RECURSIVE-MATRIX-CHAIN(p, 1, n) is at least exponential in n.

Compare this top-down, recursive algorithm with the bottom-up, dy
namic-programming algorithm. The latter is more efficient because it takes
advantage of the overlapping-subproblems property. There are only 8(n2 )

different subproblems, and the dynamic-programming algorithm solves
each exactly once. The recursive algorithm, on the other hand, must re
peatedly resolve each subproblem each time it reappears in the recursion
tree. Whenever a recursion tree for the natural recursive solution to a
problem contains the same subproblem repeatedly, and the total number
of different subproblems is small, it is a good idea to see if dynamic pro
gramming can be made to work.

Memoization

There is a variation of dynamic programming that often offers the effi
ciency of the usual dynamic-programming approach while maintaining a
top-down strategy. The idea is to memoize the natural, but inefficient, re
cursive algorithm. As in ordinary dynamic programming, we maintain a
table with subproblem solutions, but the control structure for filling in the
table is more like the recursive algorithm.

A memoized recursive algorithm maintains an entry in a table for the
solution to each subproblem. Each table entry initially contains a special
value to indicate that the entry has yet to be filled in. When the subproblem
is first encountered during the execution of the recursive algorithm, its
solution is computed and then stored in the table. Each subsequent time
that the subproblem is encountered, the value stored in the table is simply
looked up and returned. I

I This approach presupposes that the set of all possible subproblem parameters is known and
that the relation between table positions and subproblems is established. Another approach
is to memoize by using hashing with the subproblem parameters as keys.
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7
8
9 return m[i,}]

The following procedure is a memoized version of RECURSIVE-MATRIX
CHAIN.

MEMOIZED-MATRIX-CHAIN(p)

1 n +- length[p] - 1
2 for i +- 1 to n
3 do for } ;- i to n
4 do m[i,}];- 00

5 return LOOKUP-CHAIN(p, 1,n)

LOOKUP-CHAIN(p, i,})

1 if m[i,}] < 00

2 then return m [i, j]
3 if i <i
4 then m[i,}] ;- 0
5 else for k ;- i to } - 1
6 do q ;- LOOKUP-CHAIN(p, i, k)

+ LOOKUP-CHAIN(p,k + I,}) +Pi-IPkPj

if q < m[i,}]
then m[i,}] ;- q

MEMOIZED-MATRIX-CHAIN, like MATRIX-CHAIN-ORDER, maintains a ta
ble m[I .. n, 1 .. n] of computed values of m[i, j], the minimum number of
scalar multiplications needed to compute the matrix Ai,.j. Each table entry
initially contains the value 00 to indicate that the entry has yet to be filled
in. When the call LOOKUP-CHAIN(p, i, j) is executed, if m[i, j] < 00 in
line 1, the procedure simply returns the previously computed cost m[i,j]
(line 2). Otherwise, the cost is computed as in RECURSIVE-MATRIX-CHAIN,
stored in m[t, j], and returned. (The value 00 is convenient to use for an
unfilled table entry since it is the value used to initialize m[i,}] in line 3 of
RECURSIVE-MATRIX-CHAIN.) Thus, LOOKUP-CHAIN(p, i,}) always returns
the value of m[i, jl, but it only computes it if this is the first time that
LOOKUP-CHAIN has been called with the parameters i and}.

Figure 16.2 illustrates how MEMOIZED-MATRIX-CHAIN saves time over
RECURSIVE-MATRIX-CHAIN. Shaded subtrees represent values that are
looked up rather than computed.

Like the dynamic-programming algorithm MATRIX-CHAIN-ORDER, the
procedure MEMOIZED-MATRIX-CHAIN runs in D(n 3 ) time. Each of 8(n 2 )

table entries is initialized once in line 4 of MEMOIZED-MATRIX-CHAIN
and filled in for good by just one call of LOOKUP-CHAIN. Each of these
8(n 2) calls to LOOKUP-CHAIN takes D(n)} time, excluding the time spent
in computing other table entries, so a total of O(n 3 ) is spent altogether.
Memoization thus turns an Q(2n ) algorithm into an D(n 3 ) algorithm.

In summary, the matrix-chain multiplication problem can be solved in
O(n 3 ) time by either a top-down, memoized algorithm or a bottom-up,
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dynamic-programming algorithm. Both methods take advantage of the
overlapping-subproblems property. There are only 8(nz) different sub
problems in total, and either of these methods computes the solution to
each subproblem once. Without memoization, the natural recursive algo
rithm runs in exponential time, since solved subproblems are repeatedly
solved.

In general practice, if all subproblems must be solved at least once, a
bottom-up dynamic-programming algorithm usually outperforms a top
down memoized algorithm by a constant factor, because there is no over
head for recursion and less overhead for maintaining the table. Moreover,
there are some problems for which the regular pattern of table accesses
in the dynamic-programming algorithm can be exploited to reduce time
or space requirements even further. Alternatively, if some subproblems
in the subproblem space need not be solved at all, the memoized solution
has the advantage of only solving those subproblems that are definitely
required.

Exercises

16.2-1
Compare the recurrence (16.4) with the recurrence (8.4) that arose in the
analysis of the average-case running time of quicksort. Explain intuitively
why the solutions to the two recurrences should be so dramatically differ
ent.

16.2-2
Which is a more efficient way to determine the optimal number of multi
plications in a chain-matrix multiplication problem: enumerating all the
ways of parenthesizing the product and computing the number of multi
plications for each, or running RECURSIVE-MATRIX-CHAIN? Justify your
answer.

16.2-3
Draw the recursion tree for the MERGE-SORT procedure from Section 1.3.1
on an array of 16 elements. Explain why memoization is ineffective in
speeding up a good divide-and-conquer algorithm such as MERGE-SORT.

16.3 Longest common subsequence )

The next problem we shall consider is the longest-common-subsequence
problem. A subsequence of a given sequence is just the given sequence
with some elements (possibly none) left out. Formally, given a sequence
X = (XI, Xz, ... , x m ), another sequence Z = (Zh ZZ, ... , Zk) is a subse
quence of X if there exists a strictly increasing sequence (iI, Iz, ... , h) of
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indices of X such that for all j = 1,2, ... , k, we have Xi] = Zj. For ex
ample, Z = {B, C,D,B} is a subsequence of X = (A,B, C,B,D,A,B) with
corresponding index sequence (2,3,5, 7).

Given two sequences X and Y, we say that a sequence Z is a com
mon subsequence of X and Y if Z is a subsequence of both X and Y.
For example, if X = (A,B,C,B,D,A,B) and Y = {B,D,C,A,B,A}, the
sequence (B, C, A) is a common subsequence of both X and Y. The se
quence (B, C,A) is not a longest common subsequence (LCS) of X and Y,
however, since it has length 3 and the sequence {B, C, B, A}, which is also
common to both X and Y, has length 4. The sequence (B,C,B,A) is an
LCS of X and Y, as is the sequence {B,D,A,B}, since there is no common
subsequence of length 5 or greater.

In the longest-common-subsequence problem, we are given two sequences
X = (X"X2, H' ,xm ) and Y (YJ,Y2, •. ' ,Yn) and wish to find a maximum
length common subsequence of X and Y. This section shows that the LCS
problem can be solved efficiently using dynamic programming.

Characterizing a longest common subsequence

A brute-force approach to solving the LCS problem is to enumerate all
subsequences of X and check each subsequence to see if it is also a subse
quence of Y, keeping track of the longest subsequence found. Each sub
sequence of X corresponds to a subset of the indices {I, 2, ... , m} of X.
There are 2m subsequences of X, so this approach requires exponential
time, making it impractical for long sequences.

The LCS problem has an optimal-substructure property, however, as
the following theorem shows. As we shall see, the natural class of sub
problems correspond to pairs of "prefixes" of the two input sequences.
To be precise, given a sequence X = (XI,X2,H',Xm ) , we define the lth
prefix of X, for i = 0, l , ... .m, as Xi = (XJ,X2, ... ,Xi)' For example,
if X = (A, B, C, B, D, A, B), then X4 = (A, B, C, B) and Xo is the empty
sequence.

Theorem 16.1 (Optimal substructure ofan LCS)
Let X = (XI,X2,H',Xm ) and Y = (YI,Y2,. .. ,Yn) be sequences, and let
Z = (Z., Z2, ... , Zk) be any LCS of X and Y.

1. If Xm = Yn, then Zk X m = Yn and Zk-I is an LCS of X m - I and Yn- I •

2. If X m t= Yn, then Zk t= X m implies that Z is an LCS of X m - I and Y.

3. If Xm IfYn, then Zk t= Yn implies that Z is an LCS of X and Yn- I •

Proof (1) If Zk t= X m, then we could append Xm = Yn to Z to obtain
a common subsequence of X and Y of length k + 1, contradicting the
supposition that Z is a longest common subsequence of X and Y. Thus,
we must have Zk X m = Yn. Now, the prefix Zk-I is a length-(k - 1)
common subsequence of X m - I and Yn- I • We wish to show that it is an
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LCS. Suppose for the purpose of contradiction that there is a common
subsequence W of X m - I and Yn-l with length greater than k I. Then,
appending X m = Yn to W produces a common subsequence of X and Y
whose length is greater than k, which is a contradiction.

(2) If Zk =f. X m , then Z is a common subsequence of X m- 1 and Y. If there
were a common subsequence W of X m - I and Y with length greater than k.,
then W would also be a common subsequence of Xm and Y, contradicting
the assumption that Z is an LCS of X and Y.

(3) The proof is symmetric to (2). •

The characterization of Theorem 16.1 shows that an LCS of two se
quences contains within it an LCS of prefixes of the two sequences. Thus,
the LCS problem has an optimal-substructure property. A recursive solu
tion also has the overlapping-subproblems property, as we shall see in a
moment.

A recursive solution to subproblems

Theorem 16.1 implies that there are either one or two subproblems to
examine when finding an LCS of X = (XI,X2, ... ,xm ) and Y = (YJ,Y2,
... ,Yn). If Xm = Yn, we must find an LCS of X m - I and Yn- 1• Appending
x.; = Yn to this LCS yields an LCS of X and Y. If x.; =f. Yn, then we
must solve two subproblems: finding an LCS of X m - I and Y and finding
an LCS of X and Yn - I • Whichever of these two LCS's is longer is an LCS
of X and Y.

We can readily see the overlapping-subproblems property in the LCS
problem. To find an LCS of X and Y, we may need to find the LCS's
of X and Yn - 1 and of X m - 1 and Y. But each of these subproblems has
the subsubproblem of finding the LCS of X m - 1 and Yn - I • Many other
subproblems share subsubproblems.

Like the matrix-chain multiplication problem, our recursive solution to
the LCS problem involves establishing a recurrence for the cost of an op
timal solution. Let us define c[i,j] to be the length of an LCS of the
sequences Xi and Yj • If either i = 0 or j = 0, one of the sequences has
length 0, so the LCS has length O. The optimal substructure of the LCS
problem gives the recursive formula

{

0 if i = 0 or j = 0 ,
c[i,j]= c[i-l,j=l]+l ifi,j>Oandxi=Yj,

max(c[i,j - I],c[i - I,jl) if i,j > 0 and Xi =f. Yj .

Computing the length of an LCS

Based on equation (16.5), we could easily write an exponential-time recur
sive algorithm to compute the length of an LCS of two sequences. Since
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there are only 8(mn) distinct subproblems, however, we can use dynamic
programming to compute the solutions bottom up.

Procedure LCS-LENGTH takes two sequences X = (Xt>X2, ... ,xm) and
Y = (YI,Y2, ... ,Yn) as inputs. It stores the c[l,j] values in a table c[O.. m,
O.. n] whose entries are computed in row-major order. (That is, the first
row of c is filled in from left to right, then the second row, and so on.)
It also maintains the table b[I .. m, 1 .. n] to simplify construction of an
optimal solution. Intuitively, b[l, j] points to the table entry corresponding
to the optimal subproblem solution chosen when computing c[l, j]. The
procedure returns the band c tables; c[m, n] contains the length of an LCS
of X and Y.

LCS-LENGTH(X, Y)

1 m +- length[X]
2 n +- length[Y]
3 for 1 +- 1 to m
4 do c[i,O] +- 0
5 for j +- 0 to n
6 do c[O,j] +- 0
7 for 1 +- I to m
8 do for j +- 1 to n
9 do if Xi Yj

10 then c[l,j] +- c[1 - l,j - 1]+ I
11 b[l,j] +- "<,"
12 else ifc[1 l,j]2':c[i,j-l]
13 then c[i,j] +- c[i - l,j]
14 b[l,j] +- ''j''
15 else c[i,j] +- c[i,j - 1]
16 b[l, j] +- "+-"

17 return c and b

Figure 16.3 shows the tables produced by LCS-LENGTH on the sequences
X (A,B,C,B,D,A,B) and Y = (B,D,C,A,B,A). The running time of
the procedure is O(mn), since each table entry takes O( 1) time to compute.

Constructing an LCS

The b table returned by LCS-LENGTH can be used to quickly construct an
LCS of X = (XI,X2, ... ,Xm) and Y = (YhY2, ... .r»). We simply begin
at b[m, n] and trace through the table following the arrows. Whenever
we encounter a """," in entry b[l,j], it implies that Xi Yj is an element
of the LCS. The elements of the LCS are encountered in reverse order
by this method. The following recursive procedure prints out an LCS of
X and Y in the proper, forward order. The initial invocation is PRINT
LCS(b, X, length[X], length[Y]).
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Figure 16.3 Th e c and b tabl es co mputed by LCS-LENGTH on the seq uences X ::
(A, B, C, B, D, A, B) and Y "" (B. D , C. A,B , A). The square in row i and column j
contains the value of e[i , i ) and the appropriate arrow for the value of b[i ,}). The
entry 4 in c(7. 6)- thc lower right-han d corner of the table-is the length of an
LCS (D.C, B, A) of X and Y. For i, l > O. entry el i ,i] depends only on whether
X, = Yl and the values in entries eli - I ,i l, e[i,l - II, and eli - I, j - I] , which are
co mputed before C(I ,) ). To reconstruct the elements of an LCS, follow the b[i , ) )
arrows from the lower right-hand earner; the path is shaded . Each "'" on the
path corresponds to an entry (highlighted) for which x, = Yl is a member of an
LCS.

PRINT·LCS(b, X , i , j )

I if i = Oor j = O
2 then return
3 ;( bl i ,j) = "'"
4 then PRINT-LCS(b, X, i - l , j - l )
5 pri nt X I

6 elseif b[i , j ) = "I"
7 then PRINT-LCS(b,X, i -l,j)
8 else PRINT·LCS(b, X, i, j - 1)

For the b table in Figure 16.3, this procedure prints wBCBA.- The proce
dure takes time O(m + n ), since at least one of i and j is decremented in
each stage of the recursion.

Improving the code

Once you have developed an algori thm, you will often find that you can
improve on the time or space it uses. This is especially true of straight
forward dynam ic-programming algorithms. Some changes can simplify
the code and improve constant factors but otherwise yield no asymptotic
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improvement in performance. Others can yield substantial asymptotic
savings in time and space.

For example, we can eliminate the b table altogether. Each c[i,j] en
try depends on only three other c table entries: c[iI, j 1], c[iI, j],
and c[ i, j - I]. Given the value of c[ i, j], we can determine in O( 1) time
which of these three values was used to compute c[i,j], without inspect
ing table b. Thus, we can reconstruct an LCS in O(m + n) time using
a procedure similar to PRINT-LCS. (Exercise 16.3-2 asks you to give the
pseudocode.) Although we save 8(mn) space by this method, the aux
iliary space requirement for computing an LCS does not asymptotically
decrease, since we need 8(mn) space for the c table anyway.

We can, however, reduce the asymptotic space requirements for LCS
LENGTH, since it needs only two rows of table c at a time: the row being
computed and the previous row. (In fact, we can use only slightly more
than the space for one row of c to compute the length of an LCS. See
Exercise 16.3-4.) This improvement works if we only need the length of
an LCS; if we need to reconstruct the elements of an LCS, the smaller table
does not keep enough information to retrace our steps in O(m + n) time.

Exercises

16.3-1
Determine an LCS of (1,0,0, 1,0, 1,0, 1) and (O, 1,0, 1, 1,0, 1, 1,0).

16.3-2
Show how to reconstruct an LCS from the completed c table and the orig
inal sequences X = (Xl,X2, ... ,Xm) and Y (YhY2, ... ,Yn) in O(m + n)
time, without using the b table.

16.3-3
Give a memoized version of LCS-LENGTH that runs in O(mn) time.

16.3-4
Show how to compute the length of an LCS using only 2 min(m, n) entries
in the c table plus O(1) additional space. Then, show how to do this using
min(m, n) entries plus 0(1) additional space.

16.3-5
Give an 0(n2)-time algorithm to find the longest monotonically increasing
subsequence of a sequence of n numbers.

16.3-6 *
Give an O(n lg nj-time algorithm to find the longest monotonically increas
ing subsequence of a sequence of n numbers. (Hint: Observe that the last
element of a candidate subsequence of length i is at least as large as the last
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element of a candidate subsequence of length i-I. Maintain candidate
subsequences by linking them through the input sequence.)

16.4 Optimal polygon triangulation

In this section, we investigate the problem of optimally triangulating a
convex polygon. Despite its outward appearance, we shall see that this
geometric problem has a strong similarity to matrix-chain multiplication.

A polygon is a piecewise-linear, closed curve in the plane. That is, it
is a curve ending on itself that is formed by a sequence of straight-line
segments, called the sides of the polygon. A point joining two consecutive
sides is called a vertex of the polygon. If the polygon is simple, as we shall
generally assume, it does not cross itself. The set of points in the plane
enclosed by a simple polygon forms the interior of the polygon, the set
of points on the polygon itself forms its boundary, and the set of points
surrounding the polygon forms its exterior. A simple polygon is convex if,
given any two points on its boundary or in its interior, all points on the
line segment drawn between them are contained in the polygon's boundary
or interior.

We can represent a convex polygon by listing its vertices in counterclock
wise order. That is, if P = (va, VI, ... , Vn-I) is a convex polygon, it has n
sides VaVI, Vi V2, ... , I where we interpret u; as Va. (In general, we
shall implicitly assume arithmetic on vertex indices is taken modulo the
number of vertices.)

Given two nonadjacent vertices Vi and Vj, the segment is a chord
of the polygon. A chord divides the polygon into two polygons:
(Vi, Vi+h ... , Vj) and (Vj, Vj+h'''' Vi)' A triangulation of a polygon is a
set T of chords of the polygon that divide the polygon into disjoint trian
gles (polygons with 3 sides). Figure 16.4 shows two ways of triangulating
a 7-sided polygon. In a triangulation, no chords intersect (except at end
points) and the set T of chords is maximal: every chord not in T intersects
some chord in T. The sides of triangles produced by the triangulation are
either chords in the triangulation or sides of the polygon. Every trian
gulation of an n-vertex convex polygon has n 3 chords and divides the
polygon into n 2 triangles.

In the optimal (polygon) triangulation problem, we are given a convex
polygon P = (va, VI, ... ,Vn-I) and a weight function w defined on triangles
formed by sides and chords of P. The problem is to find a triangulation
that minimizes the sum of the weights of the triangles in the triangulation.
One weight function on triangles that comes to mind naturally is

W(!.:l.ViVjVk) = IVjvjl + IVjVkl + IVkVd ,

where IVjvjl is the euclidean distance from Vi to u]. The algorithm we shall
develop works for an arbitrary choice of weight function.
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(a)
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(b)

Figure 16.4 Two ways of triangulating a convex polygon. Every triangulation of
this 7-sided polygon has 7 3 4 chords and divides the polygon into 7 2 = 5
triangles.

Correspondence to parenthesization

There is a surprising correspondence between the triangulation of a poly
gon and the parenthesization of an expression such as a matrix-chain prod
uct. This correspondence is best explained using trees.

A full parenthesization of an expression corresponds to a full binary tree,
sometimes called the parse tree of the expression. Figure 16.5(a) shows a
parse tree for the parenthesized matrix-chain product

(16.6)

Each leaf of a parse tree is labeled by one of the atomic elements (ma
trices) in the expression. If the root of a subtree of the parse tree has a
left subtree representing an expression EI and a right subtree representing
an expression Er , then the subtree itself represents the expression (EIEr ) .

There is a one-to-one correspondence between parse trees and fully paren
thesized expressions on n atomic elements.

A triangulation of a convex polygon (Vo, Vb ... , Vn-I) can also be rep
resented by a parse tree. Figure 16.5(b) shows the parse tree for the tri
angulation of the polygon from Figure 16.4(a). The internal nodes of the
parse tree are the chords of the triangulation plus the side VOV6, which is
the root. The leaves are the other sides of the polygon. The root is
one side of the triangle .6.VOV3V6. This triangle determines the children of
the root: one is the chord VOV3, and the other is the chord Notice
that this triangle divides the original polygon into three parts: the triangle
.6.VOV3V6 itself, the polygon (vo, VI, .•. , V3), and the polygon (V3, V4, .•• , V6).

Moreover, the two subpolygons are formed entirely by sides of the orig-
inal polygon, except for their roots, which are the chords and
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(a) (b)

Figure 16.5 Parse trees. (a) The parse tree for the parenthesized product
«AI (A2A3))(A4(AsA6))) and for the triangulation of the 7-sided polygon from Fig
ure 16.4(a). (b) The triangulation of the polygon with the parse tree overlaid. Each
matrix Ai corresponds to the side Vi-IVi for i 1,2, ... ,6.

In recursive fashion, the polygon (vo, VI, ••• , V3) contains the left subtree
of the root of the parse tree, and the polygon (V3, V4, .•• , V6) contains the
right subtree.

In general, therefore, a triangulation of an n-sided polygon corresponds
to a parse tree with n - I leaves. By an inverse process, one can produce a
triangulation from a given parse tree. There is a one-to-one correspondence
between parse trees and triangulations.

Since a fully parenthesized product of n matrices corresponds to a parse
tree with n leaves, it therefore also corresponds to a triangulation of an
(n + I)-vertex polygon. Figures 16.5(a) and (b) illustrate this correspon
dence. Each matrix Ai in a product A 1A2··· An corresponds to a side
of an (n + l j-vertex polygon. A chord where i < i. corresponds to a
matrix Ai+J..j computed during the evaluation of the product.

In fact, the matrix-chain multiplication problem is a special case of the
optimal triangulation problem. That is, every instance of matrix-chain
multiplication can be cast as an optimal triangulation problem. Given
a matrix-chain product AlA2 ... An, we define an (n + 1)-vertex convex
polygon P = (vo,vJ, ... ,vn). If matrix Ai has dimensions Pi-I x Pi for
i = 1,2, ... , n, we define the weight function for the triangulation as

w(l:,.vivjvd =PiPjPk .

An optimal triangulation of P with respect to this weight function gives
the parse tree for an optimal parenthesization of A I A2 ... An.

Although the reverse is not true-the optimal triangulation problem is
not a special case of the matrix-chain multiplication problem-it turns
out that our code MATRIX-CHAIN-ORDER from Section 16.1, with minor
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modifications, solves the optimal triangulation problem on an (n + 1)
vertex polygon. We simply replace the sequence (pO,PI, ... ,Pn) of matrix
dimensions with the sequence (vo, VI>"" vn ) of vertices, change references
to P to references to v, and change line 9 to read:

9

After running the algorithm, the element m[l, n] contains the weight of an
optimal triangulation. Let us see why this is so.

The substructure of an optimal triangulation

Consider an optimal triangulation T of an (n + Ij-vertex polygon P =
(vo, VI> ... , v n ) that includes the triangle 6,vOvkvn for some k, where 1 ~

k ~ n - I. The weight of T is just the sum of the weights of 6,voVk Vn and
triangles in the triangulation of the two subpolygons (vo, v I, ... , Vk) and
(Vk, vk+I>"" vn). The triangulations of the subpolygons determined by T
must therefore be optimal, since a lesser-weight triangulation of either
subpolygon would contradict the minimality of the weight of T.

A recursive solution

Just as we defined m[i, i) to be the minimum cost of computing the matrix
chain subproduct AiAi+1 ... A j, let US define t[i,i], for 1 :::; i < i :::; n, to be
the weight of an optimal triangulation of the polygon (Vi-I> Vi, ... , Vj). For
convenience, we consider a degenerate polygon (Vi-I, Vi) to have weight 0.
The weight of an optimal triangulation of polygon P is given by t[l, n].

Our next step is to define t[i, j] recursively. The basis is the degenerate
case of a 2-vertex polygon: t[i, i) = °for i = 1,2, ... , n. When i i ~ I,
we have a polygon (Vi-I> Vi, ... , Vj) with at least 3 vertices. We wish to
minimize over all vertices Vb for k = i, i + I, ... , j - 1, the weight of
6,Vi-IVkVj plus the weights of the optimal triangulations of the polygons
(Vi-hVi,. ",Vk) and (Vk>Vk+I> ... ,Vj). The recursive formulation is thus

{
o if i = j ,

t[i,i] i$TI~_I{t[i,k]+t[k+l,i]+W(6,Vi-IVkVj)}ifi<i. (16.7)

Compare this recurrence with the recurrence (16.2) that we developed for
the minimum number m[i, i) of scalar multiplications needed to compute
AiAi+1 ... A j • Except for the weight function, the recurrences are identi
cal, and thus, with the minor changes to the code mentioned above, the
procedure MATRiX-CHAIN-ORDER can compute the weight of an optimal
triangulation. Like MATRiX-CHAIN-ORDER, the optimal triangulation pro
cedure runs in time 8(n3 ) and uses 8(n2 ) space.
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Exercises

16.4-1
Prove that every triangulation of an n-vertex convex polygon has n - 3
chords and divides the polygon into n - 2 triangles.

16.4-2
Professor Guinevere suggests that a faster algorithm to solve the optimal
triangulation problem might exist for the special case in which the weight
of a triangle is its area. Is the professor's intuition accurate?

16.4-3
Suppose that a weight function w is defined on the chords of a triangulation
instead of on the triangles. The weight of a triangulation with respect to w
is then the sum of the weights of the chords in the triangulation. Show that
the optimal triangulation problem with weighted chords is just a special
case of the optimal triangulation problem with weighted triangles.

16.4-4
Find an optimal triangulation of a regular octagon with unit-length sides.
Use the weight function

w(L::.vivJvd = IViVjl + IVjVkl + IVkVd ,

where IViVjl is the euclidean distance from Vi to o]. (A regular polygon is
one with equal sides and equal interior angles.)

16-1 Bitonlc euclidean traveling-salesman problem
The euclidean traveling-salesman problem is the problem of determining
the shortest closed tour that connects a given set of n points in the plane.
Figure 16.6(a) shows the solution to a 7-point problem. The general prob
lem is NP-complete, and its solution is therefore believed to require more
than polynomial time (see Chapter 36).

J. L. Bentley has suggested that we simplify the problem by restricting
our attention to bitonic tours, that is, tours that start at the leftmost point,
go strictly left to right to the rightmost point, and then go strictly right to
left back to the starting point. Figure 16.6(b) shows the shortest bitonic
tour of the same 7 points. In this case, a polynomial-time algorithm is
possible.

Describe an O( n2)-time algorithm for determining an optimal bitonic
tour. You may assume that no two points have the same x-coordinate.
(Hint: Scan left to right, maintaining optimal possibilities for the two parts
of the tour.)



Problems for Chapter 16

(a) (b)

325

Figure 16.6 Seven points in the plane, shown on a unit grid. (a) The shortest
closed tour, with length 24.88 .... This tour is not bitonic. (b) The shortest bitonic
tour for the same set of points. Its length is 25.58 ....

16-2 Printing neatly
Consider the problem of neatly printing a paragraph on a printer. The
input text is a sequence of n words of lengths /), li, ... , In, measured in
characters. We want to print this paragraph neatly on a number of lines
that hold a maximum of M characters each. Our criterion of "neatness" is
as follows. If a given line contains words i through j and we leave exactly
one space between words, the number of extra space characters at the end
of the line is M - j + i - L~=i h. We wish to minimize the sum, over all
lines except the last, of the cubes of the numbers of extra space characters
at the ends of lines. Give a dynamic-programming algorithm to print a
paragraph of n words neatly on a printer. Analyze the running time and
space requirements of your algorithm.

16-3 Edit distance
When a "smart" terminal updates a line of text, replacing an existing
"source" string x[I .. m] with a new "target" string y[l .. n], there are sev
eral ways in which the changes can be made. A single character of the
source string can be deleted, replaced by another character, or copied to
the target string; characters can be inserted; or two adjacent characters of
the source string can be interchanged ("twiddled") while being copied to
the target string. After all the other operations have occurred, an entire
suffix of the source string can be deleted, an operation known as "kill to
end of line."

As an example, one way to transform the source string algorithIn to the
target string altruistic is to use the following sequence of operations.
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Operation
copy a
copy 1
replace g by t
delete 0

copy r
insert u
insert i
insert s
twiddle it into ti
insert c
kill hm

Target string
a
al
alt
alt
altr
altru
altrui
altruis
altruisti
altruistic
altruistic

Source string
19orithm
gorithm

orithm
rithm

ithm
ithm
ithm
ithm

hm
hm

There are many other sequences of operations that accomplish the same
result.

Each of the operations delete, replace, copy, insert, twiddle, and kill has
an associated cost. (Presumably, the cost of replacing a character is less
than the combined costs of deletion and insertion; otherwise, the replace
operation would not be used.) The cost of a given sequence of transfor
mation operations is the sum of the costs of the individual operations in
the sequence. For the sequence above, the cost of converting algorithm
to altruistic is

(3 . cost(copy)) + cost(replace) + cost(delete) + (3 . cost( insert))

+ cost(twiddle) + cost(kill) .

Given two sequences x[1 .. m] and y[1 .. n] and a given set of operation
costs, the edit distance from x to y is the cost of the least expensive transfor
mation sequence that converts x to y. Describe a dynamic-programming
algorithm to find the edit distance from x[1 .. m] to y[l .. n] and print
an optimal transformation sequence. Analyze the running time and space
requirements of your algorithm.

16-4 Planning a company party
Professor McKenzie is consulting for the president of A.-B. Corporation,
which is planning a company party. The company has a hierarchical struc
ture; that is, the supervisor relation forms a tree rooted at the president.
The personnel office has ranked each employee with a conviviality rating,
which is a real number. In order to make the party fun for all attendees,
the president does not want both an employee and his or her immediate
supervisor to attend.

a. Describe an algorithm to make up the guest list. The goal should be to
maximize the sum of the conviviality ratings of the guests. Analyze the
running time of your algorithm.

b. How can the professor ensure that the president gets invited to his own
party?
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Chapter notes

16-5 Viterbi algorithm
We can use dynamic programming on a directed graph G = (V, E) for
speech recognition. Each edge (u, v) E E is labeled with a sound aiu, v)
from a finite set 1: of sounds. The labeled graph is a formal model of
a person speaking a restricted language. Each path in the graph starting
from a distinguished vertex '00 E V corresponds to a possible sequence of
sounds produced by the model. The label of a directed path is defined to
be the concatenation of the labels of the edges on that path.

a. Describe an efficient algorithm that, given an edge-labeled graph G with
distinguished vertex '00 and a sequence s = (0'1,0'2, ••• , O'k) of characters
from 1:, returns a path in G that begins at '00 and has s as its label, if any
such path exists. Otherwise, the algorithm should return NO-SUCH-PATH.

Analyze the running time of your algorithm. (Hint: You may find con
cepts from Chapter 23 useful.)

Now, suppose that every edge (u, v) E E has also been given an associated
nonnegative probability p(u, v) of traversing the edge (u, v) from vertex u
and producing the corresponding sound. The sum of the probabilities
of the edges leaving any vertex equals 1. The probability of a path is
defined to be the product of the probabilities of its edges. We can view
the probability of a path beginning at '00 as the probability that a "random
walk" beginning at '00 will follow the specified path, where the choice of
which edge to take at a vertex u is made probabilistically according to the
probabilities of the available edges leaving u.

b. Extend your answer to part (a) so that if a path is returned, it is a most
probable path starting at '00 and having label s. Analyze the running
time of your algorithm.

R. Bellman began the systematic study of dynamic programming in 1955.
The word "programming," both here and in linear programming, refers to
the use of a tabular solution method. Although optimization techniques
incorporating elements of dynamic programming were known earlier, Bell
man provided the area with a solid mathematical basis [21].

Hu and Shing [106] give an O(n lg n j-time algorithm for the matrix
chain multiplication problem. They also demonstrate the correspondence
between the optimal polygon triangulation problem and the matrix-chain
multiplication problem.

The O(mn)-time algorithm for the longest-common-subsequence prob
lem seems to be a folk algorithm. Knuth [43] posed the question of whether
subquadratic algorithms for the LCS problem exist. Masek and Pater
son [143] answered this question in the affirmative by giving an algorithm
that runs in O(mn /lg n) time, where n ::; m and the sequences are drawn
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from a set of bounded size. For the special case in which no element ap
pears more than once in an input sequence, Szymanski [184] shows that the
problem can be solved in O((n + m) 19(n + m)) time. Many of these results
extend to the problem of computing string edit distances (Problem 16-3).
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Algorithms for optimization problems typically go through a sequence of
steps, with a set of choices at each step. For many optimization problems,
using dynamic programming to determine the best choices is overkill; sim
pler, more efficient algorithms will do. A greedy algorithm always makes
the choice that looks best at the moment. That is, it makes a locally op
timal choice in the hope that this choice will lead to a globally optimal
solution. This chapter explores optimization problems that are solvable
by greedy algorithms.

Greedy algorithms do not always yield optimal solutions, but for many
problems they do. We shall first examine in Section 17.1 a simple but
nontrivial problem, the activity-selection problem, for which a greedy al
gorithm efficiently computes a solution. Next, Section 17.2 reviews some
of the basic elements of the greedy approach. Section 17.3 presents an im
portant application of greedy techniques: the design of data-compression
(Huffman) codes. In Section 17.4, we investigate some of the theory under
lying combinatorial structures called "matroids" for which a greedy algo
rithm always produces an optimal solution. Finally, Section 17.5 illustrates
the application of matroids using the problem of scheduling unit-time tasks
with deadlines and penalties.

The greedy method is quite powerful and works well for a wide range of
problems. Later chapters will present many algorithms that can be viewed
as applications of the greedy method, including minimum-spanning-tree
algorithms (Chapter 24), Dijkstra's algorithm for shortest paths from a
single source (Chapter 25), and Chvatal's greedy set-covering heuristic
(Chapter 37). Minimum spanning trees form a classic example of the
greedy method. Although this chapter and Chapter 24 can be read inde
pendently of each other, you may find it useful to read them together.

17.1 An activity-selection problem

Our first example is the problem of scheduling a resource among several
competing activities. We shall find that a greedy algorithm provides an
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elegant and simple method for selecting a maximum-size set of mutually
compatible activities.

Suppose we have a set S {I, 2, ... , n} of n proposed activities that wish
to use a resource, such as a lecture hall, which can be used by only one
activity at a time. Each activity i has a start time s, and a finish time fj,
where s, :S fj. If selected, activity i takes place during the half-open time
interval [Sj,fj). Activities i and j are compatible if the intervals [s;,fj) and
[sj,Ji) do not overlap (i.e., i and j are compatible if s, ~ Ji or Sj ~ fj).
The activity-selection problem is to select a maximum-size set of mutually
compatible activities.

A greedy algorithm for the activity-selection problem is given in the
following pseudocode. We assume that the input activities are in order by
increasing finishing time:

(17.1)

If not, we can sort them into this order in time O(n Ign), breaking ties
arbitrarily. The pseudocode assumes that inputs sand f are represented
as arrays.

GREEDY-ACTIVITY-SELECTOR(S, f)

I n length[s]
2 A...-{l}
3 l r: I
4 for i ...- 2 to n
5 do if s, ~ Ji
6 then A ...- A U {i}
7 l r: i
8 return A

The operation of the algorithm is shown in Figure 17.1. The set A
collects the selected activities. The variable j specifies the most recent
addition to A. Since the activities are considered in order of nondecreasing
finishing time, Ji is always the maximum finishing time of any activity in A.
That is,

Ji = max {fk : k E A} . (17.2)

Lines 2-3 select activity 1, initialize A to contain just this activity, and
initialize j to this activity. Lines 4-7 consider each activity i in turn and
add i to A if it is compatible with all previously selected activities. To see
if activity i is compatible with every activity currently in A, it suffices by
equation (17.2) to check (line 5) that its start time s, is not earlier than
the finish time Ji of the activity most recently added to A. If activity i
is compatible, then lines 6-7 add it to A and update i. The GREEDY
ACTIVITy-SELECTOR procedure is quite efficient. It can schedule a set S of
n activities in 8(n) time, assuming that the activities were already sorted
initially by their finish times.
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The activity picked next by GREEDy-AcTIVITy-SELECTOR is always the
one with the earliest finish time that can be legally scheduled. The activ
ity picked is thus a "greedy" choice in the sense that, intuitively, it leaves
as much opportunity as possible for the remaining activities to be sched
uled. That is, the greedy choice is the one that maximizes the amount of
unscheduled time remaining.

Proving the greedy algorithm correct

Greedy algorithms do not always produce optimal solutions. However,
GREEDY-AcTIVITy-SELECTOR always finds an optimal solution to an in
stance of the activity-selection problem.

Theorem 17.1
Algorithm GREEDY-AcTIVITy-SELECTOR produces solutions of maximum
size for the activity-selection problem.

Proof Let S = {I, 2, ... , n} be the set of activities to schedule. Since we
are assuming that the activities are in order by finish time, activity 1 has
the earliest finish time. We wish to show that there is an optimal solution
that begins with a greedy choice, that is, with activity 1.

Suppose that A ~ S is an optimal solution to the given instance of the
activity-selection problem, and let us order the activities in A by finish
time. Suppose further that the first activity in A is activity k. If k = 1,
then schedule A begins with a greedy choice. If k =1= 1, we want to show
that there is another optimal solution B to S that begins with the greedy
choice, activity 1. Let B = A {k} U{1}. Because fi $ fk, the activities
in B are disjoint, and since B has the same number of activities as A, it is
also optimal. Thus, B is an optimal solution for S that contains the greedy
choice of activity 1. Therefore, we have shown that there always exists an
optimal schedule that begins with a greedy choice.

Moreover, once the greedy choice of activity 1 is made, the problem
reduces to finding an optimal solution for the activity-selection problem
over those activities in S that are compatible with activity 1. That is, if A
is an optimal solution to the original problem S, then A' = A - {I} is an
optimal solution to the activity-selection problem S' = {i E S : s, ~ fi}.
Why? If we could find a solution B' to S' with more activities than A',
adding activity 1 to B' would yield a solution B to S with more activi
ties than A, thereby contradicting the optimality of A. Therefore, after
each greedy choice is made, we are left with an optimization problem of
the same form as the original problem. By induction on the number of
choices made, making the greedy choice at every step produces an optimal
solution. _
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Exercises

333

17.1-1
Give a dynamic-programming algorithm for the activity-selection problem,
based on computing m, iteratively for i = 1,2, ... , n, where m, is the
size of the largest set of mutually compatible activities among activities
{ I , 2, ... , i}. Assume that the inputs have been sorted as in equation (17.1).
Compare the running time of your solution to the running time of GREEDY
ACTIVITY-SELECTOR.

17.1-2
Suppose that we have a set of activities to schedule among a large number
of lecture halls. We wish to schedule all the activities using as few lecture
halls as possible. Give an efficient greedy algorithm to determine which
activity should use which lecture hall.

(This is also known as the interval-graph coloring problem. We can create
an interval graph whose vertices are the given activities and whose edges
connect incompatible activities. The smallest number of colors required
to color every vertex so that no two adjacent vertices are given the same
color corresponds to finding the fewest lecture halls needed to schedule all
of the given activities.)

17.1-3
Not just any greedy approach to the activity-selection problem produces
a maximum-size set of mutually compatible activities. Give an example
to show that the approach of selecting the activity of least duration from
those that are compatible with previously selected activities does not work.
Do the same for the approach of always selecting the activity that overlaps
the fewest other remaining activities.

17.2 Elements of the greedy strategy

A greedy algorithm obtains an optimal solution to a problem by making a
sequence of choices. For each decision point in the algorithm, the choice
that seems best at the moment is chosen. This heuristic strategy does not
always produce an optimal solution, but as we saw in the activity-selection
problem, sometimes it does. This section discusses some of the general
properties of greedy methods.

How can one tell if a greedy algorithm will solve a particular optimiza
tion problem? There is no way in general, but there are two ingredients that
are exhibited by most problems that lend themselves to a greedy strategy:
the greedy-choice property and optimal substructure.



334 Chapter 17 Greedy Algorithms

Greedy-choice property

The first key ingredient is the greedy-choice property: a globally optimal so
lution can be arrived at by making a locally optimal (greedy) choice. Here
is where greedy algorithms differ from dynamic programming. In dynamic
programming, we make a choice at each step, but the choice may depend
on the solutions to subproblems. In a greedy algorithm, we make whatever
choice seems best at the moment and then solve the subproblems arising
after the choice is made. The choice made by a greedy algorithm may de
pend on choices so far, but it cannot depend on any future choices or on
the solutions to subproblems. Thus, unlike dynamic programming, which
solves the subproblems bottom up, a greedy strategy usually progresses in
a top-down fashion, making one greedy choice after another, iteratively
reducing each given problem instance to a smaller one.

Of course, we must prove that a greedy choice at each step yields a
globally optimal solution, and this is where cleverness may be required.
Typically, as in the case of Theorem 17.1, the proof examines a globally
optimal solution. It then shows that the solution can be modified so that
a greedy choice is made as the first step, and that this choice reduces the
problem to a similar but smaller problem. Then, induction is applied
to show that a greedy choice can be used at every step. Showing that a
greedy choice results in a similar but smaller problem reduces the proof of
correctness to demonstrating that an optimal solution must exhibit optimal
substructure.

Optimal substructure

A problem exhibits optimal substructure if an optimal solution to the prob
lem contains within it optimal solutions to subproblems. This property is
a key ingredient of assessing the applicability of dynamic programming as
well as greedy algorithms. As an example of optimal substructure, recall
that the proof of Theorem 17.1 demonstrated that if an optimal solution A
to the activity-selection problem begins with activity 1, then the set of ac
tivities A' = A {I} is an optimal solution to the activity-selection problem
S'={iES:Si~fi}.

Greedy versus dynamic programming

Because the optimal-substructure property is exploited by both greedy
and dynamic-programming strategies, one might be tempted to generate
a dynamic-programming solution to a problem when a greedy solution
suffices, or one might mistakenly think that a greedy solution works when
in fact a dynamic-programming solution is required. To illustrate the sub
tleties between the two techniques, let us investigate two variants of a
classical optimization problem.
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The 0-1 knapsack problem is posed as follows. A thief robbing a store
finds n items; the fth item is worth Vi dollars and weighs ui, pounds, where
Vi and ui, are integers. He wants to take as valuable a load as possible, but
he can carry at most W pounds in his knapsack for some integer W. What
items should he take? (This is called the 0-1 knapsack problem because
each item must either be taken or left behind; the thief cannot take a
fractional amount of an item or take an item more than once.)

In the fractional knapsack problem, the setup is the same, but the thief can
take fractions of items, rather than having to make a binary (0-1) choice
for each item. You can think of an item in the 0-1 knapsack problem as
being like a gold ingot, while an item in the fractional knapsack problem
is more like gold dust.

Both knapsack problems exhibit the optimal-substructure property. For
the 0-1 problem, consider the most valuable load that weighs at most W
pounds. If we remove item j from this load, the remaining load must be
the most valuable load weighing at most W - W j that the thief can take
from the n 1 original items excluding j. For the comparable fractional
problem, consider that if we remove a weight W of one item j from the
optimal load, the remaining load must be the most valuable load weighing
at most W - W that the thief can take from the n - I original items plus
W j W pounds of item j.

Although the problems are similar, the fractional knapsack problem is
solvable by a greedy strategy, whereas the 0-1 problem is not. To solve
the fractional problem, we first compute the value per pound Vi/Wi for
each item. Obeying a greedy strategy, the thief begins by taking as much
as possible of the item with the greatest value per pound. If the supply
of that item is exhausted and he can still carry more, he takes as much
as possible of the item with the next greatest value per pound, and so
forth until he can't carry any more. Thus, by sorting the items by value
per pound, the greedy algorithm runs in O( n lgn) time. The proof that
the fractional knapsack problem has the greedy-choice property is left as
Exercise 17.2-1.

To see that this greedy strategy does not work for the 0-1 knapsack
problem, consider the problem instance illustrated in Figure 17.2(a). There
are 3 items, and the knapsack can hold 50 pounds. Item I weighs 10
pounds and is worth 60 dollars. Item 2 weighs 20 pounds and is worth
100 dollars. Item 3 weighs 30 pounds and is worth 120 dollars. Thus, the
value per pound of item 1 is 6 dollars per pound, which is greater than the
value per pound of either item 2 (5 dollars per pound) or item 3 (4 dollars
per pound). The greedy strategy, therefore, would take item I first. As
can be seen from the case analysis in Figure 17.2(b), however, the optimal
solution takes items 2 and 3, leaving 1 behind. The two possible solutions
that involve item 1 are both suboptimal.

For the comparable fractional problem, however, the greedy strategy,
which takes item 1 first, does yield an optimal solution, as shown in Fig-
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Figure 17.2 The greedy slralqy does not work for the 0-1 knapsack problem.
(a) The thief must select a subset of the three items shown whose weight must not
exceed 50 pounds. (b) The optimal subset includes items 2 and 3. Any solution
with item I is suboptimal, even though item ) has the greatest value per pound.
(c) For the fractiona l knapsack problem , taking the items in order of greatest value
per pound yields an optimal solution.

ure 17.2(c). Taking item 1 doesn't work in the 0-1 problem because the
thief is unable to fill his knapsack to capacity, and the empty space lowers
th e effective value per pound of his load. In the 0- 1 problem, when we
conside r an item for inclusion in the knapsack, we must compare the s0

lution to the subproblem in which the item is included with th e solution
to the subproblem in which the ite m is excluded before we can make the
choice. The problem formulated in th is way gives rise to many overlapping
subproblems- a hallmark of dynamic programming, and indeed, dynam ic
programming can be used to solve the 0- 1 problem . (See Exercise 17.2-2.)

Exercises

17.2-1
Prove that the fra ctional knapsack problem has the greedy-choice property.

17.2-2
Give a dynamic-programming solution to the 0- 1 knapsack problem that
runs in O(n W ) time, where n is number of items and W is the maximum
weight of items that the thi ef can put in his knapsack.

17.2-3
Suppose that in a 0- 1 knapsack problem , the orde r of the items when sorted
by increasing weight is th e same as their orde r when sorted by decreasing
value. Give an effic ient algorithm to find an optim al solution to th is variant
of the knapsack problem , and argue th at your algorithm is correct.
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17.2-4
Professor Midas drives an automobile from Newark to Reno along Inter
state 80. His car's gas tank, when full, holds enough gas to travel n miles,
and his map gives the distances between gas stations on his route. The
professor wishes to make as few gas stops as possible along the way. Give
an efficient method by which Professor Midas can determine at which gas
stations he should stop, and prove that your strategy yields an optimal
solution.

17.2-5
Describe an efficient algorithm that, given a set {XI, X2, ••• ,xn } of points
on the real line, determines the smallest set of unit-length closed intervals
that contains all of the given points. Argue that your algorithm is correct.

17.2-6 *
Show how to solve the fractional knapsack problem in O(n) time. Assume
that you have a solution to Problem 10-2.

.................................._._-------_.-------_. -----

17.3 Huffman codes

Huffman codes are a widely used and very effective technique for com
pressing data; savings of 20% to 90% are typical, depending on the char
acteristics of the file being compressed. Huffman's greedy algorithm uses
a table of the frequencies of occurrence of each character to build up an
optimal way of representing each character as a binary string.

Suppose we have a 1OO,OOO-character data file that we wish to store com
pactly. We observe that the characters in the fileoccur with the frequencies
given by Figure 17.3. That is, only six different characters appear, and the
character a occurs 45,000 times.

There are many ways to represent such a file of information. We consider
the problem of designing a binarycharacter code (or codefor short) wherein
each character is represented by a unique binary string. If we use a fixed
length code, we need 3 bits to represent six characters: a = 000, b = 001,

Frequency (in thousands)
Fixed-length codeword
Variable-length codeword

a b
45 13

000 001
o 101

c d
12 16

010 OIl
100 1I1

e
9

100
1I01

f
5

101
1I00

Figure 17.3 A character-coding problem. A data file of 100,000 characters con
tains only the characters a-f, with the frequencies indicated. If each character
is assigned a 3-bit codeword, the file can be encoded in 300,000 bits. Using the
variable-length code shown, the file can be encoded in 224,000 bits.
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... , f = 101. This method requires 300,000 bits to code the entire file.
Can we do better?

A variable-length code can do considerably better than a fixed-length
code, by giving frequent characters short codewords and infrequent char
acters long codewords. Figure 17.3 shows such a code; here the l-bit string
o represents a, and the 4-bit string 1100 represents f. This code requires

(45·1 + 13·3 + 12·3 + 16·3 + 9·4 + 5·4)· 1,000= 224,000 bits

to represent the file, a savings of approximately 25%. In fact, this is an
optimal character code for this file, as we shall see.

Prefix codes

We consider here only codes in which no codeword is also a prefix of
some other codeword. Such codes are called prefix codes:' It is possible to
show (although we won't do so here) that the optimal data compression
achievable by a character code can always be achieved with a prefix code,
so there is no loss of generality in restricting attention to prefix codes.

Prefix codes are desirable because they simplify encoding (compression)
and decoding. Encoding is always simple for any binary character code;
we just concatenate the codewords representing each character of the file.
For example, with the variable-length prefix code of Figure 17.3, we code
the 3-character file abc as 0 . 101 . 100 = 010 11 00, where we use -.» to
denote concatenation.

Decoding is also quite simple with a prefix code. Since no codeword
is a prefix of any other, the codeword that begins an encoded file is un
ambiguous. We can simply identify the initial codeword, translate it back
to the original character, remove it from the encoded file, and repeat the
decoding process on the remainder of the encoded file. In our example,
the string 001011101 parses uniquely as °.0 . 101 . 1101, which decodes
to aabe.

The decoding process needs a convenient representation for the prefix
code so that the initial codeword can be easily picked off. A binary tree
whose leaves are the given characters provides one such representation.
We interpret the binary codeword for a character as the path from the
root to that character, where 0 means "go to the left child" and 1 means
"go to the right child." Figure 17.4 shows the trees for the two codes of our
example. Note that these are not binary search trees, since the leaves need
not appear in sorted order and internal nodes do not contain character
keys.

An optimal code for a file is always represented by a full binary tree,
in which every nonleaf node has two children (see Exercise 17.3-1). The

I Perhaps "prefix-free codes" would be a better name, but the term "prefix codes" is standard
in the literature.
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(a)

339

(b)

Figure 17.4 Trees corresponding to the coding schemes in Figure 17.3. Each
leaf is labeled with a character and its frequency of occurrence. Each internal
node is labeled with the sum of the weights of the leaves in its subtree. (a) The
tree corresponding to the fixed-length code a = 000, ... , f 100. (b) The tree
corresponding to the optimal prefix code a = 0, b = 101, ... , f = 1100.

fixed-length code in our example is not optimal since its tree, shown in
Figure 17.4(a), is not a full binary tree: there are codewords beginning
10... , but none beginning 11.... Since we can now restrict our attention
to full binary trees, we can say that if C is the alphabet from which the
characters are drawn, then the tree for an optimal prefix code has exactly
[Cl leaves, one for each letter of the alphabet, and exactly ICI- I internal
nodes.

Given a tree T corresponding to a prefix code, it is a simple matter to
compute the number of bits required to encode a file. For each character e
in the alphabet C, let j(e) denote the frequency of e in the file and let
dT(e) denote the depth of e's leaf in the tree. Note that dde) is also the
length of the codeword for character e. The number of bits required to
encode a file is thus

B(T) = L j(e)dT(e) ,
cEC

which we define as the cost of the tree T.

Constructing a Huffman code

(17.3)

Huffman invented a greedy algorithm that constructs an optimal prefix
code called a Huffman code. The algorithm builds the tree T corresponding
to the optimal code in a bottom-up manner. It begins with a set of ICI
leaves and performs a sequence of ICI- 1 "merging" operations to create
the final tree.

In the pseudocode that follows, we assume that C is a set of n characters
and that each character e E C is an object with a defined frequency j[e].
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A priority queue Q, keyed on j, is used to identify the two least-frequent
objects to merge together. The result of the merger of two objects is a new
object whose frequency is the sum of the frequencies of the two objects
that were merged.

HUFFMAN(C)

1 n -ICI
2 Q-C
3 for i-I to n 1
4 do z - ALLOCATE-NoDEO
5 x - left[z] - EXTRACT-MIN(Q)

6 y - right[z] - EXTRACT-MIN(Q)
7 j[z] - f[x] + flY]
8 INSERT(Q, z)
9 return EXTRACT-MIN(Q)

For our example, Huffman's algorithm proceeds as shown in Figure 17.5.
Since there are 6 letters in the alphabet, the initial queue size is n = 6,
and 5 merge steps are required to build the tree. The final tree represents
the optimal prefix code. The codeword for a letter is the sequence of edge
labels on the path from the root to the letter.

Line 2 initializes the priority queue Q with the characters in C. The
for loop in lines 3-8 repeatedly extracts the two nodes x and y of lowest
frequency from the queue, and replaces them in the queue with a new
node z representing their merger. The frequency of z is computed as the
sum of the frequencies of x and y in line 7. The node z has x as its left
child and y as its right child. (This order is arbitrary; switching the left
and right child of any node yields a different code of the same cost.) After
n - I mergers, the one node left in the queue-the root of the code tree-is
returned in line 9.

The analysis of the running time of Huffman's algorithm assumes that
Q is implemented as a binary heap (see Chapter 7). For a set C of n
characters, the initialization of Q in line 2 can be performed in O(n) time
using the BUILD-HEAP procedure in Section 7.3. The for loop in lines 3-8
is executed exactly Inl - 1 times, and since each heap operation requires
time O(lgn), the loop contributes O(n 19n) to the running time. Thus, the
total running time of HUFFMAN on a set of n characters is O(n lgn).

Correctness of Huffman's algorithm

To prove that the greedy algorithm HUFFMAN is correct, we show that
the problem of determining an optimal prefix code exhibits the greedy
choice and optimal-substructure properties. The next lemma shows that
the greedy-choice property holds.
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(a) (b) 10:121 Ib:131 ~14 1d:161 1_:451
o 1

f:S .:9

(c) A14 Id:16!
o 1

£:5 .:9

(d)

(e) 1_:451 (f)

Figure 17.5 The steps of Huffman's algorithm for the frequencies given in Fig.
ure 17.3. Each part shows the contents of the queue sorted into increasing order
by frequency. At each step, the two trees with lowest frequencies are merged.
Leaves are shown as rectangles containing a character and its frequency. Internal
nodes are shown as circles containing the sum of the frequencies of its children.
An edge connecting an internal node with its children is labeled 0 if it is an edge
to a left child and 1 if it is an edge to a right child. The codeword for a letter is
the sequence of labels on the edges connecting the root to the leaf for that letter.
(a) The initial set of n 6 nodes, one for each letter. (b)-(e) Intermediate stages.
(t) The final tree.
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Figure 17.6 An illustration of the key step in the proof of Lemma 17.2. In the
optimal tree T, leaves band c are two of the deepest leaves and are siblings.
Leaves x and yare the two leaves that Huffman's algorithm merges together first;
they appear in arbitrary positions in T. Leaves b and x are swapped to obtain
tree T'. Then, leaves c and yare swapped to obtain tree T", Since each swap does
not increase the cost, the resulting tree 'r: is also an optimal tree.

Lemma 17.2
Let C be an alphabet in which each character e E C has frequency f[e].
Let x and y be two characters in C having the lowest frequencies. Then
there exists an optimal prefix code for C in which the codewords for x
and y have the same length and differ only in the last bit.

Proof The idea of the proof is to take the tree T representing an arbitrary
optimal prefix code and modify it to make a tree representing another
optimal prefix code such that the characters x and y appear as sibling
leaves of maximum depth in the new tree. If we can do this, then their
codewords will have the same length and differ only in the last bit.

Let band e be two characters that are sibling leaves of maximum depth
in T. Without loss of generality, we assume that f[b] S f[e] and f[x] s
flY]. Since f[x] and fry] are the two lowest leaf frequencies, in order, and
f[b] and f[e] are two arbitrary frequencies, in order, we have f[x] S f[b]
and fry] s f[e]. As shown in Figure 17.6, we exchange the positions in T
of b and x to produce a tree T/, and then we exchange the positions in T'
of e and y to produce a tree T'', By equation (17.3), the difference in cost
between T and T' is

B(T) - B(T/) = Lf(e)dT(e) - Lf(e)dp(c)
cEC cEC

= f[x]dT(x) + f[b]dT(b) - f[x]dp(x) - f[b]dp(b)

f[x]dT(x) + f[b]dT(b) - f[x]dT(b) - f[b]dT(x)

= (f[b] f[x])(dT(b) - dr(x))

> 0,

because both f[b] - f[x] and dr£b] - dr[x] are nonnegative. More specif
ically, f[b] - f[x] is nonnegative because x is a minimum-frequency leaf,
and dT[b] - dT[x] is nonnegative because b is a leaf of maximum depth
in T. Similarly, because exchanging y and e does not increase the cost,
B(T') - B(Tff) is nonnegative. Therefore, B(Tff) S B(T), and since Tis
optimal, B(T) S B(Tff), which implies B(Tff

) = B(T). Thus, T" is an
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optimal tree in which x and y appear as sibling leaves of maximum depth,
from which the lemma follows. •

Lemma 17.2 implies that the process of building up an optimal tree by
mergers can, without loss of generality, begin with the greedy choice of
merging together those two characters of lowest frequency. Why is this a
greedy choice? We can view the cost of a single merger as being the sum of
the frequencies of the two items being merged. Exercise 17.3-3 shows that
the total cost of the tree constructed is the sum of the costs of its mergers.
Of all possible mergers at each step, HUFFMAN chooses the one that incurs
the least cost.

The next lemma shows that the problem of constructing optimal prefix
codes has the optimal-substructure property.

Lemma 17.3
Let T be a full binary tree representing an optimal prefix code over an
alphabet C, where frequency f[c] is defined for each character c E C.
Consider any two characters x and y that appear as sibling leaves in T,
and let z be their parent. Then, considering Z as a character with frequency
f[z] = f[x] + flY], the tree T' = T - {x,y} represents an optimal prefix
code for the alphabet C' = C - {x,y} U {z}.

Proof We first show that the cost B(T) of tree T can be expressed in
terms of the cost B(T') of tree T' by considering the component costs in
equation (17.3). For each c E C {x,y}, we have dT(c) = dp(c), and
hence ![c]dT(c) = ![c]dp(c). Since dT(X) = dT(y) = dp(z) + 1, we have

f[x]dT(x) + ![y]dT(y) (f[x] + ![y])(dp(z) + 1)

f[z]dp(z) + (f[x] + flY]) ,

from which we conclude that

B(T) = B(T') + f[x] + ![Y] .

If T' represents a nonoptimal prefix code for the alphabet C', then there
exists a tree Til whose leaves are characters in C' such that B(T") < B(T').
Since z is treated as a character in C', it appears as a leaf in Til. If we
add x and y as children of z in Til, then we obtain a prefix code for C
with cost B(T") + ![x] + flY] < B(T), contradicting the optimality of T.
Thus, T' must be optimal for the alphabet C'. •

Theorem 17.4-
Procedure HUFFMAN produces an optimal prefix code.

Proof Immediate from Lemmas 17.2 and 17.3. •
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Exercises

17.3-1
Prove that a binary tree that is not full cannot correspond to an optimal
prefix code.

17.3-2
What is an optimal Huffman code for the following set of frequencies,
based on the first 8 Fibonacci numbers?

a:l b:l c:2 d:3 e:5 f:8 g:13 h:21

Can you generalize your answer to find the optimal code when the fre
quencies are the first n Fibonacci numbers?

17.3-3
Prove the total cost of a tree for a code can also be computed as the sum,
over all internal nodes, of the combined frequencies of the two children
of the node.

17.3-4
Prove that for an optimal code, if the characters are ordered so that their
frequencies are nonincreasing, then their codeword lengths are nondecreas
ing,

17.3-5
Let C = {O, I, ... , n I} be a set of characters. Show that any optimal
prefix code on C can be represented by a sequence of

2n - 1 + n [lg n1

bits. (Hint: Use 2n-1 bits to specify the structure of the tree, as discovered
by a walk of the tree.)

17.3-6
Generalize Huffman's algorithm to ternary codewords (i.e., codewords us
ing the symbols 0, I, and 2), and prove that it yields optimal ternary codes.

17.3-7
Suppose a data file contains a sequence of 8-bit characters such that all 256
characters are about as common: the maximum character frequency is less
than twice the minimum character frequency. Prove that Huffman coding
in this case is no more efficient than using an ordinary 8-bit fixed-length
code.

17.3-8
Show that no compression scheme can expect to compress a file of ran
domly chosen 8-bit characters by even a single bit. (Hint: Compare the
number of files with the number of possible encoded files.)
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There is a beautiful theory about greedy algorithms, which we sketch in
this section. This theory is useful in determining when the greedy method
yields optimal solutions. It involves combinatorial structures known as
"matroids," Although this theory does not cover all cases for which a
greedy method applies (for example, it does not cover the activity-selection
problem of Section 17.1 or the Huffman coding problem of Section 17.3),
it does cover many cases of practical interest. Furthermore, this theory is
being rapidly developed and extended to cover many more applications;
see the notes at the end of this chapter for references.

17.4.1 Matroids

A matroid is an ordered pair M = (S,I) satisfying the following condi
tions.

I. S is a finite nonempty set.

2. I is a nonempty family of subsets of S, called the independent subsets
of S, such that if B E I and A ~ B, then A E I. We say that I
is hereditary if it satisfies this property. Note that the empty set 0 is
necessarily a member of I.

3. If A E I, B E I, and IAI < IBI, then there is some element x E B A
such that A U {x} E I. We say that M satisfies the exchange property.

The word "matroid" is due to Hassler Whitney. He was studying ma
tric matroids, in which the elements of S are the rows of a given matrix
and a set of rows is independent if they are linearly independent in the
usual sense. It is easy to show that this structure defines a matroid (see
Exercise 17.4-2).

As another illustration of matroids, consider the graphic matroid MG =
(SG, IG) defined in terms of a given undirected graph G = (V, E) as follows.

• The set SG is defined to be E, the set of edges of G.

• If A is a subset of E, then A E IG if and only if A is acyclic. That is, a
set of edges is independent if and only if it forms a forest.

The graphic matroid MG is closely related to the minimum-spanning-tree
problem, which is covered in detail in Chapter 24.

Theorem 17.5
If G is an undirected graph, then M G (SG, IG) is a matroid.

Proof Clearly, SG = E is a finite set. Furthermore, IG is hereditary,
since a subset of a forest is a forest. Putting it another way, removing
edges from an acyclic set of edges cannot create cycles.



346 Chapter 17 Greedy Algorithms

Thus, it remains to show that M o satisfies the exchange property. Sup
pose that A and B are forests of G and that IBI > IAI. That is, A and B
are acyclic sets of edges, and B contains more edges than A does.

It follows from Theorem 5.2 that a forest having k edges contains exactly
IVI-k trees. (To prove this another way, begin with IVI trees and no edges.
Then, each edge that is added to the forest reduces the number of trees
by one.) Thus, forest A contains IVI IAI trees, and forest B contains
IVI IBI trees.

Since forest B has fewer trees than forest A does, forest B must contain
some tree T whose vertices are in two different trees in forest A. Moreover,
since T is connected, it must contain an edge tu, v) such that vertices u
and v are in different trees in forest A. Since the edge (u, v) connects
vertices in two different trees in forest A, the edge (u, v) can be added to
forest A without creating a cycle. Therefore, MG satisfies the exchange
property, completing the proof that Mo is a matroid. _

Given a matroid AI = (S,I), we call an element x ¢ A an extension
of A E I if x can be added to A while preserving independence; that
is, x is an extension of A if A u {x} E I. As an example, consider a
graphic matroid ./1,10. If A is an independent set of edges, then edge e is
an extension of A if and only if e is not in A and the addition of x to A
does not create a cycle.

If A is an independent subset in a matroid M, we say that A is maximal
if it has no extensions. That is, A is maximal if it is not contained in any
larger independent subset of M. The following property is often useful.

Theorem 17.6
All maximal independent subsets in a matroid have the same size.

Proof Suppose to the contrary that A is a maximal independent subset
of M and there exists another larger maximal independent subset B of /14.
Then, the exchange property implies that A is extendable to a larger in
dependent set A U {x} for some x E B - A, contradicting the assumption
that A is maximal. _

As an illustration of this theorem, consider a graphic matroid M G for a
connected, undirected graph G. Every maximal independent subset of M G

must be a free tree with exactly IVI 1 edges that connects all the vertices
of G. Such a tree is called a spanning tree of G.

We say that a matroid M = (S,I) is weighted if there is an associated
weight function w that assigns a strictly positive weight w(x) to each ele
ment XES. The weight function w extends to subsets of S by summation:

w(A) L w(x)
xEA
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for any A S;; S. For example, if we let w(e) denote the length of an edge e
in a graphic matroid MG, then w(A) is the total length of the edges in edge
set A.

17.4.2 Greedy algorithms on a weighted matroid

Many problems for which a greedy approach provides optimal solutions
can be formulated in terms of finding a maximum-weight independent
subset in a weighted matroid. That is, we are given a weighted matroid
M = (S,I), and we wish to find an independent set A E I such that w(A)
is maximized. We call such a subset that is independent and has maximum
possible weight an optimal subset of the matroid. Because the weight w(x)
of any element XES is positive, an optimal subset is always a maximal
independent subset-it always helps to make A as large as possible.

For example, in the minimum-spanning-tree problem, we are given a con
nected undirected graph G = (V, E) and a length function w such that w (e)
is the (positive) length of edge e. (We use the term "length" here to refer
to the original edge weights for the graph, reserving the term "weight" to
refer to the weights in the associated matroid.) We are asked to find a
subset of the edges that connects all of the vertices together and has mini
mum total length. To view this as a problem of finding an optimal subset
of a matroid, consider the weighted matroid MG with weight function ui';

where w'(e) = Wo - w(e) and Wo is larger than the maximum length of
any edge. In this weighted matroid, all weights are positive and an optimal
subset is a spanning tree of minimum total length in the original graph.
More specifically, each maximal independent subset A corresponds to a
spanning tree, and since

w'(A) = (IVI- l)wo - w(A)

for any maximal independent subset A, the independent subset that max
imizes w'(A) must minimize w(A). Thus, any algorithm that can find an
optimal subset A in an arbitrary matroid can solve the minimum-spanning
tree problem.

Chapter 24 gives algorithms for the minimum-spanning-tree problem,
but here we give a greedy algorithm that works for any weighted matroid.
The algorithm takes as input a weighted matroid M = (S,I) with an an
associated positive weight function w, and it returns an optimal subset A.
In our pseudocode, we denote the components of M by S[M] and I[M]
and the weight function by w. The algorithm is greedy because it considers
each element XES in tum in order of nonincreasing weight and immedi
ately adds it to the set A being accumulated if A U {x} is independent.
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GREEDY(M, W)

I A ~ 0
2 sort S[M] into nonincreasing order by weight w
3 for each x E S[M], taken in nonincreasing order by weight w(x)
4 do if A u {x} E X[M]
5 then A ~ A U {x}
6 return A

The elements of S are considered in turn, in order of nonincreasing
weight. If the element x being considered can be added to A while main
taining A's independence, it is. Otherwise, x is discarded. Since the empty
set is independent by the definition of a matroid, and since x is only added
to A if A U {x} is independent, the subset A is always independent, by in
duction. Therefore, GREEDY always returns an independent subset A. We
shall see in a moment that A is a subset of maximum possible weight, so
that A is an optimal subset.

The running time of GREEDY is easy to analyze. Let n denote lSI. The
sorting phase of GREEDY takes time O(n 19 n). Line 4 is executed exactly
n times, once for each element of S. Each execution of line 4 requires a
check on whether or not the set AU {x} is independent. If each such check
takes time O(f(n)), the entire algorithm runs in time O(n 19n + nj(n)).

We now prove that GREEDY returns an optimal subset.

Lemma 17.7 (Matroids exhibit the greedy-choice property)
Suppose that M = (S,X) is a weighted matroid with weight function w
and that S is sorted into nonincreasing order by weight. Let x be the first
element of S such that {x} is independent, if any such x exists. If x exists,
then there exists an optimal subset A of S that contains x.

Proof If no such x exists, then the only independent subset is the empty
set and we're done. Otherwise, let B be any nonempty optimal subset.
Assume that x ¢ B; otherwise, we let A = B and we're done.

No element of B has weight greater than w(x). To see this, observe that
y E B implies that {y} is independent, since B E X and X is hereditary.
Our choice of x therefore ensures that w(x) ~ w(y) for any y E B.

Construct the set A as follows. Begin with A {x}. By the choice
of x, A is independent. Using the exchange property, repeatedly find a
new element of B that can be added to A until Lf] = IBI while preserving
the independence of A. Then, A = B - {y} U {x} for some y E B, and so

w(A) weB) - w(y) + w(x)

> w(B).

Because B is optimal, A must also be optimal, and because x E A, the
lemma is proven. _
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We next show that if an element is not an option initially, then it cannot
be an option later.

Lemma 17.8
Let M = (S,I) be any matroid. If x is an element of S such that x is not
an extension of 0, then x is not an extension of any independent subset A
of S.

Proof The proof is by contradiction. Assume that x is an extension
of A but not of 0. Since x is an extension of A, we have that A U {x}
is independent. Since I is hereditary, {x} must be independent, which
contradicts the assumption that x is not an extension of 0. _

Lemma 17.8 says that any element that cannot be used immediately can
never be used. Therefore, GREEDY cannot make an error by passing over
any initial elements in S that are not an extension of 0, since they can
never be used.

Lemma 17.9 (Matroids exhibit the optimal-substructure property)
Let x be the first element of S chosen by GREEDY for the weighted ma
troid M (S, I). The remaining problem of finding a maximum-weight
independent subset containing x reduces to finding a maximum-weight
independent subset of the weighted matroid M' (S', I'), where

S' = {y E S : {x, y} E I} ,

I' {B ~ S - {x} : B U {x} E I} , and

the weight function for M' is the weight function for M, restricted to S'.
(We call M' the contraction of M by the element x.)

Proof If A is any maximum-weight independent subset of M contain
ing x, then A' = A - {x} is an independent subset of M'. Conversely, any
independent subset A' of M ' yields an independent subset A = A' U {x}
of M. Since we have in both cases that w(A) = w(A')+w(x), a maximum
weight solution in M containing x yields a maximum-weight solution
in M', and vice versa. _

Theorem 17.10 (Correctness of the greedy algorithm on matroids)
If M = (S,I) is a weighted matroid with weight function w, then the call
GREEDY(M, w) returns an optimal subset.

Proof By Lemma 17.8, any elements that are passed over initially because
they are not extensions of 0 can be forgotten about, since they can never
be useful. Once the first element x is selected, Lemma 17.7 implies that
GREEDY does not err by adding x to A, since there exists an optimal subset
containing x. Finally, Lemma 17.9 implies that the remaining problem is
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one of finding an optimal subset in the matroid M' that is the contraction
of M by x. After the procedure GREEDY sets A to {x}, all of its remaining
steps can be interpreted as acting in the matroid M' = (S', I'), because
B is independent in M' if and only if B U {x} is independent in M, for
all sets B E I'. Thus, the subsequent operation of GREEDY will find a
maximum-weight independent subset for M ', and the overall operation of
GREEDY will find a maximum-weight independent subset for M. •

Exercises

17.4-1
Show that (S,Ik) is a matroid, where S is any finite set and Ik is the set
of all subsets of Sof size at most k, where k ~ lSI.

17.4-2 *
Given an n x n real-valued matrix T, show that (S,I) is a matroid, where
S is the set of columns of T and A E I if and only if the columns in A are
linearly independent.

17.4-3 *
Show that if (S,I) is a matroid, then (S,I') is a matroid, where I' =
{A' : S - A' contains some maximal A E I}. That is, the maximal inde
pendent sets of (S',I') are just the complements of the maximal indepen
dent sets of (S, I).

17.4-4 *
Let S be a finite set and let S" S2, ... .S; be a partition of S into nonernpty
disjoint subsets. Define the structure (S,I) by the condition that I =

{A: IAnSi! ~ 1 for i = 1,2, ... ,k}. Show that (S,I) is a matroid. That
is, the set of all sets A that contain at most one member in each block of
the partition determines the independent sets of a matroid.

17.4-5
Show how to transform the weight function of a weighted matroid prob
lem, where the desired optimal solution is a minimum-weight maximal
independent subset, to make it an standard weighted-matroid problem.
Argue carefully that your transformation is correct.

* 17.5 A task-scheduling problem

An interesting problem that can be SOlved using matroids is the problem of
optimally scheduling unit-time tasks on a single processor, where each task
has a deadline and a penalty that must be paid if the deadline is missed.
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The problem looks complicated, but it can be solved in a surprisingly
simple manner using a greedy algorithm.

A unit-time task is a job, such as a program to be run on a computer,
that requires exactly one unit of time to complete. Given a finite set S of
unit-time tasks, a schedule for S is a permutation of S specifying the order
in which these tasks are to be performed. The first task in the schedule
begins at time 0 and finishes at time 1, the second task begins at time I
and finishes at time 2, and so on.

The problem of scheduling unit-time tasks with deadlines and penalties
for a single processor has the following inputs:

• a set S = {I, 2, ... , n} of n unit-time tasks;

• a set of n integer deadlines d., di, ... , dn , such that each d, satisfies
1 :::; d, :::; n and task i is supposed to finish by time d.; and

• a set of n nonnegative weights or penalties Wj, W2, ... , W n, such that a
penalty ui, is incurred if task i is not finished by time d, and no penalty
is incurred if a task finishes by its deadline.

We are asked to find a schedule for S that minimizes the total penalty
incurred for missed deadlines.

Consider a given schedule. We say that a task is late in this schedule if
it finishes after its deadline. Otherwise, the task is early in the schedule.
An arbitrary schedule can always be put into early-first form, in which
the early tasks precede the late tasks. To see this, note that if some early
task x follows some late task y, then we can switch the positions of x and y
without affecting x being early or y being late.

We similarly claim that an arbitrary schedule can always be put into
canonical form, in which the early tasks precede the late tasks and the
early tasks are scheduled in order of nondecreasing deadlines. To do so,
we put the schedule into early-first form. Then, as long as there are two
early tasks i and j finishing at respective times k and k + I in the schedule
such that dj < d., we swap the positions of i and i. Since task j is early
before the swap, k + I :::; dj. Therefore, k + 1 < d., and so task i is still
early after the swap. Task j is moved earlier in the schedule, so it also still
early after the swap.

The search for an optimal schedule thus reduces to finding a set A of
tasks that are to be early in the optimal schedule. Once A is determined,
we can create the actual schedule by listing the elements of A in order of
nondecreasing deadline, then listing the late tasks (i.e., S A) in any order,
producing a canonical ordering of the optimal schedule.

We say that a set A of tasks is independent if there exists a schedule for
these tasks such that no tasks are late. Clearly, the set of early tasks for
a schedule forms an independent set of tasks. Let I denote the set of all
independent sets of tasks.

Consider the problem of determining whether a given set A of tasks is
independent. For t = 1,2, ... , n, let Nt(A) denote the number of tasks in A
whose deadline is t or earlier.
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Lemma 17.11
For any set of tasks A, the following statements are equivalent.

1. The set A is independent.

2. For t 1,2, ... , n, we have N1(A) ~ t.

3. If the tasks in A are scheduled in order of nondecreasing deadlines, then
no task is late.

Proof Clearly, if N1(A) > t for some t, then there is no way to make a
schedule with no late tasks for set A, because there are more than t tasks to
finish before time t. Therefore, (1) implies (2). If (2) holds, then (3) must
follow: there is no way to "get stuck" when scheduling the tasks in order
of nondecreasing deadlines, since (2) implies that the ith largest deadline
is at most i. Finally, (3) trivially implies (I). _

Using property 2 of Lemma 17.11, we can easily compute whether or
not a given set of tasks is independent (see Exercise 17.5-2).

The problem of minimizing the sum of the penalties of the late tasks
is the same as the problem of maximizing the sum of the penalties of the
early tasks. The following theorem thus ensures that we can use the greedy
algorithm to find an independent set A of tasks with the maximum total
penalty.

Theorem 17.12
If S is a set of unit-time tasks with deadlines, and T is the set of all inde
pendent sets of tasks, then the corresponding system (S, T) is a matroid.

Proof Every subset of an independent set of tasks is certainly indepen
dent. To prove the exchange property, suppose that B and A are inde
pendent sets of tasks and that IBI > IAI. Let k be the largest t such that
N1(B) ~ N1(A). Since Nn(B) = IBI and Nn(A) IAI, but IBI > JAI, we
must have that k < n and that Nj(B) > Nj(A) for all j in the range
k + I ~ j ~ n. Therefore, B contains more tasks with deadline k + I than
A does. Let x be a task in B A with deadline k + 1. Let AI = A U {x}.

We now show that A' must be independent by using property 2 of
Lemma 17.11. For I ~ t ~ k, we have N(AI) N1(A) ~ t, since A is
independent. For k < t ~ n, we have N1(A I)

~ N1(B) ~ t, since B is inde
pendent. Therefore, A' is independent, completing our proof that (S, T) is
a matroid. _

By Theorem 17.10, we can use a greedy algorithm to find a maximum
weight independent set of tasks A. We can then create an optimal schedule
having the tasks in A as its early tasks. This method is an efficient algorithm
for scheduling unit-time tasks with deadlines and penalties for a single
processor. The running time is O(n2 ) using GREEDY, since each of the
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Task
1 2 3 4 5 6 7

di 4 2 4 3 1 4 6
Wi 70 60 50 40 30 20 10

Figure 17.7 An instance of the problem of scheduling unit-time tasks with dead
lines and penalties for a single processor.

O(n) independence checks made by that algorithm takes time O(n) (see
Exercise 17.5-2). A faster implementation is given in Problem 17-3.

Figure 17.7 gives an example of a problem of scheduling unit-time tasks
with deadlines and penalties for a single processor. In this example, the
greedy algorithm selects tasks 1, 2, 3, and 4, then rejects tasks 5 and 6,
and finally accepts task 7. The final optimal schedule is

(2,4,1,3,7,5,6) ,

which has a total penalty incurred of Ws + W6 = 50.

Exercises

17.5-1
Solve the instance of the scheduling problem given in Figure 17.7, but with
each penalty ui, replaced by 80 - un.

17.5-2
Show how to use property 2 of Lemma 17.11 to determine in time O(lAI)
whether or not a given set A of tasks is independent.

17-1 Coin changing
Consider the problem of making change for n cents using the least number
of coins.

Q. Describe a greedy algorithm to make change consisting of quarters,
dimes, nickels, and pennies. Prove that your algorithm yields an op
timal solution.

b. Suppose that the available coins are in the denominations co, cI, ... , ck

for some integers c > 1 and k ;::: 1. Show that the greedy algorithm
always yields an optimal solution.

c. Give a set of coin denominations for which the greedy algorithm does
not yield an optimal solution.
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17-2 Acyclic subgraphs
a. Let G (V, E) be an undirected graph. Using the definition of a ma

troid, show that (E,I) is a matroid, where A E I if and only if A is an
acyclic subset of E.

b. The incidence matrix for an undirected graph G = (V, E) is a IVI x
lEI matrix M such that M ve = I if edge e is incident on vertex v,
and M ve = 0 otherwise. Argue that a set of columns of M is linearly
independent if and only if the corresponding set of edges is acyclic.
Then, use the result of Exercise 17.4-2 to provide an alternate proof
that (E,I) of part (a) is matroid.

c. Suppose that a nonnegative weight w(e) is associated with each edge in
an undirected graph G = (V, E). Give an efficient algorithm to find an
an acyclic subset of E of maximum total weight.

d. Let G(V, E) be an arbitrary directed graph, and let (E,I) be defined so
that A E I if and only if A does not contain any directed cycles. Give
an example of a directed graph G such that the associated system (E, I)
is not a matroid. Specify which defining condition for a matroid fails
to hold.

e. The incidence matrix for a directed graph G = (V, E) is a IVI x lEI
matrix M such that Mve = -1 if edge e leaves vertex v, Mile = I if
edge e enters vertex v, and and M ue = 0 otherwise. Argue that if a
set of edges of G is linearly independent, then the corresponding set of
edges does not contain a directed cycle.

f. Exercise 17.4-2 tells us that the set of linearly independent sets of
columns of any matrix M forms a matroid. Explain carefully why the
results of parts (d) and (e) are not contradictory. How can there fail to
be a perfect correspondence between the notion of a set of edges being
acyclic and the notion of the associated set of columns of the incidence
matrix being linearly independent?

17-3 Scheduling variations
Consider the following algorithm for solving the problem in Section 17.5
of scheduling unit-time tasks with deadlines and penalties. Let all n time
slots be initially empty, where time slot i is the unit-length slot of time
that finishes at time i. We consider the jobs in order of monotonically
decreasing penalty. When considering job i, if there exists a time slot at
or before j's deadline d, that is still empty, assign job j to the latest such
slot, filling it. If there is no such slot, assign job j to the latest of the as
yet unfilled slots.

a. Argue that this algorithm always gives an optimal answer.
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Chapter notes

b. Use the fast disjoint-set forest presented in Section 22.3 to implement
the algorithm efficiently. Assume that the set of input jobs has already
been sorted into monotonically decreasing order by penalty. Analyze
the running time of your implementation.

Much more material on greedy algorithms and matroids can be found in
Lawler [132] and Papadimitriou and Steiglitz [154].

The greedy algorithm first appeared in the combinatorial optimization
literature in a 1971 article by Edmonds [62], though the theory of matroids
dates back to a 1935 article by Whitney [200].

Our proof of the correctness of the greedy algorithm for the activity
selection problem follows that of Gavril [80]. The task-scheduling problem
is studied in Lawler [132], Horowitz and Sahni [105], and Brassard and
Bratley [33].

Huffman codes were invented in 1952 [107]; Lelewer and Hirschberg
[136] surveys data-compression techniques known as of 1987.

An extension of matroid theory to greedoid theory was pioneered by
Korte and Lovasz [127, 128, 129, 130], who greatly generalize the theory
presented here.
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In an amortized analysis, the time required to perform a sequence of data
structure operations is averaged over all the operations performed. Amor
tized analysis can be used to show that the average cost of an operation is
small, if one averages over a sequence of operations, even though a single
operation might be expensive. Amortized analysis differs from average
case analysis in that probability is not involved; an amortized analysis
guarantees the average performance ofeach operation in the worst case.

The first three sections of this chapter cover the three most common
techniques used in amortized analysis. Section 18.1 starts with the aggre
gate method, in which we determine an upper bound T(n) on the total
cost of a sequence of n operations. The amortized cost per operation is
then T(n)jn.

Section 18.2 covers the accounting method, in which we determine an
amortized cost of each operation. When there is more than one type of
operation, each type of operation may have a different amortized cost.
The accounting method overcharges some operations early in the sequence,
storing the overcharge as "prepaid credit" on specific objects in the data
structure. The credit is used later in the sequence to pay for operations
that are charged less than they actually cost.

Section 18.3 discusses the potential method, which is like the accounting
method in that we determine the amortized cost of each operation and may
overcharge operations early on to compensate for undercharges later. The
potential method maintains the credit as the "potential energy" of the data
structure instead of associating the credit with individual objects within
the data structure.

We shall use two examples to examine these three models. One is a
stack with the additional operation MULTIPOP, which pops several objects
at once. The other is a binary counter that counts up from 0 by means of
the single operation INCREMENT.

While reading this chapter, bear in mind that the charges assigned during
an amortized analysis are for analysis purposes only. They should not
appear in the code. If, for example, a credit is assigned to an object x when
using the accounting method, there is no need to assign an appropriate
amount to some attribute credit[x] in the code.
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The insight into a particular data structure gained by performing an
amortized analysis can help in optimizing the design. In Section 18.4,
for example, we shall use the potential method to analyze a dynamically
expanding and contracting table.

------- ---------- ----

18.1 The aggregate method

In the aggregate method of amortized analysis, we show that for all n,
a sequence of n operations takes worst-case time T(n) in total. In the
worst case, the average cost, or amortized cost, per operation is therefore
T(n)/n. Note that this amortized cost applies to each operation, even
when there are several types of operations in the sequence. The other two
methods we shall study in this chapter, the accounting method and the
potential method, may assign different amortized costs to different types
of operations.

Stack operations

In our first example of the aggregate method, we analyze stacks that have
been augmented with a new operation. Section 11.1 presented the two
fundamental stack operations, each of which takes O( 1) time:

PUSHeS, x) pushes object x onto stack S.

popeS) pops the top of stack S and returns the popped object.

Since each of these operations runs in O( 1) time, let us consider the cost of
each to be 1. The total cost of a sequence of n PUSH and POP operations is
therefore n, and the actual running time for n operations is therefore 8(n).

The situation becomes more interesting if we add the stack operation
MULTlPOP(S, k), which removes the k top objects of stack S, or pops the
entire stack if it contains less than k objects. In the following pseudocode,
the operation STACK-EMPTY returns TRUE if there are no objects currently
on the stack, and FALSE otherwise.

MULTIPOP(S, k)

1 while not STACK-EMPTY(S) and k ¥= 0
2 do popeS)
3 k+-k-l

Figure 18.1 shows an example of MULTIPOP.
What is the running time of MULTIPOP(S, k) on a stack of s objects?

The actual running time is linear in the number of POP operations actually
executed, and thus it suffices to analyze MULTIPOP in terms of the abstract
costs of 1 each for PUSH and POP. The number of iterations of the while
loop is the number mines, k) of objects popped off the stack. For each
iteration of the loop, one call is made to POP in line 2. Thus, the total cost
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top~ 23
17
6

39
10
47

(a)

top ~ 10
47

(b) (c)

Figure 18.1 The action of MULTIPOP on a stack S, shown initially in (a). The top
4 objects are popped by MULTIPOP(S,4), whose result is shown in (b). The next
operation is MULTIPOP(S, 7), which empties the stack-shown in (c)-since there
were fewer than 7 objects remaining.

of MULTIPOP is min(s, k), and the actual running time is a linear function
of this cost.

Let us analyze a sequence of n PUSH, POP, and MULTIPOP operations on
an initially empty stack. The worst-case cost of a MULTIPOP operation in
the sequence is O(n), since the stack size is at most n. The worst-case time
of any stack operation is therefore O(n), and hence a sequence of n oper
ations costs O(n2 ) , since we may have O(n) MULTIPOP operations costing
O( n) each. Although this analysis is correct, the O( n2 ) result, obtained by
considering the worst-case cost of each operation individually, is not tight.

Using the aggregate method ofamortized analysis, we can obtain a better
upper bound that considers the entire sequence of n operations. In fact,
although a single MULTIPOP operation can be expensive, any sequence of n
PUSH, POP, and MULTIPOP operations on an initially empty stack can cost
at most O(n). Why? Each object can be popped at most once for each time
it is pushed. Therefore, the number of times that POP can be called on a
nonempty stack, including calls within MULTIPOP, is at most the number
of PUSH operations, which is at most n. For any value of n, any sequence
of n PUSH, POP, and MULTIPOP operations takes a total of O(n) time. The
amortized cost of an operation is the average: O( n) / n = O( 1).

We emphasize again that although we have just shown that the average
cost, and hence running time, of a stack operation is O( 1), no probabilistic
reasoning was involved. We actually showed a worst-case bound of O(n)
on a sequence of n operations. Dividing this total cost by n yielded the
average cost per operation, or the amortized cost.

Incrementing a binary counter

As another example of the aggregate method, consider the problem of
implementing a k-bit binary counter that counts upward from O. We use
an array A[O . . k - 1] of bits, where length[AJ = k, as the counter. A binary
number x that is stored in the counter has its lowest-order bit in A[O] and
its highest-order bit in A[k -1], so that x = L:~:OI A[i]· r, Initially, x = 0,



18.1 The aggregate method

Coun ter
~......~......~......~......~.:;,~~......~......

T"..1
value t' t' t' t' t' t' t' t' ,~.

0 00 000 00 0
1 000 0 0 0 1
2 00000 0 3
3 o 0 0 0 0 •• o 0 0 0 0 7
5 o 0 0 0 0 •• o 0 0 0 0 10
7 o 0 0 0 11

• o 0 0 0 15
9 o 0 0 0 I.

10 o 0 0 0 I.
•1 o 0 0 0 I'
12 o 0 0 0 22
13 o 0 0 0 23

I' o 0 0 0 25
15 o 0 0 2.I. o 0 0 0 0 31
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Figure 18.2 An 8-bit binary counter as its value goes from 0 to 16 by a sequence
of 16 INCREM ENT operations. Bits thai Rip to achieve the next value are shaded.
The running cost for fli pping bits is shown at the right. Notice that the total cost
is never more than twice the total number of INCREMENT operations.

and thus AI;] = 0 for ; = O. I , .. .. k - I. To add I (mod ulo 2k ) to the
value in the counter, we use the following procedure.

INCR EM ENT(A)

I i -- 0
2 while r < lenglh(A] and Ali ] = I
3 do Ali ) - 0
4 i --i + 1
5 if i < Jenglh(A]
• th en A[i) - I

Thi s algor ithm is essentially the same one impl ement ed in hard ware by a
rippl e-carry counter (see Section 29.2. 1). Figure 18.2 shows what happens
to a binary counter as it is incre mented 16 times. starti ng with the initial
value 0 and ending with the value 16. At the sta n of each itera tion of the
while loop in lines 2-4, we wish to add a I into position t. If AU] = I,
then adding I flips the bit to 0 in posi tion i and yields a carry of I. to be
added into position i + I on the next iteration of the loop. Otherwise, the
loop ends, and then, if i < k, we know that A( i] = 0, so that adding a I
into posi tion i , flipping the 0 to a I. is taken care of in line 6. The cost of
each INCREM ENT operation is linear in the number of bits flipped .

As with the stack example, a cursory analysis yields a bound that is
correct but not tight. A single execut ion of INCREMENT takes time 9 (k )
in the worst case. in which array A contains all f's. Thus, a sequence of
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n INCREMENT operations on an initially zero counter takes time O(nk) in
the worst case.

We can tighten our analysis to yield a worst-case cost of O(n) for a
sequence of n INCREMENT'S by observing that not all bits flip each time
INCREMENT is called. As Figure 18.2 shows, A[O] does flip each time
INCREMENT is called. The next-highest-order bit, A[I], flips only every
other time: a sequence of n INCREMENT operations on an initially zero
counter causes A[I] to flip Lnj2J times. Similarly, bit A[2] flips only every
fourth time, or Lnj4J times in a sequence ofn INCREMENT'S. In general, for
i = 0,1, ... , [lg nJ, bit A[i] flips lnj2 iJ times in a sequence of n INCREMENT
operations on an initially zero counter. For i > [lg a], bit A[i] never flips
at all. The total number of flips in the sequence is thus

LlgnJ

L l;iJ
i=O

00 I
< nL2i

i=O

= Zn ,

by equation (3.4). The worst-case time for a sequence of n INCREMENT
operations on an initially zero counter is therefore O(n), so the amortized
cost of each operation is O(n)j n = O( 1).

Exercises

18.1-1
If a MULTIPUSH operation were included in the set of stack operations,
would the O( 1) bound on the amortized cost of stack operations continue
to hold?

18.1-2
Show that if a DECREMENT operation were included in the k-bit counter
example, n operations could cost as much as 8(nk) time.

18.1-3
A sequence of n operations is performed on a data structure. The ith oper
ation costs i if i is an exact power of 2, and 1 otherwise. Use an aggregate
method of analysis to determine the amortized cost per operation.

18.2 The accounting method

In the accounting method of amortized analysis, we assign differing charges
to different operations, with some operations charged more or less than
they actually cost. The amount we charge an operation is called its amor
tized cost. When an operation's amortized cost exceeds its actual cost,
the difference is assigned to specific objects in the data structure as credit.
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Credit can be used later on to help pay for operations whose amortized
cost is less than their actual cost. Thus, one can view the amortized cost of
an operation as being split between its actual cost and credit that is either
deposited or used up. This is very different from the aggregate method, in
which all operations have the same amortized cost.

One must choose the amortized costs of operations carefully. If we want
analysis with amortized costs to show that in the worst case the average cost
per operation is small, the total amortized cost of a sequence of operations
must be an upper bound on the total actual cost of the sequence. Moreover,
as in the aggregate method, this relationship must hold for all sequences
of operations. Thus, the total credit associated with the data structure
must be nonnegative at all times, since it represents the amount by which
the total amortized costs incurred exceed the total actual costs incurred.
If the total credit were ever allowed to become negative (the result of
undercharging early operations with the promise of repaying the account
later on), then the total amortized costs incurred at that time would be
below the total actual costs incurred; for the sequence of operations up to
that time, the total amortized cost would not be an upper bound on the
total actual cost. Thus, we must take care that the total credit in the data
structure never becomes negative.

Stack operations

To illustrate the accounting method of amortized analysis, let us return to
the stack example. Recall that the actual costs of the operations were

PUSH 1 ,
POP 1 ,
MULTIPOP min(k,s),

where k is the argument supplied to MULTIPOP and s is the stack size when
it is called. Let us assign the following amortized costs:

PUSH 2,
POP 0,
MULTIPOP O.

Note that the amortized cost of MULTIPOP is a constant (0), whereas the
actual cost is variable. Here, all three amortized costs are O( 1), although
in general the amortized costs of the operations under consideration may
differ asymptotically.

We shall now show that we can pay for any sequence of stack operations
by charging the amortized costs. Suppose we use a dollar bill to represent
each unit of cost. We start with an empty stack. Recall the analogy of
Section 11.1 between the stack data structure and a stack of plates in a
cafeteria. When we push a plate on the stack, we use I dollar to pay the
actual cost of the push and are left with a credit of I dollar (out of the 2
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dollars charged), which we put on top of the plate. At any point in time,
every plate on the stack has a dollar of credit on it.

The dollar stored on the plate is prepayment for the cost of popping it
from the stack. When we execute a POP operation, we charge the operation
nothing and pay its actual cost using the credit stored in the stack. To pop
a plate, we take the dollar of credit off the plate and use it to pay the
actual cost of the operation. Thus, by charging the PUSH operation a little
bit more, we needn't charge the POP operation anything.

Moreover, we needn't charge MULTIPOP operations anything either. To
pop the first plate, we take the dollar of credit off the plate and use it to
pay the actual cost of a POP operation. To pop a second plate, we again
have a dollar of credit on the plate to pay for the POP operation, and so
on. Thus, we have always charged at least enough up front to pay for
MULTIPOP operations. In other words, since each plate on the stack has 1
dollar of credit on it, and the stack always has a nonnegative number of
plates, we have ensured that the amount of credit is always nonnegative.
Thus, for any sequence of n PUSH, POP, and MULTIPOP operations, the
total amortized cost is an upper bound on the total actual cost. Since the
total amortized cost is O(n), so is the total actual cost.

Incrementing a binary counter

As another illustration of the accounting method, we analyze the INCRE
MENT operation on a binary counter that starts at zero. As we observed
earlier, the running time of this operation is proportional to the number of
bits flipped, which we shall use as our cost for this example. Let us once
again use a dollar bill to represent each unit of cost (the flipping of a bit
in this example).

For the amortized analysis, let us charge an amortized cost of 2 dollars
to set a bit to 1. When a bit is set, we use 1 dollar (out of the 2 dollars
charged) to pay for the actual setting of the bit, and we place the other
dollar on the bit as credit. At any point in time, every 1 in the counter has
a dollar of credit on it, and thus we needn't charge anything to reset a bit
to 0; we just pay for the reset with the dollar bill on the bit.

The amortized cost of INCREMENT can now be determined. The cost of
resetting the bits within the while loop is paid for by the dollars on the bits
that are reset. At most one bit is set, in line 6 of INCREMENT, and therefore
the amortized cost of an INCREMENT operation is at most 2 dollars. The
number of l 's in the counter is never negative, and thus the amount of
credit is always nonnegative. Thus, for n INCREMENT operations, the total
amortized cost is O(n), which bounds the total actual cost.
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18.2-1
A sequence of stack operations is performed on a stack whose size never
exceeds k, After every k operations, a copy of the entire stack is made
for backup purposes. Show that the cost of n stack operations, including
copying the stack, is O(n) by assigning suitable amortized costs to the
various stack operations.

18.2-2
Redo Exercise 18.1-3 using an accounting method of analysis.

18.2-3
Suppose we wish not only to increment a counter but also to reset it to
zero (i.e., make all bits in it 0). Show how to implement a counter as a
bit vector so that any sequence of n INCREMENT and RESET operations
takes time O(n) on an initially zero counter. (Hint: Keep a pointer to the
high-order 1.)

18.3 The potential method

Instead of representing prepaid work as credit stored with specific objects
in the data structure, the potential method of amortized analysis represents
the prepaid work as "potential energy," or just "potential," that can be
released to pay for future operations. The potential is associated with the
data structure as a whole rather than with. specific objects within the data
structure.

The potential method works as follows. We start with an initial data
structure Do on which n operations are performed. For each i = 1,2, ... , n,
we let c, be the actual cost of the ith operation and D, be the data structure
that results after applying the ith operation to data structure D;_!. A
potential/unction <1> maps each data structure D; to a real number <1>(D;),
which is the potential associated with data structure Di. The amortized
cost c; of the ith operation with respect to potential function <1> is defined
by

(18.1 )

The amortized cost of each operation is therefore its actual cost plus the
increase in potential due to the operation. By equation (18.1), the total
amortized cost of the n operations is

n

= 2:(ci+<1>(D;)
;=1
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n

L c, + <I>(Dn ) <I>(Do).
i=1

(18.2)

The second equality follows from equation (3.7), since the <I>(Di ) telescope.
If we can define a potential function <I> so that <I>(Dn ) :::: <I>(Do), then

the total amortized cost 2::7=1 Ci is an upper bound on the total actual
cost. In practice, we do not always know how many operations might be
performed. Therefore, if we require that <1>(Di ) :::: <1>(Do) for all i, then
we guarantee, as in the accounting method, that we pay in advance. It is
often convenient to define <I>(Do) to be 0 and then to show that <I>(Di ) :::: 0
for all i. (See Exercise 18.3-1 for an easy way to handle cases in which
<I>(Do) =I- 0.)

Intuitively, if the potential difference <I>(Di ) - <I>(Di - l ) of the ith oper
ation is positive, then the amortized cost Cj represents an overcharge to
the lth operation, and the potential of the data structure increases. If the
potential difference is negative, then the amortized cost represents an un
dercharge to the lth operation, and the actual cost of the operation is paid
by the decrease in the potential.

The amortized costs defined by equations (18.1) and (18.2) depend on
the choice of the potential function <1>. Different potential functions may
yield different amortized costs yet still be upper bounds on the actual costs.
There are often trade-offs that can be made in choosing a potential func
tion; the best potential function to use depends on the desired time bounds.

Stack operations

To illustrate the potential method, we return once again to the example of
the stack operations PUSH, PoP, and MULTIPOP. We define the potential
function <I> on a stack to be the number of objects in the stack. For the
empty stack Do with which we start, we have <I>(Do) O. Since the number
of objects in the stack is never negative, the stack D, that results after the
ith operation has nonnegative potential, and thus

<I>(Dd > 0

= <I>(Do).

The total amortized cost of n operations with respect to <I> therefore rep
resents an upper bound on the actual cost.

Let us now compute the amortized costs of the various stack operations.
If the ith operation on a stack containing s objects is a PUSH operation,
then the potential difference is

<I>(DJ - <I>(Di_ d = (s + 1) - s

1 .

By equation (18.1), the amortized cost of this PUSH operation is

c, = c, + <I>(Di ) <I>(Di _ d
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= 1+1

2.
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Suppose that the ith operation on the stack is MULTIPOP(S,k) and that
k' = minCk,s) objects are popped off the stack. The actual cost of the
operation is k', and the potential difference is

Thus, the amortized cost of the MULTIPOP operation is

c, = ci+<D(Di) <D(D,-d

k'-k'

= 0"

Similarly, the amortized cost of an ordinary POP operation is O.
The amortized cost of each of the three operations is D( 1), and thus

the total amortized cost of a sequence of n operations is D(n). Since we
have already argued that <D(Di) 2: <D(Do), the total amortized cost of n
operations is an upper bound on the total actual cost. The worst-case cost
of n operations is therefore D(n).

Incrementing a binary counter

As another example of the potential method, we again look at incrementing
a binary counter. This time, we define the potential of the counter after
the ith INCREMENT operation to be b., the number of l's in the counter
after the ith operation.

Let us compute the amortized cost of an INCREMENT operation. Suppose
that the ith INCREMENT operation resets ti bits. The actual cost of the
operation is therefore at most ti + I, since in addition to resetting ti bits,
it sets at most one bit to a 1. The number of l's in the counter after the
ith operation is therefore b, ~ bi - I ti + 1, and the potential difference is

<D(Di) - <D(Di_ l ) < (bi- 1 - ti + 1) - bi - I

1 - ti .

The amortized cost is therefore

c, = c, + <D(Di) <D(Di-d

< (ti+I)+(l-ti)

= 2 ..

If the counter starts at zero, then <D(Do) O. Since <D(Di) 2: 0 for all i, the
total amortized cost of a sequence of n INCREMENT operations is an upper
bound on the total actual cost, and so the worst-case cost of n INCREMENT
operations is D(n).

The potential method gives us an easy way to analyze the counter even
when it does not start at zero. There are initially bo 1'8, and after n
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INCREMENT operations there are bn 1's, where 0 :::; bo,b; < k, We can
rewrite equation (18.2) as

n n

I>i = L:Ci -<P(Dn ) + <P(Do) . (18.3)
i=l i=l

We have Ci :::; 2 for all 1 :::; i:::; n, Since <P(Do) bo and <P(Dn ) = b., the
total actual cost of n INCREMENT operations is

n n

L: c, :::; L: 2 - bn + bo
i=1 i=1

= 2n b; + bo .

Note in particular that since bo :::; k, if we execute at least n = Q(k)
INCREMENT operations, the total actual cost is O(n), no matter what initial
value the counter contains.

Exercises

18.3-1
Suppose we have a potential function <P such that <P(Di ) 2:: <P(Do) for all i,
but <P(Do) f:. O. Show that there exists a potential function <P' such that
<P'(Do) = 0, <P'(Di ) 2:: 0 for all i 2:: 1, and the amortized costs using <P' are
the same as the amortized costs using <P.

18.3-2
Redo Exercise 18.1-3 using a potential method of analysis.

18.3-3
Consider an ordinary binary heap data structure with n elements that
supports the instructions INSERT and EXTRACT-MIN in O(lg n) worst-case
time. Give a potential function <P such that the amortized cost of INSERT

is O(lg n) and the amortized cost of EXTRACT-MIN is O( 1), and show that
it works.

18.3-4
What is the total cost of executing n of the stack operations PUSH, POP,

and MULTIPOP, assuming that the stack begins with So objects and finishes
with Sn objects?

18.3-5
Suppose that a counter begins at a number with b l 's in its binary repre
sentation, rather than at O. Show that the cost of performing n INCREMENT

operations is O(n) if n = Q(b). (Do not assume that b is constant.)
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18.3-6
Show how to implement a queue with two ordinary stacks (Exercise 11.1-6)
so that the amortized cost of each ENQUEUE and each DEQUEUE operation
is O( I).

18.4 Dynamic tables

In some applications, we do not know in advance how many objects will be
stored in a table. We might allocate space for a table, only to find out later
that it is not enough. The table must then be reallocated with a larger size,
and all objects stored in the original table must be copied over into the new,
larger table. Similarly, if many objects have been deleted from the table,
it may be worthwhile to reallocate the table with a smaller size. In this
section, we study this problem of dynamically expanding and contracting
a table. Using amortized analysis, we shall show that the amortized cost
of insertion and deletion is only O( 1), even though the actual cost of an
operation is large when it triggers an expansion or a contraction. Moreover,
we shall see how to guarantee that the unused space in a dynamic table
never exceeds a constant fraction of the total space.

We assume that the dynamic table supports the operations TABLE-INSERT
and TABLE-DELETE. TABLE-INSERT inserts into the table an item that oc
cupies a single slot, that is, a space for one item. Likewise, TABLE-DELETE
can be thought of as removing an item from the table, thereby freeing a
slot. The details of the data-structuring method used to organize the table
are unimportant; we might use a stack (Section 11.1), a heap (Section 7.1),
or a hash table (Chapter 12). We might also use an array or collection of
arrays to implement object storage, as we did in Section 11.3.

We shall find it convenient to use a concept introduced in our analysis
of hashing (Chapter 12). We define the load factor a(T) of a nonempty
table T to be the number of items stored in the table divided by the size
(number of slots) of the table. We assign an empty table (one with no
items) size 0, and we define its load factor to be 1. If the load factor of
a dynamic table is bounded below by a constant, the unused space in the
table is never more than a constant fraction of the total amount of space.

We start by analyzing a dynamic table in which only insertions are per
formed. We then consider the more general case in which both insertions
and deletions are allowed.

18.4.1 Table expansion

Let us assume that storage for a table is allocated as an array of slots.
A table fills up when all slots have been used or, equivalently, when its



368 Chapter 18 Amortized Analysis

load factor is 1.I In some software environments, if an attempt is made
to insert an item into a full table, there is no alternative but to abort
with an error. We shall assume, however, that our software environment,
like many modern ones, provides a memory-management system that can
allocate and free blocks of storage on request. Thus, when an item is
inserted into a full table, we can expand the table by allocating a new table
with more slots than the old table had and then copy items from the old
table into the new one.

A common heuristic is to allocate a new table that has twice as many
slots as the old one. If only insertions are performed, the load factor of
a table is always at least 1/2, and thus the amount of wasted space never
exceeds half the total space in the table.

In the following pseudocode, we assume that T is an object representing
the table. The field table[T] contains a pointer to the block of storage
representing the table. The field num[T] contains the number of items in
the table, and the field size[T] is the total number of slots in the table.
Initially, the table is empty: num[T] =size[T] = O.

TABLE-INSERT(T, x )

1 if size[T] = 0
2 then allocate table[T] with 1 slot
3 size[T] ..... 1
4 if num[T] = size[T]
5 then allocate new-table with 2· size[T] slots
6 insert all items in table[T] into new-table
7 free table[T]
8 table[T] +- new-table
9 size[T] ..... 2· size[T]

10 insert x into table[T]
11 num[T] +- num[T] + 1

Notice that we have two "insertion" procedures here: the TABLE-INSERT
procedure itself and the elementary insertion into a table in lines 6 and 10.
We can analyze the running time of TABLE-INSERT in terms of the number
of elementary insertions by assigning a cost of 1 to each elementary inser
tion. We assume that the actual running time of TABLE-INSERT is linear
in the time to insert individual items, so that the overhead for allocating
an initial table in line 2 is constant and the overhead for allocating and
freeing storage in lines 5 and 7 is dominated by the cost of transferring
items in line 6. We call the event in which the then clause in lines 5-9 is
executed an expansion.

lin some situations, such as an open-address hash table, we may wish to consider a table to
be full if its load factor equals some constant strictly less than I. (See Exercise 18.4-2.)
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Let us analyze a sequence of n TABLE-INSERT operations on an initially
empty table. What is the cost c, of the ith operation? If there is room in
the current table (or if this is the first operation), then c, 1, since we
need only perform the one elementary insertion in line 10. If the current
table is full, however, and an expansion occurs, then c, i: the cost is I
for the elementary insertion in line 10 plus i 1 for the items that must
be copied from the old table to the new table in line 6. If n operations are
performed, the worst-case cost of an operation is O(n), which leads to an
upper bound of O(n 2 ) on the total running time for n operations.

This bound is not tight, because the cost of expanding the table is not
borne often in the course of n TABLE-INSERT operations. Specifically, the
ith operation causes an expansion only when i-I is an exact power of 2.
The amortized cost of an operation is in fact O( 1), as we can show using
the aggregate method. The cost of the ith operation is

{
i if i 1 is an exact power of 2 ,

c, = 1 otherwise.

The total cost of n TABLE-INSERT operations is therefore
n [lg nJ

I>i < n+ L 2J

i=t J=O

< n +2n

= 3n,

since there are at most n operations that cost I and the costs of the re
maining operations form a geometric series. Since the total cost of n
TABLE-INSERT operations is 3n, the amortized cost of a single operation
is 3.

By using the accounting method, we can gain some feeling for why the
amortized cost of a TABLE-INSERT operation should be 3. Intuitively, each
item pays for 3 elementary insertions: inserting itself in the current table,
moving itself when the table is expanded, and moving another item that
has already been moved once when the table is expanded. For example,
suppose that the size of the table is m immediately after an expansion.
Then, the number of items in the table is m12, and the table contains no
credit. We charge 3 dollars for each insertion. The elementary insertion
that occurs immediately costs 1 dollar. Another dollar is placed as credit
on the item inserted. The third dollar is placed as credit on one of the
ml2 items already in the table. Filling the table requires ml2 additional
insertions, and thus, by the time the table contains m items and is full,
each item has a dollar to pay for its reinsertion during the expansion.

The potential method can also be used to analyze a sequence of n TABLE
INSERT operations, and we shall use it in Section 18.4.2 to design a TABLE
DELETE operation that has O( 1) amortized cost as well. We start by defin
ing a potential function <t> that is 0 immediately after an expansion but
builds to the table size by the time the table is full, so that the next expan
sion can be paid for by the potential. The function
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<1>( T) 2 . num[T] size[T] (18.4)

is one possibility. Immediately after an expansion, we have num[T] =

size[T]/2, and thus <I>(T) = 0, as desired. Immediately before an expan
sion, we have num[T] = size[T], and thus <I>(T) = num[T], as desired.
The initial value of the potential is 0, and since the table is always at least
half full, num[T] 2: size[T]j2, which implies that <I>(T) is always nonneg
ative. Thus, the sum of the amortized costs of n TABLE-INSERT operations
is an upper bound on the sum of the actual costs.

To analyze the amortized cost of the ith TABLE-INSERT operation, we let
num, denote the number of items stored in the table after the ith operation,
size, denote the total size of the table after the ith operation, and <l>i denote
the potential after the ith operation. Initially, we have numi, = 0, size, = 0,
and <1>0 = 0.

If the ith TABLE-INSERT operation does not trigger an expansion, then
size, = sizec., and the amortized cost of the operation is

Ci = C] + <l>i - <l>i-I

1 + (2· num, sized - (2. numc., sizei-d

= I + (2· nurn, - sizei) - (2(numi - 1) - sizei)

3.

If the ith operation does trigger an expansion, then size, /2 = sizei..,
num, - I, and the amortized cost of the operation is

~ = Ci+<I>i-<I>i-1

= numi + (2 . numi - sizei) (2 . numi-I sizei_l)

= nurn, + (2· nutn; - (2· nurn, - 2)) - (2(numi - 1) - (num, - 1))

num, + 2 (num, - 1)

= 3.

Figure 18.3 plots the values of num., size., and <l>i against i. Notice how
the potential builds to pay for the expansion of the table.

18.4.2 Table expansion and contraction

To implement a TABLE-DELETE operation, it is simple enough to remove
the specified item from the table. It is often desirable, however, to contract
the table when the load factor of the table becomes too small, so that the
wasted space is not exorbitant. Table contraction is analogous to table ex
pansion: when the number of items in the table drops too low, we allocate
a new, smaller table and then copy the items from the old table into the
new one. The storage for the old table can then be freed by returning it to
the memory-management system. Ideally, we would like to preserve two
properties:

• the load factor of the dynamic table is bounded below by a constant,
and



18.4 Dynamic tables 371

32

24

16

8

1 /II
L

,
size; num; ,

--I
/ ,,,,

/ ,,,
,

I /l' et>. ,,, , I,, , ,
, -~~y, ,, ,

, ,, ,

VI' "
,, , , ,, , , r" , , , ,

,/
, , ,,', ,

"" , ,

8 16 24 32

Figure 18.3 The effect of a sequence of n TABLE-INSERT operations on the number
num, of items in the table, the number size; of slots in the table, and the potential
tDj 2 . num, size., each being measured after the ith operation. The thin line
shows num., the thick line shows size., and the dashed line shows <1>;. Notice that
immediately before an expansion, the potential has built up to the number of items
in the table, and therefore it can pay for moving all the items to the new table.
Afterwards, the potential drops to 0, but it is immediately increased by 2 when the
item that caused the expansion is inserted.

• the amortized cost of a table operation is bounded above by a constant.

We assume that cost can be measured in terms of elementary insertions
and deletions.

A natural strategy for expansion and contraction is to double the table
size when an item is inserted into a full table and halve the size when a
deletion would cause the table to become less than half fulL This strategy
guarantees that the load factor of the table never drops below Ij2, but
unfortunately, it can cause the amortized cost of an operation to be quite
large. Consider the following scenario. We perform n operations on a
table T, where n is an exact power of 2. The first nj2 operations are
insertions, which by our previous analysis cost a total of 8(n). At the end
of this sequence of insertions, num[T] = size[T] = nj2. For the second
nj2 operations, we perform the following sequence:

I, D, D, I, I, D, D, I, I, ... ,

where I stands for an insertion and D stands for a deletion. The first inser
tion causes an expansion of the table to size n. The two following deletions
cause a contraction of the table back to size nj2. Two further insertions
cause another expansion, and so forth. The cost of each expansion and
contraction is 8(n), and there are 8(n) of them. Thus, the total cost of
the n operations is 8(n2

) , and the amortized cost of an operation is 8(n).
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The difficulty with this strategy is obvious: after an expansion, we do
not perform enough deletions to pay for a contraction. Likewise, after a
contraction, we do not perform enough insertions to pay for an expansion.

We can improve upon this strategy by allowing the load factor of the
table to drop below 1/2. Specifically, we continue to double the table size
when an item is inserted into a full table, but we halve the table size when
a deletion causes the table to become less than 1/4 full, rather than 1/2
full as before. The load factor of the table is therefore bounded below by
the constant 1/4. The idea is that after an expansion, the load factor of
the table is 1/2. Thus, half the items in the table must be deleted before
a contraction can occur, since contraction does not occur unless the load
factor would fall below 1/4. Likewise, after a contraction, the load factor
of the table is also 1/2. Thus, the number of items in the table must
be doubled by insertions before an expansion can occur, since expansion
occurs only when the load factor would exceed 1.

We omit the code for TABLE-DELETE, since it is analogous to TABLE
INSERT. It is convenient to assume for analysis, however, that if the num
ber of items in the table drops to 0, the storage for the table is freed. That
is, if num[T] 0, then size[T] O.

We can now use the potential method to analyze the cost of a sequence
of n TABLE-INSERT and TABLE-DELETE operations. We start by defining a
potential function <I> that is 0 immediately after an expansion or contrac
tion and builds as the load factor increases to 1 or decreases to 1/4. Let us
denote the load factor of a nonempty table T by a(T) = num[T]jsize[T].
Since for an empty table, num[T] size[T] 0 and aCT] = 1, we always
have num[T] = a(T) . size[T], whether the table is empty or not. We shall
use as our potential function

<I>(T) _ {2' num[T] - size[T] if a(T) ~ 1/2,
- size[T]/2 - num[T] if a(T) < 1/2 .

Observe that the potential of an empty table is 0 and that the potential is
never negative. Thus, the total amortized cost of a sequence of operations
with respect to <I> is an upper bound on their actual cost.

Before proceeding with a precise analysis, we pause to observe some
properties of the potential function. Notice that when the load factor
is 1/2, the potential is O. When it is 1, we have size[T] num[T], which
implies <I>(T) num[T], and thus the potential can pay for an expansion
if an item is inserted. When the load factor is 1/4, we have size[T] =

4· num[T], which implies <I>(T) = num[T], and thus the potential can
pay for a contraction if an item is deleted. Figure 18.4 illustrates how the
potential behaves for a sequence of operations.

To analyze a sequence of n TABLE-INSERT and TABLE-DELETE opera
tions, we let c, denote the actual cost of the ith operation, Ci denote its
amortized cost with respect to <1>, num, denote the number of items stored
in the table after the ith operation, size, denote the total size of the table
after the ith operation, a, denote the load factor of the table after the ith
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Figure 18.4 The effect of a sequence of n TABLE-INSERT and TABLE-DELETE op
erations on the number num, of items in the table, the number size, of slots in the
table, and the potential

{
2 . num, size,
sizei/2 - num,

ifa, ~ 1/2,
if o, < 1/2,

each being measured after the ith operation. The thin line shows num, the thick
line shows size" and the dashed line shows <1>,. Notice that immediately before
an expansion, the potential has built up to the number of items in the table, and
therefore it can pay for moving all the items to the new table. Likewise, immedi
ately before a contraction, the potential has built up to the number of items in the
table.

operation, and <Pi denote the potential after the ith operation. Initially,
nums = 0, size« = 0, ao = I, and <Po = O.

We start with the case in which the ith operation is TABLE-INSERT. If
ai-I ~ 1/2, the analysis is identical to that for table expansion in Sec
tion 18.4.1. Whether the table expands or not, the amortized cost Ci of the
operation is at most 3. If ai-I < 1/2, the table cannot expand as a result
of the operation, since expansion occurs only when ai-I = 1. If a, < 1/2
as well, then the amortized cost of the ith operation is

Cj c, + <Pi - <Pi-I

= 1 + (sizejl2 numi; (sizej_1/2 numi-d

= 1+ (sized2 - numi) - (size;/2 - (num, I))

= Il .

If ai-I < 1/2 but a, ~ 1/2, then

Ci Ci + <Pi - <Pj_1

= I + (2 . rturn, - sizei) - (sizei_1 12 - numi_l)

I + (2(numi_1 + I) sizei-d (sizei_1/2 numi-d
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3· nunu.., - ~Sizei_1 + 3

3 . 3 . 3= D:i-1SIZei-1 - "2slzei-1 +

3 . 3 . 3< "2slzei-1 - "2slzei-1 +
3.

Thus, the amortized cost of a TABLE-INSERT operation is at most 3.
We now tum to the case in which the ith operation is TABLE-DELETE.

In this case, num, = numi.., - 1. If D:i-I < 1/2, then we must consider
whether the operation causes a contraction. If it does not, then size, =
sizei.., and the amortized cost of the operation is

Ci C, + <Pi - <Pi-I

1+ (Sizei/2 - num.) (sizei-tl2 numi-I)

1 + (sized2 - numi) - (sized2 - (num, + 1))

2.

If D:i-I < 1/2 and the ith operation does trigger a contraction, then the
actual cost of the operation is c, = num, + 1, since we delete one item
and move num, items. We have sized2 = size..v]« = num, + 1, and the
amortized cost of the operation is

Ci = Ci + <Pi - <Pi-I

= tnum, + 1) + (sized2 - numi) - (sizei_I/2 - numi-t}

(num, + 1) + ((numi + 1) numi; ((2. num, + 2) - (num, + 1))

1 .

When the ith operation is a TABLE-DELETE and D:i-I ~ 1/2, the amor
tized cost is also bounded above by a constant. The analysis is left as
Exercise 18.4-3.

In summary, since the amortized cost of each operation is bounded
above by a constant, the actual time for any sequence of n operations on
a dynamic table is O(n).

Exercises

18.4-1
Argue intuitively that if D:i-I ::; 1/2 and a, ::; 1/2, then the amortized cost
of a TABLE-INSERT operation is O.

18.4-2
Suppose that we wish to implement a dynamic, open-address hash table.
Why might we consider the table to be full when its load factor reaches
some value D: that is strictly less than I? Describe briefly how to make
insertion into a dynamic, open-address hash table run in such a way that
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Problems

the expected value of the amortized cost per insertion is O( I). Why is the
expected value of the actual cost per insertion not necessarily O( I) for all
insertions?

18.4-3
Show that if the ith operation on a dynamic table is TABLE-DELETE and
ai-I ~ 1/2, then the amortized cost of the operation with respect to the
potential function (18.5) is bounded above by a constant.

18.4-4
Suppose that instead of contracting a table by halving its size when its load
factor drops below 1/4, we contract it by multiplying its size by 2/3 when
its load factor drops below 1/3. Using the potential function

4>(T) = 12· num[T] - size[T]1,

show that the amortized cost of a TABLE-DELETE that uses this strategy is
bounded above by a constant.

18-1 Bit-reversed binary counter
Chapter 32 examines an important algorithm called the Fast Fourier Trans
form, or FFf. The first step of the FFT algorithm performs a bit-reversal
permutation on an input array A[O .. n I] whose length is n 2k for
some nonnegative integer k. This permutation swaps elements whose-in
dices have binary representations that are the reverse of each other.

We can express each index a as a k-bit sequence (ak- h ak-2, ... , ao),
k I· fiwhere a Li:O a, 2/. We de ne

revk((ak_bak_2,· .. ,aO)) (aO,al, ... ,ak_I);

thus,

k-I

revk(a) = L ak_i_12i
.

i=O

For example, if n = 16 (or, equivalently, k = 4), then revd3) = 12, since
the 4-bit representation of 3 is 00 II, which when reversed gives 1100, the
4-bit representation of 12.

a. Given a function rev, that runs in 8(k) time, write an algorithm to
perform the bit-reversal permutation on an array of length n = 2k in
O(nk) time.

We can use an algorithm based on an amortized analysis to improve the
running time of the bit-reversal permutation. We maintain a "bit-reversed
counter" and a procedure BIT-REVERSED-!NCREMENT that, when given a
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bit-reversed-counter value a, produces revk(revk(a) + 1). If k = 4, for
example, and the bit-reversed counter starts at 0, then successive calls to
BIT-REVERSED-INCREMENT produce the sequence

0000, 1000,0100, 1100,0010, 1010, ... = 0, 8, 4, 12, 2, 10, ... .

b. Assume that the words in your computer store k-bit values and that in
unit time, your computer can manipulate the binary values with opera
tions such as shifting left or right by arbitrary amounts, bitwise-AND,
bitwise-OR, etc. Describe an implementation of the BIT-REVERSED
INCREMENT procedure that allows the bit-reversal permutation on an
n-element array to be performed in a total of O(n) time.

c. Suppose that you can shift a word left or right by only one bit in unit
time. Is it still possible to implement an O(n)-time bit-reversal permu
tation?

18-2 Making binary search dynamic
Binary search of a sorted array takes logarithmic search time, but the time
to insert a new element is linear in the size of the array. We can improve
the time for insertion by keeping several sorted arrays.

Specifically, suppose that we wish to support SEARCH and INSERT on a set
of n elements. Let k = rlg(n + l )], and let the binary representation of n
be (nk-I> nk-2,"" no). We have k sorted arrays Ao, AI, ... , Ak-I> where
for i = 0,1, ... , k 1, the length of array Ai is 2i. Each array is either
full or empty, depending on whether n, = 1 or n, = 0, respectively. The
total number of elements held in all k arrays is therefore 'L.7:o1 n, 2i = n.
Although each individual array is sorted, there is no particular relationship
between elements in different arrays.

a. Describe how to perform the SEARCH operation for this data structure.
Analyze its worst-case running time.

b. Describe how to insert a new element into this data structure. Analyze
its worst-case and amortized running times.

c. Discuss how to implement DELETE.

18-3 Amortized weight-balanced trees
Consider an ordinary binary search tree augmented by adding to each
node x the field size[x] giving the number of keys stored in the subtree
rooted at x. Let Q be a constant in the range 1/2 ~ Q < 1. We say that a
given node x is a-balanced if

size[left[x]] ~ Q • size[x]

and

size[right[x]] ~ Q . size[x] .
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Chapter notes

The tree as a whole is a-balanced if every node in the tree is a-balanced.
The following amortized approach to maintaining weight-balanced trees
was suggested by G. Varghese.

a. A 1/2-balanced tree is, in a sense, as balanced as it can be. Given
a node x in an arbitrary binary search tree, show how to rebuild the
subtree rooted at x so that it becomes 1/2-balanced. Your algorithm
should run in time 8(size{x]), and it can use O(size[x]) auxiliary storage.

b. Show that performing a search in an n-node a-balanced binary search
tree takes 00g n) worst-case time.

For the remainder of this problem, assume that the constant a is strictly
greater than 1/2. Suppose that INSERT and DELETE are implemented as
usual for an n-node binary search tree, except that after every such op
eration, if any node in the tree is no longer a-balanced, then the subtree
rooted at the highest such node in the tree is "rebuilt" so that it becomes
1/2-balanced.

We shall analyze this rebuilding scheme using the potential method. For
a node x in a binary search tree T, we define

d(X) = Isize[left[x]] - size[right[xlll ,

and we define the potential of T as

<I>(T) = C L d(X) ,
xET:.6.(x)~2

where c is a sufficiently large constant that depends on a.

c. Argue that any binary search tree has nonnegative potential and that a
1/2-balanced tree has potential O.

d. Suppose that m units of potential can pay for rebuilding an m-node
subtree. How large must c be in terms of a in order for it to take O(1)
amortized time to rebuild a subtree that is not a-balanced?

e. Show that inserting a node into or deleting a node from an n-node a
balanced tree costs O(lgn) amortized time.

The aggregate method of amortized analysis was used by Aho, Hopcroft,
and Ullman [4]. Tarjan [189] surveys the accounting and potential meth
ods of amortized analysis and presents several applications. He attributes
the accounting method to several authors, including M. R. Brown, R. E.
Tarjan, S. Huddleston, and K. Mehlhorn. He attributes the potential
method to D. D. Sleator. The term "amortized" is due to D. D. Sleator
and R. E. Tarjan.
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Introduction

This part returns to the examination of data structures that support oper
ations on dynamic sets but at a more advanced level than Part III. Two
of the chapters, for example, make extensive use of the amortized analysis
techniques we saw in Chapter 18.

Chapter 19 presents Bstrees, which are balanced search trees designed to
be stored on magnetic disks. Because magnetic disks operate much more
slowly than random-access memory, we measure the performance of B
trees not only by how much computing time the dynamic-set operations
consume but also by how many disk accesses are performed. For each
B-tree operation, the number of disk accesses increases with the height of
the Bstree, which is kept low by the Bvtree operations.

Chapters 20 and 21 give implementations of mergeable heaps, which
support the operations INSERT, MINIMUM, EXTRACT-MIN, and UNION.

The UNION operation unites, or merges, two heaps. The data structures in
these chapters also support the operations DELETE and DECREASE-KEY.

Binomial heaps, which appear in Chapter 20, support each of these oper
ations in O(lg n) worst-case time, where n is the total number of elements
in the input heap (or in the two input heaps together in the case of UNION).

It is when the UNION operation must be supported that binomial heaps are
superior to the binary heaps introduced in Chapter 7, because it takes 8(n)
time to unite two binary heaps in the worst case.

Fibonacci heaps, in Chapter 21, improve upon binomial heaps, at least in
a theoretical sense. We use amortized time bounds to measure the perfor
mance of Fibonacci heaps. The operations INSERT, MINIMUM, and UNION

take only O(1) actual and amortized time on Fibonacci heaps, and the
operations EXTRACT-MIN and DELETE take O(lg n) amortized time. The
most significant advantage of Fibonacci heaps, however, is that DECREASE

KEY takes only O(1) amortized time. The low amortized time of the
DECREASE-KEY operation is why Fibonacci heaps are at the heart of some
of the asymptotically fastest algorithms to date for graph problems.
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Finally, Chapter 22 presents data structures for disjoint sets. We have
a universe of n elements that are grouped into dynamic sets. Initially,
each element belongs to its own singleton set. The operation UNION
unites two sets, and the query FIND-SET identifies the set that a given
element is in at the moment. By representing each set by a simple rooted
tree, we obtain surprisingly fast operations: a sequence of m operations
runs in Oim oem, n)) time, where aim, n) is an incredibly slowly growing
function-as long as n is no more than the estimated number of atoms in
the entire known universe, aim, n) is at most 4. The amortized analysis
that proves this time bound is as complex as the data structure is sim
ple. Chapter 22 proves an interesting but somewhat simpler bound on the
running time.

The topics covered in this part are by no means the only examples of
"advanced" data structures. Other advanced data structures include the
following.

• A data structure invented by van Emde Boas [194] supports the op
erations MINIMUM, MAXIMUM, INSERT, DELETE, SEARCH, EXTRACT
MIN, EXTRACT-MAX, PREDECESSOR, and SUCCESSOR in worst-case time
O(lg19 n), subject to the restriction that the universe of keys is the set
{l, 2, ... , n}.

• Dynamic trees, introduced by Sleator and Tarjan [177] and discussed
by Tarjan [188], maintain a forest of disjoint rooted trees. Each edge
in each tree has a real-valued cost. Dynamic trees support queries to
find parents, roots, edge costs, and the minimum edge cost on a path
from a node up to a root. Trees may be manipulated by cutting edges,
updating all edge costs on a path from a node up to a root, linking a root
into another tree, and making a node the root of the tree it appears in.
One implementation of dynamic trees gives an O(lg n) amortized time
bound for each operation; a more complicated implementation yields
O(lg n) worst-case time bounds.

• Splay trees, developed by Sleator and Tarjan [178] and discussed by
Tarjan [188], are a form of binary search tree on which the standard
search-tree operations run in O(lg n) amortized time. One application
of splay trees simplifies dynamic trees.

• Persistent data structures allow queries, and sometimes updates as well,
on past versions of a data structure. Driscoll, Sarnak, Sleator, and Tar
jan [59] present techniques for making linked data structures persistent
with only a small time and space cost. Problem 14-1 gives a simple
example of a persistent dynamic set.
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Barees are balanced search trees design ed to work well on magnetic disks
or other d irect-access secondary storage devices. B-trees are similar to
red-black trees (Chapter 14), but they are better at minimizing disk I/ O
operatio ns.

B-trees differ significantly from red-black trees in that B-tree nodes may
have many children. from a handful 10 thousands. That is, th e "branching
facto r" of a Bctree can be quite large. alth ough it is usuall y det ermined
by charac teristics of the disk un it used. S-trees are similar to red-black
trees in tha t every n-node B-tree has height O(lgn ), alth ough the height of
a B-tree can be considerably less than that of a red-black tree because its
bra nching factor can be much larger. Therefore. B-trees can also be used
to implement many dynamic-set opera tions in time O(lgn ).

S-trees generalize binary search trees in a nat ural manner. Figure 19.1
shows a simple B-tree. If a B-tree node x conta ins n [x } keys, then x
has n[x] + I children. T he keys in node x are used as dividing poi nts
separating the range of keys handled by x into n[x] + I subranges, each
handled by one child of x . When searching for a key in a B-tree, we make
an (n[x ] + I)-way decision based on comparisons with the n[ x} keys stored
at node x.

rOOl[n

M

• C

Figure 19.1 A Baree whose keys are the consonants of English. An internal node x
conta ining nix ] keys has nix ] + I children. All leaves are at the same depth in the
tree. The lightly shaded nodes are examined in a search for the letter R.
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Ftgure 19.2 A typical disk drive.

Section 19.1 gives a precise definition of B-trees and proves that the
height of a Bctree grows only logarithmically with the num ber of nodes
it contains. Section 19.2 describes how to search for a key and insert a
key into a B-tree, and Section 19.3 d iscusses deletion . Before proceeding,
however. we need to ask why data structures designed to work on a mag
netic disk are evaluated differently than data structures designed to work
in main random-access memory.

Data structures on secondary storage

There are many different technologies available for providing memory ca
pacity in a computer system. The primary m~mory (or main mtmory) of a
computer system typically consists of silicon memory chips. each of which
can hold I million bits of data . This technology is more expensive per bit
stored than magnetic storage technology, such as tapes or disks . A typi
cal computer system has secondary storage based on magnetic disks; the
amou nt of such secondary storage often exceeds the amount of primary
memory by several orders of magni tude.

Figure 19.2 shows a typical disk drive. Th e disk surface is covered
with a magnetizable material. The read /write head can read or write data
magnetically on the rotating disk su rface. The read /write arm can positi on
the head at different distances from the center of the disk. When the head
is stationary, the surface that passes underneath it is called a track. The
information sto red on each track is often divided into a fixed number of
equal-sized ptlgu ; for a typical disk, a page might be 2048 bytes in length.
The basic unit of information sto rage and retrieval is usually a page of
information-that is, disk reads and writes are typically of entire pages.
The access time-the time requi red to position the read / write head and to
wait for a given page of information to pass und erneath the head-may be
large (e.g., 20 milliseconds), while the time to read or write a page, once
accessed, is small. The price paid for the low cost of magnetic storage
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techniques is thus the relatively long time it takes to access the data. Since
moving electrons is much easier than moving large (or even small) objects,
storage devices that are entirely electronic, such as silicon memory chips,
have a much smaller access time than storage devices that have moving
parts, such as magnetic disk drives. However, once everything is positioned
correctly, reading or writing a magnetic disk is entirely electronic (aside
from the rotation of the disk), and large amounts of data can be read or
written quickly.

Often, it takes more time to access a page of information and read it
from a disk than it takes for the computer to examine all the information
read. For this reason, in this chapter we shall look separately at the two
principal components of the running time:

• the number of disk accesses, and

• the CPU (computing) time.

The number of disk accesses is measured in terms of the number of pages
of information that need to be read from or written to the disk. We note
that disk access time is not constant-it depends on the distance between
the current track and the desired track and also on the initial rotational
state of the disk. We shall nonetheless use the number of pages read
or written as a crude first-order approximation of the total time spent
accessing the disk.

In a typical Bstree application, the amount of data handled is so large
that all the data do not fit into main memory at once. The B-tree algorithms
copy selected pages from disk into main memory as needed and write back
onto disk pages that have changed. Since the B-tree algorithms only need
a constant number of pages in main memory at any time, the size of main
memory does not limit the size of B-trees that can be handled.

We model disk operations in our pseudocode as follows. Let x be a
pointer to an object. If the object is currently in the computer's main
memory, then we can refer to the fields of the object as usual: key[x],
for example. If the object referred to by x resides on disk, however, then
we must perform the operation DISK-READ(X) to read object x into main
memory before its fields can be referred to. (We assume that if x is already
in main memory, then DISK-READ(X) requires no disk accesses; it is a "no
op.") Similarly, the operation DISK-WRITE(X) is used to save any changes
that have been made to the fields of object x. That is, the typical pattern
for working with an object is as follows.

1
2 x +- a pointer to some object
3 DISK-READ(x)
4 operations that access and/or modify the fields of x
5 DISK-WRITE(X) t> Omitted if no fields of x were changed.
6 other operations that access but do not modify fields of x
7
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root[ll

100]

1000

1 node,
1000 keys

1001 nodes,
1,00 1,000 keys

1,002,001 nodes,
1,002,001,000 keys

Figure 19.3 A B-tree of height 2 containing over one billion keys. Each internal
node and leaf contains 1000 keys. There are 1001 nodes at depth I and over one
million leaves at depth 2. Shown inside each node x is n[x], the number of keys
in x.

The system can only keep a limited number of pages in main memory at
anyone time. We shall assume that pages no longer in use are flushed
from main memory by the system; our B-tree algorithms will ignore this
Issue.

Since in most systems the running time of a B-tree algorithm is deter
mined mainly by the number of DISK-READ and DISK-WRITE operations
it performs, it is sensible to use these operations intensively by having
them read or write as much information as possible. Thus, a B-tree node
is usually as large as a whole disk page. The number of children a B-tree
node can have is therefore limited by the size of a disk page.

For a large B-tree stored on a disk, branching factors between 50 and
2000 are often used, depending on the size of a key relative to the size of a
page. A large branching factor dramatically reduces both the height of the
tree and the number of disk accesses required to find any key. Figure 19.3
shows a B-tree with a branching factor of 1001 and height 2 that can
store over one billion keys; nevertheless, since the root node can be kept
permanently in main memory, only two disk accesses at most are required
to find any key in this tree!

19.1 Definition of B-trees

To keep things simple, we assume, as we have for binary search trees and
red-black trees, that any "satellite information" associated with a key is
stored in the same node as the key. In practice, one might actually store
with each key just a pointer to another disk page containing the satellite in
formation for that key. The pseudocode in this chapter implicitly assumes
that the satellite information associated with a key, or the pointer to such
satellite information, travels with the key whenever the key is moved from
node to node. Another commonly used B-tree organization stores all the
satellite information in the leaves and only stores keys and child pointers
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in the internal nodes, thus maximizing the branching factor of the internal
nodes.

A Bi-tree T is a rooted tree (with root root[T]) having the following
properties.

1. Every node x has the following fields:

a. n[x], the number of keys currently stored in node x,
b. the n[x] keys themselves, stored in nondecreasing order: key, [x] :5

keY2[x] :5 ... :5 keYI1[Xl[x], and

c. leaf1x] , a boolean value that is TRUE if x is a leaf and FALSE if x is
an internal node.

2. If x is an internal node, it also contains n[x] + I pointers CI [xl, C2[X],
.. . ,cn[x]+dx] to its children. Leaf nodes have no children, so their c,
fields are undefined.

3. The keys keYi[x] separate the ranges of keys stored in each subtree: if k,
is any key stored in the subtree with root Ci[X], then

k l :5 keYt[x] :5 k2 :5 keY2[x] :5 ... :5 keYn[x][x] :5 kn[xl+l .

4. Every leaf has the same depth, which is the tree's height h.

5. There are lower and upper bounds on the number of keys a node can
contain. These bounds can be expressed in terms of a fixed integer t 2:: 2
called the minimum degree of the B-tree:

a. Every node other than the root must have at least t - I keys. Every
internal node other than the root thus has at least t children. If the
tree is nonempty, the root must have at least one key.

b. Every node can contain at most 2t - I keys. Therefore, an internal
node can have at most 2t children. We say that a node is full if it
contains exactly 2t 1 keys.

The simplest B-tree occurs when t 2. Every internal node then has
either 2, 3, or 4 children, and we have a 2-3-4 tree. In practice, however,
much larger values of t are typically used.

The height of a B-tree

The number of disk accesses required for most operations on a B-tree is
proportional to the height of the Bstree. We now analyze the worst-case
height of a B-tree.

Theorem 19.1
If n 2:: 1, then for any n-key Bstree T of height h and minimum degree
t 2:: 2,

n + 1
h :5 log,
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Figure 19.4 A B-tree of height 3 containing a minimum possible number of keys.
Shown inside each node x is n[x].

Proof If a B-tree has height h, the number of its nodes is minimized
when the root contains one key and all other nodes contain t - 1 keys. In
this case, there are 2 nodes at depth 1, 2t nodes at depth 2, 2t2 nodes at
depth 3, and so on, until at depth h there are 2th- 1 nodes. Figure 19.4
illustrates such a tree for h = 3. Thus, the number n of keys satisfies the
inequality

h

n > 1 + (t 1)L 2t i - 1

i=l

1 + 2(t 1) c: /)
= 2th - 1 ,

which implies the theorem. •
Here we see the power of B-trees, as compared to red-black trees. Al

though the height of the tree grows as O(lg n) in both cases (recall that t is
a constant), for B-trees the base of the logarithm can be many times larger.
Thus, B-trees save a factor of about 19 t over red-black trees in the number
of nodes examined for most tree operations. Since examining an arbitrary
node in a tree usually requires a disk access, the number of disk accesses
is substantially reduced.

Exercises

19.1-1
Why don't we allow a minimum degree of t = I?

19.1-2
For what values of t is the tree of Figure 19.1 a legal B-tree?
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19.1-3
Show all legal B-trees of minimum degree 2 that represent {I, 2, 3,4, 5}.

19.1-4
Derive a tight upper bound on the number of keys that can be stored in a
B-tree of height h as a function of the minimum degree t.

19.1-5
Describe the data structure that would result if each black node in a red
black tree were to absorb its red children, incorporating their children with
its own.

19.2 Basic operations on B-trees

In this section, we present the details of the operations B-TREE-SEARCH,
B-TREE-CREATE, and B-TREE-INSERT. In these procedures, we adopt two
conventions:

• The root of the B-tree is always in main memory, so that a DISK-READ
on the root is never required; a DISK-WRITE of the root is required,
however, whenever the root node is changed.

• Any nodes that are passed as parameters must already have had a DISK
READ operation performed on them.

The procedures we present are all "one-pass" algorithms that proceed
downward from the root of the tree, without having to back up.

Searching a B-tree

Searching a B-tree is much like searching a binary search tree, except that
instead of making a binary, or "two-way," branching decision at each node,
we make a multiway branching decision according to the number of the
node's children. More precisely, at each internal node x, we make an
(n[x] + l j-way branching decision.

B-TREE-SEARCH is a straightforward generalization of the TREE-SEARCH
procedure defined for binary search trees. B-TREE-SEARCH takes as input a
pointer to the root node x of a subtree and a key k to be searched for in that
subtree. The top-level call is thus of the form B-TREE-SEARcH(root[T], k).
If k is in the Bstree, B-TREE-SEARCH returns the ordered pair (Y, i) con
sisting of a node Y and an index i such that keYi[Y] = k. Otherwise, the
value NIL is returned.
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B-TREE-SEARCH(X, k)

1 if-I
2 while i ~ n[x] and k » keYi[x]
3 doif-i+l
4 if i ~ n[x] and k = keYi[x]
5 then return (x, i)
6 if leaf[x]
7 then return NIL
8 else DISK-READ(Ci[X])
9 return B-TREE-SEARCH(Cj[X], k)

Using a linear-search procedure, lines 1-3 find the smallest i such that
k ~ keYj[x], or else they set ito n[x] + 1. Lines 4-5 check to see if we have
now discovered the key, returning if we have. Lines 6-9 either terminate
the search unsuccessfully (if x is a leaf) or recurse to search the appropriate
subtree of x, after performing the necessary DISK-READ on that child.

Figure 19.1 illustrates the operation of B-TREE-SEARCH; the lightly shad
ed nodes are examined during a search for the key R.

As in the TREE-SEARCH procedure for binary search trees, the nodes
encountered during the recursion form a path downward from the root
of the tree. The number of disk pages accessed by B-TREE-SEARCH is
therefore 8(h) = 8(log/ n), where h is the height of the B-tree and n is
the number of keys in the B-tree. Since n[x] < 2t, the time taken by the
while loop oflines 2-3 within each node is O(t), and the total CPU time
is O(th) = O(tlog/ n).

Creating an empty B-tree

To build a B-tree T, we first use B-TREE-CREATE to create an empty root
node and then call B-TREE-INSERT to add new keys. Both of these pro
cedures use an auxiliary procedure ALLOCATE-NoDE, which allocates one
disk page to be used as a new node in O( I) time. We can assume that a
node created by ALLOCATE-NoDE requires no DISK-READ, since there is
as yet no useful information stored on the disk for that node.

B-TREE-CREATE(T)

1 x f- ALLOCATE-NoDEO
2 leaf[x] f- TRUE
3 n[x] f- 0
4 DISK-WRITE(X)
5 rool[ T] f- X

B-TREE-CREATE requires O( 1) disk operations and O( 1) CPU time.
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Figure 19.5 Splitting a node with t = 4. Node y is split into two nodes, y and z,
and the median key S of y is moved up into y's parent.

Splitting a node in a B-tree

Inserting a key into a B-tree is significantly more complicated than inserting
a key into a binary search tree. A fundamental operation used during
insertion is the splitting of a full node Y (having 2t I keys) around its
median key keYt[Y] into two nodes having t I keys each. The median key
moves up into y's parent-which must be non full prior to the splitting
of y-to identify the dividing point between the two new trees; if y has no
parent, then the tree grows in height by one. Splitting, then, is the means
by which the tree grows.

The procedure B-TREE-SPLIT-CHILD takes as input a nonful! internal
node x (assumed to be in main memory), an index i, and a node y such
that y = Ci[X] is a full child of x. The procedure then splits this child in
two and adjusts x so that it now has an additional child.

Figure 19.5 illustrates this process. The full node y is split about its
median key S, which is moved up into y's parent node x. Those keys in y
that are greater than the median key are placed in a new node z, which is
made a new child of x.
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B-TREE-SPLIT-CHILD(X, i, y)

1 z;- ALLOCATE-NoDEO
2 leaf[z] +- leaf[y]
3 n[z] +- t - 1
4 for j +- 1 to t - 1

5 do key)z] +- keYj+I[Y]
6 if not leaf[y]
7 then for j +- 1 to t
8 do c)[z] +- Cj+t[Y]
9 n[y];-t-l

10 for j +- n[x] + 1 downto i + 1

11 do Cj+l[X] +- cAx]
12 Ci+l [x] +- Z

13 for j +- n[x] downto i
14 do keYj+l[x] +- keYj[x]
15 keYi[x] +- keYdY]
16 n[x] +- n[xJ + 1
17 DISK-WRITE(Y)
18 DISK-WRITE(Z)
19 DISK-WRITE(X)

B-TREE-SPLIT-CHILD works by straightforward "cutting and pasting."
Here, Y is the ith child of x and is the node being split. Node Y origi
nally has 2t - 1 children but is reduced to t - 1 children by this operation.
Node Z "adopts" the t - 1 largest children of Y, and Z becomes a new child
of x, positioned just after Y in x's table of children. The median key of Y
moves up to become the key in x that separates Y and z.

Lines 1-8 create node z and give it the larger t -1 keys and corresponding
t children of y. Line 9 adjusts the key count for y. Finally, lines 10-16
insert z as a child of x, move the median key from Y up to x in order
to separate Y from z, and adjust x's key count. Lines 17-19 write out all
modified disk pages. The CPU time used by B-TREE-SPLIT-CHILD is 8(t),
due to the loops on lines 4-5 and 7-8. (The other loops run for at most t
iterations. )

Inserting a key into a B-tree

Inserting a key k into a B-tree T of height h is done in a single pass
down the tree, requiring O(h) disk accesses. The CPU time required is
O(th) = O(tlogt n). The B-TREE-INsERT procedure uses B-TREE-SPLIT
CHILD to guarantee that the recursion never descends to a full node.
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Figure 19.6 Splitting the root with t = 4. Root node r is split in two, and a new
root node s is created. The new root contains the median key of r and has the two
halves of r as children. The B-tree grows in height by one when the root is split.

B-TREE-INSERT(T, k)

1 ~ - root[T]
2 if n[r] = 2t - 1
3 then S - ALLOCATE-NoDEO
4 root[T] - s
5 leaf[s] - FALSE
6 n[s] - 0
7 el[s] - r
8 B-TREE-SPLIT-CHILD(S, 1, r)
9 B-TREE-INSERT-NoNFULL(S, k)

10 else B-TREE-INSERT-NoNFuLL(r, k)

Lines 3-9 handle the case in which the root node r is full: the root is
split and a new node s (having two children) becomes the root. Splitting
the root is the only way to increase the height of a B-tree. Figure 19.6
illustrates this case. Unlike a binary search tree, a B-tree increases in
height at the top instead of at the bottom. The procedure finishes by
calling B-TREE-INSERT-NoNFULL to perform the insertion of key k in the
tree rooted at the nonfull root node. B-TREE-INSERT-NoNFULL recurses as
necessary down the tree, at all times guaranteeing that the node to which
it recurses is not full by calling B-TREE-SPLIT-CHILD as necessary.

The auxiliary recursive procedure B-TREE-INSERT-NoNFULL inserts key
k into node x, which is assumed to be nonfull when the procedure is
called. The operation of B-TREE-INSERT and the recursive operation of
B-TREE-INSERT-NoNFULL guarantee that this assumption is true.
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B-TREE-INSERT-NoNFULL(X, k)

1 1"- n[x]
2 if leaf[x]
3 then while 1 ::::: 1 and k < keYi[x]
4 do keYi+l[x],,- keYi[x]
5 1"-1-1
6 keYi+1 [x] ....... k
7 n[x] - n[x] + 1
8 DISK-WRITE(X)
9 else while 1::::: 1 and k < keYi[x]

10 do 1"- 1 1
11 l-i+l
12 DISK-READ(Ci[X])
13 if n[ci[x]] = 2t I
14 then B-TREE-SPLIT-CHILD(X, i, Ci[X])
15 if k > keYi[x]
16 then i ..- i + 1
17 B-TREE-INsERT-NoNFuLL(ci[x], k)

The B-TREE-INsERT-NoNFuLL procedure works as follows. Lines 3
8 handle the case in which x is a leaf node by inserting key k into x.
If x is not a leaf node, then we must insert k into the appropriate leaf
node in the subtree rooted at internal node x. In this case, lines 9-11
determine the child of x to which the recursion descends. Line 13 detects
whether the recursion would descend to a full child, in which case line 14
uses B-TREE-SPLIT-CHILD to split that child into two nonfull children, and
lines 15-16 determine which of the two children is now the correct one
to descend to. (Note that there is no need for a DISK-READ(Ci[X]) after
line 16 increments i, since the recursion will descend in this case to a child
that was just created by B-TREE-SPLIT-CHILD.) The net effect of lines 13
16 is thus to guarantee that the procedure never recurses to a full node.
Line 17 then recurses to insert k into the appropriate subtree. Figure 19.7
illustrates the various cases of inserting into a B-tree.

The number of disk accesses performed by B-TREE-INSERT is O(h) for
a B-tree of height h, since only O( 1) DISK-READ and DISK-WRITE opera
tions are performed between calls to B-TREE-INsERT-NoNFULL. The total
CPU time used is O(th) = O(tlogt n). Since B-TREE-INSERT-NoNFULL is
tail-recursive, it can be alternatively implemented as a while loop, demon
strating that the number of pages that need to be in main memory at any
time is O( 1).
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(b) B inse rted
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Figure 19.7 Insert ing keys into a B-tree. The minimum degree I for this Baree
is 3, so a node can hold at most 5 keys. Nodes that are modified by the inserti on
process are lightly shaded. (a) The initial tree for this example. (b) The result of
inserting B into the initial tree; this is a simple insertion into a leaf node. (c) The
result of insert ing Q into the previous tree. The node RS T U V is split into two
nodes containing RS and UV , the key T is moved up to the root, and Q is inserted
in the leftm ost of the two halves (the RS node). (d) The result of inserting L into
the previous tree. The root is split right away, since it is full, and the B-tree grows
in height by one. Then L is inserted into the leaf containing J K. (e) The result of
insening F into the previous tree. The node ABCDE is split before F is inserted
into the rightmost of the two halves (the DE node).
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Exercises

19.2-1
Show the results of inserting the keys

F,S,Q,K,C,L,H, T, V, W,.l1,R,N,P,A,B,X, Y,D,Z,E

in order into an empty Bstree. Only draw the configurations of the tree
just before some node must split, and also draw the final configuration.

19.2-2
Explain under what circumstances, if any, redundant DISK-READ or DISK
WRITE operations are performed during the course of executing a call to
B-TREE-INSERT. (A redundant DISK-READ is a DISK-READ for a page that
is already in memory. A redundant DISK-WRITE writes to disk a page of
information that is identical to what is already stored there.)

19.2-3
Explain how to find the minimum key stored in a Bstree and how to find
the predecessor of a given key stored in a B-tree.

19.2-4 *
Suppose that the keys {I, 2, ... , n} are inserted into an empty Bstree with
minimum degree 2. How many nodes does the final B-tree have?

19.2-5
Since leaf nodes require no pointers to children, they could conceivably
use a different (larger) t value than internal nodes for the same disk page
size. Show how to modify the procedures for creating and inserting into a
B-tree to handle this variation.

19.2-6
Suppose that B-TREE-SEARCH is implemented to use binary search rather
than linear search within each node. Show that this makes the CPU time
required O(lg n), independently of how t might be chosen as a function
of n.

19.2-7
Suppose that disk hardware allows us to choose the size of a disk page
arbitrarily, but that the time it takes to read the disk page is a + bt, where
a and b are specified constants and t is the minimum degree for a B-tree
using pages of the selected size. Describe how to choose t so as to minimize
(approximately) the B-tree search time. Suggest an optimal value of t for
the case in which a = 30 milliseconds and b = 40 microseconds.
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Deletion from a B-tree is analogous to insertion but a little more compli
cated. We sketch how it works instead of presenting the complete pseu
docode.

Assume that procedure B-TREE-DELETE is asked to delete the key k
from the subtree rooted at x. This procedure is structured to guarantee
that whenever B-TREE-DELETE is called recursively on a node x, the num
ber of keys in x is at least the minimum degree t. Note that this condition
requires one more key than the minimum required by the usual B-tree
conditions, so that sometimes a key may have to be moved into a child
node before recursion descends to that child. This strengthened condi
tion allows us to delete a key from the tree in one downward pass without
having to "back up" (with one exception, which we'll explain). The fol
lowing specification for deletion from a B-tree should be interpreted with
the understanding that if it ever happens that the root node x becomes an
internal node having no keys, then x is deleted and x's only child c,[x]
becomes the new root of the tree, decreasing the height of the tree by one
and preserving the property that the root of the tree contains at least one
key (unless the tree is empty).

Figure 19.8 illustrates the various cases of deleting keys from a B-tree.
1. If the key k is in node x and x is a leaf, delete the key k from x.

2. If the key k is in node x and x is an internal node, do the following.

a. If the child y that precedes k in node x has at least t keys, then
find the predecessor k' of k in the subtree rooted at y. Recursively
delete k', and replace k by k' in x. (Finding k' and deleting it can
be performed in a single downward pass.)

b. Symmetrically, if the child z that follows k in node x has at least
t keys, then find the successor k' of k in the subtree rooted at z;
Recursively delete k', and replace k by k' in x. (Finding k' and
deleting it can be performed in a single downward pass.)

c. Otherwise, if both y and z have only t - 1 keys, merge k and all
of z into y, so that x loses both k and the pointer to z, and y now
contains 2t - I keys. Then, free z and recursively delete k from y.

3. If the key k is not present in internal node x, determine the root Ci[X]
of the appropriate subtree that must contain k, if k is in the tree at
all. If Cj[x] has only t - 1 keys, execute step 3a or 3b as necessary to
guarantee that we descend to a node containing at least t keys. Then,
finish by recursing on the appropriate child of x.

a. If Cj[x] has only t - I keys but has a sibling with t keys, give Cj[x]
an extra key by moving a key from x down into Cj[x], moving a key
from Cj[x]'s immediate left or right sibling up into x, and moving
the appropriate child from the sibling into Cj[x].
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Figure 19.8 Deleting keys from a a-nee. The minimum degree for this Ba ree is
I = 3, so a node (other than the root) cannot have less than 2 keys. Nodes that are
mod ified are lightly shaded. (a) The B-tree of Figure 19.7(e). (b) Deletion of F.
Th is is case I: simple delet ion from a leaf. (c) Deletion of M . This is case 2a: the
predecessor L of M is moved up to take M 's position . (d) Delet ion of G. This
is case 2c: G is pushed down 10 make node DEGJ K , and then G is deleted fro m
this leaf (case I). (e) Deletion of D. This is case 3b: the recursion can' t descend
to node CL because it has only 2 keys, so P is pushed down and merged wi th C L
and TX to form C L PTX ; then. D is dele ted from a leaf (case I). (e') After (d) ,
the root is deleted and the tree shri nks in height by one. (I) Deletion of B. Th is is
case 3a: C is moved to fill B's position and £ is moved to fiJI C's posi tion.
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(e) D deleted: case 3b

C L P T

E J K

r zoJ KA C

( I) B deleted: case 3a E L P T X

b. If Ci [X] and all of Cj [x )'s siblings have t -I keys, merge c, with one sib
ling, which involves moving a key from x down into the new merged
node to become the median key for that node.

Since most of the keys in a B-tree are in the leaves, we may expect that
in practice, deletion opera tions are most often used to delete keys from
leaves. The B-TREE-DELETE procedu.re then acts in one downward pass
through the tree, without having to bac k up. When deleting a key in an
internal node, however, the procedure makes a downward pass through the
tree but may have to return to the node from which the key was deleted
to replace the key with its predecessor or successor (cases 2a and 2b).

Although this procedure seems comp licated, it involves only O(h) disk
ope rations for a B-tree of height h , since on ly O( I) calls to DISK-READ and
DISK-WRITEare made between recursive invocations of the procedu re. The
CPU time requ ired is O(th ) = O(t log, n).

Exercises

/9.3-/
Show the results of deleting C, P, and V, in order, from the tree of Fig
ure 19.8(1).

/9.3-2
Write pseudocode for B-TREE-DELETE.
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Problems

Chapter 19 B-Trees

19-1 Stacks on secondary storage
Consider implementing a stack in a computer that has a relatively small
amount of fast primary memory and a relatively large amount of slower
disk storage. The operations PUSH and POP are supported on single-word
values. The stack we wish to support can grow to be much larger than can
fit in memory, and thus most of it must be stored on disk.

A simple, but inefficient, stack implementation keeps the entire stack on
disk. We maintain in memory a stack pointer, which is the disk address of
the top element on the stack. If the pointer has value p, the top element is
the (p mod m )th word on page LP/mJ of the disk, where m is the number
of words per page.

To implement the PUSH operation, we increment the stack pointer, read
the appropriate page into memory from disk, copy the element to be
pushed to the appropriate word on the page, and write the page back to
disk. A POP operation is similar. We decrement the stack pointer, read in
the appropriate page from disk, and return the top of the stack. We need
not write back the page, since it was not modified.

Because disk operations are relatively expensive, we use the total number
of disk accesses as a figure of merit for any implementation. We also count
CPU time, but we charge 8(m) for any disk access to a page of m words.

a. Asymptotically, what is the worst-case number of disk accesses for n
stack operations using this simple implementation? What is the CPU
time for n stack operations? (Express your answer in terms of m and n
for this and subsequent parts.)

Now, consider a stack implementation in which we keep one page of the
stack in memory. (We also maintain a small amount of memory to keep
track of which page is currently in memory.) We can perform a stack
operation only if the relevant disk page resides in memory. If necessary,
the page currently in memory can be written to the disk and the new page
read in from the disk to memory. If the relevant disk page is already in
memory, then no disk accesses are required.

b. What is the worst-case number of disk accesses required for n PUSH
operations? What is the CPU time?

c. What is the worst-case number of disk accesses required for n stack
operations? What is the CPU time?

Suppose that we now implement the stack by keeping two pages in memory
(in addition to a small number of words for bookkeeping).

d. Describe how to manage the stack pages so that the amortized number
of disk accesses for any stack operation is O( 1/ m) and the amortized
CPU time for any stack operation is O( 1).
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Chapter notes

19-2 Joining and splitting 2-3-4 trees
The join operation takes two dynamic sets S' and S" and an element x
such that for any x' E S' and x" E S", we have key[x'] < key[x] < key[x"].
It returns a set S S' u {x} U S". The split operation is like an "inverse"
join: given a dynamic set S and an element XES, it creates a set S'
consisting of all elements in S {x} whose keys are less than key[x] and
a set S" consisting of all elements in S {x} whose keys are greater than
key[x]. In this problem, we investigate how to implement these operations
on 2-3-4 trees. We assume for convenience that elements consist only of
keys and that all key values are distinct.

a. Show how to maintain, for every node x of a 2-3-4 tree, the height of
the subtree rooted at x as a field height[x]. Make sure that your im
plementation does not affect the asymptotic running times of searching,
insertion, and deletion.

b. Show how to implement the join operation. Given two 2-3-4 trees T'
and Til and a key k, the join should run in O(lh' - hili) time, where h'
and h" are the heights of T' and Til, respectively.

c. Consider the path p from the root of a 2-3-4 tree T to a given key k, the
set S' of keys in T that are less than k, and the set S" of keys in T that are
greater than k. Show that p breaks S' into a set of trees {To, T{, ... , T/n}
and a set of keys {k;, kz' ... ,k:n}, where, for i = 1,2, ... , m, we have
y < k: < z for any keys y E Tf_1 and Z E Tf. What is the relationship
between the heights of Tf_1 and Tf? Describe how p breaks S" into sets
of trees and keys.

d. Show how to implement the split operation on T. Use the join operation
to assemble the keys in S' into a single 2-3-4 tree T' and the keys in Sf!
into a single 2-3-4 tree Til. The running time of the split operation
should be O(lgn), where n is the number of keys in T. (Hint: The costs
for joining should telescope.)

Knuth [123], Aho, Hopcroft, and Ullman [4], and Sedgewick [175] give
further discussions of balanced-tree schemes and B-trees. Comer [48] pro
vides a comprehensive survey of B-trees. Guibas and Sedgewick [93] dis
cuss the relationships among various kinds of balanced-tree schemes, in
cluding red-black trees and 2-3-4 trees.

In 1970, J. E. Hopcroft invented 2-3 trees, a precursor to B-trees and
2-3-4 trees, in which every internal node has either two or three children.
B-trees were introduced by Bayer and McCreight in 1972 [18]; they did
not explain their choice of name.
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This chapter and Chapter 21 present data structures known as mergeable
heaps, which support the following five operations.

MAKE-HEAP() creates and returns a new heap containing no elements.

INsERT(H,x) inserts node x, whose key field has already been filled in,
into heap H.

MINIMUM(H) returns a pointer to the node in heap H whose key is mini
mum.

EXTRACT-MIN(H) deletes the node from heap H whose key is minimum,
returning a pointer to the node.

UNION(HI , H 2 ) creates and returns a new heap that contains all the nodes
of heaps HI and H 2• Heaps HI and H 2 are "destroyed" by this operation.

In addition, the data structures in these chapters also support the following
two operations.

DEcREASE-KEy(H,x,k) assigns to node x within heap H the new key
value k, which is assumed to be no greater than its current key value.

DELETE(H, x) deletes node x from heap H.

As the table in Figure 20.1 shows, if we don't need the UNION operation,
ordinary binary heaps, as used in heapsort (Chapter 7), work well. Op
erations other than UNION run in worst-case time O(lg n) (or better) on a
binary heap. If the UNION operation must be supported, however, binary
heaps perform poorly. By concatenating the two arrays that hold the bi
nary heaps to be merged and then running HEAPIFY, the UNION operation
takes 8(n) time in the worst case.

In this chapter, we shall examine "binomial heaps," whose worst-case
time bounds are also shown in Figure 20.1. In particular, the UNION
operation takes only O(lg n) time to merge two binomial heaps with a
total of n elements.

In Chapter 21, we shall explore Fibonacci heaps, which have even better
time bounds for some operations. Note, however, that the running times
for Fibonacci heaps in Figure 20.1 are amortized time bounds, not worst
case per operation time bounds.
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Procedure

MAKE-HEAP

INSERT

MINIMUM

EXTRACT-MIN

UNION

DECREASE-KEY

DELETE

Binary heap
(worst-case)

80)
8(lgn)

8(1)

8(lgn)

8(n)

8(lgn)

8(lgn)

Binomial heap
(worst-case)

8(1)

D(lgn)

D(lgn)

8(lgn)

O(lgn)

8(lgn)

8(lgn)

Fibonacci heap
(amortized)

8(1)

8(1 )

8(1)

O(lgn)

8(1)

8( I)

O(lgn)

Figure 20.1 Running times for operations on three implementations of mergeable
heaps. The number of items in the heap(s) at the time of an operation is denoted
by n.

This chapter ignores issues of allocating nodes prior to insertion and
freeing nodes following deletion. We assume that the code that calls the
heap procedures handles these details.

Binary heaps, binomial heaps, and Fibonacci heaps are all inefficient in
their support of the operation SEARCH; it can take a while to find a node
with a given key. For this reason, operations such as DECREASE-KEY and
DELETE that refer to a given node require a pointer to that node as part
of their input. This requirement poses no problem in many applications.

Section 20.1 defines binomial heaps after first defining their constituent
binomial trees. It also introduces a particular representation of binomial
heaps. Section 20.2 shows how we can implement operations on binomial
heaps in the time bounds given in Figure 20.1.

20.1 Binomial trees and binomial heaps

A binomial heap is a collection of binomial trees, so this section starts by
defining binomial trees and proving some key properties. We then define
binomial heaps and show how they can be represented.

20.1.1 Binomial trees

The binomial tree Bk is an ordered tree (see Section 5.5.2) defined recur
sively. As shown in Figure 20.2(a), the binomial tree Bo consists of a single
node. The binomial tree Bk consists of two binomial trees Bk - I that are
linked together: the root of one is the leftmost child of the root of the
other. Figure 20.2(b) shows the binomial trees Bo through B4 •

Some properties of binomial trees are given by the following lemma.
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Figure 20.2 (a) The recursive definition of the binomial tree Bi, Triangles rep
resent rooted subtrees. (b) The binomial trees Bo through B4 • Node depths in B4

are shown. (c) Another way of looking at the binomial tree Bi,

Lemma 20.1 (Properties ofbinomial trees)
For the binomial tree Bi ;

1. there are 2k nodes,

2. the height of the tree is k,

3. there are exactly (~) nodes at depth i for i = 0, I, ... , k, and

4. the root has degree k, which is greater than that of any other node;
moreover if the children of the root are numbered from left to right by
k - I, k 2, ... , 0, child i is the root of a subtree Bi.

Proof The proof is by induction on k, For each property, the basis is
the binomial tree Bo. Verifying that each property holds for Bo is triviaL

For the inductive step, we assume that the lemma holds for Bk - I •

1. Binomial tree Bk consists of two copies of Bk - I> so Bk has 2k I +2k - 1 =
2k nodes.

2. Because of the way in which the two copies of Bk _ 1 are linked to form
Bi; the maximum depth of a node in B, is one greater than the maxi-
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mum depth in Bk - l • By the inductive hypothesis, this maximum depth
is (k - 1) + 1 k.

3. Let D( k, i) be the number of nodes at depth i of binomial tree Bi, Since
Bk is composed of two copies of Bk - l linked together, a node at depth i
in Bk- l appears in Bk once at depth i and once at depth i + 1. In other
words, the number of nodes at depth i in Bk is the number of nodes at
depth i in Bk - I plus the number of nodes at depth i-I in Bk - l • Thus,

D(k,i) = D(k-l,i)+D(k 1,1 1)

= (k~I)+(~_;)

(~) .
The second equality follows from the inductive hypothesis, and the third
equality follows from Exercise 6.1-7.

4. The only node with greater degree in Bk than in Bk-l is the root, which
has one more child than in Bk - l • Since the root of Bk - l has degree k I,
the root of Bk has degree k. Now by the inductive hypothesis, and as
Figure 20.2(c) shows, from left to right, the children of the root of Bk- l
are roots of Bk-2, Bk-3,' .. , Bo. When Bk-l is linked to Bk- I , therefore,
the children of the resulting root are roots of Bk - l , Bk - 2, ••• , Bo. •

Corollary 20.2
The maximum degree of any node in an n-node binomial tree is 19n.

Proof Immediate from properties 1 and 4 of Lemma 20.1. •
The term "binomial tree" comes from property 3 of Lemma 20.1, since

the terms (7) are the binomial coefficients. Exercise 20.1-3 gives further
justification for the term.

20.1.2 Binomial heaps

A binomial heap H is a set of binomial trees that satisfies the following
binomial-heap properties.

I. Each binomial tree in H is heap-ordered: the key of a node is greater
than or equal to the key of its parent.

2. There is at most one binomial tree in H whose root has a given degree.

The first property tells us that the root of a heap-ordered tree contains
the smallest key in the tree.

The second property implies that an n-node binomial heap H consists
of at most [Ign] + 1 binomial trees. To see why, observe that the binary
representation of n has LIgnJ + 1 bits, say (bllgnJ,bLlgnJ-J, ... , bo), so that
n = r:}~onJ s», By property I of Lemma 20.1, therefore, binomial tree B,
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(a) head[H]

@

(b) head[H]

P"",
key :.:

degree

child/

1

Figure 20.3 A binomial heap H with n = 13 nodes. (a) The heap consists of
binomial trees Bo, B2 , and B3, which have 1,4, and 8 nodes respectively, totaling
n = 13 nodes. Since each binomial tree is heap-ordered, the key of any node is no
less than the key of its parent. Also shown is the root list, which is a linked list of
roots in order of increasing degree. (b) A more detailed representation of binomial
heap H. Each binomial tree is stored in the left-child, right-sibling representation,
and each node stores its degree.

appears in H if and only if bit hi = 1. Thus, binomial heap H contains at
most [lgnJ+ 1 binomial trees.

Figure 20.3(a) shows a binomial heap H with 13 nodes. The binary
representation of 13 is (1101), and H consists of heap-ordered binomial
trees B3 , B2 , and Bo, having 8, 4, and I nodes respectively, for a total of
13 nodes.

Representing binomial heaps

As shown in Figure 20.3(b), each binomial tree within a binomial heap is
stored in the left-child, right-sibling representation of Section 11.4. Each
node has a key field and any other satellite information required by the
application. In addition, each node x contains pointers p[x] to its parent,
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Figure 20.4 The binomial tree B4 with nodes labeled in binary by a postorder
walk.

child[x] to its leftmost child, and sibling[x] to the sibling of x immediately
to its right. If node x is a root, then p[x] = NIL. If node x has no children,
then child[x] = NIL, and if x is the rightmost child of its parent, then
sibling[x] = NIL. Each node x also contains the field degree[x], which is
the number of children of x.

As Figure 20.3 also shows, the roots of the binomial trees within a bino
mial heap are organized in a linked list, which we refer to as the root list.
The degrees of the roots strictly increase as we traverse the root list. By the
second binomial-heap property, in an n-node binomial heap the degrees of
the roots are a subset of {O, 1, ... , llgnJ}. The sibling field has a different
meaning for roots than for nonroots. If x is a root, then sibling[x] points
to the next root in the root list. (As usual, sibling[x] = NIL if x is the last
root in the root list.)

A given binomial heap H is accessed by the field head[H], which is
simply a pointer to the first root in the root list of H. If binomial heap H
has no elements, then head[H] =NIL.

Exercises

20.1-1
Suppose that x is a node in a binomial tree within a binomial heap, and
assume that sibling[x] =I- NIL. If x is not a root, how does degree[sibling[x]]
compare to degree[x]? How about if x is a root?

20.1-2
If x is a nonroot node in a binomial tree within a binomial heap, how does
degree[p[x]] compare to degree[x]?

20.1-3
Suppose we label the nodes of binomial tree Bk in binary by a postorder
walk, as in Figure 2004. Consider a node x labeled I at depth i, and let
j = k - i. Show that x has j l's in its binary representation. How many
binary k-strings are there that contain exactly j 1's? Show that the degree
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of X is equal to the number of J's to the right of the rightmost 0 in the
binary representation of I.

20.2 Operations on binomial heaps

In this section, we show how to perform operations on binomial heaps
in the time bounds shown in Figure 20.1. We shall only show the upper
bounds; the lower bounds are left as Exercise 20.2-10.

Creating a new binomial heap

To make an empty binomial heap, the MAKE-BINOMIAL-HEAP procedure
simply allocates and returns an object H, where head[H] NIL. The
running time is 8( 1).

Finding the minimum key

The procedure BINOMIAL-HEAP-MINIMUM returns a pointer to the node
with the minimum key in an n-node binomial heap H. This implementa
tion assumes that there are no keys with value 00. (See Exercise 20.2-5.)

BINOMIAL-HEAP-MINIMUM(H)

1 y.- NIL
2 X +- head[H]
3 min s- 00

4 while x # NIL
5 do if key[x] < min
6 then min »- key[x]
7 y.-x
8 x .- sibling[x]
9 return y

Since a binomial heap is heap-ordered, the minimum key must reside in
a root node. The BINOMIAL-HEAP-MINIMUM procedure checks all roots,
which number at most [lg nJ+ 1, saving the current minimum in min and
a pointer to the current minimum in y. When called on the binomial heap
of Figure 20.3, BINOMIAL-HEAP-MINIMUM returns a pointer to the node
with key 1.

Because there are at most L19nJ+ I roots to check, the running time of
BINOMIAL-HEAP-MINIMUM is O(lgn).
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Uniting two binomial heaps

407

The operation of uniting two binomial heaps is used as a subroutine by
most of the remaining operations. The BINOMIAL-HEAP-UNION procedure
repeatedly links binomial trees whose roots have the same degree. The
following procedure links the Bk- I tree rooted at node y to the Bk - I tree
rooted at node z; that is, it makes z the parent of y. Node z thus becomes
the root of a Bk tree.

BINOMIAL-LINK(y, z)

I ply] f- Z

2 sibling[y] f- child[z]
3 child[z] f- y
4 degree[z] f- degree[z] + I

The BINOMIAL-LINK procedure makes node y the new head of the linked
list of node z's children in O( I) time. It works because the left-child, right
sibling representation of each binomial tree matches the ordering property
of the tree: in a B k tree, the leftmost child of the root is the root of a Bk_1

tree.
The following procedure unites binomial heaps HI and H 2, returning the

resulting heap. It destroys the representations of HI and H2 in the pro
cess. Besides BINOMIAL-LINK, the procedure uses an auxiliary procedure
BINOMIAL-HEAP-MERGE that merges the root lists of HI and H2 into a
single linked list that is sorted by degree into monotonically increasing or
der. The BINOMIAL-HEAP-MERGE procedure, whose pseudocode we leave
as Exercise 20.2-2, is similar to the MERGE procedure in Section 1.3.1.
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BINOMIAL-HEAP-UNION(HI , H2)

1 H +-- MAKE-BINOMIAL-HEAP()
2 head[H] +-- BINOMIAL-HEAP-MERGE(HI , H2)
3 free the objects HI and H 2 but not the lists they point to
4 if head[H] = NIL
5 then return H
6 prev-x +-- NIL
7 x+-- head[H]
8 next-x +-- sibling{x]
9 while next-x -::f. NIL

10 do if (degree[x] -::f. degree[nexl-xJ) or
(sibling{next-x] -::f. NIL
and degree[sibling[next-xJ] = degree[xJ)

11 then prev-x +-- x l> Cases 1 and 2
12 x +-- next-x l> Cases 1 and 2
13 else if key[x] ~ key[nexl-x]
14 then sibling{x] +-- sibling[next-x]
15 BINOMIAL-LINK(next-x, x)
16 else if prev-x = NIL
17 then head[H] +-- next-x
18 else sibling[prev-x] +-- next-x
19 BINOMIAL-LINK(X, next-xi
20 x+-- next-x
21 next-x +-- sibling{x]
22 return H

Figure 20.5 shows an example of BINOMIAL-HEAP-UNION in which all four
cases given in the pseudocode occur.

The BINOMIAL-HEAP-UNION procedure has two phases. The first phase,
performed by the call of BINOMIAL-HEAP-MERGE, merges the root lists of
binomial heaps HI and H2 into a single linked list H that is sorted by
degree into monotonically increasing order. There might be as many as
two roots (but no more) of each degree, however, so the second phase
links roots of equal degree until at most one root remains of each degree.
Because the linked list H is sorted by degree, we can perform all the link
operations quickly.

In detail, the procedure works as follows. Lines 1-3 start by merging the
root lists of binomial heaps HI and H 2 into a single root list H. The root
lists of HI and H 2 are sorted by strictly increasing degree, and BINOMIAL
HEAP-MERGE returns a root list H that is sorted by monotonically in
creasing degree. If the root lists of HI and H2 have m roots altogether,
BINOMIAL-HEAP-MERGE runs in Oem) time by repeatedly examining the
roots at the heads of the two root lists and appending the root with the
lower degree to the output root list, removing it from its input root list in
the process.
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The BINOMIAL-HEAP-UNION procedure next initializes some pointers
into the root list of H. First, it simply returns in lines 4-5 if it happens to
be uniting two empty binomial heaps. From line 6 on, therefore, we know
that H has at least one root. Throughout the procedure, we maintain three
pointers into the root list:

• x points to the root currently being examined,

• prev-x points to the root preceding x on the root list: sibling[prev-x] = x,
and

• next-x points to the root following x on the root list: siblingf.x] = next-x.

Initially, there are at most two roots on the root list H of a given degree:
because HI and H2 were binomial heaps, they each had only one root of
a given degree. Moreover, BINOMIAL-HEAP-MERGE guarantees us that if
two roots in H have the same degree, they are adjacent in the root list.

In fact, during the execution of BINOMIAL-HEAP-UNION, there may be
three roots of a given degree appearing on the root list H at some time.
We shall see in a moment how this situation could occur. At each iteration
of the while loop of lines 9-21 , therefore, we decide whether to link x and
next-x based on their degrees and possibly the degree of siblingf.next-x].
An invariant of the loop is that each time we start the body of the loop,
both x and next-x are non-NIL.

Case 1, shown in Figure 20.6(a), occurs when degree[x] :f: degree[next-x],
that is, when x is the root of a Bi-txe» and next-x is the root of a HI-tree for
some 1 > k. Lines 11-12 handle this case. We don't link x and next-x, so
we simply march the pointers one position further down the list. Updating
next-x to point to the node following the new node x is handled in line 21,
which is common to every case.

Case 2, shown in Figure 20.6(b), occurs when x is the first of three roots
of equal degree, that is, when

degree[x] = degree[next-x] = degree[siblingf.next-x]] .

We handle this case in the same manner as case 1: we just march the
pointers one position further down the list. Line 10 tests for both cases 1
and 2, and lines 11-12 handle both cases.

Cases 3 and 4 occur when x is the first of two roots of equal degree, that
is, when

degree[x] degree[next-x] :f: degree[sibling[next-x]] .

These cases may occur on the next iteration after any case, but one of them
always occurs immediately following case 2. In cases 3 and 4, we link x
and next-x. The two cases are distinguished by whether x or next-x has
the smaller key, which determines the node that will be the root after the
two are linked.

In case 3, shown in Figure 20.6(c), key[x] ::; key[n ext-x], so next-x is
linked to x. Line 14 removes next-x from the root list, and line 15 makes
next-x the leftmost child of x.
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BINOMIAL-HEAP-MERGE

x next-x
(b) head[H]~

~ Case 3

x next-x

(0) Ire.dlH] -~-

Case 2

Figure 20.5 The execution of BINOMIAL-HEAP-UNION. (a) Binomial heaps HI
and H2. (b) Binomial heap H is the output of BINOMIAL-HEAP-MERGE(Hj , H 2 ) .

Initially, x is the first root on the root list of H. Because both x and next-x have
degree 0 and key[x] < key[next-x], case 3 applies. (c) After the link occurs, x is
the first of three roots with the same degree, so case 2 applies. (d) After all the
pointers move down one position in the root list, case 4 applies, since x is the first
of two roots of equal degree. (e) After the link occurs, case 3 applies. (I) After
another link, case I applies, because x has degree 3 and next-x has degree 4. This
iteration of the while loop is the last, because after the pointers move down one
position in the root list, next-x = NIL.
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(d) head[H]

tCase-t

x next-x

prev-x
(e) head[H]~m

@
!1Case 3

x next-x

(f) head[H]

Case I

next-x

In case 4, shown in Figure 20.6(d), next-x has the smaller key, so x is
linked to next-x. Lines 16-18 remove x from the root list, which has two
cases depending on whether x is the first root on the list (line 17) or is not
(line 18). Line 19 then makes x the leftmost child of next-x, and line 20
updates x for the next iteration.

Following either case 3 or case 4, the setup for the next iteration of the
while loop is the same. We have just linked two Bk-trees to form a Bk + J 

tree, which x now points to. There were already zero, one, or two other
Bk+l-trees on the root list from the output of BINOMIAL-HEAP-MERGE, so
x is now the first of either one, two, or three Bk +I-trees on the root list. If
x is the only one, then we enter case 1 in the next iteration: degree[x] ::j:.
degree[next-x]. If x is the first of two, then we enter either case 3 or case 4
in the next iteration. It is when x is the first of three that we enter case 2
in the next iteration.

The running time of BINOMIAL-HEAP-UNION is O(lg n), where n is the
total number of nodes in binomial heaps HI and H 2• We can see this
as follows. Let HI contain n J nodes and H 2 contain nz nodes, so that
n = nl + n2. Then, HI contains at most LIgnd + I roots and H2 contains
at most [lgn2j + 1 roots, so H contains at most [lgnd + [lgn2j + 2 $
2 [lgn] + 2 = O(lgn) roots immediately after the call of BINOMIAL-HEAP-



4/2 Chapter 20 Binomial Heaps

(a)
x sihling[next-x]

Case I
·..·..........····:11··

next-x
. ~ ~ ...

(b)
next-x

1i
B

k

--'lo> .. ,

prev-x

mm~

DCase 3
,,· '·,11.,

sibling[next-x]

/
L....

B
k

B
k

key[x] :::; key[next-x]

... _~P'::-X 1\ 7i;t:'~fjbling[ne:-~].
Case 4

· ·;11··

«: Bk B{
key[x] > key[next-xl

(c)

(d)

Figure 20.6 The four cases that occur in BINOMIAL-HEAP-UNION. Labels a, b,
c, and d serve only to identify the roots involved; they do not indicate the de
grees or keys of these roots. In each case, x is the root of a B, -tree and I > k.
(a) Case I: degree[x] -# degree[next-x]. The pointers move one position further
down the root list. (b) Case 2: degree[x] = degree[next-x] = degree[sibling[next-x]].
Again, the pointers move one position further down the list, and the next itera
tion executes either case 3 or case 4. (c) Case 3: degree[x] degree[next-x]-#
degree[sibling[next-x]] and key[x] ::; key[next-x]. We remove next-x from the root
list and link it to x, creating a Bk+I-tree. (d) Case 4: degree[x] = degree[next-x]-#
degree[sibling[next-x]] and key[next-x] ::; key[x]. We remove x from the root list
and link it to next-x, again creating a Bi;+ I-tree.
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MERGE. The time to perform BINOMIAL-HEAP-MERGE is thus O(lgn).
Each iteration of the while loop takes O( I) time, and there are at most
llgnd + llgn2J + 2 iterations because each iteration either advances the
pointers one position down the root list of H or removes a root from the
root list. The total time is thus O(lg n).

Inserting a node

The following procedure inserts node x into binomial heap H, assuming
of course that node x has already been allocated and key[x] has already
been filled in.

BINOMIAL-HEAP-INSERT(H, x)

1 H' +- MAKE-BINOMIAL-HEAPO
2 p[x] +- NIL
3 child[x] +- NIL
4 sibling[x] +- NIL
5 degree[x] +- 0
6 head[H'] +- x
7 H +- BINOMIAL-HEAP-UNION(H, H')

The procedure simply makes a one-node binomial heap H' in O( I) time
and unites it with the n-node binomial heap H in O(lg n) time. The call
to BINOMIAL-HEAP-UNION takes care of freeing the temporary binomial
heap H'. (A direct implementation that does not call BINOMIAL-HEAP
UNION is given as Exercise 20.2-8.)

Extracting the node with minimum key

The following procedure extracts the node with the minimum key from
binomial heap H and returns a pointer to the extracted node.

BINOMIAL-HEAP-ExTRACT-MIN(H)

1 find the root x with the minimum key in the root list of H,
and remove x from the root list of H

2 H' +- MAKE-BINOMIAL-HEAPO
3 reverse the order of the linked list of x's children,

and set head[H'] to point to the head of the resulting list
4 H +- BINOMIAL-HEAP-UNION(H, H')
5 return x

This procedure works as shown in Figure 20.7. The input binomial
heap H is shown in Figure 20.7(a). Figure 20.7(b) shows the situation after
line I: the root x with the minimum key has been removed from the root
list of H. If x is the root of a Bk-tree, then by property 4 of Lemma 20.1,
x's children, from left to right, are roots of Bk - l - , Bk - n ... ,Bo-trees. Fig-
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Figure 20.7 The action of BINOMIAL-HEAP-ExTRACT-MIN. (a) A binomial
heap H. (b) The root x with minimum key is removed from the root list of H.
(c) The linked list of x's children is reversed, giving another binomial heap H'.
(d) The result of uniting H and H'.
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ure 20.7(c) shows that by reversing the list of x's children in line 3, we
have a binomial heap H' that contains every node in x's tree except for x
itself. Because x's tree is removed from H in line 1, the binomial heap that
results from uniting H and HI in line 4, shown in Figure 20.7 (d), contains
all the nodes originally in H except for x. Finally, line 5 returns x.

Since each of lines 1-4 takes O(lg n) time if H has n nodes, BINOMIAL
HEAP-ExTRACT-MIN runs in O(lg n) time.

Decreasing a key

The following procedure decreases the key of a node x in a binomial
heap H to a new value k, It signals an error if k: is greater than x's
current key.

BINOMIAL-HEAP-DECREASE-KEY(H, x, k)

I if k > key[x]
2 then error "new key is greater than current key"
3 key[x] - k
4 y-x
5 z - p[y]
6 while z i= NIL and key[y] < key[ z]
7 do exchange key[y] ...... key[ z]
8 I> If Y and z have satellite fields, exchange them, too.
9 y-z

10 z - p[y]

As shown in Figure 20.8, this procedure decreases a key in the same
manner as in a binary heap: by "bubbling up" the key in the heap. After
ensuring that the new key is in fact no greater than the current key and
then assigning the new key to x, the procedure goes up the tree, with y
initially pointing to node x. In each iteration of the while loop of lines 6
10, key[y] is checked against the key of y's parent z . If y is the root or
key[y] 2: key[ z], the binomial tree is now heap-ordered. Otherwise, node y
violates heap ordering, so its key is exchanged with the key of its parent z,
along with any other satellite information. The procedure then sets y to z,
going up one level in the tree, and continues with the next iteration.

The BINOMIAL-HEAP-DECREASE-KEY procedure takes O(lgn) time. By
property 2 of Lemma 20.1, the maximum depth of x is [lg n], so the while
loop of lines 6--10 iterates at most L19 nJ times.

Deleting a key

It is easy to delete a node x's key and satellite information from binomial
heap H in O(lg n) time. The following implementation assumes that no
node currently in the binomial heap has a key of -00.
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(b) ht'odlHl

(c) heud[H]

Figure 20.8 The act ion of BINOMIAL-HEAp·DECREASE-J(£v. (a) The situatio n
just before line 5 of the first iteration of the while loop. Node y has had its key
decreased to 7, which is less than the key of y's parent z , (b) The keys of the two
nodes are exchanged, and the situatio n just before line 5 of the second itera tion
is shown. Pointers y and z have moved up one level in the tree, but heap order
is still violated. (c) After another exchange and moving pointers y and z up one
more level, we finally find that heap orde r is satisfied . so the while loop term inates.

BI NOMIAL-H EAP-DELETE (H ,x )

1 BI NOMIAL-H EAP-DECR EASE-KEy (H, x , - 00)
2 BI NOMIAL-H EAP-E x TRACT-M IN (H)

The BINOMIAL-HEAP-DELETE procedure makes node x have the un ique
minimum key in the entire bin omial heap by giving it a key of - 00. (Ex
ercise 20.2-6 deals with the situation in which - 00 cannot appear as a key,
even temporarily.) It then bubbles this key and tbe associated sate llite
information up to a roo t by ca llin g BINOMlA L-H EAP-DEc REASE· K.EV. This
root is then removed fro m H by a call of BINOMIAL-H EAP-ExTRACT· MIN.

The BINOMIAL-HEAP-DELETE procedure takes O(lgn ) t ime.
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20.2-1
Give an example of two binary heaps with n elements each such that
BUILD-HEAP takes 8(n) time on the concatenation of their arrays.

20.2-2
Write pseudocode for BINOMIAL-HEAP-MERGE.

20.2-3
Show the binomial heap that results when a node with key 24 is inserted
into the binomial heap shown in Figure 20.7(d).

20.2-4
Show the binomial heap that results when the node with key 28 is deleted
from the binomial heap shown in Figure 20.8(c).

20.2-5
Explain why the BINOMIAL-HEAP-MINIMUM procedure might not work cor
rectly if keys can have the value 00. Rewrite the pseudocode to make it
work correctly in such cases.

20.2-6
Suppose there is no way to represent the key -00. Rewrite the BINOMIAL
HEAP-DELETE procedure to work correctly in this situation. It should still
take O(lg n) time.

20.2-7
Discuss the relationship between inserting into a binomial heap and incre
menting a binary number and the relationship between uniting two bino
mial heaps and adding two binary numbers.

20.2-8
In light of Exercise 20.2-7, rewrite BINOMIAL-HEAP-INSERT to insert a node
directly into a binomial heap without calling BINOMIAL-HEAP-UNION.

20.2-9
Show that if root lists are kept in strictly decreasing order by degree (in
stead of strictly increasing order), each of the binomial heap operations
can be implemented without changing its asymptotic running time.

20.2-10
Find inputs that cause BINOMIAL-HEAP-ExTRACT-MIN, BINOMIAL-HEAP
DECREASE-KEY, and BINOMIAL-HEAP-DELETE to run in Q(lgn) time. Ex
plain why the worst-case running times of BINOMIAL-HEAP-INSERT, BI
NOMIAL-HEAP-MINIMUM, and BINOMIAL-HEAP-UNION are Q(lgn) but not
Q(lg n). (See Problem 2-5.)
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Problems

Chapter 20 Binomial Heaps

20-1 2-3-4 heaps
Chapter 19 introduced the 2-3-4 tree, in which every internal node (other
than possibly the root) has two, three, or four children and all leaves have
the same depth. In this problem, we shall implement 2-3-4 heaps, which
support the mergeable-heap operations.

The 2-3-4 heaps differ from 2-3-4 trees in the following ways. In 2-3-4
heaps, only leaves store keys, and each leaf x stores exactly one key in the
field key[x]. There is no particular ordering of the keys in the leaves; that
is, from left to right, the keys may be in any order. Each internal node x
contains a value small[x] that is equal to the smallest key stored in any
leaf in the subtree rooted at x. The root r contains a field height[r] that is
the height of the tree. Finally, 2-3-4 heaps are intended to be kept in main
memory, so that disk reads and writes are not needed.

Implement the following 2-3-4 heap operations. Each of the operations
in parts (a)-(e) should run in O(lgn) time on a 2-3-4 heap with n elements.
The UNION operation in part (f) should run in O(lgn) time, where n is the
number of elements in the two input heaps.

a. MINIMUM, which returns a pointer to the leaf with the smallest key.

b. DECREASE-KEY, which decreases the key of a given leaf x to a given
value k :::; key[x].

c. INSERT, which inserts leaf x with key k.

d. DELETE, which deletes a given leaf x.

e. EXTRACT-MIN, which extracts the leaf with the smallest key.

f. UNION, which unites two 2-3-4 heaps, returning a single 2-3-4 heap and
destroying the input heaps.

20-2 Minimum-spanning-tree algorithm using mergeable heaps
Chapter 24 presents two algorithms to solve the problem of finding a mini
mum spanning tree of an undirected graph. Here, we shall see how merge
able heaps can be used to devise a different minimum-spanning-tree algo
rithm.

We are given a connected, undirected graph G = (V, E) with a weight
function w : E -+ R. We call w(u, v) the weight of edge (u, v). We wish
to find a minimum spanning tree for G: an acyclic subset T ~ E that
connects all the vertices in V and whose total weight

w(T) = I: w(u,v)
(u,v)ET

is minimized.
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Chapter notes

The following pseudocode, which can be proven correct using techniques
from Section 24.1, constructs a minimum spanning tree T. It maintains a
partition {Vi} of the vertices of V and, with each set Vi, a set

E, ~ {(u, v) : U E Vi or v E Vi}

of edges incident on vertices in Vi,

MST-MERGEABLE-HEAP(G)

1 T +- 0
2 for each vertex Vi E V[G]
3 do Vi +- {v j }

4 E, +- {(Vi,V) E E[G]}
5 while there is more than one set Vi
6 do choose any set Vi
7 extract the minimum-weight edge (u, v) from E j

8 assume without loss of generality that u E Vi and v E V;
9 if i t j

to then T - T u {(u, vn
11 Vi - Vi U V;, destroying V;
12 s, +- z, U e,

Describe how to implement this algorithm using the mergeable-heap op
erations given in Figure 20.1. Give the running time of your implemen
tation, assuming that the mergeable heaps are implemented by binomial
heaps.

Binomial heaps were introduced in 1978 by Vuillemin [196]. Brown [36,
37] studied their properties in detaiL
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In Chapter 20, we saw how binomial heaps support in O(lg n) worst-case
time the mergeable-heap operations INSERT, MINIMUM, EXTRACT-MIN,
and UNION, plus the operations DECREASE-KEY and DELETE. In this chap
ter, we shall examine Fibonacci heaps, which support the same operations
but have the advantage that operations that do not involve deleting an
element run in O( I) amortized time.

From a theoretical standpoint, Fibonacci heaps are especially desirable
when the number of EXTRACT-MIN and DELETE operations is small rel
ative to the number of other operations performed. This situation arises
in many applications. For example, some algorithms for graph problems
may call DECREASE-KEY once per edge. For dense graphs, which have
many edges, the O( I) amortized time of each call of DECREASE-KEY adds
up to a big improvement over the a(lg n) worst-case time of binary or
binomial heaps. The asymptotically fastest algorithms to date for prob
lems such as computing minimum spanning trees (Chapter 24) and finding
single-source shortest paths (Chapter 25) make essential use of Fibonacci
heaps.

From a practical point of view, however, the constant factors and pro
gramming complexity of Fibonacci heaps make them less desirable than
ordinary binary (or k-ary) heaps for most applications. Thus, Fibonacci
heaps are predominantly of theoretical interest. If a much simpler data
structure with the same amortized time bounds as Fibonacci heaps were
developed, it would be of great practical use as well.

Like a binomial heap, a Fibonacci heap is a collection of trees. Fibonacci
heaps, in fact, are loosely based on binomial heaps. If neither DECREASE
KEY nor DELETE is ever invoked on a Fibonacci heap, each tree in the
heap is like a binomial tree. Fibonacci heaps differ from binomial heaps,
however, in that they have a more relaxed structure, allowing for improved
asymptotic time bounds. Work that maintains the structure can be delayed
until it is convenient to perform.

Like the dynamic tables of Section 18.4, Fibonacci heaps offer a good
example of a data structure designed with amortized analysis in mind. The
intuition and analyses of Fibonacci heap operations in the remainder of
this chapter rely heavily on the potential method of Section 18.3.
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The exposition in this chapter assumes that you have read Chapter 20 on
binomial heaps. The specifications for the operations appear in that chap
ter, as does the table in Figure 20.1, which summarizes the time bounds
for operations on binary heaps, binomial heaps, and Fibonacci heaps. Our
presentation of the structure of Fibonacci heaps relies on that of binomial
heap structure. You will also find that some of the operations performed
on Fibonacci heaps are similar to those performed on binomial heaps.

Like binomial heaps, Fibonacci heaps are not designed to give efficient
support to the operation SEARCH; operations that refer to a given node
therefore require a pointer to that node as part of their input.

Section 21.1 defines Fibonacci heaps, discusses their representation, and
presents the potential function used for their amortized analysis. Sec
tion 21.2 shows how to implement the mergeable-heap operations and
achieve the amortized time bounds shown in Figure 20.1. The remaining
two operations, DECREASE-KEY and DELETE, are presented in Section 21.3.
Finally, Section 21.4 finishes off a key part of the analysis.

21.1 Structure of Fibonacci heaps

Like a binomial heap, a Fibonacci heap is a collection of heap-ordered
trees. The trees in a Fibonacci heap are not constrained to be binomial
trees, however. Figure 21.1(a) shows an example of a Fibonacci heap.

Unlike trees within binomial heaps, which are ordered, trees within Fi
bonacci heaps are rooted but unordered. As Figure 21.1(b) shows, each
node x contains a pointer p[x] to its parent and a pointer child[x] to any
one of its children. The children of x are linked together in a circular,
doubly linked list, which we call the child list of x. Each child y in a child
list has pointers left[y] and right[y] that point to y's left and right siblings,
respectively. If node y is an only child, then left[y] = right[y] = y. The
order in which siblings appear in a child list is arbitrary.

Circular, doubly linked lists (see Section 11.2) have two advantages for
use in Fibonacci heaps. First, we can remove a node from a circular,
doubly linked list in O( 1) time. Second, given two such lists, we can
concatenate them (or "splice" them together) into one circular, doubly
linked list in O( I) time. In the descriptions of Fibonacci heap operations,
we shall refer to these operations informally, letting the reader fill in the
details of their implementations.

Two other fields in each node will be of use. The number of children
in the child list of node x is stored in degree[x]. The boolean-valued field
mark[x] indicates whether node x has lost a child since the last time x
was made the child of another node. We won't worry about the details
of marking nodes until Section 21.3. Newly created nodes are unmarked,
and a node x becomes unmarked whenever it is made the child of another
node.
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Figure 21.1 (a) A Fibonacci heap consisting of fi ve heap-ordered trees and 14
nodes. The dashed line indicates the root list. The minimum node of the heap
is the node containing the key 3. The three marked nodes are blackened. The
potent ial of this pan icular Fibonacci heap is 5 + 2 . 3 = 11. (b) A more com
plete representation showing pointers p (up arrows), child (down arrows), and left
and right (sideways arrows). These details are omitted in the remaining figures in
this chapter, since all the information shown here can be determined from what
appears in pa n (a) .

A given Fibonacci heap H is accessed by a pointer minrHl to the root of
the tree containing a minimum key; this node is called the mi" imum "ode
of the Fibonacci heap. If a Fibonacci heap H is empty, then mi n[H] = N IL .

The roots of all the trees in a Fibonacci heap are linked togeth er using
their left and right pointers into a circular, doubly linked list called the root
list of the Fibonacci heap . Th e pointer min(H l thu s points to the node in
the root list whose key is minimum. Th e order of the trees within a root
list is arbitrary.

We rely on one other attribute for a Fibonacci heap H: the number of
nodes currently in H is kept in n(H].

Potential function

As ment ioned, we shall use the potential method of Section 18.3 to analyze
the performa nce of Fibonacci heap operations. For a given Fibonacci
heap H , we ind icate by r(H) the number of trees in the root list of H and
by m(H ) the number of marked nodes in H . Th e potential of Fibonacci
heap H is then defined by
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(2 1.1)

For example, the potential of the Fibonacci heap shown in Figure 2 1.1 is
S + 2 . 3 = I I. The potential of a set of Fibonacci heaps is the sum of the
potentials of its constituent Fibonacci heaps. We shall assume that a unit
of potential can pay for a constant amount of work, where the constant
is sufficiently large to cover the cost of any of the specific constant-time
pieces of work that we might encounter.

We assume tha t a Fibonacci heap app lication begins with no heaps.
The initial poten tial, therefore, is 0, and by equation (21.1), the potential
is nonnegative at all subsequent times . From equation (18.2), an uppe r
bound on the total amort ized cost is thus an upper bound on the total
actual cost for the sequence of operations.

Maxi mum degree

The amortized analyses we shall perform in the rema ining sections of th is
chapter assume that there is a known upper bound D{n ) on the maxi
mum degree of any node in an n-node Fibonacci heap. Exercise 21.2-3
shows that when only the mergeable-heap opera tions are supported, D(n ) =
l lg nJ. In Section 21.3, we shall show that when we support DECREASE-KEy
and DELETE as well, D(n ) = O(lgn ).

21.2 Mergeable-heap operations

In this section, we describe and analyze the mergeable-heap operations as
implemented for Fibonacci heaps. If only these operations- MA KE-HEAP,
INSERT, MINIMUM, EXTRACT-MIN, and UNION- are to be supported, each
Fibonacci heap is simply a collection o f "unordered" binomial trees. An
unordued binomial tree is like a binomial tree, and it, too, is defi ned recur
sively. Th e unordered binomial tree Vo consists of a single node, and an
unordered binomial tree U k consists of two unordered binomial trees U k _ 1
for which the root of one is made into any child of the root of the other.
Lemma 20. 1, which gives prope rt ies of binomial trees, holds for unordered
binomial trees as well, bu t with the following varia tion on prope rty 4 (see
Exercise 21.2-2):

4' . For the unordered binom ial tree V,c> the root has degree k, which is
greater than that of any other node. The child ren of the root are roots
of subtrees Vo, VI ,. _. , Vk _ 1 in some order.

Thus, if an n-node Fibonacci heap is a collection of unordered binomial
trees, then D (n ) = Ign .

The key idea in the mergeable-heap operations on Fibo nacci heaps is to
delay work as long as possib le. There is a performance trade-off among
implementations of the various ope ratio ns. If the number of trees in a



424 Chapter 21 Fibonacci Heaps

Fibonacci heap is small, then we can quickly determine the new mini
mum node during an EXTRACT-MIN operation. However, as we saw with
binomial heaps in Exercise 20.2-10, we pay a price for ensuring that the
number of trees is small: it can take up to n(lg n) time to insert a node into
a binomial heap or to unite two binomial heaps. As we shall see, we do
not attempt to consolidate trees in a Fibonacci heap when we insert a new
node or unite two heaps. We save the consolidation for the EXTRACT-MIN
operation, which is when we really need to find the new minimum node.

Creating a new Fibonacci heap

To make an empty Fibonacci heap, the MAKE-FIB-HEAP procedure al
locates and returns the Fibonacci heap object H, where n[H] = 0 and
min[H] = NIL; there are no trees in H. Because t(H) = 0 and m(H) = 0,
the potential of the empty Fibonacci heap is <I>(H) = O. The amortized
cost of MAKE-FIB-HEAP is thus equal to its O( 1) actual cost.

Inserting a node

The following procedure inserts node x into Fibonacci heap H, assuming
of course that the node has already been allocated and that key[x] has
already been filled in.

FIB-HEAP-INSERT(H, x)

1 degree[x];---. 0
2 p[x];---. NIL
3 chi/d[x];---. NIL
4 left[x];---. x
5 right[x];---. x
6 mark[x];---. FALSE
7 concatenate the root list containing x with root list H
8 if min[H] = NIL or key[x] < key[min[H]]
9 then min[H] ;---. x

10 n[H];---. n[H] + 1

After lines 1-6 initialize the structural fields of node x, making it its own
circular, doubly linked list, line 7 adds x to the root list of H in O( 1)
actual time. Thus, node x becomes a single-node heap-ordered tree, and
thus an unordered binomial tree, in the Fibonacci heap. It has no children
and is unmarked. Lines 8-9 then update the pointer to the minimum
node of Fibonacci heap H if necessary. Finally, line 10 increments n[H]
to reflect the addition of the new node. Figure 21.2 shows a node with
key 21 inserted into the Fibonacci heap of Figure 21.1.

Unlike the BINOMIAL-HEAP-INSERT procedure, FIB-HEAP-INSERT makes
no attempt to consolidate the trees within the Fibonacci heap. If k con-
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Figure 21.2 Insen ing a node into a Fibonacci heap . [a ] A Fibonacci heap H .
(b) Fibonacci heap H after the node with key 21 has been inserted . Th e node
becomes its own hea p-ordered tree and is t hen added to the root list, becoming the
left sibling of the root.

secutive FIB· HEAP· INSERT operations occur, then k single-node trees are
added to the root list.

To determine the am ortized cost of FIB-HEAP-INSERT, let H be the input
Fibonacci heap and H' be the resulting Fibonacci heap. Th en, {(H ' ) =
t(H ) + I and m(H ' ) = m(H ), and the increase in potent ial is

((/(H) + I ) + 2 m (H » - (/(H) + 2 m (H » ~ 1 .

Since the actual cost is O( I ), the amortized cost is O( I ) + I = O( I ).

Finding the minimum node

The minimum node of a Fibonacci heap H is given by the pointer min[H l ,
so we can find the minim um node in O( I) actual time. Because the poten
tial of H does not change, the amortized cost of thi s operation is equal to
its O( I) actual cost.

Uniting two Fibonacci heaps

The following procedure un ites Fibonacci heaps H I and H 2, dest roying HI
and H2 in the process.

FIB-HEAP-UNION(H 1, H2)

I H -- MAKE-FIB·HEAPO
2 min[H ] -- min{H1l
3 concatenate the root list of H2 with the root list of H
4 if (min[H l l = NIL) or (min[H2l #: NIL and min [H2J< min[H 1])
5 then min[H ] __ min[H2]

6 niH] - ni H,] + nIH,]
7 free the objects H I and H2
8 return H

Lines 1-3 concatenate the root lists of H I and H 2 into a new root list H .
Lines 2, 4, and 5 set the minimum node of H , and line 6 sets n[ H] to the
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total number of nodes. The Fibonacci heap objects HI and H2 are freed
in line 7, and line 8 returns the resulting Fibonacci heap H. As in the
FIB-HEAP-INSERT procedure, no consolidation of trees occurs.

The change in potential is

et>(H) (et>(Ht) + et>(H2))

= (t(H) + 2 m(H)) - «(t(H)) + 2 m(Ht}) + (t(H2) + 2 m(H2)))

0,

because t(H) = t(Ht} + t(H2) and m(H) = m(Ht) + m(H2). The amortized
cost of FIB-HEAP-UNION is therefore equal to its O( 1) actual cost.

Extracting the minimum node

The process of extracting the minimum node is the most complicated of the
operations presented in this section. It is also where the delayed work of
consolidating trees in the root list finally occurs. The following pseudocode
extracts the minimum node. The code assumes for convenience that when
a node is removed from a linked list, pointers remaining in the list are
updated, but pointers in the extracted node are left unchanged. It also uses
the auxiliary procedure CONSOLIDATE, which will be presented shortly.

FIB-HEAP-EXTRACT-MIN(H)

1 z +- min[H]
2 if z -# NIL
3 then for each child x of z
4 do add x to the root list of H
5 p[x] +- NIL
6 remove z from the root list of H
7 if z = right[z]
8 then min[H] +- NIL
9 else min[H] +- right[z]

10 CONSOLIDATE(H)
11 n [H] +- n [H] - 1
12 return z

As shown in Figure 21.3, FIB-HEAP-ExTRACT-MIN works by first making
a root out of each of the minimum node's children and removing the
minimum node from the root list. It then consolidates the root list by
linking roots of equal degree until at most one root remains of each degree.

We start in line 1 by saving a pointer z to the minimum node; this
pointer is returned at the end. If z = NIL, then Fibonacci heap H is already
empty and we are done. Otherwise, as in the BINOMIAL-HEAP-ExTRACT
MIN procedure, we delete node z from H by making all of z's children
roots of H in lines 3-5 (putting them into the root list) and removing z
from the root list in line 6. If z = right[z] after line 6, then z was the only
node on the root list and it had no children, so all that remains is to make
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the Fibonacci heap empty in line 8 before returning z. Otherwise, we set
the pointer min[H] into the root list to point to a node other than z (in this
case, right[z]). Figure 21.3(b) shows the Fibonacci heap of Figure 21.3(a)
after line 9 has been performed.

The next step, in which we reduce the number of trees in the Fibonacci
heap, is consolidating the root list of H; this is performed by the call
CONSOLIDATE(H). Consolidating the root list consists of repeatedly exe
cuting the following steps until every root in the root list has a distinct
degree value.

1. Find two roots x and y in the root list with the same degree, where
key[x] s: key[y].

2. Link y to x: remove y from the root list, and make y a child of x.
This operation is performed by the FIB-HEAP-LINK procedure. The field
degree[x] is incremented, and the mark on y, if any, is cleared.

The procedure CONSOLIDATE uses an auxiliary array A[O .. D(n[H])]; if
A[i] = y, then y is currently a root with degree[y] = i.

CONSOLIDATE(H)

1 for i +- 0 to D(n[H])
2 do A[i] +- NIL
3 for each node w in the root list of H
4 do x+- w
5 d +- degree[x]
6 while A[d] ::f NIL
7 do y +- A[d]
8 if key[x] > key[y]
9 then exchange x ...... y

10 FIB-HEAP-LINK(H,y, x )
11 A[d] +- NIL
12 d s-c d v )
13 A[d] +- x
14 min[H] +- NIL
15 for i +- 0 to D(n[H])
16 do if A [i] ::f NIL
17 then add A[i] to the root list of H
18 if min[H] = NIL or key[A[i]] < key[min[H]]
19 then min[H] +- A[i]

FIB-HEAP-LINK(H, y, x)

1 remove y from the root list of H
2 make y a child of x, incrementing degree[x]
3 mark[y] +- FALSE

In detail, the CONSOLIDATE procedure works as follows. In lines 1-2,
we initialize A by making each entry NIL. When we are done processing
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Figure 21.3 Th e act ion of FIB-HEAP-ExTRACT-MIN. (a) A Fibonacci heap H .
(b) Th e situation aft er the minimum node z is removed fro m the roo t list and its
children arc added to the root list. (c)-(e) The a rray A a nd the t rees after each of the
first three iterations of the for loop of lines 3- 13 of the procedure CONSQLlDATE.
The root list is processed by start ing at the min imum node and following right
pointers . Each part ShOWl the values o f w and x at the end of an iteration. (1)
(h) The next iteration of the for loop, with the values of w and x shown at the end
of each iteration of the while loop of lines 6- 12. Pan ( f) shows the situation afte r
the first time through the while loop. The node with key 23 has been linked to the
node with key 7, which is now pointed to by x . In pan (g), the node with key 17
has been linked to the node with key 1, which is still pointed to by x . In pan (h),
the node with key 24 has been linked to the node with key 1. Since no node was
previously pointed to by A[3), at the end of the for loop iteration , A (3] is set to
point to the root of the resulting tree. (1)- (1) The situation after each of the next
four iterations of the while loop. (m) Fibonacci heap N after reconst ructio n of the
root Jist from the arra y A and determination of the new min [H ) pointer .
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each root w , it ends up in a tree roo ted at some node x , which mayor
may not be iden tical to w. Arra y entry A[degree{x)) will then be set to
po int to x, In the for loop of lines 3- 13, we exam ine each root w in the
root list. Th e inva riant maintained during each iteration of the for loop is
that node x is the root of the tree containing node w. T he while loop of
lines 6- 12 mainta ins the invariant that d = degree{x] (except in line 11 ,
as we shall see in a moment ). In each iteration of the while loop, A[d]
po ints to some roo t y . Because d = degree{x ) = degree(y), we want to
link x and y . Whichever of x and y has the smaller key becomes the
parent of the other as a result of the link operation, and so lines 8-9
excha nge the pointers to x and y if necessa ry. Next , we link y to x by
the call FIB-HEAP-LINK(H ,y , x ) in line 10. This call increments degree{x)
but leaves degree(y) as d . Because node y is no longer a root, the poi nter
to it in array A is removed in line II . Because the value of degree{x ) is
increment ed by the ca ll of FIB-HEAP-LINK, line 12 restores the invariant
that d = degree{x ). We repeat the while loop until A[d ) = NIL, in which
case there is no other Toot with the same degree as x . We set A[d ] to x in
line 13 and perform the next iteration of the for loop. Figures 21.3(c)-(e)
show the array A and the resulting trees after the first three iterations of
the for loop of lines 3-13. In th e next iteration of the for loop, three links
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occur; their results are shown in Figures 21.3(f)-(h). Figures 21.3(i)-(I)
show the result of the next four iterations of the for loop.

All that remains is to clean up. Once the for loop of lines 3-13 completes,
line 14 empties the root list, and lines 15-19 reconstruct it. The resulting
Fibonacci heap is shown in Figure 21.3(m). After consolidating the root
list, FIB-HEAP-ExTRACT-MIN finishes up by decrementing n[H] in line 11
and returning a pointer to the deleted node z in line 12.

Observe that if all trees in the Fibonacci heap are unordered binomial
trees before FIB-HEAP-ExTRACT-MIN is executed, then they are all un
ordered binomial trees afterward. There are two ways in which trees are
changed. First, in lines 3-5 of FIB-HEAP-ExTRACT-MIN, each child x of
root z becomes a root. By Exercise 21.2-2, each new tree is itself an un
ordered binomial tree. Second, trees are linked by FIB-HEAP-LINK only if
they have the same degree. Since all trees are unordered binomial trees
before the link occurs, two trees whose roots each have k children must
have the structure of Ui . The resulting tree therefore has the structure
of Uk+ l •

We are now ready to show that the amortized cost of extracting the
minimum node of an n-node Fibonacci heap is O(D(n)). Let H denote
the Fibonacci heap just prior to the FIB-HEAP-ExTRACT-MIN operation.

The actual cost of extracting the minimum node can be accounted for
as follows. An O(D(n)) contribution comes from there being at most D(n)
children of the minimum node that are processed in FIB-HEAP-ExTRACT
MIN and from the work in lines 1-2 and 14-19 of CONSOLIDATE. It re
mains to analyze the contribution from the for loop of lines 3-13. The
size of the root list upon calling CONSOLIDATE is at most D(n) + t(H) 1,
since it consists of the original t(H) root-list nodes, minus the extracted
root node, plus the children of the extracted node, which number at most
D(n). Every time through the while loop of lines 6-12, one of the roots is
linked to another, and thus the total amount of work performed in the for
loop is at most proportional to D(n) + t(H). Thus, the total actual work
is O(D(n) + t(H)).

The potential before extracting the minimum node is t(H) + 2 m(H),
and the potential afterward is at most (D(n) + I) + 2 m(H), since at most
D(n) + I roots remain and no nodes become marked during the operation.
The amortized cost is thus at most

O(D(n) + t(H)) + ((D(n) + 1) + 2 m(H)) - (t(H) + 2 m(H))

O(D(n)) + O(t(H)) t(H)

= O(D(n)),

since we can scale up the units of potential to dominate the constant hidden
in O(t(H)). Intuitively, the cost of performing each link is paid for by the
reduction in potential due to the link reducing the number of roots by one.
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Exercises
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21.2-1
Show the Fibonacci heap that results from calling FIB-HEAP-ExTRACT-MIN
on the Fibonacci heap shown in Figure 21.3(m).

21.2-2
Prove that Lemma 20.1 holds for unordered binomial trees, but with prop
erty 4' in place of property 4.

21.2-3
Show that if only the mergeable-heap operations are supported, the maxi
mum degree D(n) in an n-node Fibonacci heap is at most [lgn].

21.2-4
Professor McGee has devised a new data structure based on Fibonacci
heaps. A McGee heap has the same structure as a Fibonacci heap and
supports the mergeable-heap operations. The implementations of the op
erations are the same as for Fibonacci heaps, except that insertion and
union perform consolidation as their last step. What are the worst-case
running time of operations on McGee heaps? How novel is the professor's
data structure?

21.2-5
Argue that when the only operations on keys are comparing two keys (as
is the case for all the implementations in this chapter), not all of the
mergeable-heap operations can run in O( 1) amortized time.

21.3 Decreasing a key and deleting a node

In this section, we show how to decrease the key of a node in a Fibonacci
heap in O( 1) amortized time and how to delete any node from an n
node Fibonacci heap in O(D(n)) amortized time. These operations do not
preserve the property that all trees in the Fibonacci heap are unordered
binomial trees. They are close enough, however, that we can bound the
maximum degree D(n) by O(lgn). Proving this bound will imply that
FIB-HEAP-ExTRACT-MIN and FIB-HEAP-DELETE run in O(lg n) amortized
time.

Decreasing a key

In the following pseudocode for the operation FIB-HEAP-DECREASE-KEY,
we assume as before that removing a node from a linked list does not
change any of the structural fields in the removed node.
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FIB-HEAP-DECREASE-KEY(H, x, k)

I if k > key[x]
2 then error "new key is greater than current key"
3 key[x] <- k
4 y <- p[x]
5 if y =I NIL and key[x] < key[y]
6 then CUT(H,x,y)
7 CASCADING-CUT(H,y)
8 if key[x] < key[min[H]]
9 then min[H] <- x

CUT(H,x,y)

1 remove x from the child list of y, decrementing degree[y]
2 add x to the root list of H
3 p[x] <- NIL

4 mark[x] +- FALSE

CASCADING-CUT(H, y)

I z <- ply]
2 if z =I NIL

3 then if mark[y] = FALSE

4 then mark[y] <- TRUE

5 else CUT(H,y, z)
6 CASCADING-CUT(H, z)

The FIB-HEAP-DECREASE-KEY procedure works as follows. Lines 1-3
ensure that the new key is no greater than the current key of x and then
assign the new key to x. If x is a root or if key[x] ~ key[y], where y is x's
parent, then no structural changes need occur, since heap order has not
been violated. Lines 4-5 test for this condition.

If heap order has been violated, many changes may occur. We start by
cutting x in line 6. The CUT procedure "cuts" the link between x and its
parent y, making x a root.

We use the mark fields to obtain the desired time bounds. They help to
produce the following effect. Suppose that x is a node that has undergone
the following history:

1. at some time, x was a root,

2. then x was linked to another node,

3. then two children of x were removed by cuts.

As soon as the second child has been lost, x is cut from its parent, making
it a new root. The field mark[x] is TRUE if steps 1 and 2 have occurred
and one child of x has been cut. The CUT procedure, therefore, clears
mark[x] in line 4, since it performs step 1. (We can now see why line 3
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of FIB-HEAP-LINK clears mark[y]: node y is being linked to another node,
and so step 2 is being performed. The next time a child of y is cut, mark[y]
will be set to TRUE.)

We are not yet done, because x might be the second child cut from its
parent y since the time that y was linked to another node. Therefore, line 7
of FIB-HEAP-DECREASE-KEY performs a cascading-cut operation on y. If
y is a root, then the test in line 2 of CASCADING-CUT causes the procedure
to just return. If y is unmarked, the procedure marks it in line 4, since
its first child has just been cut, and returns. If y is marked, however, it
has just lost its second child; y is cut in line 5, and CASCADING-CUT calls
itself recursively in line 6 on y's parent z. The CASCADING-CUT procedure
recurses its way up the tree until either a root or an unmarked node is
found.

Once all the cascading cuts have occurred, lines 8-9 of FIB-HEAP-DE
CREASE-KEY finish up by updating min[H] if necessary.

Figure 21.4 shows the execution of two calls of FIB-HEAP-DECREASE
KEY, starting with the Fibonacci heap shown in Figure 21.4(a). The first
call, shown in Figure 21.4(b), involves no cascading cuts. The second call,
shown in Figures 21.4(c)-(e), invokes two cascading cuts.

We shall now show that the amortized cost of FIB-HEAP-DECREASE
KEY is only O( 1). We start by determining its actual cost. The FIB
HEAP-DECREASE-KEy procedure takes O( 1) time, plus the time to perform
the cascading cuts. Suppose that CASCADING-CUT is recursively called c
times from a given invocation of FIB-HEAP-DECREASE-KEY. Each call of
CASCADING-CUT takes O( 1) time exclusive of recursive calls. Thus, the ac
tual cost of FIB-HEAP-DECREASE-KEY, including all recursive calls, is O(c).

We next compute the change in potential. Let H denote the Fibonacci
heap just prior to the FIB-HEAP-DECREASE-KEY operation. Each recursive
call of CASCADING-CUT, except for the last one, cuts a marked node and
clears the mark bit. Afterward, there are t(H) + c trees (the original t(H)
trees, c 1 trees produced by cascading cuts, and the tree rooted at x) and
at most m(H) c + 2 marked nodes (c 1 were unmarked by cascading
cuts and the last call of CASCADING-CUT may have marked a node). The
change in potential is therefore at most

((t(H) + c) + 2(m(H) c + 2)) (t(H) + 2 m(H)) 4 c.

Thus, the amortized cost of FIB-HEAP-DECREASE-KEY is at most

O(c) + 4 - c = O(1) ,

since we can scale up the units of potential to dominate the constant hidden
in O(c).

You can now see why the potential function was defined to include a
term that is twice the number of marked nodes. When a marked node y is
cut by a cascading cut, its mark bit is cleared, so the potential is reduced
by 2. One unit of potential pays for the cut and the clearing of the mark



434 Chapter 21 Fibonacci Heaps

1723~~
30 @.,

(b) @-

(e
n mn@

17 23 21 @
30 52

min [H]
t
7(a)

min [H]

•
(d) @G}@_~n-7 ----n(e-----@

17 23 21 @
30 52

min [HI
+

(c) @®@@--~-7 ----(en_m_@
17 23 21 @
30 52

Figure 21.4 Two calls of FIB-HEAP-DECREASE-KEY. (a) The initial Fibonacci
heap. (b) The node with key 46 has its key decreased to 15. The node becomes a
root, and its parent (with key 24), which had previously been unmarked, becomes
marked. (c)-(e) The node with key 35 has its key decreased to 5. In part (c), the
node, now with key 5, becomes a root. Its parent, with key 26, is marked, so a
cascading cut occurs. The node with key 26 is cut from its parent and made an
unmarked root in (d). Another cascading cut occurs, since the node with key 24
is marked as well. This node is cut from its parent and made an unmarked root
in part (e). The cascading cuts stop at this point, since the node with key 7 is a
root. (Even if this node were not a root, the cascading cuts would stop, since it
is unmarked.) The result of the FIB-HEAP-DECREASE-KEY operation is shown in
part (e), with min[H] pointing to the new minimum node.

bit, and the other unit compensates for the unit increase in potential due
to node y becoming a root.

Deleting a node

It is easy to delete a node from an n-node Fibonacci heap in O(D(n))
amortized time, as is done by the following pseudocode. We assume that
there is no key value of -00 currently in the Fibonacci heap.

FIB-HEAP-DELETE(H, x)

1 FIB-HEAP-DECREASE-KEY(H,x, -00)
2 FIB-HEAP-ExTRACT-MIN(H)
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FIB-HEAP-DELETE is analogous to BINOMIAL-HEAP-DELETE. It makes x
become the minimum node in the Fibonacci heap by giving it a uniquely
small key of -00. Node x is then removed from the Fibonacci heap by
the FIB-HEAP-ExTRACT-MIN procedure. The amortized time of FIB-HEAP
DELETE is the sum of the O( I) amortized time of FIB-HEAP-DECREASE
KEY and the O(D(n)) amortized time of FIB-HEAP-ExTRACT-MIN.

Exercises

21.3-1
Suppose that a root x in a Fibonacci heap is marked. Explain how x came
to be a marked root. Argue that it doesn't matter to the analysis that x is
marked, even though it is not a root that was first linked to another node
and then lost one child.

21.3-2
Justify the O( 1) amortized time of FIB-HEAP-DECREASE-KEY using the
aggregate method of Section 18.1.

21.4 Bounding the maximum degree

To prove that the amortized time of FIB-HEAP-ExTRACT-MIN and FIB
HEAP-DELETE is D(lgn), we must show that the upper bound D(n) on
the degree of any node of an n-node Fibonacci heap is O(lg n). By Ex
ercise 21.2-3, when all trees in the Fibonacci heap are unordered bino
mial trees, D(n) = [lg n]. The cuts that occur in FIB-HEAP-DECREASE
KEY, however, may cause trees within the Fibonacci heap to violate the
unordered binomial tree properties. In this section, we shall show that
because we cut a node from its parent as soon as it loses two children,
D(n) is O(lg n). In particular, we shall show that D(n) ~ llogq, nJ, where

¢ = (l + 15)/2.
The key to the analysis is as follows. For each node x within a Fibonacci

heap, define size(x) to be the number of nodes, including x itself, in the
subtree rooted at x. (Note that x need not be in the root list-it can be
any node at all.) We shall show that size(x) is exponential in degree[x].
Bear in mind that degree[x] is always maintained as an accurate count of
the degree of x.

Lemma 21.1
Let x be any node in a Fibonacci heap, and suppose that degree[x] = k.
Let y 1, Y2, ... ,Yk denote the children of x in the order in which they were
linked to x, from the earliest to the latest. Then, degree[Ytl ~ 0 and
degree[Yil ~ i - 2 for i = 2,3, ... .k,
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Proof Obviously, degree[YJl ~ O.
For i ~ 2, we note that when Yi was linked to x, all of YI,Y2,·· ',Yi-I

were children of x, so we must have had degree[x] ~ i 1. Node Yi
is linked to x only if degree[x] degree[Yil, so we must have also had
degree[Yi] ~ i 1 at that time. Since then, node Yi has lost at most one
child, since it would have been cut from x if it had lost two children. We
conclude that degree[Yil ~ i 2. •

We finally come to the part of the analysis that explains the name "Fi
bonacci heaps." Recall from Section 2.2 that for k = 0, 1,2, ..., the kth
Fibonacci number is defined by the recurrence

{
o if k = 0,

Fk 1 if k 1,
Fk - I + Fk - 2 if k ~ 2 .

The following lemma gives another way to express Fi .

Lemma 21.2
For all integers k ~ 0,

k

Fk +2 = 1 +L F i •

i=O

Proof The proof is by induction on k. When k = 0,

o
l+LFi

i=O

= 1 +0

1

F2 •

We now assume the inductive hypothesis that Fk+1 = 1 + 2:;:01Fi, and
we have

Fk +2 = Fk + Fk + 1

F,+ (1 +~F.)
k

l+LFi.
i=O

•

The following lemma and its corollary complete the analysis. It uses the
inequality (proved in Exercise 2.2-8)

Fk+2 ~ </i ,
where cP is the golden ratio defined in equation (2.14) as cP (1 + VS) /2 =
1.61803 ....
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Lemma 21.3
Let x be any node in a Fibonacci heap, and let k = degree[x]. Then,
size(x) ~ Fk +2 ~ ¢i, where </> (1 + VS) /2.

Proof Let sk denote the minimum possible value of size(z) over all
nodes z such that degree[z] = k. Trivially, So = 1, SI = 2, and S2 = 3. The
number Sk is at most size(x). As in Lemma 21.1, let Y"Y2, ... ,Yk denote
the children of x in the order in which they were linked to x. To compute
a lower bound on size(x), we count one for x itself and one for the first
child YI (for which size(Yd ~ 1) and then apply Lemma 21.1 for the other
children. We thus have

size(x) > Sk

k

> 2 + I>i-2.
i=2

We now show by induction on k that Sk ~ Fk+2 for all nonnegative
integer k. The bases, for k = 0 and k = 1, are trivial. For the inductive
step, we assume that k ~ 2 and that s, ~ Fi+2 for i = 0,1, ... ,k - 1. We
have

k

sk ~ 2+ LS;-2

i=2

k

> 2+LFi
;=2

k

I+LFi

i=O
Fk +2 •

The last equality follows from Lemma 21.2.
Thus, we have shown that size(x) ~ Sk ~ Fk+2 ~ </>k. -

Corollary 21.4
The maximum degree D(n) of any node in an n-node Fibonacci heap is
O(lgn).

Proof Let x be any node in an n-node Fibonacci heap, and let k =

degree[x]. By Lemma 21.3, we have n ~ size(x) ~ </>k. Taking base-e log
arithms yields k S; log, n. (In fact, because k is an integer, k S; llog¢ nJ.)
The maximum degree D(n) of any node is thus O(lgn). _
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Exercises

21.t/-1
Professor Pinocchio claims that the height of an n-node Fibonacci heap is
O(lgn). Show that the professor is mistaken by exhibiting, for any positive
integer n, a sequence of Fibonacci-heap operations that creates a Fibonacci
heap consisting of just one tree that is a linear chain of n nodes.

21.t/-2
Suppose we generalize the cascading-cut rule to cut a node x from its
parent as soon as it loses its kth child, for some integer constant k. (The
rule in Section 21.3 uses k = 2.) For what values of k is D(n) = O(lgn)?

21-1 Alternative implementation ofdeletion
Professor Pisano has proposed the following variant of the FIB-HEAP
DELETE procedure, claiming that it runs faster when the node being deleted
is not the node pointed to by min[H].

PISANO-DELETE(H, x)

I if x = min[H]
2 then FIB-HEAP-ExTRACT-MIN(H)
3 else y +- p[x]
4 if y "I- NIL
5 then CUT(H,x,y)
6 CASCADING-CUT(H, y)
7 add x's child list to the root list of H
8 remove x from the root list of H

a. The professor's claim that this procedure runs faster is based partly on
the assumption that line 7 can be performed in O( 1) actual time. What
is wrong with this assumption?

b. Give a good upper bound on the actual time of PISANO-DELETE when
x "I- min[H]. Your bound should be in terms of degree[x] and the
number c of calls to the CASCADING-CUT procedure.

c. Let H' be the Fibonacci heap that results from an execution of PISANO
DELETE(H,x). Assuming that node x is not a root, bound the potential
of H' in terms of degree[x], c, t(H), and m(H).

d. Conclude that the amortized time for PISANO-DELETE is asymptotically
no better than for FIB-HEAP-DELETE, even when x "I- min[H].
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Chapter notes

21-2 More Fibonacci-heap operations
We wish to augment a Fibonacci heap H to support two new operations
without changing the amortized running time of any other Fibonacci-heap
operations.

a. Give an efficient implementation of the operation FIB-HEAP-CHANGE
KEY( H, x, k), which changes the key of node x to the value k. Analyze
the amortized running time of your implementation for the cases in
which k is greater than, less than, or equal to key[x].

b. Give an efficient implementation of FIB-HEAP-PRUNE(H, r), which de
letes min(r, n[H]) nodes from H. Which nodes are deleted should be
arbitrary. Analyze the amortized running time of your implementa
tion. (Hint: You may need to modify the data structure and potential
function.)

Fibonacci heaps were introduced by Fredman and Tarjan [75}. Their paper
also describes the application of Fibonacci heaps to the problems of single
source shortest paths, all-pairs shortest pairs, weighted bipartite matching,
and the minimum-spanning-tree problem.

Subsequently, Driscoll, Sarnak, Sleator, and Tarjan [58} developed "re
laxed heaps" as an alternative to Fibonacci heaps. There are two varieties
of relaxed heaps. One gives the same amortized time bounds as Fibonacci
heaps. The other allows DECREASE-KEY to run in 0(1) worst-case (not
amortized) time and EXTRACT-MIN and DELETE to run in O(lgn) worst
case time. Relaxed heaps also have some advantages over Fibonacci heaps
in parallel algorithms.
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Some applications involve grouping n distinct elements into a collection of
disjoint sets. Two important operations are then finding which set a given
element belongs to and uniting two sets. This chapter explores methods
for maintaining a data structure that supports these operations.

Section 22.1 describes the operations supported by a disjoint-set data
structure and presents a simple application. In Section 22.2, we look at a
simple linked-list implementation for disjoint sets. A more efficient rep
resentation using rooted trees is given in Section 22.3. The running time
using the tree representation is linear for all practical purposes but is theo
retically superlinear. Section 22.4 defines and discusses Ackermann's func
tion and its very slowly growing inverse, which appears in the running time
of operations on the tree-based implementation, and then uses amortized
analysis to prove a slightly weaker upper bound on the running time.

22.1 Disjoint-set operations

A disjoint-set data structure maintains a collection S {SJ, S2, ... , Sk} of
disjoint dynamic sets. Each set is identified by a representative, which is
some member of the set. In some applications, it doesn't matter which
member is used as the representative; we only care that if we ask for the
representative of a dynamic set twice without modifying the set between
the requests, we get the same answer both times. In other applications,
there may be a prespecified rule for choosing the representative, such as
choosing the smallest member in the set (assuming, of course, that the
elements can be ordered).

As in the other dynamic-set implementations we have studied, each el
ement of a set is represented by an object. Letting x denote an object, we
wish to support the following operations.

MAKE-SET(X) creates a new set whose only member (and thus representa
tive) is pointed to by x. Since the sets are disjoint, we require that x
not already be in a set.
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UNION(X,y) unites the dynamic sets that contain x and y, say Sx and Sy,
into a new set that is the union of these two sets. The two sets are
assumed to be disjoint prior to the operation. The representative of the
resulting set is some member of S, U Sy, although many implementa
tions of UNION choose the representative of either Sx or Sy as the new
representative. Since we require the sets in the collection to be disjoint,
we "destroy" sets S" and Sv, removing them from the collection S.

FIND-SET(X) returns a pointer to the representative of the (unique) set
containing x.

Throughout this chapter, we shall analyze the running times of disjoint
set data structures in terms oftwo parameters: n, the number of MAKE-SET
operations, and m, the total number of MAKE-SET, UNION, and FIND-SET
operations. Since the sets are disjoint, each UNION operation reduces the
number of sets by one. After n 1 UNION operations, therefore, only one
set remains. The number of UNION operations is thus at most n 1. Note
also that since the MAKE-SET operations are included in the total number
of operations m, we have m ~ n.

An application of disjoint-set data structures

One of the many applications of disjoint-set data structures arises in deter
mining the connected components ofan undirected graph (see Section 5.4).
Figure 22.1(a), for example, shows a graph with four connected compo
nents.

The procedure CONNECTED-COMPONENTS that follows uses the disjoint
set operations to compute the connected components of a graph. Once
CONNECTED-COMPONENTS has been run as a preprocessing step, the pro
cedure SAME-COMPONENT answers queries about whether two vertices are
in the same connected component. I (The set of vertices of a graph G is
denoted by V[G], and the set of edges is denoted by E[G].)

CONNECTED-COMPONENTS(G)

I for each vertex v E V[ G]
2 do MAKE-SET(v)
3 for each edge (u, v) E E[G]
4 do if FIND-SET(u) t FIND-SET(v)
5 then UNION(U, v)

I When the edges of the graph are "static"-not changing over time-the connected com
ponents can be computed faster by using depth-first search (Exercise 23.3-9). Sometimes,
however, the edges are added "dynamically" and we need to maintain the connected compo
nents as each edge is added. In this case, the implementation given here can be more efficient
than running a new depth-first search for each new edge.
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VI r I
CD

c d cD
(a)

Edge processed Collection of disjoint sets

initial sets [zr} Ibl [c] Idl leI Ifl IRI Ihl iiI !i!
(b,d) {zz} Ib,dl [c] lei Ifl IRI Ihl iiI Ul
(e,R) lal (b,d) (e) (e,R) If} (h) iiI Ul
(a,c) [rz,c] {b,dl (e,RI Ifl Ih) iiI Ul
(h,i) (a,cl Ib,dl {e,gl Ifl (h,i} Ul
(a,h) (a,h,c,dl (e,g) Ifl (h,i} Ul
(e,j) (a,h,c,dl (e,J,gl (h,i} Ul
(h,c) (a,h,e,d} (e,J,gl (h,i} Ul

(b)

Figure 22.1 (a) A graph with four connected components: {a, b, c,d}, {e,f, g},
{h, r}, and {j}. (b) The collection of disjoint sets after each edge is processed.

SAME-COMPONENT(U, v)

1 if FIND-SET(U) = FIND-SET(V)
2 then return TRUE

3 else return FALSE

The procedure CONNECTED-COMPONENTS initially places each vertex v
in its own set. Then, for each edge (u, v), it unites the sets containing U

and v. By Exercise 22.1-2, after all the edges are processed, two vertices are
in the same connected component if and only if the corresponding objects
are in the same set. Thus, CONNECTED-COMPONENTS computes sets in such
a way that the procedure SAME-COMPONENT can determine whether two
vertices are in the same connected component. Figure 22.1 (b) illustrates
how the disjoint sets are computed by CONNECTED-COMPONENTS.

Exercises

22.1-1
Suppose that CONNECTED-COMPONENTS is run on the undirected graph
G = (V, E), where V {a, b, C, d, e.], g, h, i, i, k} and the edges of E
are processed in the following order: (d, i), (f, k), is. i), (b, g), (a, h), (i, j),
(d, k), (b, j), td, f), (g, j), (a, e), (i, d). List the vertices in each connected
component after each iteration of lines 3-5.
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11.1-1
Show that after all edges are processed by CONNECTED-COMPONENTS, two
vertices are in the same connected component if and only if they are in
the same set.

12.1-3
During the execution of CONNECTED-COMPONENTS on an undirected graph
G = (V, E) with k connected components, how many times is FIND-SET
called? How many times is UNION called? Express your answers in terms
of lVI, lEI, and k.

~~~~-~----~-------------------------

22.2 Linked-list representation of disjoint sets

A simple way to implement a disjoint-set data structure is to represent
each set by a linked list. The first object in each linked list serves as its
set's representative. Each object in the linked list contains a set member,
a pointer to the object containing the next set member, and a pointer back
to the representative. Figure 22.2(a) shows two sets. Within each linked
list, the objects may appear in any order (subject to our assumption that
the first object in each list is the representative).

With this linked-list representation, both MAKE-SET and FIND-SET are
easy, requiring O( I) time. To carry out MAKE-SET(X), we create a new
linked list whose only object is x. For FIND-SET(X), we just return the
pointer from x back to the representative.

A simple implementation of union

The simplest implementation of the UNION operation using the linked-list
set representation takes significantly more time than MAKE-SET or FIND
SET. As Figure 22.2(b) shows, we perform UNION(X,Y) by appending x's
list onto the end of y's list. The representative of the new set is the ele
ment that was originally the representative of the set containing y. Unfor
tunately, we must update the pointer to the representative for each object
originally on x's list, which takes time linear in the length of x's list.

In fact, it is not difficult to come up with a sequence of m operations that
requires 8(m 2) time. We let n = fm/21 + 1 and q = m n = Lm/2J 1 and
suppose that we have objects Xl, X2, .•• , X n• We then execute the sequence
of m = n + q operations shown in Figure 22.3. We spend 8(n) time
performing the n MAKE-SET operations. Because the ith UNION operation
updates i objects, the total number of objects updated by all the UNION
operations is

q-II> = 8(q2).
i=l
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(a)

b

/

(b)

Figure 22.2 (a) Linked-list representations of two sets. One contains objects b, c,
e, and h, with c as the representative, and the other contains objects d, f, and g,
with f as the representative. Each object on the list contains a set member, a
pointer to the next object on the list, and a pointer back to the first object on the
list, which is the representative. (b) The result of UNIoN(e, g). The representative
of the resulting set is f.

Operation
MAKE-SET(XI)

MAKE-SET( X2)

MAKE-SET(xn )

UNION(XI, X2)

UNION(X2,X3)

UNION(X3,X4)

Number of objects updated

I
I
2
3

q-I

Figure 22.3 A sequence of m operations that takes O(m 2 ) time using the linked
list set representation and the simple implementation of UNION. For this example,
n = fm/21 + 1 and q = m n,
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The total time spent is therefore 8(n +q2), which is 8(m2) since n = 8(m)
and q = 8(m). Thus, on the average, each operation requires 8(m) time.
That is, the amortized time of an operation is 8(m).

A weighted-union heuristic

The above implementation of the UNION procedure requires an average
of 8(m) time per call because we may be appending a longer list onto
a shorter list; we must update the pointer to the representative for each
member of the longer list. Suppose instead that each representative also
includes the length of the list (which is easily maintained) and that we
always append the smaller list onto the longer, with ties broken arbitrarily.
With this simple weighted-union heuristic, a single UNION operation can
still take Q(m) time if both sets have Q(m) members. As the following
theorem shows, however, a sequence of m MAKE-SET, UNION, and FINO
SET operations, n of which are MAKE-SET operations, takes O(m + n 19 n)
time.

Theorem 22.1
Using the linked-list representation of disjoint sets and the weighted-union
heuristic, a sequence of m MAKE-SET, UNION, and FIND-SET operations,
n of which are MAKE-SET operations, takes O(m + n 19 n) time.

Proof We start by computing, for each object in a set of size n, an upper
bound on the number of times the object's pointer back to the representa
tive has been updated. Consider a fixed object x. We know that each time
x's representative pointer was updated, x must have started in the smaller
set. The first time x's representative pointer was updated, therefore, the
resulting set must have had at least 2 members. Similarly, the next time
x's representative pointer was updated, the resulting set must have had at
least 4 members. Continuing on, we observe that for any k $ n, after x's
representative pointer has been updated [lgk1times, the resulting set must
have at least k members. Since the largest set has at most n members, each
object's representative pointer has been updated at most [lgn] times over
all the UNION operations. The total time used in updating the n objects is
thus O(nlgn).

The time for the entire sequence of m operations follows easily. Each
MAKE-SET and FIND-SET operation takes O( I) time, and there are O(m)
of them. The total time for the entire sequence is thus O(m + n 19 n). •
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Exercises

22.2-1
Write pseudocode for MAKE-SET, FIND-SET, and UNION using the linked
list representation and the weighted-union heuristic. Assume that each
object x has attributes rep[x] pointing to the representative of the set con
taining x, last[x] pointing to the last object in the linked list containing x,
and size[x] giving the size of the set containing x. Your pseudocode can
assume that last[x] and size[xJ are correct only if x is a representative.

22.2-2
Show the data structure that results and the answers returned by the FIND
SEToperations in the following program. Use the linked-list representation
with the weighted-union heuristic.

1 for i <l- 1 to 16
2 do MAKE-SET(Xi)

3 for i <l- 1 to 15 by 2
4 do UNION(Xi,Xi+d
5 for i <l- 1 to 13 by 4
6 do UNION(Xi, Xi+2)

7 UNION(Xj,Xs)
8 UNION(XII,X13)
9 UNION(Xj,XIO)

10 FIND-SET(X2)
11 FIND-SET(X9)

22.2-3
Argue on the basis of Theorem 22.1 that we can obtain amortized time
bounds of O( 1) for MAKE-SET and FIND-SET and O(lg n) for UNION using
the linked-list representation and the weighted-union heuristic.

22.2-4
Give a tight asymptotic bound on the running time of the sequence of
operations in Figure 22.3 assuming the linked-list representation and the
weighted-union heuristic.

22.3 Disjoint-set forests

In a faster implementation of disjoint sets, we represent sets by rooted
trees, with each node containing one member and each tree representing
one set. In a disjoint-set forest, illustrated in Figure 22.4(a), each member
points only to its parent. The root of each tree contains the representa
tive and is its own parent. As we shall see, although the straightforward
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(a)

Figure 22.4 A disjoint-set forest. (a) Two trees representing the two sets of Fig
ure 22.2. The tree on the left represents the set {b,c,e,h}, with C as the rep
resentative, and the tree on the right represents the set {d, f, g}, with f as the
representative. (b) The result of Uxroxte, g).

algorithms that use this representation are no faster than ones that use
the linked-list representation, by introducing two heuristics-"union by
rank" and "path compression"-we can achieve the asymptotically fastest
disjoint-set data structure known.

We perform the three disjoint-set operations as follows. A MAKE-SET
operation simply creates a tree with just one node. We perform a FIND
SET operation by chasing parent pointers until we find the root of the tree.
The nodes visited on this path toward the root constitute the find path. A
UNION operation, shown in Figure 22.4(b), causes the root of one tree to
point to the root of the other.

Heuristics to improve the running time

So far, we have not improved on the linked-list implementation. A se
quence of n - I UNION operations may create a tree that is just a linear
chain of n nodes. By using two heuristics, however, we can achieve a
running time that is almost linear in the total number of operations m.

The first heuristic, union by rank, is similar to the weighted-union heu
ristic we used with the linked-list representation. The idea is to make the
root of the tree with fewer nodes point to the root of the tree with more
nodes. Rather than explicitly keeping track of the size of the subtree rooted
at each node, we shall use an approach that eases the analysis. For each
node, we maintain a rank that approximates the logarithm of the subtree
size and is also an upper bound on the height of the node. In union by
rank, the root with smaller rank is made to point to the root with larger
rank during a UNION operation.

The second heuristic, path compression, is also quite simple and very
effective. As shown in Figure 22.5, we use it during FIND-SET operations
to make each node on the find path point directly to the root. Path com
pression does not change any ranks.
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(b)

Figure 22.5 Path compression during the operation FIND-SET. Arrows and self
loops at roots are omitted. (a) A tree representing a set prior to executing FIND
SET(a). Triangles represent subtrees whose roots are the nodes shown. Each node
has a pointer to its parent. (b) The same set after executing FIND-SET(a). Each
node on the find path now points directly to the root.

Pseudocode for disjoint-set forests

To implement a disjoint-set forest with the union-by-rank heuristic, we
must keep track of ranks. With each node x, we maintain the integer
value rank[x), which is an upper bound on the height of x (the number
of edges in the longest path between x and a descendant leaf). When a
singleton set is created by MAKE-SET, the initial rank of the single node
in the corresponding tree is O. Each FIND-SET operation leaves all ranks
unchanged. When applying UNION to two trees, we make the root of higher
rank the parent of the root of lower rank. In case of a tie, we arbitrarily
choose one of the roots as the parent and increment its rank.

Let us put this method into pseudocode. We designate the parent of
node x by p[x). The LINK procedure, a subroutine called by UNION, takes
pointers to two roots as inputs.

MAKE-SET(X)

I p[x) +- x
2 rank[x} +- 0

UNION(X,y)

1 LINK(FIND-SET(X), FIND-SET(y))
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LINK(X,y)

1 if rank[x] > ranklY]
2 then pry] +- x
3 else p[x] +- y
4 if rank[x] = ranklY]
5 then rank[y] +- rank[y] + 1
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The FIND-SET procedure with path compression is quite simple.

FIND-SET(X)

1 if x t p[x]
2 then p[x] +- FIND-SET(p[X])
3 return p[x]

The FIND-SET procedure is a two-pass method: it makes one pass up the
find path to find the root, and it makes a second pass back down the find
path to update each node so that it points directly to the root. Each call
of FIND-SET(X) returns p[x] in line 3. If x is the root, then line 2 is not
executed and p[x] = x is returned. This is the case in which the recursion
bottoms out. Otherwise, line 2 is executed, and the recursive call with
parameter p[x] returns a pointer to the root. Line 2 updates node x to
point directly to the root, and this pointer is returned in line 3.

Effect of the heuristics on the running time

Separately, either union by rank or path compression improves the running
time of the operations on disjoint-set forests, and the improvement is even
greater when the two heuristics are used together. Alone, union by rank
yields the same running time as we achieved with the weighted union heu
ristic for the list representation: the resulting implementation runs in time
O(mlgn) (see Exercise 22.4-3). This bound is tight (see Exercise 22.3-3).
Although we shall not prove it here, if there are n MAKE-SET operations
(and hence at most n 1 UNION operations) and f FIND-SET operations,
the path-compression heuristic alone gives a worst-case running time of
SUlog(l+fln) n) if f ~ nand 8(n + flgn) if f < n.

When we use both union by rank and path compression, the worst-case
running time is O(m aim, n)), where aim, n) is the very slowly growing
inverse of Ackermann's function, which we define in Section 22.4. In any
conceivable application of a disjoint-set data structure, aim, n) ~ 4; thus,
we can view the running time as linear in m in all practical situations. In
Section 22.4, we prove the slightly weaker bound of O(m lg" n).
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Exercises

22.3-1
Do Exercise 22.2-2 using a disjoint-set forest with union by rank and path
compression.

22.3-2
Write a nonrecursive version of FIND-SET with path compression.

22.3-3
Give a sequence of m MAKE-SET, UNION, and FIND-SET operations, n of
which are MAKE-SET operations, that takes Q(mig n) time when we use
union by rank only.

22.3-4 *
Show that any sequence of m MAKE-SET, FIND-SET, and UNION operations,
where all the UNION operations appear before any of the FIND-SET opera
tions, takes only O(m) time if both path compression and union by rank
are used. What happens in the same situation if only the path-compression
heuristic is used?

* 22.4 Analysis of union by rank with path compression

As noted in Section 22.3, the running time of the combined union-by
rank and path-compression heuristic is O(m aim, n)) for m disjoint-set
operations on n elements. In this section, we shall examine the function a
to see just how slowly it grows. Then, rather than presenting the very
complex proof of the O(m oim, n)) running time, we shall offer a simpler
proof of a slightly weaker upper bound on the running time: O(m lg" n).

Ackermann's function and its inverse

To understand Ackermann's function and its inverse a, it helps to have a
notation for repeated exponentiation. For an integer i ~ 0, the expression

•• 2 }i
2 •

2

stands for the function g(i), defined recursively by

ifi=O,
ifi=l,
if i > 1 .

Intuitively, the parameter i gives the "height of the stack of 2's" that make
up the exponent. For example,
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Figure 22.6 Values of A(i,j) for small values of i and j.
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Recall the definition of the function 19* (page 36) in terms of the func
tions 19(i) defined for integer i ~ 0:

{

n if i = 0 ,
19(i) n = Ig(lg(i-1) n) if i > 0 and 19(i-ll n > 0 ,

undefined if i > 0 and 19(i-l)n ~ 0 or 19(i-ll n is undefined;

19* n = min {i ~ 0: 19(i) n ~ I} ,

The 19* function is essentially the inverse of repeated exponentiation:

19* 22" ,2}n= n + I ,

We are now ready to show Ackermann's function, which is defined for
integers i.] ~ 1 by

A(l,)) = 2i

AU,I) = AU-l,2)

AU,)) = AU 1,A(i,)-1))

for ) ~ 1 ,

for i ~ 2 ,

for i.] ~ 2 ,

Figure 22,6 shows the value of the function for small values of i and).
Figure 22.7 shows schematically why Ackermann's function has such ex

plosive growth. The first row, exponential in the column number l, is al
ready rapidly growing, The second row consists of the widely spaced subset

2
of columns 2,22,222,222 ,',. of the first row, Lines between adjacent rows
indicate columns in the lower-numbered row that are in the subset included
in the higher-numbered row, The third row consists of the even more

.: 2 }162} 2} 2'2 .,' 16 .,' 2
widely spaced subset of columns 2,22 ,22 ,22 , .. , of
the second row, which is an even sparser subset of columns of the first
row, In general, the spacing between columns of row i-I appearing in
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column

Figure 22.7 The explosive growth of Ackermann's function. Lines between rows
i-I and i indicate entries of row i I appearing in row i. Due to the explosive
growth, the horizontal spacing is not to scale. The horizontal spacing between
entries of row i-I appearing in row i greatly increases with the column number
and row number. If we trace the entries in row i to their original appearance in
row I, the explosive growth is even more evident.

row i increases dramatically with both the column number and the row
2} .

number. Observe that A(2, j) = 22 ' " J for all integers j ~ 1. Thus, for
2 }

i > 2, the function A(i, j) grows even more quickly than 22 ' " J.

We define the inverse of Ackermann's function by2

aim, n) = min{i ~ 1 : A(i, LmjnJ) > Ign} .

Ifwe fix a value of n, then as m increases, the function a(m, n) is monoton
ically decreasing. To see this property, note that Lmjnj is monotonically
increasing as m increases; therefore, since n is fixed, the smallest value of i
needed to bring A(i, Lmjnj) above Ign is monotonically decreasing. This
property corresponds to our intuition about disjoint-set forests with path
compression: for a given number of distinct elements n, as the number
of operations m increases, we would expect the average find-path length
to decrease due to path compression. If we perform m operations in time
O(m a(m, n», then the average time per operation is Oiotm, n», which is
monotonically decreasing as m increases.

To back up our earlier claim that aim, n) ~ 4 for all practical purposes,
we first note that the quantity Lmjnj is at least I, since m ~ n. Since
Ackermann's function is strictly increasing with each argument, Lmjnj ~ I
implies AU, Lmjnj) ~ AU, 1) for all i ~ 1. In particular, A(4, Lmjnj) ~

2Although this function is not the inverse of Ackermann's function in the true mathematical
sense, it captures the spirit of the inverse in its growth, which is as slow as Ackermann's
function is fast. The reason we use the mysterious lgn threshold is revealed in the proof of
the Oim a(m, n» running time, which is beyond the scope of this book.
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A( 4,1). But we also have that

A(4,1) = A(3,2)

.: 2 }16
22 '
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which is far greater than the estimated number of atoms in the observable
universe (roughly 1080). It is only for impractically large values of n that
A(4, 1) $lgn, and thus a(m,n) :::; 4 for all practical purposes. Note that
the O(m 19* n) bound is only slightly weaker than the O(ma(m, n)) bound;
19* 65536 4 and 19* 265536 5, so 19* n :::; 5 for all practical purposes.

Properties of ranks

In the remainder of this section, we prove an O(m 19* n) bound on the
running time of the disjoint-set operations with union by rank and path
compression. In order to prove this bound, we first prove some simple
properties of ranks.

Lemma 22.2
For all nodes x, we have rank{x] :::; rank[p [x]] , with strict inequality if
x :j:. p[x]. The value of rank[x] is initially 0 and increases through time
until x :j:. p[x]; from then on, rank[x] does not change. The value of
rank[p[x]] is a monotonically increasing function of time.

Proof The proof is a straightforward induction on the number of opera
tions, using the implementations of MAKE-SET, UNION, and FIND-SET that
appear in Section 22.3. We leave it as Exercise 22.4-1. •

We define size(x) to be the number of nodes in the tree rooted at node x,
including node x itself.

Lemma 22.3
For all tree roots x, size(x) ~ 2rank [x l .

Proof The proof is by induction on the number of LINK operations. Note
that FIND-SET operations change neither the rank of a tree root nor the
size of its tree.

Basis: The lemma is true before the first LINK, since ranks are initially 0
and each tree contains at least one node.

Inductive step: Assume that the lemma holds before performing the op
eration LINK(X, y). Let rank denote the rank just before the LINK, and let
rank! denote the rank just after the LINK. Define size and size' similarly.

If rank[x] :j:. ranklY], assume without loss of generality that rank[x] <
ranklY]. Node y is the root of the tree formed by the LINK operation, and

size' (y) = size(x) + size(y)
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> 2rank[xj + 2 rank [)i ]

> 2ranklYj

= 2 rank'Lv].

No ranks or sizes change for any nodes other than y.
If rank[x] = ranklY], node y is again the root of the new tree, and

size'(y) size(x) + size(y)
> 2 rank[x] + 2,ank[.v]

2rank [y )+ 1

2,ank'lv] •

Lemma 22.4
For any integer r ~ 0, there are at most nl2r nodes of rank r,

-

Proof Fix a particular value of r. Suppose that when we assign a rank r
to a node x (in line 2 of MAKE-SET or in line 5 of LINK), we attach a
label x to each node in the tree rooted at x. By Lemma 22.3, at least 2r

nodes are labeled each time. Suppose that the root of the tree containing
node x changes. Lemma 22.2 assures us that the rank of the new root (or,
in fact, of any proper ancestor of x) is at least r + 1. Since we assign labels
only when a root is assigned a rank r, no node in this new tree will ever
again be labeled. Thus, each node is labeled at most once, when its root is
first assigned rank r. Since there are n nodes, there are at most n labeled
nodes, with at least 2r labels assigned for each node of rank r, If there
were more than nl2' nodes of rank r, then more than 2r . (nI2r ) = n nodes
would be labeled by a node of rank r, which is a contradiction. Therefore,
at most nl2' nodes are ever assigned rank r. _

Corollary 22.5
Every node has rank at most [Ign].

Proof If we let r > lg n, then there are at most nl2r < 1 nodes of rank r.
Since ranks are natural numbers, the corollary follows, _

Proving the time bound

We shall use the aggregate method of amortized analysis (see Section 18.1)
to prove the O(m lg" n) time bound. In performing the amortized analysis,
it is convenient to assume that we invoke the LINK operation rather than
the UNION operation. That is, since the parameters of the LINK procedure
are pointers to two roots, we assume that the appropriate FIND-SET oper
ations are performed if necessary. The following lemma shows that even
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if we count the extra FIND-SET operations, the asymptotic running time
remains unchanged.

Lemma 22.6
Suppose we convert a sequence S' of m' MAKE-SET, UNION, and FIND
SET operations into a sequence S of m MAKE-SET, LINK, and FIND-SET
operations by turning each UNION into two FIND-SET operations followed
by a LINK. Then, if sequence S runs in O(m 19* n) time, sequence S' runs
in O(m'lg* n) time.

Proof Since each UNION operation in sequence S' is converted into three
operations in S, we have m' S; m S; 3m'. Since m = O(m'), an O(m 19* n)
time bound for the converted sequence S implies an O(m'lg* n) time
bound for the original sequence S'. •

In the remainder of this section, we shall assume that the initial sequence
of m' MAKE-SET, UNION, and FIND-SET operations has been converted to
a sequence of m MAKE-SET, LINK, and FIND-SET operations. We now
prove an O(m 19* n) time bound for the converted sequence and appeal to
Lemma 22.6 to prove the O(m'lg* n) running time of the original sequence
of m' operations.

Theorem 22.7
A sequence of m MAKE-SET, LINK, and FIND-SET operations, n of which
are MAKE-SET operations, can be performed on a disjoint-set forest with
union by rank and path compression in worst-case time O(m lg" n).

Proof We assess charges corresponding to the actual cost of each set
operation and compute the total number ofcharges assessed once the entire
sequence of set operations has been performed. This total then gives us
the actual cost of all the set operations.

The charges assessed to the MAKE-SET and LINK operations are simple:
one charge per operation. Since these operations each take O( I) actual
time, the charges assessed equal the actual costs of the operations.

Before discussing charges assessed to the FIND-SET operations, we par
tition node ranks into blocks by putting rank r into block 19* r for r =
0, I, ... , [lgn]. (Recall that [lgn] is themaximum rank.) The highest
numbered block is therefore block 19* (Ign) = lg" n - I. For notational
convenience, we define for integers j 2:: 1,

B(j) =

if j 1 ,
if j = 0,
if j = I ,

if j 2:: 2 .

Then, for j = 0, 1,... , lg"n - 1, the jth block consists of the set of ranks
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{B(j 1)+I,B(j 1)+2, ... ,B(j)}.

We use two types of charges for a FIND-SET operation: block charges
and path charges. Suppose that the FIND-SET starts at node Xo and that the
find path consists of nodes Xo, XI, ... ,XI, where for i = 1,2, ... , I, node Xi
is p[xi-d and XI (a root) is p[xtl. For j = 0, 1,... , 19* n - 1, we assess one
block charge to the last node with rank in block j on the path. (Note that
Lemma 22.2 implies that on any find path, the nodes with ranks in a given
block are consecutive.) We also assess one block charge to the child of the
root, that is, to Xl-I. Because ranks strictly increase along any find path,
an equivalent formulation assesses one block charge to each node Xi such
that p[xil = x, (Xi is the root or its child) or 19* rank[xil < 19* rank[xi+d
(the block of x/s rank differs from that of its parent). At each node on the
find path for which we do not assess a block charge, we assess one path
charge.

Once a node other than the root or its child is assessed block charges, it
will never again be assessed path charges. To see why, observe that each
time path compression occurs, the rank of a node Xi for which p[xil =I- XI
remains the same, but the new parent of Xi has a rank strictly greater
than that of Xi'S old parent. The difference between the ranks of Xi and its
parent is a monotonically increasing function of time. Thus, the difference
between 19* rank[p[xill and 19* rank[xil is also a monotonically increasing
function of time. Once Xi and its parent have ranks in different blocks,
they will always have ranks in different blocks, and so Xi will never again
be assessed a path charge.

Since we have charged once for each node visited in each FIND-SET
operation, the total number of charges assessed is the total number of
nodes visited in all the FIND-SET operations; this total represents the actual
cost of all the FIND-SET operations. We wish to show that this total is
O(m 19* n).

The number of block charges is easy to bound. There is at most one
block charge assessed for each block number on the given find path, plus
one block charge for the child of the root. Since block numbers range from
o to 19* n - 1, there are at most 19* n + I block charges assessed for each
FIND-SET operation. Thus, there are at most m(lg* n + 1) block charges
assessed over all FIND-SET operations.

Bounding the path charges is a little trickier. We start by observing that
if a node Xi is assessed a path charge, then p[xil =I- x, before path com
pression, so that Xi will be assigned a new parent during path compression.
Moreover, as we have observed, x/s new parent has a higher rank than its
old parent. Suppose that node x/s rank is in block t. How many times
can Xi be assigned a new parent, and thus assessed a path charge, before Xi
is assigned a parent whose rank is in a different block (after which Xi will
never again be assessed a path charge)? This number of times is maximized
if Xi has the lowest rank in its block, namely B(j - 1)+ 1, and its parents'
ranks successively take on the values B(j - I) + 2, B(j - I) + 3, ... ,B(j).
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N(j) ~

Since there are B(j) B(j 1) - 1 such ranks, we conclude that a vertex
can be assessed at most B(j) - B(j - 1) 1 path charges while its rank is
in block j.

Our next step in bounding the path charges is to bound the number
of nodes that have ranks in block j for integers j ~ O. (Recall that by
Lemma 22.2, the rank of a node is fixed once it becomes a child of another
node.) Let the number of nodes whose ranks are in block j be denoted
by N(j). Then, by Lemma 22.4,

BU}

N(j) ~ 2: ;r.
r=B(j-l}+l

For j 0, this sum evaluates to

N(O) = nl2Q + nl21

= 3nl2

3nI2B(0) .

For j ~ 1, we have

n B(j)-(B(j-ll+l) 1

2B(j - l )+ 1 2: 2r
r=Q

<
n 00 1

2B(j - I )+ 1 2: 2r
r=Q

n

n
B(j) .

Thus, N(j) ~ 3nI2B(j) for all integers j ? O.
We finish bounding the path charges by summing over all blocks the

product of the maximum number of nodes with ranks in the block and the
maximum number of path charges per node of that block. Denoting by
P(n) the overall number of path charges, we have

Ig·n-I 3
P(n) ~ ~ 2B~j) (B(j) - B(j - 1) 1)

Ig"n-I 3

< 2: 2B~j)' B(j)
J=Q

3 I *= in g n .

Thus, the total number of charges incurred by FIND-SET operations is
O(m(lg* n+ l)+nlg* n), which is O(mlg* n) since m > n. Since there are
O(n) MAKE-SET and LINK operations, with one charge each, the total time
is O(m lg" n). _
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Corollary 22.8
A sequence of m MAKE-SET, UNION, and FIND-SET operations, n of which
are MAKE-SET operations, can be performed on a disjoint-set forest with
union by rank and path compression in worst-case time O(m 19* n).

Proof Immediate from Theorem 22.7 and Lemma 22.6.

Exercises

22.4-1
Prove Lemma 22.2.

•

Problems

22.4-2
For each node x, how many bits are necessary to store size(x)? How about
rank[x]?

22.4-3
Using Lemma 22.2 and Corollary 22.5, give a simple proof that operations
on a disjoint-set forest with union by rank but without path compression
run in O(m 19 n) time.

22.4-4 *
Suppose we modify the rule about assessing charges so that we assess one
block charge to the last node on the find path whose rank is in block j for
j = 0, I, ... .Ig" n - I. Otherwise, we assess one path charge to the node.
Thus, if a node is a child of the root and is not the last node of a block, it
is assessed a path charge, not a block charge. Show that .Q(m) path charges
could be assessed a given node while its rank is in a given block j.

22-1 Off-line minimum
The off-line minimum problem asks us to maintain a dynamic set T of
elements from the domain {I, 2, ... , n} under the operations INSERT and
EXTRACT-MIN. We are given a sequence S of n INSERT and m EXTRACT
MIN calls, where each key in {I, 2, ... , n} is inserted exactly once. We wish
to determine which key is returned by each EXTRACT-MIN call. Specifi
cally, we wish to fill in an array extracted[ I .. m], where for i = 1,2, ... , m,
extracted[i] is the key returned by the rth EXTRACT-MIN call. The prob
lem is "off-line" in the sense that we are allowed to process the entire
sequence S before determining any of the returned keys.
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a. In the following instance of the off-line minimum problem, each INSERT
is represented by a number and each EXTRACT-MIN is represented by
the letter E:

4, 8, E, 3, E, 9, 2, 6, E, E, E, 1,7, E, 5 .

Fill in the correct values in the extracted array.

To develop an algorithm for this problem, we break the sequence S into
homogeneous subsequences. That is, we represent S by

where each E represents a single EXTRACT-MIN call and each Ij represents
a (possibly empty) sequence of INSERT calls. For each subsequence Ij, we
initially place the keys inserted by these operations into a set K], which is
empty if I, is empty. We then do the following.

OFF-LINE-MINIMuM(m, n)

1 for i r- 1 to n
2 do determine j such that i E K,
3 ifj#m+l
4 then extracted[j] r- i
5 let I be the smallest value greater than j

for which set K, exists
6 K, r- K, ss K, destroying K,
7 return extracted

b. Argue that the array extracted returned by OFF-LINE-MINIMUM is cor
rect.

c. Describe how to use a disjoint-set data structure to implement OFF
LINE-MINIMUM efficiently. Give a tight bound on the worst-case running
time of your implementation.

22-2 Depth determination
In the depth-determination problem, we maintain a forest F {Ti } of
rooted trees under three operations:

MAKE-TREE(v) creates a tree whose only node is v.

FIND-DEPTH(v) returns the depth of node v within its tree.

GRAFT(r, v) makes node r, which is assumed to be the root of a tree,
become the child of node v, which is assumed to be in a different tree
than r but mayor may not itself be a root.

a. Suppose that we use a tree representation similar to a disjoint-set forest:
p[v] is the parent of node v, except that p[v] = v if v is a root. If
we implement GRAFT(r, v) by setting p[r] r- V and FIND-DEPTH(V) by
following the find path up to the root, returning a count of all nodes
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other than v encountered, show that the worst-case running time of
a sequence of m MAKE-TREE, FIND-DEPTH, and GRAFT operations is
8(m2 ).

Byusing the union-by-rank and path-compression heuristics, we can reduce
the worst-case running time. We use the disjoint-set forest S = is;},
where each set S, (which is itself a tree) corresponds to a tree T, in the
forest:F. The tree structure within a set Sj, however, does not necessarily
correspond to that of Ti. In fact, the implementation of S, does not record
the exact parent-child relationships but nevertheless allows us to determine
any node's depth in Ti.

The key idea is to maintain in each node v a "pseudodistance" d[ v],
which is defined so that the sum of the pseudodistances along the path
from v to the root of its set S, equals the depth of v in Ti. That is, if the
path from v to its root in S, is Vo, VI, ... .v«, where Vo v and Vk is Sj'S
root, then the depth ofv in T, is I:~=od[vj].

b. Give an implementation of MAKE-TREE.

c. Show how to modify FIND-SET to implement FIND-DEPTH. Your im
plementation should perform path compression, and its running time
should be linear in the length of the find path. Make sure that your
implementation updates pseudodistances correctly.

d. Show how to modify the UNION and LINK procedures to implement
GRAFT(r, v), which combines the sets containing rand v. Make sure
that your implementation updates pseudodistances correctly. Note that
the root of a set S, is not necessarily the root of the corresponding
tree Ti.

e. Give a tight bound on the worst-case running time of a sequence of
m MAKE-TREE, FIND-DEPTH, and GRAFT operations, n of which are
MAKE-TREE operations.

22-3 Tarjan's off-line least-common-ancestors algorithm
The leastcommon ancestor of two nodes u and v in a rooted tree T is the
node w that is an ancestor of both u and v and that has the greatest depth
in T. In the off-lineleast-common-ancestors problem, we are given a rooted
tree T and an arbitrary set P = { {u, v}} of unordered pairs of nodes in T,
and we wish to determine the least common ancestor of each pair in P.

To solve the off-line least-common-ancestors problem, the following pro
cedure performs a tree walk of T with the initial call LCA(root[T)). Each
node is assumed to be colored WHITE prior to the walk.
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LCA(u)

1 MAKE-SET(U)

2 ancestor[FINo-SET(u)] +-- U
3 for each child v of U in T
4 do LCA(v)
5 UNION(U, v)
6 ancestor[FINo-SET(U)] +-- U
7 color[u] +-- BLACK

8 for each node v such that {U,v} E P
9 do if color[v] = BLACK

10 then print "The least common ancestor of'
U "and" v "is" ancestor[FINo-SET(V)]

461

Chapter notes

a. Argue that line 10 is executed exactly once for each pair {u, v} E P.

b. Argue that at the time of the call LCA(u), the number of sets in the
disjoint-set data structure is equal to the depth of u in T.

c. Prove that LCA correctly prints the least common ancestor of u and v
for each pair {u, v} E P.

d. Analyze the running time of LCA, assuming that we use the implernen
tat ion of the disjoint-set data structure in Section 22.3.

Many of the important results for disjoint-set data structures are due at
least in part to R. E. Tarjan. The upper bound of O(m a(m, n)) was first
given by Tarjan [186, 188]. The O(mIg" n) upper bound was proven earlier
by Hopcroft and Ullman [4, 103]. Tarjan and van Leeuwen [190] discuss
variants on the path-compression heuristic, including "one-pass methods,"
which sometimes offer better constant factors in their performance than
do two-pass methods. Gabow and Tarjan [76] show that in certain appli
cations, the disjoint-set operations can be made to run in O(m) time.

Tarjan [187] showed that a lower bound ofQ(ma(m, n)) time is required
for operations on any disjoint-set data structure satisfying certain technical
conditions. This lower bound was later generalized by Fredman and Saks
[74], who showed that in the worst case, Q(m a(m,n)) (lgn)-bit words of
memory must be accessed.
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Introduction

Graphs are a pervasive data structure in computer science, and algorithms
for working with them are fundamental to the field. There are hundreds
of interesting computational problems defined in terms of graphs. In this
part, we touch on a few of the more significant ones.

Chapter 23 shows how we can represent a graph on a computer and then
discusses algorithms based on searching a graph using either breadth-first
search or depth-first search. Two applications of depth-first search are
given: topologically sorting a directed acyclic graph and decomposing a
directed graph into its strongly connected components.

Chapter 24 describes how to compute a minimum-weight spanning tree
of a graph. Such a tree is defined as the least-weight way of connecting
all of the vertices together when each edge has an associated weight. The
algorithms for computing minimum spanning trees are good examples of
greedy algorithms (see Chapter 17).

Chapters 25 and 26 consider the problem of computing shortest paths be
tween vertices when each edge has an associated length or "weight." Chap
ter 25 considers the computation of shortest paths from a given source
vertex to all other vertices, and Chapter 26 considers the computation of
shortest paths between every pair of vertices.

Finally, Chapter 27 shows how to compute a maximum flow of mate
rial in a network (directed graph) having a specified source of material, a
specified sink, and specified capacities for the amount of material that can
traverse each directed edge. This general problem arises in many forms,
and a good algorithm for computing maximum flows can be used to solve
a variety of related problems efficiently.

In describing the running time of a graph algorithm on a given graph
G = (V, E), we usually measure the size of the input in terms of the number
of vertices IVI and the number of edges lEI of the graph. That is, there
are two relevant parameters describing the size of the input, not just one.
We adopt a common notational convention for these parameters. Inside
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asymptotic notation (such as O-notation or 6-notation), and only inside
such notation, the symbol V denotes lVl and the symbol E denotes lEI.
For example, we might say, "the algorithm runs in time O(VE)," meaning
that the algorithm runs in time 0(1VilE\). This convention makes the
running-time formulas easier to read, without risk of ambiguity.

Another convention we adopt appears in pseudocode. We denote the
vertex set of a graph G by V[G] and its edge set by E[G]. That is, the
pseudocode views vertex and edge sets as attributes of a graph.
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This chapter presents methods for representing a graph and for searching
a graph. Searching a graph means systematically following the edges of
the graph so as to visit the vertices of the graph. A graph-searching algo
rithm can discover much about the structure of a graph. Many algorithms
begin by searching their input graph to obtain this structural information.
Other graph algorithms are organized as simple elaborations of basic graph
searching algorithms. Techniques for searching a graph are at the heart of
the field of graph algorithms.

Section 23.1 discusses the two most common computational representa
tions of graphs: as adjacency lists and as adjacency matrices. Section 23.2
presents a simple graph-searching algorithm called breadth-first search and
shows how to create a breadth-first tree. Section 23.3 presents depth-first
search and proves some standard results about the order in which depth
first search visits vertices. Section 23.4 provides our first real application of
depth-first search: topologically sorting a directed acyclic graph. A second
application of depth-first search, finding the strongly connected compo
nents of a directed graph, is given in Section 23.5.

23.1 Representations of graphs

There are two standard ways to represent a graph G = (V, E): as a col
lection of adjacency lists or as an adjacency matrix. The adjacency-list
representation is usually preferred, because it provides a compact way to
represent sparse graphs-those for which lEI is much less than W( Most
of the graph algorithms presented in this book assume that an input graph
is represented in adjacency-list form. An adjacency-matrix representation
may be preferred, however, when the graph is dense-lEI is close to IV1 2

_

or when we need to be able to tell quickly if there is an edge connecting two
given vertices. For example, two of the all-pairs shortest-paths algorithms
presented in Chapter 26 assume that their input graphs are represented by
adjacency matrices.

The adjacency-list representation of a graph G = (V, E) consists of an
array Adj of WI lists, one for each vertex in V. For each U E V, the
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1 I

2 2

3 3

4 4

5 5

(a) (b)

0 I 0 0 I

I 0 I I I

0 1 0 I 0

0 I 1 0 I

I I 0 1 0

(c)

Figure 23.1 Two representations of an undirected graph. (a) An undirected
graph G having five vertices and seven edges. (b) An adjacency-list representa
tion of G. (c) The adjacency-matrix representation of G.

123456

1 I

2 2

3 3

4 4

5 5

6 6

(a) (b)

0 I 0 1 0 0

0 0 0 0 I 0

0 0 0 0 I I

0 I 0 0 0 0

0 0 0 1 0 0

0 0 0 0 0 1

(c)

Figure 23.2 Two representations of a directed graph. (a) A directed graph G
having six vertices and eight edges. (b) An adjacency-list representation of G.
(c) The adjacency-matrix representation of G.

adjacency list Adi[u] contains (pointers to) all the vertices v such that
there is an edge (u, v) E E. That is, Adi[u] consists of all the vertices
adjacent to u in G. The vertices in each adjacency list are typically stored
in an arbitrary order. Figure 23.1(b) is an adjacency-list representation
of the undirected graph in Figure 23.I(a). Similarly, Figure 23.2(b) is an
adjacency-list representation of the directed graph in Figure 23.2(a).

If G is a directed graph, the sum of the lengths of all the adjacency lists
is lEI, since an edge of the form (u, v) is represented by having v appear
in Adi[u]. If G is an undirected graph, the sum of the lengths of all the
adjacency lists is 21EI, since if (u, v) is an undirected edge, then u appears
in v's adjacency list and vice versa. Whether a graph is directed or not, the
adjacency-list representation has the desirable property that the amount of
memory it requires is O(max(V,E)) = O(V + E).

Adjacency lists can readily be adapted to represent weighted graphs, that
is, graphs for which each edge has an associated weight, typically given by
a weight function w : E -t R. For example, let G = (V, E) be a weighted
graph with weight function w. The weight w(u, v) of the edge (u, v) E E
is simply stored with vertex v in u's adjacency list. The adjacency-list



23.1 Representations ofgraphs 467

representation is quite robust in that it can be modified to support many
other graph variants.

A potential disadvantage of the adjacency-list representation is that there
is no quicker way to determine if a given edge (u, v) is present in the graph
than to search for v in the adjacency list Adj{u]. This disadvantage can be
remedied by an adjacency-matrix representation of the graph, at the cost
of using asymptotically more memory.

For the adjacency-matrix representation of a graph G = (V, E), we assume
that the vertices are numbered 1,2, ... , IVI in some arbitrary manner. The
adjacency-matrix representation of a graph G then consists of a IVI x IVI
matrix A = (aij) such that

a .. _{l ifU,j)EE,
IJ - 0 otherwise.

Figures 23.1(c) and 23.2(c) are the adjacency matrices of the undirected
and directed graphs in Figures 23.1(a) and 23.2(a), respectively. The ad
jacency matrix of a graph requires 8(V2) memory, independent of the
number of edges in the graph.

Observe the symmetry along the main diagonal of the adjacency matrix
in Figure 23.1(c). We define the the transpose of a matrix A = (aij) to be
the matrix AT (aL) given by aL = aji. Since in an undirected graph,
(u, v) and (v, u) represent the same edge, the adjacency matrix A of an
undirected graph is its own transpose: A AT. In some applications, it
pays to store only the entries on and above the diagonal of the adjacency
matrix, thereby cutting the memory needed to store the graph almost in
half.

Like the adjacency-list representation of a graph, the adjacency-matrix
representation can be used for weighted graphs. For example, if G = (V, E)
is a weighted graph with edge-weight function w, the weight w (u, v) of the
edge (u, v) E E is simply stored as the entry in row u and column v of the
adjacency matrix. If an edge does not exist, a NIL value can be stored as
its corresponding matrix entry, though for many problems it is convenient
to use a value such as 0 or 00.

Although the adjacency-list representation is asymptotically at least as
efficient as the adjacency-matrix representation, the simplicity of an ad
jacency matrix may make it preferable when graphs are reasonably small.
Moreover, if the graph is unweighted, there is an additional advantage in
storage for the adjacency-matrix representation. Rather than using one
word of computer memory for each matrix entry, the adjacency matrix
uses only one bit per entry.
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Exercises

23.1-1
Given an adjacency-list representation of a directed graph, how long does
it take to compute the out-degree of every vertex? How long does it take
to compute the in-degrees?

23.1-2
Give an adjacency-list representation for a complete binary tree on 7 ver
tices. Give an equivalent adjacency-matrix representation. Assume that
vertices are numbered from 1 to 7 as in a binary heap.

23.1-3
The transpose of a directed graph G = (V, E) is the graph GT = (V, E T ) ,

where E T = {(v, u) E V x V: (u, v) E E}. Thus, GT is G with all its edges
reversed. Describe efficient algorithms for computing GT from G, for both
the adjacency-list and adjacency-matrix representations of G. Analyze the
running times of your algorithms.

23.1-4
Given an adjacency-list representation of a multigraph G = (V, E), de
scribe an O( V +E)-time algorithm to compute the adjacency-list represen
tation of the "equivalent" undirected graph G' = (V, E '), where E' consists
of the edges in E with all multiple edges between two vertices replaced by
a single edge and with all self-loops removed.

23.1-5
The square of a directed graph G = (V,E) is the graph G2 = (V,E2) such
that (u, w) E E2 if and only if for some v E V, both (u, v) E E and
(v, w) E E. That is, G2 contains an edge between u and w whenever
G contains a path with exactly two edges between u and w. Describe
efficient algorithms for computing G2 from G for both the adjacency-list
and adjacency-matrix representations of G. Analyze the running times of
your algorithms.

23.1-6
When an adjacency-matrix representation is used, most graph algorithms
require time 8( V2), but there are some exceptions. Show that determining
whether a directed graph contains a sink-a vertex with in-degree IVI 1
and out-degree O-can be determined in time O(V), even if an adjacency
matrix representation is used.

23.1-7
The incidence matrix of a directed graph G = (V, E) is a IVI x lEI matrix
B = (bi}) such that
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if edge j leaves vertex i ,
if edge j enters vertex i ,
otherwise.

Describe what the entries of the matrix product BBT represent, where BT

is the transpose of B.

23.2 Breadth-first search

Breadth-first search is one of the simplest algorithms for searching a graph
and the archetype for many important graph algorithms. Dijkstra's single
source shortest-paths algorithm (Chapter 25) and Prim's minimum-span
ning-tree algorithm (Section 24.2) use ideas similar to those in breadth-first
search.

Given a graph G = (V,E) and a distinguished source vertex s, breadth
first search systematically explores the edges of G to "discover" every vertex
that is reachable from s. It computes the distance (fewest number of edges)
from s to all such reachable vertices. It also produces a "breadth-first tree"
with root s that contains all such reachable vertices. For any vertex v
reachable from s, the path in the breadth-first tree from s to v corresponds
to a "shortest path" from s to v in G, that is, a path containing the fewest
number of edges. The algorithm works on both directed and undirected
graphs.

Breadth-first search is so named because it expands the frontier between
discovered and undiscovered vertices uniformly across the breadth of the
frontier. That is, the algorithm discovers all vertices at distance k from s
before discovering any vertices at distance k 4- 1.

To keep track of progress, breadth-first search colors each vertex white,
gray, or black. All vertices start out white and may later become gray and
then black. A vertex is discovered the first time it is encountered during
the search, at which time it becomes nonwhite. Gray and black vertices,
therefore, have been discovered, but breadth-first search distinguishes be
tween them to ensure that the search proceeds in a breadth-first manner.
If (u, v) E E and vertex u is black, then vertex v is either gray or black;
that is, all vertices adjacent to black vertices have been discovered. Gray
vertices may have some adjacent white vertices; they represent the frontier
between discovered and undiscovered vertices.

Breadth-first search constructs a breadth-first tree, initially containing
only its root, which is the source vertex s. Whenever a white vertex v
is discovered in the course of scanning the adjacency list of an already
discovered vertex u, the vertex v and the edge (u, v) are added to the
tree. We say that u is the predecessor or parent of v in the breadth-first
tree. Since a vertex is discovered at most once, it has at most one parent.
Ancestor and descendant relationships in the breadth-first tree are defined
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relative to the root s as usual: if u is on a path in the tree from the root s
to vertex v, then u is an ancestor of v and v is a descendant of u.

The breadth-first-search procedure BFS below assumes that the input
graph G = (V, E) is represented using adjacency lists. It maintains several
additional data structures with each vertex in the graph. The color of
each vertex u E V is stored in the variable color[u], and the predecessor
of u is stored in the variable 1l'[u]. If u has no predecessor (for example,
if u = s or u has not been discovered), then 1l'[u] = NIL. The distance
from the source s to vertex u computed by the algorithm is stored in d[u].
The algorithm also uses a first-in, first-out queue Q (see Section 11.1) to
manage the set of gray vertices.

BFS(G,s)

1 for each vertex u E V[G] - {s}
2 do color[u] +- WHITE

3 d[u] +- 00

4 1l'[u] +- NIL

5 color[s] +- GRAY

6 d[s] +- 0
7 1l'[s] +- NIL

8 Q +- {s}
9 while Q -# 0

10 do u +- head[Q]
11 for each v E Adj[u]
12 do if color[v] = WHITE

13 then color[v] +- GRAY

14 d[v] +- d[u] + 1
15 1l'[v] +- u
16 ENQUEUE(Q,v)
17 DEQUEUE(Q)

18 color[u] +- BLACK

Figure 23.3 illustrates the progress of BFS on a sample graph.
The procedure BFS works as follows. Lines 1-4 paint every vertex white,

set d[u] to be infinity for every vertex u, and set the parent of every vertex
to be NIL. Line 5 paints the source vertex s gray, since it is considered to
be discovered when the procedure begins. Line 6 initializes d[s] to 0, and
line 7 sets the predecessor of the source to be NIL. Line 8 initializes Q to
the queue containing just the vertex s; thereafter, Q always contains the
set of gray vertices.

The main loop of the program is contained in lines 9-18. The loop
iterates as long as there remain gray vertices, which are discovered ver
tices that have not yet had their adjacency lists fully examined. Line 10
determines the gray vertex u at the head of the queue Q. The for loop
of lines 11-16 considers each vertex v in the adjacency list of u. If v is
white, then it has not yet been discovered, and the algorithm discovers it
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Figure 23.3 The ope ratio n of BFS on an undirected graph. Tree edges are shown
shaded as they are produced by BFS. With in each vertex u is shown diu]. The
queue Q is shown at the beginning of each ite ration of the while loop of lines 9- 18.
Vertex distances a re shown next to vert ices in the queue.

by executing lines 13- 16. It is first grayed, and its distan ce d [v ] is set to
d [u ] + I. Then, u is recorded as its parent. Finall y, it is placed at the
tai l of the Queue Q. When all the verti ces on u's adjacency list have been
examined, u is removed from Q and blackened in lines J7- 18.

Analysis

Before proving all the various properties of breadth-first search, we take on
the somewhat easier job of anal yzing it s runni ng time on an input graph
G = ( V, E ). Afte r initialization, no vertex is ever whitened, and thus
the test in line J2 ensures that each vertex is enqueued at most once, and
hence dequeued at most once. The opera tions of enqueuing and dequeuing
take O( I) time, so the tota l time devoted to queue operations is O( V }.
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Because the adjacency list of each vertex is scanned only when the vertex
is dequeued, the adjacency list of each vertex is scanned at most once.
Since the sum of the lengths of all the adjacency lists is 8(E), at most
O(E) time is spent in total scanning adjacency lists. The overhead for
initialization is O( V), and thus the total running time of BFS is O( V +E).
Thus, breadth-first search runs in time linear in the size of the adjacency
list representation of G.

Shortest paths

At the beginning of this section, we claimed that breadth-first search finds
the distance to each reachable vertex in a graph G = (V, E) from a given
source vertex 5 E V. Define the shortest-path distance 0(5, v) from s to v
as the minimum number of edges in any path from vertex s to vertex v, or
else 00 if there is no path from 5 to v. A path of length o(s, v) from s to v
is said to be a shortest path l from 5 to v. Before showing that breadth
first search actually computes shortest-path distances, we investigate an
important property of shortest-path distances.

Lemma 23.1
Let G = (V, E) be a directed or undirected graph, and let S E V be an
arbitrary vertex. Then, for any edge (u, v) E E,

o(S,v) ~ o(s,u) + 1 .

Proof If u is reachable from s, then so is v. In this case, the shortest path
from s to v cannot be longer than the shortest path from 5 to u followed by
the edge (u, v), and thus the inequality holds. If u is not reachable from s,
then o(s, u) = 00, and the inequality holds. •

We want to show that BFS properly computes d[v] o(s, v) for each
vertex v E V. We first show that d[v] bounds o(s, v) from above.

Lemma 23.2
Let G = (V, E) be a directed or undirected graph, and suppose that BFS is
run on G from a given source vertex s E V. Then upon termination, for
each vertex v E V, the value d[v] computed by BFS satisfies d[v] ~ o(s, v).

Proof We use induction on the number of times a vertex is placed in the
queue Q. Our inductive hypothesis is that d[v] ~ o(s, v) for all v E V.

lin Chapters 25 and 26, we shall generalize our study of shortest paths to weighted graphs, in
which every edge has a real-valued weight and the weight of a path is the sum of the weights
of its constituent edges. The graphs considered in the present chapter are unweighted,
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The basis of the induction is the situation immediately after s is placed
in Q in line 8 of BFS. The inductive hypothesis holds here, because d[s] =

0= <5(s,s) and d[v] = 00 ~ <5(s,v) for all v E V {s}.
For the inductive step, consider a white vertex v that is discovered during

the search from a vertex u. The inductive hypothesis implies that d[u] ~
<5(s, u). From the assignment performed by line 14 and from Lemma 23.1,
we obtain

d[v] d[u] + 1

> <5(s,u) + 1

> o(s,v).

Vertex v is then inserted into the queue Q, and it is never inserted again
because it is also grayed and the then clause of lines 13-16 is executed only
for white vertices. Thus, the value of d[v] never changes again, and the
inductive hypothesis is maintained. _

To prove that d[v] = o(s,v), we must first show more precisely how the
queue Q operates during the course of BFS. The next lemma shows that
at all times, there are at most two distinct d values in the queue.

Lemma 23.3
Suppose that during the execution of BFS on a graph G = (V, E), the
queue Q contains the vertices (v" V2, ••• , v r ) , where VI is the head of Q
and u, is the tail. Then, d[vr] ::; d[vd + 1 and d[vil ::; d[Vi+d for i =
1,2, ... , r - 1.

Proof The proof is by induction on the number of queue operations.
Initially, when the queue contains only s, the lemma certainly holds.

For the inductive step, we must prove the lemma holds after both de
queuing and enqueuing a vertex. If the head VI of the queue is dequeued,
the new head is V2. (If the queue becomes empty, then the lemma holds
vacuously.) But then we have d[vr] ::; d[vd + 1 ::; d[V2] + 1, and the re
maining inequalities are unaffected. Thus, the lemma follows with V2 as
the head. Enqueuing a vertex requires closer examination of the code. In
line 16 of BFS, when the vertex v is enqueued, thus becoming vr+ I, the
head VI of Q is in fact the vertex u whose adjacency list is currently being
scanned. Thus, d[vr+d = d[v] = d[u] + 1 = d[vtl + 1. We also have
d[vr] ::; d[vtl + 1 = d[u] + 1 = d[v] = d[Vr+l], and the remaining inequal
ities are unaffected. Thus, the lemma follows when v is enqueued. _

We can now prove that breadth-first search correctly finds shortest-path
distances.

Theorem 23.4 (Correctness ofbreadth-first search)
Let G = (V, E) be a directed or undirected graph, and suppose that BFS
is run on G from a given source vertex S E V. Then, during its execution,
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BFS discovers every vertex v E V that is reachable from the source s, and
upon termination, d[v] = J(s, v) for all v E V. Moreover, for any vertex
v f s that is reachable from s, one of the shortest paths from s to v is the
shortest path from s to n[v] followed by the edge (n[v], v).

Proof We start with the case in which v is unreachable from s, Since
Lemma 23.2 gives d[v] 2:: J(s, v) = 00, vertex v cannot have d[v] set to a
finite value in line 14. By induction, there cannot be a first vertex whose
d value is set to 00 by line 14. Line 14 is therefore only executed only
for vertices with finite d values. Thus, if v is unreachable, it is never
discovered.

The main part of the proof is for vertices reachable from s. Let Vk denote
the set of vertices at distance k from s; that is, Vk {v E V : t5 (s, v) = k}.
The proof proceeds by induction on k, As an inductive hypothesis, we
assume that for each vertex v E "1.:, there is exactly one point during the
execution of BFS at which

• v is grayed,

• d[v) is set to k,

• if v f s, then n[v] is set to u for some u E "I.:-t. and

• v is inserted into the queue Q.

As we have noted before, there is certainly at most one such point.
The basis is for k = O. We have JiO = {s}, since the source s is the only

vertex at distance 0 from s. During the initialization, s is grayed, d[s] is
set to 0, and s is placed into Q, so the inductive hypothesis holds.

For the inductive step, we start by noting that the queue Q is never empty
until the algorithm terminates and that, once a vertex u is inserted into
the queue, neither d[u] nor n[u] ever changes. By Lemma 23.3, therefore,
if vertices are inserted into the queue over the course of the algorithm in
the order VI, V2, ••• , u., then the sequence of distances is monotonically
increasing: d[vd :::; d[Vi+d for i = 1,2, ... , r - 1.

Now let us consider an arbitrary vertex v E "1.:, where k 2:: I. The
monotonicity property, combined with d[v] 2:: k (by Lemma 23.2) and the
inductive hypothesis, implies that v must be discovered after all vertices
in Vk _ 1 are enqueued, if it is discovered at all.

Since J(s, v) = k, there is a path of k edges from s to v, and thus there
exists a vertex u E "1.:-1 such that (u, v) E E. Without loss of generality, let
u be the first such vertex grayed, which must happen since, by induction,
all vertices in "1.:-1 are grayed. The code for BFS enqueues every grayed
vertex, and hence u must ultimately appear as the head of the queue in
line 10. When u appears as the head, its adjacency list is scanned and v
is discovered. (The vertex v could not have been discovered earlier, since
it is not adjacent to any vertex in Jij for j < k - I-otherwise, v could
not belong to Vk-and by assumption, u is the first vertex discovered in
Vk _ I to which v is adjacent.) Line 13 grays v, line 14 establishes d[v] =
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d[u] + 1 k, line 15 sets n[v] to u, and line 16 inserts v into the queue.
Since v is an arbitrary vertex in Vk , the inductive hypothesis is proved.

To conclude the proof of the lemma, observe that if v E Vb then by
what we have just seen, n[v] E Vk - 1• Thus, we can obtain a shortest path
from s to v by taking a shortest path from s to n[v] and then traversing
the edge (n[v], v). _

Breadth-first trees

The procedure BFS builds a breadth-first tree as it searches the graph, as
illustrated in Figure 23.3. The tree is represented by the n field in each
vertex. More formally, for a graph G (V,E) with source s, we define the
predecessorsubgraph of G as Gil. (Vii., En:), where

Vii. = {v E V: n[v]::j:. NIL} U {s}

and

EiI. = {(n[v],v) E E: v E Vii. {s}}.

The predecessor subgraph Gil. is a breadth-first tree if Vrr consists of the
vertices reachable from s and, for all v E v;., there is a unique simple
path from s to v in Grr that is also a shortest path from 5 to v in G. A
breadth-first tree is in fact a tree, since it is connected and IErr I = IVrr I 1
(see Theorem 5.2). The edges in EiI. are called tree edges.

After BFS has been run from a source 5 on a graph G, the following
lemma shows that the predecessor subgraph is a breadth-first tree.

Lemma 23.5
When applied to a directed or undirected graph G = (V, E), procedure BFS
constructs x so that the predecessor subgraph Gn = (Vn, En) is a breadth
first tree.

Proof Line 15 of BFS only sets n[v] = u if tu, v) E E and <5(5, v) < 00

that is, if v is reachable from 5-and thus Vn consists of the vertices in V
reachable from v. Since Gn forms a tree, it contains a unique path from 5
to each vertex in Vn' By applying Theorem 23.4 inductively, we conclude
that every such path is a shortest path. _

The following procedure prints out the vertices on a shortest path from 5
to v, assuming that BFS has already been run to compute the shortest-path
tree.
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PRINT-PATH(G,S, v)

1 ifv=s
2 then print s
3 else if 1l'[v] = NIL

4 then print "no path from" s "to" v "exists"
5 else PRINT-PATH(G,S,1l'[v])

6 print v

This procedure runs in time linear in the number of vertices in the path
printed, since each recursive call is for a path one vertex shorter.

Exercises

23.2-1
Show the result of running breadth-first search on the directed graph of
Figure 23.2(a), using vertex 3 as the source.

23.2-2
Show the result of running breadth-first search on the undirected graph of
Figure 23.3, using vertex u as the source.

23.2-3
What is the running time of BFS if its input graph is represented by an
adjacency matrix and the algorithm is modified to handle this form of
input?

23.2-4
Argue that in a breadth-first search, the value d[u] assigned to a vertex u
is independent of the order in which the vertices in each adjacency list are
given.

23.2-5
Give an example of a directed graph G = (V, E), a source vertex s E V,
and a set of tree edges En ~ E such that for each vertex v E V, the unique
path in En from s to v is a shortest path in G, yet the set of edges E 11

cannot be produced by running BFS on G, no matter how the vertices are
ordered in each adjacency list.

23.2-6
Give an efficient algorithm to determine if an undirected graph is bipartite.

23.2-7 *
The diameter of a tree T = (V, E) is given by

max o(u, v) ;
u,vEV
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that is, the diameter is the largest of all shortest-path distances in the tree.
Give an efficient algorithm to compute the diameter of a tree, and analyze
the running time of your algorithm.

23.2-8
Let G = (V, E) be an undirected graph. Give an O(V + E)-time algorithm
to compute a path in G that traverses each edge in E exactly once in each
direction. Describe how you can find your way out of a maze if you are
given a large supply of pennies.

23.3 Depth-first search

The strategy followed by depth-first search is, as its name implies, to search
"deeper" in the graph whenever possible. In depth-first search, edges are
explored out of the most recently discovered vertex v that still has un
explored edges leaving it. When all of v's edges have been explored, the
search "backtracks" to explore edges leaving the vertex from which v was
discovered. This process continues until we have discovered all the vertices
that are reachable from the original source vertex. If any undiscovered ver
tices remain, then one of them is selected as a new source and the search is
repeated from that source. This entire process is repeated until all vertices
are discovered.

As in breadth-first search, whenever a vertex v is discovered during a
scan of the adjacency list of an already discovered vertex u, depth-first
search records this event by setting v's predecessor field n[v] to u. Unlike
breadth-first search, whose predecessor subgraph forms a tree, the pre
decessor subgraph produced by a depth-first search may be composed of
several trees, because the search may be repeated from multiple sources.
The predecessor subgraph of a depth-first search is therefore defined slightly
differently from that of a breadth-first search: we let G; = (V, En), where

En = {(n[v], v) : v E V and n[v] =I NIL} .

The predecessor subgraph of a depth-first search forms a depth-first forest
composed of several depth-first trees. The edges in En are called treeedges.

As in breadth-first search, vertices are colored during the search to indi
cate their state. Each vertex is initially white, is grayed when it is discovered
in the search, and is blackened when it is finished, that is, when its adja
cency list has been examined completely. This technique guarantees that
each vertex ends up in exactly one depth-first tree, so that these trees are
disjoint.

Besides creating a depth-first forest, depth-first search also timestamps
each vertex. Each vertex v has two timestamps: the first timestamp d[v]
records when v is first discovered (and grayed), and the second timestamp
f[v] records when the search finishes examining v's adjacency list (and
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blackens v). These timestamps are used in many graph algorithms and are
generally helpful in reasoning about the behavior of depth-first search.

The procedure DFS below records when it discovers vertex u in the
variable d[u] and when it finishes vertex u in the variable flu]. These
timestamps are integers between 1 and 21 VI, since there is one discov
ery event and one finishing event for each of the IVI vertices. For every
vertex u,

d[u] <flu] . (23.1)

Vertex u is WHITE before time d[u], GRAY between time d[u] and time
flu], and BLACK thereafter.

The following pseudocode is the basic depth-first-search algorithm. The
input graph G may be undirected or directed. The variable time is a global
variable that we use for timestamping,

DFS(G)

1 for each vertex u E V[ G]
2 do color[u] +- WHITE
3 n[u] +- NIL

4 time +- 0
5 for each vertex u E V [G]
6 do if color[u] = WHITE
7 then DFS-VISIT(U)

DFS-VISIT(U)

I color[u] +- GRAY l> White vertex u has just been discovered.
2 d[u] +- time +- time + 1
3 for each v E Adj[u] l> Explore edge (u, v).
4 do if color[v] =WHITE
5 then n[v] +- u
6 DFS-VISIT(V)
7 color[u] +- BLACK l> Blacken u; it is finished.
8 flu] +- time +- time + I

Figure 23.4 illustrates the progress of DFS on the graph shown in Fig
ure 23.2.

Procedure DFS works as follows. Lines 1-3 paint all vertices white
and initialize their n fields to NIL. Line 4 resets the global time counter.
Lines 5-7 check each vertex in V in turn and, when a white vertex is
found, visit it using DFS-VISIT. Every time DFS-VISIT(U) is called in
line 7, vertex u becomes the root of a new tree in the depth-first forest.
When DFS returns, every vertex u has been assigned a discovery time d[u]
and a finishing time f[u].

In each call DFS-VISIT(U), vertex u is initially white. Line I paints u
gray, and line 2 records the discovery time d[u] by incrementing and saving
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Figure 23.4 The progress of the dept h-first-search algorithm DFS on a di rected
graph . As edges are explored by the algori thm , they are shown as either shaded
(if they are tree edges) or dashed (otherwise). Non rree edges are labeled B, C,
or F according to whether they are back, cross, or forward edges. Vert ices are
timestamped by discovery time/fini shing tim e.

the global variable time. Lines 3-6 examine each vertex V adjacent to u and
recurs ively visit v if it is White. As each vertex v E Adj [u] is considered in
line 3. we say that edge (u,v ) is exploTed by the depth -first search. Finally,
after every edge leaving u has been explored , lines 7-8 paint u black and
record the finishing time in ftu].

What is the running tim e of DFS? The loops on lines 1-2 and lines 5- 7
of DFS take time 9 (V), exclusive of the time to execute the calls to DF$
VISIT. The procedure DFS·VISIT is called exactly once for each vertex
V E V , since DFS-VISIT is invoked only on white vertices and the first thin g
it does is paint the vertex gray. During an execution of DFS-VISIT(V), the
loop on lines 3- 6 is executed IAdj [v l l t imes. Since

L IAd} lv )1~ a tE) ,
oe v

the total cost of executing lines 2-5 of DFS-VISIT is 9 (E). The running
time of DFS is therefore 9 ( V + E).
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Properties of depth-first search

Depth-first search yields much information about the structure of a graph.
Perhaps the most basic property of depth-first search is that the predecessor
subgraph G71 does indeed form a forest of trees, since the structure of the
depth-first trees exactly mirrors the structure of recursive calls of DFS
VISIT. That is, u = n[v] if and only if DFS-VISIT(V) was called during a
search of u's adjacency list.

Another important property of depth-first search is that discovery and
finishing times have parenthesis structure. If we represent the discovery
of vertex u with a left parenthesis "tu" and represent its finishing by a
right parenthesis "zr)," then the history of discoveries and finishings makes
a well-formed expression in the sense that the parentheses are properly
nested. For example, the depth-first search of Figure 23.5(a) corresponds
to the parenthesization shown in Figure 23.5(b). Another way of stating
the condition of parenthesis structure is given in the following theorem.

Theorem 23.6 (Parenthesis theorem)
In any depth-first search of a (directed or undirected) graph G = (V, E),
for any two vertices u and v, exactly one of the following three conditions
holds:

• the intervals [d[u],flu]] and [d[v],f[v]] are entirely disjoint,

• the interval [d[u],flu]] is contained entirely within the interval [d[v],
f[v]], and u is a descendant of v in the depth-first tree, or

• the interval [d[v],flv]] is contained entirely within the interval [dIu],
flu]], and v is a descendant of u in the depth-first tree.

Proof We begin with the case in which dIu] < d[v]. There are two
subcases to consider, according to whether d[v] < flu] or not. In the
first subcase, d[v] < flu], so v was discovered while u was still gray. This
implies that v is a descendant of u. Moreover, since v was discovered more
recently than u, all of its outgoing edges are explored, and v is finished,
before the search returns to and finishes u. In this case, therefore, the
interval [d[v],f[v]] is entirely contained within the interval [d[u],f[u]].
In the other subcase, f[ u] < d[v], and inequality (23.1) implies that the
intervals [d[u],f[u]] and [d[v],f[v]] are disjoint.

The case in which d[v] < dIu] is similar, with the roles of u and v
reversed in the above argument. _

Corollary 23.7 (Nesting ofdescendants' intervals)
Vertex v is a proper descendant of vertex u in the depth-first forest for a
(directed or undirected) graph G if and only if dIu] < d[v] <f[v] <flu].

Proof Immediate from Theorem 23.6. -
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Figure 23.5 Properties of depth-first sea rch. (al Th e result of a depth-first search
of a directed graph. Vertices are timestamped and edge types are indicated as in
Figure 23.4. (b) Intervals for the discovery tim e and finishing time of each vertex
correspond to the parenthesizatio n shown. Each rectan gle spans the interval given
by the discovery and finishing times of the corresponding vertex. Tree edges are
shown. If two intervals overlap, then one is nested within the other, and the vertex
corresponding to the smaller interval is a descendant of the vertex correspondi ng
to the larger. (c) The graph of part (a) redrawn with all tree and forward edges
going down within a depth-first tree and all back edges going up from a descendant
to an ancestor.
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The next theorem gives another important characterization of when one
vertex is a descendant of another in the depth-first forest.

Theorem 23.8 (White-path theorem)
In a depth-first forest of a (directed or undirected) graph G = (V, E),
vertex v is a descendant of vertex u if and only if at the time d[ u] that the
search discovers u, vertex v can be reached from u along a path consisting
entirely of white vertices.

Proof =>: Assume that v is a descendant of u. Let w be any vertex on
the path between u and v in the depth-first tree, so that w is a descendant
of u. By Corollary 23.7, d[u] < d[w], and so w is white at time d[u].

¢:: Suppose that vertex v is reachable from u along a path of white
vertices at time d[u], but v does not become a descendant of u in the
depth-first tree. Without loss of generality, assume that every other vertex
along the path becomes a descendant of u. (Otherwise, let v be the closest
vertex to u along the path that doesn't become a descendant of u.) Let w
be the predecessor of v in the path, so that w is a descendant of u (wand u
may in fact be the same vertex) and, by Corollary 23.7,/[w] $f[u]. Note
that v must be discovered after u is discovered, but before w is finished.
Therefore, d[u] < d[v] <f[w] $f[u]. Theorem 23.6 then implies that the
interval [d[v],f[v]] is contained entirely within the interval [d[u],f[u]]. By
Corollary 23.7, v must after all be a descendant of u. •

Classification of edges

Another interesting property of depth-first search is that the search can
be used to classify the edges of the input graph G = (V, E). This edge
classification can be used to glean important information about a graph.
For example, in the next section, we shall see that a directed graph is acyclic
if and only if a depth-first search yields no "back" edges (Lemma 23.10).

We can define four edge types in terms of the depth-first forest Gn pro
duced by a depth-first search on G.

1. Tree edges are edges in the depth-first forest Gn . Edge (u, v) is a tree
edge if v was first discovered by exploring edge (u, v).

2. Back edges are those edges (u, v) connecting a vertex u to an ancestor v
in a depth-first tree. Self-loops are considered to be back edges.

3. Forward edges are those nontree edges (u, v) connecting a vertex u to a
descendant v in a depth-first tree.

4. Cross edges are all other edges. They can go between vertices in the same
depth-first tree, as long as one vertex is not an ancestor of the other, or
they can go between vertices in different depth-first trees.

In Figures 23.4 and 23.5, edges are labeled to indicate their type. Fig
ure 23.5(c) also shows how the graph of Figure 23.5(a) can be redrawn so'
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that all tree and forward edges head downward in a depth-first tree and all
back edges go up. Any graph can be redrawn in this fashion.

The DFS algorithm can be modified to classify edges as it encounters
them. The key idea is that each edge (u, v) can be classified by the color
of the vertex v that is reached when the edge is first explored (except that
forward and cross edges are not distinguished):

I. WHITE indicates a tree edge,

2. GRAY indicates a back edge, and

3. BLACK indicates a forward or cross edge.

The first case is immediate from the specification of the algorithm. For the
second case, observe that the gray vertices always form a linear chain of
descendants corresponding to the stack of active DFS-VISIT invocations;
the number of gray vertices is one more than the depth in the depth-first
forest of the vertex most recently discovered. Exploration always proceeds
from the deepest gray vertex, so an edge that reaches another gray vertex
reaches an ancestor. The third case handles the remaining possibility; it
can be shown that such an edge (u, v) is a forward edge if d[u] < d[v] and
a cross edge if d[u] > d[v]. (See Exercise 23.3-4.)

In an undirected graph, there may be some ambiguity in the type classi
fication, since (u, v) and (v, u) are really the same edge. In such a case, the
edge is classified as the first type in the classification list that applies. Equiv
alently (see Exercise 23.3-5), the edge is classified according to whichever
of (u, v) or (v, u) is encountered first during the execution of the algorithm.

We now show that forward and cross edges never occur in a depth-first
search of an undirected graph.

Theorem 13.9
In a depth-first search of an undirected graph G, every edge of G is either
a tree edge or a back edge.

Proof Let (u, v) be an arbitrary edge of G, and suppose without loss
of generality that d[u] < d[v]. Then, v must be discovered and finished
before we finish u, since v is on u's adjacency list. If the edge (u, v) is
explored first in the direction from u to v, then (u, v) becomes a tree edge.
If (u, v) is explored first in the direction from v to u, then (u, v) is a back
edge, since u is still gray at the time the edge is first explored. _

We shall see many applications of these theorems in the following sec
tions.

Exercises

13.3-1
Make a 3-by-3 chart with row and column labels- WHITE, GRAY, and BLACK.

In each cell (i, j), indicate whether, at any point during a depth-first search
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Figure 23.6 A directed graph for use in Exercises 23.3-2 and 23.5-2.

of a directed graph, there can be an edge from a vertex of color i to a vertex
of color j. For each possible edge, indicate what edge types it can be. Make
a second such chart for depth-first search of an undirected graph.

23.3-2
Show how depth-first search works on the graph of Figure 23.6. Assume
that the for loop of lines 5-7 of the DFS procedure considers the vertices
in alphabetical order, and assume that each adjacency list is ordered al
phabetically. Show the discovery and finishing times for each vertex, and
show the classification of each edge.

23.3-3
Show the parenthesis structure of the depth-first search shown in Fig
ure 23.4.

23.3-4
Show that edge (u, v) is

a. a tree edge or forward edge if and only if d[u] < d[v] <f[v] <flu],

b. a back edge if and only if d[v] < d[u] < flu] <f[v], and

c. a cross edge if and only if d[v] <f[v] < d[u] <flu].

23.3-5
Show that in an undirected graph, classifying an edge (u, v) as a tree edge
or a back edge according to whether (u, v) or (v, u) is encountered first
during the depth-first search is equivalent to classifying it according to the
priority of types in the classification scheme.

23.3-6
Give a counterexample to the conjecture that if there is a path from u to v
in a directed graph G, and if d[u] < d[v] in a depth-first search of G, then
v is a descendant of u in the depth-first forest produced.
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23.3-7
Modify the pseudocode for depth-first search so that it prints out every
edge in the directed graph G, together with its type. Show what modifica
tions, if any, must be made if G is undirected.

23.3-8
Explain how a vertex u of a directed graph can end up in a depth-first tree
containing only u, even though u has both incoming and outgoing edges
in G.

23.3-9
Show that a depth-first search of an undirected graph G can be used to
identify the connected components of G, and that the depth-first forest
contains as many trees as G has connected components. More precisely,
show how to modify depth-first search so that each vertex v is assigned an
integer label cc[v] between I and k, where k is the number of connected
components of G, such that cc[u] = cc[v] if and only if u and v are in the
same connected component.

23.3-10 *
A directed graph G = (V, E) is singly connected if u '"'-'+ v implies that there
is at most one simple path from u to v for all vertices u, v E V. Give an
efficient algorithm to determine whether or not a directed graph is singly
connected.

23.4 Topological sort

This section shows how depth-first search can be used to perform topo
logical sorts of directed acyclic graphs, or "dags" as they are sometimes
called. A topological sort of a dag G = (V, E) is a linear ordering of all
its vertices such that if G contains an edge (u, v), then u appears before v
in the ordering. (If the graph is not acyclic, then no linear ordering is
possible.) A topological sort of a graph can be viewed as an ordering of
its vertices along a horizontal line so that all directed edges go from left to
right. Topological sorting is thus different from the usual kind of "sorting"
studied in Part II.

Directed acyclic graphs are used in many applications to indicate prece
dences among events. Figure 23.7 gives an example that arises when Pro
fessor Bumstead gets dressed in the morning. The professor must don
certain garments before others (e.g., socks before shoes). Other items may
be put on in any order (e.g., socks and pants). A directed edge (u, v) in the
dag of Figure 23.7(a) indicates that garment u must be donned before gar
ment v. A topological sort of this dag therefore gives an order for getting
dressed. Figure 23.7(b) shows the topologically sorted dag as an ordering
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(a)

17/18

(watch) 9/10

13/l4

(b) ~Bh~
17/18 11/16 12/15 13/l4

(watch)
9/10
~

118 6/7 2/5 3/4

Figure 23.7 (a) Professor Bumstead topologically sorts his clothing when getting
dressed. Each directed edge (U,V) means that garment u must be put on before
garment v. The discovery and finishing times from a depth-first search are shown
next to each vertex. (b) The same graph shown topologically sorted. Its vertices
are arranged from left to right in order of decreasing finishing time. Note that all
directed edges go from left to right.

of vertices along a horizontal line such that all directed edges go from left
to right.

The following simple algorithm topologically sorts a dag.

TOPOLOGICAL-SORT(G)

1 call DFS(G) to compute finishing times j'[u] for each vertex v
2 as each vertex is finished, insert it onto the front of a linked list
3 return the linked list of vertices

Figure 23.7(b) shows how the topologically sorted vertices appear in re
verse order of their finishing times.

We can perform a topological sort in time 6( V + E), since depth-first
search takes 6( V + E) time and it takes O( 1) time to insert each of the
IVI vertices onto the front of the linked list.

We prove the correctness of this algorithm using the following key lemma
characterizing directed acyclic graphs.

Lemma 23.10
A directed graph G is acyclic if and only if a depth-first search of G yields
no back edges.

Proof *: Suppose that there is a back edge (u, v). Then, vertex v is an
ancestor of vertex u in the depth-first forest. There is thus a path from v
to u in G, and the back edge (u, v) completes a cycle.
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Figure 23.8 A dag for topological sorting.
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<=:: Suppose that G contains a cycle c. We show that a depth-first search
of G yields a back edge. Let v be the first vertex to be discovered in c,
and let (u, v) be the preceding edge in c. At time d[v], there is a path of
white vertices from v to u. By the white-path theorem, vertex u becomes a
descendant of v in the depth-first forest. Therefore, (u, v) is a back edge. _

Theorem 23.11
TOPOLOGICAL-SORT(G) produces a topological sort of a directed acyclic
graph G.

Proof Suppose that DFS is run on a given dag G = (V, E) to determine
finishing times for its vertices. It suffices to show that for any pair of
distinct vertices u, v E V, if there is an edge in G from u to v, then
f[v] < flu]. Consider any edge (u, v) explored by DFS(G). When this
edge is explored, v cannot be gray, since then v would be an ancestor of u
and (u, v) would be a back edge, contradicting Lemma 23.10. Therefore,
v must be either white or black. If v is white, it becomes a descendant
of u, and so f[v] < flu]. If v is black, then f[v] < f[u] as well. Thus, for
any edge (u,v) in the dag, we havef[v] <flu], proving the theorem. _

Exercises

23.4-1
Show the ordering of vertices produced by TOPOLOGICAL-SORT when it is
run on the dag of Figure 23.8.

23.4-2
There are many different orderings of the vertices of a directed graph G
that are topological sorts of G. TOPOLOGICAL-SORT produces the ordering
that is the reverse of the depth-first finishing times. Show that not all topo
logical sorts can be produced in this way: there exists a graph G such that
one of the topological sorts of G cannot be produced by TOPOLOGICAL
SORT, no matter what adjacency-list structure is given for G. Show also
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that there exists a graph for which two distinct adjacency-list representa
tions yield the same topological sort.

23.4-3
Give an algorithm that determines whether or not a given undirected graph
G = (V, E) contains a cycle. Your algorithm should run in O(V) time,
independent of lEI.

23.4-4
Prove or disprove: If a directed graph G contains cycles, then TOPOLOG
ICAL-SORT(G) produces a vertex ordering that minimizes the number of
"bad" edges that are inconsistent with the ordering produced.

23.4-5
Another way to perform topological sorting on a directed acyclic graph
G = (V, E) is to repeatedly find a vertex of in-degree 0, output it, and
remove it and all of its outgoing edges from the graph. Explain how to
implement this idea so that it runs in time O(V + E). What happens to
this algorithm if G has cycles?

-------------------------------~._------

23.5 Strongly connected components

We now consider a classic application of depth-first search: decompos
ing a directed graph into its strongly connected components. This section
shows how to do this decomposition using two depth-first searches. Many
algorithms that work with directed graphs begin with such a decomposi
tion; this approach often allows the original problem to be divided into
subproblems, one for each strongly connected component. Combining the
solutions to the subproblems follows the structure of connections between
strongly connected components; this structure can be represented by a
graph known as the "component" graph, defined in Exercise 23.5-4.

Recall from Chapter 5 that a strongly connected component of a directed
graph G = (V, E) is a maximal set of vertices U ~ V such that for every
pair of vertices u and v in U, we have both u '"'-'t v and v '"'-'t u; that is,
vertices u and v are reachable from each other. Figure 23.9 shows an
example.

Our algorithm for finding strongly connected components of a graph
G (V,E) uses the transpose of G, which is defined in Exercise 23.1-3
to be the graph GT = (V,ET ) , where E T {(u, v) : (v, u) E E}. That is,
E T consists of the edges of G with their directions reversed. Given an
adjacency-list representation of G, the time to create GT is O( V + E). It
is interesting to observe that G and GT have exactly the same strongly
connected components: u and v are reachable from each other in G if and
only if they are reachable from each other in GT. Figure 23.9(b) shows
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•
Figure 23.9 (a) A directed graph G. The s trongly connected components of G are
shown as shaded regions. Each vertex is labeled with its discovery and finishing
times. T ree edges are shaded. (b) The graph GT , the tran spose of G. The depth
fi rst tree computed in line 3 of STRONOLY..cONNECTEo-CoMPONENTS is shown,
with tree edges shaded. Each strongly connected component corresponds to one
depth-first tree. Vertices b, c, g , and h, which are heavily shaded, are forefathers of
every vertex in their strongly connected component; these vertices are also the roots
of the depth-first trees prod uced by the depth -first search of GT. (c) The acyclic
component graph o-scc obtained by shrinking each strongly connected component
or G to a single vertex.

the transpose of the graph in Figure 23.9(a), with the strongly connected
components shaded.

Th e following linear-time (i.e., 6 (V + E )-time) algorithm computes the
strongly connected compo nents of a d irected graph G = (V, E ) using two
dept h-first searches, one on G and one on cP.

STRONOLy -CoNNECTE D-COMPONENTS(G)

1 call DF'S(G) to compute finishing times Jlu] for each vertex u
2 compute GT

3 call OFS(cP), but in the main loo p of OF'S, consider the vert ices
in order of decreasing Jlu] (as computed in line 1)

4 output the vertices of each tree in the depth -fi rst forest of step 3 as a
separate strongly connected component



490 Chapter 23 Elementary Graph Algorithms

This simple-looking algorithm seems to have nothing to do with strongly
connected components. In the remainder of this section, we unravel the
mystery of its design and prove its correctness. We begin with two useful
observations.

Lemma 23.12
If two vertices are in the same strongly connected component, then no
path between them ever leaves the strongly connected component.

Proof Let u and v be two vertices in the same strongly connected compo
nent. By the definition of strongly connected component, there are paths
from u to v and from v to u. Let vertex w be on some path u'"'-+ w'"'-+ v,
so that w is reachable from u. Moreover, since there is a path v '"'-+ u, we
know that u is reachable from w by the path w '"'-+ v '"'-+ u. Therefore, u
and ware in the same strongly connected component. Since w was chosen
arbitrarily, the theorem is proved. _

Theorem 23.13
In any depth-first search, all vertices in the same strongly connected com
ponent are placed in the same depth-first tree.

Proof Of the vertices in the strongly connected component, let r be
the first discovered. Because r is first, the other vertices in the strongly
connected component are white at the time it is discovered. There are
paths from r to every other vertex in the strongly connected component;
because these paths never leave the strongly connected component (by
Lemma 23.12), all vertices on them are white. Thus, by the white-path
theorem, every vertex in the strongly connected component becomes a de
scendant of r in the depth-first tree. _

In the rest of this section, the notations d[u] andf[u] refer to the discov
ery and finishing times as computed by the first depth-first search in line I
of STRONGLy-CONNECTED-COMPONENTS. Similarly, the notation u '"'-+ v
refers to the existence of a path in G, not in GT.

To prove STRONGLy-CONNECTED-COMPONENTS correct, we introduce
the notion of the forefather c/>(u) of a vertex u, which is the vertex w
reachable from u that finished last in the depth-first search of line 1. In
other words,

c/>(u) = that vertex w such that u'"'-+ w andf[w] is maximized.

Note that c/>(u) = u is possible because u is reachable from itself, and hence

f[u] :::; ![c/>(u)] . (23.2)

We can also show that ¢(c/>(u)) = c/>(u), by the following reasoning. For
any vertices u,v E V,

u r-» v impliesf[¢(v)] :::;f[c/>(u)] , (23.3)
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since {w : v "'v> w} ~ {w : U"'v> w} and the forefather has the maximum
finishing time of all reachable vertices. Since if>(u) is reachable from u,
formula (23.3) implies thatflif>(if>(u))] ::;f[if>(u)]. We also haveflif>(u)]::;
f[if>(if>(u))], by inequality (23.2). Thus, flif>(if>(u))] = f[if>(u)], and so we
have if>(if>(u)) = if>(u), since two vertices that finish at the same time are in
fact the same vertex.

As we shall see, every strongly connected component has one vertex that
is the forefather of every vertex in the strongly connected component; this
forefather is a "representative vertex" for the strongly connected compo
nent. In the depth-first search of G, it is the first vertex of the strongly
connected component to be discovered, and it is the last vertex of the
strongly connected component to be finished. In the depth-first search of
GT , it is the root of a depth-first tree. We now prove these properties.

The first theorem justifies calling if>(u) a "forefather" of u.

Theorem 23.14
In a directed graph G = (V, E), the forefather if>(u) of any vertex u E V in
any depth-first search of G is an ancestor of u.

Proof If if>(u) = u, the theorem is trivially true. If if>(u) ::j:. u, consider the
colors of the vertices at time d[u]. If if>(u) is black, then f[if>(u)] < flu],
contradicting inequality (23.2). If if>(u) is gray, then it is an ancestor of u,
and the theorem is proved.

It thus remains to prove that if>(u) is not white. There are two cases,
according to the colors of the intermediate vertices, if any, on the path
from u to if>(u).

1. If every intermediate vertex is white, then if>(u) becomes a descendant
of u, by the white-path theorem. But thenf[if>(u)] < flu], contradicting
inequality (23.2).

2. If some intermediate vertex is nonwhite, let t be the last nonwhite vertex
on the path from u to if>(u). Then, t must be gray, since there is never
an edge from a black vertex to a white vertex, and t's successor is white.
But then there is a path of white vertices from t to if>(u), and so if>(u) is
a descendant of t by the white-path theorem. This implies that flt] >
f[if>(u)], contradicting our choice of if>(u), since there is a path from u
to t. •

Corollary 23.15
In any depth-first search of a directed graph G = (V, E), vertices u and
if>(u), for all u E V, lie in the same strongly connected component.

Proof We have u r-« ¢leu), by the definition of forefather, and if>(u) "'v> u,
since if>(u) is an ancestor of u. •

The following theorem gives a stronger result relating forefathers to
strongly connected components.
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Theorem 13.16
In a directed graph G = (V, E), two vertices u, v E V lie in the same
strongly connected component if and only if they have the same forefather
in a depth-first search of G.

Proof =>: Assume that u and v are in the same strongly connected com
ponent. Every vertex reachable from u is reachable from v and vice versa,
since there are paths in both directions between u and v. By the definition
of forefather, then, we conclude that ¢(u) = ¢(v).

{:::: Assume that ¢(u) = ¢(v). By Corollary 23.15, u is in the same
strongly connected component as ¢(u), and v is in the same strongly con
nected component as ¢(v). Therefore, u and v are in the same strongly
connected component. _

With Theorem 23.16 in hand, the structure of the algorithm STRONGLY
CONNECTED-COMPONENTS can be more readily understood. The strongly
connected components are sets of vertices with the same forefather. More
over, by Theorem 23.14 and the parenthesis theorem (Theorem 23.6), dur
ing the depth-first search in line 1 of STRONGLy-CONNECTED-COMPONENTS
a forefather is both the first vertex discovered and the last vertex finished
in its strongly connected component.

To understand why we run the depth-first search in line 3 of STRONGLY
CONNECTED-COMPONENTS on GT, consider the vertex , with the largest
finishing time computed by the depth-first search in line I. By the def
inition of forefather, vertex , must be a forefather, since it is its own
forefather: it can reach itself, and no vertex in the graph has a higher
finishing time. What are the other vertices in r's strongly connected com
ponent? They are those vertices that have r as a forefather-those that
can reach r but cannot reach any vertex with a finishing time greater than
f[r]. But r's finishing time is the maximum of any vertex in G; thus, r's
strongly connected component consists simply of those vertices that can
reach r. Equivalently, , 's strongly connected component consists of those
vertices that r can reach in GT. Thus, the depth-first search in line 3 iden
tifies all the vertices in r's strongly connected component and blackens
them. (A breadth-first search, or any search for reachable vertices, could
identify this set just as easily.)

After the depth-first search in line 3 is done identifying r's strongly con
nected component, it begins at the vertex r' with the largest finishing time
of any vertex not in r's strongly connected component. Vertex,' must
be its own forefather, since it can't reach anything with a higher finish
ing time (otherwise, it would have been included in r's strongly connected
component). By similar reasoning, any vertex that can reach r' that is not
already black must be in r"s strongly connected component. Thus, as the
depth-first search in line 3 continues, it identifies and blackens every vertex
in r"s strongly connected component by searching from r' in GT.
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Thus, the depth-first search in line 3 "peels off" strongly connected com
ponents one by one. Each component is identified in line 7 of DFS by a
call to DFS-VISIT with the forefather of the component as an argument.
Recursive calls within DFS-VISIT ultimately blacken each vertex within the
component. When DFS-VISIT returns to DFS, the entire component has
been blackened and "peeled off." Then, DFS finds the vertex with maxi
mum finishing time among those that have not been blackened; this vertex
is the forefather of another component, and the process continues.

The following theorem formalizes this argument.

Theorem 23.17
STRONGLY-CONNECTED-COMPONENTS(G) correctly computes the strongly
connected components of a directed graph G.

Proof We argue by induction on the number of depth-first trees found in
the depth-first search of GT that the vertices of each tree form a strongly
connected component. Each step of the inductive argument proves that a
tree formed in the depth-first search of GT is a strongly connected com
ponent, assuming that all previous trees produced are strongly connected
components. The basis for the induction is trivial, since for the first tree
produced there are no previous trees, and hence this assumption is trivially
true.

Consider a depth-first tree T with root r produced in the depth-first
search of GT • Let C(r) denote the set of vertices with forefather r:

C(r)={VEV:4>(v)=r} .

We now prove that a vertex u is placed in T if and only if U E C(r).
<:=: Theorem 23.13 implies that every vertex in C(r) ends up in the same

depth-first tree. Since r E C(r) and r is the root of T, every element of
C(r) ends up in T.

:::}: We show that any vertex w such thatf[4>(w)] > f[r] or f[4>(w)] < f[r]
is not placed in T, by considering these two cases separately. By induction
on the number of trees found, any vertex w such that f[ 4>(w)] > f[r] is not
placed in tree T, since at the time r is selected w will have already been
placed in the tree with root 4>(w). Any vertex w such that f[4>(w)] < f[r]
cannot be placed in T, since such a placement would imply w "-+ r; thus,
by formula (23.3) and the property that r = 4>(r), we obtain f[4>(w)] ~

f[4>(r)] =f[r], which contradictsf[4>(w)] <f[r].
Therefore, T contains just those vertices u for which 4>(u) = r. That

is, T is exactly equal to the strongly connected component C(r), which
completes the inductive proof. _
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Exercises

23.5-1
How can the number of strongly connected components of a graph change
if a new edge is added?

23.5-2
Show how the procedure STRONGLy-CONNECTED-COMPONENTS works on
the graph of Figure 23.6. Specifically, show the finishing times computed
in line 1 and the forest produced in line 3. Assume that the loop of lines 5
7 of DFS considers vertices in alphabetical order and that the adjacency
lists are in alphabetical order.

23.5-3
Professor Deaver claims that the algorithm for strongly connected com
ponents can be simplified by using the original (instead of the transpose)
graph in the second depth-first search and scanning the vertices in order
of increasing finishing times. Is the professor correct?

23.5-4
We denote the component graph of G = (V,E) by GScc (VSCC, ESCC),
where VScc contains one vertex for each strongly connected component
of G and ESCC contains the edge (u, v) if there is a directed edge from a
vertex in the strongly connected component of G corresponding to u to
a vertex in the strongly connected component of G corresponding to v.
Figure 23.9(c) shows an example. Prove that GScc is a dag.

23.5-5
Give an O( V + E)-time algorithm to compute the component graph of
a directed graph G = (V, E). Make sure that there is at most one edge
between two vertices in the component graph your algorithm produces.

23.5-6
Given a directed graph G (V, E), explain how to create another graph
G' = (V, E I

) such that (a) GI has the same strongly connected components
as G, (b) GI has the same component graph as G, and (c) E I is as small as
possible. Describe a fast algorithm to compute G'.

23.5-7
A directed graph G = (V, E) is said to be semlconnected if, for any two
vertices u, v E V, we have u r-« v or v "-+ u. Give an efficient algorithm to
determine whether or not G is semiconnected. Prove that your algorithm
is correct, and analyze its running time.
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23-1 Oassify illg edgu by brtadtlr-jirst starelr
A depth -first forest classifies the edges of a graph into tree, back, forward ,
and cross edges. A breadth-first tree ca n also be used to classify the edges
reachable from the source of tbe search into the same four categories.

4. Prove that in a breadth-first search of an undirected graph, the following
propert ies bold:

I. There are no back edges and no forward edges.

2. For each tree edge (u,v), we have d(vl = d[u] + I.

3. For each cross edge (u,u), we have d [v ] = d(u ] or d(v ) =d(u] + I.

b. Prove that in a breadth-first search of a directed graph, the following
propert ies hold:

I . There are no forward edges.

2. For each tree edge (u, u), we have diu ) = d iu] + I.

3. For each cross edge (u, u), we have d[ tJ] $; d(u ] + I.

4. For each back edge (u,u), we have 0 $; d iu] < d(u).

23·2 Articukuion points, bridgu . alld bicoll1lecte_ components
Let G = (V, E ) be a connected, undirected graph. An articulatioll poi"t
of G is a vertex whose removal disconnects G. A bridge of G is an edge
whose removal disconnects G. A biconnected compo1le1lt of G is a maximal
set of edges such that any two edges in the set lie on a common simple cycle.
Figure 23. 10 illustrates these definitions. We can determine articulation
points, bridges, and biconnected components using depth-fi rst search. Let
Gw= (V,£ w) be a depth-fi rst tree of G.

Figure 13.10 The arti culatio n poin ts. bridges, and bico nnected components of
a connected, und irected graph for use in Problem 2J..2. The articulation points
are the heavily shaded vertices, the bridges are the heavil y shaded edges, and the
biconnected components are the edges in the shaded regions. with a bee numbering
shown .
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a. Prove that the root of Gn is an articulation point of G if and only if it
has at least two children in G«.

b. Let v be a nonroot vertex in Gn . Prove that v is an articulation point
of G if and only if there is no back edge (u, w) such that in Gn , u is a
descendant of v and w is a proper ancestor of v.

c. Let

{

d [VJ ,
/ow[v] = min {d[w]: (u, w) is a back edge

for some descendant u of v} .

Show how to compute /ow[v] for all vertices v E V in O(E) time.

d. Show how to compute all articulation points in O(E) time.

e. Prove that an edge of G is a bridge if and only if it does not lie on any
simple cycle of G.

f. Show how to compute all the bridges of G in O( E) time.

g. Prove that the biconnected components of G partition the nonbridge
edges of G.

h. Give an O(E)-time algorithm to label each edge e of G with a positive
integer bcc[e] such that bcc[e] = bcc[e'] if and only if e and e' are in the
same biconnected component.

23-3 Euler tour
An Euler tour of a connected, directed graph G (V, E) is a cycle that
traverses each edge of G exactly once, although it may visit a vertex more
than once.

a. Show that G has an Euler tour if and only if

in-degree(v) = out-degree( v)

for each vertex V E V.

b. Describe an O(E)-time algorithm to find an Euler tour of G if one exists.
(Hint: Merge edge-disjoint cycles.)

Even [65] and Tarjan [188] are excellent references for graph algorithms.
Breadth-first search was discovered by Moore [150] in the context of

finding paths through mazes. Lee [134] independently discovered the same
algorithm in the context of routing wires on circuit boards.
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Hopcroft and Tarjan [102] advocated the use of the adjacency-list repre
sentation over the adjacency-matrix representation for sparse graphs and
were the first to recognize the algorithmic importance of depth-first search.
Depth-first search has been widely used since the late 1950's, especially in
artificial intelligence programs.

Tarjan [185] gave a linear-time algorithm for finding strongly connected
components. The algorithm for strongly connected components in Sec
tion 23.5 is adapted from Aho, Hopcroft, and Ullman [5], who credit it to
S. R. Kosaraju and M. Sharir. Knuth [121] was the first to give a linear
time algorithm for topological sorting.
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In the design of electronic circuitry, it is often necessary to make the pins
of several components electrically equivalent by wiring them together. To
interconnect a set of n pins, we can use an arrangement of n 1 wires,
each connecting two pins. Of all such arrangements, the one that uses the
least amount of wire is usually the most desirable.

We can model this wiring problem with a connected, undirected graph
G = (V, E), where V is the set of pins, E is the set of possible intercon
nections between pairs of pins, and for each edge (u, v) E E, we have a
weight w(u, v) specifying the cost (amount of wire needed) to connect u
and v. We then wish to find an acyclic subset T ~ E that connects all of
the vertices and whose total weight

w(T) = L w(u, v)
(u,v)ET

is minimized. Since T is acyclic and connects all of the vertices, it must
form a tree, which we call a spanning tree since it "spans" the graph G.
We call the problem of determining the tree T the minimum-spanning-tree
problem. I Figure 24.1 shows an example of a connected graph and its
minimum spanning tree.

In this chapter, we shall examine two algorithms for solving the min
imum-spanning-tree problem: Kruskal's algorithm and Prim's algorithm.
Each can easily be made to run in time O(E lg V) using ordinary binary
heaps. By using Fibonacci heaps, Prim's algorithm can be sped up to run
in time O(E + V IgV), which is an improvement if IVI is much smaller
than lEI.

The two algorithms also illustrate a heuristic for optimization called the
"greedy" strategy. At each step of an algorithm, one of several possible
choices must be made. The greedy strategy advocates making the choice
that is the best at the moment. Such a strategy is not generally guaranteed
to find globally optimal solutions to problems. For the minimum-spanning-

I The phrase "minimum spanning tree" is a shortened form of the phrase "minimum-weight
spanning tree." We are not, for example, minimizing the number of edges in T, since all
spanning trees have exactly IVI I edges hy Theorem 5.2.
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Figure 24.1 A minimum spanning tree fo r a connected graph. The weights on
edges are shown, and the edges in a minimum spanning tree are shaded . The tota l
weight of the tree shown is 37. The tree is not uniqu e: removing the edge (b, c)
and replacing it with the edge (a, h) yields another spanning tree with weight 37.

tree problem, however, we can prove that certain greedy strategies do yield
a spanning tree with minimum weight. Greedy stra tegies are discussed at
length in Chapter 17. Although the present chapter can be read inde
pendently of Chapter 17, the greedy methods presented here are a classic
application of the theoretical notions introduced there .

Section 24.1 introd uces a "generic" minimum-spanning-tree algorithm
that grows a spanning tree by adding one edge at a tim e. Section 24.2
gives two ways to implement the gene ric algorithm. The first algorithm,
due to Kruskal, is similar to the connected-components algorithm from
Section 22. 1. Th e second, due to Prim, is similar to Dijkstra's shortest
path s algorithm (Section 25.2).

24.1 Growing a minimum spanning tree

Assume that we have a connected, undirected graph G = (V,E ) with a
weight function w : E -- R and wish to find a minimum spanning tree
for G. The two algorithms we consider in this chap ter use a greedy ap
proach to the problem, although they differ in how they apply th is ap
proach.

This greedy strategy is captured by the following "generic" algori thm,
which grows the minimum spanning tree one edge at a tim e. The algorithm
manages a set A that is always a subset of some minimum spanning tree .
At each step, an edge (u,u) is determined that can be added to A without
violating th is invariant, in the sense that A u {(u, tin is also a subset of a
min imum spanning tree. We call such an edge a fafe edge for A, since it
can be safely added to A without destroying the invariant.
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('J
s V - S

(b)

Figure 24.2 Two ways of viewing a cut (S, V - $ ) of the graph from Figure 24.1.
(a) The vertices in the set S are shown in black, and those in V - S are shown in
while. The edges cross ing the cut a TC those connect ing white vertices with black
vertices. The edge (d ,c) is the unique light edge crossing the cut. A subset A of
the edges is shaded ; note that the CUi (S. V - 5 ) respects A , since no edge of A
crosses the cut. (b) The sam e graph with the vertices in the set S on the left and
the vertices in the set V - S on the right. An edge crosses the cut if it connects a
vertex on the left with a vertex on the right.

GENERIC-MST(G, w )

I A - 0
2 while A does not form a spann ing tree
3 do find an edge (u,v ) tha t is safe for A
4 A- A U ! (u ,v))
5 return A

Note that after line I, the set A trivially satisfies the invariant tha t it is
a subset of a min imum spanni ng tree. Th e loop in lines 2-4 maintains
the invariant . When the set A is returned in line 5, therefo re, it must be
a minimum spanning tree. The tricky part is, of course, finding a safe
edge in line 3. One must exist, since when line 3 is executed, the invariant
dictates that there is a spanning tree T such tha t A C; T , and if there is an
edge (u,u) E T such that (u,v ) l/.. A , then (u,v) is safe for A.

In the remainder of this section, we provide a rule (Theorem 24.1) for
recognizing safe edges. The next sect ion describes two algorithms that use
thi s rule to fi nd safe edges effic iently.

We fi rst need some definitions. A cut (S, V - S ) of an und irected graph
G = (V, E ) is a parti tion of V. Figure 24.2 illustrates this notion. We say
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Figure 24.3 The proof of Theorem 24. 1. The vertices in S are black. and the
vertices in V -5 are white. The edges in the minimum spanning tree T are shown,
but the edges in the graph G are not. The edges in A are shaded . and (u, tI) is a
light edge cross ing the cut (5, V - 5 ). The edge (x,y) is an edge on the unique
path p from u to v in T . A minimum spanning tree r that contains (u, tI) is
formed by removing the edge (x ,Y) from T and addinl the edit (utv) ,

that an edge ( u, v ) E E crosses the cut (5, V - 5 ) if one of its endpoints
is in S and the othe r is in V - S . We say tha t a cut rUp«tJ the set A of
edges if no edge in A crosses the cut. An edge is a light ~dg~ crossing a cut
if its weight is the minimum of any edge crossing the cut. Note that there
can be more than one light edge crossing a cut in the case of ties . More
generally, we say that an edge is a light ~dgt satisfying a given propert y if
its weight is the minimum of any edge satisfying the propert y.

Our rule for recognizing safe edges is given by the following theorem.

Tneorem 24.1
Let G = (V,E ) be a connected, undirected graph with a real-valued weight
fun ction w defined on E. Let A be a subset of E that is included in some
minimum spanning tree for G, let (S, V - S) be any cut of G tha t respects A,
and let (u,v) be a light edge crossing (S, V - S). Then, edge (u, v ) is safe
for A.

Proof Let T be a minimum spanning tree that includes A, and assume
that T does not contain the light edge (u, v), since if it does, we are done.
We shall construct ano ther minimum span ning tree T' that includes A U
{(u,un by using a cut-and-paste technique, thereby showing that (u, v ) is
a safe edge for A.

The edge (u, v ) forms a cycle with the edges on the path p from u to v
in T , as illustra ted in Figure 24.3. Since u and v are on opposite sides
of the cut (S, V - S), there is at leas t one edge in T on the path p tha t
also crosses the cut. Let (x ,Y) be any such edge. The edge (x, Y) is not
in A, because the cut respects A. Since (x, Y) is on the unique path from
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u to V in T, removing (x,Y) breaks T into two components. Adding (u, v)
reconnects them to form a new spanning tree T' = T - {(x,Y)} U {(u, v)}.

We next show that T' is a minimum spanning tree. Since (u, v) is a light
edge crossing (S, V - S) and (x,y) also crosses this cut, w(u, v) :5 w(x,y).
Therefore,

w(T') = w(T) - w(x,y) + uitu, v)

< w(T).

But T is a minimum spanning tree, so that w(T) :5 w(T'); thus, T' must
be a minimum spanning tree also.

It remains to show that (u, v) is actually a safe edge for A. We have
A ~ T', since A ~ T and (x,y) ¢ A; thus, AU{(u, v)} ~ T'. Consequently,
since T' is a minimum spanning tree, (u, v) is safe for A. •

Theorem 24.1 gives us a better understanding of the workings of the
GENERIC-MST algorithm on a connected graph G = (V, E). As the algo
rithm proceeds, the set A is always acyclic; otherwise, a minimum spanning
tree including A would contain a cycle, which is a contradiction. At any
point in the execution of the algorithm, the graph GA = (V, A) is a forest,
and each of the connected components of GA is a tree. (Some of the trees
may contain just one vertex, as is the case, for example, when the algo
rithm begins: A is empty and the forest contains IVI trees, one for each
vertex.) Moreover, any safe edge (u, v) for A connects distinct components
of GA, since A U {(u, v)} must be acyclic.

The loop in lines 2-4 of GENERIC-MST is executed IVI - I times as
each of the IVI - 1 edges of a minimum spanning tree is successively
determined. Initially, when A = 0, there are IVI trees in GA , and each
iteration reduces that number by 1. When the forest contains only a single
tree, the algorithm terminates.

The two algorithms in Section 24.2 use the following corollary to Theo
rem 24.1.

Corollary 24.2
Let G = (V, E) be a connected, undirected graph with a real-valued weight
function w defined on E. Let A be a subset of E that is included in some
minimum spanning tree for G, and let C be a connected component (tree)
in the forest GA = (V,A). If (u,v) is a light edge connecting C to some
other component in GA, then (U, v) is safe for A.

Proof The cut (C, V - C) respects A, and (u, v) is therefore a light edge
for this cut. •
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14.1-1
Let (u, v) be a minimum-weight edge in a graph G. Show that (u, v) belongs
to some minimum spanning tree of G.

24.1-2
Professor Sabatier conjectures the following converse of Theorem 24.1.
Let G (V, E) be a connected, undirected graph with a real-valued weight
function w defined on E. Let A be a subset of E that is included in some
minimum spanning tree for G, let (8, V -8) be any cut of G that respects A,
and let (u, v) be a safe edge for A crossing (8, V - 8). Then, (u, v) is a
light edge for the cut. Show that the professor's conjecture is incorrect by
giving a counterexample.

24.1-3
Show that if an edge (u, v) is contained in some minimum spanning tree,
then it is a light edge crossing some cut of the graph.

24.1-4
Give a simple example of a graph such that the set of all edges that are light
edges crossing some cut in the graph does not form a minimum spanning
tree.

24.1-5
Let e be a maximum-weight edge on some cycle of G = (V, E). Prove
that there is a minimum spanning tree of G' = (V, E - {e}) that is also a
minimum spanning tree of G.

24.1-6
Show that a graph has a unique minimum spanning tree if, for every cut
of the graph, there is a unique light edge crossing the cut. Show that the
converse is not true by giving a counterexample.

14.1-7
Argue that if all of the edge weights of a graph are positive, then any subset
of edges that connects all of the vertices and has minimum total weight
must be a tree. Give an example to show that the same conclusion does
not follow if we allow some weights to be nonpositive.

14.1-8
Let T be a minimum spanning tree of a graph G, and let L be the sorted
list of the edge weights of T. Show that for any other minimum spanning
tree T' of G, the list L is also the sorted list of edge weights of T'.
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24.1-9
Let T be a minimum spanning tree of a graph G = (V, E), and let V' be
a subset of V. Let T' be the subgraph of T induced by V', and let G' be
the subgraph of G induced by V'. Show that if T' is connected, then T' is
a minimum spanning tree of G'.

24.2 The algorithms of Kruskal and Prim

The two minimum-spanning-tree algorithms described in this section are
elaborations of the generic algorithm. They each use a specific rule to
determine a safe edge in line 3 of GENERIC-MST. In Kruskal's algorithm,
the set A is a forest. The safe edge added to A is always a least-weight edge
in the graph that connects two distinct components. In Prim's algorithm,
the set A forms a single tree. The safe edge added to A is always a least
weight edge connecting the tree to a vertex not in the tree.

Kruskal's algorithm

Kruskal's algorithm is based directly on the generic minimum-spanning
tree algorithm given in Section 24.1. It finds a safe edge to add to the
growing forest by finding, of all the edges that connect any two trees in the
forest, an edge (u, v) of least weight. Let C1 and C2 denote the two trees
that are connected by (u, v). Since (u, v) must be a light edge connecting
C1 to some other tree, Corollary 24.2 implies that (u, v) is a safe edge
for C j • Kruskal's algorithm is a greedy algorithm, because at each step it
adds to the forest an edge of least possible weight.

Our implementation of Kruskal's algorithm is like the algorithm to com
pute connected components from Section 22.1. It uses a disjoint-set data
structure to maintain several disjoint sets of elements. Each set contains
the vertices in a tree of the current forest. The operation FIND-SET(U)
returns a representative element from the set that contains u. Thus, we
can determine whether two vertices U and v belong to the same tree by
testing whether FIND-SET(U) equals FIND-SET(V). The combining of trees
is accomplished by the UNION procedure.
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MST-KRUSKAL(G, w)

1 A+--0
2 for each vertex v E V[ G]
3 do MAKE-SET(v)
4 sort the edges of E by nondecreasing weight w
5 for each edge (u, v) E E, in order by nondecreasing weight
6 do if FIND-SET(U) :f. FIND-SET(V)

7 then A +-- A U {(U, v)}
8 UNION(u, v)
9 return A
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Kruskal's algorithm works as shown in Figure 24.4. Lines 1-3 initialize
the set A to the empty set and create IVI trees, one containing each vertex.
The edges in E are sorted into order by nondecreasing weight in line 4. The
for loop in lines 5-8 checks, for each edge (u, v), whether the endpoints U

and v belong to the same tree. If they do, then the edge (u, v) cannot be
added to the forest without creating a cycle, and the edge is discarded.
Otherwise, the two vertices belong to different trees, and the edge (u, v) is
added to A in line 7, and the vertices in the two trees are merged in line 8.

The running time of Kruskal's algorithm for a graph G = (V, E) depends
on the implementation of the disjoint-set data structure. We shall assume
the disjoint-set-forest implementation of Section 22.3 with the union-by
rank and path-compression heuristics, since it is the asymptotically fastest
implementation known. Initialization takes time O(V), and the time to
sort the edges in line 4 is O(E IgE). There are O(E) operations on the
disjoint-set forest, which in total take O(E a(E, V)) time, where a is
the functional inverse of Ackermann's function defined in Section 22.4.
Since a(E, V) = O(1gE), the total running time of Kruskal's algorithm is
O(ElgE).

Prim's algorithm

Like Kruskal's algorithm, Prim's algorithm is a special case of the generic
minimum-spanning-tree algorithm from Section 24.1. Prim's algorithm
operates much like Dijkstra's algorithm for finding shortest paths in a
graph. (See Section 25.2.) Prim's algorithm has the property that the edges
in the set A always form a single tree. As is illustrated in Figure 24.5, the
tree starts from an arbitrary root vertex r and grows until the tree spans
all the vertices in V. At each step, a light edge connecting a vertex in A to
a vertex in V A is added to the tree. By Corollary 24.2, this rule adds
only edges that are safe for A; therefore, when the algorithm terminates,
the edges in A form a minimum spanning tree. This strategy is "greedy"
since the tree is augmented at each step with an edge that contributes the
minimum amount possible to the tree's weight.
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(.)

(c )

(b)

(d)

(e)

(g) (h)

Figure 24.4 Th e execution of Kruskal's algorithm on the graph from Figure 24. 1.
Shaded edges belong to the forest A being grown. The edges are considered by the
algorithm in sorted order by weight. An arro w points to the edge under considera
tion at each step of the algorithm. If the edge joins two distinct trees in the forest,
it is add ed 10 the forest, thereby merg ing the two trees.
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The key to implementing Prim's algorithm efficiently is to make it easy
to select a new edge to be added to th e tree formed by the edges in A. In the
pseud ocode below, the connec ted graph G and the root r of the minimum
spanning tree to be grown are inputs to the algorithm. During executi on
of the algorithm, all vertices that are not in the tree reside in a priority
queue Q based on a key field. For each vertex v , key[v ] is the minimum
weight of any edge connecting v to a vertex in th e tree ; by convention,
key[v ] = 00 if there is no such edge. The field n(v] names the "parent"
of v in the tree. During the algorithm, the set A from GENERIC-MST is
kept implicitly as

A = { (v, <[v)) : v E V - { r } - Q) .

When the algorithm terminates, th e priority queue Q is empty; the mini
mum spanning tree A for G is thus

A ~ {(v ,< Iv)) : v E V - ( r )} .
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(. )

(0)

(0)

(g)

0)

(b)

(d)

(h)

Figure 24.S The execution of Prim 's algorithm on the graph from Figure 24. 1.
The root vertex is a. Shaded edges are in the tree being grown, and the vertices in
the tree are shown in black. At eac h step of the algorit hm, th e vertices in the tree
determine a cut of the graph, and a light edge crossing the cut is added to the tree.
In the second step, for example, the algorithm has a choice of add ing either edge
(b, c) or edge (0, h) to the tree since both are light edges crossing the cut.



24.2 The algorithms ofKruskal and Prim

MST-PRIM(G, w, r)

1 Q.- V[G]
2 for each u E Q
3 do key[u] .- 00

4 key[r].- 0
5 n[r].- NIL
6 while Q =I- 0
7 do u.- EXTRACT-MIN(Q)
8 for each v E Adj[u]
9 do if v E Q and w(u, v) < key[v]

10 then n[v] .- u
11 key[v] .- w(u, v)
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Prim's algorithm works as shown in Figure 24.5. Lines 1-4 initialize the
priority queue Q to contain all the vertices and set the key of each vertex
to 00, except for the root r, whose key is set to O. Line 5 initializes n[r]
to NIL, since the root r has no parent. Throughout the algorithm, the set
V Q contains the vertices in the tree being grown. Line 7 identifies a
vertex u E Q incident on a light edge crossing the cut (V - Q,Q) (with the
exception of the first iteration, in which u = r due to line 4). Removing u
from the set Q adds it to the set V - Q of vertices in the tree. Lines 8-11
update the key and n fields of every vertex v adjacent to u but not in the
tree. The updating maintains the invariants that key[v] = w(v, n[v]) and
that (v, n[v]) is a light edge connecting v to some vertex in the tree.

The performance of Prim's algorithm depends on how we implement the
priority queue Q. If Q is implemented as a binary heap (see Chapter 7), we
can use the BUILD-HEAP procedure to perform the initialization in lines 1
4 in O( V) time. The loop is executed IVI times, and since each EXTRACT
MIN operation takes O(lg V) time, the total time for all calls to EXTRACT
MIN is O(Vlg V). The for loop in lines 8-11 is executed O(E) times
altogether, since the sum of the lengths of all adjacency lists is 21EI. Within
the for loop, the test for membership in Q in line 9 can be implemented
in constant time by keeping a bit for each vertex that tells whether or
not it is in Q, and updating the bit when the vertex is removed from Q.
The assignment in line 11 involves an implicit DECREASE-KEY operation
on the heap, which can be implemented in a binary heap in O(lg V) time.
Thus, the total time for Prim's algorithm is O( V lg V +E lg V) = O(E lg V),
which is asymptotically the same as for our implementation of Kruskal's
algorithm.

The asymptotic running time of Prim's algorithm can be improved, how
ever, by using Fibonacci heaps. Chapter 21 shows that if IVI elements are
organized into a Fibonacci heap, we can perform an EXTRACT-MIN oper
ation in O(lg V) amortized time and a DECREASE-KEy operation (to im
plement line 11) in O( 1) amortized time. Therefore, if we use a Fibonacci
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heap to implement the priority queue Q, the running time of Prim's algo
rithm improves to O(E + V IgV).

Exercises

24.2-1
Kruskal's algorithm can return different spanning trees for the same input
graph G, depending on how ties are broken when the edges are sorted into
order. Show that for each minimum spanning tree T of G, there is a way to
sort the edges of Gin Kruskal's algorithm so that the algorithm returns T.

24.2-2
Suppose that the graph G = (V, E) is represented as an adjacency matrix.
Give a simple implementation of Prim's algorithm for this case that runs
in O( V2) time.

24.2-3
Is the Fibonacci-heap implementation of Prim's algorithm asymptotically
faster than the binary-heap implementation for a sparse graph G = (V, E),
where lEI = 8(V)? What about for a dense graph, where lEI = 8(V2)?
How must lEI and IVI be related for the Fibonacci-heap implementation
to be asymptotically faster than the binary-heap implementation?

24.2-4
Suppose that all edge weights in a graph are integers in the range from 1
to IVI. How fast can you make Kruskal's algorithm run? What if the edge
weights are integers in the range from 1 to W for some constant W?

24.2-5
Suppose that all edge weights in a graph are integers in the range from I
to IVI. How fast can you make Prim's algorithm run? What if the edge
weights are integers in the range from 1 to W for some constant W?

24.2-6
Describe an efficient algorithm that, given an undirected graph G, deter
mines a spanning tree of G whose largest edge weight is minimum over all
spanning trees of G.

24.2-7 *
Suppose that the edge weights in a graph are uniformly distributed over
the half-open interval [0, I). Which algorithm, Kruskal's or Prim's, can
you make run faster?

24.2-8 *
Suppose that a graph G has a minimum spanning tree already computed.
How quickly can the minimum spanning tree be updated if a new vertex
and incident edges are added to G?
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24-1 Second-best minimum spanning tree
Let G = (V, E) be an undirected, connected graph with weight function
w : E ---T R, and suppose that lEI ~ IVI.
a. Let T be a minimum spanning tree of G. Prove that there exist edges

(u, v) E T and (x.y) fj. T such that T -{(u, v)}U{(x,Y)} is a second-best
minimum spanning tree of G.

b. Let T be a spanning tree of G and, for any two vertices u, v E V, let
max[u, v] be an edge of maximum weight on the unique path between u
and v in T. Describe an 0(V2)-time algorithm that, given T, computes
max[u, v] for all u, v E V.

c. Give an efficient algorithm to compute the second-best minimum span
ning tree of G.

24-2 Minimum spanning tree in sparsegraphs
For a very sparse connected graph G = (V, E), we can improve upon the
O(E + V lg V) running time of Prim's algorithm with Fibonacci heaps
by "preprocessing" G to decrease the number of vertices before running
Prim's algorithm. The following procedure takes as input a weighted
graph G and returns a "contracted" version of G, having added some edges
to the minimum spanning tree T under construction. Initially, for each
edge (u, v) E E, we assume that orig[u, v] = (u, v) and that w[u, v] is the
weight of the edge.
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MST-REDUCE(G, T)

1 for each v E V[G]
2 do mark[v] .- FALSE
3 MAKE-SET(V)
4 for each u E V[G]
5 do if mark[u] = FALSE
6 then choose v E Adj[u] such that w[u, v] is minimized
7 UNION(U, v)
8 T...-- T u {orig[u, vn
9 mark[u] .- mark[v] .- TRUE

10 V[G'].- {FIND-SET(V) : v E V[Gn
11 E[G']...-- 0
12 for each (x.j') E E[G]
13 do u .- FIND-SET(X)
14 v .- FIND-SET(Y)
15 if(u,v)f/.E[G']
16 then E[G'] .- E[G'] U {(u, vn
17 orig[u, v] .- orig[x,y]
18 w[u, v] .- w[x,y]
19 else if w[x,y] < w[u, v]
20 then orig[u, v] .- orig[x,y]
21 w[u, v] .- w[x,y]
22 construct adjacency lists Ad) for G/
23 return G' and T

a. Let T be the set of edges returned by MST-REDUCE, and let T' be
a minimum spanning tree of the graph G' returned by the procedure.
Prove that TU{orig[x,y] : (x,y) E T'} is a minimum spanning tree of G.

b. Argue that IV[G']I ~ IVI /2.

c. Show how to implement MST-REDUCE so that it runs in O(E) time.
(Hint: Use simple data structures.)

d. Suppose that we run k phases of MST-REDUCE, using the graph pro
duced by one phase as input to the next and accumulating edges in T.
Argue that the overall running time of the k phases is O(kE).

e. Suppose that after running k phases of MST-REDUCE, we run Prim's
algorithm on the graph returned by the last phase. Show how to pick k
so that the overall running time is O(E 19l9 V). Argue that your choice
of k minimizes the overall asymptotic running time.

f. For what values of lEI (in terms of IVI) does Prim's algorithm with pre
processing asymptotically beat Prim's algorithm without preprocessing?
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Tarjan [188] surveys the minimum-spanning-tree problem and provides ex
cellent advanced material. A history of the minimum-spanning-tree prob
lem has been written by Graham and Hell [92].

Tarjan attributes the first minimum-spanning-tree algorithm to a 1926
paper by O. Bonrvka, Kruskal's algorithm was reported by Kruskal [131]
in 1956. The algorithm commonly known as Prim's algorithm was indeed
invented by Prim [163], but it was also invented earlier by V. Jarnik in
1930.

The reason why greedy algorithms are effective at finding minimum span
ning trees is that the set of forests of a graph forms a graphic matroid. (See
Section 17.4.)

The fastest minimum-spanning-tree algorithm to date for the case in
which lEI = Q( V 19 V) is Prim's algorithm implemented with Fibonacci
heaps. For sparser graphs, Fredman and Tarjan [75] give an algorithm
that runs in O(E P(IEI, WI)) time, where P(IEI, WI) = min{i : IgU) WI ~
lEI/WI}. The fact that lEI 2 WI implies that their algorithm runs in time
O(Elg* V).
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A motorist wishes to find the shortest possible route from Chicago to
Boston. Given a road map of the United States on which the distance
between each pair of adjacent intersections is marked, how can we deter
mine this shortest route?

One possible way is to enumerate all the routes from Chicago to Boston,
add up the distances on each route, and select the shortest. It is easy to
see, however, that even if we disallow routes that contain cycles, there are
millions of possibilities, most of which are simply not worth considering.
For example, a route from Chicago to Houston to Boston is obviously a
poor choice, because Houston is about a thousand miles out of the way.

In this chapter and in Chapter 26, we show how to solve such problems
efficiently. In a shortest-paths problem, we are given a weighted, directed
graph G = (V, E), with weight function w : E -> R mapping edges to real
valued weights. The weight of path p = (vo,VI, . . . , Vk) is the sum of the
weights of its constituent edges:

k

w(p) I:W(Vi-I,Vi).

i=1

We define the shortest-path weight from u to V by

o(u,v) = {min{W(p): u~ v} ifther~ is a path from u to V,
00 otherwise .

A shortest path from vertex u to vertex v is then defined as any path p with
weight w(p) = o(u, v).

In the Chicago-to-Boston example, we can model the road map as a
graph: vertices represent intersections, edges represent road segments be
tween intersections, and edge weights represent road distances. Our goal is
to find a shortest path from a given intersection in Chicago (say, Clark St.
and Addison Ave.) to a given intersection in Boston (say, Brookline Ave.
and Yawkey Way).

Edge weights can be interpreted as metrics other than distances. They are
often used to represent time, cost, penalties, lossage, or any other quantity
that accumulates linearly along a path and that one wishes to minimize.

The breadth-first-search algorithm from Section 23.2 is a shortest-paths
algorithm that works on unweighted graphs, that is, graphs in which each
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edge can be considered to have unit weight. Because many of the concepts
from breadth-first search arise in the study of shortest paths in weighted
graphs, the reader is encouraged to review Section 23.2 before proceeding.

Variants

In this chapter, we shall focus on the single-source shortest-paths problem:
given a graph G = (V, E), we want to find a shortest path from a given
source vertex S E V to every vertex v E V. Many other problems can
be solved by the algorithm for the single-source problem, including the
following variants.

Single-destination shortest-paths problem: Find a shortest path to a given
destination vertex t from every vertex v. By reversing the direction of
each edge in the graph, we can reduce this problem to a single-source
problem.

Single-pair shortest-path problem: Find a shortest path from u to v for
given vertices u and v. Ifwe solve the single-source problem with source
vertex u, we solve this problem also. Moreover, no algorithms for this
problem are known that run asymptotically faster than the best single
source algorithms in the worst case.

All-pairs shortest-paths problem: Find a shortest path from u to v for ev
ery pair of vertices u and v. This problem can be solved by running
a single-source algorithm once from each vertex; but it can usually be
solved faster, and its structure is of interest in its own right. Chapter 26
addresses the all-pairs problem in detail.

Negative-weight edges

In some instances of the single-source shortest-paths problem, there may
be edges whose weights are negative. If the graph G = (V, E) contains
no negative-weight cycles reachable from the source s, then for all v E V,
the shortest-path weight 0(5, v) remains well defined, even if it has a neg
ative value. If there is a negative-weight cycle reachable from s, however,
shortest-path weights are not well defined. No path from s to a vertex on
the cycle can be a shortest path-a lesser-weight path can always be found
that follows the proposed "shortest" path and then traverses the negative
weight cycle. If there is a negative-weight cycle on some path from s to v,
we define o(s, v) = -00.

Figure 25.1 illustrates the effect of negative weights on shortest-path
weights. Because there is only one path from s to a (the path (s, a)),
o(s,a) = w(s,a) = 3. Similarly, there is only one path from s to b, and
so o(s,b) = w(s,a) + w(a,b) = 3 + (-4) = -I. There are infinitely many
paths from s to c: (s,c), (s,c,d,c), ts.c.d.c.d.ci, and so on. Because the
cycle (c, d, c) has weight 6 + (-3) = 3 > 0, the shortest path from s to c is
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h

j

Figure 25.1 Negative edge weights in a directed graph. Shown within each vertex
is its shortest-path weight from source s. Because vertices e and f form a negative
weight cycle reachable from s, they have shortest-path weights of -00. Because
vertex g is reachable from a vertex whose shortest-path weight is -00, it, too, has
a shortest-path weight of -00. Vertices such as h, i, and j are not reachable from s,
and so their shortest-path weights are 00, even though they lie on a negative-weight
cycle.

ts, c), with weight o(s, c) = 5. Similarly, the shortest path from s to d is
(s, c, d), with weight 0(5, d) = w(s, c) + w(c, d) = 11. Analogously, there
are infinitely many paths from s to e: (s,e), (s,e,j,e), (s,e,j,e,j,e), and
so on. Since the cycle (e,j,e) has weight 3 + (-6) = -3 < 0, however,
there is no shortest path from s to e. By traversing the negative-weight
cycle (e, I, e) arbitrarily many times, we can find paths from s to e with
arbitrarily large negative weights, and so o(s, e) = -00. Similarly, o(s, j) =

-00. Because g is reachable from j, we can also find paths with arbitrarily
large negative weights from s to g, and o(s, g) = -00. Vertices h, i, and j
also form a negative-weight cycle. They are not reachable from 5, however,
and so 0(5, h) = o(s, i) = 0(5, j) = 00.

Some shortest-paths algorithms, such as Dijkstra's algorithm, assume
that all edge weights in the input graph are nonnegative, as in the road
map example. Others, such as the Bellman-Ford algorithm, allow negative
weight edges in the input graph and produce a correct answer as long as no
negative-weight cycles are reachable from the source. Typically, if there
is such a negative-weight cycle, the algorithm can detect and report its
existence.

Representing shortest paths

We often wish to compute not only shortest-path weights, but the vertices
on the shortest paths as welL The representation we use for shortest paths
is similar to the one we used for breadth-first trees in Section 23.2. Given
a graph G = (V,E), we maintain for each vertex v E V a predecessor n[v]
that is either another vertex or NIL. The shortest-paths algorithms in this
chapter set the n attributes so that the chain of predecessors originating at
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a vertex v runs backwards along a shortest path from s to v. Thus, given
a vertex v for which n[v] =1= NIL, the procedure PRINT-PATH(G,s,V) from
Section 23.2 can be used to print a shortest path from S to v.

During the execution of a shortest-paths algorithm, however, the tt val
ues need not indicate shortest paths. As in breadth-first search, we shall
be interested in the predecessor subgraph G« = (Vn ,E llJ induced by the n
values. Here again, we define the vertex set Vn to be the set of vertices of
G with non-NIL predecessors, plus the source s:

Vn = {v E V: n[v] =1= NIL} U {s} .

The directed edge set En is the set of edges induced by the n values for
vertices in Vn :

En = {(n[v], v) E E: v E Vn {s}}.

We shall prove that the n values produced by the algorithms in this chap
ter have the property that at termination Gn is a "shortest-paths tree"
informally, a rooted tree containing a shortest path from a source S to
every vertex that is reachable from s. A shortest-paths tree is like the
breadth-first tree from Section 23.2, but it contains shortest paths from
the source defined in terms of edge weights instead of numbers of edges.
To be precise, let G = (V, E) be a weighted, directed graph with weight
function w : E -> R, and assume that G contains no negative-weight cycles
reachable from the source vertex s E V, so that shortest paths are well de
fined. A shortest-paths tree rooted at s is a directed subgraph G' = (V', E '),
where V' ~ V and E' ~ E, such that

I. V'is the set of vertices reachable from s in G,

2. G' forms a rooted tree with root s, and

3. for all v E V', the unique simple path from s to v in G' is a shortest
path from s to v in G.

Shortest paths are not necessarily unique, and neither are shortest-paths
trees. For example, Figure 25.2 shows a weighted, directed graph and two
shortest-paths trees with the same root.

Chapter outline

The single-source shortest-paths algorithms in this chapter are all based
on a technique known as relaxation. Section 25.1 begins by proving some
important properties of shortest paths in general and then proves some
important facts about relaxation-based algorithms. Dijkstra's algorithm,
which solves the single-source shortest-paths problem when all edges have
nonnegative weight, is given in Section 25.2. Section 25.3 presents the
Bellman-Ford algorithm, which is used in the more general case in which
edges can have negative weight. If the graph contains a negative-weight
cycle reachable from the source, the Bellman-Ford algorithm detects its
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Figure 25.2 (a) A weighted , directed graph with shortest-path weights from
source s. (b) The shaded edges form a shortest-paths tree rooted at the source s.
(c) Another shortest-paths tree with t he same rOOI.

presence. Section 25.4 gives a linear-time algorithm for compu ting shortest
paths from a single source in directed acyclic graphs. Finally, Section 25.5
shows how the Bellman-Ford algo rithm can be used to solve a special case
of "linea r programmi ng."

OUf analysis will require some conventions for doing arithmetic with
infinities. We shall assume tha t for any real number a #- - 00, we have
a + 00 = 00 + a = 00. Also, to mak e our proofs hold in the presence of
negative-weight cycles, we shall assume that for any real number a '" 00,

we have a + (- oo) = (-oo) + a = -00.

25.1 Shortest paths and relaxation

To understand single-source shorte st-paths algorithms. it is helpful to un
de rsta nd the techn iques that they use and the propert ies of shortest paths
that they exploit. The main technique used by the algorithms in th is cha p
ter is relaxat ion, a method that repeatedly decreases an upper bound on
the actual shortest-path weight of each vertex until the upper bound equals
the shortest-path weight. In th is section, we shall see how relaxa tion works
and formally prove several properties it maintains.

On a first reading of thi s section, you may wish to omit proofs of
theorems-read ing only their state ments-and then proceed imm ediately
to the algorithms in Sections 25.2 and 25.3. Pay particular atten tion, how
ever, to Lemma 25.7, which is a key to understanding the shortes t-paths
algorithms in th is chapter. On a first reading, you may also wish to ignore
completely the lemm as concerni ng predecessor subgraphs and shortest
path s trees (Lemmas 25.8 and 25.9 ), concentrating instead on the earlier
lemmas, which pertain to shortest-path weights.



25.1 Shortest paths and relaxation

Optimal substructure of a shortest path
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Shortest-paths algorithms typically exploit the property that a shortest path
between two vertices contains other shortest paths within it. This optimal
substructure property is a hallmark of the applicability of both dynamic
programming (Chapter 16) and the greedy method (Chapter 17). In fact,
Dijkstra's algorithm is a greedy algorithm, and the Floyd-Warshall algo
rithm, which finds shortest paths between all pairs of vertices (see Chap
ter 26), is a dynamic-programming algorithm. The following lemma and
its corollary state the optimal-substructure property of shortest paths more
precisely.

Lemma 25.1 (Subpaths ofshortest paths are shortest paths)
Given a weighted, directed graph G = (V, E) with weight function w
E -> R, let P = ('0(, '02, ... ,'Ok) be a shortest path from vertex VI to vertex 'Ok
and, for any i and j such that 1 ::; i ::; j ::; k, let Pij (Vi, Vi+I, ... , 'OJ) be
the subpath of P from vertex Vi to vertex 'OJ. Then, Pi} is a shortest path
from Vi to 'OJ.

Proof If we decompose path P into VI !?:J Vi !!j. 'OJ ~ Vb then w(p) =

W(Pli) + w(Pi}) + W(Pjk). Now, assume that there is a path P;j from Vi

. . PI' P:j PI' .to 'OJ WIth weight w(p;j) < w(Pu). Then, VI "-'+ Vi "-'+ 'OJ "-'+ 'Ok IS a path
from VI to 'Ok whose weight w(Pld + w(p:) + w(pjd is less than w(p),
which contradicts the premise that P is a shortest path from VI to 'Ok. •

In studying breadth-first search (Section 23.2), we proved as Lemma 23.1
a simple property of shortest distances in unweighted graphs. The follow
ing corollary to Lemma 25.1 generalizes the property to weighted graphs.

Corollary 25.2
Let G = (V, E) be a weighted, directed graph with weight function w
E -> R. Suppose that a shortest path P from a source 5 to a vertex V can

be decomposed into 5 ,(. U -t V for some vertex u and path p'. Then, the
weight of a shortest path from s to V is 6(5, v) = 6(5, u) + w(u, V).

Proof By Lemma 25.1, subpath p' is a shortest path from source s to
vertex u. Thus,

6(5, v) = w(p)

w(p') + w(u, V)

= 6(s, u) + w(u, v) . •

The next lemma gives a simple but useful property of shortest-path
weights.
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Lemma 25.3
Let G (V, E) be a weighted, directed graph G = (V, E) with weight
function w : E - R and source vertex s. Then, for all edges (u, v) E E,
we have 6(s, v) ::; 6(s, u) + w(u, v).

Proof A shortest path p from source s to vertex v has no more weight
than any other path from s to v. Specifically, path p has no more weight
than the particular path that takes a shortest path from source s to vertex u
and then takes edge (u, v). •

Relaxation

The algorithms in this chapter use the technique of relaxation. For each
vertex v E V, we maintain an attribute d[v], which is an upper bound on
the weight of a shortest path from source s to v. We call d[v] a shortest
path estimate. We initialize the shortest-path estimates and predecessors
by the following procedure.

INITIALIZE-SINGLE-SOURCE(G,s)

1 for each vertex v E V[G]
2 do d[v] +- 00

3 n[v] +- NIL
4 d[s] +- 0

After initialization, n[v] NIL for all v E V, d[v] = 0 for v s, and
d[v] = 00 for v E V {s}.

The process of relaxing' an edge (u, v) consists of testing whether we
can improve the shortest path to v found so far by going through u and,
if so, updating d[v] and n[v]. A relaxation step may decrease the value of
the shortest-path estimate d[v] and update v's predecessor field n[v]. The
following code performs a relaxation step on edge tu, v).

RELAX(U, v, w)

1 if d[v] > d[u] + w(u, v)
2 then d[v] +- d[u] + w(u, v)
3 n[v] +-- u

Figure 25.3 shows two examples of relaxing an edge, one in which a
shortest-path estimate decreases and one in which no estimate changes.

I It may seem strange that the term "relaxation" is used for an operation that tightens an
upper bound. The use of the term is historical. The outcome of a relaxation step can be
viewed as a relaxation of the constraint d[v] ~ dIu] + w(u, 11), which, by Lemma 25.3. must
be satisfied if dIu] = e5(s, u) and d[v] = e5(s, v). That is, if d[v] ~ dIu] + w(u, v), there is no
"pressure" to satisfy this constraint, so the constraint is "relaxed."
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Figure 25.3 Relaxation of an edge tu, v). The shortest-path estimate of each
vertex is shown within the vertex. (a) Because d[v] > d[u] + w(u, v) prior to
relaxation, the value of d[v] decreases. (b) Here, d{v] :5 d[u] + uitu, v) before the
relaxation step, so d[v] is unchanged by relaxation.

Each algorithm in this chapter calls INITIALIZE-SINGLE-SOURCE and then
repeatedly relaxes edges. Moreover, relaxation is the only means by which
shortest-path estimates and predecessors change. The algorithms in this
chapter differ in how many times they relax each edge and the order in
which they relax edges. In Dijkstra's algorithm and the shortest-paths
algorithm for directed acyclic graphs, each edge is relaxed exactly once. In
the Bellman-Ford algorithm, each edge is relaxed several times.

Properties of relaxation

The correctness of the algorithms in this chapter depends on important
properties of relaxation that are summarized in the next few lemmas. Most
of the lemmas describe the outcome of executing a sequence of relaxation
steps on the edges of a weighted, directed graph that has been initialized by
INITIALIZE-SINGLE-SOURCE. Except for Lemma 25.9, these lemmas apply
to any sequence of relaxation steps, not just those that produce shortest
path values.

Lemma 25.4
Let G = (V, E) be a weighted, directed graph with weight function w
E -+ R, and let (u, v) E E. Then, immediately after relaxing edge (u, v)
by executing RELAX(U, v, w), we have d[v] ::; d[u] + w(u, v).

Proof If, just prior to relaxing edge (u, v), we have d[v] > d[u]+w(u, v),
then d[v] = d[u]+w(u, v) afterward. If, instead, d[v] ::; d[u]+w(u, v) just
before the relaxation, then neither d[u] nor d[v] changes, and so d[v] ::;
d[u] + w(u, v) afterward, _

Lemma 25.5
Let G = (V, E) be a weighted, directed graph with weight function w
E -+ R. Let S E V be the source vertex, and let the graph be initialized by
INITIALIZE-SINGLE-SOURCE(G,S). Then, d[v] ;::: o(s,v) for all v E V, and
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this invariant is maintained over any sequence of relaxation steps on the
edges of G. Moreover, once d[v] achieves its lower bound 0(8, V), it never
changes.

Proof The invariant d[v] ~ 0(8, V) is certainly true after initialization,
since drs] 0 ~ o(s,s) (note that o(s,s) is -oc if s is on a negative
weight cycle and 0 otherwise) and d[v] oo implies d[v] ~ o(s, v) for all
v E V {s}. We shall use proof by contradiction to show that the invariant
is maintained over any sequence of relaxation steps. Let v be the first
vertex for which a relaxation step of an edge (u, v) causes d[v] < 0(8, v).
Then, just after relaxing edge tu, v), we have

d[u] + w(u, v) d[v]

< 0(8, v)

~ 0(8, u) + w(u, v)

which implies that d[u] < 0(5, u). But because relaxing edge (u, v) does
not change d[u], this inequality must have been true just before we relaxed
the edge, which contradicts the choice of v as the first vertex for which
d[v] < o(s, v). We conclude that the invariant d[v] ~ 0(8, v) is maintained
for all v E V.

To see that the value of d[v] never changes once d[v] = o(s, v), note that
having achieved its lower bound, d[v] cannot decrease because we have just
shown that d[v] ~ 0(5, u), and it cannot increase because relaxation steps
do not increase d values. _

Corollary 25.6
Suppose that in a weighted, directed graph G = (V, E) with weight function
w : E -+ R, no path connects a source vertex s E V to a given vertex v E V.
Then, after the graph is initialized by INITIALIZE-SINGLE-SOURCE(G,8), we
have d[v] = o(s,v), and this equality is maintained as an invariant over
any sequence of relaxation steps on the edges of G.

Proof By Lemma 25.5, we always have oo = 0(8, v) < d[v]; thus, so
d[v] = oo 0(8, v). _

The following lemma is crucial to proving the correctness of the shortest
paths algorithms that appear later in this chapter. It gives sufficient con
ditions for relaxation to cause a shortest-path estimate to converge to a
shortest-path weight.

Lemma 25.7
Let G = (V, E) be a weighted, directed graph with weight function w
E -+ R, let 8 E V be a source vertex, and let s rv; U -+ v be a shortest
path in G for some vertices u, v E V. Suppose that G is initialized by
INITIALIZE-SINGLE-SOURCE(G,8) and then a sequence of relaxation steps
that includes the call RELAX(U, v, w) is executed on the edges of G. If
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d[u] J(s, u) at any time prior to the call, then d[v] J(s, v) at all times
after the call.

Proof By Lemma 25.5, if d[u] = o(s, u) at some point prior to relaxing
edge (u, v), then this equality holds thereafter. In particular, after relaxing
edge (u, v), we have

d[v] < d[u] + w(u, v) (by Lemma 25.4)

= o(s, u) + w(u, v)

o(s,v) (by Corollary 25.2) .

By Lemma 25.5, o(s, v) bounds d[v] from below, from which we conclude
that d[v] = o(s, v), and this equality is maintained thereafter. _

Shortest-paths trees

So far, we have shown that relaxation causes the shortest-path estimates to
descend monotonically toward the actual shortest-path weights. We would
also like to show that once a sequence of relaxations has computed the
actual shortest-path weights, the predecessor subgraph Gn induced by the
resulting TC values is a shortest-paths tree for G. We start with the following
lemma, which shows that the predecessor subgraph always forms a rooted
tree whose root is the source.

Lemma 25.8
Let G (V,E) be a weighted, directed graph with weight function w
E -+ R and source vertex s E V, and assume that G contains no negative
weight cycles that are reachable from s. Then, after the graph is initialized
by INITIALIZE-SINGLE-SOURCE(G,S), the predecessor subgraph Gn forms a
rooted tree with root s, and any sequence of relaxation steps on edges of G
maintains this property as an invariant.

Proof Initially, the only vertex in Gn is the source vertex, and the lemma
is trivially true. Consider a predecessor subgraph G; that arises after a se
quence of relaxation steps. We shall first prove that Gn is acyclic. Suppose
for the sake of contradiction that some relaxation step creates a cycle in
the graph Gn • Let the cycle be C (vo,V" ... ,Vk), where Vk vo. Then,
TC[vil = Vi-l for i = 1,2, ... ,k and, without loss of generality, we can
assume that it was the relaxation of edge (Vk-h Vk) that created the cycle
in Gn•

We claim that all vertices on cycle c are reachable from the source s.
Why? Each vertex on c has a non-NIL predecessor, and so each vertex
on c was assigned a finite shortest-path estimate when it was assigned its
non-NIL TC value. By Lemma 25.5, each vertex on cycle c has a finite
shortest-path weight, which implies that it is reachable from s.
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We shall examine the shortest-path estimates on c just prior to the call
RELAX(Vk-l, Vk, w) and show that c is a negative-weight cycle, thereby con
tradicting the assumption that G contains no negative-weight cycles that
are reachable from the source. Just before the call, we have n[vil Vi-l for
i = 1,2, ... , k -1. Thus, for i 1,2, ... , k I, the last update to d[v;] was
by the assignment d[v;] <- d[Vi-d + W(Vi, Vi-t}o If d[Vi-d changed since
then, it decreased. Therefore, just before the call RELAX(Vk-l, Vb W), we
have

for all i = 1,2, ... ,k - I . (25.1 )

Because n[vk] is changed by the call, immediately beforehand we also have
the strict inequality

d[Vk] > d[Vk-tl + W(Vk_b vd .

Summing this strict inequality with the k I inequalities (25.1), we obtain
the sum of the shortest-path estimates around cycle c:

k k

Ld[vil > L(d[Vi-d + W(Vi-h Vi))
i=1 i=l

k k

= Ld[Vi-tl+ LW(Vi-I,Vi)'
i=1 i=1

But

k k

L d[Vi] = L d[Vi-tl ,
i=1 i=1

since each vertex in the cycle c appears exactly once in each summation.
This implies

k

0> LW(Vi-J,Vi).
i=l

Thus, the sum of weights around the cycle c is negative, thereby providing
the desired contradiction.

We have now proved that G71 is a directed, acyclic graph. To show that
it forms a rooted tree with root s, it suffices (see Exercise 5.5-3) to prove
that for each vertex V E V71, there is a unique path from s to V in Gll •

We first must show that a path from s exists for each vertex in V71• The
vertices in Vll are those with non-NIL n values, plus s. The idea here is
to prove by induction that a path exists from s to all vertices in Vll • The
details are left as Exercise 25.1-6.

To complete the proof of the lemma, we must now show that for any
vertex v E Vll , there is at most one path from s to v in the graph G«.
Suppose otherwise. That is, suppose that there are two simple paths from s
to some vertex v: PI, which can be decomposed into s ""-+ u ""-+ x -+ z ""-+ V,
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Figure 25.4 Showing that a path in G" from source s to vertex v is unique. If
there are two paths PI (s"" U "" x -+ Z"" v) and P2 (s"" U "" Y -+ Z"" v), where
x i- Y, then n[z] = x and n[z] Y, a contradiction.

and P2, which can be decomposed into s"-+ u "-+ y -+ z r-» v, where x :f. y.
(See Figure 25.4.) But then, n[z] = x and n[z] = y, which implies the
contradiction that x = y. We conclude that there exists a unique simple
path in GTe from s to v, and thus GTe forms a rooted tree with root s. •

We can now show that if, after we have performed a sequence of relax
ation steps, all vertices have been assigned their true shortest-path weights,
then the predecessor subgraph GTe is a shortest-paths tree.

Lemma 25.9
Let G (V, E) be a weighted, directed graph with weight function W

E --> R and source vertex S E V, and assume that G contains no negative
weight cycles that are reachable from s. Let us call INITIALIZE-SINGLE
SOURCE(G, s) and then execute any sequence of relaxation steps on edges
of G that produces d[v] = 6(s, v) for all v E V. Then, the predecessor
subgraph GTe is a shortest-paths tree rooted at s.

Proof We must prove that the three properties of shortest-paths trees
hold for GTe' To show the first property, we must show that VTe is the
set of vertices reachable from s. By definition, a shortest-path weight
6 (s, v) is finite if and only if v is reachable from s, and thus the vertices
that are reachable from s are exactly those with finite d values. But a
vertex v E V - {s} has been assigned a finite value for d[v] if and only if
n[v] :f. NIL. Thus, the vertices in VTe are exactly those reachable from s.

The second property follows directly from Lemma 25.8.
It remains, therefore, to prove the last property of shortest-paths trees:

for all v E VTe, the unique simple path s 1!.t v in GTe is a shortest path from
s to v in G. Let P = (vo,v" ... ,Vk), where Vo = sand Vk = v. For i =

1,2, ... , k, we have both d[vd = 6(s, Vi) and d[vd 2:: d[Vi-d + W(Vi_I, Vi),
from which we conclude W(Vi_l, Vi) :::; 6(s, Vi) 6(s, Vi-d. Summing the
weights along path P yields

k

w(p) = L W(Vi-h Vi)
i=1
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k

< I)J(S, Vi) - J(s, vi-d)
i=1

= J (s, V k ) J (s, va)

J(s,vd·

The third line comes from the telescoping sum on the second line, and
the fourth line follows from J(s,vo) = J(s,s) = O. Thus, w(p) ~ J(s,vd.
Since J(s, Vk) is a lower bound on the weight of any path from s to Vb

we conclude that w(p) = J(s, vd, and thus p is a shortest path from s to
V = Vk. •

Exercises

25.1-1
Give two shortest-paths trees for the directed graph of Figure 25.2 other
than the two shown.

25.1-2
Give an example of a weighted, directed graph G = (V, E) with weight
function w : E ---+ R and source s such that G satisfies the following prop
erty: For every edge (u, v) E E, there is a shortest-paths tree rooted at s
that contains (u, v) and another shortest-paths tree rooted at s that does
not contain (u, v).

25.1-3
Embellish the proof of Lemma 25.3 to handle cases in which shortest-path
weights are 00 or -00.

25.1-4
Let G (V, E) be a weighted, directed graph with source vertex s, and
let G be initialized by INITIALIZE-SINGLE-SOURCE(G,S). Prove that if a
sequence of relaxation steps sets n[s] to a non-NIL value, then G contains
a negative-weight cycle.

25.1-5
Let G = (V, E) be a weighted, directed graph with no negative-weight
edges. Let s E V be the source vertex, and let us define z]v] as usual:
n[v] is the predecessor of v on some shortest path to v from source s if
v E V - {s} is reachable from s, and NIL otherwise. Give an example of
such a graph G and an assignment of n values that produces a cycle in G7t;.
(By Lemma 25.8, such an assignment cannot be produced by a sequence
of relaxation steps.)
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25.1-6
Let G = (V, E) be a weighted, directed graph with weight function w : E -+

R and no negative-weight cycles. Let 5 E V be the source vertex, and let
G be initialized by INITIALIZE-SINGLE-SOURCE(G, s). Prove that for every
vertex v E Vn , there exists a path from s to v in G; and that this property
is maintained as an invariant over any sequence of relaxations.

25.1-7
Let G = (V, E) be a weighted, directed graph that contains no negative
weight cycles. Let s E V be the source vertex, and let G be initialized by
INITIALIZE-SINGLE-SOURCE(G,S). Prove that there is a sequence of IVI- 1
relaxation steps that produces d[v] = o(s, v) for all v E V.

25.1-8
Let G be an arbitrary weighted, directed graph with a negative-weight cycle
reachable from the source vertex 5. Show that an infinite sequence of
relaxations of the edges of G can always be constructed such that every
relaxation causes a shortest-path estimate to change.

25.2 Dijkstra's algorithm

Dijkstra's algorithm solves the single-source shortest-paths problem on a
weighted, directed graph G = (V, E) for the case in which all edge weights
are nonnegative. In this section, therefore, we assume that w(u, v) 2:: 0 for
each edge (u, v) E E.

Dijkstra's algorithm maintains a set S of vertices whose final shortest
path weights from the source S have already been determined. That is, for
all vertices v E S, we have d[v] 0(5, v). The algorithm repeatedly selects
the vertex u E V - S with the minimum shortest-path estimate, inserts u
into S, and relaxes all edges leaving u. In the following implementation,
we maintain a priority queue Q that contains all the vertices in V S,
keyed by their d values. The implementation assumes that graph G is
represented by adjacency lists.

DIJKSTRA(G, w, s)

1 INITIALIZE-SINGLE-SOURCE(G,5)
2 S +- 0
3 Q +- V[G]
4 while Q t= 0
5 do u +- EXTRACT-MIN(Q)
6 S+-Su{u}
7 for each vertex v E Adj[u]
8 do RELAX(U, v, w)
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(d) (. )

Figure 25.5 The execution of Dijkstra's algorithm. The source is the leftmost
vertex. The shortest-path estimates are shown within the vertices. and shaded
edges indicate predecessor values: i f edge (u, v) is shaded, then 7t[vj "" u, Black
vert ices are in the set S. and white vert ices are in the priority queue Q = V - S .
(a) Th e sit uation just be fore the first iteration of th e while loo p of lines 4-8 . The
shaded vertex has the minimum d va lue and is chosen as vertex u in line 5. (b)
(f) The situat ion afte r each successive itera tion of the while loop. The shaded
vertex in each part is chosen as vertex u in line 5 of the next iteration. The d
and 1t values shown in part (f) are the final va lues.

Dijkstra's algorithm relaxes edges as shown in Figure 25.5 . Line I per
forms the usual initializat ion of d and n values, and line 2 initializes the
set S to the empty set. Line 3 then initia lizes the priori ty Queue Q to
contain all the vert ices in V - 5 = V - 0 = V. Each tim e through the while
loop of lines 4- 8, a vertex u is extracted from Q = V - 5 and inserted into
set 5. (The first time through th is loop , u = s.) Vertex u, the refore, has
the smallest shortest-path estimate of any vertex in V - S . Then, lines 7
8 relax each edge (u, v ) leaving u, thu s upd ating the estimate d [v ] and
the predecessor n [v ] if the shortes t path to v can be improved by going
th rough u. Observe that vert ices are never inserted into Q after line 3 and
that each vertex is extracted from Q and inserted into S exactly once, so
that the while loop of lines 4- 8 iterates exactly IVI tim es.

Because Dijkstra's algorithm always chooses the "lightest" or "closest"
vertex in V - 5 to insert into set S, we say that it uses a greedy stra tegy.
G reedy strategies are presented in detail in Chapter 17, but you need not
have read that chapter to understand Dijkstra's algorithm. Greedy stra te
gies do not always yield optimal result s in general, but as the following
theorem and its corollary show, Dijkstra' s algorithm does indeed compute
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Figure 2S.6 The proof of Theorem 25.1O. Set S is nonempty just before vertex u
is inserted into it. A shortest path p from sou rce s to vertex u can be decomposed
into s ~ x - y .n u, where y is the first vertex on the path that is not in V - S
and x E S immediately precedes y . Vertices x and y are distinct , but we may have
s = x or y = u. Path P2 may or may not reenter set S .

shortest paths. The key is to show tbat each time a vertex u is inserted
into set S , we have d(u ] = 6(s, u).

Theorem 25.10 (Correctnu s ofDijlutra 's algorithm)
If we run Dijkstra's algorithm on a weighted, d irected graph G = ( V, E )
with nonnegative weight function w and source S , then at term ination ,
d [u] = 6(s, u) for all vertices u E V.

Proof We shall show that for each vertex u E V , we have d (u] = 6(s, u) at
the time when u is inserted into set S and that this equality is maintai ned
thereafter.

For the purpose of contradiction, let u be the first vertex for which
d [u] t:- 6(s, u) when it is inserted into set S . We shall focus our attention
on the situation at the beginning of the iteration of the while loop in which
u is inserted into S and derive the contradiction that d(u] = 6(s, u) at that
time by examining a shortest path from s to u, We must have u i: s because
s is the first vertex inserted into set S and d rs] = 6 (s,s) = 0 at that time.
Because u t:- s, we also have that S =F 0 just before u is inserted into S.
There must be some path from s to u, for otherwise d [u] = 6(s, u) = 00 by
Corollary 25.6, which would violate our assumption that d [u ) i: 6 (5, u).
Because there is at least one path , there is a shortest path p from s to u.
Path p connects a vertex in S , name ly s, to a vertex in V - S , namely u.
Let us consider the first vertex y along p such tha t y E V - S , and let
x E V be y's predecessor. Th us, as shown in Figure 25.6, path p can be
decomposed as s .e!. x -0 y .a u.

We claim that d [y] = 6(s,y ) when u is inserted into S . To prove this
claim, observe that XE S . Then, beca use u is chosen as the first vertex
for which d(u ] t:- 6(s,u) when it is inserted into S , we had d (x ] = 6 (5,X)
when x was inserted into S. Edge (x , y ) was relaxed at that tim e. so the
claim follows from Lemma 25.7.

We can now obtain a contradiction to prove the theorem. Because y
occurs before u on a shortest path fro m s to u and all edge weights are
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nonnegative (notably those on path P2), we have 6(s, y) ::; 6(s, u), and thus

dry] = 6(s,y)

::; 6(s, u)

< d[u] (by Lemma 25.5) .

(25.2)

But because both vertices u and y were in V - S when u was chosen in
line 5, we have d[u] ::; dry]. Thus, the two inequalities in (25.2) are in
fact equalities, giving

dry] = 6(s,y) = 6(s, u) = d[u] .

Consequently, d[u] = 6(s, u), which contradicts our choice of u. We con
clude that at the time each vertex u E V is inserted into set S, we have
d[u] = 6(s, u), and by Lemma 25.5, this equality holds thereafter. _

Corollary 25.11
If we run Dijkstra's algorithm on a weighted, directed graph G = (V, E)
with nonnegative weight function wand source s, then at termination, the
predecessor subgraph Gn is a shortest-paths tree rooted at s.

Proof Immediate from Theorem 25.10 and Lemma 25.9.

Analysis

-
How fast is Dijkstra's algorithm? Consider first the case in which we
maintain the priority queue Q = V S as a linear array. For such an im
plementation, each EXTRACT-MIN operation takes time O( V), and there
are IVI such operations, for a total EXTRACT-MIN time of O( V2). Each
vertex v E V is inserted into set S exactly once, so each edge in the ad
jacency list Adj[v] is examined in the for loop of lines 4-8 exactly once
during the course of the algorithm. Since the total number of edges in
all the adjacency lists is lEI, there are a total of lEI iterations of this for
loop, with each iteration taking O( 1) time. The running time of the entire
algorithm is thus 0(V2 + E) = 0(V2).

If the graph is sparse, however, it is practical to implement the priority
queue Q with a binary heap. The resulting algorithm is sometimes called
the modified Dijkstra algorithm. Each EXTRACT-MIN operation then takes
time O(lg V). As before, there are IVI such operations. The time to build
the binary heap is O(V). The assignment d[v] +-- d[u] +w(u, v) in RELAX
is accomplished by the call DECREASE-KEY(Q, v,d[u] + w(u, v)), which
takes time O(lg V) (see Exercise 7.5-4), and there are still at most lEI such
operations. The total running time is therefore 0(( V + E) lg V), which is
O(E lg V) if all vertices are reachable from the source.

We can in fact achieve a running time of O(Vlg V +E) by implementing
the priority queue Q with a Fibonacci heap (see Chapter 21). The amor
tized cost of each of the IVI EXTRACT-MIN operations is O(lg V), and each
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of the lEI DECREASE-KEy calls takes only O( 1) amortized time. Histor
ically, the development of Fibonacci heaps was motivated by the obser
vation that in the modified Dijkstra algorithm there are potentially many
more DECREASE-KEy calls than EXTRACT-MIN calls, so any method of re
ducing the amortized time of each DECREASE-KEY operation to o(lg V)
without increasing the amortized time of EXTRACT-MIN would yield an
asymptotically faster implementation.

Dijkstra's algorithm bears some similarity to both breadth-first search
(see Section 23.2) and Prim's algorithm for computing minimum span
ning trees (see Section 24.2). It is like breadth-first search in that set S
corresponds to the set of black vertices in a breadth-first search; just as
vertices in S have their final shortest-path weights, so black vertices in a
breadth-first search have their correct breadth-first distances. Dijkstra's
algorithm is like Prim's algorithm in that both algorithms use a priority
queue to find the "lightest" vertex outside a given set (the set S in Dijk
stra's algorithm and the tree being grown in Prim's algorithm), insert this
vertex into the set, and adjust the weights of the remaining vertices outside
the set accordingly.

Exercises

25.2-1
Run Dijkstra's algorithm on the directed graph of Figure 25.2, first using
vertex s as the source and then using vertex y as the source. In the style of
Figure 25.5, show the d and 7C values and the vertices in set S after each
iteration of the while loop.

25.2-2
Give a simple example of a directed graph with negative-weight edges
for which Dijkstra's algorithm produces incorrect answers. Why doesn't
the proof of Theorem 25.10 go through when negative-weight edges are
allowed?

25.2-3
Suppose we change line 4 of Dijkstra's algorithm to the following.

4 while IQI > 1

This change causes the while loop to execute WI - I times instead of WI
times. Is this proposed algorithm correct?

25.2-4
We are given a directed graph G = (V, E) on which each edge (u, v) E E
has an associated value r(u, v), which is a real number in the range 0 :S
r( u, v) :S 1 that represents the reliability of a communication channel from
vertex u to vertex v. We interpret r(u, v) as the probability that the chan
nel from u to v will not fail, and we assume that these probabilities are
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independent. Give an efficient algorithm to find the most reliable path
between two given vertices.

25.2-5
Let G = (V, E) be a weighted, directed graph with weight function w
E -t {O, 1, ... , W - I} for some nonnegative integer W. Modify Dijkstra's
algorithm to compute the shortest paths from a given source vertex s in
O(WV + E) time.

25.2-6
Modify your algorithm from Exercise 25.2-5 to run in O( (V + E) IgW)
time. (Hint: How many distinct shortest-path estimates can there be in
V S at any point in time?)

25.3 The Bellman-Ford algorithm

The Bellman-Ford algorithm solves the single-source shortest-paths prob
lem in the more general case in which edge weights can be negative. Given
a weighted, directed graph G = (V, E) with source s and weight function
w : E -t R, the Bellman-Ford algorithm returns a boolean value indicating
whether or not there is a negative-weight cycle that is reachable from the
source. If there is such a cycle, the algorithm indicates that no solution
exists. If there is no such cycle, the algorithm produces the shortest paths
and their weights.

Like Dijkstra's algorithm, the Bellman-Ford algorithm uses the tech
nique of relaxation, progressively decreasing an estimate d[ v] on the weight
of a shortest path from the source s to each vertex v E V until it achieves
the actual shortest-path weight <5(s, v). The algorithm returns TRUE if and
only if the graph contains no negative-weight cycles that are reachable from
the source.

BELLMAN-FoRD(G, w,s)

1 INITIALIZE-SINGLE-SOURCE(G, s)
2 for i +-- 1 to IV{G]I- 1
3 do for each edge (u, v) E E[G]
4 do RELAX(U, v, w)
5 for each edge (u, v) E E[G]
6 do if d[v] > d[u] + w(u, v)
7 then return FALSE
8 return TRUE

Figure 25.7 shows how the execution of the Bellman-Ford algorithm
works on a graph with 5 vertices. After performing the usual initialization,
the algorithm makes IVI - I passes over the edges of the graph. Each pass
is one iteration of the for loop of lines 2-4 and consists of relaxing each
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,z

u s , u s , u ,- - 2 - 6 - 2 -
, ,

-x y x y x

(.) (b) (e)

u s , u s ,

(d) (e)

Figure 2S.7 The execution of the Bellman-Ford algorithm. The source is vertex z,
T he d values are shown within the vertices, and shaded edges indicate the ;l[ val
ues. In this particular example, each pass relaxes the edges in lexicographi c order:
(u, v) , (u, xl, (u,Y), (v , u), (x ,u ), (x, y ), (Y, v ), (Y, z), (z, u), (e. x ). (a) The situation
just before the first pass over the edges. (b)- (e) The situation after each succes
sive pass over the edges. The d and 1[ values in part (e) are the final values. The
Bellman-Ford algorithm returns TRUE in this example.

edge of the graph once. Figures 25.7(b)-(e) show the state of the algori thm
after each of the four passes over the edges. After making IVI- I passes,
lines 5-8 check for a negative-weight cycle and return the appropria te
boolean value. (We shall see a litt le later why th is check works.)

The Bellman-Ford algorithm run s in tim e O( V E ), since the init ialization
in line 1 takes 9 (V ) tim e, each of the IVI - 1 passes over the edges in
lines 2-4 takes 0 (£ ) time, and the for loop of lines 5-7 takes 0 (£ ) time.

To prove the correctness of the Bellman-Ford algorithm, we sta rt by
showing tha t if there are no negative-weight cycles, the algori thm computes
cor rect shortest-path weights for all vert ices reachable from the source. The
proof of th is lemma contains the intuition behind the algorithm .

umma 25.12
Let G = (V, £ ) be a weighted, directed graph with source s and weight
function w : E ...... R, and assume that G contai ns no negative-weight cycles
that are reachable fro m s. Th en, at the termination of BELLMAN-FoRD,
we have d [v ] = 15 (s, v ) for all vertices v that are reachable fro m s.

Proof Let v be a vertex reachable from s, and let p = (Vo ,Vi> . .. ,Vk) be a
shortest path from s to v, where t'o =s and Vk =v. The path p is simple,
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and so k ::; lVl - 1. We want to prove by induction that for; = 0, I, ... . k,
we have d[v,] = 6(s, ti l) after the ith pass ove r the edges of G and that this
equality is maintained thereafter. Because there are IVI - I passes, this
claim suffices to prove the lemm a.

For the basis, we have d(voJ = <S (s,vol = 0 after initialization, and by
Lemma 25.5, thi s equa lity is maintained thereaft er .

For the inductive step, we assume that d[v;_d = 6(S,Vi_ l ) aft er the
(i - l )st pass. Edge (Vi _lt Vi) is re laxed in the jlh pass, so by Lemma 25.7,
we conclude tha t d[v j ) = 6(s,v .) after the nb pass and at all subsequent
times, thus completing the proof. _

Corollary 25.11
Let G = ( V. E ) be a weighted, d irected graph with source vertex s and
weight function w : E -. R. Then for each vertex v E V, there is a path
from s to v if and only if BELLMAN-FoRD terminates with d lv ] < when
it is run on G.

Proof The proof is similar to that of Lemma 25.12 and is left as Exer
cise 25.3-2. •

Theorem 15.14 {Correctness of the /kilman-Ford algorithm)
Let B EL LMA N- FoRD be run on a weighted, directed graph G = ( V, E ) with
source s and weight function w : E -0 R. If G contains no negative-weight
cycles that are reachable from s, then the algorithm returns TRU E, we have
d{v] = 6(s, v ) for all vertices v E V , and the predecessor subgraph G. is a
shortest-paths tree rooted at s. If G does contain a negative-weight cycle
reachable from S, then the algori thm returns FALSE.

Proof Suppose that graph G contains no negative-weight cycles that are
reachable from the source s. We first prove the claim that at termination ,
d lv ] = J (s,v) for all vertices v E V. If vertex v is reachable from s, then
Lemma 25.12 proves this claim. If v is net reachable from s, then the claim
follows from Corollary 25.6. Thus, the claim is proven. Lemma 25.9,
along with the claim, impl ies that G. is a shortest-paths tree. Now we use
the claim to show that B ELLMAN-FORD returns TRUE. At termination , we
have for all edges (u, v ) E E,

d(v) = 6(s,v )

S 6(s, u) + w (u,v)

~ d Iu) +w (u, vJ ,

and so none of the tests in line 6 causes B ELLMA N-FORD to return FALSE.

It therefore returns T RUE.

Conversely, suppose tha t graph G contains a negative-weight cycle c =
(vo. VI • • • • , Vk ), where Vo = Vk. that is reachable from the source s. Then,
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•
L W(V,_ i> Vi) < 0 .,.,

535

(25.3)

Assume for the purpose of contradiction that the Bellman-Ford algorithm
returns TR U E. Thus, d lv ,] :s d(Vi_d + W(VI_h Vi) for i = 1, 2, ... , k . Sum
ming the inequalities aro und cycle c gives us

• • •
L dlv,] :s L d(vl- d + L W(Vi_ h V, ) ,
1. 1 h . 1 , .1

As in the proof of Lemma 25.8, each vertex in c appears exactly once in
each of the fi rst two summations. Thus,

• •L d[v,) ~ L d(v,_,] .
i.' 1. 1

Moreover, by Corollary 25.13, d lv ,] is finite for i = 1,2, .. . ,k. Thu s,

•
O:S L W(VI- h VI) ',.,
which contradicts inequality (25.3). We conclude that the Bellman-Ford al
gorithm returns TR U E if graph G contains no negative-weight cycles reach
able from the source, and FA.LSE otherwise. _

Exercises

25.3- /
Run the Bellman-Ford algorithm on the directed graph of Figure 25.7,
using vertex y as the source. Relax edges in lexicographic order in each
pass, and show the d and 1t values after each pass. Now, change the weight
of edge (y, v ) to 4 and run the algorithm again, using z as the source.

25.3-2
Prove Corollary 25.13.

25.3-3
Given a weighted, di rected graph G = (V, E ) with no negative-weight cy
cles, let m be the maximum over all pairs of vertices u,V E V of the
minimum number of edges in a shortest path from u to v. (Here, the
shortest path is by weight, not the number of edges.) Suggest a simple
change to the Bellma n-Ford algorithm that allows it to terminate in m + I
passes.

25.3-4
Modi fy the Bellman-Ford algorithm so that it sets d(v) to -00 for all
vertices V for which there is a negative-weight cycle on some path from
the source to v.
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25.3-5
Let G = (V, E) be a weighted, directed graph with weight function w
E -+ R. Give an O( VE)-time algorithm to find, for each vertex v E V, the
value t5*(v) = minuEv {t5(u, v)}.

25.3-6 *
Suppose that a weighted, directed graph G = (V, E) has a negative-weight
cycle. Give an efficient algorithm to list the vertices of one such cycle.
Prove that your algorithm is correct.

~ ~_~_ .._~_.. ._.__ __._ __..__.._.. __ m_ ~ ~ m.__

25.4 Single-source shortest paths in directed acyclic graphs

By relaxing the edges of a weighted dag (directed acyclic graph) G = (V, E)
according to a topological sort of its vertices, we can compute shortest
paths from a single source in 6( V + E) time. Shortest paths are always
well defined in a dag, since even if there are negative-weight edges, no
negative-weight cycles can exist.

The algorithm starts by topologically sorting the dag (see Section 23.4)
to impose a linear ordering on the vertices. If there is a path from vertex u
to vertex v, then u precedes v in the topological sort. We make just one
pass over the vertices in the topologically sorted order. As each vertex is
processed, all the edges that leave the vertex are relaxed.

DAG-SHORTEST-PATHS(G, w,s)

1 topologically sort the vertices of G
2 INITIALIZE-SINGLE-SOURCE(G,s)
3 for each vertex u taken in topologically sorted order
4 do for each vertex v E Adj[u]
5 do RELAX(U, v, w)

An example of the execution of this algorithm is shown in Figure 25.8.
The running time of this algorithm is determined by line I and by the

for loop of lines 3-5. As shown in Section 23.4, the topological sort can be
performed in 6( V + E) time. In the for loop of lines 3-5, as in Dijkstra's
algorithm, there is one iteration per vertex. For each vertex, the edges
that leave the vertex are each examined exactly once. Unlike Dijkstra's
algorithm, however, we use only O(1) time per edge. The running time is
thus 6(V +E), which is linear in the size of an adjacency-list representation
of the graph.

The following theorem shows that the DAG-SHORTEST-PATHS procedure
correctly computes the shortest paths.
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6

<g>
Figure 25.8 The execution of the algorithm for shortest path s in a directed acyclic
graph. The vertices arc topologically sorted from left to right. The source vertex
is s. The d values arc shown within the vertices, and shaded edges indicate the
7( values. (a) The situation befo re the fi rs' iterat ion of the for loop of lines 3-5.
(b)-( g) The situation aft er each iterat ion of the for loop of lines 3-5. The newly
blackened vertex in each iteration was used as v in that iterat ion. The values shown
in part (g) are the final values.

Theorem 25./5
If a weighted, directed graph G = (V, E ) has source vertex s and no cycles,
then at the termination of the DAG-SHORTEsT-PATHs procedure, d [v ] =
o(s,v ) for all vertices v E V , and the predecessor subgraph Gff is a shortest
path s tree.

Proof We fi rst show that d [v ) = o(s,v) for all vertices v E V at ter
minat ion. If v is not reachable from s, then d [v ) = 6(s,v) = 00 by
Coro llary 25.6. Now. suppose that v is reachable from s, so that there
is a shortest path p = (vo.VI, ... •Vt ), where Vo = s and Vt = v. Because
we process the vertices in topologically sorted order, the edges on p are re
laxed in the order (vo,VI), (VI. V2 ),.·., (Vt _ l, Vt ). A simple induction using
Lemma 25.7 (as in the proof of Lemma 25.12) shows that d(v,) = 6(s,v,)
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at termination for i
paths tree.

0,1, ... .k: Finally, by Lemma 25.9, GTe is a shortest

•
An interesting application of this algorithm arises in determining critical

paths in PERT chart2 analysis. Edges represent jobs to be performed, and
edge weights represent the times required to perform particular jobs. If
edge (u, v) enters vertex v and edge (v, x) leaves v, then job (u, v) must
be performed prior to job (v, x). A path through this dag represents a
sequence of jobs that must be performed in a particular order. A critical
path is a longest path through the dag, corresponding to the longest time
to perform an ordered sequence of jobs. The weight of a critical path is
a lower bound on the total time to perform all the jobs. We can find a
critical path by either

• negating the edge weights and running DAG-SHORTEST-PATHS, or

• running DAG-SHORTEST-PATHS, replacing "00" by "-00" in line 2 of
INITIALIZE-SINGLE-SOURCE and ">" by "<" in the RELAX procedure.

Exercises

25.4-1
Run DAG-SHORTEST-PATHS on the directed graph of Figure 25.8, using
vertex r as the source.

25.4-2
Suppose we change line 3 of DAG-SHORTEST-PATHS to read

3 for the first IVI I vertices, taken in topologically sorted order

Show that the procedure would remain correct.

25.4-3
The PERT chart formulation given above is somewhat unnatural. It would
be more natural for vertices to represent jobs and edges to represent se
quencing constraints; that is, edge (u, v) would indicate that job u must
be performed before job v. Weights would then be assigned to vertices,
not edges. Modify the DAG-SHORTEST-PATHS procedure so that it finds
a longest path in a directed acyclic graph with weighted vertices in linear
time.

25.4-4
Give an efficient algorithm to count the total number of paths in a directed
acyclic graph. Analyze your algorithm and comment on its practicality.

2"PERT~ is an acronym for "program evaluation and review technique:'
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In the general linear-programming problem, we wish to optimize a linear
function subject to a set of linear inequalities. In this section, we inves
tigate a special case of linear programming that can be reduced to find
ing shortest paths from a single source. The single-source shortest-paths
problem that results can then be solved using the Bellman-Ford algorithm,
thereby also solving the linear-programming problem.

Linear programming

In the general linear-programming problem, we are given an m x n matrix A,
an m-vector b, and an n-vector c. We wish to find a vector x of n elements
that maximizes the objective/unction L:7=1 cix, subject to the m constraints
given by Ax :::; b.

Many problems can be expressed as linear programs, and for this reason
much work has gone into algorithms for linear programming. The simplex
algorithm3 solves general linear programs very quickly in practice. With
some carefully contrived inputs, however, the simplex method can require
exponential time. General linear programs can be solved in polynomial
time by either the ellipsoid algorithm, which runs slowly in practice, or
Karmarkar's algorithm, which in practice is often competitive with the
simplex method.

Due to the mathematical investment needed to understand and analyze
them, this text does not cover general linear-programming algorithms. For
several reasons, though, it is important to understand the setup of linear
programming problems. First, knowing that a given problem can be cast as
a polynomial-sized linear-programming problem immediately means that
there is a polynomial-time algorithm for the problem. Second, there are
many special cases of linear programming for which faster algorithms ex
ist. For example, as shown in this section, the single-source shortest-paths
problem is a special case of linear programming. Other problems that can
be cast as linear programming include the single-pair shortest-path prob
lem (Exercise 25.5-4) and the maximum-flow problem (Exercise 27.1-8).

3The simplex algorithm finds an optimal solution to a linear programming problem by exam
ining a sequence of points in the feasible region-the region in n-space that satisfies Ax ~ b.
The algorithm is based on the fact that a solution that maximizes the objective function
over the feasible region occurs at some "extreme point," or "comer," of the feasible region.
The simplex algorithm proceeds from corner to corner of the feasible region until no fur
ther improvement of the objective function is possible. A "simplex" is the convex hull (see
Section 35.3) of d + I points in d-dimensional space (such as a triangle in the plane, or
a tetrahedron in J-space). According to Dantzig [53], it is possible to view the operation
of moving from one corner to another as an operation on a simplex derived from a "dual"
interpretation of the linear programming problem-hence the name "simplex method."
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Sometimes we don't really care about the objective function; we just wish
to find any feasible solution, that is, any vector x that satisfies Ax ~ b, or
to determine that no feasible solution exists. We shall focus on one such
feasibility problem.

Systems of difference constraints

In a system ofdifference constraints, each row of the linear-programming
matrix A contains one 1 and one -1, and all other entries of A are O. Thus,
the constraints given by Ax ~ b are a set of m difference constraints in
volving n unknowns, in which each constraint is a simple linear inequality
of the form

Xl Xi ~ bk ,

where I ~ i, j ~ n and I ~ k ::::; m.
For example, consider problem of finding the 5-vector x = (Xi) that

satisfies

1 -1 0 0 0 0
1 0 0 0 -1 1
0 1 0 0 -1 Xl 1

-1 0 1 0 0 X2 5
-1 0 0 1 0 X3 < 4

0 0 -1 1 0 X4 1
0 0 -1 0 1 Xs -3
0 0 0 1 1 -3

This problem is equivalent to finding the unknowns Xi, for i 1,2, ... ,5,
such that the following 8 difference constraints are satisfied:

XI X2 < 0,

XI -Xs < -1 ,

X2 -Xs < 1 ,

X3 XI < 5 ,
< 4 ,

(25.4)
X4- X I

X4 X3 < -1 ,

Xs -X3 < -3,
Xs -X4 < -3.

One solution to this problem is X = (-5, -3,0, 1, -4), as can be veri
fied directly by checking each inequality. In fact, there is more than one
solution to this problem. Another is x' = (0,2, 5,4, 1). These two solu
tions are related: each component of x' is 5 larger than the corresponding
component of x. This fact is not mere coincidence.
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Lemma 25.16
Let x = (x,, X2, • • • , x ll ) be a solution to a system Ax ~ b of difference
constraints, and let d be any constant. Then x + d = (x, + d, X2 + d, ... ,
X Il + d) is a solution to Ax ~ b as well.

Proof For each Xi and Xj, we have (Xj + d) - (Xi + d) = Xj - Xi. Thus,
if X satisfies Ax ~ b, so does X + d. •

Systems of difference constraints occur in many different applications.
For example, the unknowns Xi may be times at which events are to occur.
Each constraint can be viewed as stating that one event cannot occur too
much later than another event. Perhaps the events are jobs to be performed
during the construction of a house. If the digging of the foundation begins
at time Xl and takes 3 days and the pouring of the concrete for the founda
tion begins at time X2, we may well desire that X2 ~ Xl +3 or, equivalently,
that Xl - X2 ~ -3. Thus, the relative timing constraint can be expressed
as a difference constraint.

Constraint graphs

It is beneficial to interpret systems of difference constraints from a graph
theoretic point of view. The idea is that in a system Ax ~ b of difference
constraints, the n x m linear-programming matrix A can be viewed as an
incidence matrix (see Exercise 23.1-7) for a graph with n vertices and m
edges. Each vertex Vi in the graph, for ii, 2, ... , n, corresponds to one of
the n unknown variables Xi. Each directed edge in the graph corresponds
to one of the m inequalities involving two unknowns.

More formally, given a system Ax ~ b of difference constraints, the
corresponding constraint graph is a weighted, directed graph G = (V, E),
where

and

E = {(Vi,Vj): Xj Xi ~ bk is a constraint}

U {(vo, vd, (vo, V2), (vo, V3),"" (vo, v ll )}

The additional vertex Vo is incorporated, as we shall see shortly, to guar
antee that every other vertex is reachable from it. Thus, the vertex set V
consists of a vertex Vi for each unknown Xi, plus an additional vertex vo.
The edge set E contains an edge for each difference constraint, plus an
edge (Vo, Vi) for each unknown Xi. If Xj - Xi ~ bk is a difference con
straint, then the weight of edge (Vi,Vj) is W(Vi,Vj) = bi, The weight of
each edge leaving Vo is O. Figure 25.9 shows the constraint graph for the
system (25.4) of difference constraints.
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Figure 25.9 The constraint graph corresponding to the system (25.4) of difference
constraints. The value of O(VO,Vi) is shown in each vertex Vi. A feasible solution
to the system is x = (-5, -3,0, -1, -4).

The following theorem shows that a solution to a system of difference
constraints can be obtained by finding shortest-path weights in the corre
sponding constraint graph.

Theorem 25.17
Given a system Ax ::s: b of difference constraints, let G = (V, E) be the
corresponding constraint graph. If G contains no negative-weight cycles,
then

(25.5)

is a feasible solution for the system. If G contains a negative-weight cycle,
then there is no feasible solution for the system.

Proof We first show that if the constraint graph contains no negative
weight cycles, then equation (25.5) gives a feasible solution. Consider any
edge (Vi,Vj) E E. By Lemma 25.3, o(vo,Vj) ::s: O(VO,Vi) + W(Vi,Vj) or,
equivalently, o(vo, Vj) - O(Vo, Vi) ::s: W(Vj, Vj). Thus, letting Xi = O(Vo, Vi)
and Xj = o(vo, Vj) satisfies the difference constraint Xj -Xi ::s: W(Vi, Vj) that
corresponds to edge (Vi, Vj).

Now we show that if the constraint graph contains a negative-weight
cycle, then the system of difference constraints has no feasible solution.
Without loss of generality, let the negative-weight cycle be c = (VI, V2,
... , Vk), where VI = Vk. (The vertex Vo cannot be on cycle c, because it
has no entering edges.) Cycle c corresponds to the following difference
constraints:
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X2 - XI < W(V), V2) ,

X3 - X2 < W(V2, V3) ,
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Xk -Xk-l < W(Vk_I,Vk),

Xl -Xk < w(vbvd·

Since any solution for X must satisfy each of these k inequalities, any
solution must also satisfy the inequality that results when we sum them
together. If we sum the left-hand sides, each unknown Xi is added in once
and subtracted out once, so that the left-hand side of the sum is O. The
right-hand side sums to w(c), and thus we obtain 0 :::; w(c). But since c is
a negative-weight cycle, w(c) < 0, and hence any solution for the X must
satisfy 0 :::; w(c) < 0, which is impossible. _

Solving systems of difference constraints

Theorem 25.17 tells us that we can use the Bellman-Ford algorithm to
solve a system of difference constraints. Because there are edges from the
source vertex Vo to all other vertices in the constraint graph, any negative
weight cycle in the constraint graph is reachable from vo. If the Bellman
Ford algorithm returns TRUE, then the shortest-path weights give a fea
sible solution to the system. In Figure 25.9, for example, the shortest
path weights provide the feasible solution X = (-5, -3,0, 1, -4), and by
Lemma 25.16, X = (d - 5,d 3,d,d - I,d - 4) is also a feasible solution
for any constant d. If the Bellman-Ford algorithm returns FALSE, there is
no feasible solution to the system of difference constraints.

A system of difference constraints with m constraints on n unknowns
produces a graph with n + I vertices and n + m edges. Thus, using the
Bellman-Ford algorithm, we can solve the system in O((n + l)(n + m)) =

O(n 2 + nm) time. Exercise 25.5-5 asks you to show that the algorithm
actually runs in O(nm) time, even if m is much less than n.

Exercises

25.5-1
Find a feasible solution or determine that no feasible solution exists for
the following system of difference constraints:
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Xl -X2 < I ,

Xl -X4 < -4,

X2 X3 < 2,

Xz Xs < 7 ,

X2 -X6 < 5 ,

X3 X6 < 10,

X4 -Xz < 2 ,

Xs -Xl < I ,

Xs -X4 < 3,

X6 -X3 < -8.

25.5-2
Find a feasible solution or determine that no feasible solution exists for
the following system of difference constraints:

Xl Xz < 4 ,

XI -XS s 5 ,

X2 X4 < -6,
X3 -Xz ::; I ,

X4 Xl < 3 ,

X4 -X3 s 5,

X4 - Xs ::; 10,

Xs -X3 < -4,

Xs -X4 < -8.

25.5-3
Can any shortest-path weight from the new vertex Va in a constraint graph
be positive? Explain.

25.5-4
Express the single-pair shortest-path problem as a linear program.

25.5-5
Show how to modify the Bellman-Ford algorithm slightly so that when it
is used to solve a system of difference constraints with m inequalities on
n unknowns, the running time is O( nm).

25.5-6
Show how a system of difference constraints can be solved by a Bellman
Ford-like algorithm that runs on a constraint graph without the extra ver
tex Va.
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Problems

25.5-7 *
Let Ax :s b be a system of m difference constraints in n unknowns.
Show that the Bellman-Ford algorithm, when run on the corresponding
constraint graph, maximizes 2:7=1 Xi subject to Ax :s b and Xi :s 0 for
all Xi.

25.5-8 *
Show that the Bellman-Ford algorithm, when run on the constraint graph
for a system Ax :s b of difference constraints, minimizes the quantity
(max {Xi} - min {x.]) subject to Ax :s b. Explain how this fact might
come in handy if the algorithm is used to schedule construction jobs.

25.5-9
Suppose that every row in the matrix A of a linear program Ax :s b corre
sponds to a difference constraint, a single-variable constraint of the form
Xi :s bi ;or a single-variable constraint of the form -Xi :s bi, Show how the
Bellman-Ford algorithm can be adapted to solve this variety of constraint
system.

25.5-10
Suppose that in addition to a system of difference constraints, we want
to handle equality constraints of the form Xi = Xj + bi, Show how the
Bellman-Ford algorithm can be adapted to solve this variety of constraint
system.

25.5-11
Give an efficient algorithm to solve a system Ax :s b of difference con
straints when all of the elements of b are real-valued and all of the un
knowns Xi must be integers.

25.5-12 *
Give an efficient algorithm to solve a system Ax :s b of difference con
straints when all of the elements of b are real-valued and some, but not
necessarily all, of the unknowns Xi must be integers.

25-1 Yen's improvement to Bellman-Ford
Suppose that we order the edge relaxations in each pass of the Bellman
Ford algorithm as follows. Before the first pass, we assign an arbitrary
linear order VI, V2, ... ,vlVl to the vertices of the input graph G = (V, E).
Then, we partition the edge set E into Ef U Eb , where Ef = {(Vi, Vj) E E :
i < j} and Eb = {(Vi, Vj) E E : i > j}. Define Gf = (V, E f ) and Gb =
(V, Eb ) .
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a. Prove that Gf is acyclic with topological sort (v), V2, ... , vlVl) and that
Gb is acyclic with topological sort (vlVl,vlVl-l"",VI).

Suppose that we implement each pass of the Bellman-Ford algorithm in the
following way. We visit each vertex in the order v), V2, .•• , vlVl, relaxing
edges of Ef that leave the vertex. We then visit each vertex in the order
vlVl, vlVl-j,···, Vj, relaxing edges of Eb that leave the vertex.

b. Prove that with this scheme, if G contains no negative-weight cycles that
are reachable from the source vertex s, then after only fI VI /21 passes
over the edges, d[v] = J(s,v) for all vertices v E V.

c. How does this scheme affect the running time of the Bellman-Ford al
gorithm?

25-2 Nesting boxes
A d-dimensional box with dimensions (XI, X2, ••. , Xd) nests within another
box with dimensions (YI,Y2, ••• ,Yd) if there exists a permutation n on
{I, 2, ... ,d} such that Xll(l) < Yl, X n(2) < Y2, •.. , Xll(d) < Yd.

a. Argue that the nesting relation is transitive.

b. Describe an efficient method to determine whether or not one d-dimen
sional box nests inside another.

c. Suppose that you are given a set of n d-dimensional boxes {B1, B2,

... , Bn}. Describe an efficient algorithm to determine the longest se
quence (BII' B12, ... ,Blk ) of boxes such that Bi) nests within BiJ+ I for
j = 1, 2, ... , k - 1. Express the running time of your algorithm in terms
of nand d.

25-3 Arbitrage
Arbitrage is the use of discrepancies in currency exchange rates to trans
form one unit of a currency into more than one unit of the same currency.
For example, suppose that 1 U.S. dollar buys 0.7 British pound, 1 British
pound buys 9.5 French francs, and 1 French franc buys 0.16 U.S. doIlar.
Then, by converting currencies, a trader can start with 1 U.S. dollar and
buy 0.7 x 9.5 x 0.16 1.064 U.S. dollars, thus turning a profit of 6.4
percent.

Suppose that we are given n currencies CI, C2, ••• , c; and an n x n table R
of exchange rates, such that one unit of currency c, buys R[i,j] units of
currency Cj.

a. Give an efficient algorithm to determine whether or not there exists a
sequence of currencies (CI I , Ci2' ••• , Clk ) such that

R[i),i2]·R[i2,i3]· .. R[ik - hh]·R[h,id> 1.

Analyze the running time of your algorithm.
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b. Give an efficient algorithm to print out such a sequence if one exists.
Analyze the running time of your algorithm.

25-4 Gabow's scaling algorithm for single-source shortest paths
A scaling algorithm solves a problem by initially considering only the
highest-order bit of each relevant input value (such as an edge weight).
It then refines the initial solution by looking at the two highest-order bits.
It progressively looks at more and more high-order bits, refining the solu
tion each time, until all bits have been considered and the correct solution
has been computed.

In this problem, we examine an algorithm for computing the shortest
paths from a single source by scaling edge weights. We are given a directed
graph G = (V, E) with nonnegative integer edge weights w. Let W =
max(u.lI)EE {w(u,v)}. Our goal is to develop an algorithm that runs in
O(E IgW) time.

The algorithm uncovers the bits in the binary representation of the edge
weights one at a time, from the most significant bit to the least significant
bit. Specifically, let k = rlg(W + 1)1 be the number of bits in the binary
representation of W, and for i = 1,2, ... .k, let Wi(U,V) = lw(u,v)/2k- iJ.
That is, Wi(u, v) is the "scaled-down" version of W(u, v) given by the i most
significant bits of w(u, v). (Thus, Wk(U, v) = w(u, v) for all (u, v) E E.)
For example, if k = 5 and w(u, v) = 25, which has the binary repre
sentation (11001), then W3 (u, v) = (110) = 6. As another example with
k = 5, if w(u, v) = (00100) = 4, then W3(U, v) = (001) = 1./ Let us
define t>i(U, v) as the shortest-path weight from vertex U to vertex v us
ing weight function un, Thus, t>k(U, v) = t>(u, v) for all u, v E V. For a
given source vertex s, the scaling algorithm first computes the shortest-path
weights t» (s, v) for all v E V, then computes t>2(S, v) for all v E V, and so
on, until it computes t>k(S, v) for all v E V. We assume throughout that
lEI 2': IVI - 1, and we shall see that computing t>i from t>i-I takes O(E)
time, so that the entire algorithm takes O(kE) = O(Elg W) time.

a. Suppose that for all vertices v E V, we have t>(s, v) ::; lEI. Show that
we can compute t>(s, v) for all v E V in O(E) time.

b. Show that we can compute t>1 (s, v) for all v E V in O(E) time.

Let us now concentrate on computing t>i from t>i-I.

c. Prove that for i = 2,3, ... , k, either Wi(U,v) = 2Wi_1 (u, v) or Wi(U,v) =

2Wi_I(U,V) + 1. Then, prove that

2t>i_I(S,V)::; t>i(S,V)::; 2t>i-l(S,V) + IVI- I

for all v E V.

d. Define for i = 2,3, ... ,k and all (u, v) E E,

Wi(U,v) = Wi(U,v) + 2t>i-1 (s, u) - 2t>i-1 (s,v) .
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Prove that for i = 2,3, ... , k and all u, v E V, the "reweighted" value
Wi(U, v) of edge (u, v) is a nonnegative integer.

e. Now, define ~(s, v) as the shortest-path weight from s to v using the
weight function Wi. Prove that for i = 2,3, ... , k and all v E V,

6i (s, v) = Ji(s, v) + 26i- 1(s,v)

and that Ji(s, v) ~ lEI.

f. Show how to compute 6i(s, v) from 6i - 1(s, v) for all v E V in O(E) time,
and conclude that 6(s, v) can be computed for all v E V in O(Elg W)
time.

25-5 Karp's minimum mean-weight cycle algorithm
Let G = (V, E) be a directed graph with weight function w : E -+ R, and
let n = IVI. We define the mean weight of a cycle c = (e"e2, ... ,ek) of
edges in E to be

I k

fl(C) = k Lw(ei) .
i=1

Let fl* = mine fl(C), where C ranges over all directed cycles in G. A cycle c
for which fl(C) = fl* is called a minimum mean-weight cycle. This problem
investigates an efficient algorithm for computing fl* .

Assume without loss of generality that every vertex v E V is reachable
from a source vertex s E V. Let 6(s, v) be the weight of a shortest path
from s to v, and let 6k (s, v) be the weight of a shortest path from s to v
consisting of exactly k edges. If there is no path from s to v with exactly
k edges, then 6k (s, v ) = 00.

a. Show that if u: 0, then G contains no negative-weight cycles and
6(s, v) = mino$k$n-I 6k(s, v) for all vertices v E V.

b. Show that if fl* = 0, then

6n (s,v) 6k (s, v) > 0max
O$k$n-I n - k -

for all vertices v E V. (Hint: Use both properties from part (a).)

c. Let c be a O-weight cycle, and let u and v be any two vertices on c.
Suppose that the weight of the path from u to v along the cycle is x.
Prove that 6(s, v) = 6(s, u) + x. (Hint: The weight of the path from v
to u along the cycle is -x.)

d. Show that if fl* = 0, then there exists a vertex v on the minimum
mean-weight cycle such that

6n (s,v) - 6k (s, v) 0
max = .

O$k$n-I n k
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(Hint: Show that a shortest path to any vertex on the minimum mean
weight cycle can be extended along the cycle to make a shortest path to
the next vertex on the cycle.)

min max
'/lEV O:$k:$n-t

e. Show that if /1* = 0, then

6k o.

Chapter notes

f. Show that if we add a constant t to the weight of each edge of G, then
/1* is increased by t. Use this to show that

*. 6n(s,v) 6ds,v)
/1 = mm max

vEV O:$k:$n-I n - k

g. Give an O( VE)-time algorithm to compute /1*.

Dijkstra's algorithm [55] appeared in 1959, but it contained no mention
of a priority queue. The Bellman-Ford algorithm is based on separate al
gorithms by Bellman [22] and Ford [71]. Bellman describes the relation of
shortest paths to difference constraints. Lawler [132] describes the linear
time algorithm for shortest paths in a dag, which he considers part of the
folklore.

When edge weights are relatively small integers, more efficient algorithms
can be used to solve the single-source shortest-paths problem. Ahuja,
Mehlhorn, Orlin, and Tarjan [6] give an algorithm that runs in O(E +
V JIg W) time on graphs with nonnegative edge weights, where W is the
largest weight of any edge in the graph. They also give an easily pro
grammed algorithm that runs in O(E + V lg W) time. For graphs with neg
ative edge weights, the algorithm due to Gabow and Tarjan [77] runs in
O(v'VE Ig(V W)) time, where W is the magnitude of the largest-magnitude
weight of any edge in the graph.

Papadimitriou and Steiglitz [154] have a good discussion of the simplex
method and the ellipsoid algorithm as well as other algorithms related to
linear programming. The simplex algorithm for linear programming was
invented by G. Danzig in 1947. Variants of simplex remain the most
popular methods for solving linear-programming problems. The ellipsoid
algorithm is due to L. G. Khachian in 1979, based on earlier work by
N. Z. Shor, D. B. Judin, and A. S. Nemirovskii. Karmarkar describes his
algorithm in [115].
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In this chapter, we consider the problem of finding shortest paths between
all pairs of vertices in a graph. This problem might arise in making a table
of distances between all pairs of cities for a road atlas. As in Chapter 25,
we are given a weighted, directed graph G = (V, E) with a weight function
W : E --+ R that maps edges to real-valued weights. We wish to find, for
every pair of vertices u, v E V, a shortest (least-weight) path from u to v,
where the weight of a path is the sum of the weights of its constituent
edges. We typically want the output in tabular form: the entry in u's row
and v's column should be the weight of a shortest path from u to v.

We can solve an all-pairs shortest-paths problem by running a single
source shortest-paths algorithm IVI times, once for each vertex as the
source. If all edge weights are nonnegative, we can use Dijkstra's algo
rithm. If we use the linear-array implementation of the priority queue,
the running time is O(V3 + VE) = O(V3). The binary-heap implemen
tation of the priority queue yields a running time of O( V E 19 V), which
is an improvement if the graph is sparse. Alternatively, we can imple
ment the priority queue with a Fibonacci heap, yielding a running time of
O( V2lg V + V E).

If negative-weight edges are allowed, Dijkstra's algorithm can no longer
be used. Instead, we must run the slower Bellman-Ford algorithm once
from each vertex. The resulting running time is O( V2 E), which on a
dense graph is O(V4). In this chapter we shall see how to do better. We
shall also investigate the relation of the all-pairs shortest-paths problem to
matrix multiplication and study its algebraic structure.

Unlike the single-source algorithms, which assume an adjacency-list rep
resentation of the graph, most of the algorithms in this chapter use an
adjacency-matrix representation. (Johnson's algorithm for sparse graphs
uses adjacency Iists.) The input is an n x n matrix W representing the edge
weights of an n-vertex directed graph G = (V, E). That is, W = (wij),
where

{
o if i = j ,

wi) = the weight of directed edge (i,j) if i =/; j and (i,j) E E, (26.1)
00 ifi=/;jand(i,j)¢E.
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Negative-weight edges are allowed, but we assume for the time being that
the input graph contains no negative-weight cycles.

The tabular output of the all-pairs shortest-paths algorithms presented
in this chapter is an n x n matrix D = (dij), where entry d., contains
the weight of a shortest path from vertex i to vertex j. That is, if we
let <>(i,j) denote the shortest-path weight from vertex i to vertex j (as in
Chapter 25), then d., <>(i,j) at termination.

To solve the all-pairs shortest-paths problem on an input adjacency ma
trix, we need to compute not only the shortest-path weights but also a
predecessor matrix II (nij), where nij is NIL if either i = j or there is no
path from i to i, and otherwise nij is some predecessor of j on a short
est path from i. Just as the predecessor subgraph Gn from Chapter 25 is
a shortest-paths tree for a given source vertex, the subgraph induced by
the ith row of the II matrix should be a shortest-paths tree with root i.
For each vertex i E V, we define the predecessor subgraph of G for i as
Gn,i = (Vn,i,En.d , where

Vn•i = {j E V: nij =I NIL} U {i}

and

En,i = {(nij,j) : j E Vn.i and nij =I NIL}

If Gn.i is a shortest-paths tree, then the following procedure, which is a
modified version of the PRINT-PATH procedure from Chapter 23, prints a
shortest path from vertex i to vertex i.

PRINT-ALL-PAIRS-SHORTEST-PATH(II, i, j)

1 if i = j
2 then print i
3 else if nij = NIL
4 then print "no path from" i "to" j "exists"
5 else PRINT-ALL-PAIRS-SHORTEST-PATH(II, i. nij)
6 print j

In order to highlight the essential features of the all-pairs algorithms in this
chapter, we won't cover the creation and properties of predecessor matrices
as extensively as we dealt with predecessor subgraphs in Chapter 25. The
basics are covered by some of the exercises.

Chapter outline

Section 26.1 presents a dynamic-programming algorithm based on ma
trix multiplication to solve the all-pairs shortest-paths problem. Using the
technique of "repeated squaring," this algorithm can be made to run in
8( V31g V) time. Another dynamic-programming algorithm, the Floyd
Warshall algorithm, is given in Section 26.2. The Floyd-Warshall algo
rithm runs in time 8(V3). Section 26.2 also covers the problem of finding
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the transitive closure of a directed graph, which is related to the all-pairs
shortest-paths problem. Johnson's algorithm is presented in Section 26.3.
Unlike the other algorithms in this chapter, Johnson's algorithm uses the
adjacency-list representation of a graph. It solves the all-pairs shortest
paths problem in O( V21g V + V E) time, which makes it a good algorithm
for large, sparse graphs. Finally, in Section 26.4, we examine an algebraic
structure called a "closed semiring," which allows many shortest-paths al
gorithms to be applied to a host of other all-pairs problems not involving
shortest paths.

Before proceeding, we need to establish some conventions for adjacency
matrix representations. First, we shall generally assume that the input
graph G = (V, E) has n vertices, so that n = IVI. Second, we shall use
the convention of denoting matrices by uppercase letters, such as W or D,
and their individual elements by subscripted lowercase letters, such as uu,
or d.]. Some matrices will have parenthesized superscripts, as in D(m) =
(d;;l), to indicate iterates. Finally, for a given n x n matrix A, we shall
assume that the value of n is stored in the attribute rows[A].

26.1 Shortest paths and matrix multiplication

This section presents a dynamic-programming algorithm for the all-pairs
shortest-paths problem on a directed graph G (V, E). Each major loop
of the dynamic program will invoke an operation that is very similar to
matrix multiplication, so that the algorithm will look like repeated matrix
multiplication. We shall start by developing a 8( V4 )-time algorithm for
the all-pairs shortest-paths problem and then improve its running time to
8(V31g V).

Before proceeding, let us briefly recap the steps given in Chapter 16 for
developing a dynamic-programming algorithm.

1. Characterize the structure of an optimal solution.

2. Recursively define the value of an optimal solution.

3. Compute the value of an optimal solution in a bottom-up fashion.

(The fourth step, constructing an optimal solution from computed infor
mation, is dealt with in the exercises.)

The structure of a shortest path

We start by characterizing the structure of an optimal solution. For the
all-pairs shortest-paths problem on a graph G = (V, E), we have proved
(Lemma 25.1) that all subpaths of a shortest path are shortest paths. Sup
pose that the graph is represented by an adjacency matrix W = (wij). Con
sider a shortest path p from vertex i to vertex j, and suppose that p contains
at most m edges. Assuming that there are no negative-weight cycles, m is
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(26.2)

finite. If i = j, then p has weight 0 and no edges. If vertices i and j are

distinct, then we decompose path pinto i .G. k ---+ j, where path pi now
contains at most m - 1 edges. Moreover, by Lemma 25.1, pi is a shortest
path from i to k. Thus, by Corollary 25.2, we have aU, j) =aU, k) + Wkj'

A recursive solution to the all-pairs shortest-paths problem

Now, let dLm) be the minimum weight of any path from vertex i to vertex j
that contains at most m edges. When m = 0, there is a shortest path from i
to } with no edges if and only if i = j. Thus,

d(O) _ {O iff = j ,
ij - oc if i =I j .

For m ~ 1, we compute dij) as the minimum of d;j-I) (the weight of
the shortest path from i to) consisting of at most m - 1 edges) and the
minimum weight of any path from i to } consisting of at most m edges,
obtained by looking at all possible predecessors k of}. Thus, we recursively
define

d(m) = min (d(m-I) min {d(m-I) + W .})
IJ IJ 'I~k~n ik k j

min {d;;;-I) +Wkj} .
I~k~n

The latter equality follows since Wj} = 0 for all j.
What are the actual shortest-path weights aU, j)? If the graph contains

no negative-weight cycles, then all shortest paths are simple and thus con
tain at most n - 1 edges. A path from vertex i to vertex j with more than
n - 1 edges cannot have less weight than a shortest path from i to j. The
actual shortest-path weights are therefore given by

su.r, d(n-I) = din)
IJ IJ d (n+ l ) = ...

IJ • (26.3)

Computing the shortest-path weights bottom up

Taking as our input the matrix W = (wij), we now compute a series
of matrices D( I) , D(2) , ... ,D(n-I), where for m = I, 2, ... ,n - 1, we have
D(m) = (d;j)). The final matrix D(n-I) contains the actual shortest-path

weights. Observe that since diJ) = wij for all vertices i,j E V, we have
tr» = W.

The heart of the algorithm is the following procedure, which, given ma
trices D(rn-I) and W, returns the matrix D(m). That is, it extends the
shortest paths computed so far by one more edge.
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EXTEND-SHORTEST-PATHS(D, W)

1 n +- rows(D]
2 let D' ::::: (df) be an n x n matrix
3 for i +- 1 to n
4 do for } +- 1 to n
5 do dfj +- 00

6 for k +- 1 to n
7 do d:j +- min(dL, dik + Wkj)

8 return D'

The procedure computes a matrix D' ::::: (d:), which it returns at the end.
It does so by computing equation (26.2) for all i and}, using D for o»:»
and D' for tw». (It is written without the superscripts to make its input
and output matrices independent of m.) Its running time is 8(n 3) due to
the three nested for loops.

We can now see the relation to matrix multiplication. Suppose we wish
to compute the matrix product C = A . B of two n x n matrices A and B.
Then, for i.] ::::: 1,2, ... , n, we compute

n

cij L aik • bk j •

k=l

Observe that if we make the substitutions

d(m-I) -+ a,

W -+ b ,
d(m) -+ C ,

min -+ +,

+ -+

(26.4)

in equation (26.2), we obtain equation (26.4). Thus, if we make these
changes to EXTEND-SHORTEST-PATHS and also replace 00 (the identity for
min) by 0 (the identity for +), we obtain the straightforward 8(n3)-time

procedure for matrix multiplication.

MATRIX-MuLTIPLY(A, B)

1 n +- rows[A]
2 let C be an n x n matrix
3 for i +- I to n
4 do for } +- 1 to n
5 do Cij +- 0
6 for k +- I to n
7 do eij +- eij + aik . bk j

8 return C

Returning to the all-pairs shortest-paths problem, we compute the short
est-path weights by extending shortest paths edge by edge. Letting A . B
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denote the matrix "product" returned by EXTEND-SHORTEST-PATHS(A,B),
we compute the sequence of n - 1 matrices

tr» = D(O).W W,
D(Z) D(I)· W W Z ,
D(3) = D(2)·W W3 ,

D(n-I) = D(n-Z). W = Wn-I.

As we argued above, the matrix D(n-I) = wn-I contains the shortest-path
weights. The following procedure computes this sequence in S(n4 ) time.

SLow-ALL-PAIRS-SHORTEST-PATHS( W)

1 n +- rows[W]
2 tr» +- W
3 for m +- 2 to n - 1
4 do D(m) +- EXTEND-SHORTEST-PATHS(D(m-I), W)
5 return D(n-I)

Figure 26.1 shows a graph and the matrices D(m) computed by the proce
dure SLow-ALL-PAIRS-SHORTEST-PATHS.

Improving the funning time

Our goal, however, is not to compute all the D(m) matrices: we are inter
ested only in matrix D(n-I). Recall that in the absence of negative-weight
cycles, equation (26.3) implies D(m) = D(n-I) for all integers m ?: n-l. We
can compute D(n-I) with only flg(n - 1)1 matrix products by computing
the sequence

D(I) =
D(Z) =
D(4)

D(S)

=
=
=

Since 2f!g(n- l ll ?: n - 1, the final product D(ZPgin-1il) is equal to D(n-I).

The following procedure computes the above sequence of matrices by
using this technique of repeated squaring.
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DI" ~ (~
3 8 00

~) DI" ~ (13 8 2

i)0 00 1 0 -4 1
4 0 00 4 0 5 11

00 -5 0 -1 -5 0 -2
00 00 6 00 1 6 0

DOl ~ (~
3 -3 2

-~)
(~

1 -3 2

-1 )0 -4 1 0 -4 1
4 0 5 II D(4) 4 0 5

-1 -5 0 -2 -1 -5 0 -2
5 1 6 0 5 I 6 0

Figure 26.1 A directed graph and the sequence of matrices D(m) computed by
SLow-ALL-PAIRS-SHORTEST-PATHS. The reader may verify that D(S) = D(4) • W is
equal to D(4), and thus D(m) == D(4) for all m ;::: 4.

FASTER-ALL-PAIRS-SHORTEST-PATHS( W)

In+- rows[WJ
2 D(I) +- W

3 m +- 1
4 while n - I > m
5 do D(2m) +- EXTEND-SHORTEST-PATHS(D(m),D(m))
6 m +- 2m
7 return D(m)

In each iteration of the while loop of lines 4-6, we compute D(2m) =
(D(m))2, starting with m 1. At the end of each iteration, we double the
value of m. The final iteration computes D(n-I) by actually computing
D(2m) for some n - I ~ 2m < 2n 2. By equation (26.3), D(2m) = D(n-I).

The next time the test in line 4 is performed, m has been doubled, so
now n - I ~ m, the test fails, and the procedure returns the last matrix it
computed.

The running time of FASTER-ALL-PAIRS-SHORTEST-PATHS is 8(n31gn)

since each of the rlg(n - 1)1 matrix products takes 8(n 3 ) time. Observe
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Figure 26.2 A weighted, directed graph for use in Exercises 26.1-1, 26.2-1,
and 26.3-1.

that the code is tight, containing no elaborate data structures, and the
constant hidden in the a-notation is therefore small.

Exercises

26.1-1
Run SLow-ALL-PAIRS-SHORTEST-PATHS on the weighted, directed graph
of Figure 26.2, showing the matrices that result for each iteration of the
respective loops. Then do the same for FASTER-ALL-PAIRS-SHORTEST
PATHS.

26.1-2
Why do we require that Wu = 0 for all 1 ::; i ::; n?

26.1-3
What does the matrix

0 00 00 00

00 0 00 00

D(O) = 00 00 0 00

00 00 00 0

used in the shortest-paths algorithms correspond to in regular matrix mul
tiplication?

26.1-4
Show how to express the single-source shortest-paths problem as a product
of matrices and a vector. Describe how evaluating this product corre
sponds to a Bellman-Ford-like algorithm (see Section 25.3).

26.1-5
Suppose we also wish to compute the vertices on shortest paths in the
algorithms of this section. Show how to compute the predecessor matrix II
from the completed matrix D of shortest-path weights in O(n 3 ) time.
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26.1-6
The vertices on shortest paths can also be computed at the same time
as the shortest-path weights. Let us define n;7) to be the predecessor
of vertex j on any minimum-weight path from i to j that contains at
most m edges. Modify EXTEND-SHORTEST-PATHS and SLow-ALL-PAIRS
SHORTEST-PATHS to compute the matrices TI(l), TI(2), .•. , n(n~l) as the ma
trices D( I), D(2), ... .D'»: I) are computed.

26.1-7
The FASTER-ALL-PAIRS-SHORTEST-PATHS procedure, as written, requires
us to store rlg(n - 1)1 matrices, each with n2 elements, for a total space
requirement of 8(n2lg n). Modify the procedure to require only 8(n2 )

space by using only two n x n matrices.

26.1-8
Modify FASTER-ALL-PAIRS-SHORTEST-PATHS to detect the presence of a
negative-weight cycle.

26.1-9
Give an efficient algorithm to find the length (number of edges) of a
minimum-length negative-weight cycle in a graph.

26.2 The Floyd-Warshall algorithm

In this section, we shall use a different dynamic-programming formulation
to solve the all-pairs shortest-paths problem on a directed graph G (V, E).
The resulting algorithm, known as the Floyd- Warshall algorithm, runs in
8(V3) time. As before, negative-weight edges may be present, but we shall
assume that there are no negative-weight cycles. As in Section 26.1, we
shall follow the dynamic-programming process to develop the algorithm.
After studying the resulting algorithm, we shall present a similar method
for finding the transitive closure of a directed graph.

The structure of a shortest path

In the Floyd-Warshall algorithm, we use a different characterization of
the structure of a shortest path than we used in the matrix-multiplication
based all-pairs algorithms. The algorithm considers the "intermediate"
vertices of a shortest path, where an intermediate vertex of a simple path
P = (VI, V2, ..• , VI} is any vertex of p other than VI or VI, that is, any vertex
in the set {V2, V3, • .. , V/~ I}'

The Floyd-Warshall algorithm is based on the following observation. Let
the vertices of G be V = {I, 2, ... , n}, and consider a subset {l, 2, ... , k}
of vertices for some k, For any pair of vertices i, j E V, consider all paths
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all intermediate vertices in (1,2, ... ,k-ll all intermediate vertices in (I .. ,k-ll

p: all intermediate vertices in {1,2,.. .,kI

Figure 26.3 Path P is a shortest path from vertex i to vertex i, and k is the
highest-numbered intermediate vertex of p. Path PI, the portion of path P from
vertex i to vertex k, has all intermediate vertices in the set {I, 2, ... , k - I}. The
same holds for path P2 from vertex k to vertex j.

from i to j whose intermediate vertices are all drawn from {I, 2, ... , k},
and let p be a minimum-weight path from among them. (Path p is simple,
since we assume that G contains no negative-weight cycles.) The floyd
Warshall algorithm exploits a relationship between path p and shortest
paths from i to j with all intermediate vertices in the set {I, 2, ... .k - I}.
The relationship depends on whether or not k is an intermediate vertex of
path p.

• If k is not an intermediate vertex of path p, then all intermediate vertices
of path P are in the set {I, 2, ... , k I}. Thus, a shortest path from ver
tex i to vertex j with all intermediate vertices in the set {I, 2, ... , k - I}
is also a shortest path from i to j with all intermediate vertices in the
set {I, 2, ... , k}.

• If k is an intermediate vertex of path P, then we break P down into
i R.J. k J!3, j as shown in Figure 26.3. By Lemma 25.1, PI is a shortest
path from i to k with all intermediate vertices in the set {I, 2, ... , k}.
In fact, vertex k: is not an intermediate vertex of path PI, and so PI
is a shortest path from i to k with all intermediate vertices in the set
{1, 2, ... , k I}. Similarly, P2 is a shortest path from vertex k to vertex
j with all intermediate vertices in the set {I, 2, ... , k I}.

A recursive solution to the all-pairs shortest-paths problem

(26.5)
if k = 0,
if k 2:: I .

Based on the above observations, we define a different recursive formula
tion of shortest-path estimates than we did in Section 26.1. Let d~l be
the weight of a shortest path from vertex i to vertex j with all intermedi
ate vertices in the set {I, 2, ... , k}. When k = 0, a path from vertex i to
vertex j with no intermediate vertex numbered higher than 0 has no inter
mediate vertices at all. It thus has at most one edge, and hence dJJl = wi).

A recursive definition is given by

{

W i }'
d (k )

IJ min (dfJ-ll, df:- IJ + di~-l))



560 Chapter 26 All-Pairs Shortest Paths

The matrix D(n) = (d};ll) gives the final answer-d}t = 6(i,j) for all
i, j E V-because all intermediate vertices are in the set {I, 2, ... , n}.

Computing the shortest-path weights bottom up

Based on recurrence (26.5), the following bottom-up procedure can be used
to compute the values d;7) in order of increasing values of k. Its input is
an n x n matrix W defined as in equation (26.1). The procedure returns
the matrix D(n) of shortest-path weights.

FLOYD-WARSHALL( W)

1 n - rows[W]
2 D(O) _ W

3 for k - 1 to n
4 do for i-I to n
5 do for j - 1 to n
6 d(k) _ min (d(k-I) d(kk-I) + dk(k-I))

IJ IJ' I J

7 return D(n)

Figure 26.4 shows a directed graph and the matrices D(k) computed by the
Floyd-Warshall algorithm.

The running time of the Floyd-Warshall algorithm is determined by the
triply nested for loops of lines 3-6. Each execution of line 6 takes O( 1)
time. The algorithm thus runs in time 8(n3 ). As in the final algorithm in
Section 26.1, the code is tight, with no elaborate data structures, and so
the constant hidden in the 8-notation is small. Thus, the Floyd-Warshall
algorithm is quite practical for even moderate-sized input graphs.

Constructing a shortest path

There are a variety of different methods for constructing shortest paths
in the Floyd-Warshall algorithm. One way is to compute the matrix D of
shortest-path weights and then construct the predecessor matrix n from
the D matrix. This method can be implemented to run in O(n 3 ) time
(Exercise 26.1-5). Given the predecessor matrix Il, the PRINT-ALL-PAIRS
SHORTEST-PATH procedure can be used to print the vertices on a given
shortest path.

We can compute the predecessor matrix n "on-line" just as the Floyd
Warshall algorithm computes the matrices o», Specifically, we compute a
sequence of matrices nCO), n(I), ... ,rr», where n = n(n) and 11:;;) is defined
to be the predecessor of vertex j on a shortest path from vertex i with all
intermediate vertices in the set {I, 2, ... , k }.

We can give a recursive formulation of 11:;;). When k = 0, a shortest
path from i to j has no intermediate vertices at all. Thus,
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[)I" ~ (~
3 8 00

~) Cl NIL

L)0 00 NIL NIL NIL 2
4 0 00 n(O) = NIL 3 NIL NIL

00 -5 0 4 NIL 4 NIL NIL
00 00 6 NIL NIL NIL 5 NIL

(~
3 8 00

~) C"
NIL

N~L )

a 00 1 NIL NIL NIL 2
D(l)= 4 0 00 n{l) NIL 3 NIL NIL

5 -5 0 -2 4 1 4 NIL
00 00 6 0 NIL NIL NIL 5 NIL

DIl( ~ (~
3 8 4

-~) Cl 2

}Ja 00 1 NIL NIL NIL 2
4 a 5 11 ll(21 = NIL 3 NIL 2
5 -5 0 -2 4 1 4 NIL

00 00 6 a NIL NIL NIL 5

tr» ~ (~
3 8 4

-~) Cl 2

JJ
a 00 I NIL NIL NIL 2
4 a 5 II ll(3) = N~L 3 NIL 2

-I -5 a -2 3 4 NIL
00 00 6 0 NIL NIL NIL 5

DI'! ~ (~
3 I 4

-4 )

C"
1 4 2

JJ
a -4 I -1

n',! ~ ~
NIL 4 2

4 a 5 3 3 NIL 2
1 -5 a -2 3 4 NIL
5 I 6 0 3 4 5

(~
1 -3 2

-4 )

cr
3 4 5

JJ
0 -4 1 -I NIL 4 2

D(5) 4 0 5 3 n(5) 3 NIL 2
I 5 0 -2 3 4 NIL
5 1 6 0 3 4 5
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Figure 26.4 The sequence of matrices D(k) and n(k) computed by the Floyd
Warshall algorithm for the graph in Figure 26.1.
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(0) _ {NIL if i = j or wi; 00,
no - i if i =/: j and wi} < 00 .

For k ~ 1, if we take the path i '"'-'+ k '"'-'+ j, then the predecessor of j
we choose is the same as the predecessor of j we chose on a shortest path
from k with all intermediate vertices in the set {I, 2, ... , k I}. Otherwise,
we choose the same predecessor of j that we chose on a shortest path
from i with all intermediate vertices in the set {I, 2, ... .k - I}. Formally,
for k ~ I,

{

(k-I) if d(k-I) < d(k-I) + d(k-I)
(k) _ n l ) I) - ik k'

no - (k-I) if d(k-I) > d(k-I) + d(k-I)
nk ) I) ik k)'

(26.7)

We leave the incorporation of the n(k} matrix computations into the
FLOYD-WARSHALL procedure as Exercise 26.2-3. Figure 26.4 shows the
sequence of n(k) matrices that the resulting algorithm computes for the
graph of Figure 26.1. The exercise also asks for the more difficult task
of proving that the predecessor subgraph G«: is a shortest-paths tree with
root i. Yet another way to reconstruct shortest paths is given as Exer
cise 26.2-6.

Transitive closure of a directed graph

Given a directed graph G = (V, E) with vertex set V {I, 2, ... , n}, we
may wish to find out whether there is a path in G from i to j for all
vertex pairs i, j E V. The transitive closure of G is defined as the graph
G* = (V, E*), where

E* = {( i, j) : there is a path from vertex i to vertex j in G} .

One way to compute the transitive closure of a graph in 8(n 3 ) time
is to assign a weight of 1 to each edge of E and run the Floyd-Warshall
algorithm. If there is a path from vertex i to vertex l, we get di, < n.
Otherwise, we get di; = 00.

There is another, similar way to compute the transitive closure of G in
8(n3 ) time that can save time and space in practice. This method involves
substitution of the logical operations V and /\ for the arithmetic operations
min and + in the Floyd-Warshall algorithm. For i, j, k = 1,2, ... , n, we
define ti~) to be 1 if there exists a path in graph G from vertex i to vertex j
with all intermediate vertices in the set {I, 2, ... , k}, and 0 otherwise. We
construct the transitive closure G* = (V, E*) by putting edge (i, j) into
E* if and only if ti]) = 1. A recursive definition of t)~), analogous to
recurrence (26.5), is

t(O) _ {O if i =/: j and (i,j) f/. E ,
i j - 1 if i = j or (i,j) E E ,

and for k ~ 1,
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t(k) = t(k-I) V (t(kk-I) A tk(k-I)) •
Ij Ij I }

563

(26.8)

As in the Floyd-Warshall algorithm, we compute the matrices T(k) =
(t~jl) in order of increasing k.

TRANSITIVE-CLOSURE(G)

1 n +-IV[G]I
2 for i +- 1 to n
3 do for j +- 1 to n
4 do ifi=jor(i,j)EE[G]
5 then 1(0) +- 1

Ij

6 else 1(0) +- 0
Ij

7 for k +- 1 to n
8 do for i +- 1 to n

9 do for j +- 1 to n
10 do lk) +-lk-J) V (lkk-I) A lk(k-I))

I] I] I ]

11 return T(n)

Figure 26.5 shows the matrices T(k) computed by the TRANSITIVE-CLO
SURE procedure on a sample graph. Like the Floyd-Warshall algorithm,
the running time of the TRANSITIVE-CLOSURE procedure is 8(n3 ) . On
some computers, though, logical operations on single-bit values execute
faster than arithmetic operations on integer words of data. Moreover,
because the direct transitive-closure algorithm uses only boolean values
rather than integer values, its space requirement is less than the Floyd
Warshall algorithm's by a factor corresponding to the size of a word of
computer storage.

In Section 26.4, we shall see that the correspondence between FLOYD
WARSHALL and TRANSITIVE-CLOSURE is more than coincidence. Both algo
rithms are based on a type of algebraic structure called a "closed semiring."

Exercises

26.2-1
Run the Floyd-Warshall algorithm on the weighted, directed graph of Fig
ure 26.2. Show the matrix D(k) that results for each iteration of the outer
loop.

26.2-2
As it appears above, the Floyd-Warshall algorithm requires 8(n3 ) space,
since we compute dij) for i.i, k = 1,2, ... , n. Show that the following
procedure, which simply drops all the superscripts, is correct, and thus
only 8(n 2) space is required.
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0
0 0

DT'" ~ ( ~
0 0

D 0
0 0

DT(O) = I I I I T(2) = I I
I I I I I I
0 I 0 I 0 I

T'" tx: ( ~
0 0

DT'" ~ ( i 0 0

DI I I I
1 I I 1
I I 1 I

Figure 26.5 A directed graph and the matrices T(k) computed by the transitive
closure algorithm.

FLOYD-WARSHALL' ( W)

1 n rows[W]
2 o-: W
3 for k f- 1 to n
4 do for i f- 1 to n
5 do for j f- 1 to n
6 dij f- min (dij,di k +dkj)

7 return D

26.2-3
Modify the FLOYD-WARSHALL procedure to include computation of the
Wk) matrices according to equations (26.6) and (26.7). Prove rigorously
that for all i E V, the predecessor subgraph G11.,i is a shortest-paths tree
with root i. (Hint: To show that Gn,i is acyclic, first show that n;1) = I

implies d;j) 2': dJ;-I) + Wlj' Then, adapt the proof of Lemma 25.8.)

26.2-4
Suppose that we modify the way in which equality is handled in equa
tion (26.7):

{

(k-I) 'f d(k-l) < d(k-I) + d(k-l)
(k)_ nij I ij ik k·'

nij - (k-l) if d(k-l) > d(k-I) + dd- 1) •
nk j t ) - ik. k j
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Is this alternative definition of the predecessor matrix IT correct?
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26.2-5
How can the output of the Floyd-Warshall algorithm be used to detect the
presence of a negative-weight cycle?

26.2-6
Another way to reconstruct shortest paths in the Floyd-Warshall algorithm
uses values ¢)J! for i, j, k = 1,2, ... , n, where ¢)jl is the highest-numbered
intermediate vertex of a shortest path from i to j. Give a recursive formu
lation for ¢)jl, modify the FLOYD-WARSHALL procedure to compute the

¢)jl values, and rewrite the PRINT-ALL-PAIRS-SHORTEST-PATH procedure

to take the matrix <I> (¢);l) as an input. How is the matrix <I> like the s

table in the matrix-chain multiplication problem of Section 16.1?

26.2-7
Give an O( V E)-time algorithm for computing the transitive closure of a
directed graph G (V,E).

26.2-8
Suppose that the transitive closure of a directed acyclic graph can be com
puted in f( V,E) time, where f( V,E) = Q( V + E) and f is monotonically
increasing. Show that the time to compute the transitive closure of a gen
eral directed graph is O(f(V,E)).

26.3 Johnson's algorithm for sparse graphs

Johnson's algorithm finds shortest paths between all pairs in O( V2lg V +
VE) time; it is thus asymptotically better than either repeated squaring of
matrices or the Floyd-Warshall algorithm for sparse graphs. The algorithm
either returns a matrix of shortest-path weights for all pairs or reports that
the input graph contains a negative-weight cycle. Johnson's algorithm uses
as subroutines both Dijkstra's algorithm and the Bellman-Ford algorithm,
which are described in Chapter 25.

Johnson's algorithm uses the technique of reweighting, which works as
follows. If all edge weights w in a graph G (V, E) are nonnegative, we
can find shortest paths between all pairs of vertices by running Dijkstra's
algorithm once from each vertex; with the Fibonacci-heap priority queue,
the running time of this all-pairs algorithm is O(V2Ig V + VE). If G
has negative-weight edges, we simply compute a new set of nonnegative
edge weights that allows us to use the same method. The new set of edge
weights iiJ must satisfy two important properties.
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I. For all pairs of vertices u, v E V, a shortest path from u to v using weight
function W is also a shortest path from u to v using weight function W.

2. For all edges (u, v), the new weight w(u, v) is nonnegative.

As we shall see in a moment, the preprocessing of G to determine the new
weight function W can be performed in O( VE) time.

Preserving shortest paths by reweighting

As the following lemma shows, it is easy to come up with a reweighting
of the edges that satisfies the first property above. We use 0 to denote
shortest-path weights derived from weight function wand 3 to denote
shortest-path weights derived from weight function W.

Lemma 26.1 (Reweighting doesn't change shortest paths)
Given a weighted, directed graph G = (V, E) with weight function w
E ....... R, let h : V ....... R be any function mapping vertices to real numbers.
For each edge (u, v) E E, define

w(u, v) = w(u, v) + h(u) h(v). (26.9)

Let p = (va, VI, ... , Vk} be a path from vertex Va to vertex Vk' Then,
w(p) = o(vo, Vk) if and only if w(p) = 3(va, Vk)' Also, G has a negative
weight cycle using weight function w if and only if G has a negative-weight
cycle using weight function w.

Proof We start by showing that

w(p) = w(p) + h(va) - h(vd .

We have

(26.10)

k

w(p) = I:W(Vi-l, Vi)
i=1
k

= I:(W(Vi-h v;) + h(Vi-d - h(Vi))
i=l

k

= I:W(Vi-l, v;) + h(vo) - h(Vk)
i=l
w(p) + h(va) h(vd.

The third equality follows from the telescoping sum on the second line.
We now show by contradiction that w(p) = o(vo, Vk) implies w(p) =

3(va, Vk). Suppose that there is a shorter path pi from Va to Vk using
weight function w. Then, W(pl) < w(p). By equation (26.10),

W(pl) + h(vo) - h(Vk) = W(pl)

< w(p)

w(P) + h(vo) - h(Vk) ,
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which implies that W(pf) < w(p), But this contradicts our assumption
that p is a shortest path from u to v using ui. The proof of the converse
is similar.

Finally, we show that G has a negative-weight cycle using weight func
tion w if and only if G has a negative-weight cycle using weight func
tion iiJ, Consider any cycle c = (vo,Vl, ... ,Vk), where Vo vk' Byequa
tion (26.10),

iiJ(c) = w(c) + h(vo) - h(Vk)

w(c) ,

and thus c has negative weight using w if and only if it has negative weight
using iiJ. •

Producing nonnegative weights by reweighting

Our next goal is to ensure that the second property holds: we want iiJ(u, v)
to be nonnegative for all edges (u, v) E E. Given a weighted, directed
graph G = (V, E) with weight function w : E ----> R, we make a new
graph G' = (Vf,E'), where V f = V U {s} for some new vertex s ¢ V
and E' = E U {(s, v) : v E V}. We extend the weight function w so that
w(s, v) = 0 for all v E V. Note that because s has no edges that enter it, no
shortest paths in G', other than those with source s, contain s. Moreover,
G' has no negative-weight cycles if and only if G has no negative-weight
cycles. Figure 26.6(a) shows the graph G' corresponding to the graph G of
Figure 26.1.

Now suppose that G and G' have no negative-weight cycles. Let us define
h(v) = o(s, v) for all v E V'. By Lemma 25.3, we have h(v) ::; h(u) +
w(u, v) for all edges (u, v) E E'. Thus, if we define the new weights iiJ
according to equation (26.9), we have iiJ(u, v) = w(u, v) +h(u) h(v) 2': 0,
and the second property is satisfied. Figure 26.6(b) shows the graph G'
from Figure 26.6(a) with reweighted edges.

Computing all-pairs shortest paths

Johnson's algorithm to compute all-pairs shortest paths uses the Bellman
Ford algorithm (Section 25.3) and Dijkstra's algorithm (Section 25.2) as
subroutines. It assumes that the edges are stored in adjacency lists. The
algorithm returns the usual IVI x IVI matrix D = d.], where d., = o(i, j), or
it reports that the input graph contains a negative-weight cycle. (In order
for the indices into the D matrix to make any sense, we assume that the
vertices are numbered from 1 to IVI.)
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Figure 26.6 Johnson's all-pairs shorte st-paths algorithm run on the graph of Fig
ure 26. 1. (a>The graph G' with the o riginal weight function w . Th e new vertex S

is black. within each vertex v is h(v ) = <5 (s, ti l. (b) Each edge (u, v ) is reweighted
with weight fun ction w (u, v) = w (u,v) + h(u) - h(v ). (c)- (g) Th e result of runn ing
Dijkstra's algorithm on each vertex of G using weight fun ction w. In each part, the
source vertex u is black. With in each vertex v are the values btu, til and o{u,u ),
separa ted by a slash. Th e value dUll = o(u, til is equal to btu,v) + h(v ) - h(u).
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JOHNSON(G)

6
7
8
9

compute G' , where V(G' ) = V[G] U {s} and
E[G' ) ~ E[G) U {( s, v ) : v E V [Gj )

2 if BELLMAN-FoRO(G' , w ,s) = FALSE
3 th en print "the input graph contains a negat ive-weight cycle"
4 else for each vertex v E V [G' J
5 do set h(v ) to the value of J (s, v )

computed by the Bellman-Ford algorithm
for each edge (U,l1) E E[G')

do w (u,v) - w (u, v ) + h(u) - h(v )
for each vertex U E V [G]

do run DUKSTRA(G, W, u) to compute
J (u, v ) for all v E V[G)

for each vertex v E V [G ]

do d•• - J (u,v ) + h(v ) - h(u)

10
11
12 return D

This code sim ply performs the actions we spec ified earlier. Line I pro
duces G' . Line 2 runs the Bellman-Ford algorithm on G' with weight fun c
tion w . If G', and hence G, con tains a negative-weight cycle, line 3 reports
the problem. Lines 4- 11 assume that G' contains no negative-weight cy
cles. Lines 4-5 set h(v ) to the shortest-path weigh t 6(s, v ) computed by
the Bellman-Ford algorithm for all v E V' . Lines 6-7 compute the new
weights w. For each pair of vertices u,v E V , the for loop of Jines 8- 11
computes the sho rtes t-pa th weight g(u, u) by calling Dijkstra's a lgorithm
once from each vertex in V. Line 11 stores in matrix en try dWI! the correct
shortest-path weight J (U, l1 ), calculated using equation (26. 10) . Finally,
line 12 return s the completed D matrix. Figure 26.6 shows the execution
of Johnson's algorithm.

T he running tim e of John son 's algorithm is eas ily seen to be O( V 2 Ig V +
V E ) if the prio rity queue in Dijkstra's algorithm is implemen ted by a
Fibonacci heap . The simpler bin ary-heap implementation yields a ru nn ing
time of O( V E Ig V ), which is still asymptotically fas ter than the Floyd
Warshall algorithm if the graph is sparse.

Exercises

16.3- 1
Use Johnson's algori thm to find the short est paths between all pairs of
vertices in the graph of Figure 26.2. Show the values of hand W computed
by the algorithm.

16.3-1
What is the purpose of adding the new vertex S to V , yielding V'?
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26.3-3
Suppose that w(u, v) ~ 0 for all edges (u, v) E E. What is the relationship
between the weight functions wand iii?

* 26.4 A general framework for solving path problems in directed graphs

In this section, we examine "closed semirings," an algebraic structure that
yields a general framework for solving path problems in directed graphs.
We start by defining closed semirings and discussing how they relate to a
calculus of directed paths. We then show some examples of closed semi
rings and a "generic" algorithm for computing all-pairs path information.
Both the Floyd-Warshall algorithm and the transitive-closure algorithm
from Section 26.2 are instantiations of this generic algorithm.

Definition of closed semirings

A closed semlring is a system (S, EB, 0,0, T), where S is a set of elements,
EB (the summary operator) and 0 (the extension operator) are binary oper
ations on S, and 0 and T are elements of S, satisfying the following eight
properties:

l. (S, EB, 0) is a monoid:

• S is closed under EB: a ED b «S for all a, b E S.

• EB is associative: a EB (b EB c) = (a ED b) EB c for all a, b, c E S.

• 0 is an identity for EB: a EB 0 = 0 EB a a for all a E S.

Likewise, (S, 0, T) is a monoid.

2.0 is an annihilator: a 00 = 00 a = 0 for all a E S.

3. EB is commutative: a EB b = b EB a for all a, b E S.

4. EB is idempotent: a EB a = a for all a E S.

5. 0 distributes over EB: a 0 (b EB c) = (a 0 b) EB (a 0 c) and (b EB c) 0 a =

(b 0 a) EB (c 0 a) for all a.b,c E S.

6. If at, a2,a3,. . . is a countable sequence of elements of S, then at EB a2 EB
a3 EB •.. is well defined and in S.

7. Associativity, commutativity, and idempotence apply to infinite sum
maries. (Thus, any infinite summary can be rewritten as an infinite
summary in which each term of the summary is included just once and
the order of evaluation is arbitrary.)

8. 0 distributes over infinite summaries: ae (bt EBb2EBb3EB"') = (a 0 bd EB
(a0b2)EB(a0b3)EBoo, and (at EBa2EDa3EB' oo)0b = (a( 0b)EB(a2 0 b)EB
(a30b)ED .. ·.
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A calculus of paths in directed graphs

Although the closed-semiring properties may seem abstract, they can be
related to a calculus of paths in directed graphs. Suppose we are given a
directed graph G = (V, E) and a labeling function A: V x V -> S mapping
all ordered pairs of vertices into some codomain S. The label of edge
(u, v) E E is denoted A(U, v). Since A is defined over the domain V x V,
the label A( u, v) is usually taken as 0 if (u, v) is not an edge of G (we shall
see why in a moment).

We use the associative extension operator 0 to extend the notion of
labels to paths. The label ofpath P = (VI,V2, . . . , Vk) is

A(p) =A(VJ,V2)0}(V2,V3)0"'0A(Vk-I,Vk)'

The identity Tfor 0 serves as the label of the empty path.
As a running example of an application of closed semirings, we shall

use shortest paths with nonnegative edge weights. The codomain S is
R20 U {oo}, where R20 is the set of nonnegative reals, and A( i, j) = wI)

for all i, j E V. The extension operator 0 corresponds to the arithmetic
operator +, and the label of path P = (VI,V2, ... , Vk) is therefore

A(p) A(VI, V2) 0 A(V2, V3) 0···0 A(Vk-J, Vk)

= w(p).

Not surprisingly, the role ofT, the identity for 0, is taken by 0, the identity
for +. We denote the empty path bye, and its label is A(e) = w(e) 0 T.

Because the extension operator 0 is associative, we can define the label
of the concatenation of two paths in a natural way. Given paths PI =

(Vl,V2",.,Vk) andp2 (Vk,Vk+I,""V,), their concatenation is

and the label of their concatenation is

A(PIOp2) = A(Vl,V2)0A(V2,V3)0'''0A(Vk_J, Vk)0

A(Vk> vk+d 0 A(Vk+1> Vk+2) 0 '" 0 ),(VI_I>v,)

(A(VI, V2) 0 A(V2, V3) 0··· 0 A(Vk-l> Vk)) 0

(A(Vk> vk+d 0 A(Vk+J, Vk+2) 0 '" 0 A(VI-J, vt})

A(pd 0 A(P2) .

The summary operator EB, which is both commutative and associative,
is used to summarize path labels. That is, the value ),(PI) EB A(P2) gives a
summary, the semantics of which are specific to the application, of the
labels of paths PI and P2.

Our goal will be to compute, for all pairs of vertices i,j E V, the sum
mary of all path labels from ito j:
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Ii) $A(p).
. p .
I""'J

(26.11)

We require commutativity and associativity of $ because the order in
which paths are summarized should not matter. Because we use the anni
hilator 0 as the label of an ordered pair (U,V) that is not an edge in the
graph, any path that attempts to take an absent edge has label O.

For shortest paths, we use min as the summary operator $. The identity
for min is 00, and 00 is indeed an annihilator for +: a + 00 = 00 + a = 00

for all a E R~o U {oo}. Absent edges have weight 00, and if any edge of a
path has weight 00, so does the path.

We want the summary operator $ to be idempotent, because from equa
tion (26.11), we see that EEl should summarize the labels of a set of paths.
If P is a path, then {p} U {p} = {p}; if we summarize path P with itself,
the resulting label should be the label of p: A(P) EEl A(P) = A(p).

Because we consider paths that may not be simple, there may be a count
ably infinite number of paths in a graph. (Each path, simple or not, has a
finite number of edges.) The operator EEl should therefore be applicable to a
countably infinite number of path labels. That is, if a" a2, a3, ... is a count
able sequence of elements in codomain S, then the label a, $ a2 EEl a3 $ ...

should be well defined and in S. It should not matter in which order we
summarize path labels, and thus associativity and commutativity should
hold for infinite summaries. Furthermore, if we summarize the same path
label a a countably infinite number of times, we should get a as the result,
and thus idempotence should hold for infinite summaries.

Returning to the shortest-paths example, we ask if min is applicable to
an infinite sequence of values in R~o U [oo]. For example, is the value
of min~l {11k} well defined? It is, if we think of the min operator as
actually returning the greatest lower bound (infimum) of its arguments, in
which case we get min~ 1 {I Ik } O.

To compute labels of diverging paths, we need distributivity of the ex
tension operator 0 over the summary operator EEl. As shown in Figure 26.7,
suppose that we have paths u ~ v, v f!.3,; x, and v ~ y. By distributivity,
we can summarize the labels of paths PI 0 P2 and PI 0 P3 by computing
either (A(PI) 0 A(P2)) $ ().(PI) 0 A(P3)) or A(PI) 0 (A(P2) EEl A(P3)).

Because there may be a countably infinite number of paths in a graph, 0
should distribute over infinite summaries as well as finite ones. Figure 26.8,
for example, contains paths u~ v and v f!.3,; x, along with the cycle v ~ v.
We must be able to summarize the paths PI 0P2, PI OCOP2, PI OCOCOP2, ....
Distributivity of 0 over countably infinite summaries gives us

(A(pd 0 A(P2)) $ (A(pd 0 A(C) 0 A(P2))

EEl (A(pd 0 A(C) 0 A(C) 0 A(P2)) EEl

= A(pd 0 (A(P2) EEl (A(C) 0 A(P2)) EEl ().(c) 0 A(C) 0 A(P2)) $ ...)

A(pd 0 (1 EEl C EEl (C0C) EEl (C0C0C) EEl ... ) 0 A(P2).
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We claimed, however, that even if there are negative-weight edges, the
Floyd-Warshall algorithm computes shortest-path weights as long as no
negative-weight cycles are present. By adding the appropriate closure op
erator and extending the codomain of labels to Ru {-(X), +oo}, we can find
a closed semiring to handle negative-weight cycles. Using min for EEl and
+ for 0, the reader may verify that the closure of a E R u {-00, -t-oo] is

* {O if a ~ 0,
a = -00 if a < 0 .

The second case (a < 0) models the situation in which we can traverse
a negative-weight cycle an infinite number of times to obtain a weight
of -00 on any path containing the cycle. Thus, the closed semiring to
use for the Floyd-Warshall algorithm with negative edge weights is 82 =
(R U {-(X), +oo}, min, +, +00, 0). (See Exercise 26.4-3.)

For transitive closure, we use the closed semiring 8 3 = ({0, I} , V, r; 0, 1),
where A(i,j) = 1 if (i,j) E E, and A(i,j) = 0 otherwise. Here we have
0* = 1* = 1.

A dynamic-programming algorithm for directed-path labels

Suppose we are given a directed graph G = (V, E) with labeling function
A: V x V -+ 8. The vertices are numbered 1 through n. For each pair of
vertices i.] E V, we want to compute equation (26.1 1):

Ii) EB A(p) ,

which is the result of summarizing all paths from i to j using the summary
operator EEl. For shortest paths, for example, we wish to compute

II) o(i,j) min {w(p)} .
. p .
/--"'j

There is a dynamic-programming algorithm to solve this problem, and
its form is very similar to the Floyd-Warshall algorithm and the transitive
closure algorithm. Let Q;7) be the set of paths from vertex i to vertex j
with all intermediate vertices in the set {I, 2, ... ,k}. We define

IlJ) = EB A(p) .
PEQ(k)

I}

Note the analogy to the definitions of di7) in the Floyd-Warshall algo

rithm and t;7) in the transitive-closure algorithm. We can define 1;7) recur
sively by

1;7) 1;7-1)EEl (/;;-1) 0 (/i~-I))* 0/i~-I)) . (26.12)

Recurrence (26.12) is reminiscent of recurrences (26.5) and (26.8), but
with an additional factor of (/i~-I))* included. This factor represents the
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Figure 26.7 Using distributivity of 0 over EEl. To summarize the labels of paths
PI 0 P2 and PI 0 P3, we may compute either (A(pJ) 0 ).(P2)) EEl (A(PI) 0 ;.(P3)) or
A(pJ) 0 (A.(P2) EEl A.(P3)).

Figure 26.8 Distributivity of 0 over countably infinite summaries of EEl. Because
of cycle c, there are a countably infinite number of paths from vertex v to vertex x.
We must be able to summarize the paths PI 0 P2, PI 0 C0 P2, PI 0 C0 C0 P2, ....

We use a special notation to denote the label of a cycle that may be
traversed any number of times. Suppose that we have a cycle C with label
A(C) = a. We may traverse C zero times for a label of A(e) = 1, once for a
label of A(C) = a, twice for a label of A(C) 0 A(C) a 0 a, and so on. The
label we get by summarizing this infinite number of traversals of cycle C is
the closure of a, defined by

a: = T EB a EB (a0a) EB (a0a0a) EB (a0a0a0a) EB ....

Thus, in Figure 26.8, we want to compute A(PI) 0 (A(C))* 0 A(P2).
For the shortest-paths example, for any nonnegative real a E R~o U {oo},

00

a* = min {ka}
k=O
O.

The interpretation of this property is that since all cycles have nonnegative
weight, no shortest path ever needs to traverse an entire cycle.

Examples of closed semirings

We have already seen one example of a closed semiring, namely 8 1 =
(R~o U {oo}, min, +, 00, 0), which we used for shortest paths with nonnega
tive edge weights. (As previously noted, the min operator actually returns
the greatest lower bound of its arguments.) We have also shown that a: = 0
for all a E R~o U fool.
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summary of all cycles that pass through vertex k and have all other vertices
in the set {I, 2, ... , k I}. (When we assume no negative-weight cycles in
the Floyd-Warshall algorithm, (ck~-I))· is 0, corresponding to 1, the weight
of an empty cycle. In the transitive-closure algorithm, the empty path from
k to k gives us (ti~-I»)* = 1 = 1. Thus, for both of these algorithms, we

can ignore the factor of (lk~-I))*, since it is just the identity for 0.) The
basis of the recursive definition is

1(0) = {~(i, j) if i =I j ,
I] 1 ttJA(i,j) if i i ,

which we can see as follows. The label of the one-edge path (i, j) is simply
AU, j) (which is equal to 0 if (i, j) is not an edge in E). If, in addition,
i = i. then T is the label of the empty path from ito i,

The dynamic-programming algorithm computes the values I~;) in order

of increasing k, It returns the matrix L(n) (/;;1)).

COMPUTE-SUMMARIES(A, V)

1 n -IVI
2 for i-I to n
3 do for j - 1 to n
4 do ifi = j

5 then liJ) - TttJ AU, j)

6 else I~) - A(i, j)
7 for k - 1 to n
8 do for i-I to n
9 do for j - 1 to n

10 do Ii';) - 1;;-1) ttJ (lJZ- 1
) 0 (/k:- I »). 0 Ik~-I»)

11 return L(n)

The running time of this algorithm depends on the time to compute 0,
ttJ, and ". If we let T0 , Te , and T* represent these times, then the running
time of COMPUTE-SUMMARIES is 8(n3(T

0 + Te + T.)), which is 8(n 3 ) if
each of the three operations takes O( 1) time.

Exercises

26.4-1
Verify that SI (R:2:0 U {co}, min, +, 00,0) and S3 = ({O, I}, v, 1\, 0,1) are
closed semirings.

26.4-2
Verify that Sz = (RU{-00, +oo}, min, +, +00, 0) is a closed semiring. What
is the value of a + (-00) for a E R? What about (-00) + (+oo)?
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26.4-3
Rewrite the COMPUTE-SUMMARIES procedure to use closed semiring S2,
so that it implements the Floyd-Warshall algorithm. What should be the
value of -00 + oo?

26.4-4
Is the system S4 = (R, +, ,,0, I) a closed semiring?

26.4-5
Can we use an arbitrary closed semiring for Dijkstra's algorithm? What
about for the Bellman-Ford algorithm? What about for the FASTER-ALL
PAIRS-SHORTEST-PATHS procedure?

26.4-6
A trucking firm wishes to send a truck from Castroville to Boston laden as
heavily as possible with artichokes, but each road in the United States has
a maximum weight limit on trucks that use the road. Model this problem
with a directed graph G = (V, E) and an appropriate closed semiring, and
give an efficient algorithm to solve it.

26-1 Transitive closure 0/ a dynamic graph
Suppose that we wish to maintain the transitive closure of a directed graph
G = (V, E) as we insert edges into E. That is, after each edge has been
inserted, we want to update the transitive closure of the edges inserted so
far. Assume that the graph G has no edges initially and that the transitive
closure is to be represented as a boolean matrix.

a. Show how the transitive closure G* = (V, E*) of a graph G = (V, E) can
be updated in O(V2) time when a new edge is added to G.

b. Give an example of a graph G and an edge e such that Q(V2) time is
required to update the transitive closure after the insertion of e into G.

c. Describe an efficient algorithm for updating the transitive closure as
edges are inserted into the graph. For any sequence of n insertions,
your algorithm should run in total time :E7=1 t, = O( V3), where t, is
the time to update the transitive closure when the ith edge is inserted.
Prove that your algorithm attains this time bound.

26- 2 Shortest paths in e -dense graphs
A graph G = (V,E) is e-dense if lEI = 8(V I+f

) for some constant E

in the range 0 < E ~ 1. By using d-ary heaps (see Problem 7-2) in
shortest-paths algorithms on e-dense graphs, we can match the running
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times of Fibonacci-heap-based algorithms without using as complicated a
data structure.

a. What are the asymptotic running times for INSERT, EXTRACT-MIN, and
DECREASE-KEY, as a function of d and the number n of elements in
a d-ary heap? What are these running times if we choose d 8(nn)
for some constant 0 < Q' s: I? Compare these running times to the
amortized costs of these operations for a Fibonacci heap.

b. Show how to compute shortest paths from a single source on an E-dense
directed graph G = (V, E) with no negative-weight edges in O(E) time.
(Hint: Pick d as a function of e.)

c. Show how to solve the all-pairs shortest-paths problem on an c-dense
directed graph G = (V, E) with no negative-weight edges in O( V E) time.

d. Show how to solve the all-pairs shortest-paths problem in O( V E) time
on an e-dense directed graph G (V, E) that may have negative-weight
edges but has no negative-weight cycles.

26-3 Minimum spanning tree as a closed semlring
Let G = (V, E) be a connected, undirected graph with weight function
w : E -; R. Let the vertex set be V = {I, 2, ... , n}, where n = lVI, and
assume that all edge weights w (i, j) are unique. Let T be the unique (see
Exercise 24.1-6) minimum spanning tree of G. In this problem, we shall
determine T by using a closed serniring, as suggested by B. M. Maggs and
S. A. Plotkin. We first determine, for each pair of vertices i,j E V, the
minimax weight

mij = min max w(e).i-e. j edges e on p

a. Briefly justify the assertion that S = (R U {-oo, oo} ,min, max, 00, -00)
is a closed semiring.

Since S is a closed semiring, we can use the COMPUTE-SUMMARIES proce
dure to determine the minimax weights mn in graph G. Let m)7 l be the
minimax weight over all paths from vertex i to vertex j with all interme
diate vertices in the set {I, 2, ... , k}.

b. Give a recurrence for m;jl, where k ~ O.

c. Let Ti; = {(i,j) E E: w(i,j) = mij}. Prove that the edges in Tm form
a spanning tree of G.

d. Show that Tm = T. (Hint: Consider the effect of adding edge (i,j)
to T and removing an edge on another path from i to j. Consider also
the effect of removing edge (i, j) from T and replacing it with another
edge.)
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Lawler [132] has a good discussion of the all-pairs shortest-paths problem,
although he does not analyze solutions for sparse graphs. He attributes
the matrix-multiplication algorithm to the folklore. The Floyd-Warshall
algorithm is due to Floyd [68], who based it on a theorem of Warshall [198]
that describes how to compute the transitive closure of boolean matrices.
The c1osed-semiring algebraic structure appears in Aho, Hopcroft, and
Ullman [4]. Johnson's algorithm is taken from [114].
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Just as we can model a road map as a directed graph in order to find the
shortest path from one point to another, we can also interpret a directed
graph as a "flow network" and use it to answer questions about material
flows. Imagine a material coursing through a system from a source, where
the material is produced, to a sink, where it is consumed. The source pro
duces the material at some steady rate, and the sink consumes the material
at the same rate. The "flow" of the material at any point in the system
is intuitively the rate at which the material moves. Flow networks can be
used to model liquids flowing through pipes, parts through assembly lines,
current through electrical networks, information through communication
networks, and so forth.

Each directed edge in a flow network can be thought of as a conduit for
the material. Each conduit has a stated capacity, given as a maximum rate
at which the material can flow through the conduit, such as 200 gallons of
liquid per hour through a pipe or 20 amperes of electrical current through
a wire. Vertices are conduit junctions, and other than the source and sink,
material flows through the vertices without collecting in them. In other
words, the rate at which material enters a vertex must equal the rate at
which it leaves the vertex. We call this property "flow conservation," and
it is the same as Kirchhoff's Current Law when the material is electrical
current.

The maximum-flow problem is the simplest problem concerning flow
networks. It asks, What is the greatest rate at which material can be
shipped from the source to the sink without violating any capacity con
straints? As we shall see in this chapter, this problem can be solved by
efficient algorithms. Moreover, the basic techniques used by these algo
rithms can be adapted to solve other network-flow problems.

This chapter presents two general methods for solving the maximum
flow problem. Section 27.1 formalizes the notions of flow networks and
flows, formally defining the maximum-flow problem. Section 27.2 de
scribes the classical method of Ford and Fulkerson for finding maximum
flows. An application of this method, finding a maximum matching in an
undirected bipartite graph, is given in Section 27.3. Section 27.4 presents
the preflow-push method, which underlies many of the fastest algorithms
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for network-flow problems. Section 27.5 covers the "lift-to-front" algo
rithm, a particular implementation of the preflow-push method that runs
in time O(V3 ) . Although this algorithm is not the fastest algorithm known,
it illustrates some of the techniques used in the asymptotically fastest al
gorithms, and it is reasonably efficient in practice.

27.1 Flow networks

In this section, we give a graph-theoretic definition of flow networks, dis
cuss their properties, and define the maximum-flow problem precisely. We
also introduce some helpful notation.

Flow networks and flows

A flow network G = (V, E) is a directed graph in which each edge (u, v) E E
has a nonnegative capacity c(u, v) ;::: O. If (u, v) ¢ E, we assume that
c(u, v) = O. We distinguish two vertices in a flow network: a source sand
a sink t. For convenience, we assume that every vertex lies on some path
from the source to the sink. That is, for every vertex v E V, there is a
path s ""'" v ""'" t. The graph is therefore connected, and lEI ;::: IVI - 1.
Figure 27.1 shows an example of a flow network.

We are now ready to define flows more formally. Let G = (V, E) be a
flow network (with an implied capacity function c). Let s be the source of
the network, and let t be the sink. A flow in G is a real-valued function
I: V x V ---+ R that satisfies the following three properties:

Capacity constraint: For all u, v E V, we require [iu, v) ~ c(u, v).

Skew symmetry: For all u, v E V, we require I(u, v) = - I(v, u).

Flow conservation: For all u E V - is, t}, we require

L/(u,v)=O.
1JEV

The quantity fiu, v), which can be positive or negative, is called the net
flow from vertex u to vertex v. The valueof a flow I is defined as

III = L [ts, v) ,
vEV

(27.1)

that is, the total net flow out of the source. (Here, the 1·1 notation denotes
flow value, not absolute value or cardinality.) In the maximum-flow prob
lem, we are given a flow network G with source s and sink t, and we wish
to find a flow of maximum value from s to t,

Before seeing an example of a network-flow problem, let us briefly ex
plore the three flow properties. The capacity constraint simply says that
the net flow from one vertex to another must not exceed the given capac
ity. Skew symmetry says that the net flow from a vertex u to a vertex v
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Figure 27.1 (a) A flow network G = (V,E) for the Lucky Puck Company's truck
ing problem. The Vancouver factory is the source s, and the Winnipeg warehouse
is the sink t. Pucks are shipped through intermediate cities, but only c(u, v) crates
per day can go from city u to city v. Each edge is labeled with its capacity. (b) A
flow J in G with value IJI = 19. Only positive net flows are shown. If J(u, v) > 0,
edge (u, v) is labeled by J(u, v)/c(u, v). (The slash notation is used merely to sep
arate the flow and capacity; it does not indicate division.) If f'iu, v) ~ 0, edge
(u, v) is labeled only by its capacity.

is the negative of the net flow in the reverse direction. Thus, the net flow
from a vertex to itself is 0, since for all U E V, we have !(u, u) = - f'tu, u),
which implies that ftu, u) = O. The flow-conservation property says that
the total net flow out of a vertex other than the source or sink is O. By
skew symmetry, we can rewrite the flow-conservation property as

L !(u,v) = 0
uEV

for all v E V {s, t}. That is, the total net flow into a vertex is O.
Observe also that there can be no net flow between u and v if there

is no edge between them. If neither (u, v) E E nor (v, u) E E, then
ctu, v) = c(v, u) = O. Hence, by the capacity constraint, ftu, v) ~ 0
and [t», u) ~ O. But since f'tu, v) = - [(», u), by skew symmetry, we have
ftu, v) = !(v, u) = O. Thus, nonzero net flow from vertex u to vertex v
implies that (u, v) E E or (v, u) E E (or both).

Our last observation concerning the flow properties deals with net flows
that are positive. The positive netflow entering a vertex v is defined by

L !(u,v).
uEV

f(u,v»O

(27.2)

The positive net flow leaving a vertex is defined symmetrically. One in
terpretation of the flow-conservation property is that the positive net flow
entering a vertex other than the source or sink must equal the positive net
flow leaving the vertex.
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An example of network flow

A flow network can model the trucking problem shown in Figure 27.1. The
Lucky Puck Company has a factory (source s) in Vancouver that manu
factures hockey pucks, and it has a warehouse (sink t) in Winnipeg that
stocks them. Lucky Puck leases space on trucks from another firm to ship
the pucks from the factory to the warehouse. Because the trucks travel
over specified routes between cities and have a limited capacity, Lucky
Puck can ship at most c(u, v) crates per day between each pair of cities u
and v in Figure 27.I(a). Lucky Puck has no control over these routes and
capacities and so cannot alter the flow network shown in Figure 27.1(a).
Their goal is to determine the largest number p of crates per day that can
be shipped and then to produce this amount, since there is no point in
producing more pucks than they can ship to their warehouse.

The rate at which pucks are shipped along any truck route is a flow.
The pucks emanate from the factory at the rate of p crates per day, and p
crates must arrive at the warehouse each day. Lucky Puck is not concerned
with how long it takes for a given puck to get from the factory to the
warehouse; they care only that p crates per day leave the factory and p
crates per day arrive at the warehouse. The capacity constraints are given
by the restriction that the flow j(u, v) from city u to city v to be at most
c(u, v) crates per day. In a steady state, the rate at which pucks enter an
intermediate city in the shipping network must equal the rate at which
they leave; otherwise, they would pile up. Flow conservation is therefore
obeyed. Thus, a maximum flow in the network determines the maximum
number p of crates per day that can be shipped.

Figure 27.1(b) shows a possible flow in the network that is represented
in a way that naturally corresponds to shipments. For any two vertices u
and v in the network, the net flow j(u, v) corresponds to a shipment of
j(u, v) crates per day from u to v. If ftu, v) is 0 or negative, then there is
no shipment from u to v. Thus, in Figure 27.1(b), only edges with positive
net flow are shown, followed by a slash and the capacity of the edge.

We can understand the relationship between net flows and shipments
somewhat better by focusing on the shipments between two vertices. Fig
ure 27.2(a) shows the subgraph induced by vertices VI and V2 in the flow
network of Figure 27.1. If Lucky Puck ships 8 crates per day from VI

to V2, the result is shown in Figure 27.2(b): the net flow from VI to V2 is
8 crates per day. By skew symmetry, we also say that the net flow in the
reverse direction, from V2 to VI, is -8 crates per day, even though we do
not ship any pucks from V2 to VI. In general, the net flow from VI to V2 is
the number of crates per day shipped from VI to V2 minus the number per
day shipped from V2 to VI. Our convention for representing net flows is
to show only positive net flows, since they indicate the actual shipments;
thus, only an 8 appears in the figure, without the corresponding -8.
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(a) (b) (c) (d) (e)

Figure 27.2 Cancellation. (a) Vertices VI and V2, with c(v" V2) 10 and
C(V2, vd = 4. (b) How we indicate the net flow when 8 crates per day are shipped
from VI to V2. (c) An additional shipment of 3 crates per day is made from V2

to VI. (d) By cancelling flow going in opposite directions, we can represent the
situation in (c) with positive net flow in one direction only. (e) Another 7 crates
per day is shipped from V2 to VI.

Now let's add another shipment, this time of 3 crates per day from V2

to VI. One natural representation of the result is shown in Figure 27.2(c).
We now have a situation in which there are shipments in both directions
between VI and V2. We ship 8 crates per day from VI to V2 and 3 crates
per day from V2 to VI. What are the net flows between the two vertices?
The net flow from VI to V2 is 8 3 5 crates per day, and the net flow
from V2 to VI is 3 - 8 = -5 crates per day.

The situation is equivalent in its result to the situation shown in Fig
ure 27.2(d), in which 5 crates per day are shipped from VI to V2 and no
shipments are made from V2 to VI. In effect, the 3 crates per day from
V2 to VI are cancelled by 3 of the 8 crates per day from VI to V2. In both
situations, the net flow from VI to V2 is 5 crates per day, but in (d), actual
shipments are made in one direction only.

In general, cancellation allows us to represent the shipments between two
cities by a positive net flow along at most one of the two edges between
the corresponding vertices. If there is zero or negative net flow from one
vertex to another, no shipments need be made in that direction. That is,
any situation in which pucks are shipped in both directions between two
cities can be transformed using cancellation into an equivalent situation in
which pucks are shipped in one direction only: the direction of positive net
flow. Capacity constraints are not violated by this transformation, since
we reduce the shipments in both directions, and conservation constraints
are not violated, since the net flow between the two vertices is the same.

Continuing with our example, let us determine the effect of shipping
another 7 crates per day from V2 to VI. Figure 27.2(e) shows the result
using the convention of representing only positive net flows. The net flow
from VI to V2 becomes 5-7 = -2, and the net flow from V2 to VI becomes
7 - 5 = 2. Since the net flow from V2 to VI is positive, it represents a
shipment of 2 crates per day from V2 to VI. The net flow from VI to V2

is -2 crates per day, and since the net flow is not positive, no pucks are
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(a)

Figure 27.3 Converting a multiple-source, multiple-sink maximum-flow problem
into a problem with a single source and a single sink. (a) A flow network with
five sources S = {SI,S2,S3,S4,SS} and three sinks T = {tl, 12, 13}' (b) An equivalent
single-source, single-sink flow network. We add a supersource s' and an edge with
infinite capacity from s' to each of the multiple sources. We also add a supersink r
and an edge with infinite capacity from each of the multiple sinks to r.

shipped in this direction. Alternatively, of the 7 additional crates per day
from V2 to VI, we can view 5 of them as cancelling the shipment of 5 per
day from VI to V2, which leaves 2 crates as the actual shipment per day
from V2 to VI.

Networks with multiple sources and sinks

A maximum-flow problem may have several sources and sinks, rather than
just one of each. The Lucky Puck Company, for example, might actu
ally have a set of m factories {SI, S2, ..• , sm} and a set of n warehouses
{tl,t2, ... ,tn }, as shown in Figure 27.3(a). Fortunately, this problem is no
harder than ordinary maximum flow.

We can reduce the problem ofdetermining a maximum flow in a network
with multiple sources and multiple sinks to an ordinary maximum-flow
problem. Figure 27.3(b) shows how the network from (a) can be converted
to an ordinary flow network with only a single source and a single sink. We
add a supersource S and add a directed edge (s,Si) with capacity c(s, sd = 00

for each i = 1,2, ... , m. We also create a new supersink t and add a directed
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edge tt], t) with capacity cit], t) 00 for each i 1,2, ... , n. Intuitively,
any flow in the network in (a) corresponds to a flow in the network in (b),
and vice versa. The single source s simply provides as much flow as desired
for the multiple sources s., and the single sink t likewise consumes as much
flow as desired for the multiple sinks ti. Exercise 27.1-3 asks you to prove
formally that the two problems are equivalent.

Working with flows

We shall be dealing with several functions (like f) that take as arguments
two vertices in a flow network. In this chapter, we shall use an implicit
summation notation in which either argument, or both, may be a set of
vertices, with the interpretation that the value denoted is the sum of all
possible ways of replacing the arguments with their members. For example,
if X and Yare sets of vertices, then

j(X, Y) = L L j(x,y) .
xEX yEY

As another example, the flow-conservation constraint can be expressed as
the condition that j(u, V) = 0 for all u E V - {s, t}. Also, for convenience,
we shall typically omit set braces when they would otherwise be used in the
implicit summation notation. For example, in the equation j(s, V - s) =
j(s, V), the term V - s means the set V - {s}.

The implicit set notation often simplifies equations involving flows. The
following lemma, whose proof is left as Exercise 27.1-4, captures several of
the most commonly occurring identities that involve flows and the implicit
set notation.

Lemma 27.1
Let G = (V, E) be a flow network, and let j be a flow in G. Then, for
X~ V,

j(X,X) = O.

For X, Y ~ V,

j(X,Y) -j(Y,X).

For X, Y, Z ~ V with X n Y 0,

j(X U Y,Z) = j(X, Z) + j(Y, Z)

and

j(Z, Xu Y) j(Z, X) + j(Z, Y) . •
As an example of working with the implicit summation notation, we can

prove that the value of a flow is the total net flow into the sink; that is,
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1/1= I(V, t) . (27.3)

This is intuitively true, since all vertices other than the source and sink
have a net flow of 0 by flow conservation, and thus the sink is the only
other vertex that can have a nonzero net flowto match the source's nonzero
net flow. Our formal proof goes as follows:

III fts, V)

I(V, V) - I(V - s, V)

I(V,V-s)

I( V, t) + I( V, V - s - t)

I(V, t)

(by definition)

(by Lemma 27.1)

(by Lemma 27.1)

(by Lemma 27.1)

(by flow conservation) .

Later in this chapter, we shall generalize this result (Lemma 27.5).

Exercises

27.1-1
Given vertices u and v in a flow network, where c(u, v) = 5 and c(v, u) 8,
suppose that 3 units of flow are shipped from u to v and 4 units are shipped
from v to u. What is the net flow from u to v? Draw the situation in the
style of Figure 27.2.

27.1-2
Verify each of the three flow properties for the flow I shown in Fig
ure 27.1(b).

27.1-3
Extend the flow properties and definitions to the multiple-source, multiple
sink problem. Show that any flow in a multiple-source, multiple-sink flow
network corresponds to a flowof identical value in the single-source, single
sink network obtained by adding a supersource and a supersink, and vice
versa.

27.1-4
Prove Lemma 27.1.

27.1-5
For the flow network G = (V,E) and flow I shown in Figure 27.I(b), find
a pair of subsets X, Y <;;; V for which I(X, Y) = - I( V X, Y). Then, find
a pair of subsets X, Y <;;; V for which I(X, Y) ;f:. - I( V X, Y).

27.1-6
Given a flow network G = (V, E), let II and h be functions from V x V
to R. The flow sum II + h is the function from V x V to R defined by

(fi + h)(u, v) = II (u, v) + h(u, v) (27.4)
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for all u, v E V. If ft and h are flows in G, which of the three flow
properties must the flow sum ft + h satisfy, and which might it violate?

27.1-7
Let J be a flow in a network, and let a be a real number. The scalar flow
product «f is a function from V x V to R defined by

(aJ)(u, v) = a· J(u, v) .

Prove that the flows in a network form a convex set by showing that if ft
and [: are flows, then so is aft + (1 - a) fi for all a in the range 0 :::; a :::; 1.

27.1-8
State the maximum-flow problem as a linear-programming problem.

27.1-9
The flow-network model introduced in this section supports the flow of
one commodity; a multicommodity flow network supports the flow of p
commodities between a set of p source vertices S = {Sh S2, •.. , sp} and a set
of p sink vertices T = {t" t2,"" tp } . The net flow of the rth commodity
from u to v is denoted Ii(u, v). For the zth commodity, the only source
is s, and the only sink is L], There is flow conservation independently for
each commodity: the net flow of each commodity out of each vertex is
zero unless the vertex is the source or sink for the commodity. The sum
of the net flows of all commodities from u to v must not exceed c(u, v),
and in this way the commodity flows interact. The value of the flow of
each commodity is the net flow out of the source for that commodity.
The total flow value is the sum of the values of all p commodity flows.
Prove that there is a polynomial-time algorithm that solves the problem of
finding the maximum total flow value of a multicommodity flow network
by formulating the problem as a linear program.

27.2 The Ford-Fulkerson method

This section presents the Ford-Fulkerson method for solving the maxi
mum-flow problem. We call it a "method" rather than an "algorithm" be
cause it encompasses several implementations with differing running times.
The Ford-Fulkerson method depends on three important ideas that tran
scend the method and are relevant to many flow algorithms and problems:
residual networks, augmenting paths, and cuts. These ideas are essen
tial to the important max-flow min-cut theorem (Theorem 27.7), which
characterizes the value of a maximum flow in terms of cuts of the flow
network. We end this section by presenting one specific implementation
of the Ford-Fulkerson method and analyzing its running time.

The Ford-Fulkerson method is iterative. We start with J( u, v) = 0 for all
u,v E V, giving an initial flow of value O. At each iteration, we increase
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the flow value by finding an "augmenting path," which we can think of
simply as a path from the source s to the sink t along which we can push
more flow, and then augmenting the flow along this path. We repeat this
process until no augmenting path can be found. The max-flow min-cut
theorem will show that upon termination, this process yields a maximum
flow.

FORD-FuLKERSON-METHoD(G, s, t)

1 initialize flow f to 0
2 while there exists an augmenting path p
3 do augment flow f along p
4 return f

Residual networks

Intuitively, given a flow network and a flow, the residual network consists
of edges that can admit more net flow. More formally, suppose that we
have a flow network G (V, E) with source S and sink t. Let f be a flow
in G, and consider a pair of vertices u, v E V. The amount of additional
net flow we can push from u to v before exceeding the capacity c(u, v) is
the residual capacity of (u, v), given by

cf(u, v) c(u, v) f(u, v) . (27.5)

For example, if c(u, v) = 16 and f(u, v) = 11, then we can ship c.tu, v) = 5
more units of flow before we exceed the capacity constraint on edge (u, v).
When the net flow f( u, v) is negative, the residual capacity cr( u, v) is
greater than the capacity c(u, v). For example, ifciu, v) = 16 and f(u, v) =

-4, then the residual capacity cf(u, v) is 20. We can interpret this as
follows. There is a net flow of 4 units from v to u, which we can cancel by
pushing a net flow of 4 units from u to v. We can then push another 16
units from u to v before violating the capacity constraint on edge (u, v).
We have thus pushed an additional 20 units of flow, starting with a net
flow f( u, v) = -4, before reaching the capacity constraint.

Given a flow network G = (V, E) and a flow f, the residual network of G
induced by f is Gf = (V, Ef), where

Ef = {(u, v) E V x V: cf(u, v) > O} .

That is, as promised above, each edge of the residual network, or residual
edge, can admit a strictly positive net flow. Figure 27.4(a) repeats the flow
network G and flow f of Figure 27.1(b), and Figure 27.4(b) shows the
corresponding residual network Gf.

Notice that (u, v) may be a residual edge in E r even if it was not an edge
in E. In other words, it may very well be the case that E r <l E. The residual
network in Figure 27.4(b) includes several such edges not in the original
flow network, such as (VI> s) and (V2, V3). Such an edge (u, v) appears in Gf
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Figure 27.4 (a) The flow network G and fl ow f of Figure 27.1 (b). (b) The
residual network Gf with augmenting path p shaded: its residual capacity is
c/(p ) = C(V2, VI ) = 4. (t) The fl ow in G that results from augmenting along path p
by its residual capacity 4. (d) The residual net....'ark induced by the flow in (c).

only if (v , u) E £ a nd there is positive net flow fro m v to u. Because the net
flow I (u, v) from u to v is negative, cf( u, v ) = c(u, v) - I (u, v ) is posi tive
and (u, v ) E £1' Because a n edge (u, v ) can appear in a residual network
only if at least one of (u, v) and (v , u) appears in the original net work, we
ha ve the bound

IE[ I" 2lEI·
Observe that the residu al network G1 is itself a flow net work with ca

paciti es given by cf. T he following lem ma shows how a flow in a residu al
net work relates to a flow in the origina l flow network.

Lemma 27.2
Let G = ( V, £ ) be a flow network with source s and sink t , a nd let I be a
flow in G. Let G1 be the residua l network of G induced by I , a nd let F
be a flow in G1. Then, the flow sum 1+ F defined by equation (27.4) is
a now in G with value If +1'1~ III + 11'1·

Proof We must verify th at skew symmetry , the capacity constrai nts , a nd
flow conservatio n are obeyed. For skew symme try , note that for aU u,v E
V, we have

(f + 1')(u, V) = f eu, v ) + 1'(u, v )

= - f (v , u) - 1'(v , u)

~ -(f(v , u) + 1'(v , u ))
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= -(I + I')(v, u) .

For the capacity constraints, note that f'(u,v) ~ cf(u,v) for all u,v E V.
By equation (27.5), therefore,

(f + I')(u, v) = [tu, v) + f'(u, v)

~ !(u, v) + (c(u, v) - Jt». v))

= c(u,v).

For flow conservation, note that for all u E V - {s, r}, we have

L(f+ !')(u, v) =
vEV

L(f(u, v) + ['tu, v))
vEV

= L!(u,v) + LI'(u,v)
vEV vEV

= 0+0
= 0 ~

Finally, we have

1/+1'1 L(f+ f')(s, v)
vEV

= L(f(s, v) + I'(s, v))
vEV

= L [ts, v) + L !'(s, v)
vEV vEV

= 1/1+1/'1· •

Augmenting paths

Given a flow network G = (V, E) and a flow j", an augmenting path p is a
simple path from s to t in the residual network Gf. By the definition of
the residual network, each edge (u, v) on an augmenting path admits some
additional positive net flow from u to v without violating the capacity
constraint on the edge.

The shaded path in Figure 27A(b) is an augmenting path. Treating
the residual network Gf in the figure as a flow network, we can ship up
to 4 units of additional net flow through each edge of this path without
violating a capacity constraint, since the smallest residual capacity on this
path is Cf(V2, V3) = 4. We call the maximum amount of net flow that we
can ship along the edges of an augmenting path p the residual capacity of p,
given by

cf(P) = min {cf(u, v) : (u, v) is on p} .

The following lemma, whose proof is left as Exercise 27.2-7, makes the
above argument more precise.
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•

(27.6)

Lemma 27.3
Let G (V, E) be a flow network, let f be a flow in G, and let P be an
augmenting path in Gf . Define a function h : V x V - R by

{

Cf (P) if (u, v) is on p ,
h(u, v) = -cr(P) if (v, u) is on p ,

o otherwise .

Then, h is a flow in Gf with value IhI= Cf(P) > O.

The following corollary shows that if we add h to f, we get another
flow in G whose value is.closer to the maximum. Figure 27.4(c) shows the
result of adding h in Figure 27.4(b) to f from Figure 27.4(a).

Corollary 27.4-
Let G = (V, E) be a flow network, let f be a flow in G, and let P be an
augmenting path in G], Let h be defined as in equation (27.6). Define a
function I' : V x V - R by I' = f +h. Then, I' is a flow in G with value
11'1 = IfI+ Ihl > IfI·

Proof Immediate from Lemmas 27.2 and 27.3.

Cuts of flow networks

•

The Ford-Fulkerson method repeatedly augments the flow along augment
ing paths until a maximum flow has been found. The max-flow min-cut
theorem, which we shall prove shortly, tells us that a flow is maximum if
and only if its residual network contains no augmenting path. To prove
this theorem, though, we must first explore the notion of a cut of a flow
network.

A cut (S, T) of flow network G = (V, E) is a partition of V into Sand
T V - S such that s E Sand t E T. (This definition is like the definition
of "cut" that we used for minimum spanning trees in Chapter 24, except
that here we are cutting a directed graph rather than an undirected graph,
and we insist that S E Sand t E T.) If f is a flow, then the net flow across
the cut (S, T) is defined to be f(S, T). The capacity of the cut (S, T) is
c(S, T).

Figure 27.5 shows the cut ({s, VI, V2}, {V3,V4, t}) in the flow network of
Figure 27.1(b). The net flow across this cut is

f(vt, V3) + f(V2, V3) + f(V2' V4) 12 + (-4) + 11

= 19,

and its capacity is

C(Vl,V3) +C(V2,V4) 12 + 14

26.
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Figure 27.S A cut (S, T) in the flow network of Figure 27.I(b), where S
{s, VI, V2} and T = {V3' V4, r}. The vertices in S are black, and the vertices in Tare
white. The net flow across (8, T) is /(S, T) = 19, and the capacity is c(S, T) = 26.

Observe that the net flow across a cut can include negative net flows be
tween vertices, but that the capacity of a cut is composed entirely of non
negative values.

The following lemma shows that the value of a flow in a network is the
net flow across any cut of the network.

Lemma 27.5
Let I be a flow in a flow network G with source s and sink t, and let (8, T)
be a cut of G. Then, the net flow across (8, T) is 1(8, T) = III.

Proof Using Lemma 27.1 extensively, we have

1(8, T) 1(8, V) - 1(8,8)

= 1(8, V)

I(s, V) +1(8 - s, V)

fts, V)

= III· •

An immediate corollary to Lemma 27.5 is the result we proved earlier
equation (27.3)-that the value of a flow is the net flow into the sink.

Another corollary to Lemma 27.5 shows how cut capacities can be used
to bound the value of a flow.

Corollary 27.6
The value of any flow I in a flow network G is bounded from above by
the capacity of any cut of G.

Proof Let (8, T) be any cut of G and let I be any flow. By Lemma 27.5
and the capacity constraints,

III = 1(8, T)
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= LLf(u,v)
uESvET

< LLc(u,v)
uES1!ET

= ct S, T) .
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•

We are now ready to prove the important max-flow min-cut theorem.

Theorem 27.7 (Max-flow min-cut theorem)
If f is a flow in a flow network G (V, E) with source s and sink t, then
the following conditions are equivalent:

1. f is a maximum flow in G.

2. The residual network Gf contains no augmenting paths.

3. IfI = c(8, T) for some cut (S, T) of G.

Proof (1) => (2): Suppose for the sake of contradiction that f is a max
imum flow in G but that G, has an augmenting path p, Then, by Corol
lary 27.4, the flow sum f + /p, where /p is given by equation (27.6), is a
flow in G with value strictly greater than If I, contradicting the assumption
that f is a maximum flow.

(2) => (3): Suppose that Gf has no augmenting path, that is, that Gf
contains no path from s to t. Define

S {v E V: there exists a path from s to v in Gf }

and T = V - 8. The partition (8, T) is a cut: we have s E 8 trivially
and t ¢ S because there is no path from s to T in Gf. For each pair of
vertices u and v such that u E S and vET, we have f( u,v) = c(u, v),
since otherwise (u,v) E Ef and v is in set 8. By Lemma 27.5, therefore,
IfI = f(8, T) = c(8, T).

(3) => (I): By Corollary 27.6, IfI ~ c(S, T) for all cuts (8, T). The
condition IfI = c(S, T) thus implies that f is a maximum flow. •

The basic Ford-Fulkerson algorithm

In each iteration of the Ford-Fulkerson method, we find any augmenting
path p and augment flow f along p by the residual capacity cf(P). The
following implementation of the method computes the maximum flow in
a graph G = (V, E) by updating the net flow f[ u, v] between each pair u,v
of vertices that are connected by an edge. I If u and v are not connected

I We use square brackets when we treat an identifier-such as f -as a mutable field. and we
use parentheses when we treat it as a function.
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by an edge in either direction, we assume implicitly that flu, v] O. The
code assumes that the capacity from u to v is provided by a constant-time
function c(u,v), with c(u,v) 0 if (u,v) ¢ E. (In a typical implementa
tion, c(u, v) might be derived from fields stored within vertices and their
adjacency lists.) The residual capacity cr( u, v) is computed in accordance
with the formula (27.5). The expression cr(p) in the code is actually just
a temporary variable that stores the residual capacity of the path p,

FORD-FuLKERSON(G,s, t)

1 for each edge (u, v) E E[G]
2 do flu, v] .- 0
3 f[v,u],-O
4 while there exists a path p from s to t in the residual network Gf
5 do cf(P)'- min {cr(u,v) : (u,v) is inp}
6 for each edge (u, v) in p

7 do flu, v] .- flu, v] + cf(P)
8 f[v, u] .- - flu, v]

The FORD-FULKERSON algorithm simply expands on the FORD-FuLKER
SON-METHOD pseudocode given earlier. Figure 27.6 shows the result of
each iteration in a sample run. Lines 1-3 initialize the flow f to O. The
while loop of lines 4-8 repeatedly finds an augmenting path p in Gr and
augments flow f along p by the residual capacity Cf(P). When no aug
menting paths exist, the flow f is a maximum flow.

Analysis of Ford-Fulkerson

The running time of FORD-FULKERSON depends on how the augment
ing path p in line 4 is determined. If it is chosen poorly, the algorithm
might not even terminate: the value of the flow will increase with succes
sive augmentations, but it need not even converge to the maximum flow
value. If the augmenting path is chosen by using a breadth-first search
(Section 23.2), however, the algorithm runs in polynomial time. Before
proving this, however, we obtain a simple bound for the case in which the
augmenting path is chosen arbitrarily and all capacities are integers.

Most often in practice, the maximum-flow problem arises with integral
capacities. If the capacities are rational numbers, an appropriate scaling
transformation can be used to make them all integral. Under this assump
tion, a straightforward implementation of FORD-FULKERSON runs in time
O(E 11*1), where r: is the maximum flow found by the algorithm. The
analysis is as follows. Lines 1-3 take time aCE). The while loop oflines 4
8 is executed at most 11*1 times, since the flow value increases by at least
one unit in each iteration.

The work done within the while loop can be made efficient if we ef
ficiently manage the data structure used to implement the network G =

(V, E). Let us assume that we keep a data structure corresponding to a
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(a)
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Figure 27.6 The execut ion of the basic Ford-Fulkerson algorithm. (a)-(d) Sue
cessive iterations of the while loop. The left side of each part shows the residual
network Gf from line 4 with a shaded augmenting path p, The right side of each
part shows the new flow f that results from add ing h to f . The residual network
in (a) is the inp ut network G. (e) Th e residu al network at the last while loo p test.
It has no augment ing paths, and the flow f shown in (d) is therefore a maximum
flow.
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(b)

I

A,.."-'~~
I

- <ffl~'./"~
\

(0)

Figure 27.7 (a ) A flow network for which FORD-Fu LKERSON ca n lake a (E 1f"1l
time, where r is a maxi mum flow, shown here with 11"1 = 2,000,000 . An aug
menting path with residual capaci ty I is shown. (b) Th e resulting residua l networ k.
Another augmenting path with residual capacity I is shown. (c) The result ing resid
ual networ k.

d irected graph G' = (V, E' ), where E' = {( u,v ): (u,v) E £ or (v , u) E E} .
Edges in the network G are also edges in G' , and it is therefore a simple
matter to maintai n capacities and flows in this data structure. Given a
flow f on G. the edges in the residual network Gf consist of all edges
(u, v ) of G' such th at c(u,v ) - fl u, v ] #: O. The time to find a pat h in
a residual network is therefore 0 (£' ) = O(E) if we use either depth-first
search or breadth-fi rst search. Each iterati on of the while loop thu s takes
0 (£ ) tim e, makin g the total running tim e of FORD-FuLKERSON O(E If" I).

When the capacities arc integral and the optimal flow value If" I is small,
the running time of the Ford-Fulkerson algorithm is good. Figure 27.7(a)
shows an example of what can happen on a simple flow network for
which If ·1 is large. A maximum flow in th is network has value 2,000,000 :
1,000,000 units of flow traverse the path s -+ u -- t, and another 1,000,000
units traverse the path s -- v -- t. If the fi rst augmenting pat h found
by FORD-FuLK.ERSON is s -+ u -+ v __ t , shown in Figure 27.7(a), the
flow has value 1 after the first itera tion. The resultin g residua l network is
shown in Figure 27.7(b). If the second iterat ion finds the augmenting path
s -- v -- u -+ t, as shown in Figure 27.7(b), the flow then has value 2. Fig
ure 27.7(c) shows the resulti ng residual network. We can continue, choos
ing the augmenting path s __ u -+ v -- t in the odd-numbered itera tions
and the augmenting path s -- v -- u -- t in the even-numbered iterations.
We would perfo rm a total of 2,000 ,000 augmentat ions, increasing the flow
value by only I unit in each.

The bound on FORD-FuLK.ERso N can be improved if we implement the
computation of the augmenting path p in line 4 with a breadth-first search,
that is, if the augmenting path is a shortest path from s to t in the residual
network, where each edge has uni t distance (weight). We call the Ford
Fulkerson method so implemented the Edmonds- Kllrp lllgorithm. We now
prove that the Edmonds-Karp algorithm runs in O(V £ 2) time.
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The analysis depends on the distances to vertices in the residual net
work GJ. The following lemma uses the notation 8J( u, v) for the shortest
path distance from u to v in GJ' where each edge has unit distance.

Lemma 27.8
If the Edmonds-Karp algorithm is run on a flow network G = (V, E) with
source s and sink t, then for all vertices v E V {s, t}, the shortest-path
distance 8J (s, v) in the residual network GJ increases monotonically with
each flow augmentation.

Proof Suppose for the purpose of contradiction that for some vertex
v E V - {s, t}, there is a flow augmentation that causes 8f (s, v) to decrease.
Let ! be the flow just before the augmentation, and let f' be the flow just
afterward. Then,

8.f'(s,v) < 8J(s,v) .

We can assume without loss of generality that 8p(s,v) ~ 8p(s,u) for all
vertices U E V {s,t} such that 8p (s, u) < 8J (s, u). Equivalently, we can
assume that for all vertices U E V - {s, t},

8p(s,u) <8p(s,v) implies8J(s,u):5 8p(s,u). (27.7)

We now take a shortest path p' in Gt" of the form s ~ U - v and
consider the vertex U that precedes v on this path. We must have 8f' (s, u) =
8p(s,v) - I by Corollary 25.2, since (u,v) is an edge on pi, which is a
shortest path from S to v. By our assumption (27.7), therefore,

8f(s,u) ~ 8jt(s,u).

With vertices v and U thus established, we can consider the net flow !
from u to v before the augmentation of flow in GJ. If ![u, v] < c(u, v),
then we have

8f (s, v ) < 8f (s, u) + I

< 8p (s, u) + I

= 8p (s, v ) ,

(by Lemma 25.3)

which contradicts our assumption that the flow augmentation decreases
the distance from S to v.

Thus, we must have ![u, v] = c(u, v), which means (u, v) rt. E]. Now, the
augmenting path p that was chosen in Gf to produce Gjt must contain the
edge (v, u) in the direction from v to u, since (u, v) E Ep (by supposition)
and (u, v) rt. Ef as we have just shown. That is, augmenting flow along the
path p pushes flow back along (u, v), and v appears before u on p, Since p
is a shortest path from S to t, its subpaths are shortest paths (Lemma 25.1),
and thus we have 8((s, u) = 8/(s, v) + 1. Consequently,
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< OJ'(s,u)-l

= oj'(s,v)-2

< OJ'(s,v),

which contradicts our initial assumption. •
The next theorem bounds the number of iterations of the Edmonds-Karp

algorithm.

Theorem 27.9
If the Edmonds-Karp algorithm is run on a flow network G = (V, E) with
source s and sink t, then the total number of flowaugmentations performed
by the algorithm is at most O( VE).

Proof We say that an edge (u, v) in a residual network Gf is critical on
an augmenting path p if the residual capacity of p is the residual capacity
of (u,v), that is, if cf(P) = cf(u,v). After we have augmented flow along
an augmenting path, any critical edge on the path disappears from the
residual network. Moreover, at least one edge on any augmenting path
must be critical.

Let u and v be vertices in V that are connected by an edge in E.
How many times can (u, v) be a critical edge during the execution of
the Edmonds-Karp algorithm? Since augmenting paths are shortest paths,
when (u, v) is critical for the first time, we have

0f(s, v) = 0f(s, u) + 1 .

Once the flow is augmented, the edge (u, v) disappears from the residual
network. It cannot reappear later on another augmenting path until after
the net flow from u to v is decreased, and this only happens if (v, u)
appears on an augmenting path. If f' is the flow in G when this event
occurs, then we have

OJ'(S,u) = OJ'(s, v) + 1.

Since 0f(s, v) :S oj'(s, v) by Lemma 27.8, we have

oj'(s,u) oj'(s,v) + 1

> °f(s,v) + 1

= °f(s,u)+2.

Consequently, from the time (u, v) becomes critical to the time when
it next becomes critical, the distance of u from the source increases by at
least 2. The distance of u from the source is initially at least 1, and until
it becomes unreachable from the source, if ever, its distance is at most
IVI - 2. Thus, (u, v) can become critical at most O( V) times. Since there
are O(E) pairs of vertices that can have an edge between them in a residual
graph, the total number of critical edges during the entire execution of the
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Edmonds-Karp algorithm is O(VE). Each augmenting path has at least
one critical edge, and hence the theorem follows. •

Since each iteration of FORD-FuLKERSON can be implemented in O(E)
time when the augmenting path is found by breadth-first search, the total
running time of the Edmonds-Karp algorithm is O(VE2). The algorithm
of Section 27.4 gives a method for achieving an O( V2E) running time,
which forms the basis for the 0(V3)-time algorithm of Section 27.5.

Exercises

27.2-1
In Figure 27.I(b), what is the flow across the cut ({S,V2,V4},{VI,V3,f})?
What is the capacity of this cut?

27.2-2
Show the execution of the Edmonds-Karp algorithm on the flow network
of Figure 27.I(a).

27.2-3
In the example of Figure 27.6, what is the minimum cut corresponding
to the maximum flow shown? Of the augmenting paths appearing in the
example, which two cancel flow that was previously shipped?

27.2-4
Prove that for any pair of vertices u and v and any capacity and flow
functions c and I, we have Cj(u, v) + cjt», u) = c(u, v) + c(v, u).

27.2-5
Recall that the construction in Section 27.1 that converts a multisource,
multisink flow network into a single-source, single-sink network adds edges
with infinite capacity. Prove that any flow in the resulting network has a
finite value if the edges of the original multisource, multisink network have
finite capacity.

27.2-6
Suppose that each source s, in a multisource, multisink problem produces
exactly Pi units of flow, so that I(Si, V) =Pi. Suppose also that each sink fj
consumes exactly qj units, so that I(V,fj) = qj, where '£iPi = '£jqj.
Show how to convert the problem of finding a flow I that obeys these
additional constraints into the problem of finding a maximum flow in a
single-source, single-sink flow network.

27.2-7
Prove Lemma 27.3.
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27.2-8
Show that a maximum flow in a network G = (V, E) can always be found
by a sequence of at most lEI augmenting paths. (Hint: Determine the paths
after finding the maximum flow.)

27.2-9
The edge connectivity of an undirected graph is the minimum number k
of edges that must be removed to disconnect the graph. For example, the
edge connectivity of a tree is I, and the edge connectivity of a cyclic chain
of vertices is 2. Show how the edge connectivity of an undirected graph
G = (V, E) can be determined by running a maximum-flow algorithm on
at most IVI flow networks, each having O( V) vertices and O(E) edges.

27.2-10
Show that the Edmonds-Karp algorithm terminates after at most IVI lEI /4
iterations. (Hint: For any edge (u, v), consider how both J(s, u) and J(u, t)
change between times at which (u, v) is critical.)

27.3 Maximum bipartite matching

Some combinatorial problems can easily be cast as maximum-flow prob
lems. The multiple-source, multiple-sink maximum-flow problem from
Section 27.1 gave us one example. There are other combinatorial prob
lems that seem on the surface to have little to do with flow networks, but
can in fact be reduced to a maximum-flow problem. This section presents
one such problem: finding a maximum matching in a bipartite graph (see
Section 5.4). In order to solve this problem, we shall take advantage of an
integrality property provided by the Ford-Fulkerson method. We shall also
see that the Ford-Fulkerson method can be made to solve the maximum
bipartite-matching problem on a graph G (V, E) in O( VE) time.

The maximum-bipartite-matching problem

Given an undirected graph G = (V, E), a matching is a subset of edges
M ~ E such that for all vertices v E V, at most one edge of M is incident
on v. We say that a vertex v E V is matched by matching M if some edge
in M is incident on v; otherwise, v is unmatched. A maximum matching is
a matching of maximum cardinality, that is, a matching M such that for
any matching M', we have IMI 2: IM'I. In this section, we shall restrict our
attention to finding maximum matchings in bipartite graphs. We assume
that the vertex set can be partitioned into V = L U R, where Land Rare
disjoint and all edges in E go between Land R. Figure 27.8 illustrates the
notion of a matching.
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Figure 27.8 A bipartite graph G = ( V,E ) with vertex partition V = L U R. (a) A
matching with cardinality 2. (b) A maximum matching with cardinality 3.

T he problem of finding a maximum matching in a bipartite graph has
many pra ct ical applica tions. As an example, we might conside r match ing
a set L of machines with a set R of tasks to be perfonned simultaneo usly.
We take the prese nce of edge (u,v ) in E to mean that a particular machine
u E L is capable of perform ing a particular task v E R. A maximum
matching provides work for as many m achines as possible.

Finding a maximum bipartite matching

We can use the Ford-Fulkerson method to find a maximum match ing in an
und irected biparti te graph G = (V, E) in time polyno mial in IVI and lEI.
The trick is to construct a flow network in which flows correspond to
match ings, as shown in Figure 27.9. We define th e corr~Jpo"d;"g flow
network: a = (V' , E' ) for the biparti te graph G as follows. We let the
source s and sink t be new vertices not in V, and we let V' = V U {s. r}.
If the vertex partition of G is V = L U R, the directed edges of G' are
given by

E' = { (s,u) :u E L )

U{(u,v): U E L , v E R, and (u,v) E E )

u {(v , r) : v E R) .

To complete the construction, we assign uni t capacit y to each edge in E' .
The followi ng theorem shows that a matching in G corresponds directly

to a flow in G's co rresponding flow network G'. We say that a flow f on
a flow network G = (V, E ) is ;"t~ger-l'alutd if f eu, v ) is an int eger for all
(u, v) E V x V.
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Figure 27.9 The now network corresponding to a bipa rtite graph. <a) The bipartite
graph G = ( V, E ) with vertex partit ion V = L U R from Figure 27.8. A maximum
matching is shown by shaded edges. ( b) The corresponding flow network G' with
a maximum flow shown . Each edge has unit capacity. Shaded edges have a flow
of I , and all other edges carry no flow. The shaded edges from L to R correspond
to those in a maxim um matching of the bipartite graph.

Lemma 27.10
Let G = ( V, E ) be a bipartite gra ph with vertex partition V = L U R , and
let G' = ( V' , E' ) be its correspo nd ing flow network. If M is a mat ching
in G, then there is an integer -valued flow f in G' with value III = IMj .
Conversely, if f is an intege r-valued flow in G' , then the re is a mat ch ing M
in G with ca rdi nali ty IMI = til.

Proof We first show that a mat ch ing M in G corresponds to a n in teger
valued flow in G'. Define ! as follows. If (u, v) E M, then ! (s, u) =
I (u,v ) ~ I (v , I) ~ I and I (u,s) ~ I (v ,u) ~ l (t, v ) ~ - I. For all other
edges (u ,v) E E', we defin e ! (u,v ) = o.

Intuit ively, each edge (u,v) E M co rrespo nds to I unit of flow in G'
that traverses the pa th s -- U -- v -- t . Moreover , the paths induced by
edges in mare vertex-disjoin t, except fo r sand t . To verify that ! indeed
satisfies skew symmetry, th e capaci ty co nstraints, and flow conservation,
we need only observe that ! can be obtained by flow augmenta tion along
each such path. The net flow across cut (L U {s} , R U {t} ) is equal to IMI;
thus, by Lemma 27.5, the value of the flow is If] = IMI.

To prove the converse, let ! be an int eger -valu ed flow in G' and let

M ~ {( u, u ) : u E L, v E R , and It» .u ) > OJ .

Each vertex U E L has only one e nte ring edge, namely (s, u), and its ca
pacity is I. Thus, each U E L has at most one unit of positive net flow
en te ring it. Since ! is int eger- valued , for each U E L , I uni t of positive
net flow enters U if and only if th ere is exactly one vertex v E R such that
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I(u, 11) = 1. Thus, at most one edge leaving each u E L carries positive
net flow. A symmetric argument can be made for each v E R. The set M
defined in the statement of the theorem is therefore a matching.

To see that IMI = III, observe that for every matched vertex u E L, we
have [is, u) = 1, and for every edge (u, v) E E M, we have [iu, v) = O.
Consequently, using Lemma 27.1, skew symmetry, and there being no
edges from L to t, we obtain

IMI = I(L,R)
I(L, V') I(L, L) I(L,s) I(L, t)

O-O+/(s,L)-O
= [ts, V')

= III· •

It is intuitive that a maximum matching in a bipartite graph G corre
sponds to a maximum flow in its corresponding flow network G'. Thus, we
can compute a maximum matching in G by running a maximum-flow al
gorithm on G'. The only hitch in this reasoning is that the maximum-flow
algorithm might return a flow in G' that consists of non integral amounts.
The following theorem shows that if we use the Ford-Fulkerson method,
this difficulty cannot arise.

Theorem 27.11 (Integrality theorem)
If the capacity function c takes on only integral values, then the maximum
flow I produced by the Ford-Fulkerson method has the property that III
is integer-valued. Moreover, for all vertices u and v, the value of [tu, v)
is an integer.

Proof The proof is by induction on the number of iterations. We leave
it as Exercise 27.3-2. •

We can now prove the following corollary to Lemma 27.10.

Corollary 27.12
The cardinality of a maximum matching in a bipartite graph G is the value
of a maximum flow in its corresponding flow network G'.

Proof We use the nomenclature from Lemma 27.10. Suppose that M is
a maximum matching in G and that the corresponding flow I in G' is not
maximum. Then there is a maximum flow I' in G' such that 11'1 > III.
Since the capacities in G' are integer-valued, by Theorem 27.11, so is 1'.
Thus, I' corresponds to a matching M' in G with cardinality IM'I = 11'1 >
III IMI, contradicting the maximality of M. In a similar manner, we
can show that if I is a maximum flow in G', its corresponding matching
is a maximum matching on G. •
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Thus, given a bipartite undirected graph G, we can find a maximum
matching by creating the flow network G', running the Ford-Fulkerson
method, and directly obtaining a maximum matching M from the integer
valued maximum flow f found. Since any matching in a bipartite graph
has cardinality at most min(L, R) = O( V), the value of the maximum flow
in G' is O( V). We can therefore find a maximum matching in a bipartite
graph in time O( V E).

Exercises

17.3-1
Run the Ford-Fulkerson algorithm on the flow network in Figure 27.9(b)
and show the residual network after each flow augmentation. Number the
vertices in L top to bottom from 1 to 5 and in R top to bottom from 6
to 9. For each iteration, pick the augmenting path that is lexicographically
smallest.

17.3-1
Prove Theorem 27.11.

17.3-3
Let G = (V, E) be a bipartite graph with vertex partition V = L U R, and
let G' be its corresponding flow network. Give a good upper bound on
the length of any augmenting path found in G' during the execution of
FORD-FuLKERSON.

17.3-4 *
A perfect matching is a matching in which every vertex is matched. Let
G = (V, E) be an undirected bipartite graph with vertex partition V =
L UR, where ILl = IRI. For any X ~ V, define the neighborhood of X as

N(X) = {y E V: (x,Y) E E for some x E X} ,

that is, the set of vertices adjacent to some member of X. Prove Hall's
theorem: there exists a perfect matching in G if and only if jAI ::; IN(A)I
for every subset A ~ L.

17.3-5 *
A bipartite graph G = (V, E), where V = LUR, is d-regular if every vertex
u E V has degree exactly d. Every d-regular bipartite graph has ILl = IRI.
Prove that every d-regular bipartite graph has a matching of cardinality
ILl by arguing that a minimum cut of the corresponding flow network has
capacity ILl.
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In this section, we present the "preflow-push" approach to computing max
imum flows. The fastest maximum-flow algorithms to date are preflow
push algorithms, and other flow problems, such as the minimum-cost flow
problem, can be solved efficiently by preflow-push methods. This sec
tion introduces Goldberg's "generic" maximum-flow algorithm, which has
a simple implementation that runs in O( V2E) time, thereby improving
upon the O(VE2) bound of the Edmonds-Karp algorithm. Section 27.5
refines the generic algorithm to obtain another preflow-push algorithm that
runs in O(V3) time.

Preflow-push algorithms work in a more localized manner than the Ford
Fulkerson method. Rather than examine the entire residual network G =
(V, E) to find an augmenting path, preflow-push algorithms work on one
vertex at a time, looking only at the vertex's neighbors in the residual net
work. Furthermore, unlike the Ford-Fulkerson method, preflow-push al
gorithms do not maintain the flow-conservation property throughout their
execution. They do, however, maintain a preflow, which is a function
! : V x V -+ R that satisfies skew symmetry, capacity constraints, and
the following relaxation of flow conservation: !(V, u) 2: 0 for all vertices
u E V - {s}. That is, the net flow into each vertex other than the source
is nonnegative. We call the net flow into a vertex u the excess flow into u,
given by

e(u) = !(V, u) . (27.8)

We say that a vertex u E V {s, t} is overflowing if e(u) > O.
We shall start this section by describing the intuition behind the preflow

push method. We shall then investigate the two operations employed by
the method: "pushing" preflow and "lifting" a vertex. Finally, we shall
present a generic preflow-push algorithm and analyze its correctness and
running time.

Intuition

The intuition behind the preflow-push method is probably best understood
in terms of fluid flows: we consider a flow network G = (V, E) to be a
system of interconnected pipes of given capacities. Applying this analogy
to the Ford-Fulkerson method, we might say that each augmenting path
in the network gives rise to an additional stream of fluid, with no branch
points, flowing from the source to the sink. The Ford-Fulkerson method
iteratively adds more streams of flow until no more can be added.

The generic preflow-push algorithm has a somewhat different intuition.
As before, directed edges correspond to pipes. Vertices, which are pipe
junctions, have two interesting properties. First, to accommodate excess
flow, each vertex has an outflow pipe leading to an arbitrarily large reser-



606 Chapter 27 Maximum Flow

voir that can accumulate fluid. Second, each vertex, its reservoir, and
all its pipe connections are on a platform whose height increases as the
algorithm progresses.

Vertex heights determine how flow is pushed: we only push flow down
hill, that is, from a higher vertex to a lower vertex. There may be positive
net flow from a lower vertex to a higher vertex, but operations that push
flow always push it downhill. The height of the source is fixed at lVI,
and the height of the sink is fixed at O. All other vertex heights start at 0
and increase with time. The algorithm first sends as much flow as pos
sible downhill from the source toward the sink. The amount it sends is
exactly enough to fill each outgoing pipe from the source to capacity; that
is, it sends the capacity of the cut (s, V - s). When flow first enters an
intermediate vertex, it collects in the vertex's reservoir. From there, it is
eventually pushed downhill.

It may eventually happen that the only pipes that leave a vertex u and
are not already saturated with flow connect to vertices that are on the same
level as u or are uphill from u. In this case, to rid an overflowing vertex u
of its excess flow, we must increase its height-an operation called "lifting"
vertex u. Its height is increased to one unit more than the height of the
lowest of its neighbors to which it has an unsaturated pipe. After a vertex
is lifted, therefore, there is at least one outgoing pipe through which more
flow can be pushed.

Eventually, all the flow that can possibly get through to the sink has
arrived there. No more can arrive, because the pipes obey the capacity
constraints; the amount of flowacross any cut is still limited by the capacity
of the cut. To make the preflow a "legal" flow, the algorithm then sends
the excess collected in the reservoirs of overflowing vertices back to the
source by continuing to lift vertices to above the fixed height IVI of the
source. (Shipping the excess back to the source is actually accomplished
by canceling the flows that cause the excess.) As we shall see, once all the
reservoirs have been emptied, the preflow is not only a "legal" flow, it is
also a maximum flow.

The basic operations

From the preceding discussion, we see that there are two basic operations
performed by a preflow-push algorithm: pushing flow excess from a vertex
to one of its neighbors and lifting a vertex. The applicability of these op
erations depends on the heights of vertices, which we now define precisely.

Let G (V, E) be a flow network with source s and sink t, and let J be
a preflow in G. A function h : V -4 N is a height function if h(s) = IVI,
h(t) 0, and

h(u) :s h(v) + 1

for every residual edge (u, v) E E], We immediately obtain the following
lemma.
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Lemma 27.13
Let G = (V, E) be a flow network, let f be a preflow in G, and let h be a
height function on V. For any two vertices u,v E V, if h(u) > h(v) + I,
then (u, v) is not an edge in the residual graph. _

The basic operation PUSH(U, v) can be applied if U is an overflowing ver
tex, cf(u,v) > 0, and h(u) = h(v) + 1. The pseudocode below updates the
preflow f in an implied network G = (V, E). It assumes that the capaci
ties are given by a constant-time function C and that residual capacities can
also be computed in constant time given C and f. The excess flow stored at
a vertex u is maintained as e[u], and the height of u is maintained as h[u].
The expression df( u, v) is a temporary variable that stores the amount of
flow that can be pushed from u to v.

PUSH(U, v)

1 l> Applies when: u is overflowing, cf[u, v] > 0, and h[u] = h[v] + I.
2 l> Action: Push df(u, v) min(e[u], cjtu, v)) units of flow

from u to v.
3 df(u, v) min(e[u],cf(u, v))
4 flu, v] flu, v] + d((u, v)
5 f[v, u] - flu, v]
6 e[u] e[u] - df(u, v)
7 e[v] e[v] + df(u, v)

The code for PUSH operates as follows. Vertex u is assumed to have a
positive excess e[u], and the residual capacity of (u, v) is positive. Thus,
we can ship up to df(u, v) = min(e[u], cf(u, v)) units of flow from u to v
without causing e[u] to become negative or the capacity c(u, v) to be ex
ceeded. This value is computed in line 3. We move the flow from u to v
by updating f in lines 4-5 and e in lines 6-7. Thus, if f is a preflow
before PUSH is called, it remains a preflow afterward.

Observe that nothing in the code for PUSH depends on the heights of
u and v, yet we prohibit it from being invoked unless h[u] = h[v] + l.
Thus, excess flow is only pushed downhill by a height differential of 1. By
Lemma 27.13, no residual edges exist between two vertices whose heights
differ by more than 1, and thus there is nothing to be gained by allowing
flow to be pushed downhill by a height differential of more than 1.

We call the operation PUSH(u, v) a push from u to v. If a push oper
ation applies to some edge (u, v) leaving a vertex u, we also say that the
push operation applies to u. It is a saturating push if edge (u, v) becomes
saturated (cf(u, v) =0 afterward); otherwise, it is a nonsaturating push. If
an edge is saturated, it does not appear in the residual network.

The basic operation LIFT( u) applies if u is overflowing and if cf(u, v) > 0
implies h[u] ::; h[v] for all vertices v. In other words, we can lift an over
flowing vertex u if for every vertex v for which there is residual capacity
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from u to v, flow cannot be pushed from u to v because v is not downhill
from u. (Recall that by definition, neither the source s nor the sink t can
be overflowing, so neither s nor t can be lifted.)

LIFT(U)

1 I> Applies when: u is overflowing and for all v E V,
(u, v) E s, implies h[u] :::;; h[v].

2 I> Action: Increase the height of u.
3 h[u] +- 1 + min {h[v] : (u, v) E Ef }

When we call the operation LIFT(U), we say that vertex u is lifted. It is
important to note that when u is lifted, Ef must contain at least one edge
that leaves u, so that the minimization in the code is over a nonempty
set. This fact follows from the assumption that u is overflowing. Since
e[u] > 0, we have e[u] = f[V, u] > 0, and hence there must be at least one
vertex v such that f[v, u] > O. But then,

Cf(u, v) = ctu, v) flu, v]

c(u,v)+f[v,u]

> 0,

which implies that (u, v) E Ef . The operation LIFT(U) thus gives u the
greatest height allowed by the constraints on height functions.

The generic algorithm

The generic pre flow-push algorithm uses the following subroutine to create
an initial preflow in the flow network.

INITIALIZE-PREFLOW(G, s)

1 for each vertex u E V[ G]
2 do h[u] - 0
3 e[u] +- 0
4 for each edge (u, v) E E[G]

5 do f[u,v] - 0
6 f[v,u]-O
7 h[s] +- IV[G]I
8 for each vertex u -EAdj[s]
9 do f[s, u] - c(s, u)

10 flu,s] - -c(s, u)
11 e[u] - c(s, u)

INITIALIZE-PREFLOW creates an initial preflow f defined by

{

c( u, v) if u = s ,
f[u, v] = -c(v, u) if v = s ,

o otherwise .
(27.9)
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That is, each edge leaving the source is filled to capacity, and all other
edges carry no flow. For each vertex v adjacent to the source, we initially
have e[v] = c(s, v). The generic algorithm also begins with an initial height
function h, given by

h[u] = {WI if u = ~ ,o otherwise .

This is a height function because the only edges (u, v) for which h[u] >
h[v] + 1 are those for which u = s, and those edges are saturated, which
means that they are not in the residual network.

The following algorithm typifies the preflow-push method.

GENERIC-PREFLOW-PUSH( G)

1 INITIALIZE-PREFLOW(G, s)
2 while there exists an applicable push or lift operation
3 do select an applicable push or lift operation and perform it

After initializing the flow, the generic algorithm repeatedly applies, in any
order, the basic operations wherever they are applicable. The following
lemma tells us that as long as an overflowing vertex exists, at least one of
the two operations applies.

Lemma 27.14 (An overflowing vertex can be either pushed or lifted)
Let G = (V, E) be a flow network with source s and sink t, let f be a
preflow, and let h be any height function for f. If u is any overflowing
vertex, then either a push or lift operation applies to it.

Proof For any residual edge tu,v), we have h(u) S h(v) + I because h
is a height function. If a push operation does not apply to u, then for
all residual edges (u, v), we must have h(u) < h(v) + 1, which implies
h(u) S h(v). Thus, a lift operation can be applied to u. •

Correctness of the preflow-push method

To show that the generic preflow-push algorithm solves the maximum
flow problem, we shall first prove that if it terminates, the preflow f is
a maximum flow. We shall later prove that it terminates. We start with
some observations about the height function h.

Lemma 27.15 (Vertex heights never decrease)
During the execution of GENERIC-PREFLOW-PUSH on a flow network G =

(V, E), for each vertex u E V, the height h[u] never decreases. Moreover,
whenever a lift operation is applied to a vertex u, its height h[u] increases
by at least 1.

Proof Because vertex heights change only during lift operations, it suffices
to prove the second statement of the lemma. If vertex u is lifted, then for
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all vertices v such that (u, v) E Ef , we have h[u] ~ h[v]; this implies that
h[u] < I + min {h[v] : (u,v) E Ef } , and so the operation must increase
h[u]. _

Lemma 27.16
Let G = (V,E) be a flow network with source s and sink t. During the
execution of GENERIC-PREFLOW-PUSH on G, the attribute h is maintained
as a height function.

Proof The proof is by induction on the number of basic operations per
formed. Initially, h is a height function, as we have already observed.

We claim that if h is a height function, then an operation LIFT(U) leaves
h a height function. If we look at a residual edge (u, v) E Ef that leaves u,
then the operation LIFT(U) ensures that h[u] ~ h[v] + 1 afterward. Now
consider a residual edge (w, u) that enters u. By Lemma 27.15, h[w] ~

h[u] + I before the operation LIFT(U) implies h[w] < h[u] + I afterward.
Thus, the operation LIFT(u) leaves h a height function.

Now, consider an operation PUSH(U, v). This operation may add the
edge (v, u) to EJ> and it may remove (u, v) from E]. In the former case,
we have h[v] = h[u] - 1, and so h remains a height function. In the
latter case, the removal of (u, v) from the residual network removes the
corresponding constraint, and h again remains a height function. _

The following lemma gives an important property of height functions.

Lemma 27.17
Let G (V, E) be a flow network with source s and sink t, let f be a
preflow in G, and let h be a height function on V. Then, there is no path
from the source s to the sink t in the residual network Gf .

Proof Assume for the sake of contradiction that there is a path p
(vo,VI, ... ,Vk) from s to t in G], where Vo = sand Vk = t. Without loss
of generality, p is a simple path, and so k < WI. For i = 0, I, ... , k - I,
edge (Vi,Vi+l) E E]. Because h is a height function, h(Vi) ~ h(Vi+d + I
for i = 0, I, ... .k - I. Combining these inequalities over path p yields
h(s) ~ h(t) + k, But because h(t) = 0, we have h(s) ~ k < WI, which
contradicts the requirement that h(s) = WI in a height function. _

We are now ready to show that if the generic preflow-push algorithm
terminates, the preflow it computes is a maximum flow.

Theorem 27.18 (Correctness of the generic prejlow-push algorithm)
If the algorithm GENERIC-PREFLOW-PUSH terminates when run on a flow
network G = (V, E) with source s and sink t, then the preflow f it computes
is a maximum flow for G.



27.4 Preflow-push algorithms 6JJ

Proof If the generic algorithm terminates, then each vertex in V {s, t}
must have an excess of 0, because by Lemmas 27.14 and 27.16 and the
invariant that 1 is always a preflow, there are no overflowing vertices.
Therefore, 1 is a flow. Because h is a height function, by Lemma 27.17
there is no path from s to t in the residual network Gf. By the max-flow
min-cut theorem, therefore, f is a maximum flow. •

Analysis of the preflow-push method

To show that the generic preflow-push algorithm indeed terminates, we
shall bound the number of operations it performs. Each of the three
types of operations-lifts, saturating pushes, and nonsaturating pushes-is
bounded separately. With knowledge of these bounds, it is a straightfor
ward problem to construct an algorithm that runs in O( V 2E) time. Before
beginning the analysis, however, we prove an important lemma.

Lemma 27.19
Let G = (V, E) be a flow network with source s and sink t, and let 1 be a
preflow in G. Then, for any overflowing vertex u, there is a simple path
from U to s in the residual network Gf.

Proof Let U {v : there exists a simple path from u to v in Gf}, and
suppose for the sake of contradiction that s ~ U. Let U = V - U.

We claim for each pair of vertices v E U and w E U that f(w, v) ~ 0.
Why? If f(w, v) > 0, then f(v, w) < 0, which implies that cf(v, w) =

c(v, w) n», w) > 0. Hence, there exists an edge (v, w) E Ej, and
therefore a simple path of the form u""'-+ v -+ w in Gj, contradicting our
choice of w.

Thus, we must have f( U, U) ~ 0, since every term in this implicit sum
mation is nonpositive. Thus, from equation (27.8) and Lemma 27.1, we
can conclude that

e(U) = f(V, U)

I(U, U) + f(U, U)

= I(U, U)

< 0.

Excesses are nonnegative for all vertices in V {s}; because we have as
sumed that U <;::; V - {s}, we must therefore have e(v) =°for all vertices
v E U. In particular, e(u) 0, which contradicts the assumption that u is
~~~~~ .

The next lemma bounds the heights of vertices, and its corollary bounds
the number of lift operations that are performed in total.
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Lemma 27.20
Let G (V, E) be a flow network with source s and sink t. At any time
during the execution of GENERIC-PREFLOW-PUSH on G, we have h[u] :::;
2 WI - 1 for all vertices u E V.

Proof The heights of the source s and the sink t never change because
these vertices are by definition not overflowing. Thus, we always have
h[s] = WI and h[t] = O.

Because a vertex is lifted only when it is overflowing, we can consider
any overflowing vertex u E V {s, t}. Lemma 27. 19 tells us that there is
a simple path p from u to s in G]. Let p = (va,VI, . . . ,Vk), where VQ = U,

Vk = s, and k :::; WI 1 because p is simple. For i 0, 1,... ,k - 1, we
have (Vi, Vi+d E E], and therefore, by Lemma 27.16, h[vd :::; h[Vi+d + 1.
Expanding these inequalities over path p yields h(u] h[vQ] :::; h(Vk] + k :::;
h[s] + (WI 1) = 2 WI- 1. •

Corollary 27.21 (Bound on lift operations)
Let G = (V, E) be a flow network with source s and sink t. Then, during the
execution of GENERIC-PREFLOW-PUSH on G, the number of lift operations
is at most 21 VI - 1 per vertex and at most (21 VI - 1)(1 VI - 2) < 21 VI 2

overall.

Proof Only vertices in V - {s, t}, which number WI - 2, may be lifted.
Let u E V - {s, z}. The operation LIFT(U) increases h[u]. The value of h[u]
is initially 0 and by Lemma 27.20 grows to at most 2 WI ~ 1. Thus, each
vertex u E V {s, t} is lifted at most 2 WI- 1 times, and the total number
of lift operations performed is at most (2 WI - 1)(WI - 2) < 2 W1 2

• •

Lemma 27.20 also helps us to bound the number of saturating pushes.

Lemma 27.22 (Bound on saturating pushes)
During the execution of GENERIC-PREFLOW-PUSH on any flow network
G = (V, E), the number of saturating pushes is at most 21 VIIEI.

Proof For any pair of vertices u, V E V, consider the saturating pushes
from u to V and from V to u. If there are any such pushes, at least one of
(u, v) and (v, u) is actually an edge in E. Now, suppose that a saturating
push from u to v has occurred. In order for another push from u to v to
occur later, the algorithm must first push flow from v to u, which cannot
happen until h[v] increases by at least 2. Likewise, h[u] must increase by
at least 2 between saturating pushes from v to u.

Consider the sequence A of integers given by h[u] + h[v] for each sat
urating push that occurs between vertices u and v. We wish to bound
the length of this sequence. When the first push in either direction be
tween u and v occurs, we must have h[u] + h[v] ~ 1; thus, the first
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integer in A is at least I. When the last such push occurs, we have
h[u] + h[v] ~ (21V1 I) + (21V1- 2) 41V1 - 3 by Lemma 27.20; the
last integer in A is thus at most 41 VI 3. By the argument from the pre
vious paragraph, at most every other integer can occur in A. Thus, the
number of integers in A is at most ((41V1- 3) - 1)/2 + I = 21V1- 1.
(We add I to make sure that both ends of the sequence are counted.) The
total number of saturating pushes between vertices u and v is therefore at
most 21V1 - 1. Multiplying by the number of edges gives a total number
of saturating pushes of at most (21VII) lEI < 21 VIIEI. •

The following lemma bounds the number of nonsaturating pushes in the
generic preflow-push algorithm.

Lemma 27.23 (Bound on nonsaturating pushes)
During the execution of GENERIC-PREFLOW-PUSH on any flow network
G = (V, E), the number of nonsaturating pushes is at most 41V1 2 (IVI+IEI).

Proof Define a potential function cI> = EVEX h[v], where X ~ V is
the set of overflowing vertices. Initially, cI> O. Observe that lifting a
vertex u increases cI> by at most 21 VI, since the set over which the sum
is taken is the same and u cannot be lifted by more than its maximum
possible height, which, by Lemma 27.20, is at most 21V1. Also, a saturating
push from a vertex u to a vertex v increases cI> by at most 2WI, since
no heights change and only vertex v, whose height is at most 2WI, can
possibly become overflowing. Finally, observe that a nonsaturating push
from u to v decreases cI> by at least 1, since u is no longer overflowing
after the push, v is overflowing afterward even if it wasn't beforehand,
and h[v] - h[u] = - 1.

Thus, during the course of the algorithm, the total amount of increase
in cI> is constrained by Corollary 27.21 and Lemma 27.22 to be at most
(2WI)(2WI2

) + (2WI)(2WIIEI) = 4wf (IVI + lEI). Since cI> 2: 0, the
total amount of decrease, and therefore the total number of nonsaturating
pushes, is at most 4WI2 (WI + lEI). •

We have now set the stage for the following analysis of the GENER

IC-PREFLOW-PUSH procedure, and hence of any algorithm based on the
pre flow-push method.

Theorem 27.24
During the execution of GENERIC-PREFLOW-PUSH on any flow network
G = (V, E), the number of basic operations is O( V2E).

Proof Immediate from Corollary 27.21 and Lemmas 27.22 and 27.23.•
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Corollary 27.25
There is an implementation of the generic preflow-push algorithm that
runs in O( V2E) time on any flow network G = (V, E).

Proof Exercise 27.4-1 asks you to show how to implement the generic
algorithm with an overhead of O( V) per lift operation and O( 1) per push.
The corollary then follows. •

Exercises

27.4-1
Show how to implement the generic preflow-push algorithm using O( V)
time per lift operation and O(1) time per push, for a total time of O(V2E).

27.4-2
Prove that the generic preflow-push algorithm spends a total of only O( V E)
time in performing all the O(V2) lift operations.

27.4-3
Suppose that a maximum flow has been found in a flow network G = (V, E)
using a preflow-push algorithm. Give a fast algorithm to find a minimum
cut in G.

27.4-4
Give an efficient preflow-push algorithm to find a maximum matching in
a bipartite graph. Analyze your algorithm.

27.4-5
Suppose that all edge capacities in a flow network G = (V, E) are in the
set {I, 2, ... , k }. Analyze the running time of the generic preflow-push
algorithm in terms of IVI, lEI, and k. (Hint: How many times can each
edge support a nonsaturating push before it becomes saturated")

27.4-6
Show that line 7 of INITIALlZE-PREFLOW can be changed to

h[s] <- IV[G]I- 2

without affecting the correctness or asymptotic performance of the generic
preflow-push algorithm.

27.4-7
Let 0f(u, v) be the distance (number of edges) from u to v in the residual
network Gf. Show that GENERIC-PREFLOW-PUSH maintains the proper
ties that h[u] < IVI implies h[u] :s o/(u, t) and that h[u] 2:: IVI implies
h[u] IVI:S o/(u,s).
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27.4-8 *
As in the previous exercise, let 0f( U, v) be the distance from u to v in the
residual network Gf . Show how the generic preflow-push algorithm can be
modified to maintain the property that h[u] < WI implies h[u] of(u, t)
and that h[u] ~ WI implies h[u] WI of(u,s). The total time that your
implementation dedicates to maintaining this property should be O( V E).

27.4-9
Show that the number of nonsaturating pushes executed by GENERIC

PREFLOW-PUSH on a flow network G = (V, E) is at most 41 VI 21EI for
WI ~ 4.

~---_.. ---~------------------------------

* 27.5 The lift-to-front algorithm

The preflow-push method allows us to apply the basic operations in any
order at all. By choosing the order carefully and managing the network
data structure efficiently, however, we can solve the maximum-flow prob
lem faster than the O(V2E) bound given by Corollary 27.25. We shall
now examine the lift-to-front algorithm, a preflow-push algorithm whose
running time is O( V3), which is asymptotically at least as good as O( V2E).

The lift-to-front algorithm maintains a list of the vertices in the network.
Beginning at the front, the algorithm scans the list, repeatedly selecting an
overflowing vertex u and then "discharging" it, that is, performing push
and lift operations until u no longer has a positive excess. Whenever a
vertex is lifted, it is moved to the front of the list (hence the name "lift
to-front") and the algorithm begins its scan anew.

The correctness and analysis of the lift-to-front algorithm depend on the
notion of "admissible" edges: those edges in the residual network through
which flow can be pushed. After proving some properties about the net
work of admissible edges, we shall investigate the discharge operation and
then present and analyze the lift-to-front algorithm itself.

Admissible edges and networks

If G = (V, E) is a flow network with source s and sink t, f is a preflow in G,
and h is a height function, then we say that (u, v) is an admissible edge if
cf(u, v) > 0 and h(u) = h(v) + 1. Otherwise, (u, v) is inadmissible. The
admissible network is Gf,h = (V, Ef,h), where E j,h is the set of admissible
edges.

The admissible network consists of those edges through which flow can
be pushed. The following lemma shows that this network is a directed
acyclic graph (dag).
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Lemma 27.26 (The admissible network is acyclic)
If G = (V, E) is a flow network, f is a preflow in G, and h is a height
function on G, then the admissible network Gf,h = (V, E f,h) is acyclic.

Proof The proof is by contradiction. Suppose that Gf,h contains a cycle
p = (vo, Vl> ... ,Vk), where Vo = Vk and k > O. Since each edge in p is
admissible, we have h(Vi-l) = h(Vi) + I for i 1,2, ... ,k. Summing
around the cycle gives

k

Lh(Vi-d
i=1

k:

L(h(Vi) + 1)
i=l

k

Lh(vd+ k .
i=l

Because each vertex in cycle p appears once in each of the summations,
we derive the contradiction that 0 = k. _

The next two lemmas show how push and lift operations change the
admissible network.

Lemma 27.27
Let G (V, E) be a flow network, let f be a preflow in G, and let h be
a height function. If a vertex U is overflowing and (u, v) is an admissible
edge, then PUSH(u, v) applies. The operation does not create any new
admissible edges, but it may cause (u, v) to become inadmissible.

Proof By the definition of an admissible edge, flow can be pushed from
u to v, Since u is overflowing, the operation PUSH(U, v) applies. The only
new residual edge that can be created by pushing flow from u to v is the
edge (v, u). Since h (v) = h (u) - I, edge (v, u) cannot become admissible.
If the operation is a saturating push, then Cf( u, v) = 0 afterward and (u, v)
becomes inadmissible. _

Lemma 27.28
Let G = (V,E) be a flow network, let f be a preflow in G, and let h be a
height function. If a vertex u is overflowing and there are no admissible
edges leaving u, then LIFT(U) applies. After the lift operation, there is
at least one admissible edge leaving u, but there are no admissible edges
entering u.

Proof If u is overflowing, then by Lemma 27.14, either a push or a lift
operation applies to it. If there are no admissible edges leaving u, no
flow can be pushed from u and LIFT(U) applies. After the lift operation,
h[u] = 1 + min {h[v] : (u, v) E Ef } . Thus, if v is a vertex that realizes the
minimum in this set, the edge (u, v) becomes admissible. Hence, after the
lift, there is at least one admissible edge leaving u.
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To show that no admissible edges enter u after a lift operation, suppose
that there is a vertex v such that (v, u) is admissible. Then, h[v] = h[u]+ I
after the lift, and therefore h[v] > h[u] + I just before the lift. But by
Lemma 27.13, no residual edges exist between vertices whose heights differ
by more than 1. Moreover, lifting a vertex does not change the residual
network. Thus, (v, u) is not in the residual network, and hence it cannot
be in the admissible network. _

Neighbor lists

Edges in the lift-to-front algorithm are organized into "neighbor lists."
Given a flow network G (V, E), the neighbor list N[u] for a vertex u E V
is a singly linked list of the neighbors of u in G. Thus, vertex v appears in
the list N[u] if (u, v) E E or (v, u) E E. The neighbor list N[u] contains
exactly those vertices v for which there may be a residual edge (u, v). The
first vertex in N[u] is pointed to by head[N[u]]. The vertex following v in
a neighbor list is pointed to by next-neighbor[v]; this pointer is NIL if v is
the last vertex in the neighbor list.

The lift-to-front algorithm cycles through each neighbor list in an arbi
trary order that is fixed throughout the execution of the algorithm. For
each vertex u, the field current[u] points to the vertex currently under con
sideration in N[u]. Initially, current[u] is set to head[N[u]].

Discharging an overflowing vertex

An overflowing vertex u is discharged by pushing all of its excess flow
through admissible edges to neighboring vertices, lifting u as necessary
to cause edges leaving u to become admissible. The pseudocode goes as
follows.

DISCHARGE(u)

1 while e[u] > 0
2 do v f- current[u]
3 if v = NIL

4 then LIFT(U)
5 current[u] f- head[N[u]]
6 elseif cf(u, v) > 0 and h[u] = h[v] + 1
7 then PUSH(u, v)
8 else current[u] f- next-neighbor[v]

Figure 27.10 steps through several iterations of the while loop of lines 1
8, which executes as long as vertex u has positive excess. Each iteration
performs exactly one of three actions, depending on the current vertex v
in the neighbor list N[u].
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Figure 27.10 Dischargi ng a vertex. It takes IS iterations of the while loop of
DISCHAROE to push all the excess flow from verte x y . Only the neighbors o f y and
edges enteri ng or leaving y are shown. In each part, the number inside each vertex
is its excess at the beginning of the first iterat ion shown in the part , and each vertex
is shown at its height throughout th e part. To the right is shown the neighbor list
N[y ] at the beginning of each iterat ion, with the iterat ion numbe r on top. The
shaded neighbor is currentlY ). (a) Initially, there are 19 units of excess to push
Ircm y, and current[y] "" s. Iterations I, 2, and 3 just advance currenl{y ], since
there are no adm issible edges leaving y. In iteration 4, currenl{y ) = NIL (shown
by the shading being below the neighbor list], and so y is lifted and currentlY) is
reset to the head of the neighbor list. (b) After lift ing, vertex y has height I. In
iterations Sand 6. edges (Y,s) and (y, x) are found to be inadmissible, but S units
of excess flow are pushed from y to z in iteration 7. Because of the push. currt'nt(y ]
is not advanced in this iterati on . (c) Because the push in iterat ion 7 saturated edge
(Y, z), it is found inad missible in ite ration 8. In itera tion 9, cufft'nt(y ) :: NIL,

and so vertex y is again lifted and currentlY ] is reset. (d) In iteration 10. (Y,s) is
inadm issible, but S unit s of excess flow are pushed from y to x in iteration I I .
(e) Because current(y ) was not advanced in iteratio n I I, iteration 12 finds (y, x)
to be inadmissible. Iterati on 13 finds (Y, z) inadmissible. and iteration 14 lifts
vertex y and resets currentlY ). (I) Iterati on IS pushes 6 uni ts of excess fl ow fro m
y to s. (.) Vertex y now has no excess flow. and DI SCHARG E terminates. In th is
example, D ISCHARGE bot h starts and finishes with the current poin ter at the head
of the neighbor list. but in genera l th is need not be the case.
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I. If v is NIL, then we have run off the end of N[u]. Line 4 lifts vertex u,
and then line 5 resets the current neighbor of u to be the first one in
N[u]. (Lemma 27.29 below states that the lift operation applies in this
situation.)

2. If v is non-NIL and (u, v) is an admissible edge (determined by the test
in line 6), then line 7 pushes some (or possibly all) of u's excess to
vertex v.

3. If v is non-NIL but (u, v) is inadmissible, then line 8 advances current[u]
one position further in the neighbor list N[u].

Observe that if DISCHARGE is called on an overflowing vertex u, then
the last action performed by DISCHARGE must be a push from u. Why?
The procedure terminates only when e[u] becomes zero, and neither the
lift operation nor the advancing of the pointer current[u] affects the value
of e[u].

We must be sure that when PUSH or LIFT is called by DISCHARGE, the
operation applies. The next lemma proves this fact.

Lemma 27.29
If DISCHARGE calls PUSH(U, v) in line 7, then a push operation applies to
(u, v). If DISCHARGE calls LIFT(U) in line 4, then a lift operation applies
to u.

Proof The tests in lines I and 6 ensure that a push operation occurs only
if the operation applies, which proves the first statement in the lemma.

To prove the second statement, according to the test in line I and
Lemma 27.28, we need only show that all edges leaving U are inadmissible.
Observe that as DISCHARGE(U) is repeatedly called, the pointer current[u]
moves down the list N[u]. Each "pass" begins at the head of N[u] and
finishes with current[u] = NIL, at which point U is lifted and a new pass
begins. For the current[u] pointer to advance past a vertex v E N[u] dur
ing a pass, the edge (u, v) must be deemed inadmissible by the test in
line 6. Thus. by the time the pass completes, every edge leaving u has
been determined to be inadmissible at some time during the pass. The key
observation is that at the end of the pass, every edge leaving u is still in
admissible. Why? By Lemma 27.27, pushes cannot create any admissible
edges, let alone one leaving u. Thus, any admissible edge must be created
by a lift operation. But the vertex u is not lifted during the pass, and
by Lemma 27.28, any other vertex v that is lifted during the pass has no
entering admissible edges. Thus, at the end of the pass, all edges leaving
u remain inadmissible, and the lemma is proved. _

The Iift-to-front algorithm

In the lift-to-front algorithm, we maintain a linked list L consisting of
all vertices in V - is, t}. A key property is that the vertices in L are
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topologically sorted according to the admissible network. (Recall from
Lemma 27.26 that the admissible network is a dag.)

The pseudocode for the lift-to-front algorithm assumes that the neighbor
lists N[u] have already been created for each vertex u. It also assumes that
next[u] points to the vertex that follows u in list L and that, as usual,
next[u] = NIL if u is the last vertex in the list.

LIFT-To-FRONT(G,S, t)

1 INITIALIZE-PREFLOW( G, s)
2 L +-- V[G] - {s, t}, in any order
3 for each vertex u E V[G] - {s, t}
4 do current[u] +-- head[N[u]]
5 u +-- head[L]
6 while u =f NIL
7 do old-height +-- h[u]
8 DISCHARGE( u)
9 if h[u] > old-height

10 then move u to the front of list L
11 u +-- next[u]

The lift-to-front algorithm works as follows. Line 1 initializes the pre
flow and heights to the same values as in the generic preflow-push algo
rithm. Line 2 initializes the list L to contain all potentially overflowing
vertices, in any order. Lines 3-4 initialize the current pointer of each
vertex u to the first vertex in u's neighbor list.

As shown in Figure 27.11, the while loop of lines 6-11 runs through the
list L, discharging vertices. Line 5 makes it start with the first vertex in the
list. Each time through the loop, a vertex u is discharged in line 8. If u was
lifted by the DISCHARGE procedure, line 10 moves it to the front of list L.
This determination is made by saving u's height in the variable old-height
before the discharge operation (line 7) and comparing this saved height to
u's height afterward (line 9). Line 11 makes the next iteration of the while
loop use the vertex following u in list L. If u was moved to the front of
the list, the vertex used in the next iteration is the one following u in its
new position in the list.

To show that LIFT-To-FRONT computes a maximum flow, we shall show
that it is an implementation of the generic preflow-push algorithm. First,
observe that it only performs push and lift operation when they apply, since
Lemma 27.29 guarantees that DISCHARGE only performs them when they
apply. It remains to show that when LIFT-To-FRONT terminates, no basic
operations apply. Observe that if u reaches the end of L, every vertex
in L must have been discharged without causing a lift. Lemma 27.30,
which we shall prove in a moment, states that the list L is maintained as a
topological sort of the admissible network. Thus, a push operation causes
excess flow to move to vertices further down the list (or to s or t). If the
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Figure 27.11 Th e action of L1FT-To-FRONT. <a> A flow network ju st before the
first iteration of the while loop. Initially, 26 units of fl ow leave source s, On the
right is shown the init ial list L = (x, y, z), where initially u = x . Under each
vertex in list L is its neighbor list, with the current neighbor shaded. Vert ex x is
d ischarged. It is lifted to height I, .s un its of excess flow are pushed to y , and the 7
rem ain ing units of excess are pushed to the sink t. Because x is lifted. it is moved
to the head of L , which in th is case does not change the structure of L. (b) After x .
the next vertex in L that is discharged is y. Figure 27.10 shows the deta iled action
of discharging y in th is situa tion. Because y is lifted , it is moved to the ttead of L .
(c) Vert ex x now follows y in L. and so it is again discharged. pushing an .s units
of excess flow to t. Because vertex x is not lifted in this dischal'Be operation. it
remains in place in list L. (d) Since vertex z follows vertex x in L , it is discharged.
It is lifted to height I and all 8 units of excess Row are pushed to t . Because z
is lin ed, it is moved to the front of L . (e) v ert ex y now follows vertex z in L
and is therefore discharged. But because y has no excess, D ISCHAROE immediately
returns, and y remains in place in L. Vertex x is then discharged. Because it, too.
has no excess, DISCH ARO E again returns, and x remains in place in L. UFT·To
F RONT has reached the end of list L and terminates. There are no overflowing
vert ices, and the preflow is a maximum flow.
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pointer u reaches the end of the list, therefore, the excess of every vertex
is 0, and no basic operations apply.

umma 27.30
If we run LIFT-To-FRONT on a flow network G"= (V, E ) with source s and
sink I , then each iteration of the while loop in lines 6-11 maintains the
invariant that list L is a topological sort of the vertices in the admissible
network GI," = ( V, £ 1," )'

Proof Immediately after INITlALIZE-PREFLOW has been run, h[s ] = IVI
and h[v] = afor all v E V - {s}. Since IVI 2: 2 (because it contains at least
s and I ), no edge can be adm issible. Thus, £ 1," = 0, and any ordering of
V - {s, I} is a topological sort of G1,1t .

We now show that the invariant is maintained by each iteration of the
~ while loop. The admissible network is changed only by push and lift oper

ations. By Lemma 27.27, push operat ions only make edges inadmissible.
Thus , admissible edges can be created only by lift operations. After a
vertex is lifted, however, Lemma 27.28 states that there are no admissi
ble edges entering u but there may be admissible edges leaving u. Thus,
by moving u to the front of L , the algorithm ensures that any admissible
edges leaving u satisfy the topo logical sort ordering. _
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Analysis

We shall now show that LIFT-To-FRONT runs in O( V3) time on any flow
network G = (V, E). Since the algorithm is an implementation of the
generic preflow-push algorithm, we shall take advantage of Corollary 27.21,
which provides an O(V) bound on the number of lift operations executed
per vertex and an O( V 2) bound on the total number of lifts overall. In
addition, Exercise 27.4-2 provides an O( V E) bound on the total time spent
performing lift operations, and Lemma 27.22 provides an O(VE) bound
on the total number of saturating push operations.

Theorem 27.31
The running time of LIFT-To-FRONT on any flow network G = (V, E) is
O(V3).

Proof Let us consider a "phase" of the lift-to-front algorithm to be the
time between two consecutive lift operations. There are O( V2) phases,
since there are O(V2) lift operations. Each phase consists of at most IVI
calls to DISCHARGE, which can be seen as follows. If DISCHARGE does not
perform a lift operation, the next call to DISCHARGE is further down the
list L, and the length of L is less than IVI. If DISCHARGE does perform
a lift, the next call to DISCHARGE belongs to a different phase. Since
each phase contains at most IVI calls to DISCHARGE and there are O(V2)
phases, the number of times DISCHARGE is called in line 8 of LIFT-To
FRONT is O( V3). Thus, the total work performed by the while loop in
LIFT-To-FRONT, excluding the work performed within DISCHARGE, is at
most O(V3).

We must now bound the work performed within DISCHARGE during
the execution of the algorithm. Each iteration of the while loop within
DISCHARGE performs one of three actions. We shall analyze the total
amount of work involved in performing each of these actions.

We start with lift operations (lines 4-5). Exercise 27.4-2 provides an
O(VE) time bound on all the O(V2) lifts that are performed.

Now, suppose that the action updates the current[u] pointer in line 8.
This action occurs O( degree(u)) times each time a vertex u is lifted, and
O(V . degree(u)) times overall for the vertex. For all vertices, therefore,
the total amount of work done in advancing pointers in neighbor lists is
O( VE) by the handshaking lemma (Exercise 5.4-1).

The third type of action performed by DISCHARGE is a push operation
(line 7). We already know that the total number of saturating push oper
ations is O( V E). Observe that if a nonsaturating push is executed, DIS
CHARGE immediately returns, since the push reduces the excess to O. Thus,
there can be at most one nonsaturating push per call to DISCHARGE. As we
have observed, DISCHARGE is called O(V3) times, and thus the total time
spent performing nonsaturating pushes is O( V3).
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Problems

The running time of LIFT-To-FRONT is therefore O(V3 + VE), which is
O(V3). •

Exercises

27.5-1
Illustrate the execution of LIFT-To-FRONT in the manner of Figure 27.11
for the flow network in Figure 27.1(a). Assume that the initial ordering of
vertices in L is (v), V2, V3, V4) and that the neighbor lists are

N[vl] = (s, V2, V3) ,

N[V2] = (s, VI, V3, V4) ,

N[V3] = (VI, V2, V4, t) ,

N[V4] (V2, V3, t) .

27.5-2 *
We would like to implement a preflow-push algorithm in which we main
tain a first-in, first-out queue of overflowing vertices. The algorithm re
peatedly discharges the vertex at the head of the queue, and any vertices
that were not overflowing before the discharge but are overflowing after
ward are placed at the end of the queue. After the vertex at the head
of the queue is discharged, it is removed. When the queue is empty, the
algorithm terminates. Show that this algorithm can be implemented to
compute a maximum flow in O(V3) time.

27.5-3
Show that the generic algorithm still works if LIFT updates h[u] by simply
computing h[u] ...... h[u] + 1. How does this change affect the analysis of
LIFT-To-FRONT?

27.5-4 *
Show that if we always discharge a highest overflowing vertex, the preflow
push method can be made to run in O( V3) time.

27-1 Escape problem
An n x n grid is an undirected graph consisting of n rows and n columns
of vertices, as shown in Figure 27.12. We denote the vertex in the ith
row and the jth column by (i,j). All vertices in a grid have exactly four
neighbors, except for the boundary vertices, which are the points (i, j) for
which i = 1, i = n, j = 1, or j = n.
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Figure 27.12 Grids for the escape problem. Starting points are black, and other
grid vertices are white. (a) A grid with an escape, shown by shaded paths. (b) A
grid with no escape.

Given m ~ nZ starting points (xl,Yd,(xz,Yz), ... ,(xm,Ym) in the grid,
the escape problem is to determine whether or not there are m vertex
disjoint paths from the starting points to any m different points on the
boundary. For example, the grid in Figure 27.12(a) has an escape, but the
grid in Figure 27.12(b) does not.

a. Consider a flow network in which vertices, as well as edges, have capac
ities. That is, the positive net flow entering any given vertex is subject
to a capacity constraint. Show that determining the maximum flow in a
network with edge and vertex capacities can be reduced to an ordinary
maximum-flow problem on a flow network of comparable size.

b. Describe an efficient algorithm to solve the escape problem, and analyze
its running time.

27-2 Minimum path cover
A path cover of a directed graph G = (V, E) is a set P of vertex-disjoint
paths such that every vertex in V is included in exactly one path in P. Paths
may start and end anywhere, and they may be of any length, including O.
A minimum path cover of G is a path cover containing the fewest possible
paths.

a. Give an efficient algorithm to find a minimum path cover of a directed
acyclic graph G = (V,E). (Hint: Assuming that V = {1,2, ... ,n}, con
struct the graph G' (V', E'), where

V' = {xo,XI, ... ,xn}U{Yo,YI, ... ,Yn},

E' = {(XO,Xi): i E V} U {(Yi,YO): i E V} U {(Xi,Yj): (t,}) E E} ,

and run a maximum-flow algorithm.)

b. Does your algorithm work for directed graphs that contain cycles? Ex
plain.
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27-3 Space shuttle experiments
Professor Spock is consulting for NASA, which is planning a series of space
shuttle flights and must decide which commercial experiments to perform
and which instruments to have on board each flight. For each flight, NASA
considers a set E {E I , E2, ••• , Em} of experiments, and the commercial
sponsor of experiment E j has agreed to pay NASAPj dollars for the results
of the experiment. The experiments use a set I = {II, lz, ... ,In} of instru
ments; each experiment E, requires all the instruments in a subset R, ~ I.
The cost of carrying instrument h is Ck dollars. The professor's job is to
find an efficient algorithm to determine which experiments to perform and
which instruments to carry for a given flight in order to maximize the net
revenue, which is the total income from experiments performed minus the
total cost of all instruments carried.

Consider the following network G. The network contains a source ver
tex s, vertices II,lz, ... ,In, vertices E I,E2, ... ,Em, and a sink vertex t.
For k = 1,2 ... , n, there is an edge (s, h) of capacity ci, and for j =
1,2, ... , m, there is an edge tE], t) of capacity Pj. For k = 1,2, ... , nand
j = 1,2, ... , m, ifh E R], then there is an edge (h, E j ) of infinite capacity.

a. Show that if E, E T for a finite-capacity cut (S, T) of G, then I k E T
for each h E R].

b. Show how to determine the maximum net revenue from the capacity of
the minimum cut of G and the given Pj values.

c. Give an efficient algorithm to determine which experiments to perform
and which instruments to carry. Analyze the running time of your al
gorithm in terms of m, n, and r L:J=lIRjl.

27-4 Updating maximum flow
Let G = (V,E) be a flow network with source s, sink t, and integer capac
ities. Suppose that we are given a maximum flow in G.

a. Suppose that the capacity of a single edge (u, v) E E is increased by 1.
Give an O(V + E)-time algorithm to update the maximum flow.

b. Suppose that the capacity of a single edge (u, v) E E is decreased by 1.
Give an O(V + E)-time algorithm to update the maximum flow.

27-5 Maximum flow by scaling
Let G = (V, E) be a flow network with source s, sink t, and an integer
capacity c(u, v) on each edge (u, v) E E. Let C = max(u.v)EE c(u, v).

a. Argue that a minimum cut of G has capacity at most C lEI.

b. For a given number K, show that an augmenting path of capacity at
least K can be found in O(E) time, if such a path exists.

The following modification of FORD-FULKERSON-METHOD can be used to
compute a maximum flow in G.
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MAX-FLOW-BY-SCALINO(G, s, t)

1 C +- max(u,II)EE c(u, v)
2 initialize flow I to 0
3 K +- 2l1g CJ
4 while K 2: 1
5 do while there exists an augmenting path p of capacity at least K
6 do augment flow I along p
7 K +- Kj2
8 return I

c. Argue that MAX-FLOW-BY-SCALINO returns a maximum flow.

d. Show that the residual capacity of a minimum cut of G is at most 2K lEI
each time line 4 is executed.

e. Argue that the inner while loop of lines 5-6 is executed O(E) times for
each value of K.

f. Conclude that MAX-FLOW-BY-SCALINO can be implemented to run in
0(E21g C) time.

27-6 Maximum flow with upper and lower capacity bounds
Suppose that each edge (u, v) in a flow network G = (V, E) has not only an
upper bound c(u, v) on the net flow from u to v, but also a lower bound
btu, v). That is, any flow I on the network must satisfy btu, v) ~ fiu, v) ~
c(u, v). It may be the case for such a network that no feasible flow exists.

a. Prove that if I is a flow on G, then III ~ c(S, T) - b(T, S) for any cut
(S, T) of G.

b. Prove that the value of a maximum flow in the network, if it exists,
is the minimum value of c(S, T) b( T, S) over all cuts (S, T) of the
network.

Let G = (V, E) be a flow network with upper and lower bound functions c
and b, and let sand t be the source and sink of G. Construct the ordinary
flow network G' = (V', E') with upper bound function c', source S', and
sink t' as follows:

V' V U {S',t'} ,

E ' Eu {(s',v): v E V} U {(u,t'): U E V} U {(s,t),(t,s)}

We assign capacities to edges as follows. For each edge (u, v) E E, we set
c'tu, v) = c(u, v) btu, v). For each vertex u E V, we set C'(S', u) b( V, u)
and c'tu, t ') = btu, V), We also set c'(s, 1) = c'(t,s) 00.

c. Prove that there exists a feasible flow in G if and only if there exists a
maximum flow in G' such that all edges into the sink t' are saturated.
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Chapter notes

d. Give an algorithm that finds a maximum flow in a network with upper
and lower bounds or determines that no feasible flow exists. Analyze
the running time of your algorithm.

Even [65], Lawler [132], Papadimitriou and Steiglitz [154], and Tarjan
[188] are good references for network flow and related algorithms. Gold
berg, Tardos, and Tarjan [83] provide a nice survey of algorithms for
network-flow problems.

The Ford-Fulkerson method is due to Ford and Fulkerson [71], who
originated many of the problems in the area of network flow, including
the maximum-flow and bipartite-matching problems. Many early imple
mentations of the Ford-Fulkerson method found augmenting paths us
ing breadth-first search; Edmonds and Karp [63] proved that this strategy
yields a polynomial-time algorithm. Karzanov [119] developed the idea of
preflows. The preflow-push method is due to Goldberg [82]. The fastest
preflow-push algorithm to date is due to Goldberg and Tarjan [85], who
achieve a running time of O(VE 19( V 2 / E)). The best algorithm to date
for maximum bipartite matching, discovered by Hopcroft and Karp [101],
runs in O(y'VE) time.
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Introduction

This part contains a selection of algorithmic topics that extend and com
plement earlier material in this book. Some chapters introduce new models
of computation such as combinational circuits or parallel computers. Oth
ers cover specialized domains such as computational geometry or number
theory. The last two chapters discuss some of the known limitations to
the design of efficient algorithms and introduce techniques for coping with
those limitations.

Chapter 28 presents our first parallel model of computation: comparison
networks. Roughly speaking, a comparison network is an algorithm that
allows many comparisons to be made simultaneously. This chapter shows
how to build a comparison network that can sort n numbers in 0(lg2 n)
time.

Chapter29 introduces another parallel model of computation: combina
tional circuits. This chapter shows that two n-bit numbers can be added in
O(lg n) time using a combinational circuit called a carry-lookahead adder.
It also shows how to multiply two zr-bit numbers in O(lg n) time.

Chapter 30 introduces a general model of parallel computation called the
PRAM. The chapter presents basic parallel techniques, including pointer
jumping, prefix computations, and the Euler-tour technique. Most of the
techniques are illustrated on simple data structures, including lists and
trees. The chapter also discusses general issues in parallel computation,
including work efficiency and concurrent access to shared memory. It
proves Brent's theorem, which shows how a parallel computer can effi
ciently simulate a combinational circuit. The chapter concludes with a
work-efficient, randomized algorithm for list ranking and a remarkably
efficient deterministic algorithm for symmetry breaking in a list.

Chapter 31 studies efficient algorithms for operating on matrices. It be
gins with Strassen's algorithm, which can multiply two n x n matrices in
0(n2,81) time. It then presents two general methods-LV decomposition
and LUP decomposition-for solving linear equations by Gaussian elirn-
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ination in O(n 3 ) time. It also shows that Strassen's algorithm can be used
to solve linear systems faster and that, asymptotically, matrix inversion
and matrix multiplication can be performed equally fast. The chapter
concludes by showing how a least-squares approximate solution can be
computed when a set of linear equations has no exact solution.

Chapter 32 studies operations on polynomials and shows that a well
known signal-processing technique-the Fast Fourier Transform (FFT)
can be used to multiply two degree-n polynomials in O( n 19 n) time. It
also investigates efficient implementations of the FFT, including a parallel
circuit.

Chapter 33 presents number-theoretic algorithms. After a review of
elementary number theory, it presents Euclid's algorithm for computing
greatest common divisors. Algorithms for solving modular linear equa
tions and for raising one number to a power modulo another number are
presented next. An interesting application of number-theoretic algorithms
is presented next: the RSA public-key cryptosystem. This cryptosystem
not only can be used-to encrypt messages so that an adversary cannot read
them, it also can be used to provide digital signatures. The chapter then
presents the Miller-Rabin randomized primality test, which can be used to
find large primes efficiently-an essential requirement for the RSA system.
Finally, the chapter covers Pollard's "rho" heuristic for factoring integers
and discusses the state of the art of integer factorization.

Chapter 34 studies the problem of finding all occurrences of a given
pattern string in a given text string, a problem that arises frequently in
text-editing programs. An elegant approach due to Rabin and Karp is
considered first. Then, after examining an efficient solution based on finite
automata, the chapter presents the Knuth-Morris-Pratt algorithm, which
achieves efficiencyby cleverly preprocessing the pattern. The chapter closes
with a presentation of a string-matching heuristic due to Boyer and Moore.

Computational geometry is the topic of Chapter 35. After discussing ba
sic primitives ofcomputational geometry, the chapter shows how a "sweep
ing" method can efficientlydetermine whether or not a set of line segments
contains any intersections. Two clever algorithms for finding the convex
hull of a set of points-Graham's scan and Jarvis's march-also illustrate
the power of sweeping methods. The chapter closes with an efficient algo
rithm for finding the closest pair from among a given set of points in the
plane.

Chapter 36 concerns NP-complete problems. Many interesting compu
tational problems are NP-complete, but no polynomial-time algorithm is
known for solving any of them. This chapter presents techniques for de
termining when a problem is NP-complete. Several classic problems are
proved to be NP-complete: determining if a graph has a hamiltonian cy
cle, determining if a boolean formula is satisfiable, and determining if a
given set of numbers has a subset that adds up to a given target value.
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The chapter also proves that the famous traveling-salesman problem is
NP-complete.

Chapter 37 shows how approximation algorithms can be used to find
approximate solutions to NP-complete problems efficiently. For some
NP-complete problems, approximate solutions that are near optimal are
quite easy to produce, but for others even the best approximation algo
rithms known work progressively more poorly as the problem size in
creases. Then, there are some problems for which one can invest increasing
amounts of computation time in return for increasingly better approximate
solutions. This chapter illustrates these possibilities with the vertex-cover
problem, the traveling-salesman problem, the set-covering problem, and
the subset-sum problem.



28 Sorting Networks

In Part II, we examined sorting algorithms for serial computers (random
access machines, or RAM's) that allow only one operation to be executed
at a time. In this chapter, we investigate sorting algorithms based on a
comparison netw~rk model of computation in which many comparison
operations can be performed simultaneously.

Comparison networks differ from RAM's in two important respects.
First, they can only perform comparisons. Thus, an algorithm such as
counting sort (see Section 9.2) cannot be implemented on a compari
son network. Second, unlike the RAM model, in which operations occur
serially-that is, one after another-operations in a comparison network
may occur at the same time, or "in parallel." As we shall see, this charac
teristic allows the construction of comparison networks that sort n values
in sublinear time.

We begin in Section 28.1 by defining comparison networks and sorting
networks. We also give a natural definition for the "running time" of a
comparison network in terms of the depth of the network. Section 28.2
proves the "zero-one principle," which greatly eases the task of analyzing
the correctness of sorting networks.

The efficient sorting network that we shall design is essentially a parallel
version of the merge-sort algorithm from Section 1.3.1. Our construction
will have three steps. Section 28.3 presents the design of a "bitonic" sorter
that will be our basic building block. We modify the bitonic sorter slightly
in Section 28.4 to produce a merging network that can merge two sorted
sequences into one sorted sequence. Finally, in Section 28.5, we assemble
these merging networks into a sorting network that can sort n values in
0(1g2 n) time.

28.1 Comparison networks

Sorting networks are comparison networks that always sort their inputs, so
it makes sense to begin our discussion with comparison networks and their
characteristics. A comparison network is comprised solely of wires and
comparators. A comparator, shown in Figure 28.1(a), is a device with two
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:~
~ x'~min(x,y)

7 3
x' =min(x,y)x Icomparator 3 7

y' =max(x,y) y y' =max(x,y)

(a) (b)

Figure 28.1 (a) A comparator with inputs x and y and outputs x' and y'. (b) The
same comparator, drawn as a single vertical line. Inputs x 7,Y 3 and outputs
x' = 3,y' 7 are shown.

inputs, x and y, and two outputs, x' and y', that performs the following
function:

x' min(x, y) ,

y' max(x,y) .

Because the pictorial representation of a comparator in Figure 28.1(a)
is too bulky for our purposes, we shall adopt the convention of drawing
comparators as single vertical lines, as shown in Figure 28.1(b). Inputs
appear on the left and outputs on the right, with the smaller input value
appearing on the top output and the larger input value appearing on the
bottom output. We can thus think of a comparator as sorting its two
inputs.

We shall assume that each comparator operates in O( 1) time. In other
words, we assume that the time between the appearance of the input values
x and y and the production of the output values x' and y' is a constant.

A wire transmits a value from place to place. Wires can connect the
output of one comparator to the input of another, but otherwise they are
either network input wires or network output wires. Throughout this chap
ter, we shall assume that a comparison network contains n input wires
a" az, ... , an, through which the values to be sorted enter the network,
and n output wires bj, bi. ... , bn, which produce the results computed by
the network. Also, we shall speak of the input sequence (aI, az, ... ,an) and
the output sequence (b l , bz, ... , bn ), referring to the values on the input and
output wires. That is, we use the same name for both a wire and the value
it carries. Our intention will always be clear from the context.

Figure 28.2 shows a comparison network, which is a set of comparators
interconnected by wires. We draw a comparison network on n inputs as
a collection of n horizontal lines with comparators stretched vertically.
Note that a line does not represent a single wire, but rather a sequence of
distinct wires connecting various comparators. The top line in Figure 28.2,
for example, represents three wires: input wire aj, which connects to an
input of comparator A; a wire connecting the top output of comparator A
to an input of comparator C; and output wire b l , which comes from the top
output of comparator C. Each comparator input is connected to a wire that
is either one of the network's n input wires aI, aa,... .a; or is connected
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Figure 28.2 (a) A 4-input, 4-output comparison network, which is in fact a sorting
network. At time 0, the input values shown appear on the four input wires. (b) At
time I, the values shown appear on the outputs of comparators A and B, which are
at depth l. (c) At time 2, the values shown appear on the outputs of comparators C
and D, at depth 2. Output wires hi and b4 now have their final values, but output
wires b2 and b3 do not. (d) At time 3, the values shown appear on the outputs of
comparator E, at depth 3. Output wires b2 and b3 now have their final values.

to the output of another comparator. Similarly, each comparator output
is connected to a wire that is either one of the network's n output wires
bi, b2, ••• .b; or is connected to the input of another comparator. The
main requirement for interconnecting comparators is that the graph of
interconnections must be acyclic: if we trace a path from the output of
a given comparator to the input of another to output to input, etc., the
path we trace must never cycle back on itself and go through the same
comparator twice. Thus, as in Figure 28.2, we can draw a comparison
network with network inputs on the left and network outputs on the right;
data move through the network from left to right.

Each comparator produces its output values only when both of its input
values are available to it. In Figure 28.2(a), for example, suppose that the
sequence (9,5,2, 6) appears on the input wires at time 0. At time 0, then,
only comparators A and B have all their input values available. Assuming
that each comparator requires one time unit to compute its output values,
comparators A and B produce their outputs at time 1; the resulting values
are shown in Figure 28.2(b). Note that comparators A and B produce their
values at the same time, or "in parallel." Now, at time 1, comparators C
and D, but not E, have all their input values available. One time unit
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later, at time 2, they produce their outputs, as shown in Figure 28.2(c).
Comparators C and D operate in parallel as well. The top output of com
parator C and the bottom output of comparator D connect to output wires
bl and bs, respectively, of the comparison network, and these network
output wires therefore carry their final values at time 2. Meanwhile, at
time 2, comparator E has its inputs available, and Figure 28.2(d) shows
that it produces its output values at time 3. These values are carried on
network output wires b2 and b3, and the output sequence (2, 5,6,9) is now
complete.

Under the assumption that each comparator takes unit time, we can
define the "running time" of a comparison network, that is, the time it
takes for all the output wires to receive their values once the input wires
receive theirs. Informally, this time is the largest number of comparators
that any input element can pass through as it travels from an input wire to
an output wire. More formally, we define the depth of a wire as follows. An
input wire of a comparison network has depth O. Now, if a comparator
has two input wires with depths d; and d., then its output wires have
depth max(dx , dv ) + 1. Because there are no cycles of comparators in a
comparison network, the depth of a wire is well defined, and we define
the depth of a comparator to be the depth of its output wires. Figure 28.2
shows comparator depths. The depth of a comparison network is the
maximum depth of an output wire or, equivalently, the maximum depth
of a comparator. The comparison network of Figure 28.2, for example,
has depth 3 because comparator E has depth 3. If each comparator takes
one time unit to produce its output value, and if network inputs appear at
time 0, a comparator at depth d produces its outputs at time d; the depth
of the network therefore equals the time for the network to produce values
at all of its output wires.

A sorting network is a comparison network for which the output sequence
is monotonically increasing (that is, b, ::; bi ::; .. , ::; bn ) for every input
sequence. Of course, not every comparison network is a sorting network,
but the network of Figure 28.2 is. To see why, observe that after time 1,
the minimum of the four input values has been produced by either the top
output of comparator A or the top output of comparator B. After time 2,
therefore, it must be on the top output of comparator C. A symmetrical
argument shows that after time 2, the maximum of the four input values
has been produced by the bottom output of comparator D. All that remains
is for comparator E to ensure that the middle two values occupy their
correct output positions, which happens at time 3.

A comparison network is like a procedure in that it specifies how com
parisons are to occur, but it is unlike a procedure in that its physical size
depends on the number of inputs and outputs. Therefore, we shall actu
ally be describing "families" of comparison networks. For example, the
goal of this chapter is to develop a family SORTER of efficient sorting net
works. We specify a given network within a family by the family name and
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Figure 28.3 A sorting network based on insertion sort for use in Exercise 28.1-6.

the number of inputs (which equals the number of outputs). For exam
ple, the n-input, n-output sorting network in the family SORTER is named
SORTER[n].

Exercises

28.1-1
Show the values that appear on all the wires of the network of Figure 28.2
when it is given the input sequence {9,6, 5, 2}.

28.1-2
Let n be an exact power of 2. Show how to construct an n-input, n-output
comparison network of depth 19 n in which the top output wire always
carries the minimum input value and the bottom output wire always carries
the maximum input value.

28.1-3
Professor Nielsen claims that if we add a comparator anywhere in a sort
ing network, the resulting network also sorts. Show that the professor is
mistaken by adding a comparator to the network of Figure 28.2 in such a
way that the resulting network does not sort every input permutation.

28.1-4
Prove that any sorting network on n inputs has depth at least 19 n.

28.1-5
Prove that the number of comparators in any sorting network is at least
Q(nlgn).

28.1-6
Consider the comparison network shown in Figure 28.3. Prove that it is
in fact a sorting network, and describe how its structure is related to that
of insertion sort (Section 1.1).
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28.1-7
We can represent an n-input comparison network with c comparators as
a list of c pairs of integers in the range from I to n. If two pairs contain
an integer in common, the order of the corresponding comparators in the
network is determined by the order of the pairs in the list. Given this
representation, describe an O(n+c)-time (serial) algorithm for determining
the depth of a comparison network.

28.1-8 *
Suppose that in addition to the standard kind of comparator, we introduce
an "upside-down" comparator that produces its minimum output on the
bottom wire and its maximum output on the top wire. Show how to
convert any sorting network that uses a total of c standard and upside-down
comparators to one that uses c standard ones. Prove that your conversion
method is correct.

28.2 The zero-one principle

The zero-oneprinciple says that if a sorting network works correctly when
each input is drawn from the set {O, I}, then it works correctly on arbitrary
input numbers. (The numbers can be integers, reals, or, in general, any set
of values from any linearly ordered set.) As we construct sorting networks
and other comparison networks, the zero-one principle will allow us to
focus on their operation for input sequences consisting solely of O's and 1'so
Once we have constructed a sorting network and proved that it can sort
all zero-one sequences, we shall appeal to the zero-one principle to show
that it properly sorts sequences of arbitrary values.

The proof of the zero-one principle relies on the notion of a monotoni
cally increasing function (Section 2.2).

Lemma 28.1
If a comparison network transforms the input sequence a = (ai, a2, . . . , an)
into the output sequence b = (b l , b-; ... , bn) , then for any monotonically
increasing function I, the network transforms the input sequence I(a) =
(f(ad,/(a2), ... ,/(an»into the output sequence I(b) = (f(bd,/(b2),
... ,j(bn».

Proof We shall first prove the claim that if j is a monotonically increasing
function, then a single comparator with inputs I(x) and fey) produces
outputs I(min(x,y» and I(max(x,y»). We shall then use induction to
prove the lemma.

To prove the claim, consider a comparator whose input values are x
and y. The upper output of the comparator is min(x,y) and the lower
output is max(x,y). Suppose we now apply I(x) and fey) to the inputs
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!(x) ---.---- min(j(x),j(y)) =!(min(x,Y»

!(y) ---~--- max(j(x),j(y)) =!(max(x,y))

Figure 28.4 The operation of the comparator in the proof of Lemma 28.1. The
function J is monotonically increasing.

of the comparator, as is shown in Figure 28.4. The operation of the com
parator yields the value min(f(x), f(y)) on the upper output and the value
max(f(x),f(Y)) on the lower output. Since f is monotonically increasing,
x ~ Y implies f(x) ~ f(y). Consequently, we have the identities

min(f(x), f(y)) =

max(f(x), f(y))

f(min(x,y)) ,

f(max(x,y)) .

Thus, the comparator produces the values f(min(x,y)) and f(max(x,y))
when f(x) and f(y) are its inputs, which completes the proof of the claim.

We can use induction on the depth of each wire in a general comparison
network to prove a stronger result than the statement of the lemma: if
a wire assumes the value a, when the input sequence a is applied to the
network, then it assumes the value f(ai) when the input sequence f(a) is
applied. Because the output wires are included in this statement, proving
it will prove the lemma.

For the basis, consider a wire at depth 0, that is, an input wire ai. The
result follows trivially: when f(a) is applied to the network, the input
wire carries f(ai). For the inductive step, consider a wire at depth d,
where d ;:::: 1. The wire is the output of a comparator at depth d, and the
input wires to this comparator are at a depth strictly less than d. By the
inductive hypothesis, therefore, if the input wires to the comparator carry
values a, and aj when the input sequence a is applied, then they carry
f(ai) and f(aj) when the input sequence f(a) is applied. By our earlier
claim, the output wires of this comparator then carry f(min(ai,aj)) and
f(max(ai, aJ ) ) . Since they carry min(ai, aj) and maxtc., aj) when the input
sequence is a, the lemma is proved. _

As an example of the application of Lemma 28.1, Figure 28.5 shows
the sorting network from Figure 28.2 with the monotonically increasing
function f(x) = rx /21 applied to the inputs. The value on every wire is f
applied to the value on the same wire in Figure 28.2.

When a comparison network is a sorting network, Lemma 28.1 allows
us to prove the following remarkable result.

Theorem 28.2 (Zero-one principle)
If a comparison network with n inputs sorts all 2n possible sequences of O's
and l 's correctly, then it sorts all sequences of arbitrary numbers correctly.
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1 3 3 b
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3 5 5 b4

(a) (b)

Figure 28.S (a) The sorting network from Figure 28.2 with input sequence
(9, 5,2,6). (b) The same sorting network with the monotonically increasing func
tion f(x) = f(fx/21) applied to the inputs. Each wire in this network has the
value of f applied to the value on the corresponding wire in (a).

Proof Suppose for the purpose of contradiction that the network sorts
all zero-one sequences, but there exists a sequence of arbitrary numbers
that the network does not correctly sort. That is, there exists an input
sequence (aj,a2, ... ,an) containing elements at and a, such that at < a.,
but the network places aj before at in the output sequence. We define a
monotonically increasing function f as

f(x) = {O ~f x::; at ,
I If x> at .

Since the network places aj before at in the output sequence when (aI, a2,
... ,an) is input, it follows from Lemma 28.1 that it places f(aj) before
f(at) in the output sequence when (f(ad,f(a2), ... ,f(an)) is input. But
since f(aj) = 1 and f(at) = 0, we obtain the contradiction that the network
fails to sort the zero-one sequence (f(ad,f(a2), ... ,f(an)) correctly. _

Exercises

28.2-1
Prove that applying a monotonically increasing function to a sorted se
quence produces a sorted sequence.

28.2-2
Prove that a comparison network with n inputs correctly sorts the input
sequence in, n 1, , 1) if and only if it correctly sorts the n - 1 zero-one
sequences (1,0,0, ,0,0), (1,1,0, ... ,0,0), ..., (1,1,1, ... ,1,0).

28.2-3
Use the zero-one principle to prove that the comparison network shown
in Figure 28.6 is a sorting network.

28.2-4
State and prove an analog of the zero-one principle for a decision-tree
model. (Hint: Be sure to handle equality properly.)
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I

I
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I
Figure 28.6 A sorting network for sorting 4 numbers.

28.2-5
Prove that an n-input sorting network must contain at least one comparator
between the ith and (i + 1)st lines for all i = 1,2, ... , n I.

28.3 A bitonic sorting network

The first step in our construction of an efficient sorting network is to con
struct a comparison network that can sort any bitonlc sequence: a sequence
that either monotonically increases and then monotonically decreases, or
else monotonically decreases and then monotonically increases. For exam
ple, the sequences (1,4,6,8,3,2) and (9,8,3,2,4,6) are both bitonic. The
zero-one sequences that are bitonic have a simple structure. They have the
form OilJOk or the form liQilk, for some i.f.k: ~ O. Note that a sequence
that is either monotonically increasing or monotonically decreasing is also
bitonic.

The bitonic sorter that we shall construct is a comparison network that
sorts bitonic sequences of O's and 1's, Exercise 28.3-6 asks you to show
that the bitonic sorter can sort bitonic sequences of arbitrary numbers.

The half-cleaner

A bitonic sorter is comprised of several stages, each of which is called
a half-cleaner. Each half-cleaner is a comparison network of depth 1 in
which input line i is compared with line i + nl2 for i = 1,2, ... , n12.
(We assume that n is even.) Figure 28.7 shows HALF-CLEANER[8], the
half-cleaner with 8 inputs and 8 outputs.

When a bitonic sequence of O's and I's is applied as input to a half
cleaner, the half-cleaner produces an output sequence in which smaller
values are in the top half, larger values are in the bottom half, and both
halves are bitonic. In fact, at least one of the halves is clean-consisting
of either all O's or all 1's-and it is from this property that we derive the
name "half-cleaner." (Note that all clean sequences are bitonic.) The next
lemma proves these properties of half-cleaners.
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Figure 28.7 The comparison network HALF-CLEANER[8]. Two different sample
zero-one input and output values are shown. The input is assumed to be bitonic.
A half-cleaner ensures that every output element of the top half is at least as small
as every output element of the bottom half. Moreover, both halves are bitonic,
and at least one half is clean.

Lemma 28.3
If the input to a half-cleaner is a bitonic sequence of O's and I's, then the
output satisfies the following properties: both the top half and the bottom
half are bitonic, every element in the top half is at least as small as every
element of the bottom half, and at least one half is clean.

Proof The comparison network HALF-CLEANER[n] compares inputs i
and i + n/2 for i = 1,2, ... , n/2. Without loss of generality, suppose that
the input is of the form 00 011 100 O. (The situation in which
the input is of the form 11 100 011 1 is symrnetric.) There are
three possible cases depending upon the block of consecutive O's or 1's in
which the midpoint n/2 falls, and one of these cases (the one in which
the midpoint occurs in the block of 1's) is further split into two cases.
The four cases are shown in Figure 28.8. In each case shown, the lemma
holds. •

The bitonic sorter

By recursively combining half-cleaners, as shown in Figure 28.9, we can
build a bltonlc sorter, which is a network that sorts bitonic sequences. The
first stage of BITONIC-SoRTER[n] consists of HALF-CLEANER[n], which, by
Lemma 28.3, produces two bitonic sequences of half the size such that
every element in the top half is at least as small as every element in
the bottom half. Thus, we can complete the sort by using two copies of
BITONIC-SoRTER[n/2] to sort the two halves recursively. In Figure 28.9(a),
the recursion has been shown explicitly, and in Figure 28.9(b), the recur
sion has been unrolled to show the progressively smaller half-cleaners that
make up the remainder of the bitonic sorter. The depth D(n) of BITONIC
SORTER[n] is given by the recurrence
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Figure 28.8 The possible comparisons in H ALF-CLEANER[n). The input sequence
is assumed to be a bitonic sequence of 0'5 and " 5, and without loss of generality,
we assume thai it is of the form 00 . . . 011 . .. 100 ... 0. Subsequences of O's are
white, and subsequences of ) ' 5 art gray. We can think of the /I inputs as being
divided into two halves such that for i = 1, 2, . .. , n/2 , input s j and i + 11 /2 are
compared . (a)- (b) Cases in which the division occurs in the middle subsequence
of 1'5. (c)-{d) Cases in which the division occurs in a subsequence of 0'5. For
all cases, every element in the top half is at least as small as every element in the
bottom half, both halves are bitoni c, and at least one half is clean.
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Figure 28.9 The comparison network BITONIC-SoRTER(n). shown here for n = 8.
(a) The recursive construction: HALF-C1..EANER(n) followed by two copies of
BITONIC-SoRTER[n/ 2) that operate in parallel. (b) The network after unrolling
the recursion. Each half-cleaner is shaded . Sample zero-one values are shown on
the wires.

D(n ) = {~(nI2 ) + I
if n e L ,
if n = 2'" andk ?: I

whose solution is D(n ) = Ig n.
Thus, a zero-o ne bitonic seq ue nce can be sorted by BITONIC-SoRTER,

which has a depth of 19n . It follows by the analog of the zero-one principle
given as Exercise 28.3-6 that any bit onic seq uence of arbi trary numbers can
be sorted by this net work.

Exercises

28.3·/
How many bi ton ic seque nces of O's and I's a re there?

28.3·2
Show that BITONIC-SoRTER[n] , where n is an exact po wer of 2, co ntains
9 (n Ig n ) co mpa ra to rs.

28.3·3
Describe how a n O(lg n )-de pth bitonic sorte r can be constructed whe n the
number n of inputs is not an exac t power of 2.

28.3·4
If the input to a half-c leaner is a bi tonic sequence of arbi trary numbe rs,
prove that the output satisfies th e following properties; both the top half
and the bo ttom half are bi tonic, a nd every ele ment in the top hal f is at
least as small as every element in the bottom half.
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28.3-5
Consider two sequences of a's and L's, Prove that if every element in one
sequence is at least as small as every element in the other sequence, then
one of the two sequences is clean.

28.3-6
Prove the following analog of the zero-one principle for bitonic sorting
networks: a comparison network that can sort any bitonic sequence of a's
and l's can sort any bitonic sequence of arbitrary numbers.

28.4 A merging network

Our sorting network will be constructed from merging networks, which are
networks that can merge two sorted input sequences into one sorted output
sequence. We modify BITONIC-SoRTER[n] to create the merging network
MERGER[n]. As with the bitonic sorter, we shall prove the correctness of
the merging network only for inputs that are zero-one sequences. Exer
cise 28.4-1 asks you to show how the proof can be extended to arbitrary
input values.

The merging network is based on the following intuition. Given two
sorted sequences, if we reverse the order of the second sequence and
then concatenate the two sequences, the resulting sequence is bitonic.
For example, given the sorted zero-one sequences X = 00000III and
y = 0000 1111, we reverse Y to get yR = 11110000. Concatenating X
and yR yields 00000 11111110000, which is bitonic. Thus, to merge the
two input sequences X and Y, it suffices to perform a bitonic sort on X
concatenated with yR.

We can construct MERGER[n] by modifying the first half-cleaner of BI
TONIC-SoRTER[n]. The key is to perform the reversal of the the second
half of the inputs implicitly. Given two sorted sequences (aI, a2, ... , anj2)
and (an/2+1' anj2+2,"" an) to be merged, we want the effect of bitonically
sorting the sequence (a), a2, ... , anj2, an, an-), ... , a nj2+1)' Since the half
cleaner of BITONIC-SoRTER[n] compares inputs i and n/2 + i, for i = 1,2,
... ,nfl; we make the first stage of the merging network compare inputs
i and n - i + 1. Figure 28.10 shows the correspondence. The only sub
tlety is that the order of the outputs from the bottom of the first stage
of MERGER[n] are reversed compared with the order of outputs from an
ordinary half-cleaner. Since the reversal of a bitonic sequence is bitonic,
however, the top and bottom outputs of the first stage of the merging net
work satisfy the properties in Lemma 28.3, and thus the top and bottom
can be bitonically sorted in parallel to produce the sorted output of the
merging network.
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The resulting merging network is shown in Figure 28.11. Only the first
stage of MERGER{n] is different from BITONIC-SoRTER{n]. Consequently,
the depth of MERGER[n] is 19n, the same as that of BITONIC-SoRTER[n].

Exercises

28.4-1
Prove an analog of the zero-one principle for merging networks. Specifi
cally, show that a comparison network that can merge any two monotoni
cally increasing sequences of O's and l's can merge any two monotonically
increasing sequences of arbitrary numbers.

28.4-2
How many different zero-one input sequences must be applied to the input
of a comparison network to verify that it is a merging network?

28.4-3
Show that any network that can merge 1 item with n - 1 items to produce
a sorted sequence of length n must have depth at least lgn.

28.4-4 *
Consider a merging network with inputs ai, a2, . . . , an, for n an exact
power of 2, in which the two monotonic sequences to be merged are
(ah a3,· .. , an-I) and (a2, a4,"" an). Prove that the number of compara
tors in this kind of merging network is Q( n 19 n). Why is this an interesting
lower bound? (Hint: Partition the comparators into three sets.)

28.4-5 *
Prove that any merging network, regardless of the order of inputs, requires
Q( n lgn) comparators.

28.5 A sorting network

We now have all the necessary tools to construct a network that can sort
any input sequence. The sorting network SORTER[n] uses the merging
network to implement a parallel version of merge sort from Section 1.3.1.
The construction and operation of the sorting network are illustrated in
Figure 28.12.

Figure 28.12(a) shows the recursive construction of SORTER[n]. The n
input elements are sorted by using two copies of SORTER[nI2] recursively
to sort (in parallel) two subsequences oflength nl2 each. The two resulting
sequences are then merged by MERGER{n]. The boundary case for the re
cursion is when n = 1, in which case we can use a wire to sort the l-element
sequence, since a t-element sequence is already sorted. Figure 28.12(b)
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Figure 28.12 The sorting network SORTER[n] constructed by recursively combin
ing merging networks. (a) The recursive construction. (b) UnroIling the recursion.
(c) Replacing the MERGER boxes with the actual merging networks. The depth of
each comparator is indicated, and sample zero-one values are shown on the wires.

shows the result of unrolling the recursion, and Figure 28.12(c) shows the
actual network obtained by replacing the MERGER boxes in Figure 28.12(b)
with the actual merging networks.

Data pass through 19n stages in the network SORTER[n]. Each of the
individual inputs to the network is already a sorted l-element sequence.
The first stage of SORTER[n] consists of nl2 copies of MERGER[2] that
work in parallel to merge pairs of l-element sequences to produce sorted se
quences of length 2. The second stage consists of n14 copies of MERGER[4]
that merge pairs of these 2-element sorted sequences to produce sorted se
quences of length 4. In general, for k = 1,2, ... , 19 n, stage k consists of
nl2k copies of MERGER[2k ] that merge pairs of the 2k - 1-element sorted
sequences to produce sorted sequences of length 2k • At the final stage, one
sorted sequence consisting of all the input values is produced. This sorting
network can be shown by induction to sort zero-one sequences, and con
sequently, by the zero-one principle (Theorem 28.2), it can sort arbitrary
values.

We can analyze the depth of the sorting network recursively. The depth
D(n) of SORTER[n] is the depth D(nI2) of SORTER[nI2] (there are two
copies of SORTER[nI2], but they operate in parallel) plus the depth 19n
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of MERGER[n]. Consequently, the depth of SORTER[n] is given by the
recurrence

D() {O if n 1,
n = D(n/2) + Ign if n = 2k and k ~ 1 ,

whose solution is D(n) = 8(lg2 n). Thus, we can sort n numbers in parallel
in O(lg2 n) time.

Exercises

28.5-1
How many comparators are there in SORTER[n]?

28.5-2
Show that the depth of SORTER[n] is exactly (lgn)(lgn + 1)/2.

28.5-3
Suppose we modify a comparator to take two sorted lists of length k as
inputs, merge them, and output the largest k to its "max" output and the
smallest k to its "min" output. Show that any sorting network on n inputs
with comparators modified in this fashion can sort nk numbers, assuming
that each input to the network is a sorted list of length k.

28.5-4
Suppose that we have 2n elements (aj, a2,. .. , a2n) and wish to partition
them into the n smallest and the n largest. Prove that we can do this
in constant additional depth after separately sorting (ai, al, ... , an) and
(Qn+l, Qn+2,·.·, a2n).

28.5-5 *
Let S(k) be the depth of a sorting network with k inputs, and let M(k) be
the depth of a merging network with 2k inputs. Suppose that we have a
sequence of n numbers to be sorted and know that every number is within
k positions of its correct position in the sorted order. Show that we can
sort the n numbers in depth S(k) + 2M(k).

28.5-6 *
We can sort the elements of an m x m matrix by repeating the following
procedure k times:

1. Sort each odd-numbered row into monotonically increasing order.

2. Sort each even-numbered row into monotonically decreasing order.

3. Sort each column into monotonically increasing order.

How many iterations k are required for this procedure to sort, and what
is the pattern of the sorted output?
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28-1 Transposition sorting networks
A comparison network is a transposition network if each comparator con
nects adjacent lines, as in the network in Figure 28.3.

a. Show that any transposition network with n inputs that sorts has .Q(n2 )

comparators.

b. Prove that a transposition network with n inputs is a sorting network if
and only if it sorts the sequence tn, n-I, ... , I). (Hint: Use an induction
argument analogous to the one in the proof of Lemma 28.1.)

An odd-even sorting network on n inputs (aI, a2, .. . , an) has n levels of
comparators. Figure 28.13 shows an odd-even transposition network on
8 inputs. As can be seen in the figure, for i = 2,3, ... , n - I and d =
1,2, ... , n, line i is connected by a depth-a comparator to line j = i +
(-1 )i+d if 1 ~ j ~ n.

c. Prove that the family of odd-even sorting networks is indeed a family
of sorting networks.

28-2 Betcher's odd-even merging network
In Section 28.4, we saw how to construct a merging network based on
bitonic sorting. In this problem, we shall construct an odd-even merging
network. We assume that n is an exact power of 2, and we wish to merge
the sorted sequence of elements on lines (aI, a2, ... , an) with those on lines
(a n+J,an+2, ... ,a2n). We recursively construct two odd-even merging net
works that merge sorted subsequences in parallel. The first merges the
sequence on lines (aI, a3, ... , an-I) with the sequence on lines (an+I' an+3,
... ,a2n-l) (the odd elements). The second merges (a2,a4, ... ,an ) with
(a n+2,an+4 , " " a2n) (the even elements). To combine the two sorted sub
sequences, we put a comparator between a2i-1 and a2i for i = 1,2, ... , n.

a. Draw a 2n-input merging network for n = 4.

a1 bl

Clz b2

'1:3 b3

a4
b4

as bs
a6

b6

a, b7

Us bs

Figure 28.13 An odd-even sorting network on 8 inputs.
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Figure 28.14 Permutat ion networks. (a) The perm utat ion network P" , which con
sists of a single switch that can be set in either of the two ways shown. (b) The
recursive construction of PI from 8 switches and two P4'5. The switches and p~ 's

are set to realize the permutation It _ (4, 7, 3, 5, 1, 6, 8. 2).

b. Use the zero-one principle to pro ve that any 2n-input odd-even merging
network is indeed a merging network .

c. What is the depth of a 2n-input od d-even merging network? What is its
size?

28-3 Permutation networks
A permutation network on n inputs and n outputs has switches that allow
it to connect its inputs to its outputs according to any of the n! possible
permutations. Figure 28.14(a) shows the 2-input, 2-output permutation
network P2, which consists of a single switch that can be set either to feed
its inputs straight through to its outputs or to cross them .

a. Argue that if we replace each comparator in a sorting network with
the switch of Figure 28.14 (a), the resulting network is a permutat ion
network. That is, for any permutation 11' , there is a way to set the
switches in the network so that input i is connected to output 11' U).

Figure 28.14(b ) shows the recursive construction of an 8-input, 8-output
perm utation network Ps that uses two copies of P4 and 8 switches. The
switches have been set to realize the permutation 11' = (4, 7, 3, 5, 1, 6, 8, 2),
which requ ires (recursively) that th e top P4 reali ze (4, 2, 3, I) and the bot
tom P4 realize (2, 3, 1,4).

b. Show how to realize the permutation (5, 3, 4,6, 1, 8, 2, 7) on Pg by draw
ing th e switch setti ngs and the permutations performed by the two P4 ' so



Notes for Chapter 28 653

Chapter notes

Let n be an exact power of 2. Define P; recursively in terms of two Pnj 2's
in a manner similar to the way we defined Ps.

c. Describe an O(n)-time (ordinary random-access machine) algorithm
that sets the n switches connected to the inputs and outputs of P; and
specifies the permutations that must be realized by each Pnj 2 in order
to accomplish any given n-element permutation. Prove that your algo
rithm is correct.

d. What are the depth and size of Pn? How long does it take on an ordinary
random-access machine to compute all switch settings, including those
within the Pn j 2's?

e. Argue that for n > 2, any permutation network-not just Pn-must re
alize some permutation by two distinct combinations of switch settings.

Knuth [123] contains a discussion of sorting networks and charts their
history. They apparently were first explored in 1954 by P. N. Armstrong,
R. J. Nelson, and D. J. O'Connor. In the early 1960's, K. E. Batcher
discovered the first network capable of merging two sequences of n num
bers in O(lgn) time. He used odd-even merging (see Problem 28-2), and
he also showed how this technique could be used to sort n numbers in
0(lg2 n) time. Shortly afterwards, he discovered an O(lgn j-depth bitonic
sorter similar to the one presented in Section 28.3. Knuth attributes the
zero-one principle to W. G. Bouricius (1954), who proved it in the context
of decision trees.

For a long time, the question remained open as to whether a sorting
network with depth O(lgn) exists. In 1983, the answer was shown to be
a somewhat unsatisfying yes. The AKS sorting network (named after its
developers, Ajtai, Komlos, and Szemeredi [8]) can sort n numbers in depth
O(lgn) using O(n Ign) comparators. Unfortunately, the constants hidden
by the O-notation are quite large (many, many thousands), and thus it
cannot be considered practical.
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The model of computation provided by an ordinary computer assumes that
the basic arithmetic operations-addition, subtraction, multiplication, and
division-can be performed in constant time. This abstraction is reason
able, since most basic operations on a random-access machine have simi
lar costs. When it comes to designing the circuitry that implements these
operations, however, we soon discover that performance depends on the
magnitudes of the numbers being operated on. For example, we all learned
in grade school how to add two natural numbers, expressed as n-digit dec
imal numbers, in 8(n) steps (although teachers usually do not emphasize
the number of steps required).

This chapter introduces circuits that perform arithmetic functions. With
serial processes, 8(n) is the best asymptotic time bound we can hope to
achieve for adding two n-digit numbers. With circuits that operate in par
allel, however, we can do better. In this chapter, we shall design circuits
that can quickly perform addition and multiplication. (Subtraction is es
sentially the same as addition, and division is deferred to Problem 29-1.)
We shall assume that all inputs are n-bit natural numbers, expressed in
binary.

We start in Section 29.1 by presenting combinational circuits. We shall
see how the depth of a circuit corresponds to its "running time." The
full adder, which is a building block of most of the circuits in this chap
ter, serves as our first example of a combinational circuit. Section 29.2
presents two combinational circuits for addition: the ripple-carry adder,
which works in 8(n) time, and the carry-lookahead adder, which takes
only O(lg n) time. It also presents the carry-save adder, which can reduce
the problem of summing three numbers to the problem of summing two
numbers in 8( 1) time. Section 29.3 introduces two combinational multi
pliers: the array multiplier, which takes 8(n) time, and the Wallace-tree
multiplier, which requires only e(lg n) time. Finally, Section 29.4 presents
circuits with clocked storage elements (registers) and shows how hardware
can be saved by reusing combinational circuitry.
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Like the comparison networks of Chapter 28, combinational circuits op
erate in parallel: many elements can compute values simultaneously as a
single step. In this section, we define combinational circuits and investi
gate how larger combinational circuits can be built up from elementary
gates.

Combinational elements

Arithmetic circuits in real computers are built from combinational ele
ments that are interconnected by wires. A combinational element is any
circuit element that has a constant number of inputs and outputs and that
performs a well-defined function. Some of the elements we shall deal with
in this chapter are boolean combinational elements-their inputs and out
puts are all drawn from the set {a, I}, where °represents FALSE and 1
represents TRUE.

A boolean combinational element that computes a simple boolean func
tion is called a logic gate. Figure 29.1 shows the four basic logic gates that
will serve as combinational elements in this chapter: the NOT gate (or
inverter), the AND gate, the OR gate, and the XOR gate. (It also shows two
other logic gates-the NAND gate and the NOR gate-that are required
by some of the exercises.) The NOT gate takes a single binary input x,
whose value is either 0 or 1, and produces a binary output z whose value
is opposite that of the input value. Each of the other three gates takes two
binary inputs x and y and produces a single binary output z.

The operation of each gate, and of any boolean combinational element,
can be described by a truth table, shown under each gate in Figure 29.1. A
truth table gives the outputs of the combinational element for each possible
setting of the inputs. For example, the truth table for the XOR gate tells
us that when the inputs are x = 0 and y = 1, the output value is z = 1;
it computes the "exclusive OR" of its two inputs. We use the symbols ...,
to denote the NOT function, 1\ to denote the AND function, V to denote
the OR function, and EB to denote the XOR function. Thus, for example,
OEB1=1.

Combinational elements in real circuits do not operate instantaneously.
Once the input values entering a combinational element settle, or become
stable-that is, hold steady for a long enough time-the element's output
value is guaranteed to become both stable and correct a fixed amount
of time later. We call this time differential the propagation delay of the
element. We assume in this chapter that all combinational elements have
constant propagation delay.
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Figure 29.1 Six basic logic gates, with binary inputs and outputs. Under each gate
is the truth table that describes the gate's operation. (a) The NOT gate. (b) The
AND gate. (c) The OR gate. (d) The XOR (exclusive-OR) gate. (e) The NAND
(NOT-AND) gate. (f) The NOR (NOT-OR) gate.

Combinational circuits

A combinational circuit consists of one or more combinational elements
interconnected in an acyclic fashion. The interconnections are called
wires. A wire can connect the output of one element to the input of an
other, thereby providing the output value of the first element as an input
value of the second. Although a single wire may have no more than one
combinational-element output connected to it, it can feed several element
inputs. The number of element inputs fed by a wire is called the fan-out of
the wire. If no element output is connected to a wire, the wire is a circuit
input, accepting input values from an external source. If no element input
is connected to a wire, the wire is a circuitoutput, providing the results of
the circuit's computation to the outside world. (An internal wire can also
fan out to a circuit output.) Combinational circuits contain no cycles and
have no memory elements (such as the registers described in Section 29.4).
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As an example, Figure 29.2 shows a combinational circuit, called a full
adder, that takes as input three bits x, Y, and z, It outputs two bits, s
and c, according to the following truth table:

x y z c s
0 0 0 0 0
0 0 I 0 1
0 I 0 0 I
0 I I I 0
I 0 0 0 I
1 0 I I 0
I I 0 I 0
I I I I I

Output s is the parity of the input bits,

S = parity/x.j>, z) = x $ y $ Z , (29.1)

and output c is the majority of the input bits,

e majority(x,y, z) = (x 1\ y) V (y 1\ z) V (x 1\ z) . (29.2)

(In general, the parity and majority functions can take any number of
input bits. The parity is 1 if and only if an odd number of the inputs
are I's. The majority is I if and only if more than half the inputs are I 's.)
Note that the c and s bits, taken together, give the sum of x, y, and z,
For example, if x = I, y 0, and z = I, then (c,s) = (10), I which is the
binary representation of 2, the sum of x, y, and z,

Each of the inputs x, y, and z to the full adder has a fan-out of 3.
When the operation performed by a combinational element is commuta
tive and associative with respect to its inputs (such as the functions AND,
OR, and XOR), we call the number of inputs the fan-in of the element.
Although the fan-in of each gate in Figure 29.2 is 2, we could redraw the
full adder to replace XOR gates A and E by a single 3-input XOR gate
and OR gates F and G by a single 3-input OR gate.

To examine how the full adder operates, assume that each gate operates
in unit time. Figure 29.2(a) shows a set of inputs that becomes stable at
time O. Gates A-D, and no other gates, have all their input values stable
at that time and therefore produce the values shown in Figure 29.2(b) at
time 1. Note that gates A-D operate in parallel. Gates E and F, but
not gate G, have stable inputs at time I and produce the values shown in
Figure 29.2(c) at time 2. The output of gate E is bit s, and so the s output
from the full adder is ready at time 2. The c output is not yet ready,
however. Gate G finally has stable inputs at time 2, and it produces the e
output shown in Figure 29.2(d) at time 3.

I For clarity, we omit the commas between sequence elements when they are bits.
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Figure 29.2 A full-adder circuit. (a) At time 0, the input bits shown appear on
the three input wires. (b) At time 1, the values shown appear on the outputs of
gates A-D, which are at depth 1. (c) At time 2, the values shown appear on the
outputs of gates E and F, at depth 2. (d) At time 3, gate G produces its output,
which is also the circuit output.
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As in the case of the comparison networks discussed in Chapter 28, we
measure the propagation delay of a combinational circuit in terms of the
largest number of combinational elements on any path from the inputs
to the outputs. Specifically, we define the depth of a circuit, which corre
sponds to its worst-case "running time," inductively in terms of the depths
of its constituent wires. The depth of an input wire is O. If a combinational
element has inputs Xl, X2, . . . .x, at depths di, d2, . . . .d; respectively, then
its outputs have depth max{d1,d2, ... ,dn } + 1. The depth ofa combina
tional element is the depth of its outputs. The depth of a combinational
circuit is the maximum depth of any combinational element. Since we pro
hibit combinational circuits from containing cycles, the various notions of
depth are well defined.

If each combinational element takes constant time to compute its output
values, then the worst-case propagation delay through a combinational
circuit is proportional to its depth. Figure 29.2 shows the depth of each
gate in the full adder. Since the gate with the largest depth is gate G, the
full adder itself has depth 3, which is proportional to the worst-case time
it takes for the circuit to perform its function.

A combinational circuit can sometimes compute faster than its depth.
Suppose that a large subcircuit feeds into one input of a 2-input AND gate
but that the other input of the AND gate has value O. The output of the
gate will then be 0, independent of the input from the large subcircuit. In
general, however, we cannot count on specific inputs being applied to the
circuit, and the abstraction of depth as the "running time" of the circuit
is therefore quite reasonable.

Circuit size

Besides circuit depth, there is another resource that we typically wish to
minimize when designing circuits. The size of a combinational circuit is
the number of combinational elements it contains. Intuitively, circuit size
corresponds to the memory space used by an algorithm. The full adder of
Figure 29.2 has size 7, for example, since it uses 7 gates.

This definition of circuit size is not particularly useful for small circuits.
After all, since a full adder has a constant number of inputs and out
puts and computes a well-defined function, it satisfies the definition of a
combinational element. A full adder built from a single full-adder combi
national element therefore has size 1. In fact, according to this definition,
any combinational element has size 1.

The definition of circuit size is intended to apply to families of circuits
that compute similar functions. For example, we shall soon see an addition
circuit that takes two n-bit inputs. We are really not talking about a single
circuit here, but rather a family of circuits-one for each size of input.
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In this context, the definition of circuit size makes good sense. It allows
us to define convenient circuit elements without affecting the size of any
implementation of the circuit by more than a constant factor. Of course,
in practice, measurements of size are much more complicated, involving
not only the choice of combinational elements, but also concerns such as
the area the circuit requires when integrated on a silicon chip.

Exercises

29.1-1
In Figure 29.2, change input y to a 1. Show the resulting value carried on
each wire.

29.1-2
Show how to construct an n-input parity circuit with n - I XOR gates and
depth rign1.

29.1-3
Show that any boolean combinational element can be constructed from
a constant number of AND, OR, and NOT gates. (Hint: Implement the
truth table for the element.)

29.1-4
Show that any boolean function can be constructed entirely out of NAND
gates.

29.1-5
Construct a combinational circuit that performs the exclusive-or function
using only four 2-input NAND gates.

29.1-6
Let C be an n-input, n-output combinational circuit of depth d. If two
copies of C are connected, with the outputs of one feeding directly into the
inputs of the other, what is the maximum possible depth of this tandem
circuit? What is the minimum possible depth?

29.2 Addition circuits

We now investigate the problem of adding numbers represented in binary.
We present three combinational circuits for this problem. First, we look at
ripple-carry addition, which can add two n-bit numbers in 8(n) time using
a circuit with 8(n) size. This time bound can be improved to O(lgn) using
a carry-lookahead adder, which also has 8(n) size. Finally, we present
carry-save addition, which in O(1) time can reduce the sum of 3 n-bit
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Figure 29.3 Adding two 8-bit numbers a = (0 to 11110) and b = (110 to 10 1) to
produce a 9-bit sum s = (100110011). Each bit c, is a carry bit. Each column of
bits represents, from top to bottom, c., ai, b., and s, for some i. Carry-in Co is
always O.

numbers to the sum of an n-bit number and an (n + l j-bit number. The
circuit has 8(n) size.

29.2.1 Ripple-carry addition

We start with the ordinary method of summing binary numbers. We as
sume that a nonnegative integer a is represented in binary by a sequence
of n bits (an-I> an- 2 , . . . , ao), where n ~ flg(a + 1)1 and

n-I

a= Lai2i.
i=O

Given two n-bit numbers a = (an- (, an- 2, ••• , ao) and b = (bn- I , bn- 2,

... ,bo), we wish to produce an (n + Ij-bit sum S = (Sn,Sn-I, ... ,SO)' Fig
ure 29.3 shows an example of adding two 8-bit numbers. We sum columns
right to left, propagating any carry from column i to column i + 1, for
l = 0, I, ... , n - 1. In the lth bit position, we take as inputs bits a, and b,
and a carry-in bit c., and we produce a sum bit s, and a carry-out bit Ci+!'

The carry-out bit Ci+ I from the lth position is the carry-in bit into the
(l + 1)st position. Since there is no carry-in for position 0, we assume that
Co = O. The carry-out c; is bit Sn of the sum.

Observe that each sum bit s, is the parity of bits a., b., and c, (see
equation (29.1)). Moreover, the carry-out bit Ci+l is the majority of a.,
b., and c, (see equation (29.2)). Thus, each stage of the addition can be
performed by a full adder.

An n-bit ripple-carry adder is formed by cascading n full adders FAa,
FA I> ... , FAn- (, feeding the carry-out c.; I of FAi directly into the carry
in input of FAi+l • Figure 29.4 shows an 8-bit ripple-carry adder. The
carry bits "ripple" from right to left. The carry-in Co to full adder FA I is
hardwired to 0, that is, it is 0 no matter what values the other inputs take
on. The output is the (n + l l-bit number S = (Sn,Sn-h ••. ,so), where Sn

equals Cn, the carry-out bit from full adder FAn.
Because the carry bits ripple through all n full adders, the time required

by an n-bit ripple-carry adder is 8(n). More precisely, full adder FAi is at
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Figure 29.4 An 8-bit ripple-carry adder performing the addition of Figure 29.3.
Carry bit Co is hardwired to 0, indicated by the diamond, and carry bits ripple
from right to left.

depth i + I in the circuit. Because FAn-I is at the largest depth of any full
adder in the circuit, the depth of the ripple-carry adder is n. The size of
the circuit is 8(n) because it contains n combinational elements.

29.2.2 Carry-Iookahead addition

Ripple-carry addition requires 8(n) time because of the rippling of carry
bits through the circuit. Carry-lookahead addition avoids this 8(n )-time
delay by accelerating the computation of carries using a treelike circuit. A
carry-lookahead adder can sum two x-bit numbers in O(lgn) time.

The key observation is that in ripple-carry addition, for i ~ 1, full adder
FAi has two of its input values, namely a, and b., ready long before the
carry-in c, is ready. The idea behind the carry-lookahead adder is to exploit
this partial information.

As an example, let ai-I = b.:». Since the carry-out c, is the majority
function, we have c, = ai-I = bi- I regardless of the carry-in Ci-I. If
ai-I = bi - I = 0, we can kill the carry-out c, by forcing it to 0 without
waiting for the value of Ci-I to be computed. Likewise, if ai-I = bi- I = 1,
we can generate the carry-out c, = I, irrespective of the value of Ci-I.

If ai-I:/: b.:«, however, then c, depends on Ci-I. Specifically, c, = Ci-I,
because the carry-in Ci-I casts the deciding "vote" in the majority election
that determines c.. In this case, we propagate the carry, since the carry-out
is the carry-in.

Figure 29.5 summarizes these relationships in terms of carry statuses,
where k is "carry kill," g is "carry generate," and p is "carry propagate."

Consider two consecutive full adders FAi _ 1 and FAi together as a com
bined unit. The carry-in to the unit is Ci-I> and the carry-out is Ci+l. We
can view the combined unit as killing, generating, or propagating carries,
much as for a single full adder. The combined unit kills its carry if FAi
kills its carry or if FAi _ 1 kills its carry and FA i propagates it. Similarly,
the combined unit generates a carry if FA i generates a carry or if FAi _ 1

generates a carry and FAi propagates it. The combined unit propagates
the carry, setting c.; 1 = Ci-I, if both full adders propagate carries. The
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(29.3)

(29.4)

Figure 29.5 The carry-out bit c, and carry status corresponding to inputs a,_I,

b.,:«, and C/_I of full adder FA/_I in ripple-carry addition.

FA;
® k P

k k k g
FA/-I P k P g

g k g g

Figure 29.6 The carry status of the combination of full adders FAi_1 and FAi in
terms of their individual carry statuses, given by the carry-status operator ® over
the domain {k, p, g}.

table in Figure 29.6 summarizes how carry statuses are combined when
full adders are juxtaposed. We can view this table as the definition of the
carry-status operator Q9 over the domain {k,p,g}. An important property
of this operator is that it is associative, as Exercise 29.2-2 asks you to
verify.

We can use the carry-status operator to express each carry bit Ci in terms
of the inputs. We start by defining Xo = k and

{

k if ai-I = bi - l =°,
Xi = P ~f ai-I =I bi - l ,

g If ai-l = bi - l = 1 ,

for i = 1,2, ... , n. Thus, for i = 1,2, ... , n, the value of Xi is the carry
status given by Figure 29.5.

The carry-out c, of a given full adder FAi-1 can depend on the carry
status of every full adder FA) for j = 0,1, ... , i - 1. Let us define Yo =
Xo = k and

Yi = Yi-I Q9 Xi

= Xo ® Xl Q9 •• , Q9 Xi

for i = 1,2, ... , n, We can think of Yi as a "prefix" of Xo Q9 Xl Q9 ••• ® X n ; we
call the process of computing the values Yo, Yl, ... ,Yn a prefix computation.
(Chapter 30 discusses prefix computations in a more general parallel con
text.) Figure 29.7 shows the values of Xi and Yi corresponding to the binary
addition shown in Figure 29.3. The following lemma gives the significance
of the Yi values for carry-lookahead addition.
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8 7 6 5 4 3 2 0

a 0 I 0 0,
b; 0

x p • • • p • p p •,

Y; • 9 • 9 9 • • • •
c 1 0 I 1 1 0 0 0,

Figure 29.7 The values of Xi and Y I for ; = 0, 1, . . . , 8 that correspond to the
values of ai, bi, and ci in the binary-add ition problem of Figure 29.3. Each value
of X i is shaded with the values of Qi _ 1 and bl_ 1 that it depends on.

Lemma 29.1
Define XO,X I, ... , x" and YO,Y I, ' " , y" by equations (29.3) and (29.4). For
i = 0, I, .. . , n, the following condit ions hold:

1. YI = k implies c. = 0,

2. Yi = g implies Ci = I, and

3. Yi = P does not occur.

Proof The proof is by induction on i. For the basis, ; = O. We have
Yo = Xo = k by definiti on , and also Co = O. For the inductive step, assume
that the lemm a holds for i - I. There are three cases depending on the
value of Yi.

I. If Y I = k, then since Y I = Y;_ I <81 Xi, the definition of the carry-status
operato r @ from Figure 29.6 implies either that X i = k or that X i = P
and Yi- l = k. If X i = k, then equat ion (29.3) impli es that a i_1 =
bi _ l = 0, and thus c, = majority(aj_" bi_ l> ci_ d = O. If X i = P
and Yi-l = k, then a i _ l #- b i _ 1 and, by induction , Ci - l = O. Thus,
majority(a i_h bi-I, Ci-l ) = 0, and thu s c, = O.

2. If Y i = g, then either we have X i = g or we have Xi = P and Yi-I = g.
If Xi = g, then ai_l = bi_ l = I, which implies c, = I. If Xi = P and
Y i-l = g, then ai_ l #- bi_ 1 and, by induction, Ci_l = I , which implies
c, = l .

3. If Y i = P, then Figure 29.6 implies that Yi- I = p, which contradicts the
indu ctive hypothesis. _

Lemma 29. I implies that we can compute each carry bit Ci by computing
each carry status Y i . Once we have all the carry bits, we can compute
the enti re sum in 9 ( I) tim e by computing in parallel the sum bits s, =
parity(ai, b., Cj ) for i = 0, 1, ... , n (taking an = b, = 0). Thus, the problem
of quickly add ing two numbers reduces to the prefix computation of the
carry statuses Yo,Yh . . . ,y".
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Computing carry statuses with a parallel prefix circuit
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By using a prefix circuit that operates in parallel, as opposed to a ripple
carry circuit that produces its outputs one by one, we can compute all
n carry statuses YO,YI, ... ,Yn more quickly. Specifically, we shall design
a parallel prefix circuit with O(lg n) depth. The circuit has 8(n) size
asymptotically the same amount of hardware as a ripple-carry adder.

Before constructing the parallel prefix circuit, we introduce a notation
that will aid our understanding of how the circuit operates. For integers i
and i in the range 0 :::; i :::; i :::; n, we define

[i,i] = Xi ® Xi+1 ® .. , ® Xj •

Thus, for i = 0, 1, ... , n, we have [t, i] = Xi, since the composition of just
one carry status Xi is itself. For t, j, and k satisfying 0 :::; i < i :::; k < n,
we also have the identity

[t,k] = [t,i 1] ® [j,k] , (29.5)

since the carry-status operator is associative. The goal of a prefix computa
tion, in terms of this notation, is to compute Yi = [0, i] for i = 0, I, ... , n.

The only combinational element used in the parallel prefix circuit is a
circuit that computes the ® operator. Figure 29.8 shows how pairs of ® el
ements are organized to form the internal nodes of a complete binary tree,
and Figure 29.9 illustrates the parallel prefix circuit for n = 8. Note that
the wires in the circuit follow the structure of a tree, but the circuit itself
is not a tree, although it is purely combinational. The inputs XI, X2, ••• , x;
are supplied at the leaves, and the input Xo is provided at the root. The
outputs YO,YI, ... ,Yn-I are produced at leaves, and the output Yn is pro
duced at the root. (For ease in understanding the prefix computation,
variable indices increase from left to right in Figures 29.8 and 29.9, rather
than from right to left as in other figures of this section.)

The two ® elements in each node typically operate at different times
and have different depths in the circuit. As shown in Figure 29.8, if the
subtree rooted at a given node spans some range Xi, Xi+I, ••• , Xk of inputs,
its left subtree spans the range Xi, Xi+], •.• , Xj_ h and its right subtree spans
the range x], Xj+], ... , xi; then the node must produce for its parent the
product [i, k] of all inputs spanned by its subtree. Since we can assume
inductively that the node's left and right children produce the products
[i,i -1] and [j, k], the node simply uses one of its two elements to compute
[i,k] <- [i,i - 1] ® (j,k].

Some time after this upward phase of computation, the node receives
from its parent the product [0, i-I] of all inputs that come before the
leftmost input Xi that it spans. The node now likewise computes values for
its children. The leftmost input spanned by the node's left child is also Xi,

and so it passes the value [0, i -I] to the left child unchanged. The leftmost
input spanned by its right child is Xj, and so it must produce [O,i - 1].
Since the node receives the value [0, i-I] from its parent and the value



666 Chapter 29 Arithmetic Circuits

lUI [0,i -1]

[i ,j - I] U.k ]

",
Figure 29.8 The organization of a parallel prefix circuit. The node shown is the
root of a subtree whose leaves input the values X i to Xk. The node's left subtree
spans inputs X i to Xj _ 1. and its right subtree spans inputs X j to Xt. The node
consists of two 0 elements, which operate at different times during the operation
of the circuit. One element computes {i, k j +- (i, ) - 1J 0 {j,kJ, and the other
element computes lO,} - I] <- [0, i - 1] 0 (i, ) - I). The values computed are
shown on the wires.

[i t} - 1] from its left child, it simply computes [0, j - 1] +- [a, i - l ] @[t , k]
and sends this value to the right child.

Figure 29.9 shows th e resulting circuit, includi ng the boundary case that
arises at th e root. The value Xo = [0, 0] is provided as input at the root ,
and one more 0 element is used to compute (in general) th e value YII =
[O, n] ~ [0, 0] 0[1 , n] .

If n is an exact power of 2, then th e parallel prefix circuit uses 2n - I 0
elements. It takes only O(lg n) time to compute all n + I prefixes, since the
computation proceeds up the tree and then back down. Exercise 29.2-5
studies the depth of the circuit in more detail.

Completing the carry-lookahead adder

Now that we have a parallel prefix circuit, we can complete the descr iption
of the carry-lookahead adder. Figure 29. 10 shows the construction. An
n-bit carry- lookahead adder consists of n + I KPG boxes, each of 9 ( I )
size, and a parallel prefix circuit with inpu ts Xo, X I, .. . , XII (xo is hardwired
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Figure 29.9 A parallel prefix circuit for n = 8. (.) The overall structure of the
circuit, and the values carried on each wire. (b) The same circuit with values
corresponding to Figures 29.3 and 29.7.

to k) and outputs YO,YI'.",YII ' KPG box KPG j takes external inputs a j

and bi and prod uces sum bit s., (Input bi ts a ll and bll are hardwired to 0.)
G iven a j _l and bl -h box KPG i _ 1 com putes X, E {k, p,g} according to
equation (29.3) and sends this value as th e external input Xi of the para llel
prefix circuit. (The value of X II+ l is igno red.) Co mputing all the Xi takes
9 (1) tim e. After a delay of O(lgn ), th e parallel prefix circuit produces
YO,Yh .. ..YII. By Lemma 29.1. Yi is either k or g; it ca nnot be p. Each
value Yi indica tes the carry-in to full adde r FAi in the ripple-ca rry adder:
Yi = k implies CI = O. and Yi = g implies CI = 1. Thus. the value ofYi is fed
into KPGI to indicate the carry-in c. , and the sum bit s, = pari ty(a.. bi,c.)
is produ ced in constant time. Thus, the carry-lockahead adder operates in
O(lgn) time and has 9 (n) size.
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parallel prefix circuit

Y, " Y, " Y, " Y, " " x Y, Y, Y, " Y, " Y, "
q p q • k k q q • p q q k P k P k k

KPG. ~KPG, I -fPG, KPG,I f~. KPG, ~KPG, I f PG, KPG,I < ~

o0 101, f,f, 1010 f,f, 1,10 1,1, f,fo 101,
X>cJg.,g.. bs "' b, '\; b, as b, U4 b4 ., b, a.z b2 a l b l .. b,, 0 0 , , 0 0 , ,

s s s " s

Figure 29.10 The construct ion of an n-bit carry-lookahead adder, shown here for
n = 8. It consists of n + I KPG boxes KPGi for j = 0, I, ... , n. Each box KPGi
takes external inputs a, and b, (where an and bn are hardwired to 0, as indicated
by the diamond) and computes carry status X i.;-I . These values are fed into the
para llel prefix circuit, which return s the results y ; of the prefix computation. Each
box KP Gi now takes Yi as input, interp rets it as the carry-in bit c. , and then outputs
the sum bit Si = parity(ai, b;, c;). Sampl e values corresponding to those shown in
Figures 29.3 and 29.9 are shown.

29.2.3 Carry-save addition

A carry-lookabead adder can add two n-bit num bers in O(lgn ) time. Per
haps surp risingly, addi ng three n-bit numbers takes only a constant addi
tional amount of time. The trick is to reduce the problem of add ing three
numbers to the proble m of add ing just two numbers.

Given th ree n-bit numbers x = {Xn_ l , Xn_2,. · ·, Xo}, Y = (Yn- l ,Yn- 2,
... ,Yo), and I = {Zn_l , Zn_l , , zo }, an n-bit carry-saveadder prod uces an
n-bit number U = (un_I. U,,_l , , uo) and an (n + 1)-bit number v = {Vn ,
Vn_ I. ... , vo} such that

U+ V = X + Y + Z .

As shown in Figure 29. II (a), it does this by comput ing

U; par ity(x;,Yi, I i ) ,

Vi+1 = major ity(x;,Yi, Z;) ,

for i = 0, I, ... , n - I . Bit Vo always equals O.
The n-bit carry-save adder shown in Figure 29. I I (b) consists of n full

adders FAo,FAL, ... , FAn_l . For j = 0, I , ... , n - I, full adder FA; takes
inpu ts X i, Yi, and zi. The sum-b it output of FA; is taken as u,., and the
carry-out of FA; is taken as Vi+l. Bit Vo is hardwired to O.

Since the computations of all 2n + I output bits are independent , they
can be performed in parallel. Thus, a carry-save adder operates in a ( I )
time and has a (n ) size. To sum three n-bit numbers, therefore, we need
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(b )

Figure 29.11 (a) Carry-save addition. Given three a-bit numbers x, y , and z, we
produce an n-bit number u and an (n + I)·bit number v such tha t x +y + Z = u +v .
The ith pair of shaded bits are a function of Xi, yj, and Z, . (b) An 8-bit carry-save
adder. Each full adder FA j takes inputs x., y" and z, and produ ces sum bit u, and
carry-out bit Val. Bit 110 is hardwired to O.

on ly perform a carry-save add ition , taking 8 ( I ) time, and then perform a
carry-lookahead addition , taking O(lg n) time. Although th is method is not
asymptotically better than the method of using two carry-lookahead addi
tions, it is much faster in practice. Moreover, we shall see in Sectio n 29.3
that carry-save addition is central to fast algorithms for multiplicat ion.

Exercises

19.1-1
Let a = (0 1111111), b = (00000oo 1), and n = 8. Show the sum and
carry bits output by full adders when ripple-carry addition is perfo rmed on
these two sequences. Show the carry sta tuses Xo, XI , ' .. , Xs corresponding
to a and b, label each wire of the parallel prefix circuit of Figure 29.9
with the value it has given these x, inputs, and show the resulting outputs
Yo,YI>' " ,Ys·

19.1-1
Prove that the carry-status operator 0 given by Figure 29.5 is associa tive.
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Figure 29.12 A parallel prefix circuit for use in Exercise 29.2-6.

19.1-3
Show by example how to construct an O(lgn)-time parallel prefix circuit
for values of n that are not exact powers of 2 by drawing a parallel prefix
circuit for n = 11. Characterize the performance of parallel prefix circuits
built in the shape of arbitrary binary trees.

19.1-4
Show the gate-level construction of the box KPG i • Assume that each out
put Xi is represented by (OO) if Xi = k, by (ll) if Xi = g, and by (Ol)
or (1 O) if Xi = p. Assume also that each input Yi is represented by 0 if
Yi = k and by 1 if Yi = g.

19.1-5
Label each wire in the parallel prefix circuit of Figure 29.9(a) with its
depth. A critical path in a circuit is a path with the largest number of
combinational elements on any path from inputs to outputs. Identify the
critical path in Figure 29.9(a), and show that its length is O(lgn). Show
that some node has ® elements that operate 8(lg n) time apart. Is there a
node whose ® elements operate simultaneously?

19.1-6
Give a recursive block diagram of the circuit in Figure 29.12 for any num
ber n of inputs that is an exact power of 2. Argue on the basis of your block
diagram that the circuit indeed performs a prefix computation. Show that
the depth of the circuit is 8(lg n) and that it has 8(n 19 n) size.
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29.2-7
What is the maximum fan-out of any wire in the carry-Iookahead adder?
Show that addition can still be performed in O(lg n) time by a 8(n )-size
circuit even if we restrict gates to have O( 1) fan-out.

29.2-8
A tally circuit has n binary inputs and m = rlg(n + 1)1 outputs. Interpreted
as a binary number, the outputs give the number of 1's in the inputs. For
example, if the input is (10011110), the output is (10 1), indicating that
there are five l 's in the input. Describe an O(lg n j-depth tally circuit having
8(n) size.

29.2-9 *
Show that n-bit addition can be accomplished with a combinational circuit
of depth 4 and size polynomial in n if AND and OR gates are allowed
arbitrarily high fan-in. (Optional: Achieve depth 3.)

29.2-10 *
Suppose that two random n-bit numbers are added with a ripple-carry
adder, where each bit is independently 0 or I with equal probability. Show
that with probability at least I - lin, no carry propagates farther than
O(lg n) consecutive stages. In other words, although the depth of the ripple
carry adder is 8(n), for two random numbers, the outputs almost always
settle within O(lg n) time.

29.3 Multiplication circuits

The "grade-school" multiplication algorithm in Figure 29.13 can compute
the 2n-bit product p = (P2n-l,P2n-2, ,Po) of two n-bit numbers a =
(an - ), an- 2 , ... , ao) and b = (bn - j, bn - 2 , , bo). We examine the bits of b,
from bo up to bn - 1• For each bit b, with a value of 1, we add a into the
product, but shifted left by i positions. For each bit b, with a value of 0,
we add in 0. Thus, letting m(i) = a . bi • 2i , we compute

n-l
P = a . b L m(i) .

i=O

Each term m(i) is called a partial product. There are n partial products to
sum, with bits in positions °to 2n - 2. The carry-out from the highest bit
yields the final bit in position 2n - 1.

In this section, we examine two circuits for multiplying two n-bit num
bers. Array multipliers operate in 8(n) time and have 8(n 2 ) size. Wallace
tree multipliers also have 8(n2 ) size, but they operate in 8(lg n) time. Both
circuits are based on the grade-school algorithm.
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lOa
o I b

I 1 1 0 mlO)

o 0 0 m(l)

I 0 m ( 2)

o m(3)

p

Figure 29.13 The "grade-school" multiplication method, shown here multiply
ing a = (1110) by b = (1101) to obtain the product p = (IOIIOIIO). We add
r:.;:o· m''), where m''! = a . b, . 2'. Here, n = 8. Each term mil) is formed by
shifting either a (if b, = 1) or 0 (if bi = 0) i positions to the left. Bits that are not
shown are 0 regardless of the values of a and b.

29.3.1 Array multipliers

An array multiplier consists conceptually of three parts. The first part
forms the partial products. The second sums the partial products us
ing carry-save adders. Finally, the third sums the two numbers resulting
from the carry-save additions using either a ripple-carry or carry-lookahead
adder.

Figure 29.14 shows an array multiplier for two input numbers a =

(an-I, an- 2, • • • , ao) and b = (bn- 1, bn-2, • • . , bo). The aj values run ver
tically, and the b, values run horizontally. Each input bit fans out to n
AND gates to form partial products. Full adders, which are organized as
carry-save adders, sum partial products. The lower-order bits of the fi
nal product are output on the right. The higher-order bits are formed by
adding the two numbers output by the last carry-save adder.

Let us examine the construction of the array multiplier more closely.
Given the two input numbers a = (an-I, an- 2 , •.. , ao) and b = (bn-I, bn- 2 ,

... , bo), the bits of the partial products are easy to compute. Specifically,
for i.] = 0, I, .. . .n - 1, we have

(i)mj +i = aj . b, .

Since the product of I-bit values can be computed directly with an AND
gate, all the bits of the partial products (except those known to be 0, which
need not be explicitly computed) can be produced in one step using n2

AND gates.
Figure 29.15 illustrates how the array multiplier performs the carry-save

additions when summing the partial products in Figure 29.13. It starts by
carry-save adding m(O), m(l), and 0, yielding an (n + I)-bit number u( I)

and an (n + I)-bit number v(l). (The number V(I) has only n + I bits,
not n + 2, because the (n + l)st bits of both 0 and m(O) are 0.) Thus,
m(O) + m(l) = u(l) + v(l). It then carry-save adds u(l), v(l), and m(2),

yielding an (n + 2)-bit number U(2) and an (n + 2)-bit number V(2). (Again,
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Figure 29.14 An array multip lier that co mputes the prod uct p = t.Pu. -I ,Puo- 2'
... ,Po) of two a -bit numbers a = (a,,_.. a,, _2, ... ,ao) and b = (b,,_lt b,,_z, .. . , bo),
shown here for n = 4. Each AND gate Gj') computes part ial-product bit m~'I . Each
row of full adders constitutes a carry-save adder. The lower n bits of the product are
m&OI and the u bits coming out from the rightm ost column of full adders. The upper
n produ ct bits are formed by adding the u and v bits coming out from the bottom
row of full adders . Shown are bit values for inpu ts a = ( I l Ia) and b _ (I IOI)
and product p = ( IOI JOll a), corresponding to Figures 29. 13 and 29.15.
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0 0 0 0 =:: 0
I I 1 0 m(O)

0 0 0 0 m(l)

0 I 1 1 0 U(I)

0 0 0 ViI)

1 1 0 m(2)

1 0 0 U(2)

0 0 V(2)

1 0 m(3)

0 1 0 0 u(3)

1 0 v(3)

0 0 0 P

Figure 29.15 Evaluating the sum of the partial products by repeated carry-save
addition. For this example, a=::( 1110) and b (110 1). Bits that are blank are 0
regardless of the values of a and b. We first evaluate m(O) + m(l) + 0 =:: d l

) + V(I),

then Ull) + vii) + m(2) =:: U(2) + v(2), then U(2) + V(2) + m(3) =:: U(3) + V(3), and finally
P m(O) + m' I) + m(2) + m(3) =:: u(3) + v(3). Note that Po m~O) and Pi U;i) for
i = 1, 2, ... , n - 1.

V(2) has only n + 2 bits because both U~~2 and V~~2 are 0.) We then have
m(O) + m( I) + m(2) = U(2) + V(2). The multiplier continues on, carry-save
adding U(i-ll, vii-I), and mU) for i = 2,3, ... , n I. The result is a (2n 1)
bit number u(n-l) and a (2n I)-bit number v(n-l), where

u(n-Il + v(n-l)
n-I

:EmU)
i=O

= p ..

In fact, the carry-save additions in Figure 29.15 operate on more bits
than strictly necessary. Observe that for i = 1,2, ... , n - 1 and j =
0,1, ... , i-I, we have mji) = 0 because of how we shift the partial

products. Observe also that vy> = 0 for i = 1,2, ... ,n 1 and j =
0,1, ... ,i,i+n,i+n+l, ... ,2n l , (See Exercise 29.3-l.) Each carry-save
addition, therefore, needs to operate on only n 1 bits.

Let us now examine the correspondence between the array multiplier and
the repeated carry-save addition scheme. Each AND gate is labeled by Gy)
for some i and j in the ranges 0 :::; i :::; n - 1 and 0 :::; j :::; 2n - 2. Gate Gyl
produces my), the jth bit of the ith partial product. For i 0, 1, ... , n 1,
the ith row of AND gates computes the n significant bits of the partial

d (i) h . (i) (i) (i)}pro uct m ,t at IS, m n+i _ l, m n+i - 2,· •• , m i .

Except for the full adders in the top row (that is, for i 2,3, ... , n 1),
each full adder FAjil takes three input bits-mji), uy- I

) , and vY-ll-and

produces two output bits-uYl and v)11' (Note that in the leftmost column
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of full adders, u;~~~ I = m;2n-l') Each full adder FAy) in the top row takes

inputs m;O), m;l), and 0 and produces bits uy) and vj~I'
Finally, let us examine the output of the array multiplier. As we observed

b (n-I) - 0 s: . - 0 11Th . - (n-I) c '-a ove, vj - lor J - , , ... , n -. us, Pi - Uj lor J -
• (I) _ ° h (I) _ (0) .0, 1, ... .n - 1. Moreover, Since mo - ,we ave Uo - mo ' and Since

the lowest-order i bits of each mU) and V(i-I) are 0, we have ujil = uy- I
) for

i = 2,3, ... , n-I and j = 0, 1, ... , i 1. Thus, Po = m6°) and, by induction,

Pi u;i) for i = 1,2, ... .n - 1. Product bits (P2n-hP2n-2, ..• ,Pn) are
produced by an n-bit adder that adds the outputs from the last row of full
adders:

(P2n-hP2n-2, ••• ,Pn) =
(

(n-I) (n-I) (n-I)) ((n-I) (n-I) (n-I))
U2n-2 ' u2n- 3 ' .•• ,Un + V 2n-2' V 2n-3 ' ... , Vn .

Analysis

Data ripple through an array multiplier from upper left to lower right. It
takes 8(n) time for the lower-order product bits (Pn-J,Pn-2, ..• ,Po) to be
produced, and it takes 8(n) time for the inputs to the adder to be ready.
If the adder is a ripple-carry adder, it takes another 8(n) time for the
higher-order product bits (P2n-I,P2n-2, ... ,Pn) to emerge. If the adder is
a carry-lookahead adder, only 8(lg n) time is needed, but the total time
remains 8(n).

There are n2 AND gates and n2 n full adders in the array multiplier.
The adder for the high-order output bits contributes only another 8(n)
gates. Thus, the array multiplier has 8(n 2) size.

29.3.2 Wallace-tree multipliers

A Wallace tree is a circuit that reduces the problem of summing n n
bit numbers to the problem of summing two 8(n)-bit numbers. It does
this by using Ln/3J carry-save adders in parallel to convert the sum of n
numbers to the sum of r2n/31 numbers. It then recursively constructs
a Wallace tree on the f2n/31 resulting numbers. In this way, the set of
numbers is progressively reduced until there are only two numbers left.
By performing many carry-save additions in parallel, Wallace trees allow
two n-bit numbers to be multiplied in 8(lg n) time using a circuit with
8(n 2 ) size.

Figure 29.16 shows a Wallace tree- that adds 8 partial products m(O),
m(l), ... , m(7). Partial product mU) consists of n + i bits. Each line repre
sents an entire number, not just a single bit; next to each line is the number

2As you can see from the figure, a Wallace tree is not truly a tree, but rather a directed acyclic
graph. The name is historical.



676 Chapter 29 Arithmetic Circuits

(0)
m

(I)
m

(2)
m

(3)
m

(4)
m

(5)
m

(6)
m

(7)
m

p

Figure 29.16 A Wallace tree that adds n = 8 partial products m(O), m( I) , ••• , m'":
Each line represents a number with the number of bits indicated. The left output
of each carry-save adder represents the sum bits, and the right output represents
the carry pits.

of bits the line represents (see Exercise 29.3-3). The carry-lookahead adder
at the bottom adds a (2n - I )-bit number to a 2n-bit number to give the
2n-bit product.

Analysis

The time required by an n-input Wallace tree depends on the depth of the
carry-save adders. At each level of the tree, each group of 3 numbers is
reduced to 2 numbers, with at most 2 numbers left over (as in the case
of m(6) and m(7) at the top level). Thus, the maximum depth D(n) of a
carry-save adder in an n-input Wallace tree is given by the recurrence

{
o

D(n) = I
D(r2nj31) + I

if n ::; 2 ,
if n = 3,
if n e 4,

which has the solution D(n) = 8(lg n) by case 2 of the master theorem
(Theorem 4.1). Each carry-save adder takes 8( I) time. All n partial prod
ucts can be formed in 8( I) time in parallel. (The lowest-order i I bits of
m(i), for i = 1,2, ... , n 1, are hardwired to 0.) The carry-Iookahead adder
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takes O(lgn) time. Thus, the entire multiplication of two n-bit numbers
takes 8(1g n) time.

A Wallace-tree multiplier for two n-bit numbers has 8(n2) size, which
we can see as follows. We first bound the circuit size of the carry-save
adders. A lower bound of Q(n2 ) is easy to obtain, since there are L2n/3J
carry-save adders at depth 1, and each one consists of at least n full adders.
To get the upper bound of O(n2 ) , observe that since the final product has
2n bits, each carry-save adder in the Wallace tree contains at most 2n full
adders. We need to show that there are O(n) carry-save adders altogether.
Let C(n) be the total number of carry-save adders in a Wallace tree with
n input numbers. We have the recurrence

C( ) < {I if n = 3 ,
n - C(f2n/3l) + Ln/3J if n ~ 4,

which has the solution C(n) = 8(n) by case 3 of the master theorem. We
thus obtain an asymptotically tight bound of 8(n2) size for the carry-save
adders of a Wallace-tree multiplier. The circuitry to set up the n partial
products has 8(n 2 ) size, and the carry-lookahead adder at the end has 8(n)
size. Thus, the size of the entire multiplier is 8(n 2 ) .

Although the Wallace-tree-based multiplier is asymptotically faster than
the array multiplier and has the same asymptotic size, its layout when it is
implemented is not as regular as the array multiplier's, nor is it as "dense"
(in the sense of having little wasted space between circuit elements). In
practice, a compromise between the two designs is often used. The idea
is to use two arrays in parallel, one adding up half of the partial products
and one adding up the other half. The propagation delay is only half
of that incurred by a single array adding up all n partial products. Two
more carry-save additions reduce the 4 numbers output by the arrays to 2
numbers, and a carry-lookahead adder then adds the 2 numbers to yield
the product. The total propagation delay is a little more than half that of
a full array multiplier, plus an additional O(lgn) term.

Exercises

29.3-1
Prove that in an array multiplier, vjil = 0 for i
j = 0, I, ... , i, i + n, i + n + I, ... , 2n - 1.

1,2, ... , n - 1 and

29.3-2
Show that in the array multiplier of Figure 29.14, all but one of the full
adders in the top row are unnecessary. You will need to do some rewiring.

29.3-3
Suppose that a carry-save adder takes inputs x, Y, and z and produces
outputs sand c, with nx , n.; ne, n«, and n; bits respectively. Suppose also,
without loss of generality, that nx ::; ny ::; ne. Show that ns = nz and that
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if n; < n- ,
if ny = nz •

29.3-4
Show that multiplication can stilI be performed in O(lgn) time with O(n 2

)

size even if we restrict gates to have O( 1) fan-out.

29.3-5
Describe an efficient circuit to compute the quotient when a binary num
ber x is divided by 3. (Hint: Note that in binary, .010101 ... = .01 x 1.01 x
1.0001 x .... )

29.3-6
A cyclic shifter, or barrel shifter, is a circuit that has two inputs x =
(x n- 1> X n- 2, ... ,XO) and S = (sm-J,Sm-2,''''SO), where m = [lgn], Its
output Y = (Yn-hYn-2, ... ,Yo) is specified by Yi = xi+smoon, for i =
0, 1, ... , n - 1. That is, the shifter rotates the bits of x by the amount
specified by s. Describe an efficient cyclic shifter. In terms of modular
multiplication, what function does a cyclic shifter implement?

29.4 Clocked circuits

The elements of a combinational circuit are used only once during a com
putation. By introducing clocked memory elements into the circuit, we
can reuse combinational elements. Because they can use hardware more
than once, clocked circuits can often be much smaller than combinational
circuits for the same function.

This section investigates clocked circuits for performing addition and
multiplication. We begin with a 8( 1)-size clocked circuit, called a bit-serial
adder, that can add two n-bit numbers in 8(n) time. We then investigate
linear-array multipliers. We present a linear-array multiplier with 8(n)
size that can multiply two n-bit numbers in 8(n) time.

29.4.1 Bit-serial addition

We introduce the notion of a clocked circuit by returning to the problem
of adding two n-bit numbers. Figure 29.17 shows how we can use a single
full adder to produce the (n + Ij-bit sum S = (Sn,Sn-l,'" ,so) of two n
bit numbers a = (an-l,an-2, ... ,aO) and b = (bn-J,bn- 2, ... ,bo). The
external world presents the input bits one pair at a time: first ao and bo,
then at and b l , and so forth. Although we want the carry-out from one
bit position to be the carry-in to the next bit position, we cannot just feed
the full adder's c output directly into an input. There is a timing issue:
the carry-in c, entering the full adder must correspond to the appropriate
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(a) (b) (c) (d) (e)

Figure 29.17 The operation of a bit-serial adder. During the ith clock period,
for i 0, I, ... .n, the full adder FA takes input bits a, and b, from the outside
world and a carry bit c, from the register. The full adder then outputs sum bit Si,

which is provided externally, and carry bit CHI, which is stored back in the register
to be used during the next clock period. The register is initialized with Co = 0.
(a)-(e) The state of the circuit in each of the five clock periods during the addition
of a = (lOll} and b = (1001) to produce s = (10100).

inputs a, and b.. Unless these input bits arrive at exactly the same moment
as the fed-back carry, the output may be incorrect.

As Figure 29.17 shows, the solution is to use a clocked circuit, or sequen
tial circuit, consisting of combinational circuitry and one or more registers
(clocked memory elements). The combinational circuitry has inputs from
the external world or from the output of registers. It provides outputs
to the external world and to the input of registers. As in combinational
circuits, we prohibit the combinational circuitry in a clocked circuit from
containing cycles.

Each register in a clocked circuit is controlled by a periodic signal, or
clock. Whenever the clock pulses, or ticks, the register loads in and stores
the value at its input. The time between successive clock ticks is a clock
period. In a globally clocked circuit, every register works off the same clock.

Let us examine the operation of a register in a little more detail. We
treat each clock tick as a momentary pulse. At a given tick, a register reads
the input value presented to it at that moment and stores it. This stored
value then appears at the register's output, where it can be used to compute
values that are moved into other registers at the next clock tick. In other
words, the value at a register's input during one clock period appears on
the register's output during the next clock period.

Now let us examine the circuit in Figure 29.17, which we call a bit
serial adder. In order for the full adder's outputs to be correct, we require
that the clock period be at least as long as the propagation delay of the
full adder, so that the combinational circuitry has an opportunity to settle
between clock ticks. During clock period 0, shown in Figure 29.17(a),
the external world applies input bits ao and bo to two of the full adder's
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inputs. We assume that the register is initialized to store a 0; the initial
carry-in bit, which is the register output, is thus Co O. Later in this clock
period, sum bit So and carry-out Cl emerge from the full adder. The sum
bit goes to the external world, where presumably it will be saved as part
of the entire sum s. The wire from the carry-out of the full adder feeds
into the register, so that Cl is read into the register upon the next clock
tick. At the beginning of clock period 1, therefore, the register contains CI •

During clock period 1, shown in Figure 29.l7(b), the outside world applies
al and b, to the full adder, which, reading CI from the register, produces
outputs Sl and C2. The sum bit SI goes out to the outside world, and C2

goes to the register. This cycle continues until clock period n, shown in
Figure 29.17(e), in which the register contains Cn. The external world then
applies an = b; 0, so that we get Sn = Cn.

Analysis

To determine the total time t taken by a globally clocked circuit, we need
to know the number p of clock periods and the duration d of each clock
period: t = pd. The clock period d must be long enough for all combina
tional circuitry to settle between ticks. Although for some inputs it may
settle earlier, if the circuit is to work correctly for all inputs, d must be at
least proportional to the depth of the combinational circuitry.

Let us see how long it takes to add two n-bit numbers bit-serially. Each
clock period takes 8( 1) time because the depth of the full adder is 8( I).
Since n + 1 clock ticks are required to produce all the outputs, the total
time to perform bit-serial addition is (n + 1) 8( 1) = 8(n).

The size of the bit-serial adder (number of combinational elements plus
number of registers) is 8(1).

Ripple-carry addition versus bit-serial addition

Observe that a ripple-carry adder is like a replicated bit-serial adder with
the registers replaced by direct connections between combinational ele
ments. That is, the ripple-carry adder corresponds to a spatial "unrolling"
of the computation of the bit-serial adder. The zth full adder in the ripple
carry adder implements the zth clock period of the bit-serial adder.

In general, we can replace any clocked circuit by an equivalent combina
tional circuit having the same asymptotic time delay if we know in advance
how many clock periods the clocked circuit runs for. There is, of course, a
trade-off involved. The clocked circuit uses fewer circuit elements (a factor
of 8(n) less for the bit-serial adder versus the ripple-carry adder), but the
combinational circuit has the advantage of less control circuitry-we need
no clock or synchronized external circuit to present input bits and store
sum bits. Moreover, although the circuits have the same asymptotic time
delay, the combinational circuit typically runs slightly faster in practice.
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Figure 29.18 Multiplying 19 by 29 with the Russian peasant's algorithm. The a
column entry in each row is half of the previous row's entry with fract ions ignored,
and the b-column entr ies double from row to row. We add the b-column entries
in all rows with odd a-column entries, which are shaded. This sum is the desired
prod uct. (a) The numbers expressed in decimal. (b) The same numbers in binary.

Th e extra speed is possible because the co mbinational circuit doesn't have
to wait for values to stabilize during each clock period. If all the inputs
stab ilize at once, values just ripple th rough the circuit at the maximum
possible speed , without waiting for the clock.

29.4.2 Llnear-array multipliers

The combinational multipliers of Section 29.3 need 9 (n2) size to multiply
two n-bit num bers. We now present two mult ipliers that are linear, rather
than two-dim ensional , arrays of circuit elements. Like the array multiplier,
the faster of these two linear-array multipliers runs in 9 (11 ) time.

Th e linear-array multipliers implement the Russian peasant's algorithm
(so called because Westerners visiting Russia in the nineteenth century
found the algorithm widely used there), illustrated in Figure 29. 18(a).
Given two input numbers a and b, we make two colum ns of numbers,
headed by a and b. In each row, the a -column entry is half of the previ
ous row's a-column entry, with fractions discarded. The b-column entry
is twice the previous row's b-column entry. The last row is the one with
an a-column entry of I. We look at all the a-column ent ries that contain
odd values and sum the correspond ing b-column entries. Th is sum is the
produ ct a . b.

Although the Russian peasant's algorithm may seem remarkable at first,
Figure 29. 18(b) shows that it is really just a binary-num ber-system imple
mentat ion of the grade-school mult iplication method, but with num bers
expressed in decimal rather than binary . Rows in which the a -column entry
is odd contribute to the product a term of b multiplied by the ap prop riate
power of 2.
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A slow linear-array implementation

Figure 29.19(a) shows one way to implement the Russian peasant's algo
rithm for two n-bit numbers. We use a clocked circuit consisting of a
linear array of 2n cells. Each cell contains three registers. One register
holds a bit from an a entry, one holds a bit from a b entry, and one holds
a bit of the product p. We use superscripts to denote cell values before
each step of the algorithm. For example, the value of bit a, before the jth
step is aU) and we define aU) = (aU) aU) aU»)

I ' 2n-I' 2n-2"'" 0 .
The algorithm executes a sequence of n steps, numbered 0, I, ... , n - I,

where each step takes one clock period. The algorithm maintains the in
variant that before the jth step,

aU) . bU) + pU) = a . b (29.6)

(see Exercise 29.4-2). Initially, a(O) = a, b(O) = b, and p(O) = O. The jth
step consists of the following computations.

1. If aU) is odd (that is, a~) = 1), then add b into p: p(J+ I) +-- b(J) + p(J).

(The addition is performed by a ripple-carry adder that runs the length
of the array; carry bits ripple from right to left.) If aU) is even, then
carry p through to the next step: p(J+I) +-- p(j}.

2. Shift a right by one bit position:
(J)

a(}+I) +-- {ai+ 1
I 0

if 0 ~ i ~ 2n - 2 ,
if i = 2n - I .

3. Shift b left by one bit position:

b(J+I) +-- {b;~1 if I ~ i ~ 2n - I ,
I 0 if i O.

After running n steps, we have shifted out all the bits of a; thus, a(n) = O.
Invariant (29.6) then implies that p(n) = a . b.

We now analyze the algorithm. There are n steps, assuming that the
control information is broadcast to each cell simultaneously. Each step
takes 8(n) time in the worst case, because the depth of the ripple-carry
adder is 8(n), and thus the duration of the clock period must be at least
8(n). Each shift takes only 8( I) time. Overall, therefore, the algorithm
takes 8(n2

) time. Because each cell has constant size, the entire linear
array has 8(n) size.

A fast linear-array implementation

By using carry-save addition instead of ripple-carry addition, we can de
crease the time for each step to 8(1), thus improving the overall time to
8(n). As Figure 29.19(b) shows, once again each cell contains a bit of an a
entry and a bit of a b entry. Each cell also contains two more bits, from u
and v, which are the outputs from carry-save addition. Using a carry-save
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(0)
b = 58
/1) = 29
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a(3) = 2
b ( ] ) = 232
p ( ] ) : 87

0(4 ) = 1
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p (4 ) : 87

0(5 ) = 0

b (5 ) = 928

p(5) = 551

0(0 ): 19

b(O) = 29
u (O) = 0

vIOl = 0

o(l) = 9

b(l)= 58
u(l): 29

vO) = 0

0(2) = 4

b (2) = 11 6

u (2) = 39
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u ( ] ) : 39
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u (5 ) = 455
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(a) Cb)

Figure 29.19 Two linear-array implementations of the Russian peasant's algo-
rithm, showing the multiplication of 0 = 19 = ( 10011) by b = 29 = ( 11101), with
n = 5. The situation at the beginning of each step j is shown, with the remai ning
significant bits of a U) and bU) shaded. (a) A slow implementation that runs in
8 (n2) time. Because a(5l = 0, we have p (5) = a . b. There are n steps, and each
step uses a ripple-carry addi tion . The clock period is therefore proportional to the
length of the array, or 8 (n ), leading to 8 (n 2) time overall. (b) A fast implementa
tion that runs in 8 (n ) time because each step uses carry-save addition rather than
ripple-car ry addition, thus taking only 8 ( I ) time . T here are a tota l of 2n - I = 9
steps; aft er the last step shown, repeated carry-save addition of u and v yields
u(9) =a ·b.



if 1 ~ i ~ 2n - 1 ,
if i = 0 .

if 1 ~ i ~ 2n - 1 ,
ifi=O.
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representation to accumulate the product, we maintain the invariant that
before the jth step,

aU) . bU) + uUJ + v U) = a . b (29.7)

(again, see Exercise 29.4-2). Each step shifts a and b in the same way as the
slow implementation, so that we can combine equations (29.6) and (29.7)
to yield uU) + v U) pU). Thus, the u and v bits contain the same infor
mation as the p bits in the slow implementation.

The jth step of the fast implementation performs carry-save addition
on u and v, where the operands depend on whether a is odd or even. If
ay) = 1, we compute

u;j+l) +- parity(b;j),u;j),vV)) for i = 0, 1, ... ,2n - 1

and

( "+ 1) {maJ'ority(bU) u(j) v U) )v) +- /-1' /-1' I-I
/ 0

Otherwise, a~j) = 0, and we compute

u;j+l) +- parity(O, u;j), vV)) for i = 0,1, ... , 2n - 1

and

{
. . (0 (j) (j))vU+J) +- majority ,Ui_pVi_ 1

/ 0

After updating u and v, the jth step shifts a to the right and b to the left
in the same manner as the slow implementation.

The fast implementation performs a total of 2n I steps. For j ~ n, we
have aU) 0, and invariant (29.7) therefore implies that uU) + v U) a- b.
Once aUJ = 0, all further steps serve only to carry-save add u and v.
Exercise 29.4-3 asks you to show that v(2n-l) = 0, so that u(2n-l) = a- b.

The total time in the worst case is 8(n), since each of the 2n 1 steps
takes 8( 1) time. Because each cell still has constant size, the total size
remains 8(n).

Exercises

29.4-1
Let a = (IOIIOl), b = (OIIIIO), and n = 6. Show how the Russian
peasant's algorithm operates, in both decimal and binary, for inputs a
and b.

29.4-2
Prove the invariants (29.6) and (29.7) for the linear-array multipliers.

29.4-3
Prove that in the fast linear-array multiplier, v(2n-l) = O.
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Problems

29.4-4
Describe how the array multiplier from Section 29.3.1 represents an "un
rolling" of the computation of the fast linear-array multiplier.

29.4-5
Consider a data stream (Xl, X2, • . •) that arrives at a clocked circuit at the
rate of 1 value per clock tick. For a fixed value n, the circuit must compute
the value

YI = max Xi
l-n+I"5.i9

for t = n, n + 1, .... That is, YI is the maximum of the most recent n
values received by the circuit. Give an O(n)-size circuit that on each clock
tick inputs the value XI and computes the output value YI in O( 1) time.
The circuit can use registers and combinational elements that compute the
maximum of two inputs.

29.4-6 *
Redo Exercise 29.4-5 using only O(lgn) "maximum" elements.

29-1 Division circuits
We can construct a division circuit from subtraction and multiplication
circuits with a technique called Newton iteration. We shall focus on the
related problem of computing a reciprocal, since we can obtain a division
circuit by making one additional multiplication.

The idea is to compute a sequence Yo, Yl, Y2, ... of approximations to the
reciprocal of a number X by using the formula

Yi+1 +- 2Yi xyl·
Assume that X is given as an n-bit binary fraction in the range 1/2 ::;
X ::; I. Since the reciprocal can be an infinite repeating fraction, we shall
concentrate on computing an n-bit approximation accurate up to its least
significant bit.

a. Suppose that IYi 1Ix] ::; E for some constant E > O. Prove that
IYi+1 I/xl ::; E

2•

b. Give an initial approximation Yo such that Yk satisfies IYk - I/xl ::; 2-2
'

for all k 2:: O. How large must k be for the approximation v« to be
accurate up to its least significant bit?

c. Describe a combinational circuit that, given an n-bit input x, computes
an n-bit approximation to 1IX in O(lg2 n) time. What is the size of your
circuit? (Hint: With a little cleverness, you can beat the size bound of
6(n21gn).)
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29-2 Boolean formulas for symmetric functions
A zr-input function f(XI, X2, ••• , x n) is symmetric if

f(XI,X2, .•. ,xn) = f(xli(l),XIi(2), ,xli(n)

for any permutation n of {I, 2, , n}. In this problem, we shall show that
there is a boolean formula representing f whose size is polynomial in n.
(For our purposes, a boolean formula is a string comprised of the vari
ables X"X2, ••. ,Xn , parentheses, and the boolean operators v, /\, and --,.)
Our approach will be to convert a logarithmic-depth boolean circuit to
an equivalent polynomial-size boolean formula. We shall assume that all
circuits are constructed from 2-input AND, 2-input OR, and NOT gates.

a. We start by considering a simple symmetric function. The generalized
majority function on n boolean inputs is defined by

{
I if XI + X2 + '" + x., > nl2 ,

majority, (XI, X2, ••. , x n) 0 otherwise.

Describe an O(lg n j-depth combinational circuit for majorityn : (Hint:
Build a tree of adders.)

b. Suppose that f is an arbitrary boolean function of the n boolean vari
ables XI, X2, ••• , Xn' Suppose further that there is a circuit C of depth d
that computes f. Show how to construct from C a boolean formula
for f of length O(2d ) . Conclude that there is polynomial-size formula
for majorityn:

c. Argue that any symmetric boolean function f(Xl, X2, ., • , x n) can be ex
pressed as a function of L:7= 1 Xi.

d. Argue that any symmetric function on n boolean inputs can be com
puted by an O(lg n)-depth combinational circuit.

e. Argue that any symmetric boolean function on n boolean variables can
be represented by a boolean formula whose length is polynomial in n.

Most books on computer arithmetic focus more on practical implemen
tations of circuitry than on algorithmic theory. Savage [173] is one of
the few that investigates algorithmic aspects of the subject. The more
hardware-oriented books on computer arithmetic by Cavanagh [39] and
Hwang [108] are especially readable. Good books on combinational and
sequential logic design include Hill and Peterson [96] and, with a twist
toward formal language theory, Kohavi [126].

Aiken and Hopper [7] trace the early history of arithmetic algorithms.
Ripple-carry addition is as at least as old as the abacus, which has been



Notes for Chapter 29 687

around for over 5000 years. The first mechanical calculator employing
ripple-carry addition was devised by B. Pascal in 1642. A calculating
machine adapted to repeated addition for multiplication was conceived
by S. Morland in 1666 and independently by G. W. Leibnitz in 1671. The
Russian peasant's algorithm for multiplication is apparently much older
than its use in Russia in the nineteenth century. According to Knuth [122],
it was used by Egyptian mathematicians as long ago as 1800 B.C.

The kill, generate, and propagate statuses of a carry chain were exploited
in a relay calculator built at Harvard during the mid-1940's [180]. One
of the first implementations of carry-lookahead addition was described by
Weinberger and Smith [199], but their lookahead method requires large
gates. Ofman [152] proved that n-bit numbers could be added in O(lgn)
time using carry-lookahead addition with constant-size gates.

The idea of using carry-save addition to speed up multiplication is due to
Estrin, Gilchrist, and Pomerene [64]. Atrubin [13] describes a linear-array
multiplier of infinite length that can be used to multiply binary numbers
of arbitrary length. The multiplier produces the nth bit of the product
immediately upon receiving the nth bits of the inputs. The Wallace-tree
multiplier is attributed to Wallace [197], but the idea was also indepen
dently discovered by Ofman [152].

Division algorithms date back to I. Newton, who around 1665 invented
what has become known as Newton iteration. Problem 29-1 uses Newton
iteration to construct a division circuit with 8(lg2 n) depth. This method
was improved by Beame, Cook, and Hoover [19], who showed that n-bit
division can in fact be performed in 8(lg n) depth.



30 Algorithms for Parallel Computers

As parallel-processing computers have proliferated, interest has increased
in parallel algorithms: algorithms that perform more than one operation at
a time. The study of parallel algorithms has now developed into a research
area in its own right. Indeed, parallel algorithms have been developed for
many of the problems we have solved in this text using ordinary serial algo
rithms. In this chapter, we shall describe a few simple parallel algorithms
that illustrate fundamental issues and techniques.

In order to study parallel algorithms, we must choose an appropriate
model for parallel computing. The random-access machine, or RAM,
which we have used throughout most of this book, is, of course, serial
rather than parallel. The parallel models we have studied-sorting net
works (Chapter 28) and circuits (Chapter 29)-are too restrictive for in
vestigating, for example, algorithms on data structures.

The parallel algorithms in this chapter are presented in terms of one
popular theoretical model: the parallel random-access machine, or PRAM
(pronounced "PEE-ram"). Many parallel algorithms for arrays, lists, trees,
and graphs can be easily described in the PRAM model. Although the
PRAM ignores many important aspects of real parallel machines, the es
sential attributes of parallel algorithms tend to transcend the models for
which they are designed. If one PRAM algorithm outperforms another
PRAM algorithm, the relative performance is not likely to change substan
tially when both algorithms are adapted to run on a real parallel computer.

The PRAM model

Figure 30.1 shows the basic architecture of the parallel random-access ma
chine (PRAM). There are p ordinary (serial) processors Po, PI, ... , Pp - 1 that
have as storage a shared, global memory. All processors can read from or
write to the global memory "in parallel" (at the same time). The processors
can also perform various arithmetic and logical operations in parallel.

The key assumption regarding algorithmic performance in the PRAM
model is that running time can be measured as the number of parallel
memory accesses an algorithm performs. This assumption is a straight
forward generalization of the ordinary RAM model, in which the number
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shared
memory

Pp-I

Figure 30.1 The basic architecture of the PRAM. There are p processors
Po, PI, ... , Pp - I connected to a shared memory. Each processor can access an arbi
trary word of shared memory in unit time.

of memory accesses is asymptotically as good as any other measure of
running time. This simple assumption will serve us well in our survey of
parallel algorithms, even though real parallel computers cannot perform
parallel accesses to global memory in unit time: the time for a memory
access grows with the number of processors in the parallel computer.

Nevertheless, for parallel algorithms that access data in an arbitrary
fashion, the assumption of unit-time memory operations can be justified.
Real parallel machines typically have a communication network that can
support the abstraction of a global memory. Accessing data through the
network is a relatively slow operation in comparison with arithmetic and
other operations. Thus, counting the number of parallel memory accesses
executed by two parallel algorithms does, in fact, yield a fairly accurate es
timate of their relative performances. The principal way in which real ma
chines violate the unit-time abstraction of the PRAM is that some memory
access patterns are faster than others. As a first approximation, however,
the unit-time assumption in the PRAM model is quite reasonable.

The running time of a parallel algorithm depends on the number of
processors executing the algorithm as well as the size of the problem input.
Generally, therefore, we must discuss both time and processor count when
analyzing PRAM algorithms; this contrasts with serial algorithms, in whose
analysis we have focused mainly on time. Typically, there is a trade-off
between the number of processors used by an algorithm and its running
time. Section 30.3 discusses these trade-offs,

Concurrent versus exclusive memory accesses

A concurrent-read algorithm is a PRAM algorithm during whose execu
tion multiple processors can read from the same location of shared mem
ory at the same time. An exclusive-read algorithm is a PRAM algorithm
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in which no two processors ever read the same memory location at the
same time. We make a similar distinction with respect to whether or not
multiple processors can write into the same memory location at the same
time, dividing PRAM algorithms into concurrent-write and exclusive-write
algorithms. Commonly used abbreviations for the types of algorithms we
encounter are

• EREW: exclusive read and exclusive write,

• CREW: concurrent read and exclusive write,

• ERCW: exclusive read and concurrent write, and

• CRCW: concurrent read and concurrent write.

(These abbreviations are usually pronounced not as words but rather as
strings of letters.)

Of these types of algorithms, the extremes-EREW and CRCW-are the
most popular. A PRAM that supports only EREW algorithms is called an
EREW PRAM, and one that supports CRCW algorithms is called a CRCW
PRAM. A CRCW PRAM can, of course, execute EREW algorithms, but
an EREW PRAM cannot directly support the concurrent memory accesses
required in CRCW algorithms. The underlying hardware of an EREW
PRAM is relatively simple, and therefore fast, because it needn't handle
conflicting memory reads and writes. A CRCW PRAM requires more
hardware support if the unit-time assumption is to provide a reasonably
accurate measure of algorithmic performance, but it provides a program
ming model that is arguably more straightforward than that of an EREW
PRAM.

Of the remaining two algorithmic types-CREW and ERCW-more at
tention has been paid in the literature to the CREW. From a practical
point of view, however, supporting concurrency for writes is no harder
than supporting concurrency for reads. In this chapter, we shall generally
treat an algorithm as being CRCW if it contains either concurrent reads
or concurrent writes, without making further distinctions. We discuss the
finer points of this distinction in Section 30.2.

When multiple processors write to the same location in a CRCW al
gorithm, the effect of the parallel write is not well defined without addi
tional elaboration. In this chapter, we shall use the common-CRCW model:
when several processors write into the same memory location, they must
all write a common (the same) value. There are several alternative types
of PRAM's in the literature that handle this problem with a different as
sumption. Other choices include

• arbitrary: an arbitrary value from among those written is actually stored,

• priority: the value written by the lowest-indexed processor is stored, and

• combining: the value stored is some specified combination of the values
written.
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In the last case, the specified combination is typically some associative and
commutative function such as addition (store the sum of all the values
written) or maximum (store only the maximum value written).

Synchronization and control

PRAM algorithms must be highly synchronized to work correctly. How is
this synchronization achieved? Also, the processors in PRAM algorithms
must often detect termination of loop conditions that depend on the state
of all processors. How is this control function implemented?

We won't discuss these issues extensively. Many real parallel computers
employ a control network connecting the processors that helps with syn
chronization and termination conditions. Typically, the control network
can implement these functions as fast as a routing network can implement
global memory references.

For our purposes, it suffices to assume that the processors are inherently
tightly synchronized. All processors execute the same statements at the
same time. No processor races ahead while others are further back in the
code. As we go through our first parallel algorithm, we shall point out
where we assume that processors are synchronized.

For detecting the termination of a parallel loop that depends on the state
of all processors, we shall assume that a parallel termination condition
can be tested through the control network in O( I) time. Some EREW
PRAM models in the literature do not make this assumption, and the
(logarithmic) time for testing the loop condition must be included in the
overall running time (see Exercise 30.1-8). As we shall see in Section 30.2,
CRCW PRAM's do not need a control network to test termination: they
can detect termination of a parallel loop in O( I) time through the use of
concurrent writes.

Chapter outline

Section 30.1 introduces the technique of pointer jumping, which provides
a fast way to manipulate lists in parallel. We show how pointer jumping
can be used to perform prefix computations on lists and how fast algo
rithms on lists can be adapted for use on trees. Section 30.2 discusses the
relative power of CRCW and EREW algorithms and shows that concurrent
memory accessing provides increased power.

Section 30.3 presents Brent's theorem, which shows how combinational
circuits can be efficiently simulated by PRAM's. The section also dis
cusses the important issue of work efficiency and gives conditions under
which a p-processor PRAM algorithm can be efficiently translated into a
p'-processor PRAM algorithm for any p' < p, Section 30.4 reprises the
problem of performing a prefix computation on a linked list and shows how
a randomized algorithm can perform the computation in a work-efficient
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fashion. Finally, Section 30.5 shows how symmetry can be broken in par
allel in much less than logarithmic time using a deterministic algorithm.

The parallel algorithms in this chapter have been drawn principally from
the area of graph theory. They represent only a scant selection of the
present array of parallel algorithms. The techniques introduced in this
chapter, however, are quite representative of the techniques used for par
allel algorithms in other areas of computer science.

d[i]

30.1 Pointer jumping

Among the more interesting PRAM algorithms are those that involve point
ers. In this section, we investigate a powerful technique called pointer
jumping, which yields fast algorithms for operating on lists. Specifically,
we introduce an O(lgnj-time algorithm that computes the distance to the
end of the list for each object in an n-object list. We then modify this
algorithm to perform a "parallel prefix" computation on an n-object list in
O(lgn) time. Finally, we investigate a technique that allows many prob
lems on trees to be converted to list problems, which can then be solved
by pointer jumping. All of the algorithms in this section are EREW algo
rithms: no concurrent accesses to global memory are required.

30.1.1 List ranking

Our first parallel algorithm operates on lists. We can store a list in a PRAM
much as we store lists in an ordinary RAM. To operate on list objects
in parallel, however, it is convenient to assign a "responsible" processor
to each object. We shall assume that there are as many processors as
list objects, and that the ith processor is responsible for the ith object.
Figure 30.2(a), for example, shows a linked list consisting of the sequence
of objects (3,4,6, 1,0,5). Since there is one processor per list object, every
object in the list can be operated on by its responsible processor in O( 1)
time.

Suppose that we are given a singly linked list L with n objects and wish
to compute, for each object in L, its distance from the end of the list.
More formally, if next is the pointer field, we wish to compute a value d[i]
for each object i in the list such that

{
o if next[i] = NIL,

d[next[i]] + 1 if next[i] i- NIL.

We call the problem of computing the d values the list-ranking problem.
One solution to the list-ranking problem is simply to propagate distances

back from the end of the list. This method takes 8(n) time, since the kth
object from the end must wait for the k -1 objects following it to determine
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(a)

(b)

6 I

(c) [il2] [I]2]

3 4 6 I 0 5

(d) W2J rn [il2] [I]2] rn [Q]2J

Figure 30.2 Finding the distance from each object in an n-object list to the end
of the list in O(lg n) time using pointer jumping. (a) A linked list represented
in a PRAM with d values initialized. At the end of the algorithm, each d value
holds the distance of its object from the end of the list. Each object's responsible
processor appears above the object. (b)-(d) The pointers and d values after each
iteration of the while loop in the algorithm LIST-RANK.

their distances from the end before it can determine its own. This solution
is essentially a serial algorithm.

An efficient parallel solution, requiring only O(lg n) time, is given by the
following parallel pseudocode.

LIST-RANK(L)

1 for each processor i, in parallel
2 do if next[i] = NIL
3 then d[i] +- 0
4 else d[i] +- I
5 while there exists an object i such that next[i] =f. NIL
6 do for each processor i, in parallel
7 do if next[ i] =f. NIL
8 then d[i] +- d[i] + d[next[i]]
9 next[i] +- next[next[i]]

Figure 30.2 shows how the algorithm computes the distances. Each part
of the figure shows the state of the list before an iteration of the while loop
of lines 5-9. Part (a) shows the list just after initialization. In the first
iteration, the first 5 list objects have non-NIL pointers, so that lines 8-9 are
executed by their responsible processors. The result appears in part (b)
of the figure. In the second iteration, only the first 4 objects have non
NIL pointers; the result of this iteration is shown in part (c). In the third
iteration, only the first 2 objects are operated on, and the final result, in
which all objects have NIL pointers, appears in part (d).
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The idea implemented by line 9, in which we set next[i] <- next[next[i]]
for all non-NIL pointers next[i], is called pointer jumping. Note that the
pointer fields are changed by pointer jumping, thus destroying the structure
of the list. If the list structure must be preserved, then we make copies of
the next pointers and use the copies to compute the distances.

Correctness

LIST-RANK maintains the invariant that at the beginning of each iteration
of the while loop of lines 5-9, for each object i, if we add the d values in
the sublist headed by i, we obtain the correct distance from i to the end
of the original list L. In Figure 30.2(b), for example, the sublist headed
by object 3 is the sequence (3,6,0) whose d values 2, 2, and I sum to 5,
its distance from the end of the original list. The reason the invariant is
maintained is that when each object "splices out" its successor in the list,
it adds its successor's d value to its own.

Observe that for this pointer-jumping algorithm to work correctly, the
parallel memory accesses must be synchronized. Each execution of line 9
can update several next pointers. We rely on all the memory reads on the
right-hand side of the assignment (reading next[next[i]]) occurring before
any of the memory writes (writing next[iJ) on the left-hand side.

Now let us see why LIST-RANK is an EREW algorithm. Because each
processor is responsible for at most one object, every read and write in
lines 2-7 is exclusive, as are the writes in lines 8-9. Observe that pointer
jumping maintains the invariant that for any two distinct objects i and i,
either next[i] :f:. next[j] or next[i] = next[j] = NIL. This invariant is
certainly true for the initial list, and it is maintained by line 9. Because
all non-NIL next values are distinct, all reads in line 9 are exclusive.

We do need to assume that some synchronization is performed in line 8
if all reads are to be exclusive. In particular, we require that all processors i
read d[i] and then d[next[i]]. With this synchronization, if an object i
has next[i] :f:. NIL and there is another object j pointing to i (that is,
next[j] = i), then the first read fetches d[i] for processor i and the second
read fetches d[i] for processor j. Thus, LIST-RANK is an EREW algorithm.

From here on, we ignore such details of synchronization and assume
that the PRAM and its pseudocode programming environment act in a
consistent, synchronized manner, with all processors executing reads and
writes at the same time.

Analysis

We now show that if there are n objects in list L, then LIST-RANK takes
O(lg n) time. Since the initialization takes O( I) time and each iteration
of the while loop takes O( 1) time, it suffices to show that there are exactly
[lgn1iterations. The key observation is that each step of pointer jumping
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transforms each list into two interleaved lists: one consisting of the objects
in even positions and the other consisting of objects in odd positions.
Thus, each pointer-jumping step doubles the number of lists and halves
their lengths. By the end of [lgn1 iterations, therefore, all lists contain
only one object.

We are assuming that the termination test in line 5 takes O( 1) time,
presumably due to a control network in the EREW PRAM. Exercise 30.1-8
asks you to describe an O(lg n j-time EREW implementation of LIST-RANK
that performs the termination test explicitly in the pseudocode.

Besides parallel running time, there is another interesting performance
measure for parallel algorithms. We define the work performed by a par
allel algorithm as the product of its running time and the number of pro
cessors it requires. Intuitively, the work is the amount of computing that
a serial RAM performs when it simulates the parallel algorithm.

The procedure LIST-RANK performs 8(n 19n) work, since it requires n
processors and runs in 8(lg n) time. The straightforward serial algorithm
for the list-ranking problem runs in 8(n) time, indicating that more work
is performed by LIST-RANK than is absolutely necessary, but only by a
logarithmic factor.

We define a PRAM algorithm A to be work-efficient with respect to
another (serial or parallel) algorithm B for the same problem if the work
performed by A is within a constant factor of the work performed by B.
We also say more simply that a PRAM algorithm A is work-efficient if
it is work-efficient with respect to the best possible algorithm on a serial
RAM. Since the best possible serial algorithm for list ranking runs in 8(n)
time on a serial RAM, LIST-RANK is not work-efficient. We shall present
a work-efficient parallel algorithm for list ranking in Section 30.4.

30.1.2 Parallel prefix on a list

The technique of pointer jumping extends well beyond the application
of list ranking. Section 29.2.2 shows how, in the context of arithmetic
circuits, a "prefix" computation can be used to perform binary addition
quickly. We now investigate how pointer jumping can be used to perform
prefix computations. Our EREW algorithm for the prefix problem runs in
O(lg n) time on n-object lists.

A prefix computation is defined in terms of a binary, associative oper
ator 0. The computation takes as input a sequence (x), X2, •.• , xn) and
produces as output a sequence (YI,Y2, •.• ,Yn) such that YI = XI and

Yk = Yk-I 0 Xk

x, 0X2 0 ... 0Xk

for k = 2,3, ... , n. In other words, each Yk is obtained by "multiplying"
together the first k elements of the sequence of xk-hence, the term "pre-
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fix." (The definition in Chapter 29 indexes the sequences from 0, whereas
this definition indexes from I-an inessential difference.)

As an example of a prefix computation, suppose that every element of
an n-object list contains the value 1, and let ® be ordinary addition. Since
the kth element of the list contains the value Xk 1 for k 1,2, ... , n, a
prefix computation produces Yk = k, the index of the kth element. Thus,
another way to perform list ranking is to reverse the list (which can be
done in 0(1) time), perform this prefix computation, and subtract 1 from
each value computed.

We now show how an EREW algorithm can compute parallel prefixes in
O(lgn) time on n-object lists. For convenience, we define the notation

[i,j] = Xi ®Xi+1 ® ... ss x,

for integers i and j in the range 1 :::; i :::; j :::; n. Then, [k, k] = Xk for
k 1,2, ... .n, and

[i,k] = [i,j] ® [j + l,k]

for 0 :::; i :::; j < k :::; n. In terms of this notation, the goal of a prefix
computation is to compute Yk = [1,k] for k = 1,2, ... , n.

When we perform a prefix computation on a list, we wish the order of
the input sequence (XI, X2, • • • , x n ) to be determined by how the objects are
linked together in the list, and not by the index of the object in the array
of memory that stores objects. (Exercise 30.1-2 asks for a prefix algorithm
for arrays.) The following EREW algorithm starts with a value xli] in each
object i in a list L. If object i is the kth object from the beginning of the
list, then x[i] = Xk is the kth element of the input sequence. Thus, the
parallel prefix computation produces y[i] = Yk = [1, k].

LIST-PREFIX(L)

1 for each processor i, in parallel
2 do y[i] +-- x[i]
3 while there exists an object i such that next[i] =1= NIL

4 do for each processor i, in parallel
5 do if next[ i] =1= NIL

6 then y[next[i]] +-- y[i] ® y[next[i]]
7 next[ i] +-- next[next[ ill

The pseudocode and Figure 30.3 indicate the similarity between this
algorithm and LIST-RANK. The only differences are the initialization and
the updating of d or y values. In LIST-RANK, processor i updates d[i]-its
own d value-whereas in LIST-PREFIX, processor i updates y[next[i]]
another processor's y value. Note that LIST-PREFIX is EREW for the same
reason as LIST-RANK: pointer jumping maintains the invariant that for
distinct objects i and j, either next[iJ =1= next[j] or next[i] = next[jJ = NIL.

Figure 30.3 shows the state of the list before each iteration of the while
loop. The procedure maintains the invariant that at the end of the tth ex
ecution of the while loop, the kth processor stores [max( 1,k ~ 21 + I), k],
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(a)

(b)

(c)

(d)

Figure 30.3 The parallel prefix algorithm LIST-PREFIX on a linked list. (a) The
initial y value of the kth object in the list is [k, k]. The next pointer of the kth
object points to the (k + I )st object, or NIL for the last object. (b)-(d) The y and
next values before each test in line 3. The final answer is in part (d), in which the
y value for the kth object is [I, k] for all k.

for k 1,2, ... .n. In the first iteration, the kth list object points initially
to the (k + I)st object, except that the last object has a NIL pointer. Line 6
causes the kth object, for k = 1,2, ... , n I, to fetch the value [k + 1,k + 1]
from its successor. It then performs the operation [k,k] ® [k + I,k + 1],
yielding [k, k + I], which it stores back into its successor. The next point
ers are then jumped as in LIST-RANK, and the result of the first iteration
appears in Figure 30.3(b). We can view the second iteration similarly. For
k = 1,2, ... , n - 2, the kth object fetches the value [k + 1, k + 2] from its
successor (as defined by the new value in its field next), and then it stores
[k - 1,k] ® [k + l,k + 2] = [k l,k + 2] into its successor. The result is
shown in Figure 30.3(c). In the third and final iteration, only the first two
list objects have non-NIL pointers, and they fetch values from their suc
cessors in their respective lists. The final result appears in Figure 30.3(d).
The key observation that makes LIST-PREFIX work is that at each step, if
we perform a prefix computation on each of the several existing lists, each
object obtains its correct value.

Since the two algorithms use the same pointer-jumping mechanism,
LIST-PREFIX has the same analysis as LIST-RANK: the running time is
O(Ig n) on an EREW PRAM, and the total work performed is 8(n lg n ).

30.1.3 The Euler-tour technique

In this section, we shall introduce the Euler-tour technique and show how
it can be applied to the problem of computing the depth of each node in
an n-node binary tree. A key step in this O(lg nj-time EREW algorithm is
a parallel prefix computation.



698 Chapter 30 Algorithms for Parallel Computers

To store binary trees in a PRAM, we use a simple binary-tree representa
tion of the sort presented in Section 11.4. Each node i has fields parent[i],
lefi[i], and right[i] , which point to node i's parent, left child, and right
child, respectively. Let us assume that each node is identified by a non
negative integer. For reasons that will soon become apparent, we associate
not one but three processors with each node; we call these the node's A, B,
and C processors. We should be able to map between a node and its three
processors easily; for example, node i might be associated with processors
3i, 3i + I, and 3i + 2.

Computing the depth of each node in an n-node tree takes O(n) time on
a serial RAM. A simple parallel algorithm to compute depths propagates
a "wave" downward from the root of the tree. The wave reaches all nodes
at the same depth simultaneously, and thus by incrementing a counter
carried along with the wave, we can compute the depth of each node.
This parallel algorithm works well on a complete binary tree, since it runs
in time proportional to the tree's height. The height of the tree could
be as large as n I, however, in which case the algorithm would run
in 8(n) time-no better than the serial algorithm. Using the Euler-tour
technique, however, we can compute node depths in O(lg n) time on an
EREW PRAM, whatever the height of the tree.

An Euler tour of a graph is a cycle that traverses each edge exactly once,
although it may visit a vertex more than once. By Problem 23-3, a con
nected, directed graph has an Euler tour if and only if for all vertices v,
the in-degree of v equals the out-degree of v. Since each undirected edge
(u,v) in an undirected graph maps to two directed edges (u,v) and (v,u)
in the directed version, the directed version of any connected, undirected
graph-and therefore of any undirected tree-has an Euler tour.

To compute the depths of nodes in a binary tree T, we first form an Euler
tour of the directed version of T (viewed as an undirected graph). The
tour corresponds to a walk of the tree and is represented in Figure 30.4(a)
by a linked list running through the nodes of the tree. Its structure is as
follows:

• A node's A processor points to the A processor of its left child, if it
exists, and otherwise to its own B processor.

• A node's B processor points to the A processor of its right child, if it
exists, and otherwise to its own C processor.

• A node's C processor points to the B processor of its parent if it is a
left child and to the C processor of its parent if it is a right child. The
root's C processor points to NIL.

Thus, the head of the linked list formed by the Euler tour is the root's
A processor, and the tail is the root's C processor. Given the pointers
composing the original tree, an Euler tour can be constructed in O( I) time.

Once we have the linked list representing the Euler tour of T, we place
a I in each A processor, a 0 in each B processor, and a - I in each C
processor, as shown in Figure 30.4(a). We then perform a parallel prefix
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Flgurt 30.4 Using the Euler-tour techn ique to compute the depth of each node in
a binary tree. (a) The Euler tour is a list corresponding to a walk of the tree. Each
processor conta ins a num ber used by a parallel prefix computation to compute
node depth s. (b) The result of the parallel prefix computation on the linked list
from (a). The C processor of each node (blackened) contains the node's depth.
(You can verify the result of this prefix computation by computing it serially.)
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computation using ordinary addition as the associative operation, as we
did in Section 30.1.2. Figure 30.4(b) shows the result of the parallel prefix
computation.

We claim that after performing the parallel prefix computation, the
depth of each node resides in the node's C processor. Why? The numbers
are placed into the A, D, and C processors in such a way that the net effect
of visiting a subtree is to add 0 to the running sum. The A processor of
each node i contributes 1 to the running sum in i's left subtree, reflecting
the depth of i's left child being one greater than the depth of i. The D
processor contributes 0 because the depth of node i's left child equals the
depth of node i's right child. The C processor contributes 1, so that from
the perspective of node i's parent, the entire visit to the subtree rooted at
node i has no effect on the running sum.

The list representing the Euler tour can be computed in O( 1) time. It has
3n objects, and thus the the parallel prefix computation takes only O(lg n)
time. Thus, the total amount of time to compute all node depths is O(lg n).
Because no concurrent memory accesses are needed, the algorithm is an
EREWalgorithm.

Exercises

30.1-1
Give an OOg n)-time EREW algorithm that determines for each object in
an n-object list whether it is the middle Un/2Jth) object.

30.1-2
Give an O(lgn)-time EREW algorithm to perform the prefix computation
on an array x[l .. nJ. Do not use pointers, but perform index computations
directly.

30.1-3
Suppose that each object in an n-object list L is colored either red or blue.
Give an efficient EREW algorithm to form two lists from the objects in L:
one consisting of the blue objects and one consisting of the red objects.

30.1-4
An EREW PRAM has n objects distributed among several disjoint circular
lists. Give an efficient algorithm that determines an arbitrary represen
tative object for each list and acquaints each object in the list with the
identity of the representative. Assume that each processor knows its own
unique index.

30.1-5
Give an O(lg n)-time EREW algorithm to compute the size of the subtree
rooted at each node of an n-node binary tree. (Hint: Take the difference
of two values in a running sum along an Euler tour.)
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30.1-6
Give an efficient EREW algorithm to compute preorder, inorder, and post
order numberings for an arbitrary binary tree.

30.1-7
Extend the Euler-tour technique from binary trees to ordered trees with
arbitrary node degrees. Specifically, describe a representation for ordered
trees that allows the Euler-tour technique to be applied. Give an EREW
algorithm to compute the node depths of an n-node ordered tree in O(lg n)
time.

30.1-8
Describe an O(lgn)-time EREW implementation of LIST-RANK that per
forms the loop-termination test explicitly. (Hint: Interleave the test with
the loop body.)

30.2 CRCW algorithms versus EREW algorithms

The debate about whether or not concurrent memory accesses should be
provided by the hardware of a parallel computer is a messy one. Some
argue that hardware mechanisms to support CRCW algorithms are too ex
pensive and used too infrequently to be justified. Others complain that
EREW PRAM's provide too restrictive a programming model. The an
swer to this debate probably lies somewhere in the middle, and various
compromise models have been proposed. Nevertheless, it is instructive to
examine what algorithmic advantage is provided by concurrent accesses to
memory.

In this section, we shall show that there are problems on which a CRCW
algorithm outperforms the best possible EREW algorithm. For the prob
lem of finding the identities of the roots of trees in a forest, concurrent
reads allow for a faster algorithm. For the problem of finding the maxi
mum element in an array, concurrent writes permit a faster algorithm.

A problem in which concurrent reads help

Suppose we are given a forest of binary trees in which each node i has a
pointer parenl[i] to its parent, and we wish each node to find the identity of
the root of its tree. Associating processor i with each node i in a forest F,
the following pointer-jumping algorithm stores the identity of the root of
each node i's tree in rool[i].
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FIND-RoOTS(F)

1 for each processor i, in parallel
2 do if parent[ i] = NIL
3 then root[ i] +- i
4 while there exists a node i such that parent[i] f NIL
5 do for each processor i, in parallel
6 do if parent[i] f NIL
7 then root[i] +- root[parent[i]]
8 parent[i] <- parent[parent[i]]

Figure 30.5 illustrates the operation of this algorithm. After the initial
ization performed by lines 1-3, shown in Figure 30.5(a), the only nodes
that know the identities of their roots are the roots themselves. The while
loop of lines 4-8 performs the pointer jumping and fills in the root fields.
Figures 30.5(b )-(d) show the state of the forest after the first, second, and
third iterations of the loop. As you can see, the algorithm maintains the
invariant that if parent[i] = NIL, then root[i] has been assigned the identity
of the node's root.

We claim that FIND-RoOTS is a CREW algorithm that runs in O(lgd)
time, where d is the depth of the maximum-depth tree in the forest. The
only writes occur on lines 3, 7, and 8, and these are all exclusive because
in each one, processor i writes into only node i. The reads in lines 7-8
are concurrent, however, because several nodes may have pointers to the
same node. In Figure 30.5(b), for example, we see that during the second
iteration of the while loop, root[4] andparent[4] are read by processors 18,
2, and 7.

The running time of FIND-ROOTS is O(lgd) for essentially the same
reason as for LIST-RANK: the length ofeach path is halved in each iteration.
Figure 30.5 shows this characteristic plainly.

How fast can n nodes in a forest determine the roots of their binary trees
using only exclusive reads? A simple argument shows that n(lg n) time is
required. The key observation is that when reads are exclusive, each step
of the PRAM allows a given piece of information to be copied to at most
one other memory location; thus the number of locations that can contain
a given piece of information at most doubles with each step. Looking at
a single tree, we have initially that at most 1 memory location stores the
identity of the root. After I step, at most 2 locations can contain the
identity of the root; after k steps, at most 2k - 1 locations can contain the
identity of the root. Ifthe size of the tree is B(n), we need B(n) locations
to contain the root's identity when the algorithm terminates; thus, n(lg n)
steps are required in all.

Whenever the depth d of the maximum-depth tree in the forest is 20 (lg n j
,

the CREW algorithm FIND-ROOTS asymptotically outperforms any EREW
algorithm. Specifically, for any n-node forest whose maximum-depth tree
is a balanced binary tree with B(n) nodes, d = O(lgn), in which case FIND-
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Figure 30.5 Finding the roots in a forest of binary trees on a CREW PRAM.
Node numbers are next to the nodes, and stored root fields appear within nodes.
The links represent parent pointers. (a)-(d) The state of the trees in the forest each
time line 4 of FIND-RoOTS is executed. Note that path lengths are halved in each
iteration.
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ROOTS runs in O(lg 19 n) time. Any EREW algorithm for this problem must
run in Q(lg n) time, which is asymptotically slower. Thus, concurrent reads
help for this problem. Exercise 30.2-1 gives a simpler scenario in which
concurrent reads help.

A problem in which concurrent writes help

To demonstrate that concurrent writes offer a performance advantage over
exclusive writes, we examine the problem of finding the the maximum ele
ment in an array of real numbers. We shall see that any EREW algorithm
for this problem takes Q(lg n) time and that no CREW algorithm does any
better. The problem can be solved in O( 1) time using a common-CRCW
algorithm, in which when several processors write to the same location,
they all write the same value.

The CRCW algorithm that finds the maximum of n array elements as
sumes that the input array is A[O .. n-I]. The algorithm uses n2 processors,
with each processor comparing A[i] and A[j] for some i and j in the range
o ~ i, j ~ n I. In effect, the algorithm performs a matrix of compar
isons, and so we can view each of the n2 processors as having not only
a one-dimensional index in the PRAM, but also a two-dimensional index
(i, j).

FAST-MAX(A)

In+- length[A]
2 for i +- 0 to n - I, in parallel
3 do m[i] +- TRUE
4 for i +- 0 to n - 1 and j +- 0 to n - I, in parallel
5 do if A[i] < A[j]
6 then m[i] +- FALSE
7 for i +- 0 to n - I, in parallel
8 do if m[i] = TRUE
9 then max +- A[t]

10 return max

Line I simply determines the length of the array A; it only needs to be
executed on one processor, say processor O. We use an array m[O. . n I],
where processor i is responsible for m[t]. We want m[t] TRUE if and
only if A[t] is the maximum value in array A. We start (lines 2-3) by
believing that each array element is possibly the maximum, and we rely
on comparisons in line 5 to determine which array elements are not the
maximum.

Figure 30.6 illustrates the remainder of the algorithm. In the loop of
lines 4-6, we check each ordered pair of elements of array A. For each
pair A[i] and A[j], line 5 checks whether A[t] < A[jJ. If this compari
son is TRUE, we know that A[t] cannot be the maximum, and line 6 sets
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Figure 30.6 Finding the maximum of n values in O( 1) time by the CRCW al
gorithm FAST-MAX. For each ordered pair of the elements in the input array
A = (5,6,9,2,9), the result of the comparison A[i] < A[j] is shown in the matrix,
abbreviated T for TRUE and F for FALSE. For any row that contains a TRUE value,
the corresponding element of m, shown at the right, is set to FALSE. Elements of
m that contain TRUE correspond to the maximum-valued elements of A. In this
case, the value 9 is written into the variable max.

m[i] +- FALSE to record this fact. Several (i, j) pairs may be writing to
m[i] simultaneously, but they all write the same value: FALSE.

After line 6 is executed, therefore, m[i] = TRUE for exactly the indices i
such that A[i] achieves the maximum. Lines 7-9 then put the maximum
value into the variable max, which is returned in line 10. Several proces
sors may write into the variable max, but if they do, they all write the
same value, as is consistent with the common-CRCW PRAM model.

Since all three "loops" in the algorithm are executed in parallel, FAST
MAX runs in O( I) time. Of course, it is not work-efficient, since it requires
n2 processors, and the problem of finding the maximum number in an array
can be solved by a 8(n)-time serial algorithm. We can come closer to a
work-efficient algorithm, however, as Exercise 30.2-6 asks you to show.

In a sense, the key to FAST-MAX is that a CRCW PRAM is capable of
performing a boolean AND of n variables in O( I) time with n processors.
(Since this capability holds in the common-CRCW model, it holds in the
more powerful CRCW PRAM models as well.) The code actually performs
several AND's at once, computing for i = 0, 1,... , n - I,

n-l

m[i] = /\ (A[i] ~ AU]) ,
j=O

which can be derived from DeMorgan's laws (5.2). This powerful AND
capability can be used in other ways. For example, the capability of a
CRCW PRAM to perform an AND in O( I) time obviates the need for a
separate control network to test whether all processors are finished iterating
a loop, such as we have assumed for EREW algorithms. The decision to
finish the loop is simply the AND of all processors' desires to finish the
loop.

The EREW model does not have this powerful AND facility. Any EREW
algorithm that computes the maximum of n elements takes n(lg n) time.
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The proof is conceptually similar to the lower-bound argument for finding
the root of a binary tree. In that proof, we looked at how many nodes
can "know" the identity of the root and showed that it at most doubles
for each step. For the problem of computing the maximum of n elements,
we consider how many elements "think" that they might possibly be the
maximum. Intuitively, with each step of an EREW PRAM, this number
can at most halve, which leads to the O(lg n) lower bound.

Remarkably, the O(lg n) lower bound for computing the maximum holds
even if we permit concurrent reading; that is, it holds for CREW algo
rithms. Cook, Dwork, and Reischuk [50] show, in fact, that any CREW
algorithm for finding the maximum of n elements must run in O(lg n)
time, even with an unlimited number of processors and unlimited mem
ory. Their lower bound also holds for the problem of computing the AND
of n boolean values.

Simulating a CRCWalgorithm with an EREW algorithm

We now know that CRCW algorithms can solve some problems more
quickly than can EREW algorithms. Moreover, any EREW algorithm can
be executed on a CRCW PRAM. Thus, the CRCW model is strictly more
powerful than the EREW model. But how much more powerful is it? In
Section 30.3, we shall show that a p-processor EREW PRAM can sort p
numbers in O(lgp) time. We now use this result to provide a theoretical
upper bound on the power of a CRCW PRAM over an EREW PRAM.

Theorem 30.1
A p-processor CRCW algorithm can be no more than O(lgp) times faster
than the best p-processor EREW algorithm for the same problem.

Proof The proof is a simulation argument. We simulate each step of
the CRCW algorithm with an O(lgp )-time EREW computation. Because
the processing power of both machines is the same, we need only focus
on memory accessing. We only present the proof for simulating concur
rent writes here. Implementation of concurrent reading is left as Exer
cise 30.2-8.

The p processors in the EREW PRAM simulate a concurrent write of
the CRCW algorithm using an auxiliary array A of length p, Figure 30.7
illustrates the idea. When CRCW processor Pi, for i = 0,1, ... ,p - I,
desires to write a datum Xi to a location Ii, each corresponding EREW
processor Pi instead writes the ordered pair (Ii, Xi) to location A[i]. These
writes are exclusive, since each processor writes to a distinct memory lo
cation. Then, the array A is sorted by the first coordinate of the ordered
pairs in O(lgp) time, which causes all data written to the same location to
be brought together in the output.
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Each EREW processor Pi, for i = 1,2, ... ,p - I, now inspects A[i] =

(lj,Xj) and A[i - I] (h,xd, where j and k are values in the range
o~ j.k ~ p 1. If Ij =1= h or i = 0, then processor Pi, for i = 0, I, ... ,p I,
writes the datum Xj to location Ij in global memory. Otherwise, the pro
cessor does nothing. Since the array A is sorted by first coordinate, only
one of the processors writing to any given location actually succeeds, and
thus the write is exclusive. This process thus implements each step of
concurrent writing in the common-CRCW model in O(lgp) time. _

Other models for concurrent writing can be simulated as well. (See
Exercise 30.2-9.)

The issue arises, therefore, of which model is preferable-CRCW or
EREW-and if CRCW, which CRCW model. Advocates of the CRCW
models point out that they are easier to program than the EREW model
and that their algorithms run faster. Critics contend that hardware to
implement concurrent memory operations is slower than hardware to im
plement exclusive memory operations, and thus the faster running time of
CRCW algorithms is fictitious. In reality, they say, one cannot find the
maximum of n values in O( I) time.

Others say that the PRAM-either EREW or CRCW-is the wrong
model entirely. Processors must be interconnected by a communication
network, and the communication network should be part of the model.
Processors should only be able to communicate with their neighbors in the
network.

It is quite clear that the issue of the "right" parallel model is not going
to be easily settled in favor of anyone model. The important thing to
realize, however, is that these models are just that: models. For a given
real-world situation, the various models apply to differing extents. The de
gree to which the model matches the engineering situation is the degree to
which algorithmic analyses in the model will predict real-world phenom
ena. It is important to study the various parallel models and algorithms,
therefore, so that as the field of parallel computing grows, an enlightened
consensus on which paradigms of parallel computing are best suited for
implementation can emerge.

Exercises

30.1-1
Suppose we know that a forest of binary trees consists of only a single tree
with n nodes. Show that with this assumption, a CREW implementation
of FIND-RoOTS can be made to run in O( I) time, independent of the depth
of the tree. Argue that any EREW algorithm takes Q(lg n) time.



30.3 Brent's theorem and work efficiency 709

30.2-2
Give an EREW algorithm for FIND-RoOTS that runs in O(lg n) time on a
forest of n nodes.

30.2-3
Give an n-processor CRCW algorithm that can compute the OR of n
boolean values in O( 1) time.

30.2-"-
Describe an efficient CRCW algorithm to multiply two n x n boolean ma
trices using n3 processors.

30.2-5
Describe an O(lg n )-time EREW algorithm to multiply two n x n matrices
of real numbers using n3 processors. Is there a faster common-CRCW al
gorithm? Is there a faster algorithm in one of the stronger CRCW models?

30.2-6 *
Prove that for any constant t > 0, there is an O( 1j-time CRCW algorithm
using O(niH) processors to find the maximum element of an n-element
array.

30.2-7 *
Show how to merge two sorted arrays, each with n numbers, in O( 1) time
using a priority-CRCW algorithm. Describe how to use this algorithm to
sort in O(lgn) time. Is your sorting algorithm work-efficient?

30.2-8
Complete the proof of Theorem 30.1 by describing how a concurrent read
on a p-processor CRCW PRAM is implemented in O(lgp) time on a p
processor EREW PRAM.

30.2-9
Show how a p-processor EREW PRAM can implement a p-processor com
bining-CRCW PRAM with only O(lgp) performance loss. (Hint: Use a
parallel prefix computation.)

30.3 Brent's theorem and work efficiency

Brent's theorem shows how we can efficiently simulate a combinational
circuit by a PRAM. Using this theorem, we can adapt many of the results
for sorting networks from Chapter 28 and many of the results for arith
metic circuits from Chapter 29 to the PRAM model. Readers unfamiliar
with combinational circuits may wish to review Section 29.1.
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A combinational circuit is an acyclic network of combinational elements.
Each combinational element has one or more inputs, and in this section,
we shall assume that each element has exactly one output. (Combinational
elements with k > I outputs can be considered to be k separate elements.)
The number of inputs is the fan-in of the element, and the number of
places to which its output feeds is its fan-out. We generally assume in
this section that every combinational element in the circuit has bounded
(O( 1)) fan-in. It may, however, have unbounded fan-out.

The size of a combinational circuit is the number of combinational ele
ments that it contains. The number of combinational elements on a longest
path from an input of the circuit to an output of a combinational element
is the element's depth. The depth of the entire circuit is the maximum
depth of any of its elements.

Theorem 30.2 (Brent's theorem)
Any depth-a, size-a combinational circuit with bounded fan-in can be
simulated by a p-processor CREW algorithm in O(nip + d) time.

Proof We store the inputs to the combinational circuit in the PRAM's
global memory, and we reserve a location for each combinational element
in the circuit to store its output value when it is computed. A given com
binational element can then be simulated by a single PRAM processor in
O( I) time as follows. The processor simply reads the input values for the
element from the values in memory corresponding to circuit inputs or el
ement outputs that feed it, thereby simulating the wires in the circuit. It
then computes the function of the combinational element and writes the
result in the appropriate position in memory. Since the fan-in of each
circuit element is bounded, each function can be computed in O( 1) time.

Our job, therefore, is to find a schedule of the p processors of the PRAM
such that all combinational elements are simulated in O(njp+d) time. The
main constraint is that an element cannot be simulated until the outputs
from any elements that feed it have been computed. Concurrent reads
are employed whenever several combinational elements being simulated
in parallel require the same value.

Since all elements at depth 1 depend only on circuit inputs, they are the
only ones that can be simulated initially. Once they have been simulated,
all elements at depth 2 can be simulated, and so forth, until we finish with
all elements at depth d. The key idea is that if all elements from depths I
to i have been simulated, we can simulate any subset of elements at depth
i + I in parallel, since their computations are independent of one another.

Our scheduling strategy, therefore, is quite naive. We simulate all the
elements at depth i before proceeding to simulate those at depth i + 1.
Within a given depth i, we simulate the elements p at a time. Figure 30.8
illustrates such a strategy for p = 2.

Let us analyze this simulation strategy. For iI, 2, ... , d, let n, be the
number of elements at depth i in the circuit. Thus,
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Figure 30.8 Brent's theorem. Th e combinational circuit of size 15 and depth 5 is
simulated by a z-processor CREW PRAM in 9 :5 15/ 2 + 5 steps . The simulation
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Conside r the n, combina tional elements at dep th i, By grouping them into
rn,!pl groups . where the first Ln;/pJ groups have p eleme nts each and the
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computations perfo rmed by these combinational elements in 0 Un,!p1)
time . The total simulation time is therefore on the order of

Brent's theorem can be extended to EREW simulatio ns when a cornbi
nat iona l circuit has O( I) Ian-out for each combinational element.
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Corollary 30.3
Any depth-a, size-a combinational circuit with bounded fan-in and fan-out
can be simulated on a p-processor EREW PRAM in O(n j p + d) time.

Proof We perform a simulation similar to that in the proof of Brent's
theorem. The only difference is in the simulation of wires, which is where
Theorem 30.2 requires concurrent reading. For the EREW simulation,
after the output of a combinational element is computed, it is not directly
read by processors requiring its value. Instead, the output value is copied
by the processor simulating the element to the O(1) inputs that require
it. The processors that need the value can then read it without interfering
with each other. _

This EREW simulation strategy does not work for elements with un
bounded fan-out, since the copying can take more than constant time at
each step. Thus, for circuits having elements with unbounded fan-out,
we need the power of concurrent reads. (The case of unbounded fan-in
can sometimes be handled by a CRCW simulation if the combinational
elements are simple enough. See Exercise 30.3-1.)

Corollary 30.3 provides us with a fast EREW sorting algorithm. As
explained in the chapter notes of Chapter 28, the AKS sorting network
can sort n numbers in O(lgn) depth using O(n 19 n) comparators. Since
comparators have bounded fan-in, there is an EREW algorithm to sort n
numbers in O(lg n) time using n processors. (We used this result in The
orem 30.1 to show that an EREW PRAM can simulate a CRCW PRAM
with at most logarithmic slowdown.) Unfortunately, the constants hid
den by the O-notation are so large that this sorting algorithm has solely
theoretical interest. More practical EREW sorting algorithms have been
discovered, however, notably the parallel merge-sorting algorithm due to
Cole [46).

Now suppose that we have a PRAM algorithm that uses at most p pro
cessors, but we have a PRAM with only p' < p processors. We would
like to be able to run the p-processor algorithm on the smaller p'_processor
PRAM in a work-efficient fashion. By using the idea in the proof of Brent's
theorem, we can give a condition for when this is possible.

Theorem 30."
If a p-processor PRAM algorithm A runs in time t, then for any p' < p,
there is an p'_processor PRAM algorithm A' for the same problem that
runs in time O(ptjp').

Proof Let the time steps of algorithm A be numbered I, 2, ... , t. Al
gorithm A' simulates the execution of each time step i = 1,2, ... , t in
time OUp jp/l). There are t steps, and so the entire simulation takes time
OUpjp/l t) = O(ptjp'), since p' < p. _
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The work performed by algorithm A is pt, and the work performed by
algorithm A' is (pt/p')p' = pt; the simulation is therefore work-efficient.
Consequently, if algorithm A is itself work-efficient, so is algorithm A'.

When developing work-efficient algorithms for a problem, therefore, one
needn't necessarily create a different algorithm for each different number
of processors. For example, suppose that we can prove a tight lower bound
of t on the running time of any parallel algorithm, no matter how many
processors, for solving a given problem, and suppose further that the best
serial algorithm for the problem does work w. Then, we need only develop
a work-efficient algorithm for the problem that uses p 8(w / t) processors
in order to obtain work-efficient algorithms for all numbers of processors
for which a work-efficient algorithm is possible. For p' = o(p), Theo
rem 30.4 guarantees that there is a work-efficient algorithm. For p' = w(p),
no work-efficient algorithms exist, since if t is a lower bound on the time
for any parallel algorithm, p't = w(pt) = w(w).

Exercises

30.3-1
Prove a result analogous to Brent's theorem for a CRCW simulation of
boolean combinational circuits having AND and OR gates with unbounded
fan-in. (Hint: Let the "size" be the total number of inputs to gates in the
circuit.)

30.3-2
Show that a parallel prefix computation on n values stored in an array of
memory can be implemented in O(lgn) time on an EREW PRAM using
O(n / 19 n) processors. Why does this result not extend immediately to a
list of n values?

30.3-3
Show how to multiply an n x n matrix A by an n-vector b in O(lg n) time
with a work-efficient EREW algorithm. (Hint: Construct a combinational
circuit for the problem.)

30.3-4
Give a CRCW algorithm using n2 processors to multiply two n x n ma
trices. The algorithm should be work-efficient with respect to the normal
8(n3)-time serial algorithm for multiplying matrices. Can you make the
algorithm EREW?

30.3-5
Some parallel models allow processors to become inactive, so that the
number of processors executing at any step varies. Define the work in
this model as the total number of steps executed during an algorithm
by active processors. Show that any CRCW algorithm that performs w
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work and runs in t time can be run on a p-processor EREW PRAM in
O((w Ip + t) Igp) time. (Hint: The hard part is scheduling the active pro
cessors while the computation is proceeding.)

* 30.4 Work-efficient parallel prefix computation

In Section 30.1.2, we examined an O(lg nj-time EREW algorithm LIST
RANK that can perform a prefix computation on an n-object linked list.
The algorithm uses n processors and performs 6(n Ign) work. Since we
can easily perform a prefix computation in 6(n) time on a serial machine,
LIST-RANK is not work-efficient.

This section presents a randomized EREW parallel prefix algorithm that
is work-efficient. The algorithm uses 6(nI lg n) processors, and it runs in
O(lg n) time with high probability. Thus, it is work-efficient with high prob
ability. Moreover, by Theorem 30.4, this algorithm immediately yields
work-efficient algorithms for any number p = O(nI lg n) of processors.

Recursive parallel prefix computation

The randomized parallel prefix algorithm RANDOMIZED-LIST-PREFIX op
erates on a linked list of n objects using p = 6(nI lgn) processors. During
the algorithm, each processor is responsible for nip = 6(lg n) of the objects
in the original list. The objects are assigned to processors arbitrarily (not
necessarily contiguously) before the recursion begins, and "ownership" of
objects never changes. For convenience, we assume that the list is doubly
linked, since doubly linking a single list takes O( 1) time.

The idea of RANDOMIZED-LIST-PREFIX is to eliminate some of the ob
jects in the list, perform a recursive prefix computation on the resulting
list, and then expand it by splicing in the eliminated objects to yield a pre
fix computation on the original list. Figure 30.9 illustrates the recursive
process, and Figure 30.10 shows how the recursion unfolds. We shall show
a little later that each stage of the recursion obeys two properties:

1. At most one object of those belonging to a given processor is selected
for elimination.

2. No two adjacent objects are selected for elimination.

Before we show how to select objects that satisfy these properties, let us
examine in more detail how the prefix computation is performed. Suppose
that at the first step of the recursion, the kth object in the list is selected
for elimination. This object contains the value [k, k], which is fetched by
the (k + 1)st object in the list. (Boundary situations, such as the one here
when k is at the end of the list, can be handled straightforwardly and are
not described.) The (k + l)st object, which holds the value [k + l,k + 1],
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Figure 30.9 The work-efficient , randomized, recursive, parallel algorithm RAN
DOMIZED-LIST- PREFIX for perform ing prefix computations on a linked list of n = 9
objects. (a)-( b) A set of nonadjacent objects (blackened) are selected for elimi
nation . The value in each black object is used 10 updat e the value in the next
object in the list, and then the black object is spliced out. The algorithm is called
recursively to compute a parallel prefix on the contracted list. (c)-(d) The resulting
values are the correct final values for objects in the contracted list. The eliminated
objects are then spliced back in, and each USd the value of the previous object to
compute its final value.

then computes and sto res [k, k + I] = [k , k] ~ [k + I, k + I]. The k th object
is then elimina ted from the list by splic ing it out.

The procedure RANDOMIZED-LIST-PREFIX then calls itself recursive ly to
perform a prefix computation on the "contracted" list. (T he recu rsion
bottoms out when the enti re list is empty.) T he key observation is that
after return ing from the recursive call, each object in the contrac ted list
has the correct final value it needs for the parallel prefix computation on
the original list. It remai ns only to splice back in the previously eliminated
objects, such as the k th object . and update their values.

After the k th object is spliced in, its final prefix value can be computed
using the value in the (k - I )st object. After the recursion, the (k - I)st
object conta ins (I , k - I], and thus the kth object-which still has th e
value (k , k]-needs only to fetch the value (I , k - I] and compute (I , k ) =
[1,k - I[ 0[k ,k ].

Because of property I, each selected object has a dist inct processor to
perform the work needed to sp lice it out or in. Property 2 ensures that no
confusion between processors arises when splicing objec ts out and in (see



7/6 Chapter 30 Algorithms for Parallel Computers

14.SI 16.61

6.6

! splice out

! splice out

,,,IJJI12.21

stage 1 stage 2 stage
(top)

• • .~

!spliceout

-!SPlkC 001

J stage 4 stage S empty
(bouom) lisl

l splice in

-~ splice in

• • .~

t splice in

(1.11 11.21 IIJI

1,6

splice in

1.6

filU~ 30.10 The recursive stages o f RANDO MIZED- Un-PIlEFIX, shown for n = 9
original objects. In each stage, the blackened objects are eliminated. The procedure
recurses until the list is empty, and then the eliminated objects ar e spliced back in.
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Exercise 30.4-1). The two properties together ensure that each step of the
recursion can be implemented in O( 1) time in an EREW fashion.

Selecting objects for elimination

How does RANDOMIZED-LIST-PREFIX select objects for elimination? It
must obey the two properties above, and in addition, we want the time to
select objects to be short (and preferably constant). Moreover, we would
like as many objects as possible to be selected.

The following method for randomized selection satisfies these condi
tions. Objects are selected by having each processor execute the following
steps:

1. The processor picks an object i that has not previously been selected
from among those it owns.

2. It then "flips a coin," choosing the values HEAD and TAIL with equal
probability.

3. If it chooses HEAD, it marks object i as selected, unless next[i] has been
picked by another processor whose coin is also HEAD.

This randomized method takes only O( I) time to select objects for elimi
nation, and it does not require concurrent memory accesses.

We must show that this procedure obeys the two properties above. That
property I holds can be seen easily, since only one object is chosen by a
processor for possible selection. To see that property 2 holds, suppose to
the contrary that two consecutive objects i and next[ i] are selected. This
occurs only if both were picked by their processors, and both processors
flipped HEAD. But object i is not selected if the processor responsible for
next[i] flipped HEAD, which is a contradiction.

Analysis

Since each recursive step of RANDOMIZED-LIST-PREFIX runs in O( I) time,
to analyze the algorithm we need only determine how many steps it takes
to eliminate all the objects in the original list. At each step, a processor has
at least probability 1/4 of eliminating the object i it picks. Why? It flips
HEAD with probability 1/2, and the probability that it either does not pick
next[i] or picks it and flips TAIL is at least 1/2. Since the two coin flips are
independent events, we can multiply their probabilities, yielding the prob
ability of at least 1/4 of a processor eliminating the object it picks. Since
each processor owns 8(lg n) objects, the expected time for a processor to
eliminate all its objects is 8(lg n).

Unfortunately, this simple analysis does not show that the expected run
ning time of RANDOMIZED-LIST-PREFIX is 8(lgn). For example, if most
of the processors eliminate all their objects quickly and a few processors
take much, much longer, the average time for a processor to eliminate all
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its objects might still be 8(lgn), but the running time of the algorithm
could be large.

The expected running time of the procedure RANDOMIZED-LIST-PREFIX
is indeed 8(lg n), even though the simple analysis does not show it. We
shall use a high-probability argument to prove that with probability at least
1 - l/n, all objects are eliminated within clgn stages of the recursion, for
some constant c. Exercises 30.4-4 and 30.4-5 ask you to generalize this
argument to prove the 8(lg n) bound on the expected running time.

Our high-probability argument is based on observing that the experiment
of a given processor eliminating the objects it picks can be viewed as a
sequence of Bernoulli trials (see Chapter 6). The experiment is a success
if the object is selected for elimination, and it is a failure otherwise. Since
we are interested in showing that the probability is small that very few
successes are obtained, we can assume that successes occur with probability
exactly 1/4, rather than with probability at least 1/4. (See Exercises 6.4-8
and 6.4-9 for a formal justification of similar assumptions.)

To further simplify the analysis, we assume that there are exactly n / lgn
processors, each with lgn list objects. We are conducting c lg n trials, for
some constant c that we shall determine, and we are interested in the
event that fewer than lgn successes occur. Let X be the random variable
denoting the total number of successes. By Corollary 6.3, the probability
that a processor eliminates fewer than lgn objects in the c lgn trials is at
most

Pr{X < Ign} < (Cl~gnn) (~)c1gn-lgn

< (e~;~nygn (~yc-I)lgn

(ec(~rr
< (~yg/l

1/n2
,

as long as c 2: 20. (The second line follows from inequality (6.9).) Thus,
the probability that all objects belonging to a given processor have not been
eliminated after c 19 n steps is at most 1/n2 •

We now wish to bound the probability that all objects belonging to all
processors have not been eliminated after C 19 n steps. By Boole's inequal
ity (6.22), this probability is at most the sum of the probabilities that each
of processors has not eliminated its objects. Since there are n/ 19 n pro
cessors, and each has probability at most 1/n2 of not eliminating all its
objects, the probability that any processor has not finished all its objects
is at most
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n I_._<
Ign n2 - n

We have thus proven that with probability at least I - IIn, every object is
spliced out after O(lg n) recursive calls. Since each recursive call takes O(1)
time, RANDOMIZED-LIST-PREFIX takes O(1g n) time with high probability.

The constant c 2:: 20 in the c Ign running time may seem a bit large
for practicality. In fact, this constant is more an artifact of the analysis
than a reflection of the algorithm's performance. In practice, the algorithm
tends to be fast. The constant factors in the analysis are large because the
event that one processor finishes eliminating all its list objects is dependent
on the event that another processor finishes all its work. Because of these
dependencies, we used Boole's inequality, which does not require indepen
dence but results in a weaker constant than would generally be experienced
in practice.

Exercises

30.4-1
Draw figures to illustrate what can go wrong in RANDOMIZED-LIST-PREFIX

if two adjacent list objects are selected for elimination.

30.4-2 *
Suggest a simple change to make RANDOMIZED-LIST-PREFIX run in O(n)
worst-case time on a list of n objects. Use the definition of expectation to
prove that with this modification, the algorithm runs in O(lg n) expected
time.

30.4-3 *
Show how to implement RANDOMIZED-LIST-PREFIX so that it uses at most
O(nlp) space per processor in the worst case, independent of how deep
the recursion goes.

30.4-4 *
Show that for any constant k 2:: I, RANDOMIZED-LIST-PREFIX runs in
O(lg n) time with probability at least 1 II nk • Show how the constant
in the running-time bound is influenced by k,

30.4-5 *
Using the result of Exercise 30.4-4, show that the expected running time
of RANDOMIZED-LIST-PREFIX is O(lgn).
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30.5 Deterministic symmetry breaking

Consider a situation in which two processors wish to acquire mutually
exclusive access to an object. How can the processors determine which
should acquire access first? We wish to avoid the scenario in which both
are granted access, as well as the scenario in which neither is granted
access. The problem of choosing one of the processors is an example
of symmetry breaking. We have all seen the momentary confusion and
diplomatic impasses that arise when two people attempt to go through a
door simultaneously. Similar symmetry-breaking problems are pervasive
in the design of parallel algorithms, and efficient solutions are extremely
useful.

One method for breaking symmetry is to flip coins. On a computer, coin
flipping can be implemented by means of a random-number generator. For
the two-processor example, both processors can flip coins. If one obtains
HEAD and the other TAIL, the one obtaining HEAD proceeds. If both flip
the same value, they try again. With this strategy, symmetry is broken in
constant expected time (see Exercise 30.5-1).

We saw the effectiveness of a randomized strategy in Section 30.4. In
RANDOMIZED-LIST-PREFIX, adjacent list objects must not be selected for
elimination, but as many picked objects as possible should be selected. In
the midst of a list of picked objects, however, all objects look pretty much
the same. As we saw, randomization provides a simple and effective way
to break the symmetry between adjacent list objects while guaranteeing
that, with high probability, many objects are selected.

In this section, we investigate a deterministic method for breaking sym
metry. The key to the algorithm is to employ processor indices or memory
addresses rather than random coin flips. For instance, in the two-processor
example, we can break the symmetry by allowing the processor with smaller
processor index to go first-dearly a constant-time process.

We shall use the same idea, but in a much more clever fashion, in an
algorithm to break symmetry in an n-object linked list. The goal is to
choose a constant fraction of the objects in the list but to avoid picking
two adjacent objects. This algorithm can be performed with n processors
in O(lg* n) time by a deterministic EREW algorithm. Since lg" n ::; 5 for
all n ::; 265536, the value Ig* n can be viewed as a small constant for all
practical purposes (see page 36).

Our deterministic algorithm has two parts. The first part computes a
"S-coloring'' of the linked list in O(lg* n) time. The second part converts
the 6-coloring to a "maximal independent set" of the list in O( I) time. The
maximal independent set will contain a constant fraction of the n objects
of the list, and no two objects in the set will be adjacent.
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A coloring of an undirected graph G = (V, E) is a function C : V ---+ N such
that for all u, v E V, if C(u) C(v), then (u, v) fi E; that is, no adjacent
vertices have the same color. In a 6-coloring of a linked list, all colors are
in the range {O, I, 2, 3,4, 5} and no two consecutive vertices have the same
color. In fact, any linked list has a 2-coloring, since we can color objects
whose ranks are odd with color 0 and objects whose ranks are even with
color 1. We can compute such a coloring in O(lgn) time using a parallel
prefix computation, but for many applications, it suffices to compute only
an O( I)-coloring. We shall show that a 6-coloring can be computed in
O(lg* n) time without using randomization.

An independent set of a graph G = (V, E) is a subset V' ~ V of vertices
such that each edge in E is incident on at most one vertex in V'. A
maximal independent set, or MIS, is an independent set VI such that for
all vertices v E V VI, the set V' u {v} is not independent-every vertex
not in VI is adjacent to some vertex in V'. Do not confuse the problem
of computing a maximal independent set-an easy problem-with the
problem of computing a maximum independent set-a hard problem. The
problem of finding an independent set of maximum size in a general graph
is NP-complete. (See Chapter 36 for a discussion of NP-completeness.
Problem 36-1 concerns maximum independent sets.)

For n-object lists, a maximum (and hence maximal) independent set
can be determined in O(lgn) time by using a parallel prefix computation,
as in the 2-coloring just mentioned, to identify the odd-ranked objects.
This method selects fn/21 objects. Observe, however, that any maximal
independent set of a linked list contains at least n/3 objects, since for
any 3 consecutive objects, at least one must be in the set. We shall show,
however, that a maximal independent set of a list can be determined in
O( 1) time given an O( I)-coloring of the list.

Computing a 6-coloring

The algorithm SIX-COLOR computes a 6-coloring of a list. We won't give
pseudocode for the algorithm, but we shall describe it in some detail. We
assume that initially each object x in the linked list is associated with a
distinct processor P(x) E {O, I, ... , n I}.

The idea of SIX-COLOR is to compute a sequence Co(x], C j [x], ... , Cm[x]
of colors for each object x in the list. The initial coloring Co is an n
coloring. Each iteration of the algorithm defines a new coloring Ck+I based
on the previous coloring Ck , for k = 0, I, ... , m 1. The final coloring Cm
is a 6-coloring, and we shall prove that m = O(lg* n).

The initial coloring is the trivial n-coloring in which Co[x] = P(x). Since
no two list objects have the same color, no two adjacent list objects have
the same color, and so the coloring is legal. Note that each of the initial
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colors can be described with fign1bits, which means that it can be stored
in an ordinary computer word.

The subsequent colorings are obtained as follows. The kth iteration, for
k = 0, 1,... , m 1, starts with a coloring Ck and ends with a coloring ChI

using fewer bits per object, as the first part of Figure 30.11 shows. Suppose
that at the start of an iteration, each object's color C; takes r bits. We
determine the new color of an object x by looking forward in the list at
the color of next[x].

To be more precise, suppose that for each object x, we have Cdx] a
and Cdnext[x]] = b, where a = (ar-I, ar-z, ... ,ao) and b = (br- I ,br- z, . . . ,
bo) are r-bit colors. Since Cdx] ::f:. Cdnext[x]], there is some least index i
at which the bits of the two colors differ: a, ::f:. b.. Because 0 ::; i ::; r- I, we
can write i with only [lgr] bits: i = (ipgrl-l> ipgrl-2,'''' io). We recolor x
with the value of i concatenated with the bit a.. That is, we assign

Ck+1[x] = (i, ai)

= (iflgrl-I, iflgrl-Z"", io, ai) .

The tail of the list gets the new color (0, ao). The number of bits in each
new color is therefore at most figr1+ I.

We must show that if each iteration of SIX-COLOR starts with a color
ing, the new "coloring" it produces is indeed a legal coloring. To do this,
we prove that Cdx]::f:. Cdnext[x]] implies Ck+I[X] ::f:. Ck+ 1[next[x]]. Sup
pose that Cdx] = a and Cdnext[x]] = b, and that Ck+I[X] = (i,ai) and
Ck+l[next[x]] = (j,b j ) . There are two cases to consider. If i ::f:. j, then
(i,ai) ::f:. (j,b j ) , and so the new colors are different. If i = i, however,
then a, ::f:. b, = bj by our recoloring method, and thus the new colors are
once again different. (The situation at the tail of the list can be handled
similarly. )

The recoloring method used by SIX-COLOR takes an r-bit color and re
places it with a (jlg r1+ I j-bit color, which means that the number of bits
is strictly reduced as long as r 2:: 4. When r = 3, two colors can differ in
bit position 0, 1, or 2. Each new color, therefore, is (00), (Ol), or (10)
concatenated with either 0 or 1, thus leaving a 3-bit number once again.
Only 6 of the 8 possible values for 3-bit numbers are used, however, so
that SIX-COLOR indeed terminates with a 6-coloring.

Assuming that each processor can determine the appropriate index i
in O( I) time and perform a shift-left operation in O( I) time-operations
commonly supported on many actual machines-each iteration takes O( I)
time. The SIX-COLOR procedure is an EREW algorithm: for each object x,
its processor accesses only x and next[x].

Finally, let us see why only O(lg* n) iterations are required to bring
the initial n-coloring down to a 6-coloring. We have defined 19* n as the
number of times the logarithm function 19 needs to be applied to n to
reduce it to at most lor, letting IgU) n denote i successive applications of
the lg function,
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Figure 30.11 The algorithms SIX-COLOR and u ST-MIS thai break symmetry in a
list. Together, the algorithms find a large set of nonadjacent objec ts in O(lg' n) time
using n processors. The initia l list of n :: 20 objects is show n on the left, running
vert ically . Each object has an initial , distinct 5-bit color. For these parameters, the
algorithm SIX-COLOR need s only the two iterations shown to recolor each object
with a color in the range to , 1, 2, 3,4, 5} . White objects are placed into the MIS by
LIST-M IS as the co lors are processed. and black objects are killed .
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19* n = min {i :::: 0 : 19(i) n ::; I} .

Let r, be the number of bits in the coloring just before the ith iteration.
We shall prove by induction that if flg(i) n1 :::: 2, then r, ::; pgU) n1+ 2.
Initially, we have '1 ::; [lg n1. The ith iteration brings the number of bits
in the coloring down to 'i+l = [lg r.] + 1. Assuming that the inductive
hypothesis holds for 'i-I, we obtain

r, rtg't-l1 + I
::; flg(flg(i-I) n1 + 2)1 + I

< pg(lg(i-l)n + 3)1 + I

< pg(2IgU- 1
) n)l + I

pg(lgU-I) n) + II + I

= flgU) n1+ 2 .

The fourth line follows from the assumption that flg(i) n1 :::: 2, which means
that flg(i-l) n1 :::: 3. Therefore, after m = lg" n steps, the number of bits
in the coloring is rm ::; flg(m) n1+ 2 = 3, since Ig(m) n ::; I by definition of
the 19* function. Thus, at most one more iteration suffices to produce a
6-coloring. The total time of SIX-COLOR is therefore O(lg* n).

Computing an MIS from a 6-coloring

Coloring is the hard part of symmetry breaking. The EREW algorithm
LIST-MIS uses n processors to find a maximal independent set in O(c)
time given a c-coloring of an n-object list. Thus, once we have computed
a 6-coloring of a list, we can find a maximal independent set of the linked
list in O( 1) time.

The latter part of Figure 30.11 illustrates the idea behind LIST-MIS. We
are given a c-coloring C. With each object x, we keep a bit alive[x], which
tells us whether x is still a candidate for inclusion in the MIS. Initially,
alive[x] = TRUE for all objects x.

The algorithm then iterates through each of the c colors. In the iteration
for color i, each processor responsible for an object x checks whether
C[x] = i and alive[x] = TRUE. If both conditions hold, then the processor
marks x as belonging to the MIS being constructed. All objects adjacent
to those added into the MIS-those immediately preceding or following
have their alive bits set to FALSE; they cannot be in the MIS because they
are adjacent to an object in the MIS. After all c iterations, each object has
either been "killed"-its alive bit has been set to FALSE-or placed into
the MIS.

We must show that the resulting set is independent and maximal, To
see that it is independent, suppose that two adjacent objects x and next[x]
are placed into the set. Since they are adjacent, C[x] =1= C[next[xlJ, be
cause C is a coloring. Without loss of generality, we assume that C[x] <
C[next[xJ], so that x is placed into the set before next[x] is. But then
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alive[next[x]] has been set to FALSE by the time objects of color C[next[x]]
are considered, and next[x] could not have been placed into the set.

To see that the set is maximal, suppose that none of three consecutive
objects x, Y, and z has been placed into the set. The only way that Y could
have avoided being placed into the set, though, is if it had been killed
when an adjacent object was placed into the set. Since, by our supposition,
neither x nor z was placed into the set, the object y must have been still
alive at the time when objects of color e[y] were processed. It must have
been placed into the MIS.

Each iteration of LIST-MIS takes O( 1) time on a PRAM. The algorithm
is EREW since each object accesses only itself, its predecessor, and its
successor in the list. Combining LIST-MIS with SIX-COLOR, we can break
symmetry in a linked list in O(lg* n) time deterministically.

Exercises

30.5-1
For the 2-processor symmetry-breaking example at the beginning of this
section, show that symmetry is broken in constant expected time.

30.5-2
Given a 6-coloring of an n-object list, show how to 3-color the list in O( 1)
time using n processors in an EREW PRAM.

30.5-3
Suppose that every nonroot node in an n-node tree has a pointer to its
parent. Give a CREW algorithm to O( I)-color the tree in O(lg* n) time.

30.5-4 *
Give an efficient PRAM algorithm to O( I)-color a degree-3 graph. Analyze
your algorithm.

30.5-5
A k-ruling set of a linked list is a set of objects (rulers) in the list such
that no rulers are adjacent and at most k nonrulers (subjects) separate
rulers. Thus, an MIS is a 2-ruling set. Show how an O(lgn)-ruling set of
an n-object list can be computed in O(1) time using n processors. Show
how an O(lg19 n) ruling set can be computed in O(1) time under the same
assumptions.

30.5-6 *
Show how to find a 6-coloring of an n-object linked list in O(lg(lg* n))
time. Assume that each processor can store a precomputed table of size
O(lgn). (Hint: In SIX-COLOR, upon how many values does the final color
of an object depend?)
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30-1 Segmented parallel prefix
Like an ordinary prefix computation, a segmented prefix computation is
defined in terms of a binary, associative operator ®. It takes an input
sequence x = (XI,X2, ••• ,xn ) whose elements are drawn from a domain S
and a segment sequence b = (hI, b2, ... , bn ) whose elements are drawn
from the domain {O, I}, with b, = 1. It produces an output sequence y =
(Y"Y2,'" ,Yn) over the domain S. The bits of b determine a partitioning
of X and Y into segments; a new segment begins wherever b, = 1, and
the current one continues if b, = O. The segmented prefix computation
performs an independent prefix computation within each segment of x
to produce the corresponding segment of y. Figure 30.12 illustrates a
segmented prefix computation using ordinary addition.

a. Define the operator ® on ordered pairs (a, z), (a', z') E {O, I} x S as
follows:

(a, z)®(a', z') {
(a , z ® z') if a' = 0 ,
(l,z') ifa' = 1.

Prove that ®is associative.

b. Show how to implement any segmented prefix computation on an n
element list in O(lg n) time on an EREW PRAM.

c. Describe an O(k lg n)-time EREW algorithm to sort a list of n k-bit
numbers.

30-2 Processor-efficient maximum algorithm
We wish to find the maximum of n numbers on a CRCW PRAM with
p = n processors.

a. Show that the problem of finding the maximum of m $ p /2 numbers
can be reduced to the problem of finding the maximum of at most m?/p
numbers in O( 1) time on a p-processor CRCW PRAM.

b. If we start with m = [P/2J numbers, how many numbers remain after
k iterations of the algorithm in part (a)?

b 11 0 0' 'I 0' III 11 0 0 0 0 0' I 1 0 1

x = 1 2 3 4 5 6 7 8 9 10 II 12 13 14

Y = 1 3 6 4 9 6 7 15 24 34 45 57 13 27

Figure 30.12 A segmented prefix computation with segment sequence b, input
sequence x, and output sequence y. There are 5 segments.
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c. Show that the problem of finding the maximum of n numbers can be
solved in O(lglgn) time on a CRCW PRAM with p = n processors.

30-3 Connected components
In this problem, we investigate an arbitrary-CRCW algorithm for com
puting the connected components of an undirected graph G = (V, E) that
uses 1V + EI processors. The data structure used is a disjoint-set forest (see
Section 22.3). Each vertex v E V maintains a pointer p[v] to a parent.
Initially, p[v] = v: the vertex points to itself. At the end of the algorithm,
for any two vertices u, v E V, we have p[u] = p[v] if and only if u '"V+ v
in G. During the algorithm, the p pointers form a forest of rootedpo;nter
trees. A star is a pointer tree in which p[u] = p[v] for all vertices u and v
in the tree.

The connected-components algorithm assumes that each edge (u, v) E E
appears twice: once as (u, v) and once as (v, u). The algorithm uses
two basic operations, HOOK and JUMP, and a subroutine STAR that sets
star[v] = TRUE if v belongs to a star.

HOOK(G)

I STAR(G)
2 for each edge (u, v) E E[G], in parallel
3 do if star[u] and p[u] > p[v]
4 then p[P[u]] ;- p[v]
5 STAR(G)
6 for each edge (u, v) E E[G], in parallel
7 do if star[u] and p[u] =F p[v]
8 then p[P[u]] ;- p[v]

JUMP(G)

I for each v E V[G], in parallel
2 do p[v] ;- p[P[v]]

The connected-components algorithm performs an initial HOOK, and
then it repeatedly performs HOOK, JUMP, HOOK, JUMP, and so on, until
no pointer is changed by a JUMP operation. (Note that two HOOK'S are
performed before the first JUMP.)

a. Give pseudocode for STAR(G).

b. Show that the p pointers indeed form rooted trees, with the root of a
tree pointing to itself. Show that if u and v are in the same pointer tree,
then U'"V+ v in G.

c. Show that the algorithm is correct: it terminates, and when it terminates,
p[u] = p[v] if and only if u '"V+ v in G.

To analyze the connected-components algorithm, let us examine a single
connected component C, which we assume has at least two vertices. Sup-
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pose that at some point during the algorithm, C is made up of a set {1i}
of pointer trees. Define the potential of C as

4>(C) = L: height(Ti ) .

T,

The goal of our analysis is to prove that each iteration of hooking and
jumping decreases 4>(C) by a constant factor.

d. Prove that after the initial HOOK, there are no pointer trees of height 0
and <I>(C) ::; IVI.

e. Argue that after the initial HOOK, subsequent HOOK operations never
increase <1>( C).

f. Show that after every noninitial HOOK operation, no pointer tree is a
star unless the pointer tree contains all vertices in C.

g. Argue that if C has not been collapsed into a single star, then after a
JUMP operation, <1>(C) is at most 2/3 its previous value. Illustrate the
worst case.

h. Conclude that the algorithm determines all the connected components
of Gin 00g V) time.

30-4 Transposing a raster image
A raster-graphics frame buffer can be viewed as a p x p matrix M of bits.
The raster-graphics display hardware makes the n x n upper left submatrix
of M visible on the user's screen. A BITBLT operation (BLock Transfer
of BITs) is used to move a rectangle of bits from one position to another.
Specifically, BITBLT(rl,CI, '2, Cb nr,nc,*) sets

M[r2 + i,C2 + j] f- M[r2 + i.c, + j] *M[r, + i,c! + j]

for i = 0, I, ... , nr I and j = 0, I, ... , nc - I, where * is any of the 16
boolean functions on two inputs.

We are interested in transposing the image (M[i,j] f- M[j, i]) in the
visible portion of the frame buffer. We assume that the cost of copying
the bits is less than that of calling the BITBLT primitive, and hence we are
interested in using as few BITBLT operations as possible.

Show that any image on the screen can be transposed with 00g n) BIT
BLT operations. Assume that p is sufficiently larger than n so that the
nonvisible portion of the frame buffer provides enough working storage.
How much additional storage do you need? (Hint: Use a parallel divide
and-conquer approach in which some of the BITBLT'sare performed with
boolean AND's.)
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Akl [9], Karp and Ramachandran [118], and Leighton [135] survey par
allel algorithms for combinatorial problems. Various parallel machine
architectures are described by Hwang and Briggs [109] and Hwang and
DeGroot [110].

The theory of parallel computing began in the late 1940's when J. Von
Neumann [38] introduced a restricted model of parallel computing called a
cellular automaton, which is essentially a two-dimensional array of finite
state processors interconnected in meshlike fashion. The PRAM model
was formalized in 1978 by Fortune and Wyllie [73], although many other
authors had previously discussed essentially similar models.

Pointer jumping was introduced by Wyllie [204]. The study of parallel
prefix computations arose from the work of Ofman [152] in the context of
carry-lookahead addition. The Euler-tour technique is due to Tarjan and
Vishkin [191].

Processor-time trade-off'sfor computing the maximum of a set of n num
bers were provided by Valiant [193], who also showed that an O(I)-time
work-efficient algorithm does not exist. Cook, Dwork, and Reischuk [50]
proved that the problem of computing the maximum requires Q(lg n) time
on a CREW PRAM. The simulation of a CRCW algorithm with an EREW
algorithm is due to Vishkin [195].

Theorem 30.2 is due to Brent [34]. The randomized algorithm for work
efficient list ranking was discovered by Anderson and Miller [11]. They also
have a deterministic, work-efficient algorithm for the same problem [10].
The algorithm for deterministic symmetry breaking is due to Goldberg and
Plotkin [84]. It is based on a similar algorithm with the same running time
due to Cole and Vishkin [47].
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Operations on matrices are at the heart of scientific computing. Efficient
algorithms for working with matrices are therefore of considerable prac
tical interest. This chapter provides a brief introduction to matrix theory
and matrix operations, emphasizing the problems of multiplying matrices
and solving sets of simultaneous linear equations.

After Section 31.1 introduces basic matrix concepts and notations, Sec
tion 31.2 presents Strassen's surprising algorithm for multiplying two n x n
matrices in e(nlg 7) O( n2.8 1) time. Section 31.3 defines quasirings, rings,
and fields, clarifying the assumptions required to make Strassen's algo
rithm work. It also contains an asymptotically fast algorithm for multi
plying boolean matrices. Section 31.4 shows how to solve a set of linear
equations using LUP decompositions. Then, Section 31.5 explores the
close relationship between the problem of multiplying matrices and the
problem of inverting a matrix. Finally, Section 31.6 discusses the impor
tant class of symmetric positive-definite matrices and shows how they can
be used to find a least-squares solution to an overdetermined set of linear
equations.

31.1 Properties of matrices

In this section, we review some basic concepts of matrix theory and some
fundamental properties of matrices, focusing on those that will be needed
in later sections.

Matrices and vectors

A matrix is a rectangular array of numbers. For example,

(
a l l al2 al3)A =
a21 a22 a23

(1 2 3)
456 (31.1)
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is a 2 x 3 matrix A = (au), where for i = 1,2 and j = 1,2,3, the element
of the matrix in row i and column j is aU' We use uppercase letters to
denote matrices and corresponding subscripted lowercase letters to denote
their elements. The set of all m x n matrices with real-valued entries is
denoted Rm x", In general, the set of m x n matrices with entries drawn
from a set S is denoted S'"?",

The transposeof a matrix A is the matrix AT obtained by exchanging the
rows and columns of A. For the matrix A of equation (31.1),

AT~O D
A vector is a one-dimensional array of numbers. For example,

(31.2)

is a vector of size 3. We use lowercase letters to denote vectors, and we
denote the ith element of a size-a vector x by Xi, for i = 1,2, ... , n, We
take the standard form of a vector to be as a column vector equivalent to
an n x 1 matrix; the corresponding row vector is obtained by taking the
transpose:

X T (2 3 5).

The unit vector e, is the vector whose ith element is 1 and all of whose
other elements are O. Usually, the size of a unit vector is clear from the
context.

A zero matrix is a matrix whose every entry is O. Such a matrix is often
denoted 0, since the ambiguity between the number 0 and a matrix of O's
is usually easily resolved from context. If a matrix of O's is intended, then
the size of the matrix also needs to be derived from the context.

Square n x n matrices arise frequently. Several special cases of square
matrices are of particular interest:

1. A diagonal matrix has a., = 0 whenever i :F j. Because all of the off
diagonal elements are zero, the matrix can be specified by listing the
elements along the diagonal:

diag(aU,a22, ... ,a,,) ~ (at' a:2 I)
2. The n x n identity matrix In is a diagonal matrix with l's along the

diagonal:

In = diag( 1, 1, ... , 1)
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0
0

r)
I

=

0
When I appears without a subscript, its size can be derived from context.
The ith column of an identity matrix is the unit vector e..

3. A tridiagonal matrix T is one for which to = 0 if Ii JI > 1. Nonzero
entries appear only on the main diagonal, immediately above the main
diagonal (tU+i for i = 1,2, , n 1), or immediately below the main
diagonal (ti+i.i for i = 1,2, , n 1):

tIl tI2 0 0 0 0 0
t21 t22 tZ3 0 0 0 0
o t32 t33 t34 0 0 0

T=
0 0 0 0 t n-Z,n-2 t n-2,n-1 0
0 0 0 0 tn-l.n-2 tn-I,n-I tn-i,n
0 0 0 0 0 tn,n-I tnn

4. An upper-triangular matrix U is one for which ui) = 0 if i > j. All
entries below the diagonal are zero:

(

UOII UI2 Uln)
U22 U2n

U= . . . . .. . .. . .
o 0 ... Unn

An upper-triangular matrix is unit upper-triangular if it has all 1's along
the diagonal.

5. A lower-triangular matrix L is one for which Ii) = 0 if i < j. All entries
above the diagonal are zero:

L = (:;: 2, ~ )
I~I In2 I~n

A lower-triangular matrix is unit lower-triangular if it has all 1's along
the diagonal.

6. A permutation matrix P has exactly one 1 in each row or column, and
O's elsewhere. An example of a permutation matrix is

o 1 000
00010

P= I 0 0 0 0
00001
00100

Such a matrix is called a permutation matrix because multiplying a vee
tor x by a permutation matrix has the effect of permuting (rearranging)
the elements of x.
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7. A symmetric matrix A satisfies the condition A AT, For example,

(~ ~ ~)
3 4 5

is a symmetric matrix.

Operations on matrices

The elements of a matrix or vector are numbers from a number system,
such as the real numbers, the complex numbers, or integers modulo a
prime. The number system defines how to add and multiply numbers. We
can extend these definitions to encompass addition and multiplication of
matrices.

We define matrix addition as follows. If A = (ai}) and B = (bi}) are
m x n matrices, then their matrix sum C = (ci}) = A + B is the m x n
matrix defined by

for i = 1,2, ... , m and j 1,2, ... .n. That is, matrix addition is per
formed componentwise, A zero matrix is the identity for matrix addition:

A+O A

O+A.

If A is a number and A = (ai}) is a matrix, then AA = (Aai}) is the scalor
multiple of A obtained by multiplying each of its elements by A. As a special
case, we define the negative of a matrix A = (au) to be -1 ' A = -A, so
that the ijth entry of -A is -ai}. Thus,

A+(-A) 0

= (-A)+A.

Given this definition, we can define matrix subtraction as the addition of
the negative of a matrix: A - B = A + (-B).

We define matrix multiplication as follows. We start with two matrices
A and B that are compatible in the sense that the number of columns of A
equals the number of rows of B. (In general, an expression containing a
matrix product AB is always assumed to imply that matrices A and Bare
compatible.) If A = (au) is an m x n matrix and B = (bjk) is an n x p
matrix, then their matrix product C = AB is the m x p matrix C = (Clk),
where

n

Clk L aUbjk
j=1

(31.3)

for i = 1,2, ... , m and k 1,2, ... .p, The procedure MATRIX-MuLTIPLY

in Section 26.1 implements matrix multiplication in the straightforward
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manner based on equation (31.3), assuming that the matrices are square:
m = n p. To multiply n x n matrices, MATRIX-MuLTIPLY performs n3

multiplications and n2(n 1) additions, and its running time is 8(n3) .

Matrices have many (but not all) of the algebraic properties typical of
numbers. Identity matrices are identities for matrix multiplication:

for any m x n matrix A. Multiplying by a zero matrix gives a zero matrix:

AO=O.

Matrix multiplication is associative:

A(BC) = (AB)C (31.4)

for compatible matrices A, B, and C. Matrix multiplication distributes
over addition:

A(B + C) =

(B + C)D

AB+AC,

BD+CD. (31.5)

Multiplication of n x n matrices is not commutative, however, unless n I.

For example, if A = (g b) and B = (~ g), then

AB = (b g)
and

BA = (g ~) .
Matrix-vector products or vector-vector products are defined as if the

vector were the equivalent n x 1 matrix (or a 1 x n matrix, in the case of
a row vector). Thus, if A is an m x n matrix and x is a vector of size n,
then Ax is a vector of size m. If x and yare vectors of size n, then

n

xTy = LXiYi
i""t

is a number (actually a 1 x 1 matrix) called the inner product of x and y.
The matrix xyT is an n x n matrix Z called the outer product of x and y,
with Z ij = XiYi- The (euclidean) norm lIxll of a vector x of size n is defined
by

Hxll = (X[ + xi + .. ,+ X;)1/2

(XTX)1/2.

Thus, the norm of x is its length in n-dimensional euclidean space.
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(31.6)

We define the inverse of an n x n matrix A to be the n x n matrix, denoted
A-I (if it exists), such that AA-I = In = A-I A. For example,

Many nonzero n x n matrices do not have inverses. A matrix without an
inverse is is called noninvertible, or singular. An example of a nonzero
singular matrix is

If a matrix has an inverse, it is called invertible, or nonsingular. Matrix
inverses, when they exist, are unique. (See Exercise 31.1-4.) If A and B
are nonsingular n x n matrices, then

(BA)-I = A-I B- 1 •

The inverse operation commutes with the transpose operation:

(A-1)T = (AT)-I .

The vectors XI, X2, ..• , X n are linearly dependent if there exist coefficients
CI,C2, ... .c., not all of which are zero, such that CIXI +C2X2+" ,+cnxn = O.

T TFor example, the vectors XI = (1 2 3), X2 = (2 6 4), and X3 =
(4 11 9)T are linearly dependent, since 2xI + 3X2 2X3 O. If vectors
are not linearly dependent, they are linearly independent. For example, the
columns of an identity matrix are linearly independent.

The column rank of a nonzero m x n matrix A is the size of the largest set
of linearly independent columns of A. Similarly, the row rank of A is the
size of the largest set of linearly independent rows of A. A fundamental
property of any matrix A is that its row rank always equals its column
rank, so that we can simply refer to the rank of A. The rank of an m x n
matrix is an integer between 0 and min(m, n), inclusive. (The rank of
a zero matrix is 0, and the rank of an n x n identity matrix is n.) An
alternate, but equivalent and often more useful, definition is that the rank
of a nonzero m x n matrix A is the smallest number r such that there exist
matrices Band C of respective sizes m x rand r x n such that

A=BC.

A square n x n matrix has full rank if its rank is n, A fundamental property
of ranks is given by the following theorem.

Theorem 31.1
A square matrix has full rank if and only if it is nonsingular.

An m x n matrix has full column rank if its rank is n.

•
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A null vector for a matrix A is a nonzero vector x such that Ax O. The
following theorem, whose proof is left as Exercise 31.1-8, and its corollary
relate the notions of column rank and singularity to null vectors.

Theorem 31.2
A matrix A has full column rank if and only if it does not have a null
vector. _

Corollary 31.3
A square matrix A is singular if and only if it has a null vector. _

The ijth minor of an n x n matrix A, for n > I, is the (n - 1) x (n - 1)
matrix A(ijl obtained by deleting the nh row and jth column of A. The
determinant of an n x n matrix A can be defined recursively in terms of its
minors by

(31.7)
if n > 1 .

if n = 1 ,

det(A) = {::: det(A(lI)) - al2 det(A[12))
+... + (_l)n+l a1ndet(A[ln))

The term (-1 )i+i det(A[ij)) is known as the co/actor of the element a.].
The following theorems, whose proofs are omitted here, express funda

mental properties of the determinant.

Theorem 31.4 (Determinant properties)
The determinant of a square matrix A has the following properties:

• If any row or any column of A is zero, then det(A) O.

• The determinant of A is multiplied by A if the entries of anyone row
(or anyone column) of A are all multiplied by A.

• The determinant of A is unchanged if the entries in one row (respec
tively, column) are added to those in another row (respectively, column).

• The determinant of A equals the determinant of AT.

• The determinant of A is multiplied by -1 if any two rows (respectively,
columns) are exchanged.

Also, for any square matrices A and B, we have det(AB) = det(A) det(B). _

Theorem 31.5
An n x n matrix A is singular if and only if det(A) = O. -
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Positive-definite matrices

Positive-definite matrices play an important role in many applications. An
n x n matrix A is positive-definite if x TAx > 0 for all size-s vectors x =I 0.
For example, the identity matrix is positive-definite, since for any nonzero

Tvector x = (Xl X2 . . . Xn),

xTlnx = XTX

lIxl12

n

= Lxl
i=l

> 0.

As we shall see, matrices that arise in applications are often positive
definite due to the following theorem.

Theorem 31.6
For any matrix A with full column rank, the matrix ATA is positive
definite.

Proof We must show that xT(ATA)x > 0 for any nonzero vector x. For
any vector x,

(31.8)

(by Exercise 31.1-3)xT(ATA)x (AX)T(Ax)

= IIAxl1 2

> 0.

Note that IIAxl1 2 is just the sum of the squares of the elements of the
vector Ax. Therefore, if IIAxl12 = 0, every element of Ax is 0, which is
to say Ax = O. Since A has full column rank, Ax = °implies x = 0, by
Theorem 31.2. Hence, ATA is positive-definite. _

Other properties of positive-definite matrices will be explored in Sec
tion 31.6.

Exercises

31.1-1
Prove that the product of two lower-triangular matrices is lower-triangular.
Prove that the determinant of a (lower- or upper-) triangular matrix is
equal to the product of its diagonal elements. Prove that the inverse of a
lower-triangular matrix, if it exists, is lower-triangular.

31.1-2
Prove that if P is an n x n permutation matrix and A is an n x n matrix,
then PAean be obtained from A by permuting its rows, and AP can be
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obtained from A by permuting its columns. Prove that the product of
two permutation matrices is a permutation matrix. Prove that if P is a
permutation matrix, then P is invertible, its inverse is pT, and pT is a
permutation matrix.

31.1-3
Prove that (AB)T =BTAT and that ATA is always a symmetric matrix.

31.1-4
Prove that if Band C are inverses of A, then B C.

31.1-5
Let A and B be n x n matrices such that AB = I. Prove that if A' is
obtained from A by adding row j into row i, then the inverse B' of A' can
be obtained by subtracting column i from column j of B.

31.1-6
Let A be a nonsingular n x n matrix with complex entries. Show that every
entry of A-I is real if and only if every entry of A is real.

31.1-7
Show that if A is a nonsingular symmetric matrix, then A -I is symmet
ric. Show that if B is an arbitrary (compatible) matrix, then BABT is
symmetric.

31.1-8
Show that a matrix A has full column rank if and only if Ax = 0 implies
x = O. (Hint: Express the linear dependence of one column on the others
as a matrix-vector equation.)

31.1-9
Prove that for any two compatible matrices A and B,

rank(AB) :s min(rank(A), rank(B» ,

where equality holds if either A or B is a nonsingular square matrix. (Hint:
Use the alternate definition of the rank of a matrix.)

31.1-10
Given numbers Xc, XI, .•• , Xn-I, prove that the determinant of the Vander
monde matrix

Xn-I

is

det(V(xO,XI, ... ,xn-d) II (Xk Xj).
°s}<ksn-I
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(Hint: Multiply column i by -Xo and add it to column i + I for i =
n - 1, n 2, ... , I, and then use induction.)

31.2 Strassen's algorithm for matrix multiplication

This section presents Strassen's remarkable recursive algorithm for multi
plying n x n matrices that runs in 8(n1g 7 ) = O(n 2.81) time. For sufficiently
large n, therefore, it outperforms the naive 8(n 3 ) matrix-multiplication
algorithm MATRIX-MuLTIPLY from Section 26.1.

An overview of the algorithm

Strassen's algorithm can be viewed as an application of a familiar design
technique: divide and conquer. Suppose we wish to compute the product
C = AB, where each of A, B, and Care n x n matrices. Assuming that n
is an exact power of 2, we divide each of A, B, and C into four nl2 x nl2
matrices, rewriting the equation C = AB as follows:

(31.9)

(Exercise 31.2-2 deals with the situation in which n is not an exact power
of 2.) For convenience, the submatrices of A are labeled alphabetically
from left to right, whereas those of B are labeled from top to bottom,
in agreement with the way matrix multiplication is performed. Equa
tion (31.9) corresponds to the four equations

r = ae + bf , (31.10)

s = ag + bh , (31.11)

t ce + df , (31.12)

u = . cg+dh. (31.13)

Each of these four equations specifies two multiplications of nl2 x nl2
matrices and the addition of their nl2 x nl2 products. Using these equa
tions to define a straightforward divide-and-conquer strategy, we derive
the following recurrence for the time T(n) to multiply two n x n matrices:

T(n) = 8T(nj2) + 8(n2) • (31.14)

Unfortunately, recurrence (31.14) has the solution T(n) = 8(n3 ) , and thus
this method is no faster than the ordinary one.

Strassen discovered a different recursive approach that requires only 7
recursive multiplications of nj2 x nl2 matrices and 8(n2 ) scalar additions
and subtractions, yielding the recurrence

T(n) = 7T(nI2) + 8(n2
) (31.15)
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= 8(n lg 7
)

O(n 2.81) •

Strassen's method has four steps:

1. Divide the input matrices A and B into nl2 x nl2 submatrices, as in
equation (31.9).

2. Using 8(n2 ) scalar additions and subtractions, compute 14 nl2 x nl2
matrices AJ,B1,A2,B2, ... ,A7,B7.

3. Recursively compute the seven matrix products Pi AiBi for i =
1,2, ... ,7.

4. Compute the desired submatrices r, s, t, u of the result matrix C by
adding and/or subtracting various combinations of the Pi matrices, us
ing only 8(n2) scalar additions and subtractions.

Such a procedure satisfies the recurrence (31.15). All that we have to do
now is fill in the missing details.

Determining the submatrix products

It is not clear exactly how Strassen discovered the submatrix products
that are the key to making his algorithm work. Here, we reconstruct one
plausible discovery method.

Let us guess that each matrix product Pi can be written in the form

Pi = AiBi

= (ada + ai2b + aBC + a i4d ) · (Pile + Pi21 + Pi3g + fJi4h) , (31.16)

where the coefficients au, Pu are all drawn from the set { 1,0,1}. That
is, we guess that each product is computed by adding or subtracting some
of the submatrices of A, adding or subtracting some of the submatrices
of B, and then multiplying the two results together. While more general
strategies are possible, this simple one turns out to work.

If we form all of our products in this manner, then we can use this
method recursively without assuming commutativity of multiplication,
since each product has all of the A submatrices on the left and all of
the B submatrices on the right. This property is essential for the recursive
application of this method, since matrix multiplication is not commuta
tive.

For convenience, we shall use 4 x 4 matrices to represent linear com
binations of products of submatrices, where each product combines one
submatrix of A with one submatrix of B as in equation (31.16). For ex
ample, we can rewrite equation (31.10) as

r = ae s- bf

~ (a bed) C~ +~ ~ ~)(n
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The last expression uses an abbreviated notation in which 44+" represents
+1, 44." represents 0, and 44_" represents -1. (From here on, we omit
the row and column labels.) Using this notation, we have the following
equations for the other submatrices of the result matrix C:

s = ag + bh

= (: ++)

t ce + df

(.. :)
u cg +dh

( ..)
We begin our search for a faster matrix-multiplication algorithm by ob

serving that the submatrix s can be computed as s = PI + P2, where PI
and P2 are computed using one matrix multiplication each:

PI = AIBI

a . (g h)

= ag -ah

~ (: . + J
P2 = A2B2

(a+b)·h

= ah + bh

= (: n
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The matrix t can be computed in a similar manner as t P3 +P4 , where

P3 = A3B3

(c+d)·e

= ce s- de

= U )
and

P4 A4B4

= d· (f e)

df <de

C+
:)

Let us define an essential term to be one of the eight terms appearing on
the right-hand side of one of the equations (31.10)-(31.13). We have now
used 4 products to compute the two submatrices sand t whose essential
terms are ag, bh, ce, and df. Note that PI computes the essential term ag,
P2 computes the essential term bh, P3 computes the essential term ce, and
P4 computes the essential term df. Thus, it remains for us to compute the
remaining two submatrices rand u, whose essential terms are the diagonal
terms ae, bf', cg, and dh, without using more than 3 additional products.
We now try the innovation Ps in order to compute two essential terms at
once:

Ps = AsBs

(a+d)·(e+h)

ae + ah + de + d h

C·· :)
In addition to computing both of the essential terms ae and dh, Ps com
putes the inessential terms ah and de, which need to be cancelled some
how. We can use P4 and P2 to cancel them, but two other inessential terms
then appear:

PS+P4 P2 = ae v dh-v df bh

~ C+ :)
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By adding an additional product

P6 = A6B6

(b-d)·(f+h)

= bf+bh df dh

(: ~ . :)
however, we obtain

r = Ps + P4 - P2 + P6

ae s- bf

c~:)
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We can obtain u in a similar manner from Ps by using PI and P3 to
move the inessential terms of Ps in a different direction:

PS+PI -P3 = ae+ag-ce+dh

C+J
By subtracting an additional product

P7 A7B7

= (a - c) . (e + g)

= ae + ag - ce - cg

C + :)

we now obtain

u = Ps + PI - P3 - P7

cg s- dh

(::<)
The 7 submatrix products PI, P2 , ••• ,P7 can thus be used to compute the

product C = AB, which completes the description of Strassen's method.
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Discussion

The large constant hidden in the running time of Strassen's algorithm
makes it impractical unless the matrices are large (n at least 45 or so)
and dense (few zero entries). For small matrices, the straightforward algo
rithm is preferable, and for large, sparse matrices, there are special sparse
matrix algorithms that beat Strassen's in practice. Thus, Strassen's method
is largely of theoretical interest.

By using advanced techniques beyond the scope of this text, one can in
fact multiply n x n matrices in better than 8(n1g 7) time. The current best
upper bound is approximately O(n2.376 ) . The best lower bound known
is just the obvious Q(n2) bound (obvious because we have to fill in n2

elements of the product matrix). Thus, we currently do not know how
hard matrix multiplication really is.

Strassen's algorithm does not require that the matrix entries be real num
bers. All that matters is that the number system form an algebraic ring.
If the matrix entries do not form a ring, however, sometimes other tech
niques can be brought to bear to allow his method to apply. These issues
are discussed more fully in the next section.

Exercises

31.2-1
Use Strassen's algorithm to compute the matrix product

(~ ~)(~ i)
Show your work.

31.2-2
How would you modify Strassen's algorithm to multiply n x n matrices
in which n is not an exact power of 2? Show that the resulting algorithm
runs in time 8(n1g 7).

31.2-3
What is the largest k such that if you can multiply 3 x 3 matrices using k
multiplications (not assuming commutativity of multiplication), then you
can multiply n x n matrices in time o(n1g 7)? What would the running time
of this algorithm be?

31.2-4
V. Pan has discovered a way of multiplying 68 x 68 matrices using 132,464
multiplications, a way of multiplying 70 x 70 matrices using 143,640 mul
tiplications, and a way of multiplying 72 x 72 matrices using 155,424 mul
tiplications. Which method yields the best asymptotic running time when
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used in a divide-and-conquer matrix-multiplication algorithm? Compare
it with the running time for Strassen's algorithm.

31.2-5
How quickly can you multiply a kn x n matrix by an n x kn matrix, using
Strassen's algorithm as a subroutine? Answer the same question with the
order of the input matrices reversed.

31.2-6
Show how to multiply the complex numbers a + bi and c + di using only
three real multiplications. The algorithm should take a, b, c, and d as input
and produce the real component ac - bd and the imaginary component
ad + be separately.

* 31.3 Algebraic number systems and boolean matrix multiplication

The properties of matrix addition and multiplication depend on the prop
erties of the underlying number system. In this section, we define three
different kinds of underlying number systems: quasirings, rings, and fields.
We can define matrix multiplication over quasirings, and Strassen's matrix
multiplication algorithm works over rings. We then present a simple trick
for reducing boolean matrix multiplication, which is defined over a qua
siring that is not a ring, to multiplication over a ring. Finally, we discuss
why the properties of a field cannot naturally be exploited to provide better
algorithms for matrix multiplication.

Quasirings

Let (S, EB, 0, 0, T) denote a number system, where S is a set of elements, EB
and 0 are binary operations on S (the addition and multiplication opera
tions, respectively), and 0 and T are distinct distinguished elements of S.
This system is a quasiring if it satisfies the following properties:

1. (S, $,0) is a monoid:

• S is closed under that is, a EB b e S for all a, b E S.

• EB is associative; that is, a EB (b $ e) = (a EB b) EB e for all a, b, C E S.

• 0 is an identity for EB; that is, a $ 0 = 0 $ a = a for all a E S.

Likewise, (S, 0, T) is a monoid.

2. 0 is an annihilator; that is, a 00 00 a = 0 for all a E S.
3. The operator $ is commutative; that is, a EB b b EB a for all a, b e S.

4. The operator 0 distributes over $; that is, a 0 (b $ c) = (a (:) b) $ (a (:) e)
and (b $ c) o a = (b (:) a) $ (e (:)a) for all a, b, c E S.
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Examples of quasirings include the boolean quasiring ({O, I}, v, /\,0,1),
where V denotes logical OR and /\ denotes logical AND, and the natural
number system (N, ,,0, 1), where + and· denote ordinary addition and
multiplication. Any closed semiring (see Section 26.4) is also a quasiring;
closed semirings obey additional idempotence and infinite-sum properties.

We can extend EEl and 0 to matrices as we did for + and· in Section 31.1.
Denoting the n x n identity matrix composed of 0 and T by In, we find
that matrix multiplication is well defined and the matrix system is itself a
quasiring, as the following theorem states.

Theorem 31.7 (Matrices over a quasiring form a quasiring)
If (S, EEl, 0,0, T) is a quasiring and n ~ 1, then (snxn, EEl, 0,0, In) is a qua
siring.

Proof The proof is left as Exercise 31.3-3.

Rings

•

Subtraction is not defined for quasirings, but it is for a ring, which is a
quasiring (S, EEl, 0,0, T) that satisfies the following additional property:

5. Every element in S has an additive inverse; that is, for all a E S, there
exists an element b E S such that a $ b = b $ a = O. Such a b is also
called the negative of a and is denoted (-a).

Given that the negative of any element is defined, we can define subtraction
by a b = a + (-b).

There are many examples of rings. The integers (Z, +",0,1) under the
usual operations of addition and multiplication form a ring. The integers
modulo n for any integer n > I-that is, (Zn, +,·,0,1), where + is addi
tion modulo nand· is multiplication modulo n-form a ring. Another
example is the set R[x] of finite-degree polynomials in x with real coef
ficients under the usual operations-that is, (R[x],+,',O, 1), where + is
polynomial addition and . is polynomial multiplication.

The following corollary shows that Theorem 31.7 generalizes naturally
to rings.

Corollary 31.8 (Matrices over a ring form a ring)
If (S, $, 0,0, T) is a ring and n ~ 1, then (snxn, EEl, 0, O,ln) is a ring.

Proof The proof is left as Exercise 31.3-3.

Using this corollary, we can prove the following theorem.

•
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Theorem 31.9
Strassen's matrix-multiplication algorithm works properly over any ring of
matrix elements.

Proof Strassen's algorithm depends on the correctness of the algorithm
for 2 x 2 matrices, which requires only that the matrix elements belong
to a ring. Since the matrix elements do belong to a ring, Corollary 31.8
implies the matrices themselves form a ring. Thus, by induction, Strassen's
algorithm works correctly at each level of recursion. _

Strassen's algorithm for matrix multiplication, in fact, depends criti
cally on the existence of additive inverses. Out of the seven products
PI, Pi. . . . ,P7, four involve differences of submatrices. Thus, Strassen's
algorithm does not work in general for quasirings.

Boolean matrix multiplication

Strassen's algorithm cannot be used directly to multiply boolean matrices,
since the boolean quasiring ({0, I}, V, 1\, 0, 1) is not a ring. There are in
stances in which a quasiring is contained in a larger system that is a ring.
For example, the natural numbers (a quasiring) are a subset of the integers
(a ring), and Strassen's algorithm can therefore be used to multiply matri
ces of natural numbers if we consider the underlying number system to be
the integers. Unfortunately, the boolean quasi ring cannot be extended in
a similar way to a ring. (See Exercise 31.3-4.)

The following theorem presents a simple trick for reducing boolean ma
trix multiplication to multiplication over a ring. Problem 31-1 presents
another efficient approach.

Theorem 31.10
If M(n) denotes the number of arithmetic operations required to multiply
two n x n matrices over the integers, then two n x n boolean matrices can
be multiplied using O(M(n)) arithmetic operations.

Proof Let the two matrices be A and B, and let C = AB in the boolean
quasi ring, that is,

n

cij = Vaik 1\ bk j .

k=1

Instead of computing over the boolean quasiring, we compute the prod
uct C' over the ring of integers with the given matrix-multiplication algo
rithm that uses M(n) arithmetic operations. We thus have

n

<j = 2:aikbkj .

k=1
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Each term aikbkj of this sum is 0 if and only if aik 1\ bkj = 0, and 1 if and
only if aik 1\ bkj = 1. Thus, the integer sum c:) is 0 if and only if every term
is 0 or, equivalently, if and only if the boolean OR of the terms, which
is Cij, is O. Therefore, the boolean matrix C can be reconstructed with
8(n 2) arithmetic operations from the integer matrix C' by simply com
paring each clj with O. The number of arithmetic operations for the entire
procedure is then O(M(n)) + 8(n2 ) = O(M(n)), since M(n) = O(n 2 ). •

Thus, using Strassen's algorithm, we can perform boolean matrix mul
tiplication in O(n lg 7

) time.
The normal method of multiplying boolean matrices uses only boolean

variables. If we use this adaptation of Strassen's algorithm, however, the
final product matrix can have entries as large as n, thus requiring a com
puter word to store them rather than a single bit. More worrisome is that
the intermediate results, which are integers, may grow even larger. One
method for keeping intermediate results from growing too large is to per
form all computations modulo n+ 1. Exercise 31.3-5 asks you to show that
working modulo n + 1 does not affect the correctness of the algorithm.

Fields

A ring (S, ED, 0,0, I) is a /kid if it satisfies the following two additional
properties:

6. The operator 0 is commutatlve; that is, a 0 b b 0 a for all a, b E S.

7. Every nonzero element in S has a multiplicative inverse; that is, for all
a E S {O}, there exists an element b E S such that a 0 b = b 0 a = 1.
Such an element b is often called the inverse of a and is denoted a-I.

Examples of fields include the real numbers (R, +, ,,0, I), the complex num
bers (C, ·,0, 1), and the integers modulo a prime p: (Zp, +, ·,0,1).

Because fields offer multiplicative inverses of elements, division is pos
sible. They also offer commutativity. By generalizing from quasirings to
rings, Strassen was able to improve the running time of matrix multiplica
tion. Since the underlying elements of matrices are often from a field-the
real numbers, for instance-one might hope that by using fields instead of
rings in a Strassen-like recursive algorithm, the running time might be
further improved.

This approach seems unlikely to be fruitful. For a recursive divide-and
conquer algorithm based on fields to work, the matrices at each step of
the recursion must form a field. Unfortunately, the natural extension of
Theorem 31.7 and Corollary 31.8 to fields fails badly. For n > 1, the
set of n x n matrices never forms a field, even if the underlying number
system is a field. Multiplication of n x n matrices is not commutative, and
many n x n matrices do not have inverses. Better algorithms for matrix
multiplication are therefore more likely to be based on ring theory than
on field theory.
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31.3-1 *
Does Strassen's algorithm work over the number system (Z[x], +",0, I),
where Z[x] is the set of all polynomials with integer coefficients in the vari
able x and + and· are ordinary polynomial addition and multiplication?

31.3-2 *
Explain why Strassen's algorithm doesn't work over closed semirings (see
Section 26.4) or over the boolean quasiring ({O, I}. V,A,O, 1).

31.3-3 *
Prove Theorem 31.7 and Corollary 31.8.

31.3-4 *
Show that the boolean quasiring ({0, I} , v, A, 0, 1) cannot be embedded in
a ring. That is, show that it is impossible to add a ..-1" to the quasiring
so that the resulting algebraic structure is a ring.

31.3-5
Argue that if all computations in the algorithm of Theorem 31.10 are
performed modulo n + 1, the algorithm still works correctly.

31.3-6
Show how to determine efficiently if a given undirected input graph con
tains a triangle (a set of three mutually adjacent vertices).

31.3-7 *
Show that computing the product of two n x n boolean matrices over the
boolean quasiring is reducible to computing the transitive closure of a
given directed 3n-vertex input graph.

31.3-8
Show how to compute the transitive closure of a given directed n-vertex
input graph in time O(nlg 7lg n). Compare this result with the performance
of the TRANSITIVE-CLOSURE procedure in Section 26.2.

31.4 Solving systems of linear equations

Solving a set of simultaneous linear equations is a fundamental problem
that occurs in diverse applications. A linear system can be expressed as a
matrix equation in which each matrix or vector element belongs to a field,
typically the real numbers R. This section discusses how to solve a system
of linear equations using a method called LUP decomposition.

We start with a set of linear equations in n unknowns Xl, X2, • • • , X n :
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allxl + al2x2 +
a21 xI + a22 X2 +

(31.17)

A set of values for XI, X2, ... , X n that satisfy all of the equations (31.17)
simultaneously is said to be a solution to these equations. In this section,
we only treat the case in which there are exactly n equations in n unknowns.

We can conveniently rewrite equations (31.17) as the matrix-vector equa
tion

al2 .. , a
l n) (XI) ( b

l)a22 . . . a2n X2 bi
.. .. .. .. .... .. .... .. ..

a n2 .. , ann X n b;

or, equivalently, letting A = (au), X = (Xj), and b = (b i ) , as

Ax=b.

If A is nonsingular, it possesses an inverse A-I, and

X = A-Ib

(31.18)

(31.19)

is the solution vector. We can prove that X is the unique solution to
equation (31.18) as follows. If there are two solutions, X and x', then
Ax = Ax' = band

x = (A-IA)x

A-I (Ax)

= A-I(Ax')

(A-1A)x'

= x' .

In this section, we shall be concerned predominantly with the case in
which A is nonsingular or, equivalently (by Theorem 31.1), the rank of A
is equal to the number n of unknowns. There are other possibilities, how
ever, which merit a brief discussion. If the number of equations is less
than the number n of unknowns-or, more generally, if the rank of A is
less than n-then the system is underdetermined. An underdetermined sys
tem typically has infinitely many solutions (see Exercise 31.4-9), although
it may have no solutions at all if the equations are inconsistent. If the
number of equations exceeds the number n of unknowns, the system is
overdetermined, and there may not exist any solutions. Finding good ap
proximate solutions to overdetermined systems of linear equations is an
important problem that is addressed in Section 31.6.

Let us return to our problem of solving the system Ax = b of n equa
tions in n unknowns. One approach is to compute A- I and then multiply
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both sides by A-I, yielding A-lAx = A-Ib, or x A-lb. This approach
suffers in practice from numerical instability: round-off errors tend to ac
cumulate unduly when floating-point number representations are used in
stead of ideal real numbers. There is, fortunately, another approach-LUP
decomposition-that is numerically stable and has the further advantage
of being about a factor of 3 faster.

Overview of LUP decomposition

The idea behind LUP decomposition is to find three n x n matrices L, U,
and P such that

PA =LU, (31.20)

where

• L is a unit lower-triangular matrix,

• U is an upper-triangular matrix, and

• P is a permutation matrix.

We call matrices L, U, and P satisfying equation (31.20) an LUP decom
position of the matrix A. We shall show that every nonsingular matrix A
possesses such a decomposition.

The advantage of computing an LUP decomposition for the matrix A
is that linear systems can be solved more readily when they are triangu
lar, as is the case for both matrices Land U. Having found an LUP
decomposition for A, we can solve the equation (31.18) Ax = b by solv
ing only triangular linear systems, as follows. Multiplying both sides of
Ax = b by P yields the equivalent equation PAx = Pb, which by Exer
cise 31.1-2 amounts to permuting the equations (31.17) . Using our de
composition (31.20), we obtain

LUx = Pb.

We can now solve this equation by solving two triangular linear systems.
Let us define y = Ux, where x is the desired solution vector. First, we
solve the lower-triangular system

Ly=Pb (31.21)

for the unknown vector y by a method called "forward substitution." Hav
ing solved for y, we then solve the upper-triangular system

Ux=y (31.22)

for the unknown x by a method called "back substitution." The vector x
is our solution to Ax = b, since the permutation matrix P is invertible
(Exercise 31.1-2):

Ax P-1LUx
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P-1Ly

P-'pb

= b ~

Our next step is to show how forward and back substitution work and
then attack the problem of computing the LUP decomposition itself.

Forward and back substitution

Forward substitution can solve the lower-triangular system (31.21) in 8(nZ)

time, given L, P, and b. For convenience, we represent the permutation P
compactly by an array n[l " n]. For i = 1,2, ... , n, the entry n[i] indicates
that Pi,ll[i] = 1 and Pi) = 0 for j =1= n[i]. Thus, PA has all[i],} in row i
and column j, and Pb has bll[i] as its ith element. Since L is unit lower
triangular, equation (31.21) can be rewritten as

Yl bll[lj ,

h'YI + Yz bll[z] ,

131YI + 13zYz + Y3 = b ll[3] ,

In 'YI + lnzyz + In3Y3 + ." + Yn = bll[nj.

Quite apparently, we can solve for YI directly, since the first equation tells
us that YI = bll[I]' Having solved for Y" we can substitute it into the
second equation, yielding

yz = bn[zj - bYI •

Now, we can substitute both YI and yz into the third equation, obtaining

Y3 = bn[3] - (131YI + 13zYz) ,

In general, we substitute YI ,Yz, • , • ,Yi-I "forward" into the ith equation to
solve for Yi:

i-I

Yi = bll[i] L lijY} ,

}=I

Back substitution is similar to forward substitution. Given U and Y, we
solve the nth equation first and work backward to to the first equation,
Like forward substitution, this process runs in 8(nZ) time. Since U is
upper-triangular, we can rewrite the system (31.22) as

UIIXI + UI2XZ + ,., +
UZZXz + ,., +

UI,n-ZXn-Z +
UZ,n-Zxn-Z +

UI,n-IXn-1 +
UZ,n-IXn-1 +

UlnXn = Yl ,

UZnXn yz ,

Un-Z,n-ZXn-Z + un-Z,n-IXn-1 + Un~Z,nXn Yn-Z,

Un-l,n-IXn-1 + Un-l,nXn = Yn-I ,

Un,nXn = Yn '
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Thus, we can solve for X n, Xn-l, ... , Xl successively as follows:

Xn Yn/Unn ,

Xn-l = (Yn-l - Un-l,nXn)/Un-l,n-l ,

Xn-2 = (Yn-2 (Un-2,n-l Xn-l + Un-2,n Xn))/U n-2,n-2 ,

or, in general,

753

t UijX}) /Uii .
}=i+l

Given P, L, U, and b, the procedure LUP-SOLVE solves for X by com
bining forward and back substitution. The pseudocode assumes that the
dimension n appears in the attribute rows[L] and that the permutation
matrix P is represented by the array n,

LUP-SOLVE(L, U, n, b)

I n - rows[L]
2 for i-I to n
3 do Yi - bll[i] - L:~:: loy}
4 for i - n downto I
5 do Xi - (Yi - L:'J=i+l UijXj) [u.,
6 return X

Procedure LUP-SOLVE solves for Y using forward substitution in lines 2-3,
and then it solves for X using backward substitution in lines 4-5. Since
there is an implicit loop in the summations within each of the for loops,
the running time is 8(n2 ).

As an example of these methods, consider the system of linear equations
defined by

(1 2 0) (0.1 )3 5 4 X = 12.5 ,
5 6 3 10.3

where

A = (~ ~ ~) ,
5 6 3

(
0.1)

b 12.5,10.3
and we wish to solve for the unknown x. The LUP decomposition is

L = (0~6 ~ ~),
0.2 0.571 1



(

5 6
o 1.4
o 0
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o = (005 /4 /2)
o -1.856

P = (g ~ 6) .100
(The reader can verify that PA = LV.) Using forward substitution, we
solve Ly = Pb for y:

( 0~6 ~ g) (~~) (~~:~) ,
0.2 0.571 I Y3 0.1

obtaining

(
ro.s )

Y = 6.32
-5.569

by computing first YI, then Y2, and finally Y3. Using back substitution, we
solve Ux =Y for x:

3 ) (XI) (10.3)2.2 X2 = 6.32 ,
1.856 X3 -5.569

thereby obtaining the desired answer

(
0.5)

X = -0.2
3.0

by computing first X3, then X2, and finally XI.
Computing an LU decomposition

We have now shown that if an LUP decomposition can be computed for a
nonsingular matrix A, forward and back substitution can be used to solve
the system Ax = b of linear equations. It remains to show how an LUP
decomposition for A can be found efficiently. We start with the case in
which A is an n x n nonsingular matrix and P is absent (or, equivalently,
P = In). In this case, we must find a factorization A = LV. We call the
two matrices L and V an LV decomposition of A.

The process by which we perform LU decomposition is called Gaussian
elimination. We start by subtracting multiples of the first equation from
the other equations so that the first variable is removed from those equa
tions. Then, we subtract multiples of the second equation from the third
and subsequent equations so that now the first and second variables are
removed from them. We continue this process until the system that is left
has an upper-triangular form-in fact, it is the matrix V. The matrix L is
made up of the row multipliers that cause variables to be eliminated.
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Our algorithm to implement this strategy is recursive. We wish to con
struct an LV decomposition for an n x n nonsingular matrix A. If n 1,
then we're done, since we can choose L = II and V = A. For n > 1, we
break A into four parts:

A =

=

(""
al2

aI, )a21 a22 aa«

anI an2 ann

( a~1 W
T)

AI ,

where v is a size-(n - 1) column vector, W T is a size-(n - 1) row vector,
and AI is an (n - 1) x (n - 1) matrix. Then, using matrix algebra (verify
the equations by simply multiplying through), we can factor A as

A = W
T)

AI

a ) (all
In-I 0

The O's in the first and second matrices of the factorization are row and
column vectors, respectively, of size n - 1. The term vwT / al l e formed
by taking the outer product of v and wand dividing each element of the
result by all, is an (n - 1) x (n - 1) matrix, which conforms in size to
the matrix AI from which it is subtracted. The resulting (n 1) x (n - 1)
matrix

(31.23)

o ) (all
In-I 0

o ) (all w T )
In-I 0 L'VI

o ) (all W
T)

L I 0 VI

is called the Schur complement of A with respect to aII .

We now recursively find an LV decomposition of the Schur complement.
Let us say that

AI-vwTjall =L'VI,

where L' is unit lower-triangular and VI is upper-triangular. Then, using
matrix algebra, we have

A = (Vj~11

( V/~II
= (Vj~1l
== LV,

thereby providing our LV decomposition. (Note that because L I is unit
lower-triangular, so is L, and because VI is upper-triangular, so is V.)
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Of course, if all = 0, this method doesn't work, because it divides by O.
It also doesn't work if the upper leftmost entry of the Schur complement
A' vw T / all is 0, since we divide by it in the next step of the recursion.
The elements by which we divide during LV decomposition are called
pivots, and they occupy the diagonal elements of the matrix U. The reason
we include a permutation matrix P during LVP decomposition is that it
allows us to avoid dividing by zero elements. Using permutations to avoid
division by 0 (or by small numbers) is called pivoting.

An important class of matrices for which LV decomposition always
works correctly is the class of symmetric positive-definite matrices. Such
matrices require no pivoting, and thus the recursive strategy outlined above
can be employed without fear of dividing by O. We shall prove this result,
as well as several others, in Section 31.6.

Our code for LV decomposition of a matrix A follows the recursive
strategy, except that an iteration loop replaces the recursion. (This trans
formation is a standard optimization for a "tail-recursive" procedure-one
whose last operation is a recursive call to itself.) It assumes that the di
mension of A is kept in the attribute rows[A]. Since we know that the
output matrix U has O's below the diagonal, and since LV-SOLVE does not
look at these entries, the code does not bother to fill them in. Likewise,
because the output matrix L has I's on its diagonal and O's above the di
agonal, these entries are not filled in either. Thus, the code computes only
the "significant" entries of Land U.

LV-DECOMPOSITION(A)

In+- rows[A]
2 for k +- 1 to n
3 do Ukk +- akk

4 for i +- k + 1 to n
5 do lik +- aik/ukk

6 ui, +- aki

7 for i +- k + 1 to n
8 do for j +- k + 1 to n
9 do au +- au - lik Ukj

10 return Land U

The outer for loop beginning in line 2 iterates once for each recursive step.
Within this loop, the pivot is determined to be Ukk = akk in line 3. Within
the for loop in lines 4-6 (which does not execute when k = n), the V

and wT vectors are used to update Land U. The elements of the v vector
are determined in line 5, where Vi is stored in lib and the elements of the
w T vector are determined in line 6, where w ( is stored in Uk i- Finally, the
elements of the Schur complement are computed in lines 7-9 and stored
back in the matrix A. Because line 9 is triply nested, LV-DECOMPOSITION
runs in time S(n 3 ) .
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Figure 31.1 The operation of LU·DECOMPOsITlo N. (a ) The matrix A . (b) The
element a ll = 2 in black is the pivot, the shaded column is v Iall , and the shaded
row is wT . The elements of V computed thu s far are above the horizontal line,
and the elements of L are to the left of the vertical line. The Schur complement
matr ix A ' - vwT l Ol l occupies the lower right. (c) We now operate on the Schur
complement matrix produced from part (b). The element a 22 = 4 in black is the
pivot, and the shaded column and row are vlan and wT (in the parti tioning of
the Schur complement), respectively. Lines divide the matrix into the elements
of U computed so far (above), the elements of L computed so far (left), and the
new Schur complement (lower right). (d) The next step completes the factorization.
(The element 3 in the new Schur complement becomes part of U when the recursion
terminates.] (e) The factorization A = L V .

Figure 31.1 illustrates the operation of LU ·DECOMPOSITION. It shows a
standa rd opt imization of the procedure in which the signifi cant elements
of L and V are stored "in place" in the matrix A . That is, we can set
up a co rrespondence between each ele me nt aij and either lij ( if ; > j )
o r Ui j (if ; :5 j ) an d update the matrix A so that it holds bo th L and V
when the proced ure terminates. T he pseudocode for thi s op tim izat ion is
ob ta ined from the above pseudocode merely by replacing each reference
to I o r U by a; it is not difficult to verify that this transformation preserves
correctness .

Computing an LU P decomposition

Generally, in solv ing a system of linear equations Ax = b, we must pivot
on off-d iagonal elements o f A to avoid dividing by O. Not only is divisio n
by 0 undesi rable, so is division by any small value, even if A is nonsingula r,
because nu merical instabilities ca n result in the computa tion. We therefore
try to pivot on a lar ge va lue.

The mathem ati cs behi nd LU P decomposition is similar to that of LU
decompos it ion . Recall that we are given an n x n nonsingular matrix A a nd
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wish to find a permutation matrix P, a unit lower-triangular matrix L, and
an upper-triangular matrix V such that PA LU. Before we partition the
matrix A, as we did for LV decomposition, we move a nonzero element,
say ak r- from the first column to the (1, 1) position of the matrix. (If the
first column contains only O's, then A is singular, because its determinant
is 0, by Theorems 31.4 and 31.5.) In order to preserve the set of equations,
we exchange row 1 with row k, which is equivalent to multiplying A by
a permutation matrix Q on the left (Exercise 31.1-2). Thus, we can write
QA as

QA (
akl W

T)
v A' ,

where v = (a21,a31, ... ,andT , except that all replaces akl; w T = (aU,ak3,
... , akn); and A' is an (n - 1) x (n - I) matrix. Since akl ::f 0, we can now
perform much the same linear algebra as for LV decomposition, but now
guaranteeing that we do not divide by 0:

QA =

=

W
T)

A'

o ) (ak 1

In-l 0

The Schur complement A' - vwT j ak1 is nonsingular, because otherwise
the second matrix in the last equation has determinant 0, and thus the
determinant of matrix A is 0; but this means that A is singular, which
contradicts our assumption that A is nonsingular. Consequently, we can
inductively find an LVP decomposition for the Schur complement, with
unit lower-triangular matrix L', upper-triangular matrix V', and permuta
tion matrix P', such that

P'(A' - vwT jakd = L'V' .

Define

P = (6 ~/) Q,

which is a permutation matrix, since it is the product of two permutation
matrices (Exercise 31.1-2). We now have

PA = (6 ~,) QA

(6 ~,) (Vj~kl ln~l) (a~l A' ::~T jakl )

= (rv~akl ~/) (a~l A'-::~Tjakl)

(p'v~akl ln~l) (a~l r(A' - ~:T jakd )
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o ) (ak l W
T)

In-I 0 L'U'

o ) (a k l W
T)

L' 0 U'

yielding the LVP decomposition. Because L ' is unit lower-triangular, so
is L, and because U' is upper-triangular, so is U.

Notice that in this derivation, unlike the one for LV decomposition,
both the column vector v / ak I and the Schur complement A' - vwT / ak 1

must be multiplied by the permutation matrix P'.
Like LV-DECOMPOSITION, our pseudocode for LVP decomposition re

places the recursion with an iteration loop. As an improvement over a
direct implementation of the recursion, we dynamically maintain the per
mutation matrix P as an array n, where n[i] = J means that the ith row
of P contains a I in column J. We also implement the code to compute L
and U "in place" in the matrix A. Thus, when the procedure terminates,

{
Ii) I.·f i. > J. '

ail u., If I :::; ) •

LVP-DECOMPOSITION(A)

1 n +-- rows[A]
2 for i +-- 1 to n
3 do nU] +-- i
4 for k +-- 1 to n - 1
5 do p+--O
6 for i +-- k to n
7 do if laikl > p
8 then p +-- laik I
9 k ' +-- i

10 ifp=O
11 then error "singular matrix"
12 exchange n[k] ....... n[k']
13 for i +- 1 to n
14 do exchange aki ....... ak'i

15 for i +-- k + 1 to n
16 do aik +-- aik/akk
17 forJ +-- k + 1 to n
18 do ail +-- ail - aikakj

Figure 31.2 illustrates how LVP-DECOMPOSITION factors a matrix. The
array n is initialized by lines 2-3 to represent the identity permutation.
The outer for loop beginning in line 4 implements the recursion. Each
time through the outer loop, lines 5-9 determine the element ak' k with
largest absolute value of those in the current first column (column k) of
the (n - k + 1)x (n - k +1) matrix whose LV decomposition must be found.
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Figure 31.2 Th e operation of LUP-DECOMPOSlTION. (a) The inpu t matrix A with
the identity permutation of the rows on the left. The first step of the algorithm
determines that the element :5 in black in the third row is the pivot for the first
column. (b) Rows 1 and 3 are swapped and the permutation is updated. The
shaded column and row represent tl and w T . (e) The vector v is replaced by
v i S, and the the lower right of the matrix is updated with the Schur com plement.
l ines divide the matrix into three regions: elements of U (above), elements of L
(len), and elements of the Schur complement (lower right). (d)-( I) The second
step. (1)-(1) The third step finishes the algorithm. mThe LUP deco mposition
Pit = LV .
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(

4 5
8 -6

12 -7

If all elements in the current first column are zero, lines 10-11 report that
the matrix is singular. To pivot, we exchange 1l[k'] with 1l[k] in line 12 and
exchange the kth and kith rows of A in lines 13-14, thereby making the
pivot element akk. (The entire rows are swapped because in the derivation
of the method above, not only is A' - vwT/ ak 1 multiplied by pi, but so
is v / ak 1.) Finally, the Schur complement is computed by lines 15-18 in
much the same way as it is computed by lines 4-9 of LU-DECOMPOSITION,
except that here the operation is written to work "in place."

Because of its triply nested loop structure, the running time of LUP
DECOMPOSITION is e(n 3 ) , the same as that of LU-DECOMPOSITION. Thus,
pivoting costs us at most a constant factor in time.

Exercises

31.4-1
Solve the equation

(
~ ~ ~) (~~) = ( 134 )

-6 5 1 ~ -7

by using forward substitution.

31.4-2
Find an LU decomposition of the matrix

~) .
12

31.4-3
Why does the for loop in line 4 of LUP-DECOMPOSITION run only up to
n 1, whereas the corresponding for loop in line 2 of LU-DECOMPOSITION
runs all the way to n?

31.4-4
Solve the equation

o~ no:)=(Y)
by using an LUP decomposition.

31.4-5
Describe the LUP decomposition of a diagonal matrix.

31.4-6
Describe the LUP decomposition of a permutation matrix A, and prove
that it is unique.
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31.4-7
Show that for all n ~ I, there exist singular n x n matrices that have LU
decompositions.

31.4-8 *
Show how we can efficiently solve a set of equations of the form Ax = b
over the boolean quasiring ({0, I} , v, 1\, 0, I).

31.4-9 *
Suppose that A is an m x n real matrix of rank m, where m < n. Show
how to find a size-s vector Xo and an m x (n m) matrix B of rank n - m
such that every vector of the form Xo + By, for Y E R'"?", is a solution to
the underdetermined equation Ax = b.

31.5 Inverting matrices

Although in practice we do not generally use matrix inverses to solve sys
tems of linear equations, preferring instead to use more numerically stable
techniques such as LUP decomposition, it is sometimes necessary to com
pute a matrix inverse. In this section, we show how LUP decomposition
can be used to compute a matrix inverse. We also discuss the theoretically
interesting question of whether the computation of a matrix inverse can
be sped up using techniques such as Strassen's algorithm for matrix multi
plication. Indeed, Strassen's original paper was motivated by the problem
of showing that a set of a linear equations could be solved more quickly
than by the usual method.

Computing a matrix inverse from an LUP decomposition

Suppose that we have an LUP decomposition of a matrix A in the form
of three matrices L, U, and P such that PA = LU. Using LU-SOLVE,
we can solve an equation of the form Ax = b in time 8(n2 ) . Since the
LUP decomposition depends on A but not b, we can solve a second set of
equations of the form Ax = b' in additional time 8(n 2 ) . In general, once
we have the LUP decomposition of A, we can solve, in time 8(kn 2 ) , k
versions of the equation Ax = b that differ only in b.

The equation

AX= In (31.24)

can be viewed as a set of n distinct equations of the form Ax b. These
equations define the matrix X as the inverse of A. To be precise, let Xi
denote the ith column of X, and recall that the unit vector e, is the ith
column of In. Equation (31.24) can then be solved for X by using the
LUP decomposition for A to solve each equation
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separately for Xi. Each of the n Xi can be found in time 8(n 2 ) , and so the
computation of X from the LUP decomposition of A takes time 8(n3 ) .

Since the LUP decomposition of A can be computed in time 8(n3 ) , the
inverse A-I of a matrix A can be determined in time 8(n 3 ) .

Matrix multiplication and matrix inversion

We now show that the theoretical speedups obtained for matrix multi
plication translate to speedups for matrix inversion. In fact, we prove
something stronger: matrix inversion is equivalent to matrix multiplica
tion, in the following sense. If M(n) denotes the time to multiply two
n x n matrices and I (n) denotes the time to invert a nonsingular n x n
matrix, then I (n) = 8(M (n)). We prove this result in two parts. First,
we show that M(n) = O(l(n)), which is relatively easy, and then we prove
that I(n) = O(M(n)).

Theorem 31.11 (Multiplication is no harder than inversion)
If we can invert an n x n matrix in time I(n), where I(n) = Q(n2 ) and I(n)
satisfies the regularity condition I(3n) = O(l(n)), then we can multiply two
n x n matrices in time O(l(n)).

Proof Let A and B be n x n matrices whose matrix product C we wish
to compute. We define the 3n x 3n matrix D by

(

In A 0)
D = 0 In B

o 0 In

The inverse of D is

tr:' = (~ ~: ~~) ,
o 0 In

and thus we can compute the product AB by taking the upper right n x n
submatrix of tr».

We can construct matrix Din 8(n 2 ) = O(I(n)) time, and we can invert
D in O(l(3n)) = O(I(n)) time, by the regularity condition on I(n). We
thus have

M(n) = O(I(n)) . •
Note that I(n) satisfies the regularity condition whenever I(n) does not

have large jumps in value. For example, if I(n) = 8(nC 19d n) for any
constants c > 0, d 2:: 0, then I (n) satisfies the regularity condition.
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Reducing matrix inversion to matrix multiplication

The proof that matrix inversion is no harder than matrix multiplication
relies on some properties of symmetric positive-definite matrices that will
be proved in Section 31.6.

Theorem 31.12 [Inversion is no harder than multiplication)
If we can multiply two n x n real matrices in time M(n), where M(n) =

Q(n2 ) and M(n) O(M(n + k)) for 0 ~ k ~ n, then we can compute the
inverse of any real nonsingular n x n matrix in time O(M(n)).

Proof We can assume that n is an exact power of 2, since we have

(
A 0) I=(A-l 0)
o t, 0 t,

for any k > O. Thus, by choosing k such that n + k is a power of 2,
we enlarge the matrix to a size that is the next power of 2 and obtain
the desired answer A -I from the answer to the enlarged problem. The
regularity condition on M(n) ensures that this enlargement does not cause
the running time to increase by more than a constant factor.

For the moment, let us assume that the n x n matrix A is symmetric and
positive-definite. We partition A into four nl2 x nl2 submatrices:

(
B C

T
)

A= CD'

Then, if we let

S=D-CB-1CT (31.26)

(31.27)

be the Schur complement of A with respect to B, we have

(
B- 1 + B-ICTS-ICB-I -B-ICTS-I)

A-1 = -S-ICB-I S-l'

since AA- I = In, as can be verified by performing the matrix multiplica
tion. The matrices B-1 and S-I exist if A is symmetric and positive
definite, by Lemmas 31.13, 31.14, and 31.15 in Section 31.6, because
both Band S are symmetric and positive-definite. By Exercise 31.1-3,
B-1CT = (CB-I)T and B-ICTS-I = (S-ICB-I)T. Equations (31.26)
and (31.27) can therefore be used to specify a recursive algorithm involv
ing 4 multiplications of nl2 x nl2 matrices:

C·B-I,

(CB-I). CT ,

S-l . (CB-I) ,

(CB-I)T. (S-ICB- 1) .

Since we can multiply nl2 x nl2 matrices using an algorithm for n x n
matrices, matrix inversion of symmetric positive-definite matrices can be
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performed in time

I(n) $ 2/(nj2) + 4M(n) + O(n 2)

= 2I(nj2) + O(M(n))

O(M(n)) .
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It remains to prove that the asymptotic running time of matrix multipli
cation can be obtained for matrix inversion when A is invertible but not
symmetric and positive-definite. The basic idea is that for any nonsingular
matrix A, the matrix ATA is symmetric (by Exercise 31.1-3) and positive
definite (by Theorem 31.6). The trick, then, is to reduce the problem of
inverting A to the problem of inverting ATA.

The reduction is based on the observation that when A is an n x n
nonsingular matrix, we have

A-I = (ATA)-I AT ,

since ((ATA)-I AT)A (ATA)-I (AT A) = In and a matrix inverse is unique.
Therefore, we can compute A-I by first multiplying AT by A to obtain ATA,
then inverting the symmetric positive-definite matrix ATA using the above
divide-and-conquer algorithm, and finally multiplying the result by AT.
Each of these three steps takes O(M(n)) time, and thus any nonsingular
matrix with real entries can be inverted in O(M(n)) time. _

The proof of Theorem 31.12 suggests a means of solving the equation
Ax = b without pivoting, so long as A is nonsingular, We multiply both
sides of the equation by AT, yielding (AT A)x = ATb. This transforma
tion doesn't affect the solution x, since AT is invertible, so we can factor
the symmetric positive-definite matrix ATA by computing an LU decom
position. We then use forward and back substitution to solve for x with
the right-hand side ATb. Although this method is theoretically correct,
in practice the procedure LUP-DECOMPOSITION works much better. LUP
decomposition requires fewer arithmetic operations by a constant factor,
and it has somewhat better numerical properties.

Exercises

31.5-1
Let M(n) be the time to multiply n x n matrices, and let S(n) denote
the time required to square an n x n matrix. Show that multiplying and
squaring matrices have essentially the same difficulty: S(n) = 8(M(n)).

31.5-2
Let M (n) be the time to multiply n x n matrices, and let L(n) be the time to
compute the LUP decomposition of an n x n matrix. Show that multiplying
matrices and computing LUP decompositions of matrices have essentially
the same difficulty: L(n) = 8(M(n)).
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31.5-3
Let M(n) be the time to multiply n x n matrices, and let D(n) denote the
time required to find the determinant of an n x n matrix. Show that finding
the determinant is no harder than multiplying matrices: D(n) = O(M (n».
31.5-4
Let M(n) be the time to multiply n x n boolean matrices, and let T(n) be
the time to find the transitive closure of n x n boolean matrices. Show that
M(n) = O(T(n» and T(n) = O(M(n)lgn).

31.5-5
Does the matrix-inversion algorithm based on Theorem 31.12 work when
matrix elements are drawn from the field of integers modulo 21 Explain.

31.5-6 *
Generalize the matrix-inversion algorithm of Theorem 31.12 to handle
matrices of complex numbers, and prove that your generalization works
correctly. (Hint: Instead of the transpose of A, use the conjugate trans
pose A", which is obtained from the transpose of A by replacing every
entry with its complex conjugate. Instead of symmetric matrices, consider
Hermitian matrices, which are matrices A such that A = A".)

31.6 Symmetric positive-definite matrices and least-squares approximation

Symmetric positive-definite matrices have many interesting and desirable
properties. For example, they are nonsingular, and LV decomposition
can be performed on them without our having to worry about dividing
by O. In this section, we shall prove several other important properties of
symmetric positive-definite matrices and show an interesting application
to curve fitting by a least-squares approximation.

The first property we prove is perhaps the most basic.

Lemma 31.13
Any symmetric positive-definite matrix is nonsingular.

Proof Suppose that a matrix A is singular. Then by Corollary 31.3, there
exists a nonzero vector x such that Ax = O. Hence, x TAx = 0, and A
cannot be positive-definite. _

The proof that we can perform LV decomposition on a symmetric
positive-definite matrix A without dividing by 0 is more involved. We
begin by proving properties about certain submatrices of A. Define the
kth leading submatrix of A to be the matrix Ak consisting of the intersec
tion of the first k rows and first k columns of A.
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Lemma 31.14
If A is a symmetric positive-definite matrix, then every leading submatrix
of A is symmetric and positive-definite.

Proof That each leading submatrix Ak is symmetric is obvious. To prove
that A k is positive-definite, let x be a nonzero column vector of size k., and
let us partition A as follows:

Then, we have

x
T

Akx = (xT 0) (1; ~) (~)
= (xT O)A(~)

> 0,

since A is positive-definite, and hence Ak is also positive-definite. _

We now turn to some essential properties of the Schur complement. Let
A be a symmetric positive-definite matrix, and let Ak be a leading k x k
submatrix of A. Partition A as

A_(Ak BT)
- Be' (31.28)

Then, the Schur complement of A with respect to Ak is defined to be

S C BAI;I BT
• (31.29)

(By Lemma 31.14, Ak is symmetric and positive-definite; therefore, AI; I

exists by Lemma 31.13, and S is well defined.) Note that our earlier defini
tion (31.23) of the Schur complement is consistent with definition (31.29),
by letting k = 1.

The next lemma shows that the Schur-complement matrices of sym
metric positive-definite matrices are themselves symmetric and positive
definite. This result was used in Theorem 31.12, and its corollary is needed
to prove the correctness of LV decomposition for symmetric positive
definite matrices.

Lemma 31.15 (Schur complement lemma)
If A is a symmetric positive-definite matrix and Ak is a leading k x k
submatrix of A, then the Schur complement of A with respect to Ak is
symmetric and positive-definite.

Proof That S is symmetric follows from Exercise 31.1-7. It remains
to show that S is positive-definite. Consider the partition of A given in
equation (31.28).
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For any nonzero vector x, we have x TAx > 0 by assumption. Let us
break x into two subvectors y and z compatible with Ak and C, respec
tively. Because A;J exists, we have

xTAx (yTZT)(1:~)(~)
= yTAky+yTBTZ+ZTBy+zTCZ

= (Y+A;IBTz)TAk(Y+A;IBTz)+zT(C BA;IBT)z, (31.30)

by matrix magic. (Verify by multiplying through.) This last equation
amounts to "completing the square" of the quadratic form. (See Exer
cise 31.6-2.)

Since x TAx > 0 holds for any nonzero x, let us pick any nonzero z and
then choose y -A; I BT z, which causes the first term in equation (31.30)
to vanish, leaving

ZT(C - BA;IBT)z = zTSZ

as the value of the expression. For any z i- 0, we therefore have zTS Z =
X TAx > 0, and thus S is positive-definite. _

Corollary 31.16
LU decomposition of a symmetric positive-definite matrix never causes a
division by O.

Proof Let A be a symmetric positive-definite matrix. We shall prove
something stronger than the statement of the corollary: every pivot is
strictly positive. The first pivot is all. Let el be the first unit vector, from
which we obtain all = eJAel > O. Since the first step of LU decompo
sition produces the Schur complement of A with respect to AI = (al d,
Lemma 31.15 implies that all pivots are positive by induction. _

Least-squares approximation

Fitting curves to given sets of data points is an important application of
symmetric positive-definite matrices. Suppose that we are given a set of
m data points

where the Yi are known to be subject to measurement errors. We would
like to determine a function F(x) such that

(31.31)

for i = 1,2, ... , m, where the approximation errors 'tli are small. The form
of the function F depends on the problem at hand. Here, we assume that
it has the form of a linearly weighted sum,
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n

F(x) L: CjJj(x) ,
j=1

where the number of summands n and the specific basis functions Jj are
chosen based on knowledge of the problem at hand. A common choice is
Jj(x) = x j - I , which means that

F(x) = Cl + C2X + C3x2 + ... + cnxn- I

is a polynomial of degree n 1 in x.
By choosing n = m, we can calculate each Yi exactly in equation (31.31).

Such a high-degree F "fits the noise" as well as the data, however, and
generally gives poor results when used to predict y for previously unseen
values of x. It is usually better to choose n significantly smaller than m and
hope that by choosing the coefficients Cj well, we can obtain a function F
that finds the significant patterns in the data points without paying undue
attention to the noise. Some theoretical principles exist for choosing n,
but they are beyond the scope of this text. In any case, once n is chosen,
we end up with an overdetermined set of equations that we wish to solve
as well as we can. We now show how this can be done.

Let

(

.Ii(x,) .Ii(xd f, (x,) )
A ~ .Ii (~2) .Ii (~2) i,(Xl)

It (xm ) fi(xm ) !n(xm )

denote the matrix of values of the basis functions at the given points; that
is, au = I, (Xi)' Let C = (Ck) denote the desired size-a vector of coefficients.
Then,

Ac =

=

(

II (xd fi(xd
It (X2) fi(xz)

· .· .· .
It (xm ) fi(xm )

(

F(xd )F(X2)

F(xm )

!n(XI) ) (CI )!n(xz) Cz

>.: ;n

is the size-m vector of "predicted values" for y. Thus,

11 = Ac - Y

is the size-m vector of approximation errors.
To minimize approximation errors, we choose to minimize the norm of

the error vector 11, which gives us a least-squares solution, since

(

m ) 1/2

111111 = ~ 117 .



(31.32)
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Since

II~II' IIAc YII' E(t. a,jCj Yi) 2 ,

we can minimize 11,,11 by differentiating 11,,11 2 with respect to each Ck and
then setting the result to 0:

d 11,,11
2

m (II )--;r;;- = 2: 2 2: a.jc, Yi aik = 0 .
k i=l j=l

The n equations (31.32) for k = 1,2, ... , n are equivalent to the single
matrix equation

(Ac y?A 0

or, equivalently (using Exercise 31.1-3), to

AT(Ac y)=O,

which implies

ATAc = ATy. (31.33)

In statistics, this is called the normal equation. The matrix ATA is sym
metric by Exercise 31.1-3, and if A has full column rank, then AT A is
positive-definite as well. Hence, (AT A)-l exists, and the solution to equa
tion (31.33) is

c = ((ATA)-l AT) Y

= A+y, (31.34)

where the matrix A+ = ((ATA)-l AT) is called the pseudoinverse of the
matrix A. The pseudoinverse is a natural generalization of the notion of
a matrix inverse to the case in which A is nonsquare. (Compare equa
tion (31.34) as the approximate solution to Ac = y with the solution A-1b
as the exact solution to Ax = b.)

As an example of producing a least-squares fit, suppose that we have 5
data points

(-1,2),(1,1),(2,1),(3,0),(5,3) ,

shown as black dots in Figure 31.3. We wish to fit these points with a
quadratic polynomial

F(x) = Cl + C2X + C3X2 •

We start with the matrix of basis-function values

Xl Xf -I I

X2 xi I I

A = X3 xl = 2 4
X4 xl 3 9

Xs x1 5 25
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y

F(x) = 1.2 0.757x + 0.214x2

T
I

0.0
0 2 3 5 x

Figure 31.3 The least-squares fit of a quadratic polynomial to the set of data
points {(-1,2),(1, 1),(2, 1),(3,O),(5,3)}. The black dots are the data points, and
the white dots are their estimated values predicted by the polynomial F(x)
1.2 - O.757x + O.214x2

, the quadratic polynomial that minimizes the sum of the
squared errors. The error for each data point is shown as a shaded line.

whose pseudo inverse is

(

0.500 0.300
A+ = -0.388 0.093

0.060 -0.036

0.200
0.190

-0.048

0.100 -0.100)
0.193 -0.088

-0.036 0.060

Multiplying y by A+, we obtain the coefficient vector

(
1.200)

c = -0.757 ,
0.214

which corresponds to the quadratic polynomial

F(x) = 1.200 - 0.757x + 0.214x2

as the closest-fitting quadratic to the given data, in a least-squares sense.
As a practical matter, we solve the normal equation (31.33) by multi

plying y by AT and then finding an LV decomposition of ATA. If A has
full rank, the matrix ATA is guaranteed to be nonsingular, because it is
symmetric and positive-definite. (See Exercise 31.1-3 and Theorem 31.6.)
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Exercises

31.6-1
Prove that every diagonal element of a symmetric positive-definite matrix
is positive.

31.6-2

Let A = (~ ~) be a 2 x 2 symmetric positive-definite matrix. Prove

that its determinant ac - b2 is positive by "completing the square" in a
manner similar to that used in the proof of Lemma 31.15.

31.6-3
Prove that the maximum element in a symmetric positive-definite matrix
lies on the diagonal.

31.6-4
Prove that the determinant of each leading submatrix of a symmetric
positive-definite matrix is positive.

31.6-5
Let Ak denote the kth leading submatrix of a symmetric positive-definite
matrix A. Prove that det(Ak)j det(Ak_ l ) is the kth pivot during LV de
composition, where by convention det(Ao) = 1.

31.6-6
Find the function of the form

F(x) = c] + C2X 19x + C3ex

that is the best least-squares fit to the data points

(1,1),(2,1),(3,3),(4,8) .

31.6-7
Show that the pseudoinverse A+ satisfies the following four equations:

AA+A = A,

A+AA+ A+ ,
(AA+)T = AA+,

(A+ A)T = A+A.

31-1 Shamir's boolean matrix mUltiplication algorithm
In Section 31.3, we observed that Strassen's matrix-multiplication algo
rithm cannot be applied directly to boolean matrix multiplication because
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the boolean quasiring Q = ({0, I}, V, 1\, 0, 1) is not a ring. Theorem 31.10
showed that if we used arithmetic operations on words of O(lg n) bits,
we could nevertheless apply Strassen's method to multiply n x n boolean
matrices in O(nlg 7 ) time. In this problem, we investigate a probabilistic
method that uses only bit operations to achieve nearly as good a bound
but with some small chance of error.

a. Show that R = ({O, I}, EB, 1\,0, 1), where EB is the XOR (exclusive-or)
function, is a ring.

Let A = (aij) and B = (bl}) be n x n boolean matrices, and let C = (cl}) =

AB in the quasiring Q. Generate A' = (a;j) from A using the following
randomized procedure:

• If al} = 0, then let a;j = O.

• If Au = 1, then let a;j = 1 with probability 1/2 and let a;j = 0 with
probability 1/2. The random choices for each entry are independent.

b. Let C' = (C;j) = A'B in the ring R. Show that cl} = 0 implies cL = O.
Show that cij = 1 implies c:j = 1 with probability 1/2.

c. Show that for any f > 0, the probability is at most f/n 2 that a given
C;j never takes on the value c., for 19(n2/ f) independent choices of the
matrix A'. Show that the probability is at least 1 - e that all C:j take on
their correct values at least once.

d. Give an O(nlg 7Ign)-time randomized algorithm that computes the prod
uct in the boolean quasiring Q of two n x n matrices with probability
at least 1- 1/nk for any constant k > O. The only operations permitted
on matrix elements are 1\, V, and EB.

31-2 Tridiagonal systems oflinearequations
Consider the tridiagonal matrix

1 -1 0 0 0
-1 2 -1 0 0

A 0 1 2 1 0
0 0 -1 2 -1
0 0 0 -1 2

a. Find an LV decomposition of A.

b. Solve the equation Ax = ( 1
substitution.

c. Find the inverse of A.

1 )T by using forward and back

d. Show that for any n x n symmetric, positive-definite, tridiagonal ma
trix A and any n-vector b, the equation Ax = b can be solved in O(n)
time by performing an LV decomposition. Argue that any method based
on forming A -1 is asymptotically more expensive in the worst case.
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e. Show that for any n x n nonsingular, tridiagonal matrix A and any n
vector b, the equation Ax = b can be solved in O(n) time by performing
an LUP decomposition.

31-3 Splines
A practical method for interpolating a set of points with a curve is to use
cubic splines. We are given a set {(Xi, Yi) : i = 0, I, ... , n} of n + I point
value pairs, where Xo < XI < ... < x.; We wish to fit a piecewise-cubic
curve (spline) f(x) to the points. That is, the curve f(x) is made up of
n cubic polynomials fi(x) = a, + b.x + CiX2 + dix 3 for i = 0, 1, ... , n - 1,
where if X falls in the range Xi ~ X ~ Xi+ I, then the value of the curve is
given by f(x) = fi(x Xi)' The points Xi at which the cubic polynomials
are "pasted" together are called knots. For simplicity, we shall assume that
Xi = i for i = 0, 1,... , n.

To ensure continuity of f(x), we require that

f(Xi) = fi(O) = Yi,

f(Xi+d = fi(l) = Yi+l

for i = 0, 1, ... , n - 1. To ensure that f(x) is sufficiently smooth, we also
insist that there be continuity of the first derivative at each knot:

f'(Xi+d = f/(I) = fi'+I(O)

for i = 0, 1, . . . .n - 1.

a. Suppose that for i = 0,1, ... , n, we are given not only the point-value
pairs {(xi,Yd} but also the first derivatives D, = !'(Xi) at each knot.
Express each coefficient a., b., c., and d, in terms of the values Yi,
Yi+l, Di, and D i+ l • (Remember that Xi = i.) How quickly can the 4n
coefficientsbe computed from the point-value pairs and first derivatives?

The question remains of how to choose the first derivatives of f(x) at the
knots. One method is to require the second derivatives to be continuous
at the knots:

f"(Xi+d = f/,(I) = f/~I(O)

for i = 0, 1,... , n - 1. At the first and last knots, we assume that f" (xo) =
/6'(0) = 0 and f"(Xn) = f:t'(I) = 0; these assumptions make f(x) a natural
cubic spline.

b. Use the continuity constraints on the second derivative to show that for
i = 1, 2, ... , n - 1,

3(Yl Yo),

3(Yn - Yn-d .

Di- 1 + 4Di + Di+l = 3(Yi+1 - Yi-d .

c. Show that

2Do+DI

Dn - 1 + 2Dn

(31.35)

(31.36)

(31.37)
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Chapter notes

d. Rewrite equations (31.35)-(31.37) as a matrix equation involving the
vector D (Do,D[ , ... , Dn ) of unknowns. What attributes does the
matrix in your equation have?

e. Argue that a set of n + 1 point-value pairs can be interpolated with a
natural cubic spline in O(n) time (see Problem 31-2).

J. Show how to determine a natural cubic spline that interpolates a set of
n + 1 points (Xi,Yi) satisfying Xo < Xl < .,. < Xn , even when Xi is not
necessarily equal to i. What matrix equation must be solved, and how
quickly does your algorithm run?

There are many excellent texts available that describe numerical and sci
entific computation in much greater detail than we have room for here.
The following are especially readable: George and Liu [81], Golub and
Van Loan [89], Press, Flannery, Teukolsky, and Vetterling [161, 162], and
Strang [181, 182].

The publication of Strassen's algorithm in 1969 [183] caused much ex
citement. Before then, it was hard to imagine that the naive algorithm
could be improved upon. The asymptotic upper bound on the difficulty
of matrix multiplication has since been considerably improved. The most
asymptotically efficient algorithm for multiplying n x n matrices to date,
due to Coppersmith and Winograd [52], has a running time of O(n2.376 ) .

The graphical presentation of Strassen's algorithm is due to Paterson [155].
Fischer and Meyer [67] adapted Strassen's algorithm to boolean matrices
(Theorem 31.10).

Gaussian elimination, upon which the LU and LUP decompositions
are based, was the first systematic method for solving linear systems of
equations. It was also one of the earliest numerical algorithms. Although
it was known earlier, its discovery is commonly attributed to C. F. Gauss
(1777-1855). In his famous paper [183], Strassen also showed that an
n x n matrix can be inverted in O(n lg 7) time. Winograd [203] originally
proved that matrix multiplication is no harder than matrix inversion, and
the converse is due to Aho, Hopcroft, and Ullman [4].

Strang [182] has an excellent presentation of symmetric positive-definite
matrices and on linear algebra in general. He makes the following remark
on page 334: "My class often asks about unsymmetric positive definite
matrices. I never use that term."
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The straightforward method of adding two polynomials of degree n takes
8(n) time, but the straightforward method of multiplying them takes 8(n2 )

time. In this chapter, we shall show how the Fast Fourier Transform, or
FFT, can reduce the time to multiply polynomials to 8(n lg n).

Polynomials

A polynomial in the variable x over an algebraic field F is a function A(x)
that can be represented as follows:

n-I
A(x) = L ape! .

j=O

We call n the degree-bound of the polynomial, and we call the values
ao,aJ, .. . ,an-I the coe.f/ieients of the polynomial. The coefficients are
drawn from the field F, typically the set C of complex numbers. A poly
nomial A(x) is said to have degree k if its highest nonzero coefficient is ai,

The degree of a polynomial of degree-bound n can be any integer between
oand n - 1, inclusive. Conversely, a polynomial ofdegree k is a polynomial
of degree-bound n for any n > k.

There are a variety of operations we might wish to define for polynomi
als. For polynomial addition, if A(x) and B(x) are polynomials of degree
bound n, we say that their sum is a polynomial C(x), also of degree
bound n, such that C(x) = A(x) + B(x) for all x in the underlying field.
That is, if

n-I
A(x) = Lajxj

j=O

and

n-I
B(x) = L bjx! ,

j=O

then
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n-I

C(x) = 2: c.x! ,
j=O

777

where Cj = aj + hi for j = 0,1, ... , n - 1. For example, if A(x) = 6x 3 +
7x 2 lOx+9 and B(x) = -2x3+4x-5, then C(x) = 4x 3+7x2-6x+4.

For polynomial multiplication, if A(x) and B(x) are polynomials of deg
ree-bound n, we say that their product C(x) is a polynomial of degree
bound 2n - 1 such that C(x) = A(x)B(x) for all x in the underlying field.
You have probably multiplied polynomials before, by multiplying each
term in A(x) by each term in B(x) and combining terms with equal powers.
For example, we can multiply A(x) = 6x 3 + 7x 2 lOx + 9 and B(x) =
- 2x 3 + 4x - 5 as follows:

12x6

12x6 -

6x 3 + 7x 2 lOx + 9
2x 3 + 4x - 5

30x 3 35x 2 + 50x - 45
24x 4 + 28x 3 - 40x 2 + 36x

l4x 5 + 20x 4 18x3

14x5 + 44x4 - 20x 3 - 75x 2 + 86x - 45

Another way to express the product C(x) is

C(x)

where

2n-2

"'" C x!L...J j ,

j=O

(32.1)

j

c, = 2: akbj-k .

k=O

(32.2)

Note that degree(C) = degree(A) + degree(B), implying

degree-bound/ C) = degree-bound(A) + degree-bound(B) - 1

< degree-bound(A) + degree-bound(B) .

We shall nevertheless speak of the degree-bound of C as being the sum of
the degree-bounds of A and B, since if a polynomial has degree-bound k
it also has degree-bound k + I.

Chapter outline

Section 32.1 presents two ways to represent polynomials: the coefficient
representation and the point-value representation. The straightforward
methods for multiplying polynomials-equations (32.1) and (32.2)-take
8(n 2 ) time when the polynomials are represented in coefficient form, but
only 8(n) time when they are represented in point-value form. We can,
however, multiply polynomials using the coefficient representation in only
8(n 19n) time by converting between the two representations. To see why
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this works, we must first study complex roots of unity, which we do in
Section 32.2. Then, we use the FFT and its inverse, also described in
Section 32.2, to perform the conversions. Section 32.3 shows how to im
plement the FFT quickly in both serial and parallel models.

This chapter uses complex numbers extensively, and the symbol i will
be used exclusively to denote yCT.

32.1 Representation of polynomials

The coefficient and point-value representations of polynomials are in a
sense equivalent; that is, a polynomial in point-value form has a unique
counterpart in coefficient form. In this section, we introduce the two rep
resentations and show how they can be combined to allow multiplication
of two degree-bound n polynomials in 8(n Ign) time.

Coefficient representation

A coefficient representation of a polynomial A(x) = '2:]:d a.x! of degree
bound n is a vector of coefficients a = (ao,al, ... ,an-I). In matrix equa
tions in this chapter, we shall generally treat vectors as column vectors.

The coefficient representation is convenient for certain operations on
polynomials. For example, the operation of evaluating the polynomial
A(x) at a given point Xo consists of computing the value of A(xo). Evalu
ation takes time 8(n) using Horner's rule:

A(xo) = ao+ xo(al + xO(a2 + ... + xO(an-2 + xo(an-d)·· .)) .

Similarly, adding two polynomials represented by the coefficient vectors
a (ao,al, ... ,an-d and b = (bo,bl, ,bn- I ) takes 8(n) time: wejust
output the coefficient vector C = (co,cj, ,Cn-I), where Cj = aj + b, for
j 0,1, ... , n 1.

Now, consider the multiplication of two degree-bound n polynomials
A(x) and B(x) represented in coefficient form. If we use the method de
scribed by equations (32.1) and (32.2), polynomial multiplication takes
time 8(n 2 ) , since each coefficient in the vector a must be multiplied by
each coefficient in the vector b. The operation of multiplying polynomials
in coefficient form seems to be considerably more difficult than that of
evaluating a polynomial or adding two polynomials. The resulting coeffi
cient vector c, given by equation (32.2), is also called the convolution of
the input vectors a and b, denoted c = a Q9b. Since multiplying polynomi
als and computing convolutions are fundamental computational problems
of considerable practical importance, this chapter concentrates on efficient
algorithms for them.
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Point-value representation

779

A point-value representation of a polynomial A(x) of degree-bound n is a
set of n point-value pairs

{(Xo,Yo), (Xl, Yl), . . . , (Xn-l, Yn-l)}

such that all of the Xk are distinct and

(32.3)

for k = 0, 1,... , n - 1. A polynomial has many different point-value rep
resentations, since any set of n distinct points xo, XI, ... ,Xn-l can be used
as a basis for the representation.

Computing a point-value representation for a polynomial given in co
efficient form is in principle straightforward, since all we have to do is
select n distinct points XO,XI, ... ,Xn-1 and then evaluate A(Xk) for k =
0, 1, ... .n - 1. With Homer's method, this n-point evaluation takes time
8(n2). We shall see later that if we choose the Xk cleverly, this computation
can be accelerated to run in time 8(n 19 n).

The inverse of evaluation-determining the coefficient form of a poly
nomial from a point-value representation-is called interpolation. The
following theorem shows that interpolation is well defined, assuming that
the degree-bound of the interpolating polynomial equals the number of
given point-value pairs.

Theorem 32.1 (Uniqueness ofan interpolating polynomial)
For any set {(Xo,Yo), (XI,yJ), ... , (Xn-hYn-J)} of n point-value pairs, there
is a unique polynomial A(x) of degree-bound n such that Yk = A(Xk) for
k = 0, 1, ... , n - 1.

Proof The proof is based on the existence of the inverse of a certain
matrix. Equation (32.3) is equivalent to the matrix equation

1 Xo

1 Xl

Xn-I

(32.4)

The matrix on the left is denoted V(XO,Xh'" ,xn-t} and is known as a
Vandermonde matrix. By Exercise 31.1-10, this matrix has determinant

II(xk Xj),
j<k

and therefore, by Theorem 31.5, it is invertible (that is, nonsingular) if the
Xk are distinct. Thus, the coefficients aj can be solved for uniquely given
the point-value representation:

•
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The proof of Theorem 32.1 describes an algorithm for interpolation
based on solving the set (32.4) of linear equations. Using the LU decom
position algorithms of Chapter 31, we can solve these equations in time
O(n 3 ) .

A faster algorithm for n-point interpolation is based on Lagrange's for
mula:

I1 (X - Xj)
n-l

A(x) =I:v, j# (32.5)
k=O I1(Xk Xj)

j#

You may wish to verify that the right-hand side of equation (32.5) is a
polynomial of degree-bound n that satisfies A(Xk) = Yk for all k, Exer
cise 32.1-4 asks you how to compute the coefficients of A using Lagrange's
formula in time 6(n 2 ) .

Thus, n-point evaluation and interpolation are well-defined inverse op
erations that transform between the coefficient representation of a polyno
mial and a point-value representation. I The algorithms described above
for these problems take time 6(n 2 ) .

The point-value representation is quite convenient for many operations
on polynomials. For addition, if C(x) = A(x) + B(x), then C(Xk) =

A(Xk) + B(xd for any point xi: More precisely, if we have a point-value
representation for A,

{(xo,Yo),(xl,Yd, .. ·,(Xn-hYn-l)} ,

and for B,

{(xo, Yo), (XI,y~), . . . , (Xn-I, Y~_I)}

(note that A and B are evaluated at the same n points), then a point-value
representation for C is

{(xo,Yo+Yo),(X"YI +yD,· .. ,(Xn-I,Yn-l +Y~-I)} .

The time to add two polynomials of degree-bound n in point-value form
is thus 6(n).

Similarly, the point-value representation is convenient for multiplying
polynomials. If C(x) = A(x)B(x), then C(Xk) A(Xk)B(xd for any
point xi; and we can pointwise multiply a point-value representation for A
by a point-value representation for B to obtain a point-value representa
tion for C. We must face the problem, however, that the degree-bound
of C is the sum of the degree-bounds for A and B. A standard point-value
representation for A and B consists of n point-value pairs for each poly
nomial. Multiplying these together gives us n point-value pairs for C, but

I Interpolation is a notoriously tricky problem from the point of view of numerical stability.
Although the approaches described here are mathematically correct, small differences in the
inputs or round-off errors during computation can cause large differences in the result.
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since the degree-bound of C is 2n, Theorem 32.1 implies that we need 2n
point-value pairs for a point-value representation of C. We must there
fore begin with "extended" point-value representations for A and for B
consisting of 2n point-value pairs each. Given an extended point-value
representation for A,

{(xo, Yo), (Xl, YI), .. . , (X2n-l, Y2n- d} ,

and a corresponding extended point-value representation for B,

{(Xo,Yb), (XI, yD, ... , (X2n- I, Y~n-l)} ,

then a point-value representation for C is

{(xo, Yoyb), (xI,YlyD,···, (X2n-j,Y2n-IY~n-l))

Given two input polynomials in extended point-value form, we see that the
time to multiply them to obtain the point-value form of the result is S(n),
much less than the time required to multiply polynomials in coefficient
form.

Finally, we consider how to evaluate a polynomial given in point-value
form at a new point. For this problem, there is apparently no approach
that is simpler than converting the polynomial to coefficient form first, and
then evaluating it at the new point.

Fast multiplication of polynomials in coefficient form

Can we use the linear-time multiplication method for polynomials in point
value form to expedite polynomial multiplication in coefficient form? The
answer hinges on our ability to convert a polynomial quickly from coeffi
cient form to point-value form (evaluate) and vice-versa (interpolate).

We can use any points we want as evaluation points, but by choosing
the evaluation points carefully, we can convert between representations in
only S(n 19n) time. As we shall see in Section 32.2, if we choose "complex
roots of unity" as the evaluation points, we can produce a point-value
representation by taking the Discrete Fourier Transform (or DFT) of a
coefficient vector. The inverse operation, interpolation, can be performed
by taking the "inverse DFT" of point-value pairs, yielding a coefficient
vector. Section 32.2 will show how the FFT performs the DFT and inverse
DFT operations in S(n 19n) time.

Figure 32.1 shows this strategy graphically. One minor detail concerns
degree-bounds. The product of two polynomials of degree-bound n is a
polynomial of degree-bound 2n. Before evaluating the input polynomials
A and B, therefore, we first double their degree-bounds to 2n by adding n
high-order coefficients of O. Because the vectors have 2n elements, we use
"complex (2n)th roots of unity," which are denoted by the W2n terms in
Figure 32.1.

Given the FFT, we have the following S(n 19 nj-tirne procedure for mul
tiplying two polynomials A(x) and B(x) of degree-bound n, where the
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Point-value
representations

}
Coefficient
representations

ation

n Ig n)

I 00· at' .... an_1 I Ordinary multiplication
: co' ct' ...• C2n- 2 1

bo' bl' ...• bn_1 I Time 8(n2)

Evaluation Interpol

Time 8(n Ig n) Time8(

A(coj>n)' B(coj>n) C(coj>n)

A(min)' B(min) Pointwise multiplication
~

C(min)

Time8(n)

A(mi:-1
). B(mi:-1

) C«(l)2n-l)
2n

Figure 32.1 A graphical outline of an efficient polynomial-multiplication process.
Representations on the top are in coefficient form, while those on the bottom are
in point-value form. The arrows from left to right correspond to the multiplication
operation. The W2n terms are complex (2n)th roots of unity.

input and output representations are in coefficient form. We assume that
n is a power of 2; this requirement can always be met by adding high-order
zero coefficients.

1. Double degree-bound: Create coefficient representations of A(x) and
B(x) as degree-bound 2n polynomials by adding n high-order zero co
efficients to each.

2. Evaluate: Compute point-value representations of A(x) and B(x) of
length 2n through two applications of the FFT of order 2n. These
representations contain the values of the two polynomials at the (2n)th
roots of unity.

3. Pointwise multiply: Compute a point-value representation for the poly
nomial C(x) = A(x)B(x) by multiplying these values together point
wise. This representation contains the value of C(x) at each (2n)th
root of unity.

4. Interpolate: Create the coefficient representation ofthe polynomial C(x)
through a single application of an FFT on 2n point-value pairs to com
pute the inverse DFT.

Steps (1) and (3) take time 8(n), and steps (2) and (4) take time 8(n 19n).
Thus, once we show how to use the FFT, we will have proven the following.

Theorem 32.2
The product of two polynomials of degree-bound n can be computed in
time 8(n 19 n), with both the input and output representations in coefficient
form. _
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32.1-1
Multiply the polynomials A(x) = 7x 3-x2+x-1O and B(x) = 8x3-6x+3

using equations (32.1) and (32.2).

32.1-2
Evaluating a polynomial A(x) of degree-bound n at a given point Xo can
also be done by dividing A(x) by the polynomial (x - xo) to obtain a
quotient polynomial q(x) of degree-bound n - 1 and a remainder r, such
that

A(x) q(x)(x - xo) + r .

Clearly, A(xo) = r, Show how to compute the remainder r and the coeffi
cients of q(x) in time 8(n) from Xo and the coefficients of A.

32.1-3
Derive a point-value representation for Arcv(x) = 'L~::~ an-I-jxj from a

point-value representation for A(x) = 'Lj::ci a.x), assuming that none of
the points is O.

32.1-4
Show how to use equation (32.5) to interpolate in time 8(n 2 ) . (Hint: First
compute Ilj(x - Xk) and Ilj(xj - Xk) and then divide by (x - Xk) and
(Xj - Xk) as necessary for each term. See Exercise 32.1-2.)

32.1-5
Explain what is wrong with the "obvious" approach to polynomial division
using a point-value representation. Discuss separately the case in which
the division comes out exactly and the case in which it doesn't.

32.1-6
Consider two sets A and B, each having n integers in the range from 0
to IOn. We wish to compute the Cartesian sum of A and B, defined by

C = {x + y; X E A and y E B} .

Note that the integers in C are in the range from 0 to 20n. We want to find
the elements of C and the number of times each element of C is realized
as a sum of elements in A and B. Show that the problem can be solved in
O(n 19n) time. (Hint: Represent A and B as polynomials of degree IOn.)

32.2 The DFf and FFf

In Section 32.1, we claimed that if we use complex roots of unity, we
can evaluate and interpolate in 8(n Ign) time. In this section, we define
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Figure 32.2 The values of wg, wL ...,w~ in the complex plane, where Ws = e21ti
/
8

is the principal 8th root of unity.

complex roots of unity and study their properties, define the DFT, and then
show how the FFT computes the DFT and its inverse in just 8(n 19n) time.

Complex roots of unity

A complex nth root ofunity is a complex number w such that

There are exactly n complex nth roots of unity; these are e2ifik/n for k =
0, I, ... , n - l. To interpret this formula, we use the definition of the
exponential of a complex number:

e'" = cos(u) + i sin(u) .

Figure 32.2 shows that the n complex roots of unity are equally spaced
around the circle of unit radius centered at the origin of the complex
plane. The value

(32.6)

is called the principal nth root ofunity; all of the other complex nth roots
of unity are powers of W n.

The n complex nth roots of unity,

form a group under multiplication (see Section 33.3). This group has the
same structure as the additive group (Zn, +) modulo n, since w~ = w~ = 1
implies that whw~ = W{+k = wW+k

)modn. Similarly, co; I W~-l. Essential
properties of the complex nth roots of unity are given in the following
lemmas.
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Lemma 32.3 (Cancellation lemma)
For any integers n 2: 0, k 2: 0, and d > 0,

(J)dk = (J)k
dn n •
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(32.7)

Proof The lemma follows directly from equation (32.6), since

(e21li/dn)dk

(e21li/ n)k

k(J)n . •

Corollary 32.4
For any even integer n > 0,

W~/2 = (J)2 = -1 .

Proof The proof is left as Exercise 32.2-1. •
Lemma 32.5 (Halving lemma)
If n > 0 is even, then the squares of the n complex nth roots of unity are
the nj2 complex (nj2)th roots of unity.

Proof By the cancellation lemma, we have (W~)2 = (J)~/2' for any non
negative integer k. Note that if we square all of the complex nth roots of
unity, then each (nj2)th root of unity is obtained exactly twice, since

Thus, w~ and (J)~+n/2 have the same square. This property can also be
proved using Corollary 32.4, since w~/2 = -1 implies w~+n/2 = -w~, and
thus (w~+n/2)2 ((J)~)2. •

As we shall see, the halving lemma is essential to our divide-and-conquer
approach for converting between coefficient and point-value representa
tions of polynomials, since it guarantees that the recursive subproblems
are only half as large.
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Lemma 32.6 (Summation lemma)
For any integer n ~ 1 and nonnegative integer k not divisible by n,

n-I

I: (w~)j = O.
j=O

Proof Because equation (3.3) applies to complex values,

n-I

I: (w~/ =
j=O

=
(W~Dk 1

wk -111

(l)k - 1

w~ -1
= o.

Requiring that k not be divisible by n ensures that the denominator is
not 0, since w~ = 1 only when k: is divisible by n, _

The DFf

Recall that we wish to evaluate a polynomial

n-I

A(x) =I:ajx!
j=O

of degree-bound n at w~, w~, w~, ... ,W~-I (that is, at the n complex nth
roots of unity).2 Without loss of generality, we assume that n is a power
of 2, since a given degree-bound can always be raised-we can always add
new high-order zero coefficients as necessary. We assume that A is given
in coefficient form: a = (ao, aI, ... , an-d. Let us define the results Yb for
k = 0, 1, ... , n 1, by

Yk = A(w~)
n-II: k" (32.8)= ajw/ .
j=O

The vector Y = (Yo,YJ, ... ,Yn-d is the Discrete Fourier Transform (DFT)
of the coefficient vector a = (ao, aJ, ... ,an-d. We also write Y = DFTn(a).

2The length n is actually what we referred to as 2n in Section 32.1, since we double the
degree-bound of the given polynomials prior to evaluation. In the context of polynomial
multiplication, therefore, we are actually working with complex (2n)th roots of unity.
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By using a method known as the FastFourier Transform (FFT), which takes
advantage of the special properties of the complex roots of unity, we can
compute DFTn(a) in time 8(nlgn), as opposed to the 8(n2) time of the
straightforward method.

The FFT method employs a divide-and-conquer strategy, using the even
index and odd-index coefficients of A(x) separately to define the two new
degree-bound nl2 polynomials A[O)(x) and A[I](X):

A[O](x) ao+ a2X+ a4x2 + + an_2Xn/2-1 ,

A(1)(x) = al + a3X+ asx 2+ + an_IX
n/2- 1 .

Note that A[O] contains all the even-index coefficients of A (the binary
representation of the index ends in 0) and A[I] contains all the odd-index
coefficients (the binary representation of the index ends in 1). It follows
that

(32.9)

(32.10)

so that the problem of evaluating A(x) at w~, w~, . .. , W~-I reduces to

1. evaluating the degree-bound nl2 polynomials A[O)(x) and A[I](x) at the
points

( 0)2 (1)2 (n-I)2Wn , Wn , ... , Wn ,

and then

2. combining the results according to equation (32.9).

By the halving lemma, the list of values (32.10) consists not of n distinct
values but only of the nl2 complex (nI2)th roots of unity, with each root
occurring exactly twice. Therefore, the polynomials A[O) and A(1) of degree
bound nl2 are recursively evaluated at the nl2 complex (nI2)th roots
of unity. These subproblems have exactly the same form as the original
problem, but are half the size. We have now successfully divided an n
element DFTn computation into two nl2-element DFTn/2 computations.
This decomposition is the basis for the following recursive FFT algorithm,
which computes the DFT of an n-element vector a = (ao,a), ... , an-I),
where n is a power of 2.
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RECURSIVE-FFf(a)

In+- length[a] 1> n is a power of 2.
2 ifn=I
3 then return a
4 (J)n +- e21ri/ n

5 (J)+-I
6 alO] +- (ao, a2, ,an- 2)
7 a(l] +- (aj,a3, ,an-d
8 ylO] +- RECURslVE-FFT(a[oJ)
9 yllJ +- RECURslVE-FFf(aI1J)

10 for k +- 0 to nj2 - 1
II do Yk +- yLOJ + (J) yLI J

12 Yk+(n/2) +- yLOJ- (J) yl
l
]

13 (J) +- (J) (J)n
14 return y I> Y is assumed to be column vector.

The RECURSIVE-FFf procedure works as follows. Lines 2-3 represent
the basis of the recursion; the OFT of one element is the element itself,
since in this case

Yo °= ao (J)I

= ao· 1

ao·

Lines 6-7 define the coefficient vectors for the polynomials AIO] and AIIJ.
Lines 4, 5, and 13 guarantee that (J) is updated properly so that whenever
lines 11-12 are executed, (J) = (J)~. (Keeping a running value of (J) from
iteration to iteration saves time over computing (J)~ from scratch each time
through the for loop.) Lines 8-9 perform the recursive OFTn/2 computa
tions, setting, for k = 0, I, ... , nj2 - I,

or, since (J)~/2 = (J)~k by the cancellation lemma,

ylOJ = AIO]«(J)~k),

yLIJ = All]«(J)~k).

Lines 11-12 combine the results of the recursive OFTn/2 calculations. For
YO,Yh ... ,Yn/2-I> line 11 yields

Yk = yl°] + (J)~ylll

= AIO]«(J)~k) + (J)~All]«(J)~k)

= A«(J)~),
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where the last line of this argument follows from equation (32.9). For
Yn/2,Yn/2+h'" ,Yn-l, letting k = 0, 1, ... , nl2 - I, line 12 yields

Yk+(n/2) = ylOJ - w~yllJ

ylOJ+ w~+(n/2)ylIJ

= A[OJ(w~k) + w~+(n/2)A[ll(w~k)

A[OI(w~k+n) + w~+(n/2)A[lJ(w~k+n)

A(w~+(n/2)) •

The second line follows from the first since w~+(n/2) = -w~. The fourth
line follows from the third because w~ = I implies W~k = w~k+n. The
last line follows from equation (32.9). Thus, the vector Y returned by
RECURSIVE-FFT is indeed the DFT of the input vector a.

To determine the running time of procedure RECURSIVE-FFT, we note
that exclusive of the recursive calls, each invocation takes time 8(n), where
n is the length of the input vector. The recurrence for the running time is
therefore

T(n) 2T(nI2) + 8(n)

= 8(n 19n) .

Thus, we can evaluate a polynomial of degree-bound n at the complex nth
roots of unity in time 8(n lg n) using the Fast Fourier Transform.

Interpolation at the complex roots of unity

We now complete the polynomial multiplication scheme by showing how
to interpolate the complex roots of unity by a polynomial, which enables us
to convert from point-value form back to coefficient form. We interpolate
by writing the DFT as a matrix equation and then looking at the form of
the matrix inverse.

From equation (32.4), we can write the DFT as the matrix product
Y = Vrza, where Vn is a Vandermonde matrix containing the appropriate
powers of co.:

Yo I I ao

Yl I Wn w 2 w 3 w n- I
aln n n

I w 2 w 4 w 6 2(n-l)
Y2 n n n Wn a2

=
w 3 w 6 w 9 w~(n-I)Y3 I a3n n n

Yn-l w n- I w~(n-I) w~(n-l) (n-l)(n-I) an-ln Wn

The (k, j) entry of Vrz is w~J, for i. k = 0, I, ... .n - I, and the exponents
of the entries of Vrz form a multiplication table.

For the inverse operation, which we write as a = DFT;;-I(y), we proceed
by multiplying Y by the matrix ~-I, the inverse of Vn •
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Theorem 32.7
For j.k = 0, 1, ... .n 1, the (j,k) entry of ~-I is W;;kj

/ n.

Proof We show that Vn-I V,l = In, the n x n identity matrix. Consider the
(j,j') entry of Vn-I~:

n-I
(Vn-

I Vn ])) ' = I)W;;k) /n)(w~/)
k=O

n-IL (JJ~(j'-j) [n .
k=O

This summation equals 1 if r = i. and it is 0 otherwise by the summation
lemma (Lemma 32.6). Note that we rely on -(n - 1) < j' - j < n - 1,
so that i' - j is not divisible by n, in order for the summation lemma to
apply. _

Given the inverse matrix Vn-I, we have that DFT~I(y) is given by

(32.11)

for j = O,l, ... .n -1. By comparing equations (32.8) and (32.11), we
see that by modifying the FFT algorithm to switch the roles of a and y,
replace co; by w;; I, and divide each element of the result by n, we compute
the inverse DFT (see Exercise 32.2-4). Thus, DFT~I can be computed in
8(n 19 n) time as well.

Thus, by using the FFT and the inverse FFT, we can transform a poly
nomial of degree-bound n back and forth between its coefficient represen
tation and a point-value representation in time 8(n lgn). In the context
of polynomial multiplication, we have shown the following.

Theorem 32.8 (Convolution theorem)
For any two vectors a and b of length n, where n is a power of 2,

a <'9 b = DFT2n
l (DFT2n(a ) . DFTzn(b)) ,

where the vectors a and b are padded with O's to length 2n and· denotes
the componentwise product of two 2n-element vectors. _

Exercises

32.2-1
Prove Corollary 32.4.

32.2-2
Compute the DFT of the vector (0, 1,2,3).
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32.2-3
Do Exercise 32.1-1 by using the 8(n lg n)-time scheme.

32.2-4
Write pseudocode to compute DFT;1 in 8(n lg n) time.
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32.2-5
Describe the generalization of the FFT procedure to the case in which n
is a power of 3. Give a recurrence for the running time, and solve the
recurrence.

32.2-6 *
Suppose that instead of performing an n-element FFT over the field of
complex numbers (where n is even), we use the ring Zm of integers mod
ulo m, where m = 2tn/ 2 + 1 and t is an arbitrary positive integer. Use
w = 2t instead of co; as a principal nth root of unity, modulo m. Prove
that the DFT and the inverse DFT are well defined in this system.

32.2-7
Given a list of values Zo, ZI> ••• , Zn-l (possibly with repetitions), show how
to find the coefficients of the polynomial P(x) of degree-bound n that has
zeros only at Zo, Zi,"" Zn-l (possibly with repetitions). Your procedure
should run in time O(n Ig2 n). (Hint: The polynomial P(x) has a zero at Zj

if and only if P(x) is a multiple of (x - Zj).)

32.2-8 *
The chirp transform of a vector a = (ao,a I, ... , an-I) is the vector y =
(Yo,YI, ... ,Yn-l), where v« = 2:j:d a.z! and Z is any complex number.
The DFT is therefore a special case of the chirp transform, obtained by
taking Z = (J}n' Prove that the chirp transform can be evaluated in time
O(n 19n) for any complex number z. (Hint: Use the equation

n-I
Yk = zk

2/2 L (ajz//2) (z- lk- j )2/ 2)

j=O

to view the chirp transform as a convolution.)

32.3 Efficient FFf implementations

Since the practical applications of the DFT, such as signal processing,
demand the utmost speed, this section examines two efficient FFT im
plementations. First, we shall examine an iterative version of the FFT
algorithm that runs in 8(n 19 n) time but has a lower constant hidden in
the 8-notation than the recursive implementation in Section 32.2. Then,
we shall use the insights that led us to the iterative implementation to
design an efficient parallel FFT circuit.
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10]
Yk ~--------I

Figure 32.3 A butterfly operation. The two input values enter from the left, w~ is
multiplied by y~l], and the sum and difference are output on the right. The figure
can be interpreted as a combinational circuit.

Figure 32.4 The tree of input vectors to the recursive calls of the RECURSIVE-FFT
procedure. The initial invocation is for n = 8.

An iterative FFT implementation

We first note that the for loop of lines 10-13 of RECURSIVE-FFT involves
computing the value w~ y11

] twice. In compiler terminology, this value is
known as a common subexpression. We can change the loop to compute it
only once, storing it in a temporary variable t.

for k <- 0 to n /2 - 1
do t <- wy[I)

Yk <- y15)+ t
[0]

Yk+(nj2) t- Yk - t
w t- WWn

The operation in this loop, multiplying W (which is equal to w~) by YilJ,

storing the product into t, and adding and subtracting t from y1°), is known
as a butterfly operation and is shown schematically in Figure 32.3.

We now show how to make the FFT algorithm iterative rather than re
cursive in structure. In Figure 32.4, we have arranged the input vectors
to the recursive calls in an invocation of RECURSIvE-FFT in a tree struc
ture, where the initial call is for n = 8. The tree has one node for each
call of the procedure, labeled by the corresponding input vector. Each
RECURSIVE-FFT invocation makes two recursive calls, unless it has re-
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ceived a l-element vector. We make the first call the left child and the
second call the right child.

Looking at the tree, we observe that if we could arrange the elements of
the initial vector a into the order in which they appear in the leaves, we
could mimic the execution of the RECURSIVE-FFf procedure as follows.
First, we take the elements in pairs, compute the DFf of each pair using
one butterfly operation, and replace the pair with its DFT. The vector
then holds nl2 2-element DFf's. Next, we take these nl2 OFT's in pairs
and compute the OFT of the four vector elements they come from by
executing two butterfly operations, replacing two 2-element OFT's with
one 4-element DFf. The vector then holds nl4 4-element OFT's. We
continue in this manner until the vector holds two (nI2)-element DFT's,
which we can combine using nl2 butterfly operations into the final n
element OFT.

To turn this observation into code, we use an array A[O.. n 1] that
initially holds the elements of the input vector a in the order in which they
appear in the leaves of the tree of Figure 32.4. (We shall show later how to
determine this order.) Because the combining has to be done on each level
of the tree, we introduce a variable s to count the levels, ranging from 1 (at
the bottom, when we are combining pairs to form 2-element OFT's) to 19n
(at the top, when we are combining two (nI2)-element DFT's to produce
the final result). The algorithm therefore has the following structure:

1 for s - 1 to 19 n
2 do for k - 0 to n - 1 by 25

3 do combine the two 25
-

I-element OFT's in
A[k .. k + 25

-
1 - I] and A[k + 25

-
I .. k + 25 -1]

into one 25-element OFT in A[k .. k + 25
- I]

We can express the body of the loop (line 3) as more precise pseudocode.
We copy the for loop from the RECURSIVE-FFT procedure, identifying ylOJ

with A[k .. k + 25
-

1 - 1] and yll) with A[k + 25
-

1 •• k + 25
- 1]. The value

of (J) used in each butterfly operation depends on the value of s; we use
ca,«, where m = 2s • (We introduce the variable m solely for the sake of
readability.) We introduce another temporary variable u that allows us to
perform the butterfly operation in place. When we replace line 3 of the
overall structure by the loop body, we get the following pseudocode, which
forms the basis of our final iterative FFT algorithm as well as the parallel
implementation we shall present later.
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FFT-BASE(a)

In+- length[a] l> n is a power of 2.
2 for s +- I to lg n
3 do m +- 25

4 W m +- e27rilm

5 for k +- 0 to n - I by m
6 do w+-I
7 for j +- 0 to ml2 - I
8 do t +- wAlk + j + m12]
9 u +- A[k + j]

10 A[k + j] +- u + t
II A[k + j + m12] +- u - t
12 W+-WWm

We now present the final version ofour iterative FFT code, which inverts
the two inner loops to eliminate some index computation and uses the
auxiliary procedure BIT-REVERSE-COpy(a, A) to copy vector a into array A
in the initial order in which we need the values.

ITERATIVE-FFT(a)

1 BIT-REVERSE-COpy(a, A)
2 n +- length[a] l> n is a power of 2.
3 for s - 1 to 19 n
4 do m +- 25

5 W m +- e27r i/ m

6 w-I
7 for j +- 0 to m12- I
8 do for k - j to n - 1 by m
9 do t f- wAlk + m12]

10 u +- A[k]
11 A[k] - u + t
12 A[k + m12] +- u - t
13 co f- WWm

14 return A

How does BIT-REVERSE-COPY get the elements of the input vector a into
the desired order in the array A? The order in which the leaves appear in
Figure 32.4 is "bit-reverse binary!' That is, if we let rev(k) be the Ign
bit integer formed by reversing the bits of the binary representation of k,
then we want to place vector element ak in array position A[rev(k)]. In
Figure 32.4, for example, the leaves appear in the order 0,4,2,6, 1,5,3, 7;
this sequence in binary is 000, 100,010, 110,001, 101,011, 111, and in bit
reverse binary we get the sequence 000,001,010,011,100,101,110,111.
To see that we want bit-reverse binary order in general, we note that at the
top level of the tree, indices whose low-order bit is 0 are placed in the left
subtree and indices whose low-order bit is I are placed in the right subtree.
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Stripping off the low-order bit at each level, we continue this process down
the tree, until we get the bit-reverse binary order at the leaves.

Since the function rev(k) is easily computed, the BIT-REVERSE-COPY
procedure can be written as follows.

BIT-REVERSE-COPy(a, A)

1 n f- length[a]
2 for k f- 0 to n - 1
3 do A[rev(k)] f- ak

The iterative FFT implementation runs in time 8(n lg n). The call to
BIT-REVERSE-COPY(a,A) certainly runs in O(n Ign) time, since we iterate
n times and can reverse an integer between 0 and n - I, with lg n bits,
in O(lg n) time. (In practice, we usually know the initial value of n in
advance, so we would probably code a table mapping k to rev(k), making
BIT-REVERSE-COPY run in 8(n) time with a low hidden constant. Alter
natively, we could use the clever amortized reverse binary counter scheme
described in Problem 18-1.) To complete the proof that ITERATIvE-FFT
runs in time 8(n 19n), we show that L(n), the number of times the body
of the innermost loop (lines 9-12) is executed, is 8(n Ign). We have

19n 2,1-1_1

L(n) I: I: ;s
s=1 j=O

19n

= I: n
. 2s - 1

s=1

Ign

= I:~
s=1

= 8(n 19n) .

A parallel FFT circuit

We can exploit many of the properties that allowed us to implement an
efficient iterative FFT algorithm to produce an efficient parallel algorithm
for the FFT. (See Chapter 29 for a description ofthe combinational-circuit
model.) The combinational circuit PARALLEL-FFT that computes the FFT
on n inputs is shown in Figure 32.5 for n = 8. The circuit begins with a
bit-reverse permutation of the inputs, followed by lg n stages, each stage
consisting of nl2 butterflies executed in parallel. The depth of the circuit
is therefore 8(lgn).

The leftmost part of the circuit PARALLEL-FFT performs the bit-reverse
permutation, and the remainder mimics the iterative FFT-BASE proce
dure. We take advantage of the fact that each iteration of the outermost
for loop performs nl2 independent butterfly operations that can be per-
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~
s==l
~

s=2
~

s==3

Figure 32.5 A combinational circuit PARALLEL-FFfthat computes the FFf, here
shown on n = 8 inputs. The stages of butterflies are labeled to correspond to
iterations of the outermost loop of the FFf-BASE procedure. An FFT on n inputs
can be computed in 8(lg n) depth with 8(n 19n) combinational elements.

formed in parallel. The value of s in each iteration within FFf-BASE
corresponds to a stage of butterflies shown in Figure 32.5. Within stage s,
for s = 1,2, ... , Ign, there are nl2s groups of butterflies (corresponding to
each value of kin FFf-BASE), with 2s- 1 butterflies per group (correspond
ing to each value of j in FFT-BASE). The butterflies shown in Figure 32.5
correspond to the butterfly operations of the innermost loop (lines 8-11
of FFT-BASE). Note also that the values of W used in the butterflies corre-

d h d i FFf B .' 0 1 m/2-1spon to t ose use In - ASE. In stage s, we use W m, W m, ••• , W m ,

where m = 2s •

Exercises

32.3-1
Show how ITERATIVE-FFf computes the DFf of the input vector (0,2,3,

1,4,5,7,9).

32.3-2
Show how to implement an FFf algorithm with the bit-reversal permuta
tion occurring at the end, rather than at the beginning, of the computation.
(Hint: Consider the inverse DFf.)
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Problems

32.3-3
To compute DFTn , how many addition, subtraction, and multiplication
elements, and how many wires, are needed in the PARALLEL-FFT circuit
described in this section? (Assume that only one wire is needed to carry a
number from one place to another.)

32.3-4 *
Suppose that the adders in the FFT circuit sometimes fail in such a man
ner that they always produce a zero output, independent of their inputs.
Suppose that exactly one adder has failed, but that you don't know which
one. Describe how you can identify the failed adder by supplying inputs
to the overall FFT circuit and observing the outputs. Try to make your
procedure efficient.

32-1 Divide-and-conquermultiplication
a. Show how to multiply two linear polynomials ax + b and ex + d using

only three multiplications. (Hint: One of the multiplications is (a + b)·
(e + d).)

b. Give two divide-and-conquer algorithms for multiplying two polyno
mials of degree-bound n that run in time 8(nlg 3) . The first algorithm
should divide the input polynomial coefficients into a high half and a
low half, and the second algorithm should divide them according to
whether their index is odd or even.

c. Show that two n-bit integers can be multiplied in O(n1g 3) steps, where
each step operates on at most a constant number of l-bit values.

32-2 Toeplitz matrices
A Toepllt; matrix is an n x n matrix A = (au) such that au = ai-l,j-I for
i = 2,3, ... , nand j = 2,3, ... , n.

a. Is the sum of two Toeplitz matrices necessarily Toeplitz? What about
the product?

b. Describe how to represent a Toeplitz matrix so that two n x n Toeplitz
matrices can be added in O(n) time.

c. Give an O(n lgnj-time algorithm for multiplying an n x n Toeplitz ma
trix by a vector of length n. Use your representation from part (b).

d. Give an efficient algorithm for multiplying two n x n Toeplitz matrices.
Analyze its running time.
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32-3 Evaluating all derivatives 0/a polynomial at a point
Given a polynomial A(x) of degree-bound n, its tth derivative is defined
by

{

A (X ) ift = 0,

A(t)(x) = -ixA(t-I)(X) if 1 :::; t :::; n - 1 ,

o if t 2: n .

From the coefficient representation (ao,a), ... ,an-d of A(x) and a given
point xo, we wish to determine A(t)(xo) for t O,I, ... .n l.

a. Given coefficients bo, bl> ... , bn - I such that

n-I

A(x) =L bj(x - xo)j ,
j=O

show how to compute A(t)(xo), for t 0,1, ... , n 1, in O(n) time.

b. Explain how to find bo,bi, ... , bn- 1 in O(n 19n) time, given A(xo + ltJ~)

for k = 0,1, ... , n - 1.

c. Prove that

n-l ( kr n-I )
A(xo + ltJ~) =~ ~! ~ j(j)g(r - j) ,

where f(j) = aj . j! and

(l) = {Xol/(-l)! if -(n -1):::; I:::; 0,
g 0 if 1 :::; I :::; (n - 1) .

d. Explain how to evaluate A(xo +~) for k = 0, 1,... , n - I in O(n Ign)
time. Conclude that all nontrivial derivatives of A(x) can be evaluated
at Xo in O( n lgn) time.

32-4 Polynomial e,aluation at multiple points
We have observed that the problem of evaluating a polynomial of degree
bound n - 1 at a single point can be solved in O(n) time using Homer's
rule. We have also discovered that such a polynomial can be evaluated
at all n complex roots of unity in O(n Ign) time using the FFT. We shall
now show how to evaluate a polynomial of degree-bound n at n arbitrary
points in O( n Ig2 n) time.

To do so, we shall use the fact that we can compute the polynomial
remainder when one such polynomial is divided by another in O(n lgn)
time, a result that we assume without proof. For example, the remainder
of 3x3 + x 2 - 3x + 1 when divided by x 2 + X + 2 is

(3x3 + x 2 - 3x + 1) mod (x2 + x + 2) = 5x - 3.
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Given the coefficient representation of a polynomial A(x) = I:Z=J aix"
and n points XO,Xl, ... ,Xn-I, we wish to compute the n values A(xo),
A(xd, ... , A(xn-d. For 0 ::s: i ::s: j ::s: n 1, define the polynomials Pij(x)
fU=i(X Xk) and Qij(x) = A(x) modpij(x). Note that Qij(x) has degree
bound at most j i.

a. Prove that A(x) mod (x z) = A(z) for any point z.

b. Prove that Qkdx) = A(Xk) and that QO,n-l(x) = A(x).

c. Prove that for i ::s: k ::s: i. we have Qik(X) = Qij(x) mod Pik(X) and
Qkj(X) = Qij(x) mod Pkj(x).

d. Give an O(n Ig2 n)-time algorithm to evaluate A(xo), A(XI),"" A(Xn_I).

32-5 FFT using modular arithmetic
As defined, the Discrete Fourier Transform requires the use of complex
numbers, which can result in a loss of precision due to round-off errors.
For some problems, the answer is known to contain only integers, and it
is desirable to utilize a variant of the FFT based on modular arithmetic
in order to guarantee that the answer is calculated exactly. An example of
such a problem is that of multiplying two polynomials with integer coeffi
cients. Exercise 32.2-6 gives one approach, using a modulus of length O(n)
bits to handle a DFT on n points. This problem gives another approach
that uses a modulus of the more reasonable length O(lgn); it requires that
you understand the material of Chapter 33. Let n be a power of 2.

a. Suppose that we search for the smallest k such that P = kn + 1 is
prime. Give a simple heuristic argument why we might expect k to be
approximately Ign. (The value of k might be much larger or smaller,
but we can reasonably expect to examine O(lgn) candidate values of k
on average.) How does the expected length of P compare to the length
of n?

Let g be a generator of Z;, and let w = gk mod p.

b. Argue that the DFT and the inverse DFT are well-defined inverse oper
ations modulo p, where w is used as a principal nth root of unity.

c. Argue that the FFT and its inverse can be made to work modulo p in
time O(n lg n), where operations on words of O(lg n) bits take unit time.
Assume that the algorithm is given p and w.

d. Compute the DFT modulo p = 17 of the vector (0,5,3,7,7,2,1,6).
Note that g = 3 is a generator of Zi7'
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Chapter notes

Chapter 32 Polynomials and the FFT

Press, Flannery, Teukolsky, and Vetterling [161, 162] have a good descrip
tion of the Fast Fourier Transform and its applications. For an excellent
introduction to signal processing, a popular FFT application area, see the
text by Oppenheim and Winsky [153].

Cooley and Tukey [51] are widely credited with devising the FFT in the
1960's. The FFT had in fact been discovered many times previously, but
its importance was not fully realized before the advent of modern digital
computers. Press, Flannery, Teukolsky, and Vetterling attribute the origins
of the method to Runge and Konig (1924).
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Number theory was once viewed as a beautiful but largely useless subject
in pure mathematics. Today number-theoretic algorithms are used widely,
due in part to the invention of cryptographic schemes based on large prime
numbers. The feasibility of these schemes rests on our ability to find
large primes easily, while their security rests on our inability to factor the
product of large primes. This chapter presents some of the number theory
and associated algorithms that underlie such applications.

Section 33.1 introduces basic concepts of number theory, such as divisi
bility, modular equivalence, and unique factorization. Section 33.2 studies
one of the world's oldest algorithms: Euclid's algorithm for computing the
greatest common divisor of two integers. Section 33.3 reviews concepts
of modular arithmetic. Section 33.4 then studies the set of multiples of a
given number a, modulo n, and shows how to find all solutions to the equa
tion ax == b (mod n) by using Euclid's algorithm. The Chinese remainder
theorem is presented in Section 33.5. Section 33.6 considers powers of a
given number a, modulo n, and presents a repeated-squaring algorithm for
efficiently computing ab mod n, given a, b, and n. This operation is at the
heart of efficient primality testing. Section 33.7 then describes the RSA
public-key cryptosystem. Section 33.8 describes a randomized primality
test that can be used to find large primes efficiently, an essential task in
creating keys for the RSA cryptosystem. Finally, Section 33.9 reviews a
simple but effective heuristic for factoring small integers. It is a curious
fact that factoring is one problem people may wish to be intractable, since
the security of RSA depends on the difficulty of factoring large integers.

Size of inputs and cost of arithmetic computations

Because we shall be working with large integers, we need to adjust how we
think about the size of an input and about the cost of elementary arithmetic
operations.

In this chapter, a "large input" typically means an input containing "large
integers" rather than an input containing "many integers" (as for sorting).
Thus, we shall measure the size of an input in terms of the number of
bits required to represent that input, not just the number of integers in
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the input. An algorithm with integer inputs ai, a2, . . . ,ak is a polynomial
time algorithm if it runs in time polynomial in lgai, lga2, ... ,lg ai; that is,
polynomial in the lengths of its binary-encoded inputs.

In most of this book, we have found it convenient to think of the el
ementary arithmetic operations (multiplications, divisions, or computing
remainders) as primitive operations that take one unit of time. By counting
the number of such arithmetic operations an algorithm performs, we have
a basis for making a reasonable estimate of the algorithm's actual running
time on a computer. Elementary operations can be time-consuming, how
ever, when their inputs are large. It thus becomes convenient to measure
how many bit operations a number-theoretic algorithm requires. In this
model, a multiplication of two P-bit integers by the ordinary method uses
8(.0 2) bit operations. Similarly, the operation of dividing a P-bit integer
by a shorter integer, or the operation of taking the remainder of a P-bit
integer when divided by a shorter integer, can be performed in time 8(.0 2 )

by simple algorithms. (See Exercise 33.1-11.) Faster methods are known.
For example, a simple divide-and-conquer method for multiplying two .o
bit integers has a running time of 8(plg2 3), and the fastest known method
has a running time of 8(.0 lg .0 lg19 .0). For practical purposes, however,
the 8(.0 2) algorithm is often best, and we shall use this bound as a basis
for our analyses.

In this chapter, algorithms are generally analyzed in terms of both the
number of arithmetic operations and the number of bit operations they
require.

33.1 Elementary number-theoretic notions

This section provides a brief review of notions from elementary number
theory concerning the set Z {... , - 2, 1, 0, 1,2, ...} of integers and the
set N = {O, 1,2, ...} of natural numbers.

Divisibility and divisors

The notion of one integer being divisible by another is a central one in
the theory of numbers. The notation d Ia (read rd diJlides a") means that
a = kd for some integer k. Every integer divides O. If a > 0 and d I a,
then Idl $ lal. If d I a, then we also say that a is a multiple of d. If d does
not divide a, we write d l a.

If d I a and d ~ 0, we say that d is a diJlisor of a. Note that d I a if
and only if -d I a, so that no generality is lost by defining the divisors
to be nonnegative, with the understanding that the negative of any divisor
of a also divides a. A divisor of an integer a is at least 1 but not greater
than lal. For example, the divisors of 24 are 1, 2, 3,4, 6, 8, 12, and 24.
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Every integer a is divisible by the trivial divisors I and a. Nontrivial
divisors of a are also called factors of a. For example, the factors of 20
are 2, 4, 5, and 10.

Prime and composite numbers

An integer a > I whose only divisors are the trivial divisors I and a is
said to be a prime number (or, more simply, a prime). Primes have many
special properties and playa critical role in number theory. The small
primes, in order, are

2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, ...

Exercise 33.1-1 asks you to prove that there are infinitely many primes. An
integer a > I that is not prime is said to be a composite number (or, more
simply, a composite). For example, 39 is composite because 3 I 39. The
integer 1 is said to be a unit and is neither prime nor composite. Similarly,
the integer 0 and all negative integers are neither prime nor composite.

The division theorem, remainders, and modular equivalence

Given an integer n, the integers can be partitioned into those that are
multiples of n and those that are not multiples of n. Much number the
ory is based upon a refinement of this partition obtained by classifying
the nonmultiples of n according to their remainders when divided by n.
The following theorem is the basis for this refinement. The proof of this
theorem will not be given here (see, for example, Niven and Zuckerman
[151]).

Theorem 33.1 (Division theorem)
For any integer a and any positive integer n, there are unique integers q
and r such that 0 :s r < n and a = qn + r, •

The value q = La/nJ is the quotient of the division. The value r =

a mod n is the remainder (or residue) of the division. We have that n I a
if and only if a mod n O. It follows that

a = La/ nJn + (a mod n)

or

a mod n = a - LajnJ n .

(33.1 )

(33.2)

Given a well-defined notion of the remainder of one integer when di
vided by another, it is convenient to provide special notation to indi
cate equality of remainders. If (a mod n) = (b mod n), we write a == b
(mod n) and say that a is equivalent to b, modulo n, In other words, a == b
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(mod n) if a and b have the same remainder when divided by n. Equiva
lently, a == b (mod n) if and only if n I (b - a). We write a "¥:. b (mod n)
if a is not equivalent to b, modulo n. For example, 61 == 6 (mod II).
Also, 13 == 22 == 2 (mod 5).

The integers can be divided into n equivalence classes according to their
remainders modulo n. The equivalence class modulo n containing an inte
ger a is

[a]n = {a + kn : k E Z} .

For example, Ph = { ... , -II, -4, 3,10,17, ...}; other denotations for this
set are [-4h and [IO]». Writing a E [b]n is the same as writing a == b
(mod n). The set of all such equivalence classes is

Zn = {[a]n : 0 ~ a ~ n - I} .

One often sees the definition

Zn {O, I, ... .n - I} ,

(33.3)

(33.4)

which should be read as equivalent to equation (33.3) with the under
standing that 0 represents [O]n, I represents [I]n, and so on; each class is
represented by its least nonnegative element. The underlying equivalence
classes must be kept in mind, however. For example, a reference to -1 as
a member of Zn is a reference to [n - l]n, since -I == n - I (mod n).

Common divisors and greatest common divisors

If d is a divisor of a and also a divisor of b, then d is a common divisor of
a and b. For example, the divisors of 30 are I, 2, 3, 5, 6, 10, 15, and 30,
and so the common divisors of 24 and 30 are I, 2, 3, and 6. Note that 1
is a common divisor of any two integers.

An important property of common divisors is that

d Ia and d Ib implies d I (a + b) and d I (a - b) .

More generally, we have that

d Ia and d I b implies d I (ax + by)

(33.5)

(33.6)

for any integers x and y. Also, if a I b, then either lal ~ Ibl or b = 0,
which implies that

a Iband b Ia implies a = ±b . (33.7)

The greatest common divisor of two integers a and b, not both zero, is
the largest of the common divisors of a and b; it is denoted gcd(a, b). For
example, gcd(24,30) = 6, gcd(5,7) = I, and gcd(0,9) = 9. If a and b
are not both 0, then gcd(a, b) is an integer between 1 and mim]e], Ibl).
We define gcd(O,O) to be 0; this definition is necessary to make standard
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properties of the gcd function (such as equation (33.11) below) universally
valid.

The following are elementary properties of the gcd function:

gcd(a,b) = gcd(b,a), (33.8)

gcd(a,b) gcd(-a,b) , (33.9)

gcd(a,b) gcdt]«], Ibl) , (33.10)

gcd(a,O) lal (33.11)

gcd(a,ka) lal for any k E Z. (33.12)

Theorem 33.2
If a and b are any integers, not both zero, then gcd(a, b) is the smallest
positive element of the set {ax + by : x, y E Z} of linear combinations of
a and b.

Proof Let s be the smallest positive such linear combination of a and b,
and let s = ax + by for some x,y E Z. Let q = LajsJ. Equation (33.2)
then implies

a mods a - qs

= a q(ax + by)

a(l-qx)+b(-qy) ,

and thus a mod s is a linear combination of a and b as well. But, since
a mod s < s, we have that a mod s = 0, because s is the smallest positive
such linear combination. Therefore, s I a and, by analogous reasoning,
sib. Thus, s is a common divisor of a and b, and so gcd(a, b) ~ s.
Equation (33.6) implies that gcd(a, b) I s, since gcd(a, b) divides both a
and band s is a linear combination of a and b. But gcd(a, b) I sand
s » 0 imply that gcd(a,b) $ s. Combining gcd(a,b) ~ sand gcd(a,b) $ s
yields gcd(a, b) = s; we conclude that s is the greatest common divisor of
a and b. •

Corollary 33.3
For any integers a and b, if d I a and d Ib then d Igcd(a, b) .

Proof This corollary follows from equation (33.6), because gcd(a, b) is a
linear combination of a and b by Theorem 33.2. •

Corollary 33.4
For all integers a and b and any nonnegative integer n,

gcd(an,bn) ngcd(a,b).

Proof If n = 0, the corollary is trivial. If n > 0, then gcd(an, bn) is
the smallest positive element of the set {anx + bny}, which is n times the
smallest positive element of the set {ax + by}. •
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Corollary 33.5
For all positive integers n, a, and b, if n , ab and gcd(a, n) = 1, then nib.

Proof The proof is left as Exercise 33.1-4.

Relatively prime integers

-
Two integers a, b are said to be relatively prime if their only common
divisor is 1, that is, if gcd(a, b) = 1. For example, 8 and 15 are relatively
prime, since the divisors of 8 are 1, 2, 4, and 8, while the divisors of 15
are 1, 3, 5, and 15. The following theorem states that if two integers are
each relatively prime to an integer p, then their product is relatively prime
to p.

Theorem 33.6
For any integers a, b, and p, if gcd(a,p) = 1 and gcd(b,p) = 1, then
gcd(ab,p) = 1.

Proof It follows from Theorem 33.2 that there exist integers x, y, x',
and y' such that

ax + py = 1,

bx' + py' 1 .

Multiplying these equations and rearranging, we have

ab(xx') +p(ybx' +y'ax +pyy') = 1 .

Since 1 is thus a positive linear combination of ab and p, an appeal to
Theorem 33.2 completes the proof. _

We say that integers n\, nz, ... , nk are pairwise relatively prime if, when
ever i 1" j, we have gcd(ni, nj) = 1.

Unique factorization

An elementary but important fact about divisibility by primes is the fol
lowing.

Theorem 33.7
For all primes p and all integers a, b, if p Iab, then p Ia or p , b.

Proof Assume for the purpose of contradiction that p Iab but that p La
and p 1b. Thus, gcd(a,p) = I and gcd(b,p) = 1, since the only divisors
of pare 1 and p, and by assumption p divides neither a nor b. Theo
rem 33.6 then implies that gcd(ab,p) = 1, contradicting our assumption
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that P I ab, since P I ab implies gcd(ab,p) = p, This contradiction com
pletes the proof. _

A consequence of Theorem 33.7 is that an integer has a unique factor
ization into primes.

Theorem 33.8 (Unique factorization)
A composite integer a can be written in exactly one way as a product of
the form

where the Pi are prime, PI < P2 < '" < Pr, and the e, are positive integers.

Proof The proof is left Exercise 33.1-10. -
As an example, the number 6000 can be uniquely factored as 24 • 3 . 53.

Exercises

33.1-1
Prove that there are infinitely many primes. (Hint: Show that none of the
primes PI, P2, ... ,Pk divide (PIP2 ... Pk) + 1.)

33.1-2
Prove that if a I band b Ic, then a [c.

33.1-3
Prove that if P is prime and 0 < k < P, then gcd(k,p) = 1.

33.1-4
Prove Corollary 33.5.

33.1-5
Prove that if P is prime and 0 < k < p, then P I (n. Conclude that for all
integers a, b, and primes P,

(a + b)P == aP+ b" (mod p) .

33.1-6
Prove that if a and b are any integers such that a I band b > 0, then

(x mod b) mod a xmoda

for any x. Prove, under the same assumptions, that

x == y (mod b) implies x == y (mod a)

for any integers x and y.
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33.1-7
For any integer k > 0, we say that an integer n is a kt. power if there exists
an integer a such that ak = n. We say that n > 1 is a nontri,ial power if it
is a kth power for some integer k > 1. Show how to determine if a given
P-bit integer n is a nontrivial power in time polynomial in p.

33.1-8
Prove equations (33.8)-(33.12).

33.1-9
Show that the gcd operator is associative. That is, prove that for all integers
a, b, and c,

gcd(a, gcd(b, c)) = gcd(gcd(a, b),c) .

33.1-10 *
Prove Theorem 33.8.

33.1-11
Give efficient algorithms for the operations of dividing a P-bit integer by a
shorter integer and of taking the remainder of a P-bit integer when divided
by a shorter integer. Your algorithms should run in time O(P2 ) .

33.1-12
Give an efficient algorithm to convert a given P-bit (binary) integer to a
decimal representation. Argue that if multiplication or division of inte
gers whose length is at most P takes time M(P), then binary-to-decimal
conversion can be performed in time 9(M(P) IgP). (Hint: Use a divide
and-conquer approach, obtaining the top and bottom halves of the result
with separate recursions.)

33.2 Greatest common divisor

In this section, we use Euclid's algorithm to compute the greatest common
divisor of two integers efficiently. The analysis of running time brings up
a surprising connection with the Fibonacci numbers, which yield a worst
case input for Euclid's algorithm.

We restrict ourselves in this section to nonnegative integers. This re
striction is justified by equation (33.10), which states that gcd(a,b) =
gcd(lal,lbl).

In principle, we can compute gcd(a, b) for positive integers a and b from
the prime factorizations of a and b. Indeed, if

a pe1pe2 ... per
I 2 r'

b = pf'pfi ... pfr
1 2 r'

(33.13)

(33.14)
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with zero exponents being used to make the set of primes PI, P2, ... ,Pr the
same for both a and b, then

(33.15)

As we shall show in Section 33.9, the best algorithms to date for factoring
do not run in polynomial time. Thus, this approach to computing greatest
common divisors seems unlikely to yield an efficient algorithm.

Euclid's algorithm for computing greatest common divisors is based on
the following theorem.

Theorem 33.9 (GCD recursion theorem)
For any nonnegative integer a and any positive integer b,

gcd(a, b) = gcd(b, a mod b) .

Proof We shall show that gcd(a,b) and gcd(b,a mod b) divide each
other, so that by equation (33.7) they must be equal (since they are both
nonnegative) .

We first show that gcd(a,b) I gcd(b,a mod b). If we let d = gcd(a,b),
then d I a and d I b. By equation (33.2), (a mod b) = a - qb, where
q = La/ bJ. Since (a mod b) is thus a linear combination of a and b,
equation (33.6) implies that d I (a mod b). Therefore, since d I band d I
(a mod b), Corollary 33.3 implies that d Igcd(b, a mod b) or, equivalently,
that

gcd(a, b) Igcd(b, a mod b). (33.16)

Showing that gcd(b,a mod b) Igcd(a, b) is almost the same. If we now
let d = gcd(b,a mod b), then dJ band d I (a mod b). Since a qb +
(a mod b), where q = La/bJ, we have that a is a linear combination of b
and (a mod b). By equation (33.6), we conclude that d I a. Since d I b
and d I a, we have that d I gcd(a, b) by Corollary 33.3 or, equivalently,
that

gcd(b, a mod b) Igcd(a, b). (33.17)

Using equation (33.7) to combine equations (33.16) and (33.17) completes
the proof. _

Euclid's algorithm

The following gcd algorithm is described in the Elements of Euclid (circa
300 B.C.), although it may be of even earlier origin. It is written as a
recursive program based directly on Theorem 33.9. The inputs a and b
are arbitrary nonnegative integers.
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EUCLIo(a,b)

1 ifb=O
2 then return a
3 else return EUCLIO(b, a mod b)

As an example of the running of EUCLIO, consider the computation of
gcd(30, 21):

EUCLIO(30, 21) EUCLIO(21,9)

EUCLIO(9,3)

= EUCLIO(3,0)

3.

In this computation, there are three recursive invocations of EUCLIO.
The correctness of EUCLID follows from Theorem 33.9 and the fact that

if the algorithm returns a in line 2, then b = 0, so equation (33.11) implies
that gcd(a, b) = gcd(a,O) = a. The algorithm cannot recurse indefinitely,
since the second argument strictly decreases in each recursive call. There
fore, EUCLIO always terminates with the correct answer.

The running time of Euclid's algorithm

We analyze the worst-case running time of EUCLID as a function of the
size of a and b. We assume with little loss of generality that a > b 2: 0.
This assumption can be justified by the observation that if b > a 2: 0,
then EUCLIo(a, b) immediately makes the recursive call EUCLIO(b, a). That
is, if the first argument is less than the second argument, EUCLIO spends
one recursive call swapping its arguments and then proceeds. Similarly,
if b a > 0, the procedure terminates after one recursive call, since
a modb = 0.

The overall running time of EUCLID is proportional to the number of
recursive calls it makes. Our analysis makes use of the Fibonacci num
bers Fi; defined by the recurrence (2.13).

Lemma 33.10
If a > b 2: °and the invocation Euci.mi«, b) performs k?: recursive
calls, then a 2: Fk +2 and b ?: Fk + ).

Proof The proof is by induction on k, For the basis of the induction,
let k = 1. Then, b ?: 1 = F2 , and since a > b, we must have a 2: 2 = F3 .

Since b > (a mod b), in each recursive call the first argument is strictly
larger than the second; the assumption that a > b therefore holds for each
recursive call.

Assume inductively that the lemma is true if k - 1 recursive calls are
made; we shall then prove that it is true for k recursive calls. Since
k > 0, we have b > 0, and EUCLIO(a,b) calls EUCLIO(b,a mod b) re-
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cursively, which in turn makes k - I recursive calls. The inductive hy
pothesis then implies that b ~ Fk+1 (thus proving part of the lemma), and
(a mod b) ~ Fi, We have

b + (a mod b) = b + (a La/ bJb)

< a,

since a > b > 0 implies La/bJ ~ l. Thus,

a ~ b + (a mod b)

> Fk+1 +Fk

Fk+2 •

The following theorem is an immediate corollary of this lemma.

-
Theorem 33.11 (Lame's theorem)
For any integer k ~ 1, if a > b ~ 0 and b < Fk +I, then the invocation
EucLID(a, b) makes fewer than k recursive calls. _

We can show that the upper bound ofTheorem 33.11 is the best possible.
Consecutive Fibonacci numbers are a worst-case input for EUCLID. Since
EUCLID(F3, Fz) makes exactly one recursive call, and since for k ~ 2 we
have Fk +1 mod Fk = Fk - I> we also have

gcd(Fb (Fk + 1 mod Fd)

gcd(FbFk _ 1) •

Thus, EUCLID(Fk + I> Fk ) recurses exactly k - I times, meeting the upper
bound of Theorem 33.11.

Since Fk is approximately ql/ J"S, where 1J is the golden ratio ( I + J"S)/2
defined by equation (2.14), the number of recursive calls in EUCLID is
O(lg b). (See Exercise 33.2-5 for a tighter bound.) It follows that if EUCLID
is applied to two P-bit numbers, then it will perform O(P) arithmetic
operations and 0(P 3 ) bit operations (assuming that multiplication and
division of P-bit numbers take 0(P2 ) bit operations). Problem 33-2 asks
you to show an O(pz) bound on the number of bit operations.

The extended form of Euclid's algorithm

We now rewrite Euclid's algorithm to compute additional useful informa
tion. Specifically, we extend the algorithm to compute the integer coeffi
cients x and y such that

d = gcd(a, b) = ax + by . (33.18)

Note that x and y may be zero or negative. We shall find these coefficients
useful later for the computation of modular multiplicative inverses. The
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a b la/bJ d x y

99 78 1 3 -11 14
78 21 3 3 3 -11
21 15 1 3 -2 3
15 6 2 3 I -2
6 3 2 3 0 1
3 0 3 1 0

Figure 33.1 An example of the operation of EXTENDED-EuCLID on the inputs 99
and 78. Each line shows for one level of the recursion: the values of the inputs a
and b, the computed value La/bJ, and the values d, x, and y returned. The triple
(d, x, y) returned becomes the triple (d', x' ,y') used in the computation at the next
higher level of recursion. The call EXTENDED-EuCLID(99, 78) returns (3, 11,14),
so gcd(99, 78) = 3 and gcd(99, 78) = 3 = 99· (-11) + 78·14.

procedure EXTENDED-EuCLID takes as input an arbitrary pair of integers
and returns a triple of the form (d,x,y) that satisfies equation (33.18).

EXTENDED-EuCLID(a, b)

I if b = 0
2 then return (a, 1,0)
3 (d',x',y') f- EXTENDED-EuCLID(b, a mod b)
4 (d,x,y) f- (d',y',x' - LaJbJ y')
5 return (d, x, y)

Figure 33.1 illustrates the execution of EXTENDED-EuCLID with the com
putation of gcd(99, 78).

The EXTENDED-EuCLID procedure is a variation of the EUCLID proce
dure. Line I is equivalent to the test "b 0" in line I of EUCLID. If b 0,
then EXTENDED-EuCLID returns not only d = a in line 2, but also the coef
ficients x = 1 and y = 0, so that a = ax +by. If b =/; 0, EXTENDED-EuCLID
first computes (d',x',y') such that d' = gcd(b,a mod b) and

d' = bx' + (a mod b)y' . (33.19)

As for EUCLID, we have in this case d = gcd(a, b) = d' = gcd(b, a mod b).
To obtain x and y such that d = ax + by, we start by rewriting equa
tion (33.19) using the equation d = d' and equation (33.2):

d bx' + (a - LaJbJ b)y'

ay' + b(x' - LaJbJ y') .

Thus, choosing x = y' and y = x' - LaJbJ y' satisfies the equation d =
ax + by, proving the correctness of EXTENDED-EuCLID.

Since the number of recursive calls made in EUCLID is equal to the
number of recursive calls made in EXTENDED-EuCLID, the running times of
EUCLID and EXTENDED-EuCLID are the same, to within a constant factor.
That is, for a > b > 0, the number of recursive calls is O(lg b).
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Exercises

33.2-1
Prove that equations (33.13)-(33.14) imply equation (33.15).

813

33.2-2
Compute the values (d,x,y) that are output by the invocation EXTENDED
EUCLID(899,493).

33.2-3
Prove that for all integers a, k, and n,

gcd(a, n) = gcd(a + kn, n) .

33.2-4
Rewrite EUCLID in an iterative form that uses only a constant amount of
memory (that is, stores only a constant number of integer values).

33.2-5
If a > b ~ 0, show that the invocation EUCLID(a, b) makes at most 1 +
log, b recursive calls. Improve this bound to 1+ 10g1>(b/ gcd(a, b)).

33.2-6
What does EXTENDED-EuCLID(Fk+"Fd return? Prove your answer cor
rect.

33.2-7
Verify the output (d,x,y) of EXTENDED-EucLID(a,b) by showing that if
d Ia, d Ib, and d = ax + by, then d = gcd(a,b).

33.2-8
Define the gcd function for more than two arguments by the recursive
equation gcd(ao,aj, ... ,n) = gcd(ao,gcd(a" ... ,an ) ) . Show that gcd re
turns the same answer independent of the order in which its arguments are
specified. Show how to find Xo,X),".,Xn such that gcd(ao,aj, ... ,an ) =
aoxo +alx, + ... + anxn. Show that the number of divisions performed by
your algorithm is O(n + lgfrnax,ai))'

33.2-9
Define lcm(a" a2, ... , an) to be the least common multiple of the integers
aj, a2, . . . , an, that is, the least nonnegative integer that is a multiple of
each a.. Show how to compute lcm(al,a2, ... ,an ) efficiently using the
(two-argument) gcd operation as a subroutine.

33.2-10
Prove that n), nz, n3, and n4 are pairwise relatively prime if and only if
gcd(nln2,n3n4) = gcd(nln3,n2n4) = 1. Show more generally that n),n2,
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••• , nk are pairwise relatively prime if and only if a set of flgkl pairs of
numbers derived from the n, are relatively prime.

33.3 Modular arithmetic

Informally, we can think of modular arithmetic as arithmetic as usual
over the integers, except that if we are working modulo n, then every
result x is replaced by the element of {O, 1, ... , n - I} that is equivalent
to x, modulo n (that is, x is replaced by x mod n). This informal model
is sufficient if we stick to the operations of addition, subtraction, and
multiplication. A more formal model for modular arithmetic, which we
now give, is best described within the framework of group theory.

Finite groups

A group (S, EV) is a set S together with a binary operation EEl defined on S
for which the following properties hold.

1. Closure: For all a, b E S, we have a EV b e S.
2. Identity: There is an element e E S such that e EV a = a EEl e = a for all

a ES.
3. Associativity: For all a, b, C E S, we have (a EEl b) EEl C = a EEl (b EEl c).

4. Inverses: For each a E S, there exists a unique element b E S such that
a EEl b = b EV a = e.

As an example, consider the familiar group (Z, +) of the integers Z under
the operation of addition: 0 is the identity, and the inverse of a is -a. If
a group (S, EEl) satisfies the commutative law a EEl b = b EEl a for all a, b E S,
then it is an abelian group. If a group (S, EEl) satisfies lSI < 00, then it is a
finite group.

The groups defined by modular addition and multiplication

We can form two finite abelian groups by using addition and multiplication
modulo n, where n is a positive integer. These groups are based on the
equivalence classes of the integers modulo n, defined in Section 33.1.

To define a group on Zn, we need to have suitable binary operations,
which we obtain by redefining the ordinary operations of addition and
multiplication. It is easy to define addition and multiplication operations
for Zn, because the equivalence class of two integers uniquely determines
the equivalence class of their sum or product. That is, if a == a' (mod n)
and b == b' (mod n), then

a + b _ a' + b' (mod n) ,

ab == a'b' (mod n) .
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-?i0 2 3 4 5 15 2 4 7 8 II 13 14

I 2 3 4 5 I I 2 4 7 8 II 13 14o 0
I I 2 3 4 5 0 2 2 4 8 14 I 7 II 13

2 2 3 4 5 0 I 4 4 8 I 13 2 14 7 II

3 3 4 5 0 I 2 7 7 14 n 4 II 2 I 8

4 4 5 0 I 2 3 8 8 I 2 II 4 13 14 7

5 5 0 I 2 3 4 II ]] 7 14 2 13 I 8 4
13 13 II 7 1 14 8 4 2

14 14 13 II 8 7 4 2 I

(a) (b)

Figure 33.2 Two finite groups. Equivalence classes are denoted by their represen-
tative elements. (a) The group (Z6, +6). (b) The group (Z;S, '15).

Thus, we define addition and multiplication modulo n, denoted +n and
"n- as follows:

[aln +n [bln = [a + bln ,

[c], On [b]n = [abln.

(Subtraction can be similarly defined on Z; by [aln r:n [b]n = [a b]n,
but division is more complicated, as we shall see.) These facts justify the
common and convenient practice of using the least nonnegative element of
each equivalence class as its representative when performing computations
in Zn. Addition, subtraction, and multiplication are performed as usual
on the representatives, but each result x is replaced by the representative
of its class (that is, by x mod n).

Using this definition of addition modulo n, we define the additive group
modulo n as (Zn, +n). This size of the additive group modulo n is IZnl = n.
Figure 33.2(a) gives the operation table for the group (Z6, +6).

Theorem 33.12
The system (Zn, +n) is a finite abelian group.

Proof Associativity and commutativity of +n follow from the associa
tivity and commutativity of +:

([aln +n [bln) +n [eln [(a + b) + eln
[a+(b+e)]n

= [aln +n ([bln +n [eln) ,

[aln +n [bln [a + bln

= [b + aln
[bln +n [a]n .
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The identity element of (Zn,+n) is 0 (that is, [O],). The (additive)
inverse of an element a (that is, [aln) is the element -a (that is, [-a]n or
[n a]n), since [a]n +n [-a]n = [a a]n [O]n. •

Using the definition of multiplication modulo n, we define the multi
plicative group modulo n as (Z~, ·n). The elements of this group are the
set Z~ of elements in Zn that are relatively prime to n:

Z~ = ([a]n E Zn: gcd(a,n) = I} .

To see that Z~ is well defined, note that for 0 ~ a < n, we have a == (a+kn)
(mod n) for all integers k, By Exercise 33.2-3, therefore, gcd(a, n) = I
implies gcd(a+kn, n) = 1 for all integers k, Since [a]n = {a + kn : k E Z},
the set Z~ is well defined. An example of such a group is

Zis = {I, 2, 4,7,8,11,13, 14} ,

where the group operation is multiplication modulo 15. (Here we denote
an element [ahs as a.) Figure 33.2(b) shows the group (Zi5' 'IS)' For
example, 8 . 11 == 13 (mod 15), working in Zi5' The identity for this
group is 1.

Theorem 33.13
The system (Z~, 'n) is a finite abelian group,

Proof Theorem 33.6 implies that (Z~, 'n) is closed. Associativity and
commutativity can be proved for "n as they were for +n in the proof of
Theorem 33.12. The identity element is [l]n. To show the existence
of inverses, let a be an element of Z~ and let (d, x, y) be the output of
EXTENDED-EucLlD(a, n). Then d = I, since a E Z~, and

ax + ny = I

or, equivalently,

ax 1 (mod n) .

Thus, [x]n is a multiplicative inverse of [a]n, modulo n. The proof that
inverses are uniquely defined is deferred until Corollary 33.26. •

When working with the groups (Zn, +n) and (Zn, 'n) in the remainder
of this chapter, we follow the convenient practice of denoting equivalence
classes by their representative elements and denoting the operations +n
and "n by the usual arithmetic notations + and, (or juxtaposition) respec
tively. Also, equivalences modulo n may also be interpreted as equations
in Zn. For example, the following two statements are equivalent:

ax = b (mod n) ,

[a]n "n [x]n = [b]n'
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As a further convenience, we sometimes refer to a group (S, EB) merely
as S when the operation is understood from context. We may thus refer
to the groups (Zn, +n) and (Z~, on) as Zn and Z~, respectively,

The (multiplicative) inverse of an element a is denoted (a-I mod n).
Division in Z~ is defined by the equation alb == ab :' (mod n). For ex
ample, in Zi5 we have that 7- 1 == 13 (mod 15), since 7·13 == 91 == 1
(mod 15), so that 4/7 == 4·13 == 7 (mod 15).

The size of Z~ is denoted <p(n). This function, known as Euler's phi
function, satisfies the equation

(33.20)

where p runs over all the primes dividing n (including n itself, if n is
prime). We shall not prove this formula here. Intuitively, we begin with a
list of the n remainders {O, 1, ... .n - I} and then, for each prime p that
divides n, cross out every multiple of p in the list. For example, since the
prime divisors of 45 are 3 and 5,

<p(45) = 45(1 ~)(1-~)

= 45 (~) (~)
24.

If p is prime, then Z; = {I, 2, ... .p I}, and

<p(p) = pl.

If n is composite, then <p(n) < n l.

Subgroups

(33.21)

If (S, EB) is a group, S' ~ S, and (S', EB) is also a group, then (S', EB) is
said to be a subgroup of (S,EB). For example, the even integers form a
subgroup of the integers under the operation of addition. The following
theorem provides a useful tool for recognizing subgroups.

Theorem 33.14 (A closed subset ofa finite group is a subgroup)
If (S, EB) is a finite group and S' is any subset of S such that a EB b E S' for
all a.b E S', then (S',EB) is a subgroup of (S,EB).

Proof The proof is left as Exercise 33.3-2. •
For example, the set {O, 2, 4, 6} forms a subgroup of Zg, since it is closed

under the operation + (that is, it is closed under +8).
The following theorem provides an extremely useful constraint on the

size of a subgroup.
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Theorem 33.15 (Lagrange's theorem)
If (S,EB) is a finite group and (S',EB) is a subgroup of (S,EB), then IS'I is a
divisor of lSI. •

A subgroup S' of a group S is said to be a proper subgroup if S' i= S.
The following corollary will be used in our analysis of the Miller-Rabin
primality test procedure in Section 33.8.

Corollary 33.16
If S' is a proper subgroup of a finite group S, then IS'I :::; lSI /2. •

Subgroups generated by an element

Theorem 33.14 provides an interesting way to produce a subgroup of a
finite group (S,EB): choose an element a and take all elements that can be
generated from a using the group operation. Specifically, define ark) for
k ~ 1 by

k

ark) = EB a = p EB a E& ... EB '! .
i=1 k

For example, if we take a = 2 in the group Z6, the sequence a(1), a(2), ... is

2, 4, 0, 2, 4, 0,2,4,0, . .. .

In the group Zn, we have d k ) = ka mod n, and in the group Z~, we have
ark) = ak mod n. The subgroup generated by a, denoted (a) or ((a),EB), is
defined by

(a) = {a(k): k > I} .

We say that a generates the subgroup (a) or that a is a generator of (a).
Since S is finite, (a) is a finite subset of S, possibly including all of S.
Since the associativity of E& implies

aU) EB aU) = a(i+j) ,

(a) is closed and therefore, by Theorem 33.14, (a) is a subgroup of S. For
example, in Z6, we have

(0) = {O},

(I) = {O, 1,2,3,4,5} ,

(2) {O, 2, 4} .

Similarly, in Z;, we have

(I) = {I},

(2) = {1,2,4},

(3) = {1,2,3,4,5,6}
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The order of a (in the group S), denoted ord(a), is defined as the least
t > 0 such that a(t) = e.

Theorem 33.17
For any finite group (S, EB) and any a E S, the order of an element is equal
to the size of the subgroup it generates, or ord(a) = l(a)l.

Proof Let t = ord(a). Since a(t) = e and a(t+k) = a(t) EB a(k) = a(k) for
k ~ 1, if i > t, then aU) = aU) for some j < i. Thus, no new elements
are seen after a(t), and (a) = {a(I),a(2), ... ,a(t)}. To show that l(a)1 = t,
suppose for the purpose of contradiction that aU) = aU) for some i, j
satisfying 1 ~ i < j ~ t. Then, aU+k ) = aU+k ) for k ~ O. But this implies
that au+(t- j)) = aU+(I- j») = e, a contradiction, since i + (t - j) < t but t is
the least positive value such that a(t) = e. Therefore, each element of the
sequence a(l),a(2), ... .a''! is distinct, and l(a)1 = t. _

Corollary 33.18
The sequence a( I), a (2) , ••• is periodic with period t = ord( a); that is, aU) =
aU) if and only if i == j (mod t). _

It is consistent with the above corollary to define a(O) as e and aU) as
a(imodl) for all integers i.

Corollary 33.19
If (S,EB) is a finite group with identity e, then for all a E S,

a(ISIl = e.

Proof Lagrange's theorem implies that ord(a) I lSI, and so lSI _ 0
(mod t), where t = ord(a). _

Exercises

33.3-1
Draw the group operation tables for the groups (Z4, +4) and (Z;, '5)' Show
that these groups are isomorphic by exhibiting a one-to-one correspon
dence 0: between their elements such that a + b == c (mod 4) if and only
if o:(a) . o:(b) == o:(c) (mod 5).

33.3-2
Prove Theorem 33.14.

33.3-3
Show that if p is prime and e is a positive integer, then
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33.3-4
Show that for any n > 1 and for any a E Z~, the function fa : Z~ -> Z~

defined by fa(x) = ax mod n is a permutation of Z~.

33.3-5
List all of the subgroups of Z9 and of Zi3"

33.4 Solving modular linear equations

We now consider the problem of finding solutions to the equation

ax == b (mod n) , (33.22)

where n > 0, an important practical problem. We assume that a, b,
and n are given, and we are to find the x's, modulo n, that satisfy equa
tion (33.22). There may be zero, one, or more than one such solution.

Let (a) denote the subgroup of Zn generated by a. Since (a) = {a(X) :
x> O] = {ax mod n : x> a}, equation (33.22) has a solution if and only
if b « (a). Lagrange's theorem (Theorem 33.15) tells us that ](a}1 must be
a divisor of n. The following theorem gives us a precise characterization
of (a).

Theorem 33.20
For any positive integers a and n, if d = gcd(a, n), then

(a) = (d) = {0,d,2d, ... ,((njd) -1)d} ,

and thus

l(a)1 = njd .

(33.23)

Proof We begin by showing that d E (a). Observe that EXTENDED
EucLID(a,n) produces integers x' and y' such that ax' + ny' = d. Thus,
ax' == d (mod n), so that d E (a).

Since d E (a), it follows that every multiple of d belongs to (a), because
a multiple of a multiple of a is a multiple of a. Thus, (a) contains every
element in {0,d,2d, ... ,((njd) l)d}. That is, (d) ~ (a).

We now show that (a) ~ (d). If m E (a), then m ax mod n for some
integer x, and so m = ax + ny for some integer y. However, d I a and
din, and so dim by equation (33.6). Therefore, m e (d).

Combining these results, we have that (a) (d). To see that l(a)1 n[d.
observe that there are exactly nfd multiples of d between °and n 1,
inclusive. _
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Corollary 33.21
The equation ax == b (mod n) is solvable for the unknown x if and only
if gcd(a, n) lb. -

Corollary 33.22
The equation ax == b (mod n) either has d distinct solutions modulo n,
where d := gcd(a, n), or it has no solutions.

Proof Ifax == b (mod n) has a solution, then b E (a). The sequence
at mod n, for t := 0, I, ... is periodic with period l(a)1 := n[d, by Corol
lary 33.18. If b E (a), then b appears exactly d times in the sequence
at mod n, for i := 0,1, ... , n - 1, since the length-(njd) block of values (a)
is repeated exactly d times as i increases from 0 to n - 1. The indices x
of these d positions are the solutions of the equation ax == b (mod n). _

Theorem 33.23
Let d = gcd(a, n), and suppose that d = ax' + ny' for some integers x'
and y' (for example, as computed by EXTENDED-EuCLID). If d I b, then
the equation ax == b (mod n) has as one of its solutions the value xo,
where

Xo = x'(b/d) mod n .

Proof Since ax' == d (mod n), we have

axo - ax'(bjd) (mod n)

== d(b/d) (mod n)

== b (mod n) ,

and thus Xo is a solution to ax == b (mod n). -
Theorem 33.24
Suppose that the equation ax == b (mod n) is solvable (that is, d I b,
where d := gcd(a, n)) and that Xo is any solution to this equation. Then,
this equation has exactly d distinct solutions, modulo n, given by Xi =
Xo + t(n/d) for i = 1,2, ... ,d-1.

Proof Since n[d > 0 and 0 ~ t(n/d) < n for i = 0,1, .. . ,d - 1, the
values Xo,Xj, ... ,xd-l are all distinct, modulo n. By the periodicity of
the sequence at mod n (Corollary 33.18), if Xo is a solution of ax == b
(mod n), then every Xi is a solution. By Corollary 33.22, there are exactly
d solutions, so that Xo, XI, •.• , Xd-I must be all of them. _

We have now developed the mathematics needed to solve the equation
ax == b (mod n); the following algorithm prints all solutions to this equa
tion. The inputs a and b are arbitrary integers, and n is an arbitrary
positive integer.
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MODULAR-LINEAR-EQUATION-SOLVER(a, b, n)

1 (d,x',y') f- EXTENDED-EucLID(a,n)
2 ifdlb
3 then Xo f- x'(b/d) mod n
4 for it-O to d - 1
5 do print (xo + i(n/d)) mod n
6 else print "no solutions"

As an example of the operation of this procedure, consider the equation
14x == 30 (mod 100) (here, a = 14, b = 30, and n = 100). Calling
EXTENDED-EuCLID in line 1, we obtain (d,x,y) (2,-7, I). Since 2130,
lines 3-5 are executed. In line 3, we compute Xo = (-7)( 15) mod 100 =

95. The loop on lines 4-5 prints the two solutions: 95 and 45.
The procedure MODULAR-LINEAR-EQUATION-SOLVER works as follows.

Line I computes d = gcd(a, n) as well as two values x' and y' such that
d ax' + ny'; demonstrating that x' is a solution to the equation ax' == d
(mod n). If d does not divide b, then the equation ax == b (mod n) has no
solution, by Corollary 33.21. Line 2 checks if d 1 b; if not, line 6 reports
that there are no solutions. Otherwise, line 3 computes a solution Xo to
equation (33.22), in accordance with Theorem 33.23. Given one solution,
Theorem 33.24 states that the other d 1 solutions can be obtained by
adding multiples of (njd), modulo n. The for loop of lines 4-5 prints out
all d solutions, beginning with Xo and spaced (njd) apart, modulo n.

The running time of MODULAR-LINEAR-EQUATION-SOLVER is O(lgn +
gcd(a, n)) arithmetic operations, since EXTENDED-EuCLID takes O(lg n)
arithmetic operations, and each iteration of the for loop of lines 4-5 takes
a constant number of arithmetic operations.

The following corollaries of Theorem 33.24 give specializations of par
ticular interest.

Corollary 33.25
For any n > 1, if gcd(a, n) = 1, then the equation ax == b (mod n) has a
unique solution modulo n. _

If b = 1, a common case of considerable interest, the x we are looking
for is a multiplicative inverse of a, modulo n.

Corollary 33.26
For any n > I, if gcd(a, n) = 1, then the equation

ax == 1 (mod n) (33.24)

has a unique solution, modulo n. Otherwise, it has no solution. _
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Corollary 33.26 allows us to use the notation (a- 1 mod n) to refer to the
multiplicative inverse of a, modulo n, when a and n are relatively prime.
If gcd(a, n) = 1, then one solution to the equation ax == 1 (mod n) is the
integer x returned by EXTENDED-EuCLID, since the equation

gcd(a,n) ax+ny

implies ax == 1 (mod n). Thus, (a-I mod n) can be computed efficiently
using EXTENDED-EuCLID.

Exercises

33.4-1
Find all solutions to the equation 35x == 10 (mod 50).

33.4-2
Prove that the equation ax == ay (mod n) implies x == y (mod n) when
ever gcd(a, n) = 1. Show that the condition gcd(a, n) = I is necessary by
supplying a counterexample with gcd(a, n) > 1.

33.4-3
Consider the following change to line 3 of MODULAR-LINEAR-EQUATION
SOLVER:

3 then Xo +-- x'(hld) mod (nld)

Will this work? Explain why or why not.

33.4-4 *
Let I(x) == fa + fix + ... + f.x' (mod p) be a polynomial of degree t,
with coefficients Ii drawn from Zp, where p is prime. We say that a E Zp
is a zero of I if I(a) == 0 (mod p). Prove that if a is a zero of I, then
I(x) == (x a)g(x) (mod p) for some polynomial g(x) of degree t - 1.
Prove by induction on t that a polynomial I(x) of degree t can have at
most t distinct zeros modulo a prime p.

33.5 The Chinese remainder theorem

Around A.D. 100, the Chinese mathematician Sun-Tsu solved the problem
of finding those integers x that leave remainders 2, 3, and 2 when divided
by 3, 5, and 7 respectively. One such solution is x = 23; all solutions are
of the form 23 + 105k for arbitrary integers k. The "Chinese remainder
theorem" provides a correspondence between a system of equations mod
ulo a set of pairwise relatively prime moduli (for example, 3, 5, and 7)
and an equation modulo their product (for example, 105).
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The Chinese remainder theorem has two major uses. Let the integer
n = n1nz ... nb where the factors n, are pairwise relatively prime. First,
the Chinese remainder theorem is a descriptive "structure theorem" that
describes the structure of Z; as identical to that of the Cartesian product
Znl X Znz X ••• X Znk with componentwise addition and multiplication mod
ulo n, in the zth component. Second, this description can often be used to
yield efficient algorithms, since working in each of the systems Zn, can be
more efficient (in terms of bit operations) than working modulo n,

Theorem 33.27 (Chinese remainder theorem)
Let n n I nz ... nk> where the n, are pairwise relatively prime. Consider
the correspondence

a +-t (a],aZ, ... ,ak),

where a E Zn, a, E Zn" and

a, = a mod n,

(33.25)

for i = 1,2, ... ,k. Then, mapping (33.25) is a one-to-one correspondence
(bijection) between Z; and the Cartesian product Znl X Znz x··· X Znk' Op
erations performed on the elements of Zn can be equivalently performed
on the corresponding k-tuples by performing the operations independently
in each coordinate position in the appropriate system. That is, if

a +-t (al,aZ, ,ak),

b +-t ib«, bz, ,bk ) ,

then

(a + b) mod n +-t ((al + bl ) mod n], , (ak + bk) mod nd ,

(a - b) mod n +-t ((al bl ) mod nl, , (ak bd mod nk) ,

(ab) mod n +-t ta.b, mod nj, ... ,aib, mod nk) .

(33.26)

(33.27)

(33.28)

Proof Transforming between the two representations is quite straight
forward. Going from a to (a], az, .. . , ak) requires only k divisions. Com
puting a from inputs (a],az, ... ,ak) is almost as easy, using the following
formula. Let m, = njn, for i 1,2, ... .k, Note that m, = nin; .. ·
ni-,ni+l ... nk> so that m, == 0 (mod nj) for all j =f:. i. Then, letting

c, mi(mjl mod ni)

for i = 1,2, ... ,k, we have

(33.29)

(33.30)

Equation 33.29 is well defined, since m, and n, are relatively prime (by
Theorem 33.6), and so Corollary 33.26 implies that (m; I mod ni) is de
fined. To verify equation (33.30), note that Cj == mj == 0 (mod ni) if j =f:. t,
and that c, == I (mod ni)' Thus, we have the correspondence
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c, ...... (0,0, ... ,0,1,0, ... ,0),

a vector that has D's everywhere except in the ith coordinate, where it has
a 1. The c, thus form a "basis" for the representation, in a certain sense.
For each i, therefore, we have

a = a.c,

== aimj(mjl mod nd
(mod nj)

(mod ni)

(mod nj) .

•

Since we can transform in both directions, the correspondence is one-to
one. Equations (33.26)-(33.28) follow directly from Exercise 33.1-6, since
x mod n, = (x mod n) mod n, for any x and i 1,2, ... .k, •

The following corollaries will be used later in this chapter.

Corollary 33.28
If n I, ni, ... .n, are pairwise relatively prime and n = n I ni ... ni, then for
any integers ai, a2, . . . ,ab the set of simultaneous equations

x==ai (mod n.) ,

for i 1,2, ... , k, has a unique solution modulo n for the unknown x .•

Corollary 33.29
If n I, n2,... , nk are pairwise relatively prime and n = n I nz ... ni; then for
all integers x and a,

x == a (mod ni)

for i = 1,2, ... , k if and only if

x == a (mod n) .

As an example of the Chinese remainder theorem, suppose we are given
the two equations

a = 2 (mod 5) ,

a 3 (mod 13) ,

so that al = 2, nl = m: = 5, a: = 3, and nz ml = 13, and we wish to
compute a mod 65, since n = 65. Because 13-1 == 2 (mod 5) and 5-1 == 8
(mod 13), we have

CI 13(2 mod 5) = 26,

ci 5(8 mod 13) = 40,

and

a = 2· 26 + 3 . 40

= 52+ 120

42

(mod 65)

(mod 65)

(mod 65) .
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0 1 2 3 4 5 6 7 8 9 10 11 12
0 0 40 15 55 30 5 45 20 60 35 10 50 25
1 26 1 41 16 56 31 6 46 21 61 36 11 51
2 52 27 2 42 17 57 32 7 47 22 62 37 12
3 13 53 28 3 43 18 58 33 8 48 23 63 38
4 39 14 54 29 4 44 19 59 34 9 49 24 64

Figure 33.3 An illustration of the Chinese remainder theorem for nl = 5 and
n2 13. For this example, CI 26 and C2 40. In row i, column j is shown
the value of a, modulo 65, such that (a mod 5) = i and (a mod 13) = j. Note
that row 0, column 0 contains a O. Similarly, row 4, column 12 contains a 64
(equivalent to I). Since CI = 26, moving down a row increases a by 26. Similarly,
C2 = 40 means that moving right a column increases a by 40. Increasing a by I
corresponds to moving diagonally downward and to the right, wrapping around
from the bottom to the top and from the right to the left.

See Figure 33.3 for an illustration of the Chinese remainder theorem, mod
ulo 65.

Thus, we can work modulo n by working modulo n directly or by work
ing in the transformed representation using separate modulo n, computa
tions, as convenient. The computations are entirely equivalent.

Exercises

33.5-1
Find all solutions to the equations x == 4 (mod 5) and x == 5 (mod 11).

33.5-2
Find all integers x that leave remainders 1, 2, 3, 4, 5 when divided by 2,
3, 4, 5, 6, respectively.

33.5-3
Argue that, under the definitions of Theorem 33.27, if gcd(a, n) = 1, then

(a- l mod n) ..... ((aI' mod nl), (a2
l mod n2), ... , (a;' mod nd) .

33.5-4
Under the definitions of Theorem 33.27, prove that the number of roots
of the equation f(x) == 0 (mod n) is equal to the product of the number
of roots of each the equations f(x) == 0 (mod n,), f(x) == 0 (mod ni),
... , f(x) == 0 (mod nk)'
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Just as it is natural to consider the multiples of a given element a, mod
ulo n, it is often natural to consider the sequence of powers of a, modulo
n, where a E z~:

aO, a I , a2, a3, ••• , (33.31)

modulo n. Indexing from 0, the Othvalue in this sequence is aO mod n I,
and the ith value is ai mod n. For example, the powers of 3 modulo 7 are

i 0 1 2 3 4 5 6 7 8 9 to 11

3i mod 7 I 3 2 6 4 5 1 3 2 6 4 5

whereas the powers of 2 modulo 7 are

i 0 1 2 3 4 5 6 7 8 9 10 11

2i mod 7 I 2 4 I 2 4 I 2 4 1 2 4

In this section, let (a) denote the subgroup of z~ generated by a, and
let ordn(a) (the "order of a, modulo n") denote the order of a in z~. For
example, (2) = {l, 2, 4} in Z7' and ord7(2) = 3. Using the definition of
the Euler phi function cj>(n) as the size of Z~ (see Section 33.3), we now
translate Corollary 33.19 into the notation of Z~ to obtain Euler's theorem
and specialize it to Z;, where p is prime, to obtain Fermat's theorem.

Theorem 33.30 (Euler's theorem)
For any integer n > 1,

ar/>(n) == I (mod n) for all a E Z~ .

Theorem 33.31 (Fermat's theorem)
If p is prime, then

aP-
1 == 1 (mod p) for all a E Z; .

Proof By equation (33.21), cj>(P) =p - 1 if p is prime.

(33.32)

•

(33.33)

•
This corollary applies to every element in Zp except 0, since 0 ¢ Z;. For

all a E Zp, however, we have aP == a (mod p) if p is prime.
If ordn(g) = IZ~I, then every element in Z~ is a power of g, modulo n,

and we say that g is a primitive root or a generator of Z~. For example,
3 is a primitive root, modulo 7. If Z~ possesses a primitive root, we say
that the group Z~ is cyclic. We omit the proof of the following theorem,
which is proven by Niven and Zuckerman [151].
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Theorem 33.32
The values of n > 1 for which Z~ is cyclic are 2, 4, p", and Lp", for all
odd primes p and all positive integers e. _

If g is a primitive root of Z~ and a is any element of Z~, then there exists
a z such that gZ == a (mod n). This z is called the discrete logarithm or
index of a, modulo n, to the base g; we denote this value as indn,~(a).

Theorem 33.33 (Discrete logarithm theorem)
If g is a primitive root of Z~, then the equation gX == gY (mod n) holds
if and only if the equation x == y (mod ¢(n)) holds.

Proof Suppose first that x == y (mod ¢(n)). Then, x = y + k¢(n) for
some integer k. Therefore,

gX = gy+k</J(nJ (mod n)

_ gY. (g</J(nJ)k (mod n)

_ gY. Ik (mod n)

_ gY (mod n) .

Conversely, suppose that s' gY (mod n). Because the sequence of
powers of g generates every element of (g) and l(g)1 ¢(n), Corol
lary 33.18 implies that the sequence of powers of g is periodic with pe
riod ¢(n). Therefore, if gX == gY (mod n), then we must have x == y
(mod ¢(n)). _

Taking discrete logarithms can sometimes simplify reasoning about a
modular equation, as illustrated in the proof of the following theorem.

Theorem 33.34
If p is an odd prime and e ~ 1, then the equation

x 2 == I (mod pe)

has only two solutions, namely x = 1 and x = -I.

(33.34)

Proof Let n = p", Theorem 33.32 implies that Z~ has a primitive root g.
Equation (33.34) can be written

(gindn,g(xJ)2 == gindn,g(lJ (mod n) . (33.35)

After noting that indn,g(l) = 0, we observe that Theorem 33.33 implies
that equation (33.35) is equivalent to

2· indn,g(x) == 0 (mod ¢(n)) . (33.36)

To solve this equation for the unknown indn,g(x), we apply the methods
of Section 33.4. Letting d = gcd(2, ¢(n)) = gcd(2, (p - I)pe-l) = 2, and
noting that d I 0, we find from Theorem 33.24 that equation (33.36) has
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exactly d = 2 solutions. Therefore, equation (33.34) has exactly 2 solu
tions, which are x 1 and x-I by inspection. _

A number x is a nontri,ial square root of 1, modulo n, if it satisfies the
equation x 2 == 1 (mod n) but x is equivalent to neither of the two "trivial"
square roots: 1 or -1, modulo n. For example, 6 is a nontrivial square root
of I, modulo 35. The following corollary to Theorem 33.34 will be used
in the correctness proof for the Miller-Rabin primality-testing procedure
in Section 33.8.

Corollary 11.35
If there exists a nontrivial square root of I, modulo n, then n is composite.

Proof This corollary is just the contrapositive to Theorem 33.34. If there
exists a nontrivial square root of 1, modulo n, then n can't be a prime or
a power of a prime. _

Raising to powers with repeated squaring

A frequently occurring operation in number-theoretic computations is rais
ing one number to a power modulo another number, also known as modular
exponentiation. More precisely, we would like an efficient way to compute
ab mod n, where a and b are nonnegative integers and n is a positive
integer. Modular exponentiation is also an essential operation in many
primality-testing routines and in the RSA public-key cryptosystem. The
method of repeated squaring solves this problem efficiently using the binary
representation of b.

Let {bb bk- I , ••• .b., bo} be the binary representation of b. (That is, the
binary representation is k + 1 bits long, bk is the most significant bit, and
bo is the least significant bit.) The following procedure computes aC mod n
as c is increased by doublings and incrementations from 0 to b.

MODULAR-ExPONENTIATIoN(a, b, n)

1 c+--O
2 d+--l
3 let {bb bi :«, ..• , bo} be the binary representation of b
4 for i +-- k downto 0
5 do c +-- 2c
6 d +-- (d· d) mod n
7 if b, = 1
8 then c +-- c + 1
9 d +-- (d· a) mod n

10 return d

Each exponent computed in a sequence is either twice the previous ex
ponent or one more than the previous exponent; the binary representation
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i 9 8 7 6 5 4 3 2 1 0
b i I 0 0 0 1 1 0 0 0 0
c 1 2 4 8 17 35 70 140 280 560
d 7 49 157 526 160 241 298 166 67 1

Figure 33.4 The results of MODULAR-ExPONENTIATION when computing ah

(mod n), where a 7, b zz: 560 (1000110000), and n == 561. The values
are shown after each execution of the for loop. The final result is 1.

of b is read from right to left to control which operations are performed.
Each iteration of the loop uses one of the identities

a2c mod n == (aC )2 mod n ,

a2c+ 1 mod n == a- (ac )2 mod n ,

depending on whether b, = 0 or 1, respectively. The essential use of
squaring in each iteration explains the name "repeated squaring." Just
after bit b, is read and processed, the value of c is the same as the prefix
(bb bk - 1, ... ,bi ) of the binary representation of b. As an example, for
a == 7, b == 560, and n == 561, the algorithm computes the sequence of
values modulo 561 shown in Figure 33.4; the sequence of exponents used
is shown in row c of the table.

The variable c is not really needed by the algorithm but is included
for explanatory purposes: the algorithm preserves the invariant that d ==
aC mod n as it increases c by doublings and incrementations until c == b.
If the inputs a, b, and n are fJ-bit numbers, then the total number of arith
metic operations required is O(fJ) and the total number of bit operations
required is O(fJ3).

Exercises

33.6-1
Draw a table showing the order of every element in Zi I' Pick the smallest
primitive root g and compute a table giving ind'l,g(x) for all x E Zit.

33.6-2
Give a modular exponentiation algorithm that examines the bits of b from
right to left instead of left to right.

33.6-3
Explain how to compute a-I mod n for any a E Z~ using the procedure
MODULAR-EXPONENTIATION, assuming that you know tj>(n).
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A public-key cryptosystem can be used to encrypt messages sent between
two communicating parties so that an eavesdropper who overhears the
encrypted messages will not be able to decode them. A public-key cryp
tosystem also enables a party to append an unforgeable "digital signature"
to the end of an electronic message. Such a signature is the electronic
version of a handwritten signature on a paper document. It can be easily
checked by anyone, forged by no one, yet loses its validity if any bit of
the message is altered. It therefore provides authentication of both the
identity of the signer and the contents of the signed message. It is the
perfect tool for electronically signed business contracts, electronic checks,
electronic purchase orders, and other electronic communications that must
be authenticated.

The RSA public-key cryptosystem is based on the dramatic difference
between the ease of finding large prime numbers and the difficulty of fac
toring the product of two large prime numbers. Section 33.8 describes
an efficient procedure for finding large prime numbers, and Section 33.9
discusses the problem of factoring large integers.

Public-key cryptosystems

In a public-key cryptosystem, each participant has both a public key and a
secret key. Each key is a piece of information. For example, in the RSA
cryptosystem, each key consists of a pair of integers. The participants
"Alice" and "Bob" are traditionally used in cryptography examples; we
denote their public and secret keys as PA, SA for Alice and PB , SB for Bob.

Each participant creates his own public and secret keys. Each keeps his
secret key secret, but he can reveal his public key to anyone or even publish
it. In fact, it is often convenient to assume that everyone's public key is
available in a public directory, so that any participant can easily obtain
the public key of any other participant.

The public and secret keys specify functions that can be applied to any
message. Let V denote the set of permissible messages. For example, V
might be the set of all finite-length bit sequences. We require that the
public and secret keys specify one-to-one functions from V to itself. The
function corresponding to Alice's public key PA is denoted PA 0, and the
function corresponding to her secret key SA is denoted SAO. The functions
PAO and SAO are thus permutations of V. We assume that the functions
PAO and SA) are efficiently computable given the corresponding key PA
or SA.

The public and secret keys for any participant are a "matched pair" in
that they specify functions that are inverses of each other. That is,
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ftf SA(P4(ftf)) ,

M = PA(SA(ftf))

(33.37)

(33.38)

for any message M E V. Transforming 1\1 with the two keys PA and S1
successively, in either order, yields the message M back.

In a public-key cryptosystem, it is essential that no one but Alice be
able to compute the function SA 0 in any practical amount of time. The
privacy of mail that is encrypted and sent to Alice and the authenticity
of Alice's digital signatures rely on the assumption that only Alice is able
to compute SA O. This requirement is why Alice keeps SA secret; if she
does not, she loses her uniqueness and the cryptosystem cannot provide
her with unique capabilities. The assumption that only Alice can compute
SAO must hold even though everyone knows PA and can compute PAO,
the inverse function to SA 0, efficiently. The major difficulty in designing a
workable public-key cryptosystem is in figuring out how to create a system
in which we can reveal a transformation PA 0 without thereby revealing
how to compute the corresponding inverse transformation SAO.

In a public-key cryptosystem, encryption works as follows. Suppose
Bob wishes to send Alice a message M encrypted so that it will look like
unintelligible gibberish to an eavesdropper. The scenario for sending the
message goes as follows.

• Bob obtains Alice's public key PA (from a public directory or directly
from Alice).

• Bob computes the ciphertext C 1>.4 (ftf) corresponding to the mes-
sage AI and sends C to Alice.

• When Alice receives the ciphertext C, she applies her secret key S-1 to
retrieve the original message: ftf = SA (C).

Figure 33.5 illustrates this process. Because SAO and 1>.40 are inverse
functions, Alice can compute ftf from C. Because only Alice is able to
compute SAO, only Alice can compute M from C. The encryption of M
using 1>.40 has protected M from disclosure to anyone except Alice.

Digital signatures are similarly easy to implement in a public-key cryp
tosystem. Suppose now that Alice wishes to send Bob a digitally signed
response M', The digital-signature scenario proceeds as follows.

• Alice computes her digital signature a for the message M' using her
secret key SA and the equation a = SA(M') .

• Alice sends the message/signature pair (M', a) to Bob.

• When Bob receives (M',a), he can verify that it originated from Alice
using Alice's public key by verifying the equation M' 1>.4(a). (Pre
sumably, M' contains Alice's name, so Bob knows whose public key to
use.) If the equation holds, then Bob concludes that the message M' was
actually signed by Alice. If the equation doesn't hold, Bob concludes
either that the message M' or the digital signature a was corrupted by
transmission errors or that the pair (M', a) is an attempted forgery.
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Bob Alice
communication channel

encrypt decrypt

M -----))�o..,[2J'----------:.=---.--~)Iollooi[gr---...,)10... M

Figure 33.5 Encryption in a public key system. Bob encrypts the message Musing
Alice's public key PA and transmits the resulting ciphertext C = PA(M) to Alice.
An eavesdropper who captures the transmitted ciphertext gains no information
about M. Alice receives C and decrypts it using her secret key to obtain the
original message M SA(C),

Alice Bob

accept

(M',a)
M'---I.--------L----'---'-------'------'

communication channel

Figure 33.6 Digital signatures in a public-key system. Alice signs the mes
sage M' by appending her digital signature a SA(M') to it. She transmits the
message/signature pair (M',a) to Bob, who verifies it by checking the equation
M' = PA(a). If the equation holds, he accepts (M', a) as a message that has been
signed by Alice.

Figure 33.6 illustrates this process. Because a digital signature provides
both authentication of the signer's identity and authentication of the con
tents of the signed message, it is analogous to a handwritten signature at
the end of a written document.

An important property of a digital signature is that it is verifiable by
anyone who has access to the signer's public key. A signed message can
be verified by one party and then passed on to other parties who can also
verify the signature. For example, the message might be an electronic
check from Alice to Bob. After Bob verifies Alice's signature on the check,
he can give the check to his bank, who can then also verify the signature
and effect the appropriate funds transfer.

We note that a signed message is not encrypted; the message is "in the
clear" and is not protected from disclosure. By composing the above pro
tocols for encryption and for signatures, we can create messages that are
both signed and encrypted. The signer first appends his digital signature to
the message and then encrypts the resulting message/signature pair with
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the public key of the intended recipient. The recipient decrypts the re
ceived message with his secret key to obtain both the original message and
its digital signature. He can then verify the signature using the public key
of the signer. The corresponding combined process using paper-based sys
tems is to sign the paper document and then seal the document inside a
paper envelope that is opened only by the intended recipient.

The RSA cryptosystem

In the RSA public-key cryptosystem, a participant creates his public and
secret keys with the following procedure.

1. Select at random two large prime numbers p and q. The primes p and q
might be, say, 100 decimal digits each.

2. Compute n by the equation n =pq.

3. Select a small odd integer e that is relatively prime to ¢(n), which, by
equation (33.20), equals (p - 1)(q - 1).

4. Compute d as the multiplicative inverse of e, modulo ¢(n). (Corol
lary 33.26 guarantees that d exists and is uniquely defined.)

5. Publish the pair P = (e, n) as his RSA public key.

6. Keep secret the pair S = (d, n) as his RSA secret key.

For this scheme, the domain V is the set Zn. The transformation of a
message M associated with a public key P = (e, n) is

P(M) = Me (mod n) . (33.39)

The transformation of a ciphertext C associated with a secret key S =

(d, n) is

S(C) = c' (mod n) . (33.40)

These equations apply to both encryption and signatures. To create a
signature, the signer applies his secret key to the message to be signed,
rather than to a ciphertext. To verify a signature, the public key of the
signer is applied to it, rather than to a message to be encrypted.

The public-key and secret-key operations can be implemented using the
procedure MODULAR-EXPONENTIATION described in Section 33.6. To ana
lyze the running time of these operations, assume that the public key (e, n)

and secret key (d,n) satisfy lei O(I),ldl Inl p. Then, applying a
public key requires O(1) modular multiplications and uses 0(P2) bit oper
ations. Applying a secret key requires O(P) modular multiplications, using
0(p3) bit operations.

Theorem 33.36 (Correctness ofRSA)
The RSA equations (33.39) and (33.40) define inverse transformations of
Zn satisfying equations (33.37) and (33.38).



33.7 The RSA public-key cryptosystem 835

Proof From equations (33.39) and (33.40), we have that for any ME Zn,

P(S(M)) = S(P(M)) = M ed (mod n) .

Since e and d are multiplicative inverses modulo </J( n) = (p - 1)(q - 1),

ed=l+k(p l)(q 1)

for some integer k, But then, if M ¢ 0 (mod p), we have (using Theo
rem 33.31)

Med _ M(MP-l)k(q-l)

M(1)k(q-l)

_ M

(mod p)

(mod p)

(mod p) .

Also, Med == M (mod p) if M == 0 (mod p). Thus,

M ed == M (mod p)

for all M. Similarly,

M ed == M (mod q)

for all M. Thus, by Corollary 33.29 to the Chinese remainder theorem,

M ed == M (mod n)

for all M. •
The security of the RSA cryptosystem rests in large part on the difficulty

of factoring large integers. If an adversary can factor the modulus n in a
public key, then he can derive the secret key from the public key, using
the knowledge of the factors p and q in the same way that the creator
of the public key used them. So if factoring large integers is easy, then
breaking the RSA cryptosystem is easy. The converse statement, that if
factoring large integers is hard, then breaking RSA is hard, is unproven.
After a decade of research, however, no easier method has been found
to break the RSA public-key cryptosystem than to factor the modulus n.
And as we shall see in Section 33.9, the factoring of large integers is sur
prisingly difficult. By randomly selecting and multiplying together two
100-digit primes, one can create a public key that cannot be "broken" in
any feasible amount of time with current technology. In the absence of a
fundamental breakthrough in the design of number-theoretic algorithms,
the RSA cryptosystem is capable of providing a high degree of security in
applications.

In order to achieve security with the RSA cryptosystem, however, it is
necessary to work with integers that are 100-200 digits in length, since
factoring smaller integers is not impractical. In particular, we must be
able to find large primes efficiently, in order to create keys of the necessary
length. This problem is addressed in Section 33.8.
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For efficiency, RSA is often used in a "hybrid" or "key-management"
mode with fast non-public-key cryptosystems. With such a system, the
encryption and decryption keys are identical. If Alice wishes to send a long
message M to Bob privately, she selects a random key K for the fast non
public-key cryptosystem and encrypts M using K, obtaining ciphertext C.
Here, C is as long as M, but K is quite short. Then, she encrypts K using
Bob's public RSA key. Since K is short, computing PB(K) is fast (much
faster than computing PB(M)). She then transmits (C,PB(K)) to Bob, who
decrypts PB(K) to obtain K and then uses K to decrypt C, obtaining M.

A similar hybrid approach is often used to make digital signatures ef
ficiently. In this approach, RSA is combined with a public one-way hash
function h-a function that is easy to compute but for which it is com
putationally infeasible to find two messages M and M' such that h(M)
h(M'). The value h(M) is a short (say, 128-bit) "fingerprint" of the mes
sage M. If Alice wishes to sign a message M, she first applies h to M
to obtain the fingerprint h(M), which she then signs with her secret key.
She sends (M,SA(h(J1))) to Bob as her signed version of M. Bob can
verify the signature by computing h(M) and verifying that P.4 applied to
SA(h(M)) as received equals h(M). Because no one can create two mes
sages with the same fingerprint, it is impossible to alter a signed message
and preserve the validity of the signature.

Finally, we note that the use of certificates makes distributing public keys
much easier. For example, assume there is a "trusted authority" T whose
public key is known by everyone. Alice can obtain from T a signed message
(her certificate) stating that "Alice's public key is P.4." This certificate
is "self-authenticating" since everyone knows PT. Alice can include her
certificate with her signed messages, so that the recipient has Alice's public
key immediately available in order to verify her signature. Because her key
was signed by T, the recipient knows that Alice's key is really Alice's.

Exercises

33.7-1
Consider an RSA key set with p 11, q = 29, n 319, and e = 3. What
value of d should be used in the secret key? What is the encryption of the
message M IDO?

33.7-2
Prove that if Alice's public exponent e is 3 and an adversary obtains Alice's
secret exponent d, then the adversary can factor Alice's modulus n in time
polynomial in the number of bits in n. (Although you are not asked to
prove it, you may be interested to know that this result remains true even
if the condition e = 3 is removed. See Miller [147].)
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33.7-3 *
Prove that RSA is multiplicative in the sense that

837

Use this fact to prove that if an adversary had a procedure that could
efficiently decrypt I percent of messages randomly chosen from Zn and
encrypted with PA, then he could employ a probabilistic algorithm to de
crypt every message encrypted with PA with high probability.

* 33.8 Primality testing

In this section, we consider the problem of finding large primes. We begin
with a discussion of the density of primes, proceed to examine a plausi
ble (but incomplete) approach to primality testing, and then present an
effective randomized primality test due to Miller and Rabin.

The density of prime numbers

For many applications (such as cryptography), we need to find large "ran
dom" primes. Fortunately, large primes are not too rare, so that it is not
too time-consuming to test random integers of the appropriate size until a
prime is found. The prime distribution function 1£(n) specifies the number
of primes that are less than or equal to n. For example, 1£( 10) = 4, since
there are 4 prime numbers less than or equal to 10, namely, 2, 3, 5, and 7.
The prime number theorem gives a useful approximation to 1£(n).

Theorem 33.37 (Prime number theorem)

lim 1£(n) = 1 .
n-oo nj In n •

The approximation n jIn n gives reasonably accurate estimates of 1£ (n)
even for small n. For example, it is off by less than 6% at n = 109, where
1£(n) = 50,847,478 and njInn = 48,254,942. (To a number theorist, 109

is a small number.)
We can use the prime number theorem to estimate the probability that

a randomly chosen integer n will tum out to be prime as I j In n, Thus, we
would need to examine approximately In n integers chosen randomly near
n in order to find a prime that is of the same length as n. For example, to
find a 100-digit prime might require testing approximately In 10100 ~ 230
randomly chosen 100-digit numbers for primality. (This figure can be cut
in half by choosing only odd integers.)



838 Chapter 33 Number-Theoretic Algorithms

In the remainder of this section, we consider the problem of determining
whether or not a large odd integer n is prime. For notational convenience,
we assume that n has the prime factorization

n (33.41)

where r 2:: I and PI ,P2, ... ,Pr are the prime factors of n. Of course, n is
prime if and only if r = I and el = 1.

One simple approach to the problem of testing for primality is trial
division. We try dividing n by each integer 2,3, ... , LvnJ. (Again, even
integers greater than 2 may be skipped.) It is easy to see that n is prime
if and only if none of the trial divisors divides n. Assuming that each
trial division takes constant time, the worst-case running time is 8(vn),
which is exponential in the length of n, (Recall that if n is encoded in
binary using p bits, then p = flg(n + 1)1, and so vn = 8(2P/2 ) . ) Thus,
trial division works well only if n is very small or happens to have a small
prime factor. When it works, trial division has the advantage that it not
only determines whether n is prime or composite but actually determines
the prime factorization if n is composite.

In this section, we are interested only in finding out whether a given
number n is prime; if n is composite, we are not concerned with finding
its prime factorization. As we shall see in Section 33.9, computing the
prime factorization of a number is computationally expensive. It is per
haps surprising that it is much easier to tell whether or not a given number
is prime than it is to determine the prime factorization of the number if
it is not prime.

Pseudoprimality testing

We now consider a method for primality testing that "almost works" and
in fact is good enough for many practical applications. A refinement of
this method that removes the small defect will be presented later. Let Z~
denote the nonzero elements of Zn:

Z~ {l,2, ... .n I}.

If n is prime, then Z~ Z~.

We say that n is a base-apseudoprime if n is composite and

an-I == I (mod n) . (33.42)

Fermat's theorem (Theorem 33.31) implies that if n is prime, then n sat
isfies equation (33.42) for every a in Z~. Thus, if we can find any a E Z%
such that n does not satisfy equation (33.42), then n is certainly compos
ite. Surprisingly, the converse almost holds, so that this criterion forms
an almost perfect test for primality. We test to see if n satisfies equa
tion (33.42) for a = 2. If not, we declare n to be composite. Otherwise,
we output a guess that n is prime (when, in fact, all we know is that n is
either prime or a base-2 pseudoprime).
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The following procedure pretends in this manner to be checking the
primality of n. It uses the procedure MODULAR-ExPONENTIATION from
Section 33.6. The input n is assumed to be an integer larger than 2.

PSEUDOPRIME(n)

I if MODULAR-ExPONENTIATION(2, n -- I, n) ~ 1 (mod n)
2 then return COMPOSITE I> Definitely.
3 else return PRIME I> We hope!

This procedure can make errors, but only of one type. That is, if it says
that n is composite, then it is always correct. If it says that n is prime,
however, then it makes an error only if n is a base-Z pseudoprime.

How often does this procedure err? Surprisingly rarely. There are only
22 values of n less than 10,000 for which it errs; the first four such values
are 341, 561,645, and 1105. It can be shown that the probability that this
program makes an error on a randomly chosen P-bit number goes to zero
as P --+ 00. Using more precise estimates due to Pomerance [157] of the
number of base-Z pseudoprimes of a given size, we may estimate that a
randomly chosen 50-digit number that is called prime by the above proce
dure has less than one chance in a million of being a base-2 pseudoprime,
and a randomly chosen IOO-digit number that is called prime has less than
one chance in 1013 of being a base-2 pseudoprime.

Unfortunately, we cannot eliminate all the errors by simply checking
equation (33.42) for a second base number, say a = 3, because there are
composite integers n that satisfy equation (33.42) for all a E Z~. These
integers are known as Carmichael numbers. The first three Carmichael
numbers are 561, 1105, and 1729. Carmichael numbers are extremely
rare; there are, for example, only 255 of them less than 100,000,000. Ex
ercise 33.8-2 helps explain why they are so rare.

We next show how to improve our primality test so that it won't be
fooled by Carmichael numbers.

The Miller-Rabin randomized primality test

The Miller-Rabin primality test overcomes the problems of the simple test
PSEUDOPRIME with two modifications:

• It tries several randomly chosen base values a instead of just one base
value.

• While computing each modular exponentiation, it notices if a nontrivial
square root of 1, modulo n, is ever discovered. If so, it stops and
outputs COMPOSITE. Corollary 33.35 justifies detecting composites in
this manner.

The pseudocode for the Miller-Rabin primality test follows. The input
n > 2 is the odd number to be tested for primality, and s is the number
of randomly chosen base values from Z~ to be tried. The code uses the
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random-number generator RANDOM from Section 8.3: RANDOM( 1, n 1)
returns a randomly chosen integer a satisfying 1 :s.; a :s.; n 1. The code uses
an auxiliary procedure WITNESS such that WITNEss(a, n) is TRUE if and
only if a is a "witness" to the compositeness of n-that is, if it is possible
using a to prove (in a manner that we shall see) that n is composite. The
test WITNEss(a, n) is similar to, but more effective than, the test

an-I 1- 1 (mod n)

that formed the basis (using a = 2) for PSEUDOPRIME. We first present
and justify the construction of WITNESS, and then show how it is used in
the Miller-Rabin primality test.

WITNEss(a, n)

1 let (bk> bk-b"" bo) be the binary representation of n - 1
2 d +- 1
3 for i +- k downto 0
4 do x+- d
5 d +- (d . d) mod n
6 if d 1 and x f:. 1 and x f:. n
7 then return TRUE
8 if bi 1
9 then d +- (d . a) mod n

10 if d f:. 1
11 then return TRUE
12 return FALSE

This pseudocode for WITNESS is based on the pseudocode of the pro
cedure MODULAR-ExPONENTIATION. Line 1 determines the binary repre
sentation of n 1, which will be used in raising a to the (n - l)st power.
Lines 3-9 compute d as an-I mod n, The method used is identical to that
employed by MODULAR-ExPONENTIATION. Whenever a squaring step is
performed on line 5, however, lines 6-7 check to see if a nontrivial square
root of 1 has just been discovered. If so, the algorithm stops and returns
TRUE. Lines 10-11 return TRUE if the value computed for an- 1 mod n is
not equal to 1, just as the PSEUDOPRIME procedure returns COMPOSITE in
this case.

We now argue that if WITNEss(a, n) returns TRUE, then a proof that n
is composite can be constructed using a.

If WITNESS returns TRUE from line 11, then it has discovered that d
an-I mod nil. If n is prime, however, we have by Fermat's theorem
(Theorem 33.31) that an-I == 1 (mod n) for all a E Z~. Therefore, n
cannot be prime, and the equation an- 1 mod 1 I 1 is a proof of this fact.

If WITNESS returns TRUE from line 7, then it has discovered that x
is a nontrivial square root of 1, modulo n, since we have that x 1- ± 1
(mod n) yet x 2 == 1 (mod n). Corollary 33.35 states that only if n is
composite can there be a nontrivial square root of 1 modulo n, so that a
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I> Definitely.
I> Almost surely.

demonstration that x is a nontrivial square root of 1 modulo n is a proof
that n is composite.

This completes our proof of the correctness of WITNESS. If the invoca
tion WITNEss(a,n) outputs TRUE, then n is surely composite, and a proof
that n is composite can be easily determined from a and n. We now
examine the Miller-Rabin primality test based on the use of WITNESS.

MILLER-RABIN(n, s)

1 for j +- 1 to S

2 do a+- RANDOM(I, n - 1)
3 if WITNESS(a, n)
4 then return COMPOSITE
5 return PRIME

The procedure MILLER-RABIN is a probabilistic search for a proof that
n is composite. The main loop (beginning on line I) picks s random
values of a from Z~ (line 2). If one of the a's picked is a witness to
the compositeness of n, then MILLER-RABIN outputs COMPOSITE on line 4.
Such an output is always correct, by the correctness of WITNESS. If no
witness can be found in s trials, MILLER-RABIN assumes that this is because
there are no witnesses to be found, and n is therefore prime. We shall see
that this output is likely to be correct if s is large enough, but that there is
a small chance that the procedure may be unlucky in its choice of a's and
that witnesses do exist even though none has been found.

To illustrate the operation of MILLER-RABIN, let n be the Carmichael
number 561. Supposing that a = 7 is chosen as a base, Figure 33.4 shows
that WITNESS discovers a nontrivial square root of I in the last squaring
step, since a280 == 67 (mod n) and a560 == I (mod n). Therefore, a = 7
is a witness to the compositeness of n, WITNESS(7, n) returns TRUE, and
MILLER-RABIN returns COMPOSITE.

If n is a P-bit number, MILLER-RABIN requires O(sP) arithmetic opera
tions and O(sP3 ) bit operations, since it requires asymptotically no more
work than s modular exponentiations.

Error rate of the Miller-Rabin primality test

If MILI:;ER-RABIN outputs PRIME, then there is a small chance that it has
made an error. Unlike PSEUDOPRIME, however, the chance of error does
not depend on n; there are no bad inputs for this procedure. Rather,
it depends on the size of s and the "luck of the draw" in choosing base
values a. Also, since each test is more stringent than a simple check of
equation (33.42), we can expect on general principles that the error rate
should be small for randomly chosen integers n. The following theorem
presents a more precise argument.
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Theorem 33.38
If n is an odd composite number, then the number of witnesses to the
compositeness of n is at least (n 1)/2.

Proof The proof shows that the number of nonwitnesses is no more than
(n 1)/2, which implies the theorem.

We first observe that any nonwitness must be a member of Z~, since
every nonwitness a satisfies an-I == I (mod n), yet if gcd(a, n) = d > I,
then there are no solutions x to the equation ax == I (mod n), by Corol
lary 33.21. (In particular, x = an- 2 is not a solution.) Thus every member
of Z; Z~ is a witness to the compositeness of n.

To complete the proof, we show that the nonwitnesses are all con
tained in a proper subgroup B of Z~. By Corollary 33.16, we then have
IBI ::; IZ~I /2. Since IZ~I ::; n - I, we obtain IBI ::; (n - 1)/2. Therefore,
the number of nonwitnesses is at most (n - 1)/2, so that the number of
witnesses must be at least (n - 1)/2.

We now show how to find a proper subgroup B of Z~ containing all of
the nonwitnesses. We break the proof into two cases.

Case J: There exists an x E Z~ such that

x n- I ::/:. 1 (mod n) . (33.43)

Let B = {b E Z~ : br:' == 1 (mod n)}. Since B is closed under multipli
cation modulo n, we have that B is a subgroup of Z~ by Theorem 33.14.
Note that every nonwitness belongs to B, since a nonwitness a satisfies
an- I == 1 (mod n). Since x E Z~ -B, we have that B is a proper subgroup
ofZ~.

Case 2: For all x E Z~,

x n
-

I == 1 (mod n) . (33.44)

In this case, n cannot be a prime power. To see why, let n = p", where p
is an odd prime and e > 1. Theorem 33.32 implies that Z~ contains an
element g such that ordn(g) = IZ~I = 1J(n) = (p - I)pe-I. But then equa
tion (33.44) and the discrete logarithm theorem (Theorem 33.33, taking
y = 0) imply that n - 1 == 0 (mod 1J(n)), or

(p _ I)pe-I Ipe - I .

This condition fails for e > I, since the left-hand side is then divisible
by p but the right-hand side is not. Thus, n is not a prime power.

Since n is not a prime power, we decompose it into a product nl n2,
where n I and nz are greater than I and relatively prime to each other.
(There may be several ways to do this, and it doesn't matter which one we
choose. For example, if n = Pflp;2 ... p~r, then we can choose nl = Pfl and
ni = p~2p;3 ... p1r . )

Define t and u so that n - I = 21u, where t ;::: I and u is odd. For any
a E zt, consider the sequence
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(33.45)

where all elements are computed modulo n, Since 21 I n - 1, the binary
representation of n-l ends in t zeros, and the elements ofa are the last t+1
values of d computed by WITNESS during a computation of an - l mod n;
the last t operations are squarings,

Now find a j E {O, 1, ... , t} such that there exists a v E z~ such that
v 2Ju == -1 (mod n); j should be as large as possible. Such a j certainly
exists since u is odd: we can choose v = -1 and j = O. Fix v to satisfy
the given condition. Let

B = {x E Z~ : x 2Ju == ±1 (mod n)} .

Since B is closed under multiplication modulo n, it is a subgroup of Z~.

Therefore, IBI divides IZ~I. Every nonwitness must be a member of B,
since the sequence (33.45) produced by a nonwitness must either be all 1's
or else contain a 1 no later than the jth position, by the maximality of j.

We now use the existence of v to demonstrate that there exists aWE
Z~ B. Since v 2Ju == I (mod n), we have v 2Ju == -1 (mod nJ) by Corol
lary 33.29. By Corollary 33.28, there is a w simultaneously satisfying the
equations

w v (mod nl) ,

w (mod n2) .

Therefore,

(mod nt) ,

(mod n2) .

Together with Corollary 33.29, these equations imply that

w 2Ju =F ±I (mod n) , (33.46)

and so w ¢ B. Since v E Z~, we have that v E Z~I' Thus, w E Z~, and so
w E Z~ B. We conclude that B is a proper subgroup of Z~.

In either case, we see that the number of witnesses to the compositeness
of n is at least (n 1)/2. •

Theorem 33.39
For any odd integer n > 2 and positive integer s, the probability that
MILLER-RABIN(n,s) errs is at most 2-5

•

Proof Using Theorem 33.38, we see that if n is composite, then each
execution of the loop of lines 1-4 has a probability of at least 1/2 of
discovering a witness x to the compositeness of n. MILLER-RABIN only
makes an error if it is so unlucky as to miss discovering a witness to the
compositeness of n on each of the s iterations of the main loop. The
probability of such a string of misses is at most 2-s• •



844 Chapter 33 Number-Theoretic Algorithms

Thus, choosing s = 50 should suffice for almost any imaginable applica
tion. If we are trying to find large primes by applying MILLER-RABIN to
randomly chosen large integers, then it can be argued (although we won't
do so here) that choosing a small value of s (say 3) is very unlikely to
lead to erroneous results. That is, for a randomly chosen odd composite
integer n, the expected number of nonwitnesses to the compositeness of n
is likely to be much smaller than (n I )/2. If the integer n is not cho
sen randomly, however, the best that can be proven is that the number
of nonwitnesses is at most (n - 1)/4, using an improved version of Theo
rem 33.39. Furthermore, there do exist integers n for which the number
of nonwitnesses is (n 1)/4.

Exercises

33.8-1
Prove that if an integer n > 1 is not a prime or a prime power, then there
exists a nontrivial square root of 1 modulo n.

33.8-2 *
It is possible to strengthen Euler's theorem slightly to the form

a),(n) 1 (mod n) for all a E Z~ ,

where A(n) is defined by

),(n) = lcm(¢>(pfl), ... , ¢>(p;')). (33.47)

Prove that ),(n) I ¢>(n). A composite number n is a Carmichael number if
A(n) I n - 1. The smallest Carmichael number is 561 = 3 . 11 . 17; here,
),(n) = lcm(2, 10, 16) = 80, which divides 560. Prove that Carmichael
numbers must be both "square-free" (not divisible by the square of any
prime) and the product of at least three primes. For this reason, they are
not very common.

33.8-3
Prove that if x is a nontrivial square root of 1, modulo n, then gcd(x - 1,n)
and gcd(x + 1,n) are both nontrivial divisors of n.

---~-----------------._-- ...._-

* 33.9 Integer factorization

Suppose we have an integer n that we wish to factor, that is, to decompose
into a product of primes. The primality test of the preceding section
would tell US that n is composite, but it usually doesn't tell us the prime
factors of n. Factoring a large integer n seems to be much more difficult
than simply determining whether n is prime or composite. It is infeasible
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with today's supercomputers and the best algorithms to date to factor an
arbitrary 200-decimal-digit number.

Pollard's rho heuristic

Trial division by all integers up to B is guaranteed to factor completely
any number up to B 2• For the same amount of work, the following pro
cedure will factor any number up to B 4 (unless we're unlucky). Since the
procedure is only a heuristic, neither its running time nor its success is
guaranteed, although the procedure is very effective in practice.

POLLARD-RHo(n)

Ii+- I
2 Xl +- RANDOM(O, n - 1)
3 Y +- Xl

4 k +- 2
5 while TRUE

6 do i +- i + 1
7 Xi +- (X[_l - 1) mod n
8 d+-gcd(y-xj,n)
9 if d #- 1 and d #- n

10 then print d
11 if i = k
12 then Y +-- Xi

13 k +- 2k

The procedure works as follows. Lines 1-2 initialize i to 1 and Xl to a
randomly chosen value in Zn. The while loop beginning on line 5 iterates
forever, searching for factors of n. During each iteration of the while loop,
the recurrence

x, +- (X[_t - I) mod n (33.48)

is used on line 7 to produce the next value of Xi in the infinite sequence

(33.49)

the value of i is correspondingly incremented on line 6. The code is written
using subscripted variables Xi for clarity, but the program works the same
if all of the subscripts are dropped, since only the most recent value of Xi

need be maintained.
Every so often, the program saves the most recently generated Xi value

in the variable y. Specifically, the values that are saved are the ones whose
subscripts are powers of 2:

Line 3 saves the value Xl, and line 12 saves Xk whenever i is equal to k.
The variable k is initialized to 2 in line 4, and k is doubled in line 13
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whenever y is updated. Therefore, k follows the sequence 1,2,4,8, ... and
always gives the subscript of the next value Xk to be saved in y.

Lines 8-10 try to find a factor of n, using the saved value of y and the
current value of Xi. Specifically, line 8 computes the greatest common
divisor d = gcd(y - Xi, n). If d is a nontrivial divisor of n (checked in
line 9), then line 10 prints d.

This procedure for finding a factor may seem somewhat mysterious at
first. Note, however, that POLLARD-RHO never prints an incorrect answer;
any number it prints is a nontrivial divisor of n. POLLARD-RHO may not
print anything at all, though; there is no guarantee that it will produce
any results. We shall see, however, that there is good reason to expect
POLLARD-RHO to print a factor p of n after approximately Vii iterations
of the while loop. Thus, if n is composite, we can expect this procedure to
discover enough divisors to factor n completely after approximately n I /4

updates, since every prime factor p of n except possibly the largest one is
less than ..;n.

We analyze the behavior of this procedure by studying how long it takes
a random sequence modulo n to repeat a value. Since Z; is finite, and
since each value in the sequence (33.49) depends only on the previous
value, the sequence (33.49) eventually repeats itself. Once we reach an Xi

such that Xi = Xj for some j < i, we are in a cycle, since Xi+1 = Xj+I.

Xi+2 = X j+2, and so on. The reason for the name "rho heuristic" is that, as
Figure 33.7 shows, the sequence XI, X2, ••• , Xj_1 can be drawn as the "tail"
of the rho, and the cycle x j, Xj+I..", Xi as the "body" of the rho.

Let us consider the question of how long it takes for the sequence of Xi

to repeat. This is not exactly what we need, but we shall then see how to
modify the argument.

For the purpose of this estimation, let us assume that the function
(x2 1) mod n behaves like a "random" function. Of course, it is not
really random, but this assumption yields results consistent with the ob
served behavior of POLLARD-RHO. We can then consider each Xi to have
been independently drawn from Z; according to a uniform distribution
on Zn. By the birthday-paradox analysis of Section 6.6.1, the expected
number of steps taken before the sequence cycles is 8( ..;n).

Now for the required modification. Let p be a nontrivial factor of n
such that gcd(p, nIp) = 1. For example, if n has the factorization n
pft p~2 ... P;', then we may take p to be pft. (If el I, then p is just the
smallest prime factor of n, a good example to keep in mind.) The sequence
(Xi) induces a corresponding sequence (x;) modulo p, where

x; = Xi modp

for all i. Furthermore, it follows from the Chinese remainder theorem that
, (,2

Xi+1 = Xi

since

I) modp (33.50)

(X mod n) modp = X modp ,
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Figure 33.7 Pollard's rho heuristic. (a) The values produced by the recurrence
X I+ I -- (xl- I) mod 1387, starting with Xl = 2. The prime factor ization of 1387
is 19 · 73. The heavy arrows indicate the iterat ion steps that are executed before
the factor 19 is discovered . The light arrows point to unreached values in the
iterat ion, to illustrate the "rho" shape. The shaded values are the y values stored
by POLLARD- RIIO. The factor 19 is discovered after x, = 177 is reached, when
gcd(63 - 177, 1387) = 19 is computed. The first x value that would be repeated is
11 86, bUI the factor 19 is discovered before this value is reached. (b) The values
produced by the same recurrence, modu lo 19. Every value x, given in part (a) is
equivalent , modul o 19, to the value x:shown here. For example, both x. = 63 and
x r = 177 are equ ivalent to 6, modulo 19. (c) The values produ ced by the same
recurrence, modul o 73. Every value X, given in part (a) is equivalent , modu lo 73,
to the value x:' shown here. By the Chinese remainder theorem , each node in
part (a) corresponds to a pair of nodes, one from part (b) and one from pan (c).
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by Exercise 33.1-6.
Reasoning as before, we find that the expected number of steps before

the sequence (xi) repeats is 8( ..[P). If p is small compared to n, the se
quence (xf) may repeat much more quickly than the sequence (Xi)' Indeed,
the (xi) sequence repeats as soon as two elements of the sequence (Xi) are
merely equivalent modulo p, rather than equivalent modulo n. See Fig
ure 33.7, parts (b) and (c), for an illustration.

Let t denote the index of the first repeated value in the (xi) sequence, and
let u > 0 denote the length of the cycle that has been thereby produced.
That is, t and u > 0 are the smallest values such that x:+ i = X;+u+i for
all i ;::: O. By the above arguments, the expected values of t and u are
both 8( ..[P). Note that if x:+ i = X;+u+i' then p I (Xt+u+i Xl+i). Thus,
gcd(xt+u+i - Xt+i, n) > 1.

Therefore, once POLLARD-RHO has saved as y any value Xk such that
k ;::: t, then y mod p is always on the cycle modulo p. (If a new value is
saved as y, that value is also on the cycle modulo p.) Eventually, k is set
to a value that is greater than u, and the procedure then makes an entire
loop around the cycle modulo p without changing the value of y. A factor
of n is then discovered when Xi "runs into" the previously stored value
of y, modulo p, that is, when Xi == Y (mod p).

Presumably, the factor found is the factor p, although it may occasion
ally happen that a multiple of p is discovered. Since the expected values of
both t and u are 8( ..[P), the expected number of steps required to produce
the factor p is 8("[p).

There are two reasons why this algorithm may not perform quite as
expected. First, the heuristic analysis of the running time is not rigorous,
and it is possible that the cycle of values, modulo p, could be much larger
than ..[p. In this case, the algorithm performs correctly but much more
slowly than desired. In practice, this seems not to be an issue. Second,
the divisors of n produced by this algorithm might always be one of the
trivial factors 1 or n. For example, suppose that n = pq, where p and q
are prime. It can happen that the values of t and u for p are identical
with the values of t and u for q, and thus the factor p is always revealed
in the same gcd operation that reveals the factor q. Since both factors
are revealed at the same time, the trivial factor pq = n is revealed, which
is useless. Again, this seems not to be a real problem in practice. If
necessary, the heuristic can be restarted with a different recurrence of the
form Xi+l +-- (xf - c) mod n. (The values c = 0 and c = 2 should be
avoided for reasons we won't go into here, but other values are fine.)

Of course, this analysis is heuristic and not rigorous, since the recurrence
is not really "random." Nonetheless, the procedure performs well in prac
tice, and it seems to be as efficient as this heuristic analysis indicates. It
is the method of choice for finding small prime factors of a large number.
To factor a P-bit composite number n completely, we only need to find all
prime factors less than ln 1/2J, and so we expect POLLARD-RHO to require
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Problems

at most n l / 4 2P/ 4 arithmetic operations and at most n l / 4 p 3 = 2PI4 p 3 bit
operations. POLLARD-RHO'S ability to find a small factor p of n with an ex
pected number 8(JP) of arithmetic operations is often its most appealing
feature.

Exercises

33.9-1
Referring to the execution history shown in Figure 33.7(a), when does
POLLARD-RHO print the factor 73 of 1387?

33.9-2
Suppose that we are given a function f : Zn -+ Zn and an initial value
XQ E Zn. Define Xi = f(Xi-d for i = 1,2, .... Let t and u > 0 be the
smallest values such that X/+i = Xt+u+i for i = 0, 1, .... In the terminology
of Pollard's rho algorithm, t is the length of the tail and u is the length
of the cycle of the rho. Give an efficient algorithm to determine t and u
exactly, and analyze its running time.

33.9-3
How many steps would you expect POLLARD-RHO to require to discover a
factor of the form p", where p is prime and e > I?

33.9-4 *
One disadvantage of POLLARD-RHO as written is that it requires one gcd
computation for each step of the recurrence. It has been suggested that we
might batch the gcd computations by accumulating the product of several
Xi in a row and then taking the gcd of this product with the saved y.
Describe carefully how you would implement this idea, why it works, and
what batch size you would pick as the most effective when working on a
P-bit number n.

33-1 Binary ged algorithm
On most computers, the operations of subtraction, testing the parity (odd
or even) of a binary integer, and halving can be performed more quickly
than computing remainders. This problem investigates the binary ged al
gorithm, which avoids the remainder computations used in Euclid's algo
rithm.

a. Prove that if a and b are both even, then gcd(a, b) = 2 gcd(aj2, b/2).

b. Prove that if a is odd and b is even, then gcd(a,b) = gcd(a,bj2).
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c. Prove that if a and b are both odd, then gcd(a, b) = gcd((a - b)/2, b).

d. Design an efficient binary gcd algorithm for input integers a and b,
where a 2:: b, that runs in O(lg(max(a,b))) time. Assume that each
subtraction, parity test, and halving can be performed in unit time.

33-2 Analysis ofbit operations in Euclid's algorithm
a. Show that using the ordinary "paper and pencil" algorithm for long

division-dividing a by b, yielding a quotient q and remainder r
requires O( (1 + Igq) lgb) bit operations.

b. Define fl(a,b) = (1 + Iga)(l + 19b). Show that the number of bit op
erations performed by EUCLID in reducing the problem of computing
gcd(a, b) to that of computing gcd(b, a mod b) is at most C(fl(a, b) 
uib,« mod b)) for some sufficiently large constant C > O.

c. Show that EucLID(a, b) requires O(fl(a, b)) bit operations in general and
O(P2 ) bit operations when applied to two P-bit inputs.

33-3 Three algorithms for Fibonacci numbers
This problem compares the efficiency of three methods for computing the
nth Fibonacci number En, given n. Assume that the cost of adding, sub
tracting, or multiplying two numbers is O( 1), independent of the size of
the numbers.

a. Show that the running time of the straightforward recursive method for
computing En based on recurrence (2.13) is exponential in n.

b. Show how to compute En in O(n) time using memoization.

c. Show how to compute En in O(lg n) time using only integer addition
and multiplication. (Hint: Consider the matrix

and its powers.)

d. Assume now that adding two P-bit numbers takes 8(P) time and that
multiplying two P-bit numbers takes 8(P2 ) time. What is the running
time of these three methods under this more reasonable cost measure
for the elementary arithmetic operations?

33-4 Quadratic residues
Let p be an odd prime. A number a E Z; is a quadratic residue if the
equation x 2 = a (mod p) has a solution for the unknown x.

a. Show that there are exactly (p - 1)/2 quadratic residues, modulo p.
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Chapter notes

b. If p is prime, we define the Legendre symbol (~), for a E Z;, to be 1
if a is a quadratic residue modulo p and -I otherwise. Prove that if
a E Z;, then

(~) == a(p-1J/2 (modp).

Give an efficient algorithm for determining whether or not a given num
ber a is a quadratic residue modulo p. Analyze the efficiency of your
algorithm.

c. Prove that if p is a prime of the form 4k +3 and a is a quadratic residue
in Z;, then ak + 1 mod p is a square root of a, modulo p, How much time
is required to find the square root of a quadratic residue a modulo p?

d. Describe an efficient randomized algorithm for finding a nonquadratic
residue, modulo an arbitrary prime p, How many arithmetic operations
does your algorithm require on average?

Niven and Zuckerman [151] provide an excellent introduction to elemen
tary number theory. Knuth [122] contains a good discussion of algorithms
for finding the greatest common divisor, as well as other basic number
theoretic algorithms. Riesel [168] and Bach [16] provide more recent sur
veys of computational number theory. Dixon [56] gives an overview of
factorization and primality testing. The conference proceedings edited by
Pomerance [159] contains several nice survey articles.

Knuth [122] discusses the origin of Euclid's algorithm. It appears in
Book 7, Propositions 1 and 2, of the Greek mathematician Euclid's Ele
ments, which was written around 300 B.C. Euclid's description may have
been derived from an algorithm due to Eudoxus around 375 B.C. Euclid's
algorithm may hold the honor of being the oldest nontrivial algorithm; it
is rivaled only by the Russian peasant's algorithm for multiplication (see
Chapter 29), which was known to the ancient Egyptians.

Knuth attributes a special case of the Chinese remainder theorem (The
orem 33.27) to the Chinese mathematician Sun-Tsu, who lived sometime
between 200 B.C. and A.D. 200-the date is quite uncertain. The same
special case was given by the Greek mathematician Nichomachus around
A.D. 100. It was generalized by Chhin Chiu-Shao in 1247. The Chinese
remainder theorem was finally stated and proved in its full generality by
L. Euler in 1734.

The randomized primality-testing algorithm presented here is due to
Miller [147] and Rabin [166]; it is the fastest randomized primality-testing
algorithm known, to within constant factors. The proof of Theorem 33.39
is a slight adaptation of one suggested by Bach [15]. A proof of a stronger
result for MILLER-RABIN was given by Monier [148, 149]. Randomization
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appears to be necessary to obtain a polynomial-time primality-testing algo
rithm. The fastest deterministic primality-testing algorithm known is the
Cohen-Lenstra version [45] of the primality test by Adleman, Pomerance,
and Rumely [3]. When testing a number n oflength flg(n + 1)1 for primal
ity, it runs in (lgn)O(lglglgn) time, which is just slightly superpolynomial.

The problem of finding large "random" primes is nicely discussed in an
article by Beauchemin, Brassard, Crepeau, Goutier, and Pomerance [20].

The concept of a public-key cryptosystem is due to Diffie and Hell
man [54]. The RSA cryptosystem was proposed in 1977 by Rivest, Shamir,
and Adleman [169]. Since then, the field of cryptography has blossomed.
In particular, many new techniques have been developed for proving cryp
tosystems to be secure. For example, Goldwasser and Micali [86] show
that randomization can be an effective tool in the design of secure public
key encryption schemes. For signature schemes, Goldwasser, Micali, and
Rivest [88] present a digital-signature scheme for which every conceivable
type of forgery is provably as difficult as factoring. Recently, Goldwasser,
Micali, and Rackoff[87] introduced a class of "zero-knowledge" encryption
schemes for which it can be proven (under certain reasonable assumptions)
that no party learns more than he is supposed to learn from a communi
cation.

The rho heuristic for integer factoring was invented by Pollard [156].
The version presented here is a variant proposed by Brent [35].

The best algorithms for factoring large numbers have a running time
that grows roughly exponentially with the square root of the length of
the number n to be factored. The quadratic-sieve factoring algorithm,
due to Pomerance [158], is perhaps the most efficient such algorithm in
general for large inputs. Although it is difficult to give a rigorous analysis
of this algorithm, under reasonable assumptions we can derive a running
time estimate of L(n) I +o( I), where L(n) = ev'ln n In In ". The elliptic-curve
method due to Lenstra [137] may be more effective for some inputs than
the quadratic-sieve method, since, like Pollard's rho method, it can find a
small prime factor p quite quickly. With this method, the time to find p
is estimated to be L(p) V2+o( 1) •



34 String Matching

Finding all occurrences of a pattern in a text is a problem that arises fre
quently in text-editing program s. Typica lly, the text is a docum ent being
edi ted , and the patt ern searched for is a part icular word supplied by the
user. Efficient algorithms for this problem can greatly aid the responsive
ness of the text-ed iting program. String-matching algori thms are also used,
for example, to search for parti cular patterns in DNA sequences.

We formalize the string-maId;", problem as follows. We assum e that
the text is an array T [ I .. nJ of length n and that the pattern is an array
P[ 1.. mJ of length m. We furth er assume that the elements of P and T
are characters drawn from a finite alphabe t E. For example, we may have
1: = {O, 1} or I: = {a.b, . . . . z}. The character arrays P and T are ofte n
called 3tring3 of characters.

We say that pattern P occurs with shift 3 in text T (or, equivalently, that
pattern P occurs beginning at po3ition 3 + I in text T ) if 0 :s s :s n - m and
T(s + I .. s + m) ~ P( I . . m) (that is, if T{s + j j = PU J, for I '.f j '.f m). If
P occurs with shift s in T , then we call s a "alid shift, otherwise, we call
s an i" "alid shif t. The string-matchi ng problem is the problem of finding
all valid sh ifts with which a given pattern P occurs in a given text T .
Figure 34. 1 illustrates these de fi nitio ns.

This chapter is organized as follows. In Section 34.1 we review the naive
brute-fo rce algorithm for the str ing-ma tching problem , which has worst
case running time O((n - m + t )m). Sectio n 34.2 presents an interesting
string-matching algorith m, due to Rabin and Karp. This algorithm also

leXI T 1.l b l c l . lb • • l b c l. l b !. ! c l

pattern P
,-3

I
. 1b •• 1

Figure 34.1 The string-matching problem. The goal is to find all occurrences of
the pattern P = abaa in the text T :::: abcabaabcabac. The pattern occurs only
once in the text, at shift s = 3. The shift S = 3 is said to be a valid shift. Each
character of the patt ern is connected by a vert ical line to the matching character
in the text, and all matched characters are shown shaded.
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has worst-case running time O((n - m + l)m), but it works much better on
average and in practice. It also generalizes nicely to other pattern-matching
problems. Section 34.3 then describes a string-matching algorithm that
begins by constructing a finite automaton specifically designed to search
for occurrences of the given pattern P in a text. This algorithm runs in
time O(n + m 11:1). The similar but much cleverer Knuth-Morris-Pratt (or
KMP) algorithm is presented in Section 34.4; the KMP algorithm runs in
time O(n + m). Finally, Section 34.5 describes an algorithm due to Boyer
and Moore that is often the best practical choice, although its worst-case
running time (like that of the Rabin-Karp algorithm) is no better than that
of the naive string-matching algorithm.

Notation and terminology

We shall let 1:* (read "sigma-star") denote the set of all finite-length strings
formed using characters from the alphabet 1:. In this chapter, we consider
only finite-length strings. The zero-length empty string, denoted e, also
belongs to 1:*. The length of a string x is denoted [x]. The concatenation
of two strings x and Y, denoted xy, has length [x] + IYI and consists of the
characters from x followed by the characters from y.

We say that a string w is e prefix of a string x, denoted w C x, if x = wy
for some string y E 1:*. Note that if w C x, then Iwl s: [x]. Similarly, we
say that a string w is a suffix of a string x, denoted w ::J x, if x = yw for
some y E 1:*. It follows from w ::J x that IwI s: [x], The empty string e is
both a suffixand a prefix of every string. For example, we have ab c abcca
and cca ::J abcca. It is useful to note that for any strings x and y and any
character a, we have x ::J y if and only if xa ::J y a. Also note that c and ::J

are transitive relations. The following lemma will be useful later.

Lemma 34.1 (Overlapping-suffix lemma)
Suppose that x, y, and z are strings such that x ::J z and y ::J z. If [x] s: IYI,
then x ::J y. If [x] ;::: IYI, then Y::J x. If [x] = IYI, then x = y.

Proof See Figure 34.2 for a graphical proof. •
For brevity of notation, we shall denote the k-character prefix P[ 1.. k]

of the pattern P[l .. m] by Pi: Thus, Po = e and Pm = P P[l .. m].
Similarly, we denote the k-character prefix of the text T as Ti; Using this
notation, we can state the string-matching problem as that of finding all
shifts s in the range 0 s: s s: n - m such that P ::J Ts+m.

In our pseudocode, we allow two equal-length strings to be compared for
equality as a primitive operation. If the strings are compared from left to
right and the comparison stops when a mismatch is discovered, we assume
that the time taken by such a test is a linear function of the number of
matching characters discovered. To be precise, the test "x = y" is assumed
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xl. xl xl I

I 1 I 1 I I I 1
, 1 I , 1 I , 1 I I

1 I 1 1 1 1 1 1
y y l yl 1

! ! !
J~ x~ :~

(0) (b) (0)

Figure 34.2 A graphical proof of Lemma 34. 1. We suppose that x :::J z and y :::J z.
The three pan s of the figure illustrate the three cases of the lemma. v erticallines
connect matching regions (shown shaded) of the strings. <al If [x] ~ IYI. then
x :::J y . (b) If lxl? IYI, then y :::J x. (c) If !x! = IYI . then x = j'.

to take time au+ I), where / is the length of the longest string z such that
z C x and z c y .

34.1 The naive string-matching algorithm

Th e naive algorithm finds all valid shi fts using a loop tha t checks the
condition PI I .. m ] = T is + I .. s + m ] for each of the n - m + I possib le
values of s,

N AIVE-ST RING-MATC HER(T, P)

1 n - /eng/hIT )
2 m _ /eng/hIP )
3 for s - Oto n - m
4 doil PI J. . m ) ~ Tls + J. . s + m)

5 then print "Patte rn occurs with shift .. s

The naive string-matching procedure can be interpreted graphically as
sliding a "template" containing the pattern over the text, noting for which
shifts all of the characters on the template equal the corresponding char
acters in the text, as illustrated in Figure 34.3. The for loop beginning
on line 3 conside rs each possible shift explicitly. The test on line 4 deter
mines whether the current shift is valid or not; this test involves an imp licit
loop to check corresponding character positions until all positions match
successfully or a mismatch is found. Line 5 prints out each valid shift s.
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a c a .. b c

• • b

(.)

a c .. abc

• • b

(b)

l ai c .... b l e l
I I

s 2 . 1. lb l

(0)

• c .. .. b c

, 3
• • b

(d)

Figure 34.3 The operation of the naive string matcher for the pattern P = aab
and the text T = acaab c. We can imagine the patt ern P as a "template" that we
slide next to the text. Parts (a)-(d) show the fou i- success ive alignments tried by
the naive string matcher. In each part , vertical lines connect corresponding regions
found to match (shown shaded), and a jagged line connects the first mismatched
character found, i f any. One occurrence of the patt ern is found, at shift s = 2,
shown in pan (c).

Procedure NAIVE-STRiNG-M ATCHER takes time 8 ((n - m + I )m ) in the
worst case. For example, consider the text string a" (a string of n a's )
and the pattern am. For each of the n - m + I possible values of the
shift s, the implicit loop on line 4 to compare corresponding characters
must execute m times to validate the shift. The worst-case running time
is thu s 8 {(n - m + I )m), which is 8 (n2) if m = Lnj2j .

As we shall see, NAIVE-STRING-MATCHER is not an optimal procedure
for thi s problem . Indeed, in thi s chapter we shall show an algorithm with a
wors t-case running time of O(n+m ). The naive string-matcher is inefficient
because information gained abo ut the text for one value of s is totally
ignored in considering other values of s. Such information can be very
valuable, however. For example, if P = aaab and we find that s = 0 is
valid, then none of the shifts 1,2, or 3 are valid, since T[ 4] = b. In the
following sections, we examine several ways to make effective use of thi s
son of informat ion .

Exercises

34./ - /
Show the comparisons th e naive str ing matcher mak es for the patte rn P =
000 1 in the text T = 0000 100010 1000 1.

34.1-2
Show that the wors t-case time for the naive string matcher to find the first
occurren ce of a pattern in a text is 8 « n - m + l )(m - 1)).

34.1-3
Suppose that all characters in the pattern P are d ifferent . Show how to
accelerat e NAIVE-STRING-MATCHER to run in time O(n ) on an a -character
text T .



34.2 The Rabin-Karp algorithm 857

m + 1).

34.1-4
Suppose that pattern P and text T are randomly chosen strings of length
m and n, respectively, from the d-ary alphabet Ld = {G, I, ... ,d I},
where d ~ 2. Show that the expected number of character-to-character
comparisons made by the implicit loop in line 4 of the naive algorithm is

I -d-m
m+l) S;2(n(n

(Assume that the naive algorithm stops comparing characters for a given
shift once a mismatch is found or the entire pattern is matched.) Thus,
for randomly chosen strings, the naive algorithm is quite efficient.

34.1-5
Suppose we allow the pattern P to contain occurrences of a gap character0
that can match an arbitrary string of characters (even one of zero length).
For example, the pattern abobaoc occurs in the text cabccbacbacab as

c~~..e-~~ab
ab <> ba <> c

and as

c ab ccbac ba c ab.
-.......,......"""-...--"-.......,......~~

ab <> ba <> c

Note that the gap character may occur an arbitrary number of times in the
pattern but is assumed not to occur at all in the text. Give a polynomial
time algorithm to determine if such a pattern P occurs in a given text T,
and analyze the running time of your algorithm.

34.2 The Rabin-Karp algorithm

Rabin and Karp have proposed a string-matching algorithm that performs
well in practice and that also generalizes to other algorithms for related
problems, such as two-dimensional pattern matching. The worst-case run
ning time of the Rabin-Karp algorithm is O((n m + l)m), but it has a
good average-case running time.

This algorithm makes use of elementary number-theoretic notions such
as the equivalence of two numbers modulo a third number. You may want
to refer to Section 33.1 for the relevant definitions.

For expository purposes, let us assume that L = {O, 1,2, ... , 9}, so that
each character is a decimal digit. (In the general case, we can assume that
each character is a digit in radix-d notation, where d = ILl.) We can then
view a string of k consecutive characters as representing a length-k deci
mal number. The character string 31415 thus corresponds to the decimal
number 31,415. Given the dual interpretation of the input characters as
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both graphical symbols.and digits, we find it convenient in this section to
denote them as we would digits, in our standard text font.

Given a pattern P[l .. m], we let p denote its corresponding decimal
value. In a similar manner, given a text T[I .. n], we let t, denote the deci
mal value ofthe length-m substring T[s + 1 .. s+ m], for s 0, I, ... , n m.
Certainly, t, = P if and only if T[s + 1.. s + m] P[I .. m]; thus, s is a
valid shift if and only if ts p. If we could compute p in time Oem) and
all of the ti values in a total of O(n) time, then we could determine all
valid shifts s in time O(n) by comparing p with each of the ts's. (For the
moment, let's not worry about the possibility that p and the ts's might be
very large numbers.)

We can compute p in time Oem) using Horner's rule (see Section 32.1):

p = P[m] + 10 (P[m - I] + 10(P[m - 2] + ... + IO(P[2] + IOP[I])·· .)) .

The value to can be similarly computed from T[1 .. m] in time Oem).
To compute the remaining values tv.tz, ... ,tn - m in time O(n - m), it

suffices to observe that tHI can be computed from ts in constant time,
since

ts+1 = lO(ts - IOm-1 T[s + I]) + T[s + m + 1] . (34.1 )

For example, if m 5 and t, 31415, then we wish to remove the high-
order digit T[s + 1] 3 and bring in the new low-order digit (suppose it
is T[s + 5 + 1] 2) to obtain

tHI = 10(31415 - 10000·3) + 2

= 14152.

Subtracting IOm-1 T[s+ 1] removes the high-order digit from t., multiplying
the result by 10 shifts the number left one position, and adding T[s +
m + 1] brings in the appropriate low-order digit. If the constant Iom- I is
precomputed (which can be done in time O(lg m) using the techniques of
Section 33.6, although for this application a straightforward Oem) method
is quite adequate), then each execution of equation (34.1) takes a constant
number of arithmetic operations. Thus, p and to,t], ... , tn-m can all be
computed in time O(n +m), and we can find all occurrences of the pattern
P[I .. m] in the text T[I .. n] in time O(n + m).

The only difficulty with this procedure is that p and t, may be too large
to work with conveniently. If P contains m characters, then assuming that
each arithmetic operation on p (which is m digits long) takes "constant
time" is unreasonable. Fortunately, there is a simple cure for this prob
lem, as shown in Figure 34.4: compute p and the ts's modulo a suitable
modulus q. Since the computation of p, to, and the recurrence (34.1) can
all be performed modulo q, we see that p and all the ts's can be computed
modulo q in time O(n + m). The modulus q is typically chosen as a prime
such that 10q just fits within one computer word, which allows all of the
necessary computations to be performed with single-precision arithmetic.
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23 5 9 0 2 3 1 4 1 $ 2 6 73 9 9 2 1

mod 13

(.)

I a , • , • 7 • 9 10 11 u " " " " i7 18 19

2 , 5 9 0 2 3 1 4 5 2 6 7 3 9 9 2

mod 13

8 9 3 11 0 1 7 8 4 5 10 11 7 9 11

valid spurious
match hit

(b)

3 1 4 1 5 2

.........
digit

I
"" ft
j

. d
hich-«der

digit

\
14152 . (314 15-3·10000)·10 +2 (mod 13)

• (7 - 3·3)· 10 + 2 (mod 13)

• 8 (mod 13)

~..........
dig it

I

old
hich-«der

digit

\

7 8

(0)

Figure 34.4 The Rabin-Karp algori thm . Each character is a decimal digit , and
we compute values modulo 13. (a ) A text string. A window of length 5 is shown
shaded. Th e numerical value of the shaded number is computed modulo 13, yield
ing the value 7. (b) The same text string with values computed modulo 13 for
each possible position of a length-5 window. Assuming the pattern P = 31415, we
look for windows whose value mod ulo 13 is 7, since 3141 5 e 7 (mod 13). Two
such windows are found, shown shaded in the figure. The first, beginning at text
position 7, is indeed an occurrence of the pattern , while the second, beginning at
text position 13, is a spurious hit . (c) Computing the value for a window in con
stant time, given the value for the previous window. The first window has value
3 1415. Dropping the high-order digit 3, shifti ng left (mult iplying by 10), and then
adding in the low-order digit 2 gives us the new value 14152. All computa tions
are perfo rmed modulo 13, however, so the val ue for the first window is 7, and the
value computed for the new window is 8.
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In general, with a d wary alphabet {O, 1, ... , d I}, we choose q so that d q
fits within a computer word and adjust the recurrence equation (34.1) to
work modulo q, so that it becomes

ts+1 = (dtt, - T[s + l]h) + T[s + m + In mod q , (34.2)

where h == d m - I (mod q) is the value of the digit "1" in the high-order
position of an m-digit text window.

The ointment of working modulo q now contains a fly, however, since
Is == P (mod q) does not imply that Is = p, On the other hand, if Is :j:. P
(mod q), then we definitely have that ts :f. p, so that shift s is invalid. We
can thus use the test ts == P (mod q) as a fast heuristic test to rule out in
valid shifts s. Any shift s for which ts == P (mod q) must be tested further
to see if s is really valid or we just have a spurious hit. This testing can be
done by explicitly checking the condition P[I .. m] = T[s + 1.. s + m]. If
q is large enough, then we can hope that spurious hits occur infrequently
enough that the cost of the extra checking is low.

The following procedure makes these ideas precise. The inputs to the
procedure are the text T, the pattern P, the radix d to use (which is typi
cally taken to be 12:1), and the prime q to use.

RABIN-KARP-MATCHER( T, P,d, q)

1 n +- length[T]
2 m t- length[P]
3 h +- dr:' mod q
4 p+-O
5 to +- 0
6 for i +- 1 to m
7 do p +- (dp + pun mod q
8 to t- (d10 + T[i]) mod q
9 for s+-O to n - m

10 do if p = t,
11 then if P[ 1.. m] = T[s + 1 .. s + m]
12 then "Pattern occurs with shift" s
13 if s < n - m
14 then tS+I +- (d(ts - T[s + I]h) + T[s + m + 1]) mod q

The procedure RABIN-KARP-MATCHER works as follows. All characters
are interpreted as radix-d digits. The subscripts on 1 are provided only
for clarity; the program works correctly if all the subscripts are dropped.
Line 3 initializes h to the value of the high-order digit position of an
m-digit window. Lines 4-8 compute p as the value of P[I .. m] mod q
and to as the value of T[ 1.. m] mod q. The for loop beginning on line 9
iterates through all possible shifts s. The loop has the following invariant:
whenever line 10 is executed, Is = T[s + I .. s + m] mod q. If p = Is in
line 10 (a "hit"), then we check to see if P[l .. m] = T[s + I .. s + m]
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in line II to rule out the possibility of a spurious hit. Any valid shifts
found are printed out on line 12. If s < n - m (checked in line 13),
then the for loop is to be executed at least one more time, and so line 14
is first executed to ensure that the loop invariant holds when line lOis
again reached. Line 14 computes the value of tHI mod q from the value
of ts mod q in constant time using equation (34.2) directly.

The running time of RABIN-KARP-MATCHER is 8((n - m + l)m) in the
worst case, since (like the naive string-matching algorithm) the Rabin-Karp
algorithm explicitly verifies every valid shift. If P = am and T = an, then
the verifications take time 8((n - m + I)m), since each of the n - m + 1
possible shifts is valid. (Note also that the computation of d'": I mod q
on line 3 and the loop on lines 6-8 take time O(m) = O((n - m + l)m).)

In many applications, we expect few valid shifts (perhaps O( I) of them),
and so the expected running time of the algorithm is O(n + m) plus the
time required to process spurious hits. We can base a heuristic analysis on
the assumption that reducing values modulo q acts like a random mapping
from 1:* to Zq. (See the discussion on the use of division for hashing in
Section 12.3.1. It is difficult to formalize and prove such an assumption,
although one viable approach is to assume that q is chosen randomly from
integers of the appropriate size. We shall not pursue this formalization
here.) We can then expect that the number of spurious hits is O(njq),
since the chance that an arbitrary ts will be equivalent to p, modulo q, can
be estimated as ljq. The expected amount of time taken by the Rabin
Karp algorithm is then

O(n) + O(m(v + njq)) ,

where v is the number of valid shifts. This running time is O(n) if we
choose q ~ m. That is, if the expected number of valid shifts is small
(O( I)) and the prime q is chosen to be larger than the length of the pattern,
then we can expect the Rabin-Karp procedure to run in time O(n + m).

Exercises

34.2-1
Working modulo q = 11, how many spurious hits does the Rabin-Karp
matcher encounter in the text T = 3141592653589793 when looking for
the pattern P = 26?

34.2-2
How would you extend the Rabin-Karp method to the problem of searching
a text string for an occurrence of anyone of a given set of k patterns?

34.2-3
Show how to extend the Rabin-Karp method to handle the problem of
looking for a given m x m pattern in an n x n array of characters. (The
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pattern may be shifted vertically and horizontally, but it may not be ro
tated.)

34.2-4
Alice has a copy of a long n-bit file A = (an-han-2, ... ,ao), and Bob
similarly has an n-bit file B = (bn - hbn - 2, ... ,bo). Alice and Bob wish to
know if their files are identical. To avoid transmitting all of A or B, they
use the following fast probabilistic check. Together, they select a prime
q > 1000n and randomly select an integer x from {O, 1, ... .n - I}. Then,
Alice evaluates

A(x) ~ (t,aix') mod q

and Bob similarly evaluates B(x). Prove that if A ::f. B, there is at most
one chance in 1000 that A(x) = B(x), whereas if the two files are the same,
A(x) is necessarily the same as B(x). (Hint: See Exercise 33.4-4.)

34.3 String matching with finite automata

Many string-matching algorithms build a finite automaton that scans the
text string T for all occurrences of the pattern P. This section presents a
method for building such an automaton. These string-matching automata
are very efficient: they examine each text character exactly once, taking
constant time per text character. The time used-after the automaton is
built-is therefore 8(n). The time to build the automaton, however, can
be large if 1: is large. Section 34.4 describes a clever way around this
problem.

We begin this section with the definition of a finite automaton. We
then examine a special string-matching automaton and show how it can
be used to find occurrences of a pattern in a text. This discussion includes
details on how to simulate the behavior of a string-matching automaton on
a given text. Finally, we shall show how to construct the string-matching
automaton for a given input pattern.

Finite automata

A finite automaton M is a 5-tuple (Q, qo,A, 1:, 6), where

• Q is a finite set of states,

• qo E Q is the start state,

• A <;; Q is a distinguished set of accepting states,

• L is a finite input alphabet,

• 6 is a function from Q x 1: into Q, called the transition/unction of M.
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Figure 34.5 A simple two-state finite automaton with state set Q = {O, l}, start
state qo 0, and input alphabet 1: = {a, b}. (a) A tabular representation of the
transition function o. (b) An equivalent state-transition diagram. State 1 is the
only accepting state (shown blackened). Directed edges represent transitions. For
example, the edge from state I to state 0 labeled b indicates o( I, b) = 0. This
automaton accepts those strings that end in an odd number of a's. More precisely,
a string x is accepted if and only if x = y z ; where y = e or y ends with a b, and
z = a k , where k is odd. For example, the sequence of states this automaton enters
for input abaaa (including the start state) is (0, 1,0, 1,0, 1), and so it accepts this
input. For input abbaa, the sequence of states is (0, 1,0,0, 1,0), and so it rejects
this input.

The finite automaton begins in state qo and reads the characters of its
input string one at a time. If the automaton is in state q and reads input
character a, it moves ("makes a transition") from state q to state o(q, a).
Whenever its current state q is a member of A, the machine M is said
to have accepted the string read so far. An input that is not accepted is
said to be rejected. Figure 34.5 illustrates these definitions with a simple
two-state automaton.

A finite automaton M induces a function ¢J, called the final-state Junc
tion, from L* to Q such that ¢J(w) is the state M ends up in after scanning
the string w. Thus, M accepts a string w if and only if ¢J(w) E A. The
function ¢J is defined by the recursive relation

¢J(e) = qo,

¢J(wa) o(¢J(w), a)

String-matching automata

for w E L*, a E L .

There is a string-matching automaton for every pattern P; this automaton
must be constructed from the pattern in a preprocessing step before it can
be used to search the text string. Figure 34.6 illustrates this construction
for the pattern P ababaca. From now on, we shall assume that P is a
given fixed pattern string; for brevity, we shall not indicate the dependence
upon P in our notation.

In order to specify the string-matching automaton corresponding to a
given pattern P[l .. m], we first define an auxiliary function 0', called the
suffix Junction corresponding to P. The function 0' is a mapping from L*
to {O, 1,... , m} such that O'(x) is the length of the longest prefix of P that
is a suffix of x:
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state ~Ti ) 0 2 3 4 s 4 s • • 2 3
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Figure 34.6 (a) A state-transition diagram for the string-matching automaton that
accepts all stri ngs ending in the string ababaca. State 0 is the sian state, and
state 7 (shown blackened) is the only accepting state . A di rected edge from sta le i
to state j labeled a represents t.5 (i,a) = j . T he right-going edges form ing the
"spine" of the automaton, shown heavy in the figure, correspond to successful
matches between patt ern and inp ut characters. The left-going edges correspond
10 fail ing matches. Some edges correspondi ng to failing matches are nOI shown;
by convention , if a state j has no outgoing edge labeled a for some a E E, then
J(i,a ) = O. (b) The corresponding transi t ion function 0, and the pattern string
P = ababaca. The entr ies correspondi ng to successful matches between patte rn
and input characters are shown shaded. (c) The operat ion of the automaton on
the text T = aba babacaba. Under each text characte r T[i ] is given the stat e q,(T,)
the automaton is in after processing the prefix T,. One occurrence of the patte rn
is found, ending in position 9.
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cr(x) max{k: Pk :::J x} .
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The suffix function a is well defined since the empty string Po = e is a suffix
of every string. As examples, for the pattern P = ab, we have rr(e) = 0,
cr(ccaca) = I, and cr(ccab) = 2. For a pattern P of length m, we have
cr(x) = m if and only if P :::J x. It follows from the definition of the suffix
function that if x :::J y, then cr(x) ~ cr(y).

We define the string-matching automaton corresponding to a given pat
tern P[ I .. m] as follows.

• The state set Q is {O, I, ... , m}. The start state qo is state 0, and state m
is the only accepting state.

• The transition function J is defined by the following equation, for any
state q and character a:

J(q, a) = cr(Pqa) . (34.3)

Here is an intuitive rationale for defining J(q, a) = cr(Pqa). The machine
maintains as an invariant of its operation that

(34.4)

this result is proved as Theorem 34.4 below. In words, this means that after
scanning the first i characters of the text string T, the machine is in state
4>(Tj ) = q, where q = cr(Td is the length of the longest suffix of T, that is
also a prefix of the pattern P. If the next character scanned is T[ i + I] a,
then the machine should make a transition to state cr(1j+d = cr(1ja). The
proof of the theorem shows that cr(1ja) = cr(Pqa). That is, to compute the
length of the longest suffix of T,a that is a prefix of P, we can compute the
longest suffix of Pqa that is a prefix of P. At each state, the machine only
needs to know the length of the longest prefix of P that is a suffix of what
has been read so far. Therefore, setting J(q, a) = cr(Pqa) maintains the
desired invariant (34.4). This informal argument will be made rigorous
shortly.

In the string-matching automaton of Figure 34.6, for example, we have
J(5, b) = 4. This follows from the fact that if the automaton reads a bin
state q = 5, then Pq b = ababab, and the longest prefix of P that is also a
suffix of ababab is P4 = abab.

To clarify the operation of a string-matching automaton, we now give a
simple, efficient program for simulating the behavior of such an automa
ton (represented by its transition function J) in finding occurrences of a
pattern P of length m in an input text T[l .. n]. As for any string-matching
automaton for a pattern oflength m, the state set Q is {O, I, ... ,m}, the
start state is 0, and the only accepting state is state m.
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Figure 34.7 An illustration for the proof of Lemma 34.2. The fig ure shows that
r :$. I1 (X ) + J, where' = O'(xa ).

FINITE-A uTOMATON-MATCHER( T , 0, m )

I n _ [eng/hIT]
2 q -O
3 fori <- l ton
4 do q _ J (q , T( i ])
5 if q = m
6 then s - ; - m
7 print "Patte rn occurs with shift" s

The simple loop structure of F IN ITE-AuTOMATON-MATCHE R implies that
its running time on a text string of length n is O(n). Th is run ning tim e,
however, does not include the time requ ired 10 compute the transition
function o. We add ress this problem later, after proving that the procedure
F INITE-AuTOMATON-M ATCHER operates co rrec tly.

Consider the operation of the automaton on an input text T[ 1.. n]. We
shall prove that the automaton is in state u (T;) after scanning charac
ter T[ il . Since 0'(1;,) = m if and only if P ::J Ts, the machine is in the
accepting state m if and on ly if the pattern P has just been scanned. To
prove this result , we make use of the following two lemm as about the suffix
function a ,

Lemma 34.2 (Suffix -f unction inequality)
For any string x and character a. we have u (x a) :5 o'(x ) + l.

Proof Referring to Figure 34.7, let r = O' (xa ). If r = 0, then the conclu
sion r :5 O'(x ) + I is tr ivially sati sfied, by the nonnegativity of O' (x ). So
assume that r > O. Now, P, ::J xe, by the definition of a, Thus, Pr - l ::J x ,
by dropping the a from the end of P, and from the end of x a . Therefore,
r - I :5 O' (x ), since u(x ) is largest k such that Pk ::J X. •

Lemma 34.3 (Suffix-f unction recursion lemma)
For any string x and cha racter a, if q = u (x ), then u (xa ) = O' (Pqa).

Proof From the defi nition of 0', we have Pq ::J x. As Figure 34.8 shows,
Pqa ::J xa. If we let r = O' (x a ), then r :5 q + I by Lemma 34.2. Since
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Figure 34.8 An illustration for the proof of Lemma 34.3. The figure shows that
r = u {Pqa), where q =u {x ) and r =u (xa ).

PqO ::J XO, r; :J XO, and IP,I :::; IPqol, Lemma 34.1 implies that P, ::J Pqo.
Therefore, r :::; a (Pqo), that is, a (xo ) :$ a (Pqo). But we also have a (Pqo) :::;
a (xo ), since Pqo :J XO. Thus, a (xa) = a ( Pqa ). _

We are now read y to prove our main theorem characterizing the behavior
of a string-matching automaton on a given input text. As noted above, this
theorem shows that the aut omaton is merely keeping track, at each step,
of the longest prefix of the pattern that is a suffix of what has been read
so far .

Tlttortm 14.4
If ¢ is the final-state function of a string-mat ching automaton for a given
pattern P and Til . . n] is an input text for the aut omaton , then

,p(Ti) ~ a(Ti )

for i = 0, I , ... , n.

Proof The proof is by indu ction on i, For i = 0, the theorem is trivially
true , since To = e. Thus, ¢( To) = a CTo) = O.

Now, we assume that ¢(T;) = a (Ti ) and prove that ¢(T;+d = a(T,+d .
Let q denote ¢( T,.), and let 0 denote T[i + I]. Then ,

¢ (Ti+d = ¢(T;a) (by the definitions of Ti+l and 0 )

~ ~ ( ,p ( Ti ) , a) (by the definition of ,p)

= l:S (q ,a) (by the definiti on of q )

= a (Pqa) (by the definition (34.3) of l:S )

= a (T,a) (by Lemma 34.3 and induct ion)

= a (T,+I ) (by the definiti on of T,+d .

By induction, the theorem is proved. _

By Theorem 34.4, if the machine enters state q on line 4, then q is the
largest value such that Pq ::J Ti. Thus, we have q = m on line 5 if and only
if an occurrence of the pattern P has just been scanned. We conclude that
FINITE-AuTOMATON-MATCHER operates correctly.
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Computing the transition function

The following procedure computes the transition function t5 from a given
pattern P[l .. m].

COMPUTE-TRANSITION-FuNCTION(P, :E)

1 m +-length[P]
2 for q +- 0 to m
3 do for each character a E :E
4 do k+-min{m+ l,q+2)
5 repeat k +- k - 1
6 until Pk ::J Pq a
7 t5(q,a) +- k
8 return s

This procedure computes t5 (q, a) in a straightforward manner according
to its definition. The nested loops beginning on lines 2 and 3 consider all
states q and characters a, and lines 4-7 set t5 (q, a) to be the largest k such
that Pk :::J Pqa. The code starts with the largest conceivable value of k,
which is min( m, q + I), and decreases k until Pk :::J Pqa.

The running time of COMPUTE-TRANSITION-FuNCTION is O{m3 1:E1) , be
cause the outer loops contribute a factor of m I:EI, the inner repeat loop
can run at most m + 1 times, and the test Pk :::J Pqa on line 6 can require
comparing up to m characters. Much faster procedures exist; the time re
quired to compute t5 from P can be improved to O{m I:EI) by utilizing some
cleverly computed information about the pattern P (see Exercise 34.4-6).
With this improved procedure for computing t5, the total running time
to find all occurrences of a length-m pattern in a length-a text over an
alphabet E is O(n + m 11:1).

Exercises

34.3-1
Construct the string-matching automaton for the pattern P = aabab and
illustrate its operation on the text string T = aaababaabaababaab.

34.3-2
Draw a state-transition diagram for a string-matching automaton for the
pattern ababbabbababbababbabb over the alphabet E = {a, b},

34.3-3
We call a pattern P nonoJlerlappable if Pk :::J Pq implies k = 0 or k = q.
Describe the state-transition diagram of the string-matching automaton for
a nonoverlappable pattern.
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34.3-4 *
Given two patterns P and pi, describe how to construct a finite automaton
that determines all occurrences of either pattern. Try to minimize the
number of states in your automaton.

34.3-5
Given a pattern P containing gap characters (see Exercise 34.1-5), show
how to build a finite automaton that can find an occurrence of P in a text T
in O(n) time, where n = ITI.

34.4 The Knuth-Morris-Pratt algorithm

We now present a linear-time string-matching algorithm due to Knuth,
Morris, and Pratt. Their algorithm achieves a 8(n + m) running time by
avoiding the computation of the transition function <5 altogether, and it
does the pattern matching using just an auxiliary function 11:[1 .. m] pre
computed from the pattern in time O(m). The array 11: allows the transition
function 0 to be computed efficiently (in an amortized sense) "on the fly"
as needed. Roughly speaking, for any state q = 0, I, ... .m and any charac
ter a E 1:, the value 11:[q] contains the information that is independent of a
and is needed to compute o(q,a). (This remark will be clarified shortly.)
Since the array 1C has only m entries, whereas <5 has O(m 11:1) entries, we
save a factor of 1: in the preprocessing by computing 11: rather than o.

The prefix function for a pattern

The prefix function for a pattern encapsulates knowledge about how the
pattern matches against shifts of itself. This information can be used to
avoid testing useless shifts in the naive pattern-matching algorithm or to
avoid the precomputation of 0 for a string-matching automaton.

Consider the operation ofthe naive string matcher. Figure 34.9(a) shows
a particular shift s of a template containing the pattern P = ababaca
against a text T. For this example, q = 5 of the characters have matched
successfully, but the 6th pattern character fails to match the corresponding
text character. The information that q characters have matched success
fully determines the corresponding text characters. Knowing these q text
characters allows us to determine immediately that certain shifts are in
valid. In the example of the figure, the shift s + 1 is necessarily invalid,
since the first pattern character, an a, would be aligned with a text char
acter that is known to match with the second pattern character, a b. The
shift s + 2 shown in part (b) of the figure, however, aligns the first three
pattern characters with three text characters that must necessarily match.
In general, it is useful to know the answer to the following question:
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Figure 34.9 The prefix function n. (a) The patt ern p ::: ababaca is aligned with a
text T so th at the first q = 5 charac ters m atch . Mat chi ng cha racters, shown shaded ,
are connected by vertical lines. (b) Using only our knowledge of the 5 matched
characters, we can deduce th at a shift o f 5+ I is invalid , but that a sh ift of s' = $+ 2
is consistent with everything we know about the text and therefore is potentially
valid. (c) The useful information for such deduct ions can be precompu ted by
comparing the pattern with itself. Here, we see that the longest prefix of P that is
also a suffix of p} is Pl . This informat ion is precomput ed and represented in the
array n, so that 1t[5) = 3. Given that q characters have matched successfully at
shift S , the next potentially valid shift is at s' = s + (q - n(q ]) .

Given that patt ern characters P[l .. q] match text characters T [s + 1
.. s + q], what is the least shift s' > s such that

P[l. .k] ~ T[s' + I . .s' + k ] , (34.5)

where s' + k =s + q?

Such a shift s' is the first shift grea ter tha n s that is not necessarily invalid
due to our knowledge of T[s + 1. . s + q ). In the best case, we have that
s' = s + q, and shifts s + I ,s + 2, _. . ,s + q - I are all imm ediately ruled
out. In any case, at the new shift s' we don 't need to compare the first
k characters of P with the corresponding characters of T , since we are
guaranteed that they match by equation (34.5).

The necessary informat ion can be precomputed by comparing the pat
tern against itself, as illust rated in Figure 34.9(c). Since T [s' + I . . s' + k ] is
part of the known porti on of the text, it is a suffix of the string Pq • Equa
tion (34.5) can therefore be interp reted as asking for the largest k < q
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such that Pk ::::J Pq • Then, Sf = s+ (q - k) is the next potentially valid shift.
It turns out to be convenient to store the number k of matching charac
ters at the new shift Sf, rather than storing, say, Sf - s. This information
can be used to speed up both the naive string-matching algorithm and the
finite-automaton matcher.

We formalize the precomputation required as follows. Given a pat
tern P[l .. m], the prefix function for the pattern P is the function 7C

{1,2, ... ,m} --+ {O, l, ... ,m - I} such that

7C [q] max {k : k < q and Pk ::::J Pq } •

That is, 7C[q] is the length of the longest prefix of P that is a proper suf
fix of Pq • As another example, Figure 34.10(a) gives the complete prefix
function 7C for the pattern ababababca.

The Knuth-Morris-Pratt matching algorithm is given in pseudocode be
low as the procedure KMP-MATCHER. It is mostly modeled after FINITE
AUTOMATON-MATCHER, as we shall see. KMP-MATCHER calls the auxil
iary procedure COMPUTE-PREFiX-FuNCTION to compute 7C.

KMP-MATCHER(T, P)

1 n f- length[T]
2 m f- length[P]
3 7C f- COMPUTE-PREFIX-FuNCTION(P)
4 q f- 0
5 for i f- 1 to n
6 do while q > 0 and P[q + 1] -I- T[i]
7 do q f- 7C[q]
8 ifP[q+I]=T[i]
9 then q f- q + 1

10 ifq=m
11 then print "Pattern occurs with shift" i - m
12 q f- 7C[q]

COMPUTE-PREFIX-FuNCTION(P)

1 m f- length[P]
2 7C[1] f- 0
3 k f- 0
4 for q f- 2 to m
5 do while k > 0 and P[k + 1] -I- P[q]
6 do k f- 7C[k]
7 if P[k + 1] = P[q]
8 then k f- k + 1
9 7C[q] f- k

10 return 7C

We begin with an analysis of the running times of these procedures.
Proving these procedures correct will be more complicated.
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Running-time analysis

The running time of COMPUTE-PREFiX-FuNCTION is O( m), using an amor
tized analysis (see Chapter 18). We associate a potential of k with the cur
rent state k of the algorithm. This potential has an initial value of 0, by
line 3. Line 6 decreases k whenever it is executed, since n[k] < k. Since
n[k] ~ 0 for all k, however, k can never become negative. The only other
line that affects k is line 8, which increases k by at most one during each
execution of the for loop body. Since k < q upon entering the for loop,
and since q is incremented in each iteration of the for loop body, k < q
always holds. (This justifies the claim that n[q] < q as well, by line 9.)
We can pay for each execution of the while loop body on line 6 with the
corresponding decrease in the potential function, since n[k] < k. Line 8
increases the potential function by at most one, so that the amortized cost
of the loop body on lines 5-9 is O( I). Since the number of outer-loop
iterations is O(m), and since the final potential function is at least as great
as the initial potential function, the total actual worst-case running time
of COMPUTE-PREFiX-FuNCTION is Oem).

The Knuth-Morris-Pratt algorithm runs in time Otm + n). The call of
COMPUTE-PREFiX-FuNCTION takes Oem) time as we have just seen, and a
similar amortized analysis, using the value of q as the potential function,
shows that the remainder of KMP-MATCHER takes O(n) time.

Compared to FINITE-AuTOMATON-MATCHER, by using tt rather than 0,
we have reduced the time for preprocessing the pattern from Oim I:EI) to
O(m), while keeping the actual matching time bounded by O( m + n).

Correctness of the prefix-function computation

We start with an essential lemma showing that by iterating the prefix func
tion x, we can enumerate all the prefixes Pk that are suffixes of a given
prefix Pq • Let

n"[q] = {q, n[q], n2[q], n3[q], ... , nl[q]} ,

where ni[q] is defined in terms of functional composition, so that nO[q] = q
and ni+1[q] = n[ni[q]] for i > I, and where it is understood that the
sequence in n*[q] stops when nt[q] = 0 is reached.

Lemma 34.5 (Prefix-function iteration lemma)
Let P be a pattern of length m with prefix function x. Then, for q
1,2, ... .m, we have n"[q] = {k: Pk::::J Pq } .

Proof We first prove that

i E n*[q] implies Pi ::::J Pq • (34.6)

If i E n*[q], then i nU[q] for some u. We prove equation (34.6) by
induction on u. For u 0, we have i q, and the claim follows since
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e • K(2) ; 0

Figure 34.10 An illustrat ion of lemma 34.5 for the pattern P ::: ababababc a
and q ::: 8. (a) The It function for the given pattern . Since 1t18] ::: 6, n[6) ::: 4,
.11[4) ::: 2, and .11[2) ::: 0, by iterating z we obtain n O[8) ::: {8, 6,4, 2,O}. (b) We slide
the template containing the patt ern P to th e right and note when some prefix p..
of P matches up with some proper suffix of P, ; th is happens for k ::: 6, 4, 2, and 0.
In the figure, the first row gives P, and the dott ed vert icalline is drawn j ust after P, .
Successive rows show all the shifts of P that cause some prefi x p.. of P to match
some suffix of PI. Successfully matched characters are shown shaded. Verti cal
lines connect aligned matching characters . Thu s, {k : p.. :J P,,} ::: {8,6, 4, 2, 0}.
The lemma claims that nO[q ! = {k: PIc :J P,,} for all a.

Pq :J Pq • Using the relation Plll il :J Pi and the transiti vity or o establishes
the claim for all i in n *[q ] . Therefore, n *(q] ~ {k: Pk ::J Pq}.

We prove that {k: Pk ::J Pql ~ n *[q ] by contradict ion. Suppose to the
contrary that there is an integer in the set {k : Pit. :J Pq } - lI'* [q ), and let j
be the largest such value. Because q is in { k : Pk :J Pq } n n* [q ), we have
j < q, and so we let j' denote the smallest integer in n * [q] that is greater
than j . (We can choose l ' = q if there is no other number in ll *(q ] that
is greater than j .) We have Pj ::J Pq because j E {k: Pk ::J Pq}, PI' ::J Pq
because j' E n *(q] ; thu s, PI :J PI ' by Lemma 34.1. Moreover, j is the
largest such value with th is property. Therefore, we must have nU' ] = j
and thus j E lI'*[ q ]. This cont radiction proves the lem ma. _

Figure 34. 10 illustrates this lemma.
The algorith m CoMPUTE-PREFIX-FuNCTION computes ll'(q] in order for

q = 1, 2, ... , m . The computation of ll(l] = 0 in line 2 of COMPUTE
PREFiX-FuNCTION is certainly correct, since 1t(q ] < q for all q . The
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following lemma and its corollary will be used to prove that COMPUTE
PREFiX-FuNCTION computes 1l'[q] correctly for q > 1.

Lemma 34.6
Let P be a pattern of length m, and let tt be the prefix function for P. For
q = 1,2, ... .m, if 1l'[q] > 0, then 1l'[q] 1 E 1l'*[q 1].

Proof If k = 1l'[q] > 0, then Pk :::J Pq , and thus Pk- I :::J Pq _ 1 (by dropping
the last character from Pk and Pq ) . By Lemma 34.5, therefore, k - 1 E

1l'*[q - 1]. •

For q 2,3, ... , m, define the subset Eq_ 1 ~ 1l'*[q 1] by

Eq - l = {k : k E 1l'*[q - 1] and P[k + 1] = P[q]} .

The set Eq _ 1 consists of the values k for which Pk :::J Pq _ 1 (by Lemma 34.5);
because P[k + 1] = P[q], it is also the case that for these values of k,
PhI :::J Pq • Intuitively, Eq _ 1 consists of those values k E 1l'*[q - 1] such
that we can extend Pk to PhI and get a suffix of Pq •

Corollary 34.7
Let P be a pattern of length m, and let 1l' be the prefix function for P. For
q = 2,3, ... .m,

[ ]_{O if Eq _ 1 = 0 ,
n q - 1 + max{k E Eq _ l } if Eq _ 1 ::f 0.

Proof If r 1l'[q], then Pr :::J Pq , and so r 2: 1 implies P[r] = P[q]. By
Lemma 34.6, therefore, if r 2: 1, then

r = I + max {k E 1l'*[q - I] : P[k + 1] P[q]}.

But the set maximized over is just Eq _ l , so that r = 1 + max {k E E q_ 1}

and Eq _ 1 is nonempty. If r = 0, there is no k E 1l'*[q - 1] for which we
can extend Pk to Pk+ 1 and get a suffix of Pq , since then we would have
1l'[q] > O. Thus, Eq _ 1 = 0. •

We now finish the proof that COMPUTE-PREFiX-FuNCTION computes 1l'
correctly. In the procedure COMPUTE-PREFiX-FuNCTION, at the start of
each iteration of the for loop of lines 4-9, we have that k 1l'[q I]. This
condition is enforced by lines 2 and 3 when the loop is first entered, and
it remains true in each successive iteration because of line 9. Lines 5-8
adjust k so that it now becomes the correct value of 1l'[q]. The loop on
lines 5-6 searches through all values k E 1l'*[q - 1] until one is found for
which P[k + 1] = P[q]; at that point, we have that k is the largest value
in the set Eq _ l , so that, by Corollary 34.7, we can set 1l'[q] to k + 1. If no
such k is found, k = 0 in lines 7-9, and 1l'[q] is set to O. This completes
our proof of the correctness of COMPUTE-PREFIX-FuNCTION.
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Correctness of the KMP algorithm
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The procedure KMP-MATCHER can be viewed as a reimplementation of
the procedure FINITE-AuTOMATON-MATCHER. Specifically, we shall prove
that the code on lines 6-9 of KMP-MATCHER is equivalent to line 4 of
FINITE-AuTOMATON-MATCHER, which sets q to r5(q, T[i]). Instead of using
a stored value of r5(q, T[i]), however, this value is recomputed as necessary
from n, Once we have argued that KMP-MATCHER simulates the behav
ior of FINITE-AuTOMATON-MATCHER, the correctness of KMP-MATCHER

follows from the correctness of FINITE-AuTOMATON-MATCHER (though we
shall see in a moment why line 12 in KMP-MATCHER is necessary).

The correctness of KMP-MATCHER follows from the claim that either
r5(q, T[i]) = 0 or else r5(q, T[i]) - I E n"'[q]. To check this claim, let
k = r5(q, T[i]). Then, Pk :::J Pq T[i] by the definitions of r5 and 0'. Therefore,
either k = 0 or else k ~ 1 and Pk - I ::::J Pq by dropping the last character
from both Pk and Pq T[i] (in which case k - 1 E n*[q]). Therefore, either
k = 0 or k - I E n"'[q], proving the claim.

The claim is used as follows. Let q' denote the value of q when line 6 is
entered. We use the equivalence n*[q] = {k: Pk ::::J Pq } to justify the iter
ation q ..... n[q] that enumerates the elements of {k : Pk ::::J Pql}. Lines 6-9
determine r5(q', T[i]) by examining the elements of n"'[q'] in decreasing
order. The code uses the claim to begin with q = </>(Ti-d = 0'(Ti- 1) and
perform the iteration q ..... n[q] until a q is found such that q = 0 or
P[q + 1] = T[i]. In the former case, r5(q',T[i]) = 0; in the latter case, q is
the maximum element in Eql, so that r5 tq', T[i]) = q + 1 by Corollary 34.7.

Line 12 is necessary in KMP-MATCHER to avoid a possible reference to
P[m+ 1] on line 6 after an occurrence of P has been found. (The argument
that q = 0'(Ti - I ) upon the next execution of line 6 remains valid by the hint
given in Exercise 34.4-6: r5(m, a) = r5(n[m], a) or, equivalently, O'(Pa) =
O'(Pn[mla) for any a E ~.) The remaining argument for the correctness of
the Knuth-Morris-Pratt algorithm follows from the correctness of FINITE

AUTOMATON-MATCHER, since we now see that KMP-MATCHER simulates
the behavior of FINITE-AuTOMATON-MATCHER.

Exercises

34.4-1
Compute the prefix function n for the pattern ababbabbababbababbabb
when the alphabet is ~ = {a, b}.

34.4-2
Give an upper bound on the size of n"'[q] as a function of q. Give an
example to show that your bound is tight.
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34.4-3
Explain how to determine the occurrences of pattern P in the text T by
examining the n function for the string PT (the string of length m +n that
is the concatenation of P and T).

34.4-4
Show how to improve KMP-MATcHER by replacing the occurrence of tt

in line 7 (but not line 12) by n', where n' is defined recursively for q =
1,2, ... .m by the equation

{
o ifn[q]=O,

n'[q] = n'[n[q]] if n[q] =F 0 and P[n[q] + 1] = P[q + 1] ,
n[q] if n[q] =F 0 and P[n[q] + 1] =F P[q + 1] .

Explain why the modified algorithm is correct, and-explain in what sense
this modification constitutes an improvement.

34.4-5
Give a linear-time algorithm to determine if a text T is a cyclic rotation of
another string T'. For example, arc and car are cyclic rotations of each
other.

34.4-6 *
Give an efficient algorithm for computing the transition function 0 for the
string-matching automaton corresponding to a given pattern P. Your algo
rithm should run in time O(m ILl). (Hint: Prove that o(q, a) = o(n[q], a)
if q = m or P[q + 1] =F a.)

* 34.5 The Beyer-Moore algorithm

If the pattern P is relatively long and the alphabet L is reasonably large,
then an algorithm due to Robert S. Boyer and J. Strother Moore is likely
to be the most efficient string-matching algorithm.
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BOYER-MOORE-MATCHER( T, P,1:)

1 n +- length[T]
2 m +- length[P]
3 A+- COMPuTE-LAsT-OccuRRENcE-FuNCTloN(P, m, 1:)
4 Y +- COMPUTE-GOOD-SUFFIX-FuNCTlON(P, m)
5 s+-O
6 while s ::; n - m
7 do j +- m
8 while j > 0 and P[j] = T[s + j]
9 do j +- j - 1

10 ifj=O
11 then print "Pattern occurs at shift" s
12 s +- s + y[O]
13 else s +- s + max(y[j], j - A[T[s + j]])
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Aside from the mysterious-looking A'S and y's, this program looks re
markably like the naive string-matching algorithm. Indeed, suppose we
comment out lines 3-4 and replace the updating of s on lines 12-13 with
simple incrementations as follows:

12
13

s+-s+1
else s +- s + 1

The modified program now acts exactly like the naive string matcher: the
while loop beginning on line 6 considers each of the n - m + 1 possible
shifts s in turn, and the while loop beginning on line 8 tests the condition
P[I .. m] = T[s + 1 .. s + m] by comparing P[j] with T[s + j] for j =

m, m - 1,... , l. If the loop terminates with j = 0, a valid shift s has
been found, and line 11 prints out the value of s. At this level, the only
remarkable features of the Beyer-Moore algorithm are that it compares the
pattern against the text from right to left and that it increases the shift s
on lines 12-13 by a value that is not necessarily 1.

The Beyer-Moore algorithm incorporates two heuristics that allow it to
avoid much of the work that our previous string-matching algorithms per
formed. These heuristics are so effective that they often allow the algo
rithm to skip altogether the examination of many text characters. These
heuristics, known as the "bad-character heuristic" and the "good-suffix heu
ristic," are illustrated in Figure 34.11. They can be viewed as operating
independently in parallel. When a mismatch occurs, each heuristic pro
poses an amount by which s can safely be increased without missing a
valid shift. The Beyer-Moore algorithm chooses the larger amount and
increases s by that amount: when line 13 is reached after a mismatch, the
bad-character heuristic proposes increasing s by j - A[T[s + j]], and the
good-suffix heuristic proposes increasing s by y[j].
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Figure 34.11 An illustration of the Beyer-Moo re heu ristics. (a) Marching the
pattern rem iniscence against a text by compa ring cha racte rs in a right -to-left
man ner. Th e shift s is invalid ; although a "good suffix" ce of the pattern matched
correc tly agai nst the correspond ing cha racters in the text (matching charac ters a re
shown shaded), the " bad cha racter" i . which d idn 't match the co rrespond ing char
acter n in the pat tern, was d iscovered in the text. (b) The bad -cha racter heurist ic
proposes mo ving the pattern to the right, if possible, by the amount that gua rantees
that the bad text charac ter will match the rightmost occurrence of the bad char
acter in the patt ern . In th is example, moving the pattern 4 position s to th e right
causes the bad text cha racter i in the text to match the right most i in the pattern,
at positio n 6. If the bad cha racter doesn't occur in the pattern , then the pa ttern
may be moved completely pas t the bad charac ter in the text. If the rightmost
occurre nce of the bad cha racter in the pa ttern is to the right of the current bad
character posi tion, then th is heuristic makes no proposal. (c) With the good-suffix
heurist ic, the pa ttern is moved to the right by th e least amount that guarantees that
an y patt ern cha racters that align with the good suffix ce previously found in the
text will match those suffix characters. In th is exa mple, moving the patte rn 3 po
sitions to the righ t satisfies this cond ition. Since the good-suffix heuris tic proposes
a movemen t of 3 posit ion s, which is smaller than the a-posi tion proposal of the
bad-character heuristic, the Beyer-Moore algorithm increases the shift by 4.
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The bad-character heuristic
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When a mismatch occurs, the bad-character heuristic uses information
about where the bad text character T[s + j) occurs in the pattern (if it
occurs at all) to propose a new shift. In the best case, the mismatch oc
curs on the first comparison (P[m) :f. T[s + m]) and the bad character
T[s + m) does not occur in the pattern at all. (Imagine searching for am
in the text string b",) In this case, we can increase the shift s by m, since
any shift smaller than s + m will align some pattern character against the
bad character, causing a mismatch. If the best case occurs repeatedly, the
Beyer-Moore algorithm examines only a fraction 1/ m of the text charac
ters, since each text character examined yields a mismatch, thus causing s
to increase by m. This best-case behavior illustrates the power of matching
right-to-left instead of left-to-right.

In general, the bad-character heuristic works as follows. Suppose we have
just found a mismatch: P[j] :f. T[s + j] for some i, where I ::; j ::; m.
We then let k be the largest index in the range I ::; k ::; m such that
T[s + j) = P[k), if any such k exists. Otherwise, we let k = O. We claim
that we may safely increase s by j k. We must consider three cases to
prove this claim, as illustrated by Figure 34.12.

• k = 0: As shown in Figure 34.l2(a), the bad character T[s + j] didn't
occur in the pattern at all, and so we can safely increase s by j without
missing any valid shifts.

• k < j: As shown in Figure 34.12(b), the rightmost occurrence of the
bad character is in the pattern to the left of position j, so that j - k > 0
and the pattern must be moved j k characters to the right before the
bad text character matches any pattern character. Therefore, we can
safely increase s by j k without missing any valid shifts.

• k > j: As shown in Figure 34.12(c), j - k < 0, and so the bad-character
heuristic is essentially proposing to decrease s. This recommendation
will be ignored by the Boyer-Moore algorithm, since the good-suffix heu
ristic will propose a shift to the right in all cases.

The following simple program defines ..:l.[a] to be the index of the right
most position in the pattern at which character a occurs, for each a E k.
If a does not occur in the pattern, then ..:l.[a] is set to O. We call ..:l. the
last-occurrence function for the pattern. With this definition, the expres
sion j - ..:l.[T[s +jll on line 13 of BOYER-MoORE MATCHER implements the
bad-character heuristic. (Since j - ..:l.[T[s + jll is negative if the rightmost
occurrence of the bad character T[s + j) in the pattern is to the right of
position i. we rely on the positivity of )JU), proposed by the good-suffix
heuristic, to ensure that the algorithm makes progress at each step.)
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Figure 34.12 The cases of the bad-character heuristic. (a) The bad character b
occurs nowhere in the pattern, and so the patt ern can be advanced j :II: I I characte rs
unti l it has passed over the bad characte r. (b) The rightmost occurre nce of the bad
character in the pattern is at position k < j, and so the pattern can be advanced
j - k characters. Since j = 10 and k = 6 for the bad character i , the pattern can
be advanced 4 positions until the i 's line up. (c) The rightmost occurre nce of the
bad character in the pattern is at position k > i . In this example. j ::: 10 and
k = 12 for the bad character e. The bad-character heuristic proposes a negative
shift, which is ignored.
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COMPUTE-LAST-OCCURRENCE-FuNCTION(P, m, 1:)

1 for each character a E 1:
2 do A[a] = 0
3 for j +- 1 to m
4 do A[P[j]] +- j
5 return A
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The running time of procedure COMPUTE-LAST-OCCURRENCE-FuNCTION
is 0(11:1 + m).

The good-suffix heuristic

Let us define the relation Q ...... R (read "Q is similar to R") for strings Q
and R to mean that Q ::J R or R ::J Q. If two strings are similar, then we
can align them with their rightmost characters matched, and no pair of
aligned characters will disagree. The relation "......" is symmetric: Q '" R if
and only if R ...... Q. We also have, as a consequence of Lemma 34.1, that

Q::J Rand S ::J R imply Q '" S . (34.7)

If we find that P[j] :f. T(s + j], where j < m, then the good-suffix
heuristic says that we can safely advance s by

y[j] = m - max {k : 0 ::; k < m and prj + 1.. m] '" Pd .
That is, y[j] is the least amount we can advance s and not cause any
characters in the "good suffix" T[s + j + l .. s + m] to be mismatched
against the new alignment of the pattern. The function y is well defined
for all i. since prj + 1.. m] ...... Po for all j: the empty string is similar to
all strings. We call y the good-suffix function for the pattern P.

We now show how to compute the good-suffix function y. We first ob
serve that y[j] ::; m -n[m] for all i. as follows. If w = n[m], then Pw ::J P
by the definition of n, Furthermore, since prj + 1.. m] ::J P for any j, we
have Pw ...... prj + 1.. m], by equation (34.7). Therefore, y[j] ::; m - n[m]
for all j.

We can now rewrite our definition of y as

y[j] = m - max {k : n[m] ::; k < m and prj + 1.. m] '" Pd
The condition that P[j + 1.. m] f"V Pk holds if either P[j + 1.. m] ::J Pk or
Pk ::J P(j + 1.. m]. But the latter possibility implies that Pk ::J P and thus
that k ::; n[m], by the definition of n, This latter possibility cannot reduce
the value of y[j] below m n[m]. We can therefore rewrite our definition
of y still further as follows:

y[j] m max({n[m]}u{k:n[m]<k<mandP[j+l .. m]::JPd).

(The second set may be empty.) It is worth observing that the definition
implies that y(j] > 0 for all j = 1,2, ... , m, which ensures that the Boyer
Moore algorithm makes progress.
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To simplify the expression for y further, we define P' as the reverse
of the pattern P and n' as the corresponding prefix function. That is,
PIli] = P[m - i + 1] for i = 1,2, ... , m, and n'[t] is the largest u such that
u < t and P~ ::J PI.

If k is the largest possible value such that P[j + 1.. m] ::J Pk, then we
claim that

n'[l] m - j , (34.8)

where I (m - k) + (m j). To see that this claim is well defined, note
that P[j + 1.. m] ::J Pk implies that m j:::; k, and thus I :::; m. Also,
j < m and k :::; m, so that I ~ 1. We prove this claim as follows. Since
P[j + I .. m] ::J Pb we have p:n-) ::J Pt. Therefore, n'[l] ~ m j. Suppose
now that p > m j, where p n'[l]. Then, by the definition of n', we
have P; ::J P/ or, equivalently, PI[I .. p] P'[I p + 1. . /]. Rewriting
this equation in terms of P rather than P', we have P[m p + I .. m]
P[m - I + 1.. m 1+ pl. Substituting for I = 2m k i. we obtain
P[m - p + 1.. m] = P[k m + j + I .. k m + j + p], which implies
P[m-p+I .. m]::J Pk-m+)+P' Sincep > m-«j, we have j-t-I > m-p+l, and
so P[j + 1.. m] ::J P[m - P+ 1.. m], implying that P[j + I .. m] ::J Pk-m+)+P
by the transitivity of' n, Finally, since p > m i, we have k ' > k, where
k ' = k m + j + p, contradicting our choice of k as the largest possible
value such that P[j + 1.. m] ::J Pi, This contradiction means that we can't
have p > m j, and thus p = m i, which proves the claim (34.8).

Using equation (34.8), and noting that n'[l] m j implies that j =

m n'[I] and k m I + n'[/], we can rewrite our definition of y still
further:

y[j] m max( {n[m]}

U {m - I + n'[l] : 1 :::; I :::; m and j = m - n'[I]} )

= min({m -n[m]}

U {/-n'[l]: 1 :::; I:::; m and j = m - n'[/]}) . (34.9)

Again, the second set may be empty.
We are now ready to examine the procedure for computing y.

COMPUTE-GOOD-SUFFIX-FuNCTION(P, m)

1 tt - COMPUTE-PREFIX-FuNCTION(P)

2 P' - reverse(P)
3 n' - COMPUTE-PREFIX-FuNCTION(P')

4 for j - 0 to m
5 do y[j] - m n[m]
6 for 1- 1 to m
7 do j - m - n' [I]
8 if y[j] > I - n'[I]
9 then y[j] - I n'[l]

10 return y
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Problems

The procedure COMPUTE-GOOD-SUFFIX-FuNCTION is a straightforward
implementation of equation (34.9). Its running time is O(m).

The worst-case running time of the Beyer-Moore algorithm is clearly
O((n m + 1)m +ILl), since COMPUTE-LAST-OcCURRENCE-FUNCTION takes
time O(m+ILI), COMPUTE-GOOD-SUFFIX-FuNCTION takes time O(m), and
the Beyer-Moore algorithm (like the Rabin-Karp algorithm) spends O(m)
time validating each valid shift s. In practice, however, the Beyer-Moore
algorithm is often the algorithm of choice.

Exercises

34.5-1
Compute the It and y functions for the pattern P = 0101101201 and the
alphabet E {O,I,2}.

34.5-2
Give examples to show that by combining the bad-character and good
suffix heuristics, the Beyer-Moore algorithm can perform much better than
if it used just the good-suffix heuristic.

34.5-3 *
An improvement to the basic Beyer-Moore procedure that is often used in
practice is to replace the y function by y', defined by

y'[j] m - max{k : O:s k < m and P[j + I .. m] ,..... Pk and
(k m + j > 0 implies P[jl f. P[k - m + j])} .

In addition to ensuring that the characters in the good suffix will be mis
matched at the new shift, the y' function also guarantees that the same
pattern character will not be matched up against the bad text character.
Show how to compute the y' function efficiently.

34-1 String matching based on repetition factors
Let yi denote the concatenation of string y with itself i times. For example,
(ab)3 = ababab. We say that a string x E :E* has repetitionfactor r if x = y'
for some string y E L* and some r > O. Let p(x) denote the largest r such
that x has repetition factor r.

a. Give an efficient algorithm that takes as input a pattern P[l .. m] and
computes p( Pi) for i = 1, 2, ... , m. What is the running time of your
algorithm?
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b. For any pattern P[I .. m], let p*(P) be defined as maxls;iSm p(Pd. Prove
that if the pattern P is chosen randomly from the set of all binary strings
of length m, then the expected value of p*(P) is 0(1).

c. Argue that the following string-matching algorithm correctly finds all
occurrences of pattern P in a text T[l .. n] in time O(p*(P)n + m).

REPETITION-MATCHER(P, T)

I m t- length [P]
2 n t- length[T]
3 kt-l+p*(P)
4 q-O

5 s - 0
6 while s S n - m
7 do if T[s + q + I] P[ q + 1]
8 then q t- q + I
9 if q m

10 then print "Pattern occurs with shift" s
11 ifq=morT[s+q+I]j:P[q+l]
12 then s t- S + max(l, rq/kl)
13 q - 0

This algorithm is due to Galil and Seiferas. By extending these ideas
greatly, they obtain a linear-time string-matching algorithm that uses
only O( I) storage beyond what is required for P and T.

34-2 Parallel string matching
Consider the problem of string matching on a parallel computer. Assume
that for a given pattern, we have a string-matching automaton M with
state set Q. Let ¢ be the final-state function for M. Suppose that our
input text is T[l .. n]. We wish to compute ¢(Ti ) for i = 1,2, ... ,n; that
is, we wish to compute the final state for each prefix. Our strategy is to
use the parallel prefix computation described in Section 30.1.2.

For any input string x, define the function Ox : Q ---. Q such that if M
starts in state q and reads input x, then M ends in state ox(q).

a. Prove that Oy 0 Ox = OXy, where 0 denotes functional composition:

b. Argue that 0 is an associative operation.

c. Argue that Oxy can be computed from tabular representations of Ox
and Oy in O( I) time on a CREW PRAM. Analyze how many processors
are needed in terms of IQI.

d. Prove that ¢(Ti ) = OT,(qO), where qo is the start state for M.
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e. Show how to find all occurrences of a pattern in a text of length n in
O(lg n) time on a CREW PRAM. Assume that the pattern is supplied
in the form of the corresponding string-matching automaton.

The relation of string matching to the theory of finite automata is dis
cussed by Aho, Hopcroft, and Ullman [4]. The Knuth-Morris-Pratt al
gorithm [125] was invented independently by Knuth and Pratt and by
Morris; they published their work jointly. The Rabin-Karp algorithm was
proposed by Rabin and Karp [117], and the Beyer-Moore algorithm is due
to Boyer and Moore [32]. Galil and Seiferas [78] give an interesting deter
ministic linear-time string-matching algorithm that uses only O( 1) space
beyond that required to store the pattern and text.



35 Computational Geometry

Computational geometry is the branch of computer science that studies
algorithms for solving geometric problems. In modern engineering and
mathematics, computational geometry has applications in, among other
fields, computer graphics, robotics, VLSI design, computer-aided design,
and statistics. The input to a computational-geometry problem is typically
a description of a set of geometric objects, such as a set of points, a set of
line segments, or the vertices of a polygon in counterclockwise order. The
output is often a response to a query about the objects, such as whether
any of the lines intersect, or perhaps a new geometric object, such as the
convex hull (smallest enclosing convex polygon) of the set of points.

In this chapter, we look at a few computational-geometry algorithms in
two dimensions, that is, in the plane. Each input object is represented as a
set of points {pd, where each Pi = (Xi,Yi) and Xi,YI E R. For example, an
n-vertex polygon P is represented by a sequence (PO,Pl ,P2, ... ,Pn-l) of its
vertices in order of their appearance on the boundary of P. Computational
geometry can also be performed in three dimensions, and even in higher
dimensional spaces, but such problems and their solutions can be very
difficult to visualize. Even in two dimensions, however, we can see a good
sample of computational-geometry techniques.

Section 35.1 shows how to answer simple questions about line segments
efficiently and accurately: whether one segment is clockwise or counter
clockwise from another that shares an endpoint, which way we turn when
traversing two adjoining line segments, and whether two line segments in
tersect. Section 35.2 presents a technique called "sweeping" that we use
to develop an O( n lgn )-time algorithm for determining whether there are
any intersections among a set of n line segments. Section 35.3 gives two
"rotational-sweep" algorithms that compute the convex hull (smallest en
closing convex polygon) of a set of n points: Graham's scan, which runs
in time O(n 19n), and Jarvis's march, which takes O(nh) time, where h is
the number of vertices of the convex hull. Finally, Section 35.4 gives an
O(n lgnj-tirne divide-and-conquer algorithm for finding the closest pair of
points in a set of n points in the plane.
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Several of the computational-geometry algorithms in this chapter will re
quire answers to questions about the properties of line segments. A convex
combination of two distinct points PI = (XI, YI) and pz = (xz, yz) is any
point P3 = (X3,Y3) such that for some a in the range 0 ::; a ::; 1, we
have X3 = aXI + (1 - a)xz and Y3 = aYI + (1 - a)yz. We also write that
P3 = op, + (1 - a)pz. Intuitively, P3 is any point that is on the line pass
ing through PI and pz and is on or between PI and pz on the line. Given
two distinct points PI and pz, the line segment PIPZ is the set of convex
combinations of PI and Pz. We call PI and pz the endpoints of segment
PIPZ. Sometimes the ordering ofPI andpz matters, and we speak of the di
rected segment PlPi, IfPI is the origin (0,0), then we can treat the directed
segment PlPi as the vector Pz.

In this section, we shall explore the following questions:

1. Given two directed segments AA and ii'QP5., is AA clockwise from ii'QP5.
with respect to their common endpoint Po?

2. Given two line segments PIPZ and PZP3, if we traverse PIPZ and then
PZP3, do we make a left turn at point pz?

3. Do line segments PIPZ and P3P4 intersect?

There are no restrictions on the given points.
We can answer each question in O( 1) time, which should come as no sur

prise since the input size of each question is O( 1). Moreover, our methods
will use only additions, subtractions, multiplications, and comparisons.
We need neither division nor trigonometric functions, both of which can
be computationally expensive and prone to problems with round-off error.
For example, the "straightforward" method of determining whether two
segments intersect-compute the line equation of the form Y = mx +b for
each segment (m is the slope and b is the y-intercept), find the point of in
tersection of the lines, and check whether this point is on both segments
uses division to find the point of intersection. When the segments are
nearly parallel, this method is very sensitive to the precision of the di
vision operation on real computers. The method in this section, which
avoids division, is much more accurate.

Cross products

Computing cross products is at the heart of our line-segment methods.
Consider vectors PI and pz, shown in Figure 35.1(a). The cross product
PI x pz can be interpreted as the signed area of the parallelogram formed
by the points (0,0), PI, pz, and PI + pz = (XI + Xz,YI + yz). An equivalent,
but more useful, definition gives the cross product as the determinant of
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(.) (b)

PI x P2

Figure 35.1 (a) T he cross prod uct of vectors PI and P2 is the signed area of the
parallelogram. (b) The lightly shaded region contains vectors that are clockwise
from p . The da rkly shaded region co ntains vectors that are counterclockwise
f rom p.

a mat rix:'
= del (XI X2)

YI y :z
= X 1Y2 - x 2Y I

= - P2 X PI .

If PI x P2 is positive, then PI is clockwise from P2 with respect to the origin
(0, 0); if this cross product is negati ve. then PI is counterclockwise from P2.
Figure 35.1(b) shows the clockwise and counterclockwise regions relat ive
to a vector p . A bo undary condition ari ses if the cross prod uct is zero; in
thi s case , the vectors are collintilr. pointing in either the same or opposite
directions.

To determine wheth er a directed segment POPi is clockwise fro m a di
reeted segment POPi with respec t to their com mon endpoint Po, we simpl y
translate to use Po as the origin. Th at is, we let PI - Po denote the vector
P~ = (x l, y; ), where x i = x r - X Q and Y; = Yl - Yo, and we define P2 - Po
similarly. We then compute the cross product

(P, - Po) x (p, - Po) ~ (x , - xO)(Y, - Yo) - (x, - XO)(YI - Yo) .

If th is cross product is positive, then M is clockwise from PoPz; if nega
tive, it is counterclockwise.

Determining whether consecutive segments tum left or righ t

Our next qu estion is whether two consecutive line segmen ts PoPI and PlP2
tum left or right at point Pl. Equivalently, we want a meth od to determ ine

•Actuall y, the cross product is a three-d imensional concep t. It is a vecto r that is perpe nd icular
10 both PI and P2 according to the "right-hand rule" and whose magnitude is IXI Y2 - X2YII.
In this chapter, however. it will prove coove ntenr 10 treat the cross product simply as the
value X . Y2 - X2YI '
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P2f> PI
counterclockwise

Po

(a)

P, <1::ockwise

~PU
(b)
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Figure 35.2 Using the cross product to determine how consecutive line segments
POP) and PIP2 turn at point PI. We check whether the directed segment POiii is
clockwise or counterclockwise relative to the directed segment PoP;' (a) If coun
terclockwise, the points make a left turn. (b) If clockwise, they make a right turn.

which way a given angle LpoPIPz turns. Cross products allow us to answer
this question without computing the angle. As shown in Figure 35.2, we
simply check whether directed segment~ is clockwise or counterclock
wise relative to directed segment AA. To do this, we compute the cross
product (P2 Po) x (PI Po). If the sign of this cross product is negative,
then~ is counterclockwise with respect to AA, and thus we make a
left turn at PI. A positive cross product indicates a clockwise orientation
and a right turn. A cross product of 0 means that points Po,PI, and P2 are
collinear.

Determining whether two line segments intersect

We use a two-stage process to determine whether two line segments inter
sect. The first stage is quick rejection: the line segments cannot intersect if
their bounding boxes do not intersect. The boundingbox of a geometric fig
ure is the smallest rectangle that contains the figure and whose segments are
parallel to the x-axis and y-axis. The bounding box of line segment PIPZ is
represented by the rectangle (PI,ih) with lower left point PI = (xl,yd and
upper right point P2 = (X2,y2), where XI = min(xhx2), YI = min(Y"Y2),
X2 = max(xI,x2), and j', = max(YhYZ). Two rectangles, represented by
lower left and upper right points (PhP2) and (p3,j4), intersect if and only
if the conjunction

is true. The rectangles must intersect in both dimensions. The first two
comparisons above determine whether the rectangles intersect in x; the
second two comparisons determine whether the rectangles intersect in y.

The second stage in determining whether two line segments intersect
decides whether each segment "straddles" the line containing the other. A
segment PIPZ straddles a line if point PI lies on one side of the line and
point P2 lies on the other side. If PI or P2 lies on the line, then we say that
the segment straddles the line. Two line segments intersect if and only
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(P3-Pl)X(P2-ttiiP1)< 0 P2
P3

P4

(P4-PI)X(P2- Pl) > 0
PI

(a)

(P4-P1)X(P2-Pl) < 0
(P 3-P1)X(P2-Pl) < 0 P

4
P3

(b)

(e)

P3

(P 3-PJ)X(P2- PI) = 0

(d)

(P4-P1)X(P2-PJ) = 0

(c)

(P3-Pl)X(P2- PI) < 0

P3 P2

Figure 35.3 Determining whether line segment P3P4 straddles the line containing
segment PIP2. (a) If it does straddle, then the signs of the cross products (P3 pI) x
(P2 - pI) and (P4 pt} x (P2 pt} differ. (b) If it does not straddle, then the signs
of the cross products are the same. (c)-(d) Boundary cases in which at least one of
the cross products is zero and the segment straddles. (e) A boundary case in which
the segments are collinear but do not intersect. Both cross products are zero, but
they would not be computed by our algorithm because the segments fail the quick
rejection test-their bounding boxes do not intersect.

if they pass the quick rejection test and each segment straddles the line
containing the other.

We can use the cross-product method to determine whether line segment
P3P4 straddles the line containing points PI and P2. The idea, as shown in
Figures 35.3(a) and (b), is to determine whether directed segments M
and M have opposite orientations relative toM. If so, then the segment
straddles the line. Recalling that we can determine relative orientations
with cross products, we just check whether the signs of the cross products
(P3 - PI) X (P2 PI) and (P4 - PI) x (P2 - PI) are different. A boundary
condition occurs if either cross product is zero. In this case, either P3 or P4
lies on the line containing segment PIP2. Because the two segments have
already passed the quick rejection test, one of the points P3 and P4 must in
fact lie on segment PIP2. Two such situations are shown in Figures 35.3(c)
and (d). The case in which the two segments are collinear but do not
intersect, shown in Figure 35.3(e), is eliminated by the quick rejection
test. A final boundary condition occurs if one or both of the segments has
zero length, that is, if its endpoints are coincident. If both segments have
zero length, then the quick rejection test suffices. If just one segment, say
P3P4, has zero length, then the segments intersect if and only if the cross
product (P3 - PI) X (P2 - PI) is zero.
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Later sections of this chapter will introduce additional uses for cross prod
ucts. In Section 35.3, we shall need to sort a set of points according to
their polar angles with respect to a given origin. As Exercise 35.1-2 asks
you to show, cross products can be used to perform the comparisons in the
sorting procedure. In Section 35.2, we shall use red-black trees to maintain
the vertical ordering of a set of nonintersecting line segments. Rather than
keeping explicit key values, we shall replace each key comparison in the
red-black tree code by a cross-product calculation to determine which of
two segments that intersect a given vertical line is above the other.

Exercises

35.1-1
Prove that if PI x P2 is positive, then vector PI is clockwise from vector P2
with respect to the origin (0,0) and that if this cross product is negative,
then PI is counterclockwise from P2.

35.1-2
Write pseudocode to sort a sequence (PI,P2, ... ,Pn) of n points according
to their polar angles with respect to a given origin point Po. Your procedure
should take O(n 19 n) time and use cross products to compare angles.

35.1-3
Show how to determine in O(n2Ign) time whether any three points in a
set of n points are collinear.

35.1-4
Professor Amundsen proposes the following method to determine whether
a sequence (Po, PI, ... ,Pn-I) of n points forms the consecutive vertices of a
convex polygon. (See Section 16.4 for definitions pertaining to polygons.)
Output "yes" if the set {LPiPi+IPi+2 : i = 0, 1, ... , n - I}, where subscript
addition is performed modulo n, does not contain both left turns and
right turns; otherwise, output "no." Show that although this method runs
in linear time, it does not always produce the correct answer. Modify the
professor's method so that it always produces the correct answer in linear
time.

35.1-5
Given a point Po = (xo,Yo), the right horizontal ray from Po is the set of
points {Pi (Xi,Yi): Xi ?: Xo and Yi =Yo}, that is, it is the set of points due
right of Po along with Po itself. Show how to determine whether a given
right horizontal ray from Po intersects a line segment PIP2 in O( I) time
by reducing the problem to that of determining whether two line segments
intersect.
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35.1-6
One way to determine whether a point Po is in the interior of a simple,
but not necessarily convex, polygon P is to look at any ray from Po and
check that the ray intersects the boundary of P an odd number of times
but that Po itself is not on the boundary of P. Show how to compute in
8(n) time whether a point Po is in the interior of an n-vertex polygon P.
(Hint: Use Exercise 35.1-5. Make sure your algorithm is correct when the
ray intersects the polygon boundary at a vertex and when the ray overlaps
a side of the polygon.)

35.1-7
Show how to compute the area of an n-vertex simple, but not necessarily
convex, polygon in 8(n) time.

35.2 Determining whether any pair of segments intersects

This section presents an algorithm for determining whether any two line
segments in a set of segments intersect. The algorithm uses a technique
known as "sweeping," which is common to many computational-geometry
algorithms. Moreover, as the exercises at the end of this section show, this
algorithm, or simple variations of it, can be used to solve other computa
tional-geometry problems.

The algorithm runs in O(n 19 n) time, where n is the number of segments
we are given. It determines only whether or not any intersection exists; it
does not print all the intersections. (By Exercise 35.2-1, it takes Q(n2 ) time
in the worst case to find all the intersections in a set of n line segments.)

In sweeping, an imaginary vertical sweep line passes through the given set
of geometric objects, usually from left to right. The spatial dimension that
the sweep line moves across, in this case the x-dimension, is treated as a
dimension of time. Sweeping provides a method for ordering geometric
objects, usually by placing them into a dynamic data structure, and for tak
ing advantage of relationships among them. The line-segment-intersection
algorithm in this section considers all the line-segment endpoints in left
to-right order and checks for an intersection each time it encounters an
endpoint.

Our algorithm for determining whether any two of n line segments in
tersect makes two simplifying assumptions. First, we assume that no input
segment is vertical. Second, we assume that no three input segments inter
sect at a single point. (Exercise 35.2-8 asks you to describe an implemen
tation that works even if these assumptions fail to hold.) Indeed, remov
ing such simplifying assumptions and dealing with boundary conditions
is often the most difficult part of programming computational-geometry
algorithms and proving their correctness.
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Figure 35.4 The ordering among line segments at various vertical sweep lines.
<a) We have a >, C, a >, b, b ». c, a c-, c, and b >.. c. Segment d is comparable
with no other segment shown. (b) When segments e and / intersect. their orders
are reversed: we have e >v / but / >", e. Any sweep line (such as z) thai passes
through the shaded region has e and f consecutive in its total order.

Ordering segments

Since we assume that there are no vert ical segments, any input segment
that intersects a given vertical sweep line intersects it at a single point. We
can thus order the segments that intersect a vertical sweep line according
to the j -coordinates of the points of intersection.

To be more precise, consider two non intersecting segments s. and S2.

We say that these segments are comJHl , db le at x if the vertical sweep line
with x -coordinate x intersects both of them. We say that s. is lIbor e S2

at x, written s. >x S2, if s. and S2 are comparable at x and the intersection
of s. with the sweep line at x is higher than the intersect ion of 52 with the
same sweep line. In Figure 35.4(a), for example, we have the relationships
a c-, c, a >, b, b >, C, a >, C, and b >u c. Segment d is not comparable
with any other segment.

For any given x , the relation ">.e" is a tota l order (see Section 5.2)
on segments that intersect the sweep line at x. The order may differ for
d iffering values of x , however, as segments ente r and leave the order ing.
A segment enters the ordering when its left endpo int is encountered by the
sweep, and it leaves the ordering when its right endpoi nt is encountered .

What happens when the sweep line passes through the intersection of
two segments? As Figure 35.4(b) shows, their positions in the total order
are reversed. Sweep lines v and w are to the left and right, respectively,
of the point of intersection of segments e and I , and we have e >v I and
f >11> e. Note that because we assume that no three segments intersect
at the same point , there must be some vertical sweep line x for which
intersecting segments e and f are consecutive in the total order >x. Any
sweep line that passes through the shaded region of Figure 35.4(b), such
as a, has e and I consecutive in its total order.
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Moving the sweep line

Sweeping algorithms typically manage two sets of data:

1. The sweep-line status gives the relationships among the objects inter
sected by the sweep line.

2. The event-point schedule is a sequence of x-coordinates, ordered from
left to right, that defines the halting positions of the sweep line. We
call each such halting position an event point. Changes to the sweep-line
status occur only at event points.

For some algorithms (the algorithm asked for in Exercise 35.2-7, for
example), the event-point schedule is determined dynamically as the algo
rithm progresses. The algorithm at hand, however, determines the event
points statically, based solely on simple properties of the input data. In
particular, each segment endpoint is an event point. We sort the segment
endpoints by increasing x-coordinate and proceed from left to right. We
insert a segment into the sweep-line status when its left endpoint is encoun
tered, and we delete it from the sweep-line status when its right endpoint
is encountered. Whenever two segments first become consecutive in the
total order, we check whether they intersect.

The sweep-line status is a total order T, for which we require the fol
lowing operations:

• INSERT(T,s): insert segment S into T.

• DELETE(T,s): delete segment s from T.

• ABOVE(T,s): return the segment immediately above segment s in T.

• BELow(T,s): return the segment immediately below segment s in T.

If there are n segments in the input, we can perform each of the above
operations in 00g n) time using red-black trees. Recall that the red-black
tree operations in Chapter 14 involve comparing keys. We can replace the
key comparisons by cross-product comparisons that determine the relative
ordering of two segments (see Exercise 35.2-2).

Segment-intersection pseudocode

The following algorithm takes as input a set S of n line segments, returning
the boolean value TRUE if any pair of segments in S intersects, and FALSE
otherwise. The total order T is implemented by a red-black tree.
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Figure 35.5 The execution of ANY·SE(jME~INTEIl$ECT. Each dashed line is the
sweep line at an event point, and the ordering of segment names below each sweep
line is the total order T at the end of the for loop in which the corresponding event
point is processed. The intersection of segments d and b is found when segment c
is deleted.

ANY-SEGMENTS-INTERSECT(S )

7
8
9

1 T - 0
2 son the endpoi nts of the segments in S from left to right,

breaking ties by putting poi nts with lower y-coordinates fi rst
3 for each point p in the soned list of endpoints
4 do if P is the left endpo int of a segment s
5 then INSERT(T,s )
6 if (ABOYE(T,s) exists and intersects s)

or (BEWW(T,s ) exists and intersec ts s)
then return TRUE

if p is the right endpoint of a segment s
then if both ABOYE(T,s ) and BELOW(T ,s) exist

and ABOYE(T, s ) intersects BELow(T, s)
then return TRUE

DELETE(T,s)
10
11
12 return FALSE

Figure 35.5 illustrates the execution of the algorithm. Line I initializes
the tota l order to be empty. Line 2 determines the event-point schedule by
soning the 2n segment endpoints from left to right, breaking ties by putting
points with lower y-coordinates first. Note that line 2 can be performed
by lexicographically son ing the endpoi n ts on (x ,y).

Each itera tion of the for loop of lines 3-1 1 processes one event point p.
If p is the left endpoi nt of a segment s, line 5 adds S to the total order, and
lines 6-7 return TRUE if s intersects eit her of the segments it is consecu
tive with in the total order defi ned by the sweep line passing thro ugh p.
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(A boundary condition occurs if p lies on another segment s', In this
case, we only require that sand s' be placed consecutively into T.) If p
is the right endpoint of a segment s, then S is to be deleted from the total
order. Lines 9-10 return TRUE if there is an intersection between the seg
ments surrounding s in the total order defined by the sweep line passing
through p; these segments will become consecutive in the total order when
S is deleted. If these segments do not intersect, line 11 deletes segment s
from the total order. Finally, if no intersections are found in processing
all the 2n event points, line 12 returns FALSE.

Correctness

The following theorem shows that ANY-SEGMENTS-INTERSECT is correct.

Theorem 35.1
The call ANY-SEGMENTS-INTERSECT(S) returns TRUE if and only if there
is an intersection among the segments in S.

Proof The procedure can be incorrect only by returning TRUE when no
intersection exists or by returning FALSE when there is at least one intersec
tion. The former case cannot occur, because ANY-SEGMENTS-INTERSECT
returns TRUE only if it finds an intersection between two of the input seg
ments.

To show that the latter case cannot occur, let us suppose for the sake of
contradiction that there is at least one intersection, yet ANY-SEGMENTS
INTERSECT returns FALSE. Let p be the leftmost intersection point, break
ing ties by choosing the one with the lowest y-coordinate, and let a and b
be the segments that intersect at p. Since no intersections occur to the left
of p, the order given by T is correct at all points to the left of p. Because
no three segments intersect at the same point, there exists a sweep line z
at which a and b become consecutive in the total order.? Moreover, z is
to the left of p or goes through p. There exists a segment endpoint q on
sweep line z that is the event point at which a and b become consecutive
in the total order. If p is on sweep line z, then q = p. If p is not on sweep
line z; then q is to the left of p. In either case, the order given by T is
correct just before q is processed. (Here we rely on p being the lowest of
the leftmost intersection points. Because of the lexicographical order in
which event points are processed, even if p is on sweep line z and there is
another intersection point pi on z, event point q = p is processed before
the other intersection pi can interfere with the total order T.) There are
only two possibilities for the action taken at event point q:

21f we allow three segments to intersect at the same point, there may be an intervening
segment c that intersects both a and b at point p, That is, we may have a <", c and c <", b
for all sweep lines w to the left of p for which a <", b.
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1. Either a or b is inserted into T, and the other segment is above or below
it in the total order. Lines 4-7 detect this case.

2. Segments a and b are already in T, and a segment between them in the
total order is deleted, making a and b become consecutive. Lines 8-11
detect this case.

In either case, the intersection p is found, contradicting the assumption
that the procedure returns FALSE. •

Running time

If there are n segments in set S, then ANY-SEGMENTS-INTERSECT runs
in time O(n lgn). Line 1 takes O( 1) time. Line 2 takes O(n 19 n) time,
using merge sort or heapsort. Since there are 2n event points, the for
loop of lines 3-11 iterates at most 2n times. Each iteration takes O(lg n)
time, since each red-black-tree operation takes O(lg n) time and, using the
method of Section 35.1, each intersection test takes 0(1) time. The total
time is thus O(nlgn).

Exercises

35.2-1
Show that there may be 8(n 2 ) intersections in a set of n line segments.

35.2-2
Given two nonintersecting segments a and b that are comparable at x,
show how to use cross products to determine in O( 1) time which of a >x b
or b >x a holds.

35.2-3
Professor Maginot suggests that we modify ANY-SEGMENTS-INTERSECT so
that instead of returning upon finding an intersection, it prints the seg
ments that intersect and continues on to the next iteration of the for
loop. The professor calls the resulting procedure PRINT-INTERSECTING
SEGMENTS and claims that it prints all intersections, left to right, as they
occur in the set of line segments. Show that the professor is wrong on two
counts by giving a set of segments for which the first intersection found
by PRINT-INTERSECTING-SEGMENTS is not the leftmost one and a set of
segments for which PRINT-INTERSECTING-SEGMENTS fails to find all the
intersections.

35.2-4-
Give an O(n lg n j-time algorithm to determine whether an n-vertex polygon
is simple.



898 Chapter 35 Computational Geometry

35.2-5
Give an O(n 19 n j-time algorithm to determine whether two simple poly
gons with a total of n vertices intersect.

35.2-6
A disk consists of a circle plus its interior and is represented by its center
point and radius. Two disks intersect if they have any point in common.
Give an O(n 19 nj-time algorithm to determine whether any two disks in a
set of n intersect.

35.2-7
Given a set of n line segments containing a total of k intersections, show
how to output all k intersections in O((n + k) 19 n) time.

35.2-8
Show how to implement the red-black-tree procedures so that ANY-SEG
MENTs-INTERsEcT works correctly even if some segments are vertical or
more than three segments intersect at the same point. Prove that your
implementation is correct.

35.3 Finding the convex hull

The convex hull of a set Q of points is the smallest convex polygon P for
which each point in Q is either on the boundary of P or in its interior. We
denote the convex hull of Q by CH(Q). Intuitively, we can think of each
point in Q as being a nail sticking out from a board. The convex hull is
then the shape formed by a tight rubber band that surrounds all the nails.
Figure 35.6 shows a set of points and its convex hull.

In this section, we shall present two algorithms that compute the convex
hull of a set of n points. Both algorithms output the vertices of the convex

Figure 35.6 A set of points Q with its convex hull CH(Q) in gray.
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hull in counterclockwise order. The first, known as Graham's scan, runs
in O( n 19 n) time. The second, called Jarvis's march, runs in O( nh) time,
where h is the number of vertices of the convex hull. As can be seen
from Figure 35.6, every vertex of CH(Q) is a point in Q. Both algorithms
exploit this property, deciding which vertices in Q to keep as vertices of
the convex hull and which vertices in Q to throw out.

There are, in fact, several methods that compute convex hulls in O(n 19n)
time. Both Graham's scan and Jarvis's march use a technique called "ro
tational sweep," processing vertices in the order of the polar angles they
form with a reference vertex. Other methods include the following.
• In the incremental method, the points are sorted from left to right,

yielding a sequence (pJ,pz, ... ,Pn). At the ith stage, the convex hull
CH( {PJ,P2, ... ,Pi~d) of the i-I leftmost points is updated according
to the zth point from the left, thus forming CH( {PI,P2, ... ,Pi}). As Ex
ercise 35.3-6 asks you to show, this method can be implemented to take
a total of O( n 19 n) time.

• In the dlside-and-conquer method, in 6(n) time the set of n points is
divided into two subsets, one of the leftmost fn/21 points and one of
the rightmost Ln12J points, the convex hulls of the subsets are computed
recursively, and then a clever method is used to combine the hulls in
O(n) time.

• The prune-and-search method is similar to the worst-case linear-time
median algorithm of Section 10.3. It finds the upper portion (or "upper
chain") of the convex hull by repeatedly throwing out a constant fraction
of the remaining points until only the upper chain of the convex hull
remains. It then does the same for the lower chain. This method is
asymptotically the fastest: if the convex hull contains h vertices, it runs
in only O(n 19 h) time.
Computing the convex hull of a set of points is an interesting problem

in its own right. Moreover, algorithms for some other computational
geometry problems start by computing a convex hull. Consider, for ex
ample, the two-dimensional farthest-pair problem: we are given a set of n
points in the plane and wish to find the two points whose distance from
each other is maximum. As Exercise 35.3-3 asks you to prove, these two
points must be vertices of the convex hull. Although we won't prove it
here, the farthest pair of vertices of an n-vertex convex polygon can be
found in O(n) time. Thus, by computing the convex hull of the n input
points in O( n 19 n) time and then finding the farthest pair of the resulting
convex-polygon vertices, we can find the farthest pair of points in any set
of n points in O( n 19 n) time.

Graham's scan

Graham's scan solves the convex-hull problem by maintaining a stack S of
candidate points. Each point of the input set Q is pushed once onto the
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Figure 35.7 The execution of GRAHAM-SCAN on the set Q of Figure 35.6. The
current convex hull contained in stack S is shown in gray at each step. (a) The
ordered polar angles of (PI ,P2, ... ,PI2) relative to Po and the initial stack S contain
ing Po,PI, and P2. (b)-(k) Stack S after each iteration of the for loop of lines 7-10.
Dashed lines show nonleft turns, which cause points to be popped from the stack.
In part (h), for example, the right turn at angle Lp7PSP9 causes Ps to be popped,
and then the right turn at angle LP6P7P9 causes P7 to be popped. (I) The convex
hull returned by the procedure, which matches that of Figure 35.6.
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stack, and the points that are not vertices of CH( Q) are eventually popped
from the stack. When the algorithm terminates, stack S contains exactly
the vertices of CH(Q), in counterclockwise order of their appearance on
the boundary.

The procedure GRAHAM-SCAN takes as input a set Q of points, where
IQI 2: 3. It calls the functions Top(S), which returns the point on top
of stack S without changing S, and NExT-To-Top(S), which returns the
point one entry below the top of stack S without changing S. As we shall
prove in a moment, the stack S returned by GRAHAM-SCAN contains, from
bottom to top, exactly the vertices of CH( Q) in counterclockwise order.

GRAHAM-SCAN(Q)

let Po be the point in Q with the minimum y-coordinate,
or the leftmost such point in case of a tie

2 let (PI,P2, ... ,Pm) be the remaining points in Q,
sorted by polar angle in counterclockwise order around Po
(if more than point has the same angle, remove all but
the one that is farthest from Po)

3 top[S] <'- °
4 PUSH(PO, S)
5 PUSH(PI, S)
6 PUSH (P2, S)
7 for i <'- 3 to m
8 do while the angle formed by points NEXT-To-Top(S),

Top(S), and Pi makes a nonleft turn
9 do POP(S)

10 PusH(S,pd
II return S

Figure 35.7 illustrates the progress of GRAHAM-SCAN. Line 1 chooses
point Poas the point with the lowest y-coordinate, picking the leftmost such
point in case of a tie. Since there is no point in Q that is below Po and any
other points with the same y-coordinate are to its right, Po is a vertex of
CH( Q). Line 2 sorts the remaining points of Qby polar angle relative to Po,
using the same method-comparing cross products-as in Exercise 35.1-2.
If two or more points have the same polar angle relative to Po, all but the
farthest such point are convex combinations of Po and the farthest point,
and so we remove them entirely from consideration. We let m denote the
number of points other than Po that remain. The polar angle, measured
in radians, of each point in Q relative to Po is in the half-open interval
[0, nI2). Since polar angles increase in a counterclockwise fashion, the
points are sorted in counterclockwise order relative to Po. We designate this
sorted sequence of points by (P"P2, ... ,Pm). Note that points PI and Pm
are vertices of CH(Q) (see Exercise 35.3-1). Figure 35.7(a) shows the
points of Figure 35.6, with the ordered polar angles of (PhP2, ... ,PI2)
relative to Po.
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The remainder of the procedure uses the stack S. Lines 3-6 initialize the
stack to contain, from bottom to top, the first three points Po, PI> and P2.
Figure 35.7(a) shows the initial stack S. The for loop of lines 7-10 iter
ates once for each point in the subsequence (P3,P4, ... ,Pm)' The intent is
that after processing point Pi, stack S contains, from bottom to top, the
vertices of CH( {Po, PI, ... ,Pi}) in counterclockwise order. The while loop
of lines 8-9 removes points from the stack if they are found not to be
vertices of the convex hull. When we traverse the convex hull counter
clockwise, we should make a left turn at each vertex. Thus, each time the
while loop finds a vertex at which we make a nonleft turn, the vertex is
popped from the stack. (By checking for a nonleft turn, rather than just a
right turn, this test precludes the possibility of a straight angle at a vertex
of the resulting convex hull. This is just what we want, since every vertex
of a convex polygon must not be a convex combination of other vertices
of the polygon.) After we pop all the vertices that have nonleft turns when
heading toward point Pi, we push Pi onto the stack. Figures 35.7(b)-(k)
show the state of the stack S after each iteration of the for loop. Finally,
GRAHAM-SCAN returns the stack S in line 11. Figure 35.7(1) shows the
corresponding convex hull.

The following theorem formally proves the correctness of GRAHAM
SCAN.

Theorem 35.2 (Correctness o/Graham's scan)
If GRAHAM-SCAN is run on a set Q of points, where IQI ~ 3, then a point
of Q is on the stack S at termination if and only if it is a vertex of CH( Q).

Proof As noted above, a vertex that is a convex combination of Po and
some other vertex in Q is not a vertex of CH(Q). Such a vertex is not
included in the sequence (P"P2, ... ,Pm), and so it can never appear on
stack S.

The crux of the proof lies in the two situations shown in Figure 35.8.
Part (a) deals with nonleft turns, and part (b) deals with left turns.

We first show that each point popped from stack S is not a vertex of
CH(Q). Suppose that point Pj is popped from the stack because angle
LPkPjPi makes a nonleft turn, as shown in Figure 35.8(a). Because we
scan the points in order of increasing polar angle relative to point Po, there
is a triangle l:::.POPiPk with point Pj either in the interior of the triangle or
on line segment PiPk. In either case, point Pj cannot be a vertex of CH( Q).

We now show that each point on stack S is a vertex of CH( Q) at termina
tion. We start by proving the following claim: GRAHAM-SCAN maintains
the invariant that the points on stack S always form the vertices of a convex
polygon in counterclockwise order.

The claim holds immediately after the execution of line 6, since points
Po, p" and P2 form a convex polygon. Now we examine how stack S
changes during the course of GRAHAM-SCAN. Points are either popped or
pushed. In the former case, we rely on a simply geometrical property: if a
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Figure 35.8 The two basic situations in the proof of correctness of G RAHAM
ScAN. (a ) Showing th at a point popped from the stack in G RAHA M- SCAN is not
a vertex of CH(Q). If point Pi is popped from the stack because angle l PkPjPi
makes a nonleft turn, then the shaded tr iangle 6PoPkPi contains point PJ' Point Pi
is therefore not a vertex of CH(Q). (b) If point Pi is pushed onto the stack, then
there must be a left tum at angle l PkPjP;. Because Pi follows Pi in the polar-angle
order ing of points and because of how Po was chosen, Pi must be in the shaded
region. If the points on the stack form a convex polygon before the push, then
they must form a convex polygon afterwa rd.

vertex is removed from a convex polygon, the resulting polygon is convex.
Thus, popping a point from stack S preserves the invari ant.

Before we consider the case in which a point is pushed onto the stack,
let us examine another geometri cal property, illustrated in Figures 35.9(a)
and (b). Let P be a convex polygon, and choose any side P,PI of P. Con
sider the region bounded by P,PI and the extensions of the two adjacent
sides. (Depending on the relative angles of the adjacent sides, the region
may be either bounded, like the shaded region in part (a) , or unbounded,
like the shaded region in part (b).) If we add any point Ps in thi s region
to P as a new vertex, with the sides P,Ps and PSPI replacing side PrPI, the
resulting polygon is convex.

Now consider a point Pi that is pushed onto S. Referring back to Fig
ure 35.8(b), let Pj be the vertex on the top of S just prior to pushing Pi, and
let Pk be the predecessor of Pj on S . We claim that Pi must fall within the
shaded region of Figure 35.8(b), which corresponds directly to the shaded
regions of Figure 35.9. Because th e angle LPkPjPi makes a left tum, Pi
must be on the shaded side of the extension of PkPj . Because Pi follows Pj
in the polar-angle ordering, it must be on the shaded side of POPj . More
over, because of how we chose Po, point Pi must be on the shaded side of
the extension of PoP l. Thus, Pi is in the shaded region , and therefore afte r
Pi has been pushed onto stack S , the points on S fonn a convex polygon.
Thi s completes the proof of the claim.

At the end of GRAHAM - SCAN, therefore, the points of Q that are on
stack S form the vertices of a convex polygon. We have shown that all
points not on S are not vert ices of CH(Q) or, equivalently, that all vert ices
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Figure 35.9 Adding a point in the shaded region 10 a convex polygon P yields
another convex polygon . Th e shaded region is bounded by a side of p,p, and the
extensions of the two adjacent sides. (.) The shaded region is bounded. (b) Th e
shaded region is unbounded.

of CH(Q) are on S. Since S con tains only vert ices from Q and its points
form a convex polygon, they must form CH(Q ). •

We now sho w that the runn ing time of GRAHAM~SCAN is O(n Ig n). whe re
n = IQI. Line I takes 9 (n ) time. Line 2 takes O(nlg n) time, using merge
sort or heapsort to sort the polar angles and the cross-prod uct method of
Section 35.1 to compare angles. (Removing all but the farthest poin t with
the same polar angle can be done in a total of O(n ) time.) Lines 3-6 take
0 (1) time. Because In :S n - I, the for loop of lines 7- 10 is executed at
most n - 3 times. Since PUSH takes O(l } time. each iteration takes D( I}
time exclusive of the time spent in the while loop of lines 8-9. and thus
overall the for loop takes O(n} time exclusive of the nested while loop .

We use the aggregate method of amort ized anal ysis to show that the while
loop takes O(n) time overa ll. For i = O. I.... ,m. each point Pi is pushed
onto stack S exactly once. As in the analysis of the M ULTIPOP procedu re of
Section )8. 1, we observe that there is at most one POP opera tion for each
PUSH operation. At least three points- Po, PI , and Pm-are never popped
from the stack, so that in fact at most rn - 2 PO P operations are performed
in total. Each iteration of the while loop performs one POP, and so there
are at most m - 2 iterati ons of the while loop altogether. Since the test in
line 8 takes D( I) time, each call of P OP takes 0{ I } time. and m :s n - I ,

the total time taken by the while loop is O(n ). Thus, the running time of
G RA HAM -ScAN is O{n lg n}.

Jarvi s's march

Jan is 's march computes the convex hull of a set Q of points by a techniq ue
known as package wrapping (or gif t wrapping). The algorithm runs in time
O(nh ). where h is the number of vertices of CH(Q). When h is o (lg n ),
Jarvis's march is asymptotically faster than Graham's scan.



906 Chapter 35 Computational Geometry

•

•

•
• •

" Po

-'~left chain " right chain

Figure 35.10 The operation of Jarvis's march. The first vertex chosen is the lowest
point po. The next vertex, PI, has the least polar angle of any point with respect
to Po. Then, P2 has the least polar angle with respect to PI. The right chain goes
as high as the highest point P3. Then, the left chain is constructed by finding least
polar angles with respect to the negative x-axis.

Intuitively, Jarvis's march simulates wrapping a taut piece of paper
around the set Q. We start by taping the end of the paper to the lowest
point in the set, that is, to the same point Po with which we start Graham's
scan. This point is a vertex of the convex hull. We pull the paper to the
right to make it taut, and then we pull it higher until it touches a point.
This point must also be a vertex of the convex hull. Keeping the paper
taut, we continue in this way around the set of vertices until we come back
to our original point Po.

More formally, Jarvis's march builds a sequence H = (Po,p" ... ,Ph-l)
of the vertices of CH(Q). We start with Po. As Figure 35.10 shows, the
next convex hull vertex PI has the least polar angle with respect to Po. (In
case of ties, we choose the point farthest from Po.) Similarly, P2 has the
least polar angle with respect to PI, and so on. When we reach the highest
vertex, say Pk (breaking ties by choosing the farthest such vertex), we have
constructed, as Figure 35.10 shows, the right chain of CH( Q). To construct
the left chain, we start at Pk and choose Ph 1 as the point with the least
polar angle with respect to Pk> but from the negative x-axis. We continue
on, forming the left chain by taking polar angles from the negative x-axis,
until we come back to our original vertex Po.

We could implement Jarvis's march in one conceptual sweep around
the convex hull, that is, without separately constructing the right and left
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chains. Such implementations typically keep track of the angle of the last
convex-hull side chosen and require the sequence of angles of hull sides to
be strictly increasing (in the range of 0 to 2n radians). The advantage of
constructing separate chains is that we need not explicitly compute angles;
the techniques of Section 35.1 suffice to compare angles.

If implemented properly, Jarvis's march has a running time of O(nh).
For each of the h vertices of CH(Q), we find the vertex with the minimum
polar angle. Each comparison between polar angles takes O( I) time, using
the techniques of Section 35.1. As Section 10.1 shows, we can compute the
minimum of n values in O(n) time if each comparison takes O( 1) time.
Thus, Jarvis's march takes O(nh) time.

Exercises

35.3-1
Prove that in the procedure GRAHAM-SCAN, points PI and Pm must be
vertices of CH(Q).

35.3-2
Consider a model of computation that supports addition, comparison, and
multiplication and for which there is a lower bound of Q(n Ign) to sort n
numbers. Prove that Q( n lgn) is a lower bound for computing, in order,
the vertices of the convex hull of a set of n points in such a model.

35.3-3
Given a set of points Q, prove that the pair of points farthest from each
other must be vertices of CH(Q).

35.3-4
For a given polygon P and a point q on its boundary, the shadow of q
is the set of points r such that the segment qr is entirely on the bound
ary or in the interior of P. A polygon P is star-shaped if there exists a
point P in the interior of P that is in the shadow of every point on the
boundary of P. The set of all such points P is called the kernel of P. (See
Figure 35.11.) Given an n-vertex, star-shaped polygon P specified by its
vertices in counterclockwise order, show how to compute CH(P) in O(n)
time.

35.3-5
In the on-line convex-hull problem, we are given the set Q of n points one
point at a time. After receiving each point, we are to compute the convex
hull of the points seen so far. Obviously, we could run Graham's scan
once for each point, with a total running time of O(n2Ign). Show how to
solve the on-line convex-hull problem in a total of O(n2 ) time.
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Figure 35.11 The definition of a sta r-shaped polygon, for use in Exercise 35.3-4.
(a) A star-shaped polygon. The segmen t from point p to any point q on the bound
ary intersects the boundary only at q. (b) A non-star -shaped polygon. The shaded
region on the left is the shadow of q , and the shaded region on the right is the
shadow of q' , Since these regions are disjoint, the kernel is empty.

35.3-6 *
Show how to implement the incremental method for computing the convex
hull of n points so that it runs in O(n 19 n) time.

35.4 Finding the closest pair of points

We now consider the problem of fi nd ing the closest pair of points in
a set Q of n :?: 2 points. "Closest" refers to the usual euclidean dis
tance: the d istance between points PI = (x l ,Yd and P2 = (X2, Y2) is
V(XI X2)l (YI Y2)2. Two point s in set Q may be coincident, in which
case the distance between them is zero. Th is problem has applications in,
for example, traffic-cont rol systems. A system for contro lling air or sea
traffic might need to know which are the two closest vehicles in order to
detect potential collisions.

A brute-force closest-pair algorit hm simply looks at all the G) = 9 (n 2 )

pai rs of poin ts. In this section, we shall describe a divide-and-conquer
algorithm for this proble m whose running time is described by the famili ar
recurrence T (n ) = 2T (n j2 )+O(n ). Thus, th is algorithm uses only O(n Ig n)
time.

Th e divide-and-conquer algorithm

Each recursive invocat ion of the algorithm takes as input a subse t P ~ Q
and arrays X and Y, each of which contains all the points of the input
subset P. The points in array X are sorted so that their x -coordinates are
monoton ically increasing. Similarly, array Y is sorted by monoton ically
increasing y-coordi nate. Note that in order to attai n the O(n 19 n) time
bound, we cannot afford to sort in each recursive call; if we did , the recur
rence for the running time would be T(n ) = 2T(n j2 ) + O(nlgn ), whose
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solution is T(n) = O(n Ig2 n). We shall see a little later how to use "pre
sorting" to maintain this sorted property without actually sorting in each
recursive call.

A given recursive invocation with inputs P, X, and Y first checks whether
IPI :::; 3. If so, the invocation simply performs the brute-force method
described above: try all (Iii) pairs of points and return the closest pair.
If IPI > 3, the recursive invocation carries out the divide-and-conquer
paradigm as follows.

Divide: It finds a vertical line t that bisects the point set P into two sets PL

and PR such that IPLI = rlPI 121, IPRI = LIPI 12J, all points in PL are on
or to the left of line l, and all points in PR are on or to the right of l. The
array X is divided into arrays XL and XR, which contain the points of PL
and PR respectively, sorted by monotonically increasing x-coordinate.
Similarly, the array Y is divided into arrays YL and YR , which contain
the points of PL and PR respectively, sorted by monotonically increasing
y-coordinate.

Conquer: Having divided Pinto PL and PR, it makes two recursive calls,
one to find the closest pair of points in PL and the other to find the
closest pair of points in PRo The inputs to the first call are the subset Pi,
and arrays XL and YL; the second call receives the inputs PR, XR, and YR'
Let the closest-pair distances returned for hand PR be (h and OR,
respectively, and let 0 = min(oL' OR).

Combine: The closest pair is either the pair with distance 0 found by one
of the recursive calls, or it is a pair of points with one point in PL and
the other in PRo The algorithm determines if there is such a pair whose
distance is less than o. Observe that if there is a pair of points with
distance less than 0, both points of the pair must be within 0 units of
line t. Thus, as Figure 35.12(a) shows, they both must reside in the 20
wide vertical strip centered at line I. To find such a pair, if one exists,
the algorithm does the following.

1. It creates an array Y', which is the array Y with all points not in
the 2O-wide vertical strip removed. The array Y' is sorted by y

coordinate, just as Y is.
2. For each point p in the array Y', the algorithm tries to find points

in Y' that are within 0 units of p. As we shall see shortly, only
the 7 points in Y' that follow p need be considered. The algorithm
computes the distance from p to each of these 7 points and keeps
track of the closest-pair distance 0' found over all pairs of points
in Y'.

3. If 0' < 0, then the vertical strip does indeed contain a closer pair
than was found by the recursive calls. This pair and its distance 0'
are returned. Otherwise, the closest pair and its distance 0 found by
the recursive calls are returned.
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Figure 35.12 Key concepts in the proof that the closest-pair algorithm needs to
check only 7 points following each point in the array Y ' . (a> If PI. E PI. and PH E Pit
are less than If units apart , they mus t reside with in a b )( U rectangle centered at
line I. (b) How 4 points that are pairwise at least IS units apart can all reside within
a IJ x S squa re. On the left are 4 points in Pc, and on the right are 4 points in PRo
There can be 8 points in the J x 20 rectangle if the points shown on line I are
actuall y pain of coincident points with o ne po int in PI. and on e in PRo

Th e above description omits some imp lementation detai ls that are nec
essary to achieve the O(n Ign ) running time. After provi ng the correctness
of the algorithm, we shall show how to implement the algorithm to achieve
the desired time bound.

Correctness

The correctness of this closest-pai r algorithm is obvious, except for two
aspects. First, by bottomi ng out the recursion when IP I :$ 3, we ensure
that we never try to divide a set of points with only one point. The second
aspect is that we need only check the 7 points following each point P in
array Y' ; we shall now prove this property.

Suppose that at some level of the recursion, the closest pai r of poin ts is
PL E PL and PR E PRo Thus, the distance 15' between PL and PR is strictly
less than 15 . Point PL must be on or to the left of line 1 and less than 15 units
away. Simila rly, PR is on or to the right of 1 and less than 15 units away.
Moreover, PL and PR are within 15 uni ts of each othe r vertica lly. Thus, as
Figure 35. I 2(a) shows, PL and PR are within a ,J x U recta ngle centered
at line I. (There may be other points within this rectangle as well.)

We next show that at most 8 points of P can reside within th is ,J x U
rectangle. Consider the 6 x ,J square forming the left half of this rectangle.
Since all points withi n PL are at least ,J units apa rt , at most 4 points can
reside within this square; Figure 35.12(b) shows how. Similarly, at most
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4 points in PR can reside within the 0 x 0 square forming the right half
of the rectangle. Thus, at most 8 points of P can reside within the 0 x 20
rectangle. (Note that since points on line 1may be in either PL or PR, there
may be up to 4 points on I. This limit is achieved if there are two pairs of
coincident points, each pair consisting of one point from PL and one point
from PR, one pair is at the intersection of 1 and the top of the rectangle,
and the other pair is where 1 intersects the bottom of the rectangle.)

Having shown that at most 8 points of P can reside within the rectangle,
it is easy to see that we need only check the 7 points following each point in
the array Y'. Still assuming that the closest pair is PL and PR, let us assume
without loss of generality that PL precedes PR in array Y'. Then, even if PL
occurs as early as possible in Y' and PR occurs as late as possible, PR is in
one of the 7 positions following PL. Thus, we have shown the correctness
of the closest-pair algorithm.

Implementation and running time

As we have noted, our goal is to have the recurrence for the running time
be T(n) = 2T(nj2) + O(n), where T(n) is, of course, the running time for
a set of n points. The main difficulty is in ensuring that the arrays XL, XR,
YL , and YR , which are passed to recursive calls, are sorted by the proper
coordinate and also that the array Y' is sorted by y-coordinate. (Note that
if the array X that is received by a recursive call is already sorted, then the
division of set Pinto hand PR is easily accomplished in linear time.)

The key observation is that in each call, we wish to form a sorted subset
of a sorted array. For example, a particular invocation is given the subset P
and the array Y, sorted by y-coordinate. Having partitioned Pinto PL
and PR , it needs to form the arrays YL and YR , which are sorted by y
coordinate. Moreover, these arrays must be formed in linear time. The
method can be viewed as the opposite of the MERGE procedure from merge
sort in Section 1.3.1: we are splitting a sorted array into two sorted arrays.
The following pseudocode gives the idea.

1 length[Yd f- length[YR ] f- 0
2 for if-I to length[ Y]
3 do if Y[i] E PL

4 then length[Yd f- length[Yd + 1
5 Y[length[Yd] f- Y[i]
6 else length[YR ] f- length[YR ] + 1
7 Y[length[YR ]] f- Y[i]

We simply examine the points in array Y in order. If a point Y[i] is in PL,
we append it to the end of array YL ; otherwise, we append it to the end of
array YR. Similar pseudocode works for forming arrays XL, XR, and Y'.

The only remaining question is how to get the points sorted in the first
place. We do this by simply presorting them; that is, we sort them once and
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for all before the first recursive call. These sorted arrays are passed into
the first recursive call, and from there they are whittled down through the
recursive calls as necessary. The presorting adds an additional O(n Ign)
to the running time, but now each step of the recursion takes linear time
exclusive of the recursive calls. Thus, if we let T(n) be the running time of
each recursive step and T' (n) be the running time of the entire algorithm,
we get T'(n) T(n) + O(nlgn) and

T( ) _ {2T(n/2) + O(n) if n > 3 ,
n - O( 1) if n ~ 3 .

Thus, T(n) = O(nlgn) and T'(n) = O(nlgn).

Exercises

35.4-1
Professor Smothers comes up with a scheme that allows the closest-pair
algorithm to check only 5 points following each point in array Y'. The
idea is always to place points on line I into set PL. Then, there cannot be
pairs of coincident points on line I with one point in PL and one in PRo
Thus, at most 6 points can reside in the 0 x 20 rectangle. What is the flaw
in the professor's scheme?

35.4-2
Without increasing the asymptotic running time of the algorithm, show
how to ensure that the set of points passed to the very first recursive call
contains no coincident points. Prove that it then suffices to check the
points in the 6 (not 7) array positions following each point in the array Y'.
Why doesn't it suffice to check only the 5 array positions following each
point?

35.4-3
The distance between two points can be defined in ways other than eu
clidean. In the plane, the Lm-distance between points PI and P2 is given by
((XI - X2)m + (YI - Y2)m)llm. Euclidean distance, therefore, is L2-distance.
Modify the closest-pair algorithm to use the LI-distance, which is also
known as the Manhattan distance.

35.4-4
Given two points PI and P2 in the plane, the Loo-distance between them
is max(lxl - x21 ,IYI - Y21). Modify the closest-pair algorithm to use the
Loo-distance.
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35-1 Convex layers
Given a set Q of points in the plane, we define the convex layers of Q
inductively. The first convex layer of Q consists of those points in Q that
are vertices of CH(Q). For i > 1, define Qj to consist of the points of Q
with all points in convex layers 1,2, ... , i-I removed. Then, the ith convex
layer of Q is CH(Qj) if Qi #= 0 and is undefined otherwise.

a. Give an O(n 2)-time algorithm to find the convex layers of a set on n
points.

b. Prove that Q(n 19 n) time is required to compute the convex layers of
a set of n points on any model of computation that requires Q(n lgn)
time to sort n real numbers.

35-2 Maximallayers
Let Q be a set of n points in the plane. We say that point (x,y) dominates
point (x', y') if x ;:: x' and Y 2: y'. A point in Q that is dominated by no
other points in Q is said to be maximal. Note that Q may contain many
maximal points, which can be organized into maximal layers as follows.
The first maximal layer L I is the set of maximal points of Q. For i > I,
the ith maximal layer L, is the set of maximal points in Q - Uj:: L].

Suppose that Q has k nonempty maximal layers, and let Yi be the y
coordinate of the leftmost point in L, for i = I, 2, ... , k. For now, assume
that no two points in Q have the same x- or y-coordinate.

a. Show that YI > Y2 > ... > Yk.

Consider a point (x,y) that is to the left of any point in Q and for which y
is distinct from the y-coordinate of any point in Q. Let Q' = Q U{(x,y)}.

b. Let j be the minimum index such that Yj < Y, unless Y < Yh in which
case we let j = k + I. Show that the maximal layers of Q' are as follows.

• If j S; k, then the maximal layers of Q' are the same as the maximal
layers of Q, except that L, also includes (x,y) as its new leftmost
point.

• If j = k + 1, then the first k maximal layers of Q' are the same as
for Q, but in addition, Q' has a nonempty (k + l)st maximal layer:
L k+1 = {(x,y)}.

c. Describe an O( n lgn)-time algorithm to compute the maximal layers of
a set Q of n points. (Hint: Move a sweep line from right to left.)

d. Do any difficulties arise if we now allow input points to have the same
x- or j-coordinate? Suggest a way to resolve such problems.
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35-3 Ghostbusters and ghosts
A group of n Ghostbusters is battling n ghosts. Each Ghostbuster is armed
with a proton pack, which shoots a stream at a ghost, eradicating it. A
stream goes in a straight line and terminates when it hits the ghost. The
Ghostbusters decide upon the following strategy. They will pair off with
the ghosts, forming n Ghostbuster-ghost pairs, and then simultaneously
each Ghostbuster will shoot a stream at his or her chosen ghost. As we all
know, it is very dangerous to let streams cross, and so the Ghostbusters
must choose pairings for which no streams will cross.

Assume that the position of each Ghostbuster and each ghost is a fixed
point in the plane and that no three positions are collinear.

a. Argue that there exists a line passing through one Ghostbuster and one
ghost such the number of Ghostbusters on one side of the line equals
the number of ghosts on the same side. Describe how to find such a line
in O(n 19 n) time.

b. Give an O( n2 19 n )-time algorithm to pair Ghostbusters with ghosts in
such a way that no streams cross.

35-4 Sparse-hulled distributions
Consider the problem of computing the convex hull of a set of points in the
plane that have been drawn according to some known random distribution.
Sometimes, the convex hull of n points drawn from such a distribution has
O(n l - f

) expected size for some constant E > O. We call such a distribution
sparse-hulled. Sparse-hulled distributions include the following:

• Points drawn uniformly from a unit-radius disk. The convex hull has
8(n 1/3) expected size.

• Points drawn uniformly from the interior of a convex polygon with k
sides, for any constant k, The convex hull has 8(lgn) expected size.

• Points drawn according to a two-dimensional normal distribution. The
convex hull has 8(~) expected size.

a. Given two convex polygons with nl and n2 vertices respectively, show
how to compute the convex hull of all n1+n2 points in O(n I +nz) time.
(The polygons may overlap.)

b. Show that the convex hull of a set of n points drawn independently
according to a sparse-hulled distribution can be computed in O(n) ex
pected time. (Hint: Recursively find the convex hulls of the first nl2
points and the second nl2 points, and then combine the results.)
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This chapter barely scratches the surface of computational-geometry algo
rithms and techniques. Books on computational geometry include those
by Preparata and Shamos [160] and Edelsbrunner [60].

Although geometry has been studied since antiquity, the development
of algorithms for geometric problems is relatively new. Preparata and
Shamos note that the earliest notion of the complexity of a problem was
given by E. Lemoine in 1902. He was studying euclidean constructions
those using a ruler and a straightedge-and devised a set of five primitives:
placing one leg of the compass on a given point, placing one leg of the
compass on a given line, drawing a circle, passing the ruler's edge through
a given point, and drawing a line. Lemoine was interested in the number
of primitives needed to effect a given construction; he called this amount
the "simplicity" of the construction.

The algorithm of Section 35.2, which determines whether any segments
intersect, is due to Shamos and Hoey [176].

The original version of Graham's scan is given by Graham [91]. The
package-wrapping algorithm is due to Jarvis [112]. Using a decision-tree
model of computation, Yao [205] proved a lower bound ofn(n Ign) for the
running time of any convex-hull algorithm. When the number of vertices h
of the convex hull is taken into account, the prune-and-search algorithm of
Kirkpatrick and Seidel [120], which takes O(n 19 h) time, is asymptotically
optimal.

The O(n Ign)-time divide-and-conquer algorithm for finding the closest
pair of points is by Shamos and appears in Preparata and Shamos [160].
Preparata and Shamos also show that the algorithm is asymptotically op
timal in a decision-tree model.



36 NP-Completeness

All of the algorithms we have studied thus far have been polynomial-time
algorithms: on inputs of size n, their worst-case running time is O(nk )

for some constant k. It is natural to wonder whether all problems can be
solved in polynomial time. The answer is no. For example, there are prob
lems, such as Turing's famous "Halting Problem," that cannot be solved
by any computer, no matter how much time is provided. There are also
problems that can be solved, but not in time O(n k ) for any constant k.
Generally, we think of problems that are solvable by polynomial-time al
gorithms as being tractable, and problems that require superpolynomial
time as being intractable.

The subject of this chapter, however, is an interesting class of prob
lems, called the "NP-complete" problems, whose status is unknown. No
polynomial-time algorithm has yet been discovered for an NP-complete
problem, nor has anyone yet been able to prove a superpolynomial-time
lower bound for any of them. This so-called P f NP question has been
one of the deepest, most perplexing open research problems in theoretical
computer science since it was posed in 1971.

Most theoretical computer scientists believe that the NP-complete prob
lems are intractable. The reason is that if any single NP-complete prob
lem can be solved in polynomial time, then every NP-complete problem
has a polynomial-time algorithm. Given the wide range of NP-complete
problems that have been studied to date, without any progress toward a
polynomial-time solution, it would be truly astounding if all of them could
be solved in polynomial time.

To become a good algorithm designer, you must understand the rudi
ments of the theory of NP-completeness. If you can establish a problem
as NP-complete, you provide good evidence for its intractability. As an
engineer, you would then do better spending your time developing an ap
proximation algorithm (see Chapter 37) rather than searching for a fast
algorithm that solves the problem exactly. Moreover, many natural and in
teresting problems that on the surface seem no harder than sorting, graph
searching, or network flow are in fact NP-complete. Thus, it is important
to become familiar with this remarkable class of problems.
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This chapter studies the aspects of NP-completeness that bear most di
rectly on the analysis of algorithms. In Section 36.1, we formalize our
notion of "problem" and define the complexity class P of polynomial-time
solvable decision problems. We also see how these notions fit into the
framework of formal-language theory. Section 36.2 defines the class NP
of decision problems whose solutions can be verified in polynomial time.
It also formally poses the P :f. NP question.

Section 36.3 shows how relationships between problems can be stud
ied via polynomial-time "reductions." It defines NP-completeness and
sketches a proof that one problem, called "circuit satisfiability," is NP
complete. Having found one NP-complete problem, we show in Sec
tion 36.4 how other problems can be proven to be NP-complete much more
simply by the methodology of reductions. The methodology is illustrated
by showing that two formula-satisfiability problems are NP-complete. A
variety of other problems are shown to be NP-complete in Section 36.5.

36.1 Polynomial time

We begin our study of NP-completeness by formalizing our notion of
polynomial-time solvable problems. These problems are generally regarded
as tractable. The reason why is a philosophical, not a mathematical, issue.
We can offer three supporting arguments.

First, although it is reasonable to regard a problem that requires time
8(n 100 ) as intractable, there are very few practical problems that require
time on the order of such a high-degree polynomial. The polynomial-time
computable problems encountered in practice typically require much less
time.

Second, for many reasonable models of computation, a problem that can
be solved in polynomial time in one model can be solved in polynomial
time in another. For example, the class of problems solvable in polynomial
time by the serial random-access machine used throughout most of this
book is the same as the class of problems solvable in polynomial time on
abstract Turing machines.' It is also the same as the class of problems
solvable in polynomial time on a parallel computer, even if the number of
processors grows polynomially with the input size.

Third, the class of polynomial-time solvable problems has nice closure
properties, since polynomials are closed under addition, multiplication,
and composition. For example, if the output of one polynomial-time algo
rithm is fed into the input of another, the composite algorithm is polyno
mial. If an otherwise polynomial-time algorithm makes a constant number

I See Hopcroft and Ullman [104] or Lewis and Papadimitriou [139] for a thorough treatment
of the Turing-machine model.
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of calls to polynomial-time subroutines, the running time of the composite
algorithm is polynomial.

Abstract problems

To understand the class of polynomial-time solvable problems, we must
first have a formal notion of what a "problem" is. We define an abstract
problem Q to be a binary relation on a set I of problem instances and a set S
of problem solutions. For example, consider the problem SHORTEST
PATH of finding a shortest path between two given vertices in an un
weighted, undirected graph G = (V, E). An instance for SHORTEST
PATH is a triple consisting of a graph and two vertices. A solution is a
sequence of vertices in the graph, with perhaps the empty sequence de
noting that no path exists. The problem SHORTEST-PATH itself is the
relation that associates each instance of a graph and two vertices with a
shortest path in the graph that connects the two vertices. Since shortest
paths are not necessarily unique, a given problem instance may have more
than one solution.

This formulation of an abstract problem is more general than is required
for our purposes. For simplicity, the theory of NP-completeness restricts
attention to decision problems: those having a yes/no solution. In this
case, we can view an abstract decision problem as a function that maps the
instance set I to the solution set {O, I}. For example, a decision problem
PATH related to the shortest-path problem is, "Given a graph G (V, E),
two vertices u,v E V, and a nonnegative integer k, does a path exist
in G between u and v whose length is at most k?" If i = (G, u, v, k) is
an instance of this shortest-path problem, then PATH(i) = I (yes) if a
shortest path from u to v has length at most k, and PATH(i) 0 (no)
otherwise.

Many abstract problems are not decision problems, but rather optimiza
tion problems, in which some value must be minimized or maximized. In
order to apply the theory of NP-completeness to optimization problems,
we must recast them as decision problems. Typically, an optimization
problem can be recast by imposing a bound on the value to be optimized.
As an example, in recasting the shortest-path problem as the decision prob
lem PATH, we added a bound k to the problem instance.

Although the theory of NP-completeness compels us to recast optimiza
tion problems as decision problems, this requirement does not diminish
the impact of the theory. In general, if we can solve an optimization prob
lem quickly, we can also solve its related decision problem quickly. We
simply compare the value obtained from the solution of the optimization
problem with the bound provided as input to the decision problem. If
an optimization problem is easy, therefore, its related decision problem is
easy as well. Stated in a way that has more relevance to NP-completeness,
if we can provide evidence that a decision problem is hard, we also provide
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evidence that its related optimization problem is hard. Thus, even though
it restricts attention to decision problems, the theory of NP-completeness
applies much more widely.

Encodings

If a computer program is to solve an abstract problem, problem instances
must must be represented in a way that the program understands. An en
coding of a set S of abstract objects is a mapping e from S to the set of
binary strings.? For example, we are all familiar with encoding the natural
numbers N = {O, I,2,3,4, ...} as the strings {O, 1, 10, 11, IOO, ...}. Using
this encoding, e( 17) = 10001. Anyone who has looked at computer rep
resentations of keyboard characters is familiar with either the ASCII or
EBCDIC codes. In the ASCII code, e(A) = 1000001. Even a compound
object can be encoded as a binary string by combining the representa
tions of its constituent parts. Polygons, graphs, functions, ordered pairs,
programs-all can be encoded as binary strings.

Thus, a computer algorithm that "solves" some abstract decision prob
lem actually takes an encoding of a problem instance as input. We call a
problem whose instance set is the set of binary strings a concrete problem.
We say that an algorithm solves a concrete problem in time O(T(n)) if,
when it is provided a problem instance i of length n = Iii, the algorithm
can produce the solution in at most O(T(n)) time. A concrete problem is
polynomial-time solvable, therefore, if there exists an algorithm to solve it
in time O(nk ) for some constant k,

We can now formally define the complexity class P as the set of concrete
decision problems that are solvable in polynomial time.

We can use encodings to map abstract problems to concrete problems.
Given an abstract decision problem Q mapping an instance set I to {O, I},
an encoding e : I --+ {O, I}" can be used to induce a related concrete
decision problem, which we denote by e(Q). If the solution to an abstract
problem instance i E I is Q(i) E {O, I}, then the solution to the concrete
problem instance e(i) E {O, 1r is also Q(i). As a technicality, there may
be some binary strings that represent no meaningful abstract-problem in
stance. For convenience, we shall assume that any such string is mapped
arbitrarily to O. Thus, the concrete problem produces the same solutions
as the abstract problem on binary-string instances that represent the en
codings of abstract-problem instances.

We would like to extend the definition of polynomial-time solvability
from concrete problems to abstract problems using encodings as the bridge,
but we would like the definition to be independent of any particular en-

2The codomain of e need not be binary strings; any set of strings over a finite alphabet having
at least 2 symbols will do.
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coding. That is, the efficiency of solving a problem should not depend on
how the problem is encoded. Unfortunately, it depends quite heavily. For
example, suppose that an integer k is to be provided as the sole input to
an algorithm, and suppose that the running time of the algorithm is 8(k).
If the integer k is provided in unary-a string of k l's-then the running
time of the algorithm is O(n) on length-a inputs, which is polynomial time.
If we use the more natural binary representation of the integer k, however,
then the input length is n = [lgk1. In this case, the running time of the
algorithm is 8(k) = 8(2N ) , which is exponential in the size of the input.
Thus, depending on the encoding, the algorithm runs in either polynomial
or superpolynomial time.

The encoding of an abstract problem is therefore quite important to our
understanding of polynomial time. We cannot really talk about solving
an abstract problem without first specifying an encoding. Nevertheless,
in practice, if we rule out "expensive" encodings such as unary ones, the
actual encoding of a problem makes little difference to whether the problem
can be solved in polynomial time. For example, representing integers in
base 3 instead of binary has no effect on whether a problem is solvable in
polynomial time, since an integer represented in base 3 can be converted
to an integer represented in base 2 in polynomial time.

We say that a function f : {O, IV -. {O, IV is polynomial-time com
putable if there exists a polynomial-time algorithm A that, given any input
x E {O, I}*, produces as output f(x). For some set I of problem instances,
we say that two encodings e, and e2 are polynomially related if there exist
two polynomial-time computable functions fi2 and h, such that for any
i E I, we have fdej(i)) e2(i) and h,(e2(i)) ej(i). That is, the encod
ing e2(i) can be computed from the encoding e, (i) by a polynomial-time
algorithm, and vice versa. If two encodings ej and ei of an abstract prob
lem are polynomially related, which we use makes no difference to whether
the problem is polynomial-time solvable or not, as the following lemma
shows.

Lemma 36.1
Let Q be an abstract decision problem on an instance set I, and let ej and
ez be polynomially related encodings on I. Then, el (Q) E P if and only if
e2(Q) E P.

Proof We need only prove the forward direction, since the backward
direction is symmetric. Suppose, therefore, that e, (Q) can be solved in
time O(n k ) for some constant k. Further, suppose that for any problem
instance i, the encoding el (i) can be computed from the encoding e2(i)
in time O(nC

) for some constant c, where n = lej (i)I. To solve problem
e2(Q), on input e2(i), we first compute ej (i) and then run the algorithm
for ej (Q) on e, (i). How long does this take? The conversion of encodings
takes time O(n C

) , and therefore lei (i)1 = O(n C
) , since the output of a serial

computer cannot be longer than its running time. Solving the problem on
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el (i) takes time O(le, (i)l k
) = O(n ck ) , which is polynomial since both c and

k are constants. _

Thus, whether an abstract problem has its instances encoded in binary
or base 3 does not affect its "complexity," that is, whether it is polynomial
time solvable or not, but if instances are encoded in unary, its complexity
may change. In order to be able to converse in an encoding-independent
fashion, we shall generally assume that problem instances are encoded in
any reasonable, concise fashion, unless we specifically say otherwise. To
be precise, we shall assume that the encoding of an integer is polynomially
related to its binary representation, and that the encoding of a finite set is
polynomially related to its encoding as a list of its elements, enclosed in
braces and separated by commas. (ASCII is one such encoding scheme.)
With such a "standard" encoding in hand, we can derive reasonable encod
ings of other mathematical objects, such as tuples, graphs, and formulas.
To denote the standard encoding of an object, we shall enclose the object
in angle braces. Thus, (G) denotes the standard encoding of a graph G.

As long as we implicitly use an encoding that is polynomially related
to this standard encoding, we can talk directly about abstract problems
without reference to any particular encoding, knowing that the choice of
encoding has no effect on whether the abstract problem is polynomial-time
solvable. Henceforth, we shall generally assume that all problem instances
are binary strings encoded using the standard encoding, unless we explicitly
specify the contrary. We shall also typically neglect the distinction between
abstract and concrete problems. The reader should watch out for problems
that arise in practice, however, in which a standard encoding is not obvious
and the encoding does make a difference.

A formal-language framework

One of the convenient aspects of focusing on decision problems is that
they make it easy to use the machinery of formal-language theory. It
is worthwhile at this point to review some definitions from that theory.
An alphabet 1: is a finite set of symbols. A language Lover 1: is any set
of strings made up of symbols from 1:. For example, if 1: = {O, l}, the
set L = {I 0, 11, 101, 111, 1011, 110I, 1000I , ...} is the language of binary
representations of prime numbers. We denote the empty string bye, and
the empty language by 0. The language of all strings over 1: is denoted 1:* .
For example, if 1:= {O, I}, then 1:* = {e, 0, 1,00,01,10, 11,000, ...} is the
set of all binary strings. Every language Lover 1: is a subset of 1:* .

There are a variety of operations on languages. Set-theoretic operations,
such as union and intersection, follow directly from the set-theoretic defi
nitions. We define the complement of L by L = 1:* - L. The concatenation
of two languages L, and Ll is the language

L = {X,Xl : XI E L, and Xl ELl} .
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The closure or Kleene star of a language L is the language

L* {e}ULUL2UL3U""

where L k is the language obtained by concatenating L to itself k times.
From the point of view of language theory, the set of instances for any

decision problem Q is simply the set L*, where L {O, I}. Since Q is
entirely characterized by those problem instances that produce a I (yes)
answer, we can view Q as a language Lover L {O, I}, where

L = {x E r : Q(x) = I} .

For example, the decision problem PATH has the corresponding language

PATH = {(G, u, v, k) : G = (V, E) is an undirected graph,
u,» E V,
k ;::: 0 is an integer, and
there exists a path from u to v in G
whose length is at most k} .

(Where convenient, we shall sometimes use the same name-PATH in this
case-to refer to both a decision problem and its corresponding language.)

The formal-language framework allows us to express the relation be
tween decision problems and algorithms that solve them concisely. We
say that an algorithm A accepts a string x E {O, l ]" if, given input x, the
algorithm outputs A(x) = I. The language accepted by an algorithm A
is the set L = {x E {O, l }" : A(x) I}, that is, the set of strings that the
algorithm accepts. An algorithm A rejects a string x if A(x) = O.

Even if language L is accepted by an algorithm A, the algorithm will not
necessarily reject a string x ¢ L provided as input to it. For example, the
algorithm may loop forever. A language L is decided by an algorithm A
if every binary string is either accepted or rejected by the algorithm. A
language L is accepted in polynomial time by an algorithm A if for any
length-a string x E L, the algorithm accepts x in time O(n k ) for some
constant k . A language L is decided in polynomial time by an algorithm A
if for any length-n string x E {O, I}", the algorithm decides x in time O(n k )

for some constant k. Thus, to accept a language, an algorithm need only
worry about strings in L, but to decide a language, it must accept or reject
every string in {O, Ir .

As an example, the language PATH can be accepted in polynomial time.
One polynomial-time accepting algorithm computes the shortest path from
u to v in G, using breadth-first search, and then compares the distance
obtained with k, If the distance is at most k, the algorithm outputs I
and halts. Otherwise, the algorithm runs forever. This algorithm does not
decide PATH, however, since it does not explicitly output 0 for instances
in which the shortest path has length greater than k. A decision algorithm
for PATH must explicitly reject binary strings that do not belong to PATH.
For a decision problem such as PATH, such a decision algorithm is easy
to design. For other problems, such as Turing's Halting Problem, there
exists an accepting algorithm, but no decision algorithm exists.
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We can informally define a complexity class as a set of languages, mem
bership in which is determined by a complexity measure, such as running
time, on an algorithm that determines whether a given string x belongs
to language L. The actual definition of a complexity class is somewhat
more technical-the interested reader is referred to the seminal paper by
Hartmanis and Stearns [95].

Using this language-theoretic framework, wee can provide an alternative
definition of the complexity class P:

p = {L ~ {O, I}* : there exists an algorithm A
that decides L in polynomial time} .

In fact, P is also the class of languages that can be accepted in polynomial
time.

Theorem 36.2
p = {L : L is accepted by a polynomial-time algorithm}

Proof Since the class of languages decided by polynomial-time algorithms
is a subset of the class of languages accepted by polynomial-time algo
rithms, we need only show that if L is accepted by a polynomial-time
algorithm, it is decided by a polynomial-time algorithm. Let L be the
language accepted by some polynomial-time algorithm A. We shall use a
classic "simulation" argument to construct another polynomial-time algo
rithm A' that decides L. Because A accepts L in time O(nk ) for some
constant k, there also exists a constant c such that A accepts L in at most
T = cn'' steps. For any input string x, the algorithm A' simulates the
action of A for time T. At the end of time T, algorithm A' inspects
the behavior of A. If A has accepted x, then A' accepts x by outputting
a 1. If A has not accepted x, then A' rejects x by outputting a O. The
overhead of A' simulating A does not increase the running time by more
than a polynomial factor, and thus A' is a polynomial-time algorithm that
decides L. •

Note that the proof of Theorem 36.2 is nonconstructive. For a given
language L E P, we may not actually know a bound on the running time
for the algorithm A that accepts L. Nevertheless, we know that such a
bound exists, and therefore, that an algorithm A' exists that can check the
bound, even though we may not be able to find the algorithm A' easily.

Exercises

36.1-1
Define the optimization problem LONGEST-PATH-LENGTH as the re
lation that associates each instance of a undirected graph and two vertices
with the length of the longest simple path between the two vertices. De
fine the decision problem LONGEST-PATH = {(G,u,v,k) : G = (V,E)
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is an undirected graph, u,v E V, k ~ 0 is an integer, and there exists
a simple path from u to v in G whose length is at least k}. Show that
the optimization problem LONGEST-PATH-LENGTH can be solved in
polynomial time if and only if LONGEST-PATH E P.

36.1-2
Give a formal definition for the problem of finding the longest simple
cycle in an undirected graph. Give a related decision problem. Give the
language corresponding to the decision problem.

36.1-3
Give a formal encoding of directed graphs as binary strings using an
adjacency-matrix representation. Do the same using an adjacency-list rep
resentation. Argue that the two representations are polynomially related.

36.1-4
Is the dynamic-programming algorithm for the 0-1 knapsack problem that
is asked for in Exercise 17.2-2 a polynomial-time algorithm? Explain your
answer.

36.1-5
Suppose that a language L can accept any string x E L in polynomial
time, but that the algorithm that does this runs in superpolynomial time
if x 'I. L. Argue that L can be decided in polynomial time.

36.1-6
Show that an algorithm that makes at most a constant number of calls
to polynomial-time subroutines runs in polynomial time, but that a poly
nomial number of calls to polynomial-time subroutines may result in an
exponential-time algorithm.

36.1-7
Show that the class P, viewed as a set of languages, is closed under union,
intersection, concatenation, complement, and Kleene star. That is, if
L 1,L2 E P, then L 1 U L2 E P, etc.

36.2 Polynomial-time verification

We now look at algorithms that "verify" membership in languages. For
example, suppose that for a given instance (G, u, v, k) of the decision prob
lem PATH, we are also given a path p from u to v. We can easily check
whether the length of p is at most k, and if so, we can view p as a "certifi
cate" that the instance indeed belongs to PATH. For the decision problem
PATH, this certificate doesn't seem to buy us much. After all, PATH be
longs to P-in fact, PATH can be solved in linear time-and so verifying
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Figure 36.1 (a) A graph representing the vertices, edges. and faces of a dodecahe
dron, with a hami ltonian cycle shown by shaded edges. (b) A bipartite graph with
an odd number of vert ices. Any such graph is nonhamilton ian.

mem bership from a given certificate ta kes as long as solving the problem
from scratch. We shall now examine a problem for which we know of no
polynomial-time decision algorithm yet, given a certificate, verification is
easy.

Hamillonian cycles

Th e problem of finding a hamilt onian cycle in an undirected graph has
been studied for over a hundred years. Formally, a hamiltonian cycie of
an undirected graph G = (V, E ) is a sim ple cycle that contains each vertex
in V , A graph that contains a hamil tonian cycle is said to be hamilto
nian ; otherwise, it is nonhamiltonian . Bondy and Murt y (31) cite a lett er
by W. R. Hamilton describing a mathematical game on the dodecahedron
(Figure 36.1(a)) in which one player sticks five pins in any fi ve consecu
tive vert ices and the other player must complete the path to form a cycle
containing all the vertices. The dod ecah edron is ha milton ian , and Fig
ure 36. I(a) shows one ham ilton ian cycle. Not all graphs are hamiltonian,
however. For example, Figure 36. 1(b) shows a bipartite graph wi th an odd
num ber of vertices. (Exercise 36.2-2 asks you to show that all such graphs
are nonhamiltonian .)

We can define the hamiltonian-c}'c/~ probl~m. "Does a graph G have a
hamilton ian cycle?" as a formal language:

HAM-CYCLE = {(G) : G is a hamilton ian graph}



926 Chapter 36 Nr-Completeness

How might an algorithm decide the language HAM-CYCLE? Given a prob
lem instance (G), one possible decision algorithm lists all permutations of
the vertices of G and then checks each permutation to see if it is a hamil
tonian path. What is the running time of this algorithm? If we use the
"reasonable" encoding of a graph as its adjacency matrix, the number m
of vertices in the graph is n(vn), where n = I(G)I is the length of the
encoding of G. There are m! possible permutations of the vertices, and
therefore the running time is n(m!) = n(vn!) = n(2v'n), which is not
O(n k ) for any constant k. Thus, this naive algorithm does not run in poly
nomial time, and in fact, the hamiltonian-cycle problem is NP-complete,
as we shall prove in Section 36.5.

Verification algorithms

Consider a slightly easier problem, however. Suppose that a friend tells you
that a given graph G is hamiltonian, and then offers to prove it by giving
you the vertices in order along the hamiltonian cycle. It would certainly
be easy enough to verify the proof: simply verify that the provided cycle is
hamiltonian by checking whether it is a permutation of the vertices of V
and whether each of the consecutive edges along the cycle actually exists in
the graph. This verification algorithm can certainly be implemented to run
in O(n 2 ) time, where n is the length of the encoding of G. Thus, a proof
that a hamiltonian cycle exists in a graph can be verified in polynomial
time.

We define a verification algorithm as being a two-argument algorithm A,
where one argument is an ordinary input string x and the other is a binary
string y called a certificate. A two-argument algorithm A verifies an input
string x if there exists a certificate y such that A(x,y) = 1. The language
verified by a verification algorithm A is

L = {x E {O, 1}* : there exists y E {O, l}* such that A(x,y) = I} .

Intuitively, an algorithm A verifies a language L if for any string x E L,
there is a certificate y that A can use to prove that x E L. Moreover,
for any string x ¢ L, there must be no certificate proving that x E L. For
example, in the hamiltonian-cycle problem, the certificate is the list of ver
tices in the hamiltonian cycle. If a graph is hamiltonian, the hamiltonian
cycle itself offers enough information to verify this fact. Conversely, if
a graph is not hamiltonian, there is no list of vertices that can fool the
verification algorithm into believing that the graph is hamiltonian, since
the verification algorithm carefully checks the proposed "cycle" to be sure.
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The complexity class NP is the class of languages that can be verified by a
polynomial-time algorithm.' More precisely, a language L belongs to NP
if and only if there exists a two-input polynomial-time algorithm A and
constant c such that

L = {x E {O, 1r : there exists a certificate y with Iyl = O(lxn
such that A(x,y) = I} .

We say that algorithm A verifies language L in polynomial time.
From our earlier discussion on the hamiltonian-cycle problem, it follows

that HAM-CYCLE E NP. (It is always nice to know that an important set
is nonempty.) Moreover, if L E P, then L E NP, since if there is a
polynomial-time algorithm to decide L, the algorithm can be easily con
verted to a two-argument verification algorithm that simply ignores any
certificate and accepts exactly those input strings it determines to be in L.
Thus, P ~ NP.

It is unknown whether P = NP, but most researchers believe that P
and NP are not the same class. Intuitively, the class P consists of prob
lems that can be solved quickly. The class NP consists of problems for
which a solution can be verified quickly. You may have learned from ex
perience that it is often more difficult to solve a problem from scratch
than to verify a clearly presented solution, especially when working under
time constraints. Theoretical computer scientists generally believe that
this analogy extends to the classes P and NP, and thus that NP includes
languages that are not in P.

There is more compelling evidence that P =1= NP-the existence of "NP
complete" languages. We shall study this class in Section 36.3.

Many other fundamental questions beyond the P =1= NP question remain
unresolved. Despite much work by many researchers, no one even knows
if the class NP is closed under complement. That is, does L E NP imply
L E NP? We can define the complexity class co-NP as the set of lan
guages L such that L E NP. The question of whether NP is closed under
complement can be rephrased as whether NP = co-NP. Since P is closed
under complement (Exercise 36.1-7), it follows that P ~ NP nco-NP. Once
again, however, it is not known whether P = NP nco-NP or whether there
is some language in NP nco-NP - P. Figure 36.2 shows the four possible
scenarios.

Thus, our understanding of the precise relationship between P and NP
is woefully incomplete. Nevertheless, by exploring the theory of NP
completeness, we shall find that our disadvantage in proving problems

3The name "NP" stands for "nondeterministic polynomial time." The class NP was originally
studied in the context of nondeterrninism, but this book uses the somewhat simpler yet
equivalent notion of verification. Hopcroft and Ullman [104] give a good presentation of
NP-completeness in terms of nondeterministic models of computation.
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Figure 36.2 Four possibilities for relat ionships among complexity classes. In each
diagram, one region enclosing another ind icates a proper-subset relation. (al P =
NP = co-NP. Most researchers regard this possibility as the most un likely. (b) If
NP is closed under complement, then NP = co-NP, but it need nOI be the case
that P = NP. (c) P = NP n co-NP, but NP is not closed under complement.
(d) NP i- co-NP and P #- NP n co-NP. Most researchers regard this possibility as
the most likely.

to be intractable is, from a practical point of view, not nearly so great as
we might suppose.

Exercises

36.2-1
Co nside r the language G RAPH-ISO MORPHISM = {(G I. G2): G. and G2
are isom orphic graphs}. Prove that GRAPH-ISO MO RPHISM E NP by
describ ing a polynomial-time algorithm to verify the language.

36.2 -2
Prove that if G is an undirected b ipartite grap h with an odd num ber of
vertices, then G is nonham iltonian .

36.2-3
Show that if HAM-CYCLE E P, then the problem of listing the vert ices of
a hamiltonian cycle, in order, is polynomial-time solvable.

36.2-4
Prove that the class NP of languages is closed under union, intersection,
concatenat ion, and Kleene star. Discuss the closure of NP under comple
ment .
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36.2-5
Show that any language in NP can be decided by an algorithm running in
time 20 (n

k
) for some constant k,

36.2-6
A hamiltonian path in a graph is a simple path that visits every vertex
exactly once. Show that the language HAM-PATH = {(G, U, v) : there is a
hamiltonian path from U to v in graph G} belongs to NP.

36.2-7
Show that the hamiltonian-path problem can be solved in polynomial time
on directed acyclic graphs. Give an efficient algorithm for the problem.

36.2-8
Let <P be a boolean formula constructed from the boolean input variables
XJ,X2, ... ,Xb negations (-'), AND's (1\), OR's (V), and parentheses. The
formula <P is a tautology if it evaluates to I for every assignment of I and 0
to the input variables. Define TAUTOLOGY as the language of boolean
formulas that are tautologies. Show that TAUTOLOGY E co-NP.

36.2-9
Prove that P ~ co-NP.

36.2-10
Prove that if NP::j; co-NP, then P ::j; NP.

36.2-11
Let G be a connected, undirected graph with at least 3 vertices, and let G3
be the graph obtained by connecting all pairs of vertices that are connected
by a path in G of length at most 3. Prove that G3 is hamiltonian. (Hint:
Construct a spanning tree for G, and use an inductive argument.)

36.3 NP-completeness and reducibility

Perhaps the most compelling reason why theoretical computer scientists
believe that P :f:. NP is the existence of the class of "NP-complete" prob
lems. This class has the surprising property that if anyone NP-complete
problem can be solved in polynomial time, then every problem in NP
has a polynomial-time solution, that is, P = NP. Despite years of study,
though, no polynomial-time algorithm has ever been discovered for any
NP-complete problem.

The language HAM-CYCLE is one NP-complete problem. If we could
decide HAM-CYCLE in polynomial time, then we could solve every prob
lem in NP in polynomial time. In fact, if NP - P should turn out to be
nonempty, we could say with certainty that HAM-CYCLE E NP - P.
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f

Figure 36.3 An illustrati on of a polynomial-time reduct ion from a language L l 10

a language L 2 via a reduction function f. For any input x E to, 1}· , lhe question
of whether x E L l has the same answer as the question of whether ! (x ) e L2.

The NP-comple te languages are. in a sense, the "hardest" languages in
NP. In th is section, we shall show how to compare the relati ve "hardness"
of languages using a precise not ion called "polynomial-time redu cibility."
First, we formally define the NP-co mplete languages, and then we sketch
a proof that one such language, called CIRCU IT·SAT, is NP-complete. In
Section 36.5, shall use the notion of reducibility to show that many othe r
problems are NP<omplete.

Reducibility

Intuitively, a problem Q can be reduced to another problem rz if any
instance of Q can be "easily rephrased" as an instance of e.the solution to
which provides a solution to the instance of Q. For example. the problem
of solving linear equations in an indeterm inate x reduces to the problem of
solving quadratic equations. Given an instance ax + b = 0, we transform
it to Ox 2 + ax + b = 0, whose solut ion provides a solution to ax + b = O.
Thus, if a prob lem Q redu ces to anoth er problem Q' , then Q is. in a sense,
"n o harder to solve" than Q/.

Retu rning to our form al-language framework for decision problems,
we say that a language L l is polYllomial· time reducible to a language L2•

written L1 S;p L2. if there exists a polynomial-time computable function
f: {O. I)' - {O. I )' such tha t for all x E {O. I}".

x E L , if and only if f (x ) E L2 • (36. 1)

We call the function f the reduction function, and a polynomi al-t ime algo
rithm F that computes f is called a reduction algorithm.

Figure 36.3 illustrates the idea of a polynomial-time redu ction from a
language L1 to another language L2. Each language is a subset of to. I}· .
The reduction function f provides a polynomial-time mapping such tha t
if x E LI , then f (x ) E L2. Moreover, if x (j. L I, then f (x ) (j. L2. Thus,
the reduction function maps any instance x of the decision problem repre-
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Flgure 36.4 The proof of Lemma 36.3. The algorithm F is a reduction algori thm
that computes the reduction function f from L . 10 L2 in polynomial time. and A2
is a polynomial-timt algorithm that decides L 2• Illustrated is an algorithm A I tha i
decides whether x E L . by using F to transform any input x into f (x ) and then
using A2 10 decide whether f (x ) E L2.

sea ted by the language L 1 to an instance [ (x ) of the problem rep resented
by L2. Providing an answer to whether [ (x ) E L2 directly provides the
answer to whether x E LI.

Polynomial-time reductions give us a powerful tool for proving that var
ious languages belong to P.

ummll J6.J
If L t , Lz ~ to, Ir are languages such that L I :5p Lz, then L z E P implies
L1 E P.

Proof Let A2 be a polyno mial- time a lgorith m that decides L2, and let
F be a polyno mial -time reductio n algori thm that computes the reductio n
function f. We shall construct a polyno mial-ti me algorithm A 1 that de
cides L I .

Figure 36 .4 illustrates the construct io n of A I. For a given input x E
to, I }· , the algorithm Al uses F to tra nsform x into I (x ), and then it uses
Az to test whether [(x ) E Lz. The output of A2 is the value provided as
the output from A I ,

The correc tness of AI follows from conditio n (36.1 ). Th e algorithm
runs in polynom ial time, since both F and A2 run in polynomial time (see
Exercise 36. I-6). •

NP-completeness

Polynomial-tim e redu ct ions provide a fo rma l means for showing that one
problem is at least as hard as another, to with in a polynomial-time factor.
That is, if L I :5p L2, then L , is not more than a polyno mial factor harder
than L2, which is why the "less than or equal to" notatio n for redu ction is
mnemonic. We can now define the set of NP-complete languages, which
are the hardest problems in NP.

A language L ~ to, I}· is N P-complete if

1. L E NP, and

2. L' :5p L for every L' E NP.
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NP ~
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Figure 36.5 How most theoretical computer scient ists view the relat ionships
among P, NP, and NPC. Both P and NPC are wholly contained within NP, and
P n NPC = 0.

If a language L satisfies property 2, but not necessar ily property I , we say
that L is NP-hllrd. We also define NPC to be the class of NP-complete
languages.

As the following theorem shows, NP-completeness is at the crux of de
ciding whether P is in fact equal to NP.

Th~ortm 36.4
If any NP-complete problem is polynomial-time solvable, then P = NP. If
any problem in NP is not polynom ial-time solvable, then all NP-complete
problems are not polynomial-time solvable.

Proof Suppose that L E P and also that L E NPC. For any L' E NP, we
have L' $ p L b y property 2 of the definition of NP-completeness. Thus,
by Lemma 36.3, we also have that L' E P, which proves the first statement
of the lemma.

To prove the second statement, suppose that there exists an L E NP
such that L ~ P. Let L' E NPC be any NP-complete language, and for the
purpose of contradiction, assume that L' E P. But then , by Lemma 36.3,
we have L :S p L', and thus L E P. •

It is for th is reason tha t research into the P # NP question centers
around the NP-complete problems. Most theoretical computer scientists
believe that P # NP , which leads to the relationships amo ng P, NP, and
NPC shown in Figure 36.5. But for all we know, someone may come up
with a polynomial-time algorithm for an NP-complete problem, thus prov
ing that P = NP. Nevertheless, since no polyno mial-time algorithm for any
NP-complete problem has yet been discovered, a proof that a problem is
Np-compere provides excellent evidence for its int ractability.

Circuit satisfiability

We have defi ned the notion of an NP-complete problem, but up to th is
point, we have not actually proved that any problem is NP-complete. Once
we prove that at least one problem is NP-complete, we can use polynomial -
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Figure 36.6 Two instances of the circuit-sa tisfiability problem. <a) The assign.
merit (XI = I , X l = I, x ) =0) to the inputs of this circuit causes the output of the
circu it to be I. The circuit is therefore satisfiable. (b) No assignment to the inputs
of this circu it can cause the outpu t of the circuit to be I. The circuit is therefore
unsatisfiable.

time reducibility as a tool to prove the N P-completeness of other problems.
Thus, we now focus on demonstrat ing the existence of an NP-complete
problem: the circuit-satisftability problem.

Unfortunately, the formal proof that the circuit-satisftability problem
is NP-complete requires technical detail beyond the scope of this text.
Instead, we shall informally describe a proof that relies on a basic under
standing of boolean combinational circu its. This material is reviewed at
the beginning of Chapter 29.

Figure 36.6 shows two boolean comb inat ional circuits , each with th ree
inputs and a single output. A trut" a.uignment for a boolea n combina
tional circuit is a set of boolean inp ut values. We say that a one-o utput
boolean combinatio nal circuit is satisfiable if it has a satisfping llJsignment:
a truth assignme nt that causes the output of the circuit to be I. For ex
ample, the circuit in Figure 36.6(a) has the satisfying assignment (Xl = I,
X2 = I, x ) = 0), and so it is satisfiable . No assignment of values to Xl. X2,

and x) causes the circui t in Figure 36.6(b) to produce a I output; it always
produ ces O. and so it is unsatisfiable.
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The circuit-satlsfiability problem is, "Given a boolean combinational cir
cuit composed of AND, OR, and NOT gates, is it satisfiable?" In order to
pose this question formally, however, we must agree on a standard encod
ing for circuits. One can devise a graphlike encoding that maps any given
circuit C into a binary string (C) whose length is not much larger than the
size of the circuit itself. As a formal language, we can therefore define

CIRCUIT-SAT =
{ (C) : C is a satisfiable boolean combinational circuit}

The circuit-satisfiability problem has great importance in the area of
computer-aided hardware optimization. If a circuit always produces 0, it
can be replaced by a simpler circuit that omits all logic gates and provides
the constant 0 value as its output. A polynomial-time algorithm for the
problem would have considerable practical application.

Given a circuit C, we might attempt to determine whether it is satisfiable
by simply checking all possible assignments to the inputs. Unfortunately,
if there are k inputs, there are 2k possible assignments. When the size
of C is polynomial in k; checking each one leads to a superpolynornial
time algorithm. In fact, as has been claimed, there is strong evidence that
no polynomial-time algorithm exists that solves the circuit-satisfiability
problem because circuit satisfiability is NP-complete. We break the proof
of this fact into two parts, based on the two parts of the definition of
NP-completeness.

Lemma 36.5
The circuit-satisfiability problem belongs to the class NP.

Proof We shall provide a two-input, polynomial-time algorithm A that
can verify CIRCUIT-SAT. One of the inputs to A is (a standard encoding
of) a boolean combinational circuit C. The other input is a certificate
corresponding to an assignment of boolean values to the wires in C.

The algorithm A is constructed as follows. For each logic gate in the
circuit, it checks that the value provided by the certificate on the output
wire is correctly computed as a function of the values on the input wires.
Then, if the output of the entire circuit is I, the algorithm outputs 1, since
the values assigned to the inputs of C provide a satisfying assignment.
Otherwise, A outputs O.

Whenever a satisfiable circuit C is input to algorithm A, there is a certifi
cate whose length is polynomial in the size of C and that causes A to output
a I. Whenever an unsatisfiable circuit is input, no certificate can fool A
into believing that the circuit is satisfiable. Algorithm A runs in polynomial
time: with a good implementation, linear time suffices. Thus, CIRCUIT
SAT can be verified in polynomial time, and CIRCUIT-SAT E NP. •

The second part of proving that CIRCUIT-SAT is NP-complete is to
show that the language is NP-hard. That is, we must show that every
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language in NP is polynomial-time reducible to CIRCUIT-SAT. The actual
proof of this fact is full of technical intricacies, and so we shall settle for
a sketch of the proof based on some understanding of the workings of
computer hardware.

A computer program is stored in the computer memory as a sequence of
instructions. A typical instruction encodes an operation to be performed,
addresses of operands in memory, and an address where the result is to
be stored. A special memory location, called the program counter, keeps
track of which instruction is to be executed next. The program counter
is automatically incremented whenever an instruction is fetched, thereby
causing the computer to execute instructions sequentially. The execution
of an instruction can cause a value to be written to the program counter,
however, and then the normal sequential execution can be altered, allowing
the computer to loop and perform conditional branches.

At any point during the execution of a program, the entire state of the
computation is represented in the computer's memory. (We take the mem
ory to include the program itself, the program counter, working storage,
and any of the various bits of state that a computer maintains for book
keeping.) We call any particular state of computer memory a configu
ration. The execution of an instruction can be viewed as mapping one
configuration to another. Importantly, the computer hardware that ac
complishes this mapping can be implemented as a boolean combinational
circuit, which we denote by M in the proof of the following lemma.

Lemma 36.6
The circuit-satisfiability problem is NP-hard.

Proof Let L be any language in NP. We shall describe a polynomial
time algorithm F computing a reduction function f that maps every bi
nary string x to a circuit C = f(x) such that x E L if and only if
C E CIRCUIT-SAT.

Since L E NP, there must exist an algorithm A that verifies L in polyno
mial time. The algorithm F that we shall construct will use the two-input
algorithm A to compute the reduction function f.

Let T(n) denote the worst-case running time of algorithm A on length-a
input strings, and let k ~ 1 be a constant such that T(n) = O(n k ) and
the length of the certificate is O(n k ) . (The running time of A is actually
a polynomial in the total input size, which includes both an input string
and a certificate, but since the length of the certificate is polynomial in the
length n of the input string, the running time is polynomial in n.)

The basic idea of the proof is to represent the computation of A as a se
quence of configurations. As shown in Figure 36.7, each configuration can
be broken into parts consisting of the program for A, the program counter
and auxiliary machine state, the input x, the certificate y, and working
storage. Starting with an initial configuration Co, each configuration c, is
mapped to a subsequent configuration Ci+ I by the combinational circuit M
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Figurt 36.7 The sequence of configurat ions produced by an algorithm A running
on an input x and certificate y . Each confi guration represents the state of the
computer for one step of the computa tion and, besides A, x , and y , includ es the
program counter (PC), auxiliary machine state, and working storage. Except for the
certificate y , the initial configuration Co is constant. Each configuration is mapped
to the next configura tion by a boolea n combinati onal circuit M . Th e output is a
distinguished bit in the working storage.
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implementing the computer hardware. The output of the algorithm A-O
or I-is written to some designated location in the working storage when
A finishes executing, and if we assume that thereafter A halts, the value
never changes. Thus, if the algorithm runs for at most T(n) steps, the
output appears as one of the bits in CT(n)'

The reduction algorithm F constructs a single combinational circuit that
computes all configurations produced by a given initial configuration. The
idea is to paste together T(n) copies of the circuit M. The output of the
ith circuit, which produces configuration Ci, is fed directly into the input
of the (i + 1)st circuit. Thus, the configurations, rather than ending up in a
state register, simply reside as values on the wires connecting copies of M.

Recall what the polynomial-time reduction algorithm F must do. Given
an input x, it must compute a circuit C = f(x) that is satisfiable if and
only if there exists a certificate y such that A(x,y) 1. When F ob
tains an input x, it first computes n [x] and constructs a combinational
circuit C' consisting of T(n) copies of M. The input to C' is an initial
configuration corresponding to a computation on A(x, y), and the output
is the configuration CT(n)'

The circuit C = f(x) that F computes is obtained by modifying C'
slightly. First, the inputs to C' corresponding to the program for A, the
initial program counter, the input x, and the initial state of memory are
wired directly to these known values. Thus, the only remaining inputs
to the circuit correspond to the certificate y. Second, all outputs to the
circuit are ignored, except the one bit of CT(n) corresponding to the output
of A. This circuit C, so constructed, computes C(y) = A(x,y) for any
input y of length O(nk ) . The reduction algorithm F, when provided an
input string x, computes such a circuit C and outputs it.

Two properties remain to be proved. First, we must show that F cor
rectly computes a reduction function f. That is, we must show that C is
satisfiable if and only if there exists a certificate y such that A(x,y) = I.
Second, we must show that F runs in polynomial time.

To show that F correctly computes a reduction function, let us suppose
that there exists a certificate y of length O(nk ) such that A(x,y) = 1.
Then, if we apply the bits of y to the inputs of C, the output of C is
C(y) = A(x,y) = 1. Thus, if a certificate exists, then C is satisfiable. For
the other direction, suppose that C is satisfiable. Hence, there exists an
input y to C such that C(y) = 1, from which we conclude that A(x,y) = 1.
Thus, F correctly computes a reduction function.

To complete the proof, we need only show that F runs in time polyno
mial in n = [x]. The first observation we make is that the number of bits
required to represent a configuration is polynomial in n. The program for
A itself has constant size, independent of the length of its input x. The
length of the input x is n, and the length of the certificate y is O(n k ) .

Since the algorithm runs for at most O(nk ) steps, the amount of working
storage required by A is polynomial in n as well. (We assume that this
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memory is contiguous; Exercise 36.3-4 asks you to extend the argument to
the situation in which the locations accessed by A are scattered across a
much larger region of memory and the particular pattern of scattering can
differ for each input x.)

The combinational circuit M implementing the computer hardware has
size polynomial in the length of a configuration, which is polynomial in
O(nk ) and hence is polynomial in n. (Most of this circuitry implements the
logic of the memory system.) The circuit C consists of at most t = O(n k )

copies of M, and hence it has size polynomial in n. The construction
of C from x can be accomplished in polynomial time by the reduction
algorithm F, since each step of the construction takes polynomial time. _

The language CIRCUIT-SAT is therefore at least as hard as any language
in NP, and since it belongs to NP, it is NP-complete.

Theorem 36.7
The circuit-satisfiability problem is NP-complete.

Proof Immediate from Lemmas 36.5 and 36.6 and the definition of NP
completeness. _

Exercises

36.3-1
Show that the :S;p relation is a transitive relation on languages. That is,
show that if L, :S;p L2 and L2 :S;p L 3, then L, :S;p L 3•

36.3-2
Prove that L :S;p L if and only if L :S;p L.

36.3-3
Show that a satisfying assignment can be used as a certificate in an alter
native proof of Lemma 36.5. Which certificate makes for an easier proof?

36.3-4
The proof of Lemma 36.6 assumes that the working storage for algorithm A
occupies a contiguous region of polynomial size. Where in the proof is this
assumption exploited? Argue that this assumption does not involve any
loss of generality.

36.3-5
A language L is complete for a language class C with respect to polynomial
time reductions if LEe and L' :S;p L for all L' E C. Show that (/) and
{O, I}" are the only languages in P that are not complete for P with respect
to polynomial-time reductions.
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36.3-6
Show that L is complete for NP if and only if L is complete for co-NP.

36.3-7
The reduction algorithm F in the proof of Lemma 36.6 constructs the
circuit C = f(x) based on knowledge of x, A, and k, Professor Sartre
observes that the string x is input to F, but only the existence of A and k
is known to F (since the language L belongs to NP), not their actual values.
Thus, the professor concludes that F can't possibly construct the circuit C
and that the language CIRCUIT-SAT is not necessarily NP-hard. Explain
the flaw in the professor's reasoning.

36.4 NP-completeness proofs

The NP-completeness of the circuit-satisfiability problem relies on a direct
proof that L :S;p CIRCUIT-SAT for every language L E NP. In this sec
tion, we shall show how to prove that languages are NP-complete without
directly reducing every language in NP to the given language. We shall
illustrate this methodology by proving that various forrnula-satisfiability
problems are NP-complete. Section 36.5 provides many more examples
of the methodology.

The following lemma is the basis of our method for showing that a
language is NP-complete.

Lemma 36.8
If L is a language such that L' :S;p L for some L' E NPC, then L is NP-hard.
Moreover, if L E NP, then L E NPC.

Proof Since L' is NP-complete, for all L" E NP, we have L" :S;p L'.
By supposition, L' :S;p L, and thus by transitivity (Exercise 36.3-1), we
have L" :S;p L, which shows that L is NP-hard. If L E NP, we also have
LEN~. •

In other words, by reducing a known NP-complete language L' to L, we
implicitly reduce every language in NP to L. Thus, Lemma 36.8 gives us
a method for proving that a language L is NP-complete:

1. Prove L E NP.

2. Select a known NP-complete language L'.

3. Describe an algorithm that computes a function f mapping every in
stance of L' to an instance of L.

4. Prove that the function f satisfies x E L' if and only if f(x) E L for all
x E {a, I}".

5. Prove that the algorithm computing f runs in polynomial time.
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This methodology of reducing from a single known NP-complete language
is far simpler than the more complicated process of providing reductions
from every language in NP. Proving CIRCUIT-SAT E NPC has given us a
"foot in the door." Knowing that the circuit-satisfiability problem is NP
complete now allows us to prove much more easily that other problems are
NP-complete. Moreover, as we develop a catalog of known NP-complete
problems, applying the methodology will become that much easier.

Formula satisfiability

We illustrate the reduction methodology by giving an NP-completeness
proof for the problem of determining whether a boolean formula, not a
circuit, is satisfiable. This problem has the historical honor of being the
first problem ever shown to be NP-complete.

We formulate the (formula) satis./iability problem in terms of the lan
guage SAT as follows. An instance of SAT is a boolean formula ¢ com
posed of

1. boolean variables: XI, X2, ••• ;

2. boolean connectives: any boolean function with one or two inputs and
one output, such as 1\ (AND), V (OR), --. (NOT), -+ (implication), ...... (if
and only if); and

3. parentheses.

As in boolean combinational circuits, a truth assignment for a boolean for
mula ¢ is a set of values for the variables of ¢, and a satisfying assignment
is a truth assignment that causes it to evaluate to 1. A formula with a sat
isfying assignment is a satisfiable formula. The satisfiability problem asks
whether a given boolean formula is satisfiable; in formal-language terms,

SAT = {(¢) : ¢ is a satisfiable boolean formula}

As an example, the formula

¢ = ((XI -+ X2) V --'((--'XI ...... X3) V X4)) 1\ --,X2

has the satisfying assignment (x I = 0, X2 = 0, X3 = I, X4 = I), since

¢ = ((0 -+ 0) V --.( (--.0 ...... I) VI)) 1\ --.0 (36.2)

(1 V --.( 1 VI)) 1\ I

= (l V0) 1\ 1

= I ,

and thus this formula ¢ belongs to SAT.
The naive algorithm to determine whether an arbitrary boolean formula

is satisfiable does not run in polynomial time. There are 2/1 possible assign
ments in a formula ¢ with n variables. If the length of (¢) is polynomial
in n, then checking every assignment requires superpolynomial time. As
the following theorem shows, a polynomial-time algorithm is unlikely to
exist.
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Figure 36.8 Reducing circuit satisfiability to formula satisfiability, The formula
produced by the reduction algorithm has a variable for each wire in the circuit.

Theorem 36.9
Satisfiability of boolean formulas is NP-complete.

Proof We shall argue first that SAT E NP. Then, we shall show that
CIRCUIT-SAT ~p SAT; by Lemma 36.8, this will prove the theorem.

To show that SAT belongs to NP, we show that a certificate consisting
of a satisfying assignment for an input formula ¢ can be verified in poly
nomial time. The verifying algorithm simply replaces each variable in the
formula with its corresponding value and then evaluates the expression,
much as we did in equation (36.2) above. This task is easily doable in
polynomial time. If the expression evaluates to I, the formula is satisfi
able. Thus, the first condition of Lemma 36.8 for NP-completeness holds.

To prove that SAT is NP-hard, we show that CIRCUIT-SAT ~p SAT.
In other words, any instance of circuit satisfiability can be reduced in
polynomial time to an instance of formula satisfiability. Induction can be
used to express any boolean combinational circuit as a boolean formula.
We simply look at the gate that produces the circuit output and inductively
express each of the gate's inputs as formulas. The formula for the circuit
is then obtained by writing an expression that applies the gate's function
to its inputs' formulas.

Unfortunately, this straightforward method does not constitute a poly
nomial-time reduction. Shared subformulas can cause the size of the gen
erated formula to grow exponentially (see Exercise 36.4-1). Thus, the
reduction algorithm must be somewhat more clever.

Figure 36.8 illustrates the basic idea of the reduction from CIRCUIT
SAT to SAT on the circuit from Figure 36.6(a). For each wire Xi in the
circuit C, the formula ¢ has a variable Xi. The proper operation of a gate
can now be expressed as a formula involving the variables of its incident
wires. For example, the operation of the output AND gate is XIO ..... (X7 1\

Xg 1\ X9).
The formula ¢ produced by the reduction algorithm is the AND of the

circuit-output variable with the conjunction of clauses describing the op-
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eration of each gate. For the circuit in the figure, the formula is

¢ = XIO A (X4 +-+ ,X3)

A (Xs +-+ (XI V X2))

A (X6 +-+ ,X4)

A (X7 +-+ (XI A X2 A X4))

A (Xs +-+ (x, V X6))

A (X9+-+(X6VX7))

A (XIO +-+ (X7 A Xs A X9)) •

Given a circuit C, it is straightforward to produce such a formula ¢ in
polynomial time.

Why is the circuit ¢ satisfiable exactly when the formula ¢ is satisfiable?
If C has a satisfying assignment, each wire of the circuit has a well-defined
value, and the output of the circuit is 1. Therefore, the assignment of wire
values to variables in ¢ makes each clause of ¢ evaluate to I, and thus the
conjunction of all evaluates to 1. Conversely, if there is an assignment that
causes ¢ to evaluate to I, the circuit C is satisfiable by an analogous argu
ment. Thus, we have shown that CIRCUIT-SAT ~p SAT, which completes
the proof. _

3-CNF satisfiability

Many problems can be proved NP-complete by reduction from formula
satisfiability. The reduction algorithm must handle any input formula,
though, and this can lead to a huge number of cases that must be consid
ered. It is often desirable, therefore, to reduce from a restricted language
of boolean formulas, so that fewer cases need be considered. Of course,
we must not restrict the language so much that it becomes polynomial-time
solvable. One convenient language is 3-CNF satisfiability, or 3-CNF-SAT.

We define 3-CNF satisfiability using the following terms. A literal in a
boolean formula is an occurrence of a variable or its negation. A boolean
formula is in conjunctive normal form, or CNF, if it is expressed as an
AND of clauses, each of which is the OR of one or more literals. A
boolean formula is in 3-conjunctive normal form, or 3-CNF, if each clause
has exactly three distinct literals.

For example, the boolean formula

(XI V ,XI V ,X2) A (X3 V X2 V X4) A (,XI V ,x3 V ,X4)

is in 3-CNF. The first of its three clauses is (XI v.x, V,X2), which contains
the three literals XI, ,XI, and ,X2.

In 3-CNF-SAT, we are asked whether a given boolean formula ¢ in
3-CNF is satisfiable. The following theorem shows that a polynomial
time algorithm that can determine the satisfiability of boolean formulas is
unlikely to exist, even when they are expressed in this simple normal form.



36.4 Nr-compieteness proofs

Figure 36.9 The tree corresponding to the formula

¢ = ((Xl ...... X2) V ,((,XI ...... X3) V X4)) /\ ,X2 .
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Theorem 36.10
Satisfiability of boolean formulas in 3-conjunctive normal form is NP
complete.

Proof The argument we used in the proof of Theorem 36.9 to show
that SAT E NP applies equally well here to show that 3-CNF-SAT E NP.
Thus, we need only show that 3-CNF-SAT is NP-hard. We prove this by
showing that SAT :Sp 3-CNF-SAT, from which the proof will follow by
Lemma 36.8.

The reduction algorithm can be broken into three basic steps. Each
step progressively transforms the input formula 4> closer to the desired
3-conjunctive normal form.

The first step is similar to the one used to prove CIRCUIT-SAT :Sp
SAT in Theorem 36.9. First, we construct a binary "parse" tree for the
input formula 4>, with literals as leaves and connectives as internal nodes.
Figure 36.9 shows such a parse tree for the formula

(36.3)

Should the input formula contain a clause such as the OR of several literals,
associativity can be used to parenthesize the expression fully so that every
internal node in the resulting tree has 1 or 2 children. The binary parse
tree can now be viewed as a circuit for computing the function.

Mimicking the reduction in the proof of Theorem 36.9, we introduce
a variable Yi for the output of each internal node. Then, we rewrite the
original formula 4> as the AND of the root variable and a conjunction of
clauses describing the operation of each node. For the formula (36.3), the
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Y, Y2 X2 (YI +-+ (Y2 1\ -,X2))
I I I 0
I I 0 I
I 0 I 0
I 0 0 0
0 I I I
0 I 0 0
0 0 I I
0 0 0 I

Figure 36.10 The truth table for the clause (YI +-+ (Y2 1\ -,X2)).

resulting expression is

1/= Yl 1\ (Yl +-+ (Y2 1\ "",X2))

1\ (Y2 +-+ (Y3 V Y4))

1\ (Y3 +-+ (Xl --;. X2))

1\ (Y4 +-+ ""'Ys)

1\ (Ys +-+ (Y6 VX4))

1\ (Y6 +-+ (""'Xl +-+ X3)) •

Observe that the formula 1/ thus obtained is a conjunction of clauses ¢~,

each of which has at most 3 literals. The only additional requirement is
that each clause be an OR of literals.

The second step of the reduction converts each clause ¢~ into conjunctive
normal form. We construct a truth table for ¢i by evaluating all possible
assignments to its variables. Each row of the truth table consists of a
possible assignment of the variables of the clause, together with the value
of the clause under that assignment. Using the truth-table entries that
evaluate to 0, we build a formula in disjunctive normalform (or DNF)-an
OR of AND's-that is equivalent to ....,1>;. We then convert this formula
into a CNF formula 1>i' by using DeMorgan's laws (5.2) to complement all
literals and change OR's into AND's and AND's into OR's.

In our example, we convert the clause ¢'l = (Yl +-+ (Y2 1\ ""'X2)) into CNF
as follows. The truth table for ¢'l is given in Figure 36.10. The DNF
formula equivalent to ....,¢'l is

(Yl 1\ Y2 1\ X2) V (Yl 1\ ""'Y2 1\ X2) V (Yl 1\ ""'Y2 1\ "",X2) V (""'Yl 1\ Y2 1\ "",X2) .

Applying DeMorgan's laws, we get the CNF formula

¢;' = (""'Yl V ""'Y2 V "",X2) 1\ (""'Yl VY2 V""'X2)

1\ (""'Yl VY2 VX2) 1\ (Yl V ""'Y2 VX2) ,

which is equivalent to the original clause 1>;.
Each clause 1>; of the formula 1>' has now been converted into a CNF

formula 1>1" and thus ¢' is equivalent to the CNF formula 1>" consisting
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of the conjunction of the 4>~'. Moreover, each clause of 4>" has at most 3
literals.

The third and final step of the reduction further transforms the formula
so that each clause has exactly 3 distinct literals. The final 3-CNF for
mula 4>'" is constructed from the clauses of the CNF formula 4>". It also
uses two auxiliary variables that we shall call p and q. For each clause C,
of 4>", we include the following clauses in 4>"':
• If C, has 3 distinct literals, then simply include C, as a clause of 4>"'.
• If C has 2 distinct literals, that is, if C, = (il v 12), where II and 12

are literals, then include (i\ V l: V p) A (il V l: V -,p) as clauses of 1(4)).
The literals p and -,p merely fulfill the syntactic requirement that there
be exactly 3 distinct literals per clause: (it V l: V p) A (il V lz V -,p) is
equivalent to (il V 12) whether p = 0 or p = 1.

• If C, has just I distinct literal I, then include (i VP V q) A (l VP V -,q) A
(I V -,p V q) A (I V -,p V -,q) as clauses of 4>"'. Note that every setting of
p and q causes the conjunction of these four clauses to evaluate to I.

We can see that the 3-CNF formula 4>'" is satisfiable if and only if 4>
is satisfiable by inspecting each of the three steps. Like the reduction
from CIRCUIT-SAT to SAT, the construction of 4>' from 4> in the first
step preserves satisfiability. The second step produces a CNF formula 4>"
that is algebraically equivalent to 4>'. The third step produces a 3-CNF
formula 4>'" that is effectively equivalent to 4>", since any assignment to
the variables p and q produces a formula that is algebraically equivalent
to 4>".

We must also show that the reduction can be computed in polynomial
time. Constructing 4>' from 4> introduces at most I variable and I clause
per connective in 4>. Constructing 4>" from 4>' can introduce at most 8
clauses into 4>" for each clause from 4>', since each clause of 4>' has at most
3 variables, and the truth table for each clause has at most 23 = 8 rows.
The construction of 4>'" from 4>" introduces at most 4 clauses into 4>'" for
each clause of 4>". Thus, the size of the resulting formula 4>'" is polynomial
in the length of the original formula. Each of the constructions can easily
be accomplished in polynomial time. _

Exercises

36.4-1
Consider the straightforward (nonpolynomial-time) reduction in the proof
of Theorem 36.9. Describe a circuit of size n that, when converted to a
formula by this method, yields a formula whose size is exponential in n.

36.4-2
Show the 3-CNF formula that results when we use the method of Theo
rem 36.10 on the formula (36.3).
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36.4-3
Professor Jagger proposes to show that SAT $p 3-CNF-SAT by using only
the truth-table technique in the proof of Theorem 36.10, and not the other
steps. That is, the professor proposes to take the boolean formula </>, form
a truth table for its variables, derive from the truth table a formula in
3-DNF that is equivalent to -'</>, and then negate and apply DeMorgan's
laws to produce a 3-CNF formula equivalent to </>. Show that this strategy
does not yield a polynomial-time reduction.

36.4-4
Show that the problem of determining whether a boolean formula is a
tautology is complete for co-NP. (Hint: See Exercise 36.3-6.)

36.4-5
Show that the problem of determining the satisfiability of boolean formulas
in disjunctive normal form is polynomial-time solvable.

36.4-6
Suppose that someone gives you a polynomial-time algorithm to decide
formula satisfiability. Describe how to use this algorithm to find satisfying
assignments in polynomial time.

36.4-7
Let 2-CNF-SAT be the set of satisfiable boolean formulas in CNF with
exactly 2 literals per clause. Show that 2-CNF-SAT E P. Make your
algorithm as efficient as possible. (Hint: Observe that x v y is equivalent
to -,x -+ y. Reduce 2-CNF-SAT to a problem on a directed graph that is
efficiently solvable.)

36.5 NP-complete problems

NP-complete problems arise in diverse domains: boolean logic, graphs,
arithmetic, network design, sets and partitions, storage and retrieval, se
quencing and scheduling, mathematical programming, algebra and number
theory, games and puzzles, automata and language theory, program opti
mization, and more. In this section, we shall use the reduction method
ology to provide NP-completeness proofs for a variety of problems drawn
from graph theory and set partitioning.

Figure 36.11 outlines the structure of the NP-completeness proofs in
this section and Section 36.4. Each language in the figure is proved NP
complete by reduction from the language that points to it. At the root is
CIRCUIT-SAT, which we proved NP-complete in Theorem 36.7.
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CIRCUIT-SAT

3-CNF-SAT
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eLi UE

VERTEX-CO

SUBSET-5UM

HAM-CYCLE

TSP

Figure 36.11 The structure of Np-ccmpleteness proofs in Sections 36.4 and 36.5.
All proofs ultimately follow by reduction from the NP-completeness of CIRCUIT
SAT.

36.5.1 The clique problem

A clique in an undi rected graph G = (V. E ) is a subset V' ~ V of vert ices,
each pair of which is connec ted by an edge in E. In other words, a clique
is a complete subgraph of G. The siu of a clique is the num ber of vertices
it contains. The clique problem is the optimiza tion problem of finding a
clique of maximum size in a graph . As a decision problem, we ask simply
whether a clique of a given size k exists in the graph . The formal definition
is

CLIQUE = { (G, k ) : G is a graph with a clique of size k } .

A naive algorithm for determining whether a graph G = (V, E ) with IVI
vertices has a clique of size k is to list all k-subsets of V, and check each
one to see whether it forms a clique. Th e running time of th is algorithm
is n{k 2 ( 1 ~ 1 )) , which is polynomial if k is a constan t. In general, however,
k could be proport ional to WI, in which case the algorithm runs in su
perpolynomial time. As one might suspect, an efficient algorithm for the
clique problem is unlikely to exist.

Theorem 36.11
The clique problem is NP-complete.

Proof To show tha t CLIQUE E NP, for a given graph G = (V, E) , we
use the set V' ~ V of vertices in the cliq ue as a certificate for G. Checking
whether Viis a clique can be accomplished in polynomial time by checking
Whether, for every pair U, V E V', the ed ge (u, v) belongs to E.

We next show that the clique problem is NP-hard by proving that 3
CN F·SAT :S; p CLIQUE. Th at we should be able to prove this result is
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Figure 36.12 The graph G derived from the 3-CNF formula ¢ = C, 1\ C2 f\ Cj,
where C 1 = (XIY...,X2Y""Xl), C2 = (-'XIV X2VXJ), end C, = (XIYX2VXJ), in red ucing
3·CNF·SAT to CLIQUE. A satisfy ing assignment of the formula is (x, = a , X2 = 0,
x } = 1). Thi s satisfying assignment satisfies C1 with ""X2, and it satisfies C2 and Cl
with xr, corresponding to the clique with lightly shaded vert ices.

somewhat surprising, since on the surface logical formulas seem to have
litt le to do with graph s.

The reduction algorithm begins with an instance of 3-CNF-SAT. Let
4> = C\ 1\ C2 A ... 1\ Ck be a boolean formula in 3-CN F with k clauses.
For r = 1,2 , . . . , k, each clause C, has exactly three dist inct literals /1>12,
and '~. We shall construct a graph G such that 4> is satisfiable if and only
if G has a clique of size k .

The graph G = (V, E ) is constructed as follows. For each clause C, =
(II v's. VIJ) in ¢, we place a tripl e of vert ices vr. vs..and v~ in V. We put
an edge between two vert ices vi and vj if both of the following hold:

vi and vj are in different trip les. that is, r #- s, and

• their corresponding literal s are consistent, that is, Ii is not the negation
of Ij .

Th is graph can easily be computed from ¢ in polynomial time. As an
example of th is construction, if we have

¢ = ( X I V ""X 2 V ""X3) 1\ ( .....X l V X2 V X 3) /\ (X I V X2 V X3) ,

then G is the graph shown in Figure 36. 12.
We must show that th is transformation of ¢ into G is a reduction. First,

suppose that ¢ has a satisfying assignment. Then, each clause C, contains
at least one literal Ii that is assigned I , and each such literal cor responds
to a vertex vi. Picking one such "true" literal from each clause yields a
set of V' of k vert ices. We claim that Viis a clique. For any two vertices
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( y)'----'{.x

(e)
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(b)

Figure 36.13 Reducing CLIQUE to VERTEX -COVER. <a) An undirected graph
G "" (V, £) with clique V' "" {u,v,x,y}. (b) The graph G produced by the reduc
tion algorithm that has vertex cover V - V ' "" {w, z] .

Vi,vj E V' , where r #- s, both correspond ing literals Ii and Ij are mapped
to 1 by the given satisfyi ng assignment, and thu s the literals cannot be
complements. Thus, by the construction of G, the edge (vi, v;) belongs
to E.

Conversely, suppose that G has a cliq ue V' of size k , No edges in G
connect vertices in the same triple, and so V' contains exactly one vertex
per triple. We can assign 1 to each literal Ii such that vj E V' without
fear of assigning 1 to both a literal and its complement, since G contai ns
no edges between inconsistent literals. Each clause is satisfied, and so ¢ is
satisfied. (Any variables tbat correspond to no vertex in the clique may be
set arbitrarily.) _

In the example of Figure 36.12, a satisfying assignment of ¢ is (X I = 0,
X2 = O,x ) = I). A corresponding clique of size k: = 3 consists of the ver
tices correspond ing to -'X 2 from the first clause, x ) from the second clause,
and x) from the third clause.

36.5.2 The vertex-cover problem

A ,erlu cover of an undirected graph G "" ( V, E ) is a subset V' C V such
that if (u, v ) E E, then u E V' or v E V' (or both). That is, each vertex
"covers" its incident edges, and a vertex cover for G is a set of vertices
that covers all the edges in E. The J;~ of a vertex cover is the number
of vertices in it. For example, the graph in Figure 36.13(b) has a vertex
cover {w , z} of size 2.

The vertex-corer problem is to find a vertex cover of min imum size in a
given graph. Restat ing th is optimiza tion problem as a decision problem,
we wish to determine whether a graph has a vertex cover of a given size tc .
As a language, we defi ne

VERTEX-COVER = { (G, k ) : graph G has vertex cover of size k }
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The following theorem shows that this problem is NP-complete.

Theorem 36.12
The vertex-cover problem is NP-complete.

Proof We first show that VERTEX-COVER E NP. Suppose we are given
a graph G = (V, E) and an integer k. The certificate we choose is the vertex
cover V' ~ V itself. The verification algorithm affirms that lV'l = k, and
then it checks, for each edge (u, v) E E, whether u E V' or V E V'. This
verification can be performed straightforwardly in polynomial time.

We prove that the vertex-cover problem is NP-hard by showing that
CLIQUE ~p VERTEX-COVER. This reduction is based on the notion of
the "complement" of a graph. Given an undirected graph G = (V, E), we
define the complement of Gas G = (V, E), where E = {(u, v) : (u, v) tJ. E}.
In other words, G is the graph containing exactly those edges that are not
in G. Figure 36.13 shows a graph and its complement and illustrates the
reduction from CLIQUE to VERTEX-COVER.

The reduction algorithm takes as input an instance (G, k) of the clique
problem. It computes the complement G, which is easily doable in poly
nomial time. The output of the reduction algorithm is the instance (G,
IVI- k) of the vertex-cover problem. To complete the proof, we show
that this transformation is indeed a reduction: the graph G has a clique of
size k if and only if the graph G has a vertex cover of size IVI- k.

Suppose that G has a clique V' ~ V with IV'I = k. We claim that V - V'
is a vertex cover in G. Let (u, v) be any edge in E. Then, (u, v) tJ. E, which
implies that at least one of u or v does not belong to V', since every pair
of vertices in Viis connected by an edge of E. Equivalently, at least one
of u or v is in V - V', which means that edge (u, v) is covered by V - V'.
Since (u, v) was chosen arbitrarily from E, every edge of E is covered by
a vertex in V - V'. Hence, the set V - V', which has size IVI- k, forms
a vertex cover for G.

Conversely, suppose that G has a vertex cover V' ~ V, where lV'l =
IVI - k, Then, for all u, v E V, if (u, v) E E, then u E V' or v E V' or
both. The contrapositive of this implication is that for all u,v E V, if
u tJ. V' and v tJ. V', then (u, v) E E. In other words, V - Viis a clique,
and it has size IVI IV'I k. •

Since VERTEX-COVER is NP-complete, we don't expect to find a poly
nomial-time algorithm for finding a minimum-size vertex cover. Sec
tion 37.1 presents a polynomial-time "approximation algorithm," how
ever, which produces "approximate" solutions for the vertex-cover prob
lem. The size of a vertex cover produced by the algorithm is at most twice
the minimum size of a vertex cover.

Thus, we shouldn't give up hope just because a problem is NP-complete.
There may be a polynomial-time approximation algorithm that obtains
near-optimal solutions, even though finding an optimal solution is NP-
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complete. Chapter 37 gives several approximation algorithms for NP
complete problems.

36.5.3 The subset-sum problem

The next NP-complete problem we consider is arithmetic. In the subset
sum problem, we are given a finite set 8 c N and a target tEN. We ask
whether there is a subset S' ~ 8 whose elements sum to t. For example,
if 8 = {I, 4,16,64,256,1040,1041,1093,1284, 1344} and t = 3754, then
the subset 8' = {l, 16,64,256, 1040, 1093, 1284} is a solution.

As usual, we define the problem as a language:

SUBSET-SUM =
{(8, t) : there exists a subset S' ~ 8 such that t = LSES' s}

As with any arithmetic problem, it is important to recall that our standard
encoding assumes that the input integers are coded in binary. With this
assumption in mind, we can show that the subset-sum problem is unlikely
to have a fast algorithm.

Theorem 36.13
The subset-sum problem is NP-complete.

Proof To show that SUBSET-SUM is in NP, for an instance (8, t) of
the problem, we let the subset S' be the certificate. Checking whether
t = LSES1 S can be accomplished by a verification algorithm in polynomial
time.

We now show that VERTEX-COVER ,$p SUBSET-SUM. Given an
instance (G, k) of the vertex-cover problem, the reduction algorithm con
structs an instance (8, t) of the subset-sum problem such that G has a
vertex cover of size k if and only if there is a subset of 8 whose sum is
exactly t.

At the heart of the reduction is an incidence-matrix representation of G.
Let G = (V,E) be an undirected graph and let V = {va, VI,. .. , vlVl-l} and
E = {eo,eJ, ... ,eIEI-d. The incidence matrix of G is a IVI x lEI matrix
B = (bi}) such that

b. _ {I if edge ej is incident on vertex Vi ,
IJ - 0 otherwise.

For example, Figure 36.14(b) shows the incidence matrix for the undi
rected graph of Figure 36.14(a). The incidence matrix is shown with lower
indexed edges on the right, rather than on the left as is conventional, in
order to simplify the formulas for the numbers in 8.

Given a graph G and an integer k, the reduction algorithm computes
a set 8 of numbers and an integer t, To understand how the reduction
algorithm works, let us represent numbers in a "modified base-d" fashion.
The lEI low-order digits of a number will be in base-4 but the high-order
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o '" 1284

• 1040

'" 1093

• 1

,= 100100

x.. =\O IO ll

Yo '" 0 0 0 0 0 1

modified bose 4 decimal

e. 1':3 f'2 t 1 1"0

~ ~1111

\'300 100

v4 0 I 0 1 I

(.) (b)

Y, : 0 0 0 1 0 0 : 16

Y, : 0 0 1 0 0 0 : 64
Y, • 0 1 0 0 0 0 • 256

• 3 2 2 2 2 2 • 3754

(c)

Figure 36.14 The reduction of the vertex-cover problem to the subset-sum prob
lem. (a> An undirected graph G. A vertex cover { VI , V J. V 4} of size 3 is lightly
shaded. (b) The corresponding incide nce matrix . Shad ing of the rows corresponds
10 the vertex cover of part (a). Each edge e j has a I in at least one lightly shaded
row. (c) The corresponding subset-sum instance. The port ion with in the box is the
incidence matri x. Here, the vertex cove r {VI, VJ. v.} of size k = 3 corresponds to
the lightly shaded subset {I. 16, 64, 256. 1040, 1093, 1284}, which add s up to 3754.

digit can be as large as k , The set of num bers is constructed in such a way
that no carries can be propagated from lower digits to higher digits.

Th e set S consists of two types of numbers, corresponding to vertices
and edges respectively. For each vertex Vi E V, we create a positive in
teger X i whose modified base-4 representation consists of a leading 1 fol
lowed by lEI digits. The digits correspond to Vi 'S row of the incidence
matrix B = (bij) for G, as illustrated in Figure 36.14(c). Formally, for
i =O, I, · .. ,IVI - I,

t£I-1
X i = 41£1+ L bij~ .

j z O

For each edge ej E E , we create a positive integer Yj that is just a row
of the "identity" incidence matrix. (The identi ty incidence mat rix is the
lEI x lEI matri x with I's only in the diagonal posit ions.) Formally. for
j = 0. 1, ... . 1£1- I.

Yj = 4i .

The first digit of the target sum t is k , and all 1£1 lower-order digits
are Z's. Formally.

1£1- 1
t ~ k 4 ,EI + L 2 · <V .

j _O
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All of these numbers have polynomial size when we represent them in
binary. The reduction can be performed in polynomial time by manipu
lating the bits of the incidence matrix.

We must now show that graph G has a vertex cover of size k if and
only if there is a subset S' ~ S whose sum is t. First, suppose that G has
a vertex cover V' ~ V of size k. Let V' = {Vij,Vi2, ••• ,Vik}, and define
S' by

S' = {Xil,Xi2"",Xh} U

{YJ : ej is incident on precisely one vertex in V'}

To see that LSES1 s t, observe that summing the k: leading l's of the
x.; E S' gives the leading digit k of the modified base-4 representation of t.
To get the low-order digits of i, each of which is a 2, consider the digit
positions in turn, each of which corresponds to an edge e.. Because V' is
a vertex cover, ej is incident on at least one vertex in V'. Thus, for each
edge et, there is at least one Xim E S' with a I in the jth position. If ej is
incident on two vertices in V', then both contribute a 1 to the sum in the
jth position. The jth digit of Yj contributes nothing, since ej is incident
on two vertices, which implies that Yj ¢ S'. Thus, in this case, the sum
of S' produces a 2 in the jth position of t. For the other case-when ej

is incident on exactly one vertex in V'-we have Yj E S', and the incident
vertex and Yj each contribute I to the sum of the jth digit of t, thereby
also producing a 2. Thus, S' is a solution to the subset-sum instance S.

Now, suppose that there is a subset S' ~ S that sums to t. Let S =

{Xij,Xip ••• ,Xi,J U {Yjl,Yh,'" ,Yjp}' We claim that m = k and that V' =

{Vii' Vi2'"'' Vi,J is a vertex cover for G. To prove this claim, we start by
observing that for each edge ej E E, there are three l's in set S in the
ej position: one from each of the two vertices incident on e., and one
from Yj. Because we are working with a modified base-4 representation,
there are no carries from position ej to position ej; I. Thus, for each of
the lEI low-order positions of t, at least one and at most two Xi must
contribute to the sum. Since at least one Xi contributes to the sum for
each edge, we see that V' is a vertex cover. To see that m = k, and thus
that V' is a vertex cover of size k, observe that the only way the leading k
in target t can be achieved is by including exactly k of the Xi in the sum. _

In Figure 36.14, the vertex cover V' = {V"V3,V4} corresponds to the
subset S' {XI,X3,X4,YO,Y2,Y3,Y4}. All of the Yj are included in S', with
the exception of Yl, which is incident on two vertices in V'.

36.5.4 The hamiltonian-cycle problem

We now return to the hamiltonian-cycle problem defined in Section 36.2.
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1/

(.j (bj

b}--- - - .L-- - - {II/

•c.)------,..---{<•

(oj (d)

Figure 36.15 Ca) Widget A. used in the reduction from 3.cNF·SAT to HAM
CYCLE. (b)- (e) If A is a subgraph of some graph G that contains a hamiltonian
cycle and the only connections from A to the rest of G are through the vertices
G, 0 ' , b , and b' , then the shaded edges represent the only two possible ways in
which the hamiltonian cycle may tra verse the edges of subgraph A. (d) A compact
represent ation of the A widget.

Tlttorem 36.U
The hamiltonian cycle problem is NP-complete.

Proof We first show that HAM·CYCLE belongs to NP. Given a graph
G = (V, E ), our certificate is the seq uence of IVI vertices that make up the
ham iltonian cycle. The verification algorithm checks that this sequence
contains each vertex in V exactly once and that with the first vertex re
peated at the end, it fonns a cycle in G. Thi s verificatio n can be perform ed
in polynomial time.

We now prove that HAM-CYCLE is NP-compl ete by showing that 3
CNF-SAT $ p HAM-CYCLE. Give n a 3-CNF boolean formula ,p over
variables X l , X 2, .. . , x" with clauses C I , C2,... , C/c , each conta ining exactly
3 distinct literals, we construct a graph G = (V, E ) in polynomial time
such that G has a hamiltonia n cycle if and only if 4> is satisfiable. Our
construction is based on widget3, which are pieces of graphs that enforce
certai n properties.

Our first widget is the subgrapb A shown in Figure 36.15(a). Suppose
that A is a subgraph of some graph G and that the only connections be
tween A and the remainder of G are through the vertices a, d . h. and h' .
Furtherm ore, suppose that graph G has a hamilton ian cycle. Since any
hamiltonian cycle of G must pass th rough vertices Z I, Z 2. Z ) , and Z4 in
one of the ways shown in Figures 36.15(b) and (c), we may trea t sub
graph A as if it 'were sim ply a pair of edges (a, a' ) and (h. h' ) with the
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restriction that any hamiltonian cycle of G must include exactly one of
these edges. We shall represent widget A as shown in Figure 36.15(d).

The subgraph B in Figure 36.16 is our second widget. Suppose that B is
a subgraph of some graph G and that the only connections from B to the
remainder of G are through vertices b l , b2, bs, and bs. A hamiltonian cycle
of graph G cannot traverse all of the edges (b l,b2 ) , (b2,b3), and (b3,b4 ) ,

since then all vertices in the widget other than b., b2 , b-; and b4 would
be missed. A hamiltonian cycle of G may, however, traverse any proper
subset of these edges. Figures 36.16(a)-(e) show five such subsets; the
remaining two subsets can be obtained by performing a top-to-bottom flip
of parts (b) and (e). We represent this widget as in Figure 36.16(f), the
idea being that at least one of the paths pointed to by the arrows must be
taken by a hamiltonian cycle.

The graph G that we shall construct consists mostly of copies of these
two widgets. The construction is illustrated in Figure 36.17. For each of
the k clauses in cP, we include a copy of widget B, and we join these widgets
together in series as follows. Letting b., be the copy of vertex b, in the rth
copy of widget B, we connect bi ,4 to bi+I,1 for i = 1,2, ... , k 1.

Then, for each variable X m in cP, we include two vertices x:n and x::r. We
connect these two vertices by means of two copies of the edge (x:n, x::Z),
which we denote by em and em to distinguish them. The idea is that if the
hamiltonian cycle takes edge em, it corresponds to assigning variable x.; the
value I. If the hamiltonian cycle takes edge em, the variable is assigned the
value O. Each pair of these edges forms a two-edge loop; we connect these
small loops in series by adding edges (x:n, x::z+ I) for m = 1,2, ... , n 1.
We connect the left (clause) side of the graph to the right (variable) side
by means of two edges (bl,l,xn and (bk,4,X~), which are the topmost and
bottommost edges in Figure 36.17.

We are not yet finished with the construction of graph G, since we have
yet to relate the variables to the clauses. If the jth literal of clause C, is xm ,

then we use an A widget to connect edge (bij, bi,j+l) with edge em, If the jth
literal of clause C, is ....,Xm , then we instead put an A widget between edge
(bij, bi,j+d and edge em. In Figure 36.17, for example, because clause C2
is (XI V ""'X2 V X3), we place three A widgets as follows:

• between (b2,t. b2,2 ) and et.

• between (b2,2, b2,3 ) and th, and

• between (b2,3, b2,4 ) and e3.

Note that connecting two edges by means of A widgets actually entails
replacing each edge by the fiveedges in the top or bottom of Figure 36.15(a)
and, of course, adding the connections that pass through the z vertices as
well. A given literal L« may appear in several clauses (....,X3 in Figure 36.17,
for example), and thus an edge em or em may be be influenced by several
A widgets (edge e3, for example). In this case, we connect the A widgets
in series, as shown in Figure 36.18, effectively replacing edge em or em by
a series of edges.
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(a)

(d)

(b)

(,)

(c)

Flgurt 36.16 Widget B, used in the redu ct ion from J.CNF-SAT to HAM-CVCLE.
No path from vertex bl to vertex b4 containing all the vertices in the widget may
use all three edges (bl, bt), (~ . b) . and (bl, b.). Any prope r subset of these edges
may be used, however. (8)-(e) Five such subsets. ( l') A representation of this
widget in which at least one of the pa ths poin ted to by the arrows mu st be taken
by a hamiilonian cycle.
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Figure 36.17 The graph G constructed from the formu la q, = (-,xl V X 2 V -,xl) II
(XI V -,x2 V Xl ) II (Xl V Xl V ""Xl). A satisfying assignment s to the vari ables of q,
is s(x . ) = 0, S( Xl) = I, and S(Xl ) = 1, which corres ponds to the hamilton ian cycle
shown. Note that if s(x", ) = I, then edge e", is in the hamiltonian cycle, and if
s(x... ) = 0, then edge 1... is in the hamilton ian cycle.
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(b)

b"

x;

"
x",

b"

(a)

Figure 36.18 The actual constructio n used when an edge e- or em is influenced
by multiple A widgets. <a> A portion of Figure 36.17. (b) The actual subgraph
constructed.

We claim that formula ¢ is satisfiable if and on ly if graph G contains a
hamiltonian cycle. We first suppose that G has a hamilton ian cycle hand
show that ¢ is satisfiable. Cycle h must take a part icular fo rm:

First, it traverses edge (bl,I, x D to go from the top left to the top right.

It then follows all of the x:n and x~ vertices from top to bo ttom, choos
ing either edge em or edge em , but not both.

It next traverses edge (bk .4 'X~ ) to get back to the left side.

Finall y, it traverses the B widgets from bottom to top on the left.

(It actually traverses edges within the A widgets as well, but we use these
subgraphs to enforce the either/or nature of the edges it connects.)

Given the ham iltonian cycle h, we define a truth assignment for ¢ as
follows. If edge em belongs to h, then we set X m = I. Otherwise, edge em
belongs to h, and we set Xm = O.

We claim that th is assignm ent satisfies ¢. Consider a clause C, and the
corresponding B widget in G. Each edge (biJbi.1'+ I) is connected by an
A widget to either edge em or edge em, depending on whether Xm or "' Xm
is the j th literal in the clause. The edge (biJ , bi,1'+I ) is traversed by h if
and only if the corresponding literal is O. Since each of the th ree edges
(bi,l , bi,2), (b,,2, hi,)) , (bi ,) , bi,4) in clau se Ci is also in a B widget, all three
cannot be traversed by the hamiltonian cycle h. One of the three edges,
therefore, must have a correspond ing literal whose assigned value is 1, and
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Figure 36.19 An instance of the traveling-salesman problem. Shaded edges rep
resent a minimum-cost tour, with cost 7.

clause C; is satisfied. This property holds for each clause Cit i = 1, 2, ... , k ,
and thus formula ¢ is sati sfied.

Conversely, let us suppose that formula ¢ is satisfied by some truth
assignm ent. By followin g the rules from above, we ca n construct a hamil
toni an cycle for graph G: tr averse edge em if Xm = I , traverse edge em
if X m = 0, and traverse edge (bi.» bi.i+d if and only if the j th literal of
clause Cs is 0 under the ass ignment. T hese rules can indeed be followed,
since we assume that s is a satisfying assignment for formula t/J.

Finally, we note that graph G can be constructed in polynomial time. It
contains one B widget for each of the k clauses in ¢. There is one A widget
for eac h instance of each literal in ¢, and so there a re 3k A widgets. Since
the A and B widgets are of fixed size, the graph G has O(k ) vertices and
edges and is easily constructed in polynomial tim e. Thus, we have pro
vided a polynomial-time redu ct ion from 3-CNF-SAT to HAM-CYCLE. •

36.S.S The traveling-salesman problem

In the tra..tling-saluman probltm, whi ch is closely related to the hamilto
nian -cycle problem , a salesman mu st v isit n cities . Modeling the problem
as a complete graph with n vertices, we can say that the salesma n wishes
to make a tour, or ham ilton ian cycle, visiting each city exactly once and
finishing at the city he sta rts from . There is an integer cost c(i, j) to travel
from city i to city i , and the salesma n wishes to make the tou r whose total
cost is m inimum, where the total cost is the sum of the indi vid ual costs
along the edges of the tou r. For exa mp le, in Figure 36.19, a minimu m-cost
tour is (u,w , v ,x , u), with cost 7. The formal language for th e traveling
salesman problem is

TSP = {( G,c, k ) : G = (V, £ ) is a com plete graph,
c is a fun ct ion from V x V --- Z,
k e Z, and
G has a traveling-salesman tour with cost at most k } .

The following theorem shows that a fast algorithm for the traveling
salesma n problem is unlikely to exist.
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Theorem 36.15
The traveling-salesman problem is NP-complete.

Proof We first show that TSP belongs to NP. Given an instance of the
problem, we use as a certificate the sequence of n vertices in the tour.
The verification algorithm checks that this sequence contains each vertex
exactly once, sums up the edge costs, and checks whether the sum is at
most k. This process can certainly be done in polynomial time.

To prove that TSP is NP-hard, we show that HAM-CYCLE ::5p TSP.
Let G = (V, E) be an instance of HAM-CYCLE. We construct an instance
of TSP as follows. We form the complete graph G' (V,E'), where
E' = {(i,j) : t.i E V}, and we define the cost function c by

(' ') {O if(i,j)EE,
Cl,) = 1 if(i,j)¢E.

The instance ofTSP is then (G', c,0), which is easily formed in polynomial
time.

We now show that graph G has a hamiltonian cycle if and only if
graph G' has a tour of cost at most O. Suppose that graph G has a hamil
tonian cycle h. Each edge in h belongs to E and thus has cost 0 in G'.
Thus, h is a tour in G' with cost O. Conversely, suppose that graph G' has
a tour h' of cost at most O. Since the costs of the edges in E' are 0 and 1,
the cost of tour h' is exactly O. Therefore, h' contains only edges in E. We
conclude that h is a hamiltonian cycle in graph G. •

Exercises

36.5-1
The subgraph-isomorphism problem takes two graphs G] and G2 and asks
whether G] is a subgraph of G2. Show that the subgraph-isomorphism
problem is NP-complete.

36.5-2
Given an integer »r-by-» matrix A and an integer m-vector b, the 0-1
integer-programming problem asks whether there is an integer n-vector x
with elements in the set {O, I} such that Ax ::5 b. Prove that 0-1 integer
programming is NP-complete. (Hint: Reduce from 3-CNF-SAT.)

36.5-3
Show that the subset-sum problem is solvable in polynomial time if the
target value t is expressed in unary.

36.5-4
The set-partition problem takes as input a set S of numbers. The question
is whether the numbers can be partitioned into two sets A and A S A



Problems for Chapter 36 961

Problems

such that LXEA x = LXEA x. Show that the set-partition problem is NP
complete.

36.5-5
Show that the hamiltonian-path problem is NP-complete.

36.5-6
The longest-simple-cycle problem is the problem of determining a simple
cycle (no repeated vertices) of maximum length in a graph. Show that this
problem is NP-complete.

36.5-7
Professor Marconi proclaims that the subgraph used as widget A in the
proof of Theorem 36.14 is more complicated than necessary: vertices Z3

and Z4 of Figure 36.15(a) and the vertices above and below them are not
needed. Is the professor correct? That is, does the reduction work with
this smaller version of the widget, or does the "either/or" property of the
widget disappear?

36-1 Independent set
An independent set of a graph G = (V, E) is a subset V' ~ V of vertices
such that each edge in E is incident on at most one vertex in V'. The
independent-set problem is to find a maximum-size independent set in G.

a. Formulate a related decision problem for the independent-set problem,
and prove that it is NP-complete. (Hint: Reduce from the clique prob
lem.)

b. Suppose that you are given a subroutine to solve the decision problem
you defined in part (a). Give an algorithm to find an independent set
of maximum size. The running time of your algorithm should be poly
nomial in IVI and lEI, where queries to the black box are counted as a
single step.

Although the independent-set decision problem is NP-complete, certain
special cases are polynomial-time solvable.

c. Give an efficient algorithm to solve the independent-set problem when
each vertex in G has degree 2. Analyze the running time, and prove that
your algorithm works correctly.

d. Give an efficient algorithm to solve the independent-set problem when
G is bipartite. Analyze the running time, and prove that your algorithm
works correctly. (Hint: Use the results of Section 27.3.)
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TRUE

, I------~

Figure 36.20 The widget correspondi ng to a clause (x v y v z), used in Prob
lem 36-2.

36-2 Graph coloring
A k-co loring of an undirected graph G = (V, E) is a function c : V ____
{l , 2. . .. , k} such that c(u) =1= c(v ) for every edge (u, v) E E . In other
word s, the numbers 1, 2, .. . , k represe nt the k colors, and adjacent vert ices
must have diffe rent colors. The graph-colo ring problem is to determ ine the
minimum number of colors needed to color a given graph .

a. Give an effic ient algorithm to determ ine a 2-eolorin g of a graph if one
exists.

b. Cast the graph-coloring problem as a decision problem. Show that yOUT

decision problem is solvable in polynomial tim e if and only if the graph.
coloring problem is solvable in polynomial time.

c. Let the language 3-COLOR be the set of graphs that can be 3-colored.
Show that if 3-COLOR is NP-complete, then your decision problem
from part (b) is NP-complete.

To prove that 3-COLOR is NP-complete, we use a reduction from 3-CNF
SAT. G iven a formula ¢J of m clauses on n variables X l , X2, .. . , X" , we
construct a graph G = (V, E ) as follows. Th e set V consists of a vertex
for each variable, a vertex for the negation of each variable, 5 verti ces
for each clause, and 3 special vert ices: TR UE, FALSE, and RED . Th e edges
of the graph are of two types: "literal" edges that are independ ent of the
clauses and "clause" edges that depend on the clauses. The literal edges
form a triangle on the special vert ices and also form a triangle on X i , ""X i,

and RED for i = 1,2, . . . ,n.

d. Argue that in any 3-coloring C of a graph contain ing the literal edges,
exactly one of a variable and its negation is colored C(T RUE) and the
other is colored C( FALSE). Argue that for any truth assignment for ¢J,
there is a 3-coloring of the graph containing j ust the literal edges.

Th e widget shown in Figure 36.20 is used to enforce the cond ition corre
sponding to a clause (x v v v z). Each clause requ ires a unique copy of the
5 vertices that are heavily shaded in the figure; they connect as shown to
the literals of the clause and the special vertex T RUE .
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Chapter notes

e. Argue that if each of x, y, and z is colored C(TRUE) or C(FALSE), then the
widget is 3-colorable if and only if at least one of x, y, or z is colored
C(TRUE).

J. Complete the proof that 3-COLOR is NP-complete.

Garey and Johnson [79] provide a wonderful guide to NP-completeness,
discussing the theory at length and providing a catalogue of many prob
lems that were known to be NP-complete in 1979. (The list of NP
complete problem domains at the beginning of Section 36.5 is drawn from
their table of contents.) Hopcroft and Ullman [104] and Lewis and Pa
padimitriou [139] have good treatments of NP-completeness in the context
of complexity theory. Aho, Hopcroft, and Ullman [4] also cover NP
completeness and give several reductions, including a reduction for the
vertex-cover problem from the hamiltonian-cycle problem.

The class P was introduced in 1964 by Cobham [44] and, independently,
in 1965 by Edmonds [61], who also introduced the class NP and conjec
tured that P =I- NP. The notion of NP-completeness was proposed in 1971
by Cook [49], who gave the first NP-completeness proofs for formula satis
fiabilityand 3-CNF satisfiability. Levin [138] independently discovered the
notion, giving an NP-completeness proof for a tiling problem. Karp [116]
introduced the methodology of reductions in 1972 and demonstrated the
rich variety of NP-complete problems. Karp's paper included the original
NP-completeness proofs of the clique, vertex-cover, and hamiltonian-cycle
problems. Since then, hundreds of problems have been proven to be NP
complete by many researchers.

The proof of Theorem 36.14 was adapted from Papadimitriou and Stei
glitz [154].
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Many problems of practical significance are NP-complete but are too im
portant to abandon merely because obtaining an optimal solution is in
tractable. If a problem is NP-complete, we are unlikely to find a polyno
mial-time algorithm for solving it exactly, but this does not imply that all
hope is lost. There are two approaches to getting around NP-completeness.
First, if the actual inputs are small, an algorithm with exponential running
time may be perfectly satisfactory. Second, it may still be possible to
find near-optimal solutions in polynomial time (either in the worst case
or on the average). In practice, near-optimality is often good enough. An
algorithm that returns near-optimal solutions is called an approximation al
gorithm. This chapter presents polynomial-time approximation algorithms
for several NP-complete problems.

Performance bounds for approximation algorithms

Assume that we are working on an optimization problem in which each
potential solution has a positive cost, and that we wish to find a near
optimal solution. Depending on the problem, an optimal solution may be
defined as one with maximum possible cost or one with minimum possible
cost; the problem may be a maximization or a minimization problem.

We say that an approximation algorithm for the problem has a ratio
bound of p( n) if for any input of size n, the cost C of the solution produced
by the approximation algorithm is within a factor of p(n) of the cost C*
of an optimal solution:

(
C C*)max C*' C ':5 p(n) . (37.1)

This definition applies for both minimization and maximization prob
lems. For a maximization problem, a < C ':5 C*, and the ratio C*/ C
gives the factor by which the cost of an optimal solution is larger than the
cost of the approximate solution. Similarly, for a minimization problem,
a< C* ':5 C, and the ratio C/ C* gives the factor by which the cost of the
approximate solution is larger than the cost of an optimal solution. Since
all solutions are assumed to have positive cost, these ratios are always
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well defined. The ratio bound of an approximation algorithm is never less
than I, since C j C* < I implies C* j C > I. An optimal algorithm has ratio
bound I, and an approximation algorithm with a large ratio bound may
return a solution that is very much worse than optimal.

Sometimes, it is more convenient to work with a measure of relative
error. For any input, the relative error of the approximation algorithm is
defined to be

IC-C*I
C*

where, as before, C* is the cost of an optimal solution and C is the cost of
the solution produced by the approximation algorithm. The relative error
is always nonnegative. An approximation algorithm has a relative error
bound of t(n) if

Ic C*I
C* ~ t(n) . (37.2)

It follows from the definitions that the relative error bound can be bounded
as a function of the ratio bound:

t(n) ~ p(n) - I . (37.3)

(For a minimization problem, this is an equality, whereas for a maximiza
tion problem, we have €(n) = (p(n) - l)jp(n), which satisfies inequal
ity (37.3) since p(n) 2': I.)

For many problems, approximation algorithms have been developed that
have a fixed ratio bound, independent of n. For such problems, we simply
use the notation p or t, indicating no dependence on n.

For other problems, computer scientists have been unable to devise any
polynomial-time approximation algorithm having a fixed ratio bound. For
such problems, the best that can be done is to let the ratio bound grow
as a function of the input size n. An example of such a problem is the
set-cover problem presented in Section 37.3.

Some NP-complete problems allow approximation algorithms that can
achieve increasingly smaller ratio bounds (or, equivalently, increasingly
smaller relative error bounds) by using more and more computation time.
That is, there is a trade-off between computation time and the quality
of the approximation. An example is the subset-sum problem studied in
Section 37.4. This situation is important enough to deserve a name of its
own.

An approximation scheme for an optimization problem is an approxima
tion algorithm that takes as input not only an instance of the problem, but
also a value € > 0 such that for any fixed e, the scheme is an approxima
tion algorithm with relative error bound €. We say that an approximation
scheme is a polynomial-time approximation scheme if for any fixed € > 0,
the scheme runs in time polynomial in the size n of its input instance.

The running time of a polynomial-time approximation scheme should
not increase too rapidly as e decreases. Ideally, if € decreases by a constant
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factor, the running time to achieve the desired approximation should not
increase by more than a constant factor. In other words, we would like
the running time to be polynomial in IIe as well as in n.

We say that an approximation scheme is a fully polynomial-time approx
imation scheme if its running time is polynomial both in IIe and in the
size n of the input instance, where € is the relative error bound for the
scheme. For example, the scheme might have a running time of (11 €)2 n3•

With such a scheme, any constant-factor decrease in e can be achieved
with a corresponding constant-factor increase in the running time.

Chapter outline

The first three sections of this chapter present some examples of polyno
mial-time approximation algorithms for NP-complete problems, and the
last section presents a fully polynomial-time approximation scheme. Sec
tion 37.1 begins with a study of the vertex-cover problem, an NP-complete
minimization problem that has an approximation algorithm with a ratio
bound of 2. Section 37.2 presents an approximation algorithm with ratio
bound 2 for the case of the traveling-salesman problem in which the cost
function satisfies the triangle inequality. It also shows that without triangle
inequality, an e-approximation algorithm cannot exist unless P = NP. In
Section 37.3, we show how a greedy method can be used as an effective
approximation algorithm for the set-covering problem, obtaining a cov
ering whose cost is at worst a logarithmic factor larger than the optimal
cost. Finally, Section 37.4 presents a fully polynomial-time approximation
scheme for the subset-sum problem.

37.1 The vertex-cover problem

The vertex-cover problem was defined and proved NP-complete in Sec
tion 36.5.2. A vertex cover of an undirected graph G = (V, E) is a subset
V' ~ V such that if (u, v) is an edge of G, then either U E V' or v E V'
(or both). The size of a vertex cover is the number of vertices in it.

The vertex-cover problem is to find a vertex cover of minimum size in
a given undirected graph. We call such a vertex cover an optimal vertex
corer. This problem is NP-hard, since the related decision problem is NP
complete, by Theorem 36.12.

Even though it may be difficult to find an optimal vertex cover in a
graph G, however, it is not too hard to find a vertex cover that is near
optimal. The following approximation algorithm takes as input an undi
rected graph G and returns a vertex cover whose size is guaranteed to be
no more than twice the size of an optimal vertex cover.
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Figure 37.1 The operation of ApPROX·VERTEX-COVER. (a) The input graph G,
which has 7 vertices and 8 edges. (b) The edge (b, c), shown heavy, is the first edge
chosen by ApPROX-VERTEX-COVER. Verti ces b and c, shown lightly shaded, are
added to the set A containing the vertex cover being created. Edges (a, b), (c, e),
and (c,d), shown dashed, are removed since they are now covered by some vertex
in A. (c) Edge (e, j) is added to A. (d) Edge (d, g) is added to A. (e) The set A,
which is the vertex cover produced by ApPROX-VERTEX-COVER, contains the six
vert ices b,c,d,e,I ,g . (f) The optimal vertex cover for this problem contains only
three vertices: b, d , and e.

ApPROX· V ERTEX-C OVER (G)

I C - 0
2 E' _ E [G)
3 while E' =F 0
4 do let (u,v) be an arbitrary edge of E'
5 C +-C u{ u,v}
6 remove from E' every edge incident on either u or v
7 return C

Figure 37 . 1 illustrates the operation of ApPROX-VERTEX-C OVER. The
variable C contains the vertex cover being constructed. Line 1 initializes
C to the empty set. Line 2 sets E1 to be a copy of the edge set E[G] of the
graph . The loop on lines 3-6 repeatedly picks an edge (u,v ) from E\ adds
its endpoints u and v to C , and deletes all edges in E' that are covered
by either u or v . The running time of this algor ithm is O(E), using an
appropriate data structure for representing £ 1.
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Theorem 37.1
ApPROX-VERTEX-COVER has a ratio bound of 2.

Proof The set C of vertices that is returned by ApPROX-VERTEX-COVER

is a vertex cover, since the algorithm loops until every edge in E[G] has
been covered by some vertex in C.

To see that ApPROX-VERTEX-COVER returns a vertex cover that is at
most twice the size of an optimal cover, let A denote the set of edges that
were picked in line 4 of ApPROX-VERTEX-COVER. No two edges in A share
an endpoint, since once an edge is picked in line 4, all other edges that are
incident on its endpoints are deleted from E' in line 6. Therefore, each
execution of line 5 adds two new vertices to C, and ICI = 21AI. In order to
cover the edges in A, however, any vertex cover-in particular, an optimal
cover C*-must include at least one endpoint of each edge in A. Since
no two edges in A share an endpoint, no vertex in the cover is incident on
more than one edge in A. Therefore, IAI ~ IC*I, and ICI ~ 2IC*I, proving
the theorem. _

Exercises

37.1-1
Given an example of a graph for which ApPROX-VERTEX-COVER always
yields a suboptimal solution.

37.1-2
Professor Nixon proposes the following heuristic to solve the vertex-cover
problem. Repeatedly select a vertex of highest degree, and remove all of
its incident edges. Give an example to show that the professor's heuristic
does not have a ratio bound of 2.

37.1-3
Give an efficient greedy algorithm that finds an optimal vertex cover for a
tree in linear time.

37.1-4
From the proof of Theorem 36.12, we know that the vertex-cover problem
and the NP-complete clique problem are complementary in the sense that
an optimal vertex cover is the complement of a maximum-size clique in
the complement graph. Does this relationship imply that there is an ap
proximation algorithm with constant ratio bound for the clique problem?
Justify your answer.
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In the traveling-salesman problem introduced in Section 36.5.5, we are
given a complete undirected graph G = (V, E) that has a nonnegative
integer cost c(u, v) associated with each edge (u, v) E E, and we must find
a hamiltonian cycle (a tour) of G with minimum cost. As an extension
of our notation, let c(A) denote the total cost of the edges in the subset
A ~E:

c(A) = L c(u, v) .
(U,V)EA

In many practical situations, it is always cheapest to go directly from a
place u to a place w; going by way of any intermediate stop v can't be
less expensive. Putting it another way, cutting out an intermediate stop
never increases the cost. We formalize this notion by saying that the cost
function c satisfies the triangle inequality if for all vertices u, v, w E V,

c(u, w) ~ c(u, v) + c(v, w) .

The triangle inequality is a natural one, and in many applications it is
automatically satisfied. For example, if the vertices of the graph are points
in the plane and the cost of traveling between two vertices is the ordinary
euclidean distance between them, then the triangle inequality is satisfied.

As Exercise 37.2-1 shows, restricting the cost function to satisfy the
triangle inequality does not alter the NP-completeness of the traveling
salesman problem. Thus, it is unlikely that we can find a polynomial-time
algorithm for solving this problem exactly. We therefore look instead for
good approximation algorithms.

In Section 37.2.1, we examine an approximation algorithm for the trav
eling-salesman problem with triangle inequality that has a ratio bound of 2.
In Section 37.2.2, we show that without triangle inequality, an approxima
tion algorithm with constant ratio bound does not exist unless P = NP.

37.2.1 The traveling-salesman problem with triangle inequality

The following algorithm computes a near-optimal tour of an undirected
graph G, using the minimum-spanning-tree algorithm MST-PRIM from
Section 24.2. We shall see that when the cost function satisfies the triangle
inequality, the tour that this algorithm returns is no worse than twice as
long as an optimal tour.
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ApPROX-TSP-ToUR(G, c)

I select a vertex r E V[G] to be a "root" vertex
2 grow a minimum spanning tree T for G from root r

using MST-PRIM(G, c, r)
3 let L be the list of vertices visited in a preorder tree walk of T
4 return the hamiltonian cycle H that visits the vertices in the order L

Recall from Section 13.1 that a preorder tree walk recursively visits every
vertex in the tree, listing a vertex when it is first encountered, before any
of its children are visited.

Figure 37.2 illustrates the operation of ApPROX-TSP-ToUR. Part (a) of
the figure shows the given set of vertices, and part (b) shows the minimum
spanning tree T grown from root vertex a by MST-PRIM. Part (c) shows
how the vertices are visited by a preorder walk of T, and part (d) displays
the corresponding tour, which is the tour returned by ApPROX-TSP-ToUR.
Part (e) displays an optimal tour, which is about 23% shorter.

The running time of ApPROX-TSP-ToUR is 8(E) = 8(V2), since the
input is a complete graph (see Exercise 24.2-2). We shall now show that if
the cost function for an instance of the traveling-salesman problem satisfies
the triangle inequality, then ApPROX-TSP-ToUR returns a tour whose cost
is not more than twice the cost of an optimal tour.

Theorem 37.2
ApPROX-TSP-TOUR is an approximation algorithm with a ratio bound of 2
for the traveling-salesman problem with triangle inequality.

Proof Let H* denote an optimal tour for the given set of vertices. An
equivalent statement of the theorem is that c(H) ::; 2c(H*), where H is
the tour returned by ApPROX-TSP-TOUR. Since we obtain a spanning tree
by deleting any edge from a tour, if T is a minimum spanning tree for the
given set of vertices, then

c(T) ::; c(H*) . (37.4)

A full walk of T lists the vertices when they are first visited and also
whenever they are returned to after a visit to a subtree. Let us call this
walk W. The full walk of our example gives the order

a.b.c.b.Ji.b.a.d.e.fve.g,e.d.a .

Since the full walk traverses every edge of T exactly twice, we have

C(W) 2c(T).

Equations (37.4) and (37.5) imply that

c(W) ::; 2c(H*) ,

(37.5)

(37.6)

and so the cost of W is within a factor of 2 of the cost of an optimal tour.
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Figure 37.2 The operation of ApPROX·TSP·To UR. (a) The given set of points,
which lie on vertices of an integer grid. For example, I is one unit to the right
and two units up from h. The ordinary euclidean distance is used as the cost
function between two points. (b) A min imum spann ing tree T of these points,
as computed by MST·PRIM. Vertex a is the root vertex. The vertices happen to
be labeled in such a way that they are added to the main tree by MST·PRIM in
alphabetical order. (c) A walk of T , starti ng at a. A full walk of the tree visits the
vert ices in the order a,b,c,b,h,b,a,d,e, I ,e,g , e,d,a. A preo rder walk of T lists
a vertex j ust when it is first encountered, yielding the ordering a,b,C, h,d,e,f ,g.
(d) A tour of the vert ices obtai ned by visiting the vert ices in the order given by the
preorder walk. This is the tour H return ed by ApPROX·TS P·ToUR. Its total cost
is approximately 19.074. (e) An opt imal tour fI' for the given set of vertices. Its
total cost is approximately 14.715.
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Unfortunately, W is generally not a tour, since it visits some vertices
more than once. By the triangle inequality, however, we can delete a visit
to any vertex from Wand the cost does not increase. (If a vertex v is
deleted from W between visits to u and w, the resulting ordering specifies
going directly from u to w.) By repeatedly applying this operation, we can
remove from W all but the first visit to each vertex. In our example, this
leaves the ordering

a,b,c,h,d,e,f,g·

This ordering is the same as that obtained by a preorder walk of the tree T.
Let H be the cycle corresponding to this preorder walk. It is a hamiltonian
cycle, since every vertex is visited exactly once, and in fact it is the cycle
computed by ApPRox-TSP-TouR. Since H is obtained by deleting vertices
from the full walk W, we have

c(H) ~ c(W) .

Combining inequalities (37.6) and (37.7) completes the proof.

(37.7)

•
In spite of the nice ratio bound provided by Theorem 37.2, ApPROX

TSP-TouR is usually not the best practical choice for this problem. There
are other approximation algorithms that typically perform much better in
practice (see the references at the end of this chapter).

37.2.2 The general traveling-salesman problem

If we drop the assumption that the cost function c satisfies the triangle
inequality, good approximate tours cannot be found in polynomial time
unless P = NP.

Theorem 37.3
If P =1= NP and p 2:: I, there is no polynomial-time approximation algorithm
with ratio bound p for the general traveling-salesman problem.

Proof The proof is by contradiction. Suppose to the contrary that for
some number p 2:: I, there is a polynomial-time approximation algorithm A
with ratio bound p, Without loss of generality, we assume that p is an in
teger, by rounding it up if necessary. We shall then show how to use
A to solve instances of the hamiltonian-cycle problem (defined in Sec
tion 36.5.5) in polynomial time. Since the hamiltonian-cycle problem is
NP-complete, by Theorem 36.14, solving it in polynomial time implies
that P = NP, by Theorem 36.4.

Let G = (V, E) be an instance of the hamiltonian-cycle problem. We
wish to determine efficiently whether G contains a hamiltonian cycle by
making use of the hypothesized approximation algorithm A. We turn G
into an instance of the traveling-salesman problem as follows. Let G' =
(V, E') be the complete graph on V; that is,
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E' = {(u, v) : u, v E V and u i- v} .

Assign an integer cost to each edge in E' as follows:

{
I if(u,V)EE,

c(u, v) = P WI + 1 otherwise.

973

Representations of G' and c can be created from a representation of G in
time polynomial in WI and lEI.

Now, consider the traveling-salesman problem (G', c). If the original
graph G has a hamiltonian cycle H, then the cost function c assigns to
each edge of H a cost of 1, and so (G',c) contains a tour of cost WI. On
the other hand, if G does not contain a hamiltonian cycle, then any tour
of G' must use some edge not in E. But any tour that uses an edge not
in E has a cost of at least

(p WI + 1) + (WI- 1) > p WI .

Because edges not in G are so costly, there is a large gap between the cost
of a tour that is a hamiltonian cycle in G (cost IV I) and the cost of any
other tour (cost greater than p IV I).

What happens if we apply the approximation algorithm A to the trav
eling-salesman problem (G', c)? Because A is guaranteed to setum a tour
of cost no more than p times the cost of an optimal tour, if G contains a
hamiltonian cycle, then A must return it. If G has no hamiltonian cycle,
then A returns a tour of cost more than p IVI. Therefore, we can use A to
solve the hamiltonian-cycle problem in polynomial time. _

Exercises

37.2-1
Show how in polynomial time we can transform one instance of the trav
eling-salesman problem into another instance whose cost function satisfies
the triangle inequality. The two instances must have the same set of op
timal tours. Explain why such a polynomial-time transformation does not
contradict Theorem 37.3, assuming that Pi- NP.

37.2-2
Consider the following closest-point heuristic for building an approximate
traveling-salesman tour. Begin with a trivial cycle consisting of a single
arbitrarily chosen vertex. At each step, identify the vertex u that is not
on the cycle but whose distance to any vertex on the cycle is minimum.
Suppose that the vertex on the cycle that is nearest u is vertex v. Extend
the cycle to include u by inserting u just after v. Repeat until all vertices
are on the cycle. Prove that this heuristic returns a tour whose total cost
is not more than twice the cost of an optimal tour.
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37.2-3
The bottleneck traveling-salesman problem is the problem of finding the
hamiltonian cycle such that the length of the longest edge in the cycle is
minimized. Assuming that the cost function satisfies the triangle inequal
ity, show that there exists a polynomial-time approximation algorithm with
ratio bound 3 for this problem. (Hint: Show recursively that we can visit
all the nodes in a minimum spanning tree exactly once by taking a full
walk of the tree and skipping nodes, but without skipping more than 2
consecutive intermediate nodes.)

37.2-4
Suppose that the vertices for an instance of the traveling-salesman problem
are points in the plane and that the cost c(u, v) is the euclidean distance
between points u and v. Show that an optimal tour never crosses itself.

(37.8)

37.3 The set-covering problem

The set-covering problem is an optimization problem that models many
resource-selection problems. It generalizes the NP-complete vertex-cover
problem and is therefore also NP-hard. The approximation algorithm
developed to handle the vertex-cover problem doesn't apply here, however,
and so we need to try other approaches. We shall examine a simple greedy
heuristic with a logarithmic ratio bound. That is, as the 'size of the instance
gets larger, the size of the approximate solution may grow, relative to the
size of an optimal solution. Because the logarithm function grows rather
slowly, however, this approximation algorithm may nonetheless give useful
results.

An instance (X, F) of the set-covering problem consists of a finite set X
and a family F of subsets of X, such that every element of X belongs to
at least one subset in F:

X US.
SE:F

We say that a subset S E F covers its elements. The problem is to find a
minimum-size subset C ~ F whose members cover all of X:

X= US.
SEC

We say that any C satisfying equation (37.8) covers X. Figure 37.3 illus
trates the problem.

The set-covering problem is an abstraction of many commonly arising
combinatorial problems. As a simple example, suppose that X represents
a set of skills that are needed to solve a problem and that we have a
given set of people available to work on the problem. We wish to form
a committee, containing as few people as possible, such that for every
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• •
Figure 37.3 An instance (X, F) of the set-covering problem, where X consists of
the 12 black points and .1' = {SI,S2,S3,S4,S5,S6}. A minimum-size set cover is
C {S3,S4,S5}. The greedy algorithm produces a cover of size 4 by selecting the
sets SI, S4, S5, and 8 3 in order.

requisite skill in X, there is a member of the committee having that skill.
In the decision version of the set-covering problem, we ask whether or not
a covering exists with size at most k, where k is an additional parameter
specified in the problem instance. The decision version of the problem is
NP-complete, as Exercise 37.3-2 asks you to show.

A greedy approximation algorithm

The greedy method works by picking, at each stage, the set 8 that covers
the most remaining uncovered elements.

GREEDy-SET-COVER(X, F)

1 U..- X
2 C..- 0
3 while V :f 0
4 do select an 8 E F that maximizes 18n VI
5 U..-V 8
6 C..-Cu{8}
7 return C

In the example of Figure 37.3, GREEDy-SET-COVER adds to C the sets
8 1,84,85,83 in order.

The algorithm works as follows. The set V contains, at each stage,
the set of remaining uncovered elements. The set C contains the cover
being constructed. Line 4 is the greedy decision-making step. A subset 8
is chosen that covers as many uncovered elements as possible (with ties
broken arbitrarily). After 8 is selected, its elements are removed from V,
and 8 is placed in C. When the algorithm terminates, the set C contains a
subfamily of F that covers X.
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The algorithm GREEDy-SET-COVER can easily be implemented to run
in time polynomial in IXI and IFI. Since the number of iterations of
the loop on lines 3-6 is at most min(IXI, IFI), and the loop body can be
implemented to run in time O(IXIIFI), there is an implementation that
runs in time O(IXIIFI min(IXI, IF!)). Exercise 37.3-3 asks for a linear
time algorithm.

Analysis

We now show that the greedy algorithm returns a set cover that is not too
much larger than an optimal set cover. For convenience, in this chapter we
denote the dth harmonic number Hd = "L-1=1 l/i (see Section 3.1) by H(d).

Theorem 37.4
GREEDY-SET-COVER has a ratio bound

H(max tlSI : S E F}) .

Proof The proof proceeds by assigning a cost to each set selected by
the algorithm, distributing this cost over the elements covered for the first
time, and then using these costs to derive the desired relationship between
the size of an optimal set cover C* and the size of the set cover C returned
by the algorithm. Let S, denote the ith subset selected by GREEDy-SET
COVER; the algorithm incurs a cost of 1 when it adds S, to C. We spread
this cost of selecting S, evenly among the elements covered for the first
time by Si. Let c, denote the cost allocated to element x, for each XE X.
Each element is assigned a cost only once, when it is covered for the first
time. If x is covered for the first time by Si, then

1
Cx = .

lSi (SI U S2 u- .. u Si-dl

The algorithm finds a solution C of total cost ICI, and this cost has been
spread out over the elements of X. Therefore, since the optimal cover C*
also covers X, we have

ICI = LCx
xEX

< LLcx . (37.9)
SEC' xES

The remainder of the proof rests on the following key inequality, which
we shall prove shortly. For any set S belonging to the family F,

L Cx ~ H(ISI) . (37.10)
xES

From inequalities (37.9) and (37.10), it follows that

ICI < "L-sEc' H(ISI)

~ IC*I' H(max{ISI: S E F}) ,
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proving the theorem. It thus remains only to prove inequality (37.10). For
any set S E F and i = 1,2, ... , IC!, let

Ui = IS - (SI U S2 U ... u Si)1

be the number of elements in S remaining uncovered after SI, S2,... , S,
have been selected by the algorithm. We define Uo = lSI to be the number
of elements of S, which are all initially uncovered. Let k be the least index
such that uk = 0, so that every element in S is covered by at least one of
the sets SI,S2, ... .Si, Then, Ui-I ;::: u., and Ui-I - u, elements of S are
covered for the first time by Si, for i = 1,2, ... , k. Thus,

k

.L:C~ = 2)Ui-I - Ui) • -:-::::---:-::::--=-----:::::---:-7

XES i=1

Observe that

= Uj_l,

because the greedy choice of S, guarantees that S cannot cover more new
elements than S, does (otherwise, S would have been chosen instead ofS,).
Consequently, we obtain

k

Lex $ L(Ui-1
XES i=1

For integers a and b, where a < b, we have

b

H(b) - H(a) = L Iii
i=a+1

> (b

Using this inequality, we obtain the telescoping sum

k

Lex < L (H(Ui-d - H(Ui))
xES i=1

= H(uo) H(ud

= H(uo) - H(O)

= H(uo)

= H(ISI) ,

since H(O) = O. This completes the proof of inequality (37.10). •

Corollary 37.5
GREEDY-SET-COVER has a ratio bound of (In IXI + 1).
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Proof Use inequality (3.12) and Theorem 37.4. •
In some applications, max {lSI: SE F} is a small constant, and so the

solution returned by GREEDY-SET-COVER is at most a small constant times
larger than optimal. One such application occurs when this heuristic is
used to obtain an approximate vertex cover for a graph whose vertices have
degree at most 3. In this case, the solution found by GREEDy-SET-COVER
is not more than H(3) = 11/6 times as large as an optimal solution, a
performance guarantee that is slightly better than that of ApPROX-VERTEX
COVER.

Exercises

37.3-1
Consider each of the following words as a set of letters: {arid, dash,
drain, heard, lost, nose, shun, slate, snare, thread}. Show which set
cover GREEDY-SET-COVER produces when ties are broken in favor of the
word that appears first in the dictionary.

37.3-2
Show that the decision version of the set-covering problem is NP-complete
by reduction from the vertex-cover problem.

37.3-3
Show how to implement GREEDY-SET-COVER in such a way that it runs in
time OCESEF lSI)·

37.3-4-
Show that the following weaker form of Theorem 37.4 is trivially true:

ICI ::; IC"I max {lSI: SE F}

37.3-5
Create a family of set-cover instances demonstrating that GREEDy-SET
COVER can return a number of different solutions that is exponential in
the size of the instance. (Different solutions result from ties being broken
differently in the choice of S in line 4.)

37.4 The subset-sum problem

An instance of the subset-sum problem is a pair (S, r), where S is a set
{Xl, Xl, • • . ,xn } of positive integers and t is a positive integer. This decision
problem asks whether there exists a subset of S that adds up exactly to the
target value t. This problem is NP-complete (see Section 36.5.3).
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The optimization problem associated with this decision problem arises
in practical applications. In the optimization problem, we wish to find a
subset of {XI, Xz, ... ,xn } whose sum is as large as possible but not larger
than t. For example, we may have a truck that can carry no more than t
pounds, and n different boxes to ship, the ith of which weighs Xi pounds.
We wish to fill the truck as full as possible without exceeding the given
weight limit.

In this section, we present an exponential-time algorithm for this op
timization problem and then show how to modify the algorithm so that
it becomes a fully polynomial-time approximation scheme. (Recall that
a fully polynomial-time approximation scheme has a running time that is
polynomial in lit as well as in n.)

An exponential-time algorithm

If L is a list of positive integers and X is another positive integer, then we let
L +X denote the list of integers derived from L by increasing each element
of L by x. For example, if L = (1,2,3,5,9), then L + 2 = (3,4,5,7,11).
We also use this notation for sets, so that

8 + X = {s + x: s E 8} .

We use an auxiliary procedure MERGE-LISTS(L, L') that returns the sorted
list that is the merge of its two sorted input lists Land L'. Like the
MERGE procedure we used in merge sort (Section 1.3.1), MERGE-LISTS
runs in time O(ILI + IL'I). (We omit giving pseudocode for MERGE-LISTS.)
The procedure EXACT-SUBSET-SUM takes an input set 8 = {XI, XZ, ... , x n }

and a target value t.

EXACT-SUBSET-SUM(8, t)

1 n +-- 181
2 La +-- (0)
3 for i +-- 1 to n
4 do L, +-- MERGE-LISTS(Li _ l , Li: I + Xi)
5 remove from L, every element that is greater than t

6 return the largest element in L;

Let Pi denote the set of all values that can be obtained by selecting a
(possibly empty) subset of {xJ,xZ,,,,,Xi} and summing its members. For
example, if 8 = {I, 4, 5}, then

PI {a, I} ,

P: = {0,1,4,5}

P3 = {0,1,4,5,6,9,1O}

Given the identity

Pi = Pi-I U (Pi-I + Xi) , (37.11)
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we can prove by induction on i (see Exercise 3704-1) that the list L, is a
sorted list containing every element of Pi whose value is not more than t.
Since the length of L, can be as much as 2i , EXACT-SUBSET-SUM is an
exponential-time algorithm in general, although it is a polynomial-time
algorithm in the special cases in which t is polynomial in lSI or all of the
numbers in Sare bounded by a polynomial in lSI.

A fully polynomial-time approximation scheme

We can derive a fully polynomial-time approximation scheme for the
subset-sum problem by "trimming" each list L, after it is created. We
use a trimming parameter 0 such that 0 < 0 < 1. To trim a list L by 0
means to remove as many elements from L as possible, in such a way
that if L' is the result of trimming L, then for every element Y that was
removed from L, there is an element z s y still in L' such that

y-z
--<0y -

or, equivalently,

(1 - o)y s z S y .

We can think of such a z as "representing" y in the new list L'. Each y is
represented by a z such that the relative error of z, with respect to y, is at
most o. For example, if 0 = 0.1 and

L = (10,11,12,15,20,21,22,23,24,29),

then we can trim L to obtain

L' = (10,12,15,20,23,29) ,

where the deleted value 11 is represented by 10, the deleted values 21
and 22 are represented by 20, and the deleted value 24 is represented
by 23. It is important to remember that every element of the trimmed
version of the list is also an element of the original version of the list.
Trimming a list can dramatically decrease the number of elements in the
list while keeping a close (and slightly smaller) representative value in the
list for each element deleted from the list.

The following procedure trims an input list L = (y.,Y2, ... ,Ym) in time
8(m), assuming that L is sorted into nondecreasing order. The output of
the procedure is a trimmed, sorted list.
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TRIM(L,<5)

1 m -ILl
2 L' - (Yd
3 last - Yl
4 for i - 2 to m
5 do if last < (1 - <5)Yi
6 then append Yi onto the end of L'
7 last - Yi
8 return L'

981

The elements of L are scanned in increasing order, and a number is put
into the returned list L' only if it is the first element of L or if it cannot
be represented by the most recent number placed into L'.

Given the procedure TRIM, we can construct our approximation scheme
as follows. This procedure takes as input a set S = {XI, X2, ... , xn } of
n integers (in arbitrary order), a target integer t, and an "approximation
parameter" €, where 0 < (: < 1.

ApPROX-SUBSET-SUM(S, t, €)

1 n -lSI
2 Lo - (0)
3 for i-I to n
4 do L, - MERGE-LISTS(Li _ l , L i - 1 + Xi)

5 L, - TRIM(Li,(/n)
6 remove from L, every element that is greater than t
7 let z be the largest value in L;
8 return z

Line 2 initializes the list Lo to be the list containing just the element O.
The loop in lines 3-6 has the effect of computing L, as a sorted list con
taining a suitably trimmed version of the set Pi, with all elements larger
than t removed. Since L, is created from L i - I , we must ensure that the
repeated trimming doesn't introduce too much inaccuracy. In a moment,
we shall see that ApPROX-SUBSET-SUM returns a correct approximation if
one exists.

As an example, suppose we have the instance

L = (104,102,201,101)

with t = 308 and e = 0.20. The trimming parameter <5 is (/4 = 0.05.
ApPROX-SUBSET-SUM computes the following values on the indicated lines:
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line 2 : Lo (0) ,

line 4 ; L1 = (0,104) ,

line 5 : L[ (0,104) ,

line 6 : L[ (0,104) ,

line 4 : L2 = (0,102,104,206) ,

line 5 : L2 = (0, 102, 206) ,

line 6 ; L2 = (0, 102,206) ,

line 4: L3 = (0,102,201,206,303,407) ,

line 5 : L3 (0,102,201,303,407) ,

line 6 ; L3 = (0,102,201,303) ,

line 4 : L4 = (0,101,102,201,203,302,303,404) ,

line 5 : L4 = (0,101,201,302,404) ,

line 6 : L4 = (0,101,201,302) .

The algorithm returns z = 302 as its answer, which is well within e = 20%
of the optimal answer 307 = 104 + 102 + 101; in fact, it is within 2%.

Theorem 37.6
ApPROX-SUBSET-SUM is a fully polynomial-time approximation scheme for
the subset-sum problem.

Proof The operations of trimming L, in line 5 and removing from L;
every element that is greater than t maintain the property that every el
ement of L; is also a member of Pi. Therefore, the value z returned in
line 8 is indeed the sum of some subset of S. It remains to show that it is
not smaller than 1 - f times an optimal solution. (Note that because the
subset-sum problem is a maximization problem, equation (37.2) is equiv
alent to C*(1 - f) ~ C.) We must also show that the algorithm runs in
polynomial time.

To show that the relative error of the returned answer is small, note
that when list L; is trimmed, we introduce a relative error of at most
fin between the representative values remaining and the values before
trimming. By induction on i, it can be shown that for every element y
in Pi that is at most t, there is a z E L; such that

(37.12)

If y* E P; denotes an optimal solution to the subset-sum problem, then
there is a z E L; such that

(l-f/nty* ~ z ~y*; (37.13)

the largest such z is the value returned by ApPROX-SUBSET-SUM. Since it
can be shown that
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!!.- (1 _~) n > 0
dn n '

the function (1 - t / n)n increases with n, so that n > 1 implies

l-t«I-f/nt,

and thus,

(l-f)Y·;:; z ,

-In(1 - tIn)
n In t

<

logl/(l-£/n) t =

Therefore, the value z returned by ApPROX-SUBSET-SUM is not smaller
than 1 - e times the optimal solution y ",

To show that this is a fully polynomial-time approximation scheme, we
derive a bound on the length of Li. After trimming, successive elements z
and z' of L, must have the relationship z / z' > 1/ (l - f / n). That is, they
must differ by a factor of at least 1/(1 - eln). Therefore, the number of
elements in each L, is at most

In t

using equation (2.10). This bound is polynomial in the number n of input
values given, in the number of bits lg t needed to represent t, and in 1/e.
Since the running time of ApPROX-SUBSET-SUM is polynomial in the length
of the Li, ApPROX-SUBSET-SUM is a fully polynomial-time approximation
scheme. _

Exercises

37.4-1
Prove equation (37.11).

37.4-2
Prove equations (37.12) and (37.13).

37.4-3
How would you modify the approximation scheme presented in this sec
tion to find a good approximation to the smallest value not less than t that
is a sum of some subset of the given input list?

Problems

37-1 Bin packing
Suppose that we are given a set of n objects, where the the size s, of the
ith object satisfies 0 < s, < 1. We wish to pack all the objects into the
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minimum number of unit-size bins. Each bin can hold any subset of the
objects whose total size does not exceed 1.

a. Prove that the problem of determining the minimum number of bins
required is NP-hard. (Hint: Reduce from the subset-sum problem.)

The first-fit heuristic takes each object in tum and places it into the first
bin that can accommodate it. Let S = 2:7=1 s..

b. Argue that the optimal number of bins required is at least rS'].

c. Argue that the first-fit heuristic leaves at most one bin less than half full,

d. Prove that the number of bins used by the first-fit heuristic is never
more than r2Sl.

e. Prove a ratio bound of 2 for the first-fit heuristic.

f. Give an efficient implementation of the first-fit heuristic, and analyze
its running time.

37-2 Approximating the size ofa maximum clique
Let G = (V,E) be an undirected graph. For any k 2:: 1, define G(k) to
be the undirected graph (V(k), E(k)), where V(k) is the set of all ordered
k-tuples of vertices from V and E(k) is defined so that (v" V2, ... , Vk) is
adjacent to (w" W2, ... , Wk) if and only if for some i, vertex Vi is adjacent
to Wi in G.

a. Prove that the size of the maximum clique in G(k) is equal to the kth
power of the size of the maximum clique in G.

b. Argue that if there is an approximation algorithm that has a constant
ratio bound for finding a maximum-size clique, then there is a fully
polynomial-time approximation scheme for the problem.

37-3 Weighted set-coveringproblem
Suppose that we generalize the set-covering problem so that each set S, in
the family :F has an associated weight iu, and the weight of a cover C is
2:SiEC ui.. We wish to determine a minimum-weight cover. (Section 37.3
handles the case in which ui, = 1 for all i.)

Show that the greedy set-covering heuristic can be generalized in a nat
ural manner to provide an approximate solution for any instance of the
weighted set-covering problem. Show that your heuristic has a ratio bound
of H(d), where d is the maximum size of any set Si.
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Chapter notes

There is a wealth of literature on approximation algorithms. A good place
to start is Garey and Johnson [79]. Papadimitriou and Steiglitz [154]
also have an excellent presentation of approximation algorithms. Lawler,
Lenstra, Rinnooy Kan, and Shmoys [133] provide an extensive treatment
of the traveling-salesman problem.

Papadimitriou and Steiglitz attribute the algorithm ApPROX-VERTEX
COVER to F. Gavril and M. Yannakakis. The algorithm ApPROX-TSP
TOUR appears in an excellent paper by Rosenkrantz, Stearns, and Lewis
{170]. Theorem 37.3 is due to Sahni and Gonzalez [172]. The analysis
of the greedy heuristic for the set-covering problem is modeled after the
proof published by Chvatal [42] of a more general result; this basic result as
presented here is due to Johnson [113] and Lovasz [141]. The algorithm
ApPROX-SUBSET-SUM and its analysis are loosely modeled after related
approximation algorithms for the knapsack and subset-sum problem by
Ibarra and Kim [111].
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